Teoría de la Deriva Continental

Que Estudia la Geología Resumen Objetivos del Geologo

¿Que estudia la Geología?-  Objetivos del Geólogo

Hace 4600 millones de años, al originarse el sistema solar, los planetas interiores fueron esferas de rocas calientes que giraban alrededor del Sol.

Debido a diferentes sucesos, como erupciones volcánicas, colisiones de meteoritos y acumulación de vapor de agua, la superficie terrestre fue cambiando sus características hasta quedar tal como se la conoce, en la cual se distinguen cuatro subsistemas:

■ Atmósfera: envoltura gaseosa formada por una mezcla de gases que, juntos, forman el aire. Alcanza una altura de 9000 km. Junto con el agua de los océanos, interactúa con la superficie de la Tierra y produce las variaciones de temperatura, las lluvias, las sequías y otros factores que caracterizan al clima.

■ Hidrosfera; cubre más de tres cuartas partes de la superficie terrestre. Del total de la hidrosfera, un tercio se halla en mares y ríos, y los otros dos penetran el suelo y las rocas.

■ Litosfera: compuesta por minerales y rocas en estado sólido (cerca de la superficie) o fundido por las altas temperaturas (hacia el interior del planeta). Comprende la corteza y el manto terrestre.

■ Biosfera: compuesta por todos los seres vivos que se encuentran en los tres subsistemas mencionados.

La GEOLOGÍA intenta reconstruir la historia de la Tierra y de sus habitantes. El tema es tan amplio, que conviene dividirlo en un cierto número de ramas. La “geología física” estudia los mecanismos de la Tierra; las causas que originaron los levantamientos y los hundimientos, los procesos de erosión y de sedimentación.

La “paleontología” estudia los fósiles: restos de plantas y animales del pasado.

La “petrología” considera el origen y la composición de las rocas, y la “mineralogía” se ocupa del estudio de los distintos minerales que componen las rocas. Todas las ramas de la ciencia contribuyen a la geología.

La física es particularmente útil para la geología física; por ejemplo, para entender mejor los movimientos de la Tierra. La química aporta su contribución a la mineralogía y a la petrología; la paleontología es, realmente, la “biología” del pasado.

Aunque un geólogo puede tener amplios conocimientos de la materia, en general, suele especializarse en una rama particular de ella.

Pico de un Geológo

Se pueden deducir muchas cosas de un simple trozo de roca. Es posible que proceda de una masa fundida (roca ígnea) que se enfrió. En este caso, los cristales revelarán algo sobre la temperatura de la masa fundida, y su tamaño y forma pueden indicar la celeridad con que se enfrió.

Por otra parte, la roca puede ser sedimentaria, es decir, constituida con materiales de diversa procedencia: de otras rocas antiguas (sedimentos clásticos), precipitados originados por soluciones (sedimentos químicos) y los que proceden de restos de plantas y animales (sedimentos orgánicos).

Se logrará determinar la procedencia de los fragmentos comparándolos con muestras de la roca madre, situada en otro lugar. La forma de los elementos del conglomerado es un dato que permite establecer una hipótesis respecto al agente que los arrastró: viento, agua o hielo. Para el geólogo, cuya principal finalidad es configurar una imagen de la historia de la Tierra, todos estos indicios tienen un gran valor. Pero no hay que descartar otros detalles.

Los restos de vida orgánica (fósiles), conservados durante siglos en los sedimentos,  no  sólo  permiten fechar la  roca,  sino también una comparación con formas de vida actuales, de la cual se desprende una idea del clima y de las condiciones ambientales de la época en que se formó la roca.

Las estructuras en la roca —grietas en el barro, ondas o bien capas plegadas y rotas—, indican algo de los acontecimientos que sucedieron hace mucho tiempo. Pero ojeadas sobre los antiguos paisajes, mares y formas de vida conservadas tan fielmente sobre la corteza terrestre son de poco valor, a menos que se coloquen en el orden cronológico correcto. Para conseguir que los capítulos geográficos ocupen un orden lógico, el geólogo diseña su mapa.

Uno de Instrumento simple que usa un geólogo

EL MAPA GEOLÓGICO
No es extraño ni misterioso que el mapa geológico registre, en unos pocos metros cuadrados, millones de años de tiempo geológico. El geólogo, con un martillo, una brújula y un sencillo instrumento, llamado cimómetro, sale al campo y marca sobre un mapa ordinario (topográfico) aquellas rocas que afloran a la superficie del terreno que está estudiando. Con distintos colores, va sombreando las diversas piedras calizas, areniscas, pizarras o lavas volcánicas, en el sitio exacto en que se encuentran. Como frecuentemente están recubiertas con tierra vegetal, este trabajo es, a veces, difícil. Pero el geólogo aprende pronto los secretos del oficio.

En las canteras, hendiduras en los lechos de los ríos y a lo largo de los bancos fluviales se ven,  a menudo,  las rocas inferiores que afloran a la superficie. En otros lugares, una variación de pendiente poco marcada indica un cambio en la naturaleza de la roca subterránea. La inspección de los fragmentos expulsados por los conejos, topos o tejones, al excavar sus madrigueras, reporta datos útiles.

Una serie de manantiales, variaciones en la cuenca de un río, incluso un cambio en la vegetación, ofrecen suficientes oportunidades al geólogo cuando quiere clasificar los distintos tipos de roca.

Un crestón de la roca, que aflora en la superficie de la tierra, es sólo la parte de una capa que se encuentra enterrada, en su mayoría. Un estrato descansa sobre otro y, de acuerdo con un principio fundamental de la estratigrafía —establecido- por el geólogo inglés William Smith—, la roca que se encuentra en la base de la serie es la más antigua y sobre ella se acumulan estratos más modernos. Esta teoría se formula por sentido común, puesto que la capa superior sólo habrá podido depositarse posteriormente.

Las circunstancias del pasado se reconstruyen comparando estructuras y fósiles, preservados en las rocas, con los casos similares de la actualidad.La existencia de capas de roca en la superficie y su pendiente revelan la estructura geológica de un área. La ilustración muestra un anticlinal, tal como se encuentra representado en el plano y como se ha  reconstruido en sección.

Basándose en la Ley de Smith, llamada ley de la superposición, el geólogo puede calcular las edades relativas de las rocas en la región que estudia. Entonces, compara su mapa con los de otros lugares y, lentamente, va estableciendo una relación completa de la secuencia de las rocas. Se comprueba que las rocas del cretácico descansan sobre las del jurásico, más antiguas, que a su vez reposan sobre las del triásico, más antiguas todavía. En algunos lugares, la serie de rocas depositadas suele estar incompleta.

Grandes espesores de roca pueden haber sufrido los efectos de la erosión, o bien, en otros casos, no se ha depositado sedimento. Sin embargo, en algún otro sitio se encuentran rocas que llenan esta laguna. Luego, cuando ya se conoce la secuencia correcta de las rocas, se ordenan los indicios individuales de los fósiles, de los minerales y sus estructuras. Se van estableciendo así panoramas de la historia de la Tierra y se observa cómo se pasa de un episodio  a  otro.

Las fallas son importantes para comprender la estructura de una región. También pueden tener importancia en lo que se refiere a la presencia de petróleo y de vetas de metal. A veces, las fallas se revelan en el paisaje como se observa en las dos figuras de arriba. En otros sitios, su presencia puede detectarse por la “repetición” o el “corte” de capas de roca conocidas.

ESTRUCTURA Y MAPA GEOLÓGICO
Al formarse, los estratos quedaron (como están ahora) en una posición más o menos horizontal. Si no se produjeran movimientos terrestres, se mantendrían en esa posición horizontal. Pero, a lo largo del tiempo geológico se han producido grandes levantamientos y las capas de roca han sido plegadas, fracturadas e inclinadas. Al inspeccionar las capas rocosas, el geólogo descubre no sólo la edad relativa de cada estrato, sino que averigua algo respecto a fuerzas que actúan en el interior de la corteza terrestre.

Con este propósito, utiliza el cimómetro,   que  es una  escala  dividida  en grados, con una plomada, y sirve para medir la inclinación de las capas rocosas. La mayor o menor inclinación de los estratos revela la intensidad de los movimientos que se produjeron en el pasado.

Capas de sedimentos que fueron horizontales pueden encontrarse, actualmente, colocadas de forma casi vertical, lo que hace pensar en la acción de fuerzas de compresión muy intensas. Otras veces, se observa una capa rocosa que se hunde en la tierra en un punto y aparece a corta distancia rompiendo la superficie, inclinada en sentido contrario. Aquí, el geólogo ha descubierto un plegamiento rocoso. El estrato no se prolonga, hundiéndose, porque grandes fuerzas lo han plegado hacia arriba.

Otro problema que se plantea al geólogo es el de las fallas de los estratos:   hendiduras a lo largo de las cuales se han deslizado capas de rocas. Las fallas son también una consecuencia de los movimientos terrestres, y el geólogo las observa como declives de falla en la superficie, como crestones de roca terraplenados o, sencillamente, como afloramientos repetidos de las rocas.

Teniendo en cuenta la inclinación de los estratos y los plegamientos y fallas, el geólogo elabora la historia de la geología estructural del área comprendida en su mapa, incluyendo una estimación de la magnitud y dirección de las diversas fuerzas que han  actuado.

Técnicas más moderna proporcionan datos complementarios al geólogo. La fotografia aérea puede dar una visión de conjunto de la geología de un terreno de centenares de kilómetros cuadrados. Las exploraciones sísmicas y magnéticas pueden revelar las rocas y estructuras que se encuentran bajo la superficie.    Núcleos  de  sondeos  proporcionan  información directa sobre las rocas subterráneas.

APLICACIONES DE LA GEOLOGÍA
La  historia  de  la  Tierra  revelada por  las rocas es fascinante. Pero la información que se va recogiendo a lo largo de los años no tiene sólo un interés histórico. La tierra proporciona al hombre carbón, petróleo, minerales metálicos, incluso el agua, mientras que las rocas y su estructura pueden tener gran importancia a la hora de hacer proyectos de desarrollo y de construir nuevos edificios y embalses. Por esto, los mapas, además de aportar luz a un pasado remoto, benefician directamente al hombre por sus aplicaciones prácticas.

Del conocimiento de la estructura de las rocas se deduce la profundidad de capas de sedimentos que presentan un particular interés, como filones de carbón o vetas de mineral. Igualmente, el geólogo puede indicar el lugar donde conviene perforar un pozo, para alumbrar el agua de las bolsas que se hallen contenidas en los estratos.

Cuando se busca petróleo, se comprueba que los mejores terrenos están asociados a cierto tipo de roca, que lo retiene. Por ejemplo, estratos en forma de arco (anticlinales), montañas de sal y falla. Trazando cuidadosamente los mapas, el geólogo puede encontrar aquellos lugares en los que será más probable la existencia de petróleo.

Se trata de una información muy valiosa, pues el costo de las perforaciones es elevado. De esta forma, sólo se harán los pozos en las áreas donde haya posibilidad de éxito. De otro modo, se gastaría una excesiva cantidad de dinero.

El paleontólogo (geólogo que se interesa particularmente por los fósiles) no sólo fecha las rocas según los restos que contienen sino que, con frecuencia, relaciona un lecho con otro del que sabe que está asociado con un mineral valioso. Así, son probables posteriores descubrimientos de minerales.

Actualmente, se conocen nuevas técnicas que pueden ayudar al geólogo. Muestras tomadas en perforaciones de sondeo dan información adicional sobre la estructura subterránea. También tienen utilidad los métodos de exploración geofísicos, que miden el efecto de las ondas de choque sobre la Tierra (exploración sísmica); los que se basan en la diferencia de atracción de la gravedad (exploración gravimétrica), y los que utilizan la intensidad y dirección de los campos magnéticos (exploración magnética).

https://historiaybiografias.com/linea_divisoria4.jpg

LA GEOQUIMICA: La geoquímica es una ciencia interdisciplinaria que reúne los conocimientos de la Geología y de la Química, y que estudia la química del planeta Tierra y de cada uno de sus subsistemas. Como los geoquímicos pueden especializarse en alguna de las esferas, como la atmósfera o la geosfera, existen múltiples temas, métodos y técnicas que pueden aplicar en sus investigaciones.

Los geoquímicos estudian, por ejemplo la composición química media de la corteza terrestre, de la atmósfera y de la hidrosfera, y determinan los elementos químicos que son más abundantes. Sus estudios se relacionan con la mineralogía, cuando se trata de la composición química de los minerales, o con la petrología, cuando investigan la composición de minerales de las rocas.

Dentro del campo de la vulcanología, o estudio de los volcanes, los geoquímicos investigan la composición porcentual de elementos químicos del magma, que permite detectar magmas ácidos, con mayor contenido de sílice, y básicos, con menor contenido de sílice. Igualmente, examinan los gases producidos durante las erupciones volcánicas y liberados hacia la atmósfera, o los iones originados en las fuentes hidrotermales submarinas que afectan la salinidad del mar.

Uno de los temas actuales que estudia la geoquímica es el recalentamiento de la atmósfera en otras eras geológicas del planeta y su comparación con el aumento del efecto invernadero o las glaciaciones, así como las señales químicas de grandes extinciones masivas que tuvieron lugar al final de estos períodos.

Por ejemplo, se ha podido determinar la existencia de una capa de iridio (Ir), muy constante en el límite cretácico-terciario, hace 65 millones de años, que coincide con la gran extinción de los dinosaurios. Como el iridio es común en los meteoritos, los geoquímicos han llegado a la conclusión de que esta extinción masiva se ha producido por el impacto de un asteroide o cometa con nuestro planeta.

Los geoquímicos también estudian con distintas técnicas de medición la contaminación química en los diferentes subsistemas terrestres.

Por ejemplo, la mayor parte de los contaminantes de las napas subterráneas se debe a las sustancias que vierten las industrias, a los desechos cloacales y a la infiltración de sustancias agroquímicas. Las sustancias químicas que atentan contra la pureza de las aguas subterráneas son:
• nitratos, provenientes de las aguas residuales, de la contaminación del aire y de los vertederos;  metales, entre los que se destacan el cadmio, el cromo, el cobre, el mercurio y el plomo, producto de los vertidos industriales y los pesticidas.

• compuestos orgánicos, de los escapes industriales, derivados del petróleo y pesticidas utilizados en agricultura.

Y en lo que respecta a los estudios de control de la contaminación atmosférica y la calidad del aire, los químicos de la atmósfera utilizan distintos tipos de aparatos que les permiten analizar la composición de los gases atmosféricos y determinar aquellos que producen smog.

Fuente:
QUIMICA I Santillana Polimodal Sistemas Materiales – Estructura de la Materia – Alegria,Bosack,Dal Favero,Franco,Jaul y Rossi

https://historiaybiografias.com/linea_divisoria4.jpg

¿Que Estudia la Geografía?           –          Geografía del Mundo

Fuente Consultada:
Revista TECNIRAMA N°112 Enciclopedia de la Ciencia y La Tecnología -La Geología-

Ver: Historia Geológica de los Relieves de Argentina

Las Eras Geologicas del Planeta Tierra Caracteristicas y Duracion

LAS ERAS GEOLÓGICAS  DEL PLANETA TIERRA
Características y Duración

Hace muchísimos años nació nuestro Sistema Solar y, dentro de él, la Tierra, el único planeta en el cual se ha establecido un equilibrio que permitió el surgimiento de la vida. Según estudios científicos, hace alrededor de 15.000 millones de años toda la materia y la energía del Universo estaban concentradas en una pequeñísima zona.

Entonces sucedió el Big Bang o Gran Explosión: un gigantesco estallido hizo que la materia y la energía salieran expulsadas en todas las direcciones.

A partir de choques y del desorden, la materia se fue agrupando y concentrando, y así se formaron las primeras estrellas y las primeras galaxias. Se supone que una gran nube de gas y polvo formó nuestro Sistema Solar. Primero, gran parte de ella se acumuló y dio origen al Sol. El resto, se comprimió y formó los distintos planetas

El origen: Se cree que nuestro planeta nació hace unos 4.500 millones de años. Pero su aspecto no era ni siquiera parecido al que hoy conocemos. En sus primeros momentos, se trataba simplemente de un conglomerado de rocas, cuyo interior se calentó y provocó la fusión de todos los elementos.

Luego, la Tierra comenzó poco a poco a enfriarse y las capas del exterior se volvieron sólidas, aunque el calor que provenía del centro del planeta las volvía a fundir.

Este proceso continuó hasta que la temperatura bajó lo suficiente como para que se formara una corteza terrestre relativamente estable, hace alrededor de 3.800 millones de años. La atmósfera todavía no se había formado y la Tierra recibía el impacto de una enorme cantidad de meteoritos.

Los volcanes estaban en plena actividad: la lava corría sobre la superficie en grandes masas y hacía que la temperatura fuera elevada.

LAS ERAS GEOLÓGICAS:

1-ERA PRECÁMBRICA – 4500 MILLONES DE AÑOS

2-ERA PALEOZOICA – ENTRE 600 Y 300 MILLONES DE AÑOS

3-ERA MESOZOICA – ENTRE 250 Y 150 MILLONES DE AÑOS

4- ERA CENOZOICA – ENTRE 65 Y 0,01 MILLONES DE AÑOS (10.000 AÑOS)

linea divisoria

INTRODUCCIÓN Y DESCRIPCIÓN DE LA ERAS GEOLÓGICAS: La edad de la tierra se calcula en más de cuatro mil quinientos millones de años. Las ciencias geológicas que estudian cómo fue evolucionando nuestro planeta durante este larguísimo período de tiempo, tasan sus investigaciones en las rocas y en los fósiles contenidos en algunas rocas.

Por el estudio de las rocas se ha podido conocer:
1) la enorme antigüedad de la tierra;
2) las temperaturas existentes en las distintas épocas;
5) los movimientos registrados en la corteza terrestre, los cuales han dado origen a la formación de montañas y depresiones; y
4) las variaciones en la distribución de las tierras y las aguas sobre la superficie de nuestro planeta, ocurridas en períodos de tiempo muy largos.

La antigüedad de la tierra ha sido posible calcularla estudiando la constitución de las rocas radioactivos. Los átomos de uranio se transforman en átomos de plomo con un ritmo constante, de tal manera que, comparando la cantidad de plomo contenido en un mineral de uranio, se puede calcular cuándo se formó la roca que lo contiene. De este modo se cree que las rocas más antiguas de la tierra, conocidas hasta hoy, se formaron hace más de cuatro mil millones de años, lo cual indica que la tierra es mucho más antigua.

Mediante el estudio de los fósiles contenidos en las rocas sedimentarias se han conocido:

1) las diferentes especies animales y vegetales que vivieron en las distintas épocas; y
2) las variaciones ocurridas en el clima de las diferentes regiones.

Un fósil es cualquier resto o impresión de origen animal o vegetal, preservado bajo la corteza terrestre al formarse las rocas sedimentarias.

En las rocas sedimentarias abundan los fósiles. Como en cada época vivieron ciertas especies animales y vegetales típicas, que no existieron en otras, los geólogos pueden determinar en qué época se formó la roca, observando los fósiles típicos que presente.

La evolución de la tierra en el tiempo ha sido reconstruida por la geología histórica, al ser estudiadas las capas formadas por las rocas sedimentarias. Estas rocas, depositadas en los fondos de los mares y lagos durante millones y millones de años, están situadas unas sobre otras, formando estratos, y Kan sido comparadas en su conjunto con un enorme libro.

Las rocas formadas en cada época serían como las páginas del libro. Las rocas más antiguas se encuentran en las capas más profundas y las más recientes muy cerca de la superficie. Sólo cuando las rocas han sido muy perturbadas por fenómenos posteriores, su orden puede aparecer cambiado.

La historia de la tierra consta de cuatro grandes etapas denominadas eras, las cuales tuvieron distinta duración. Las eras geológicas reciben los nombres de Protozoica, Paleozoica, Mesozoica y Cenozoica.

Era Protozoica: Esta era se divide en dos etapas: Arcaico y Precábrico.

Arcaico: Los primeros millares de millones de años de la tierra. La tierra debió ser, en sus comienzos, una esfera de gases incandescentes, semejantes a los que forman el sol, del cual se desprendió al igual que los demás planetas, según las hipótesis más aceptadas.

Debido a su tamaño relativamente pequeño, la tierra comenzó a enfriarse pronto. Los gases primitivos se convirtieron en líquidos, etapa durante la cual la luna debió desprenderse de la tierra. Más tarde, las materias líquidas comenzaron a enfriarse en la superficie y a solidificarse, formando las primeras rocas. Los vapores que se escapaban de esas rocas se convertían en nubes muy densas, formando una atmósfera semejante a la que se supone cubre el planeta Venus actualmente. A partir de entonces, y durante millares de millones de años, no hubo vida sobre la tierra; de ahí el nombre de Azoica (sin vida) que se da a esta primera era.

Aparición de los océanos y de las primeras manifestaciones de vida. Las rocas que formaban la superficie de la tierra continuaron enfriándose, hasta que el vapor de agua que contenía la atmósfera comenzó a precipitarse en forma de lluvia.

El agua procedente de estas lluvias iniciales, escurriéndose desde las zonas altas a las bajas, fue a depositarse en las depresiones de la corteza, para formar ormar los océanos primitivos. De las profundidades del planeta brotaban rocas fundidas (magma), originando grandes volcanes; y la corteza terrestre se arrugaba, formando estos plegamientos altísimas montañas.

Precámbrico: La débil corteza terrestre se compone de rocas que provienen del interior (granitos, basaltos). Grandes zonas son intensamente atacadas por los agentes externos (lluvias, vientos, diferencias de temperatura). Rocas metamórficas (gnesis, pizarras). Rocas sedimentarias (areniscas rojas). Casi todas guardan en su interior el secreto del inicio de la vida en el planeta. Primeras glaciaciones.

En esta era debieron aparecer las primeras manifestaciones de vida en forma de seres de una sola célula, semejantes a las bacterias actuales, los cuales no podían dejar huellas fósiles.

Los fósiles más antiguos conocidos son de fines de esta era, y corresponden a impresiones de algas marinas muy rudimentarias.

El enfriamiento de nuestro planeta continuó. Aunque las grandes explosiones volcánicas disminuyeron, inmensas cantidades de rocas fundidas traían de las profundidades del planeta minerales de hierro, plata, cobre, oro y otros metales que hoy conocemos. Estas rocas, que antes de consolidarse pasaron por el estado de fusión, son denominadas rocas ígneas, o sea, rocas formadas por el fuego.

Las lluvias, cada vez más intensas, al caer sobre las partes elevadas de la corteza, arrastraban los materiales sueltos y los iban depositando en los fondos de los mares, dando origen a las rocas sedimentarias.

Esta era, denominada Proterozoica, o de la vida elemental, debió durar, al igual que la anterior, unos 650 millones de años. En ella aparecieron organismos más complejos, como las esponjas y corales y las primeras plantas con raíces.

Era Paleozoica: Las tierras emergidas ya poseían potentes mantos de sedimentación marina (calizas, mármoles, cuarcitas). Gran dinamismo interno de la Tierra. Se originan zonas de montañas en todo el mundo. Variaciones climáticas mundiales importantes (cálidas y húmedas). Gran desarrollo de la flora continental y de los primeros animales vertebrados marinos y terrestres. Formación de rocas ricas en carbón (antracita y hulla). Gran purificación de la atmósfera gracias a los vegetales continentales.

La era de los peces y de los grandes helechos. Durante un largo período no se produjeron en la tierra grandes conmociones. Los océanos cubrían extensas zonas de la superficie terrestre y la erosión iba reduciendo intensamente el relieve de las áreas emergidas.

En los mares de esa era vivían cantidades enormes de animales provistos de conchas o caparazones, cuyos restos, al depositarse en el fondo de los océanos, formaron profundas capas de rocas calizas. En las costas se depositó gran cantidad de arena. Más tarde, según indican los fósiles, aparecieron los peces en los océanos y plantas mayores en las tierras. Los insectos se multiplicaron.

En los finales de esta era se formó la mayor parte de la hulla o carbón mineral de que disponemos hoy. En este período, llamado carbonífero, cuyo clima era caliente, hubo extensos bosques de helechos arborescentes, que medían hasta 30 metros de altura. Los restos de estos helechos fosilizados en las zonas cenagosas, después de quedar cubiertos por arcillas y arenas, formaron la hulla, que actualmente es extraída de sus yacimientos por los mineros.

Durante esta era aparecieron los primeros animales vertebrados, que podían vivir lo mismo en tierra que en el mar: los anfibios.
La temperatura, que se mantuvo relativamente cálida, favoreció la multiplicación de las especies tanto vegetales como animales. Después, el clima se enfrió considerablemente, y muchas de estas especies se extinguieron.

La era Paleozoica (de la vida antigua), duró más de 360 millones de años.

Era Mesozoica: Se produce la ruptura del supercontinente de Pangea. El clima de la Tierra cambia varias veces, de húmedo a desértico. Los animales sufren constantes transformaciones y adaptaciones al medio natural. Desaparición de los grandes saurios. Surgen otras especies animales y vegetales. Zonas muy localizadas de orogénesis. Se inicia la formación petrolífera.

La era de los reptiles gigantescos. Durante millones de años los animales más notables que vivieron sobre la tierra fueron unos reptiles gigantescos, de figuras grotescas, que habitaban en tierra firme y en los lagos.

Algunos poseían alas y podían volar. Entre estos reptiles figuraron los animales mayores que han vivido sobre los continentes. Muchos de sus esqueletos han sido descubiertos. Algunos de los reptiles más pequeños evolucionaron en esta época, hasta convertirse en los antecesores de las aves actuales.

Sobre la tierra firme aparecieron unos pequeños seres de sangre caliente y cubiertos de pelos, que alimentaban con leche a sus pequeñuelos. Eran los mamíferos, a los que pertenecería el hombre millones de siglos después.

En los últimos tiempos de esta era hubo gran actividad volcánica, y se produjeron grandes plegamientos y fallas en la superficie terrestre. Entonces se formaron las mayores montañas que hay sobre la tierra: los Himalayas de Asia, los Andes de la América del Sur y las Rocosas de la América del Norte.

La era Mesozoica (de la vida media), duró unos 120 millones de años.

La tierra adopta sus caracteres actuales. (Era Cenozoica.) En esta era, que es la más reciente de la historia de la tierra, se han producido distintos períodos en los cuales la temperatura descendió tanto, que grandes masas de hielo (glaciares) avanzaron desde los polos. En el hemisferio norte estas glaciaciones cubrieron gran parte de la América del Norte, Europa y Asia.

Los mamíferos se multiplicaron durante estas épocas frías, siendo notable, entre ellos, el mamut, antepasado de los elefantes actuales.

En esta era los continentes y los océanos adquirieron su forma actual y aparecieron casi todos nuestros animales domésticos: caballo, perro, gato, cerdo y muchos más.

La era Cenozoica (de la vida reciente), abarca los últimos 60 millones de años de la historia de la tierra. Hará cerca de dos millones de años surgieron sobre la tierra los primeros seres parecidos al hombre. Mucho más tarde, hará unos 50.000 años, encontramos ya los primeros hombres, que conocían e! uso del fuego y de la piedra.

Algunos autores estiman que, a partir del cese de las glaciaciones hará unos 30.000 años cuando los hombres comenzaron su lenta marcha la civilización , dando comienzo a la era actual.

Una era de Grandes cambios climáticos (de cálido y templado a frío glaciar). Los glaciares cubren vastas zonas del planeta. Cuatro períodos glaciares. En una época de desglaciación aparecen los homínidos (antecesores del hombre actual).

El mamut y el tigre diente de sable (esmilodonte) son vistos por los primeros humanos. Las diferencias de temperatura ocasionan grandes migraciones de flora y fauna. Rocas: loess, conglomerados, limos. Formación de lagos y nuevos drenajes fluviales. Relieve actual.

Cuadro de Animales y Plantas

CRONOLOGÍA DE LA TIERRA

EraPeríodoÉpocaMillones de AñosPrincipales Acontecimientos
Protezoica Arcaico
Precámbrico
 4500-3500
3500-590
Origen del Sistema Solar. Origen de las primeras células vivas. Dominio de las bacterias. Aparición de las células eucariotas. Primeros seres pluricelulares.
PaleozoicaCámbrico 570-505Incremento súbito de fósiles de invertebrados. Gran variedad de algas marinas.
 Ordocivico 505-438Dominio de los invertebrados. Primeros vertebrados.
 Silúrico 438-408Primeras plantas e invertebrados terrestres.
 Devónico 408-360Primeros vertebrados terrestres.
 Carbonífero 360-286Bosques de helechos arbóreos. Desarrollo de los anfibios e insectos. Aparición de los primeros reptiles
 Pérmico 286-248Origen de las coníferas. Proliferación de los reptiles. Extinción de muchas formas de invertebrados.
MesozoicaTriásico 248-213Bosques de gimnospermas y de helechos arbóreos. Origen de los dinosaurios y mamíferos.
 Jurásico 213-144Dominio de los dinosaurios y las coníferas. Primeras aves.
 Cretácico 144-65Primeras plantas con flores. Extinción de los dinosaurios.
CenozoicaTerciarioPaleoceno65-54Radiación de los mamíferos primitivos.
  Eoceno54-37Dominio de las plantas con flores.
  Oligoceno37-24Surgimiento de los grupos modernos de mamíferos e invertebrados.
  Mioceno24-5Proliferación de peces óseos.
  Plioceno5-2Dominio de mamíferos y aves.
 CuaternarioPleistoceno2-0,01Aparición de los humanos.
  Reciente0,01 – hoy

cuadro de las eras geológicas

Ver un Amplio Cuadro Con Las Características de cada Etapa

Cuadro Estratigráfico

tabla geologica

Ver Una Tabla Geológica

Ver un Amplio Cuadro Sintesis Con Las Características de cada Etapa

Explosión de vida: Los primeros océanos se convirtieron en el hogar de las bacterias y algas, como por ejemplo las algas azul verdosas.

Se cree que estas formas tempranas de vida marina fueron las responsables de la generación de oxígeno en la Tierra, ya que hasta ese entonces nuestra atmósfera no lo contenía y los rayos ultravioletas del Sol llegaban al planeta en forma directa sin ninguna barrera de por medio.

Las algas, las primeras productoras de clorofila, lograron absorber la energía del Sol y producir su propio alimento, al tiempo que liberaban oxígeno. Fueron vertiéndolo gradualmente y preparando así el camino para la evolución de otras criaturas marinas.

Los organismos unicelulares precursores necesitaron miles de millones de años para conseguir organizarse en formas más complejas.

Fue hace alrededor de 680 a 650 millones de años, hacia fines de la Era Precámbrica, cuando finalmente aparecieron los primeros organismos pluricelulares. Los restos más antiguos de organismos complejos fueron encontrados en Edicara, Australia.

Son, por lo general, impresiones sobre la piedra de restos de ancestros de anélidos y medusas. Debido a estos hallazgos, se discute la posibilidad de crear un nuevo período, denominado Edicariano, que marcaría el inicio de la Era Paleozoica.

organismo unicelular

Unicelulares:
Los primeros organismos estaban compuestos por una sola célula sin núcleo (Era Precámbrica).

organismo primitvos de la tierra
Medusa:
Hacia fines de la Era Precámbrica, surgieron le primeros organismos pluricelulares.

eras geologicas
En la Era Paleozoica:
Surgieron peces sin mandíbula como el Arandapsis; insectoscomo la efémera; anfibios como Phlegelhontia y escorpiones.

organismo primitvos de la tierra
Trilobites:
Se originaron durante el Período Cámbrico. Eran animales articulados que contaban con un caparazón de quitina.

organismo primitvos de la tierra
Reptiles:
En la Era Mesozoica surgieron grandes reptiles voladores, como Eudimorphodon y los dinosaurios.

organismo primitvos de la tierra
Mamíferos:
El Crusafontia vivió durante el Cretácico, y es uno de los mamíferos primitivos. Era parecido a una ardilla.

organismo primitvos de la tierra
Era Cenozoica:
Animales muy parecidos al ornitorrinco actual vivieron durante este tiempo. También el Didododus un cuadrúpedo.

organismo primitvos de la tierra
Caballo y tigre:
Uno de los ancestros del caballo actual, el Mesobippus, y un antiguo felino, el Esmilodonte (Era Cenozoica).

el hombre primitivo
El Hombre:
Los primeros homínidos y losantepasados directos del hombre vivieron en los últimos períodos de la Era Cenozoica.

Fuente Consultada:
La Tierra y Sus Recursos Levi Morrero
Biología II Ecología y Evolución Bocalandro-Frid-Socolovsky
Nuestro Planeta – La Evolución- Enciclopedia Universal Billiken

Ver: BOSQUES EN LA ERA CARBONÍFERA