Vuelos No Tripulados

Ecuación de Drake Posibilidades de Vida Extraterrestre

Ecuación de Drake – Posibilidades de Vida Extraterrestre

La detección de vida en otro punto del universo sería el mayor descubrimiento de todos los tiempos. El profesor de física Enrico Fermi se preguntó por qué, teniendo en cuenta la y la vastedad del universo, así como la presencia de miles  millones de estrellas y planetas que han existido durante de millones de años, ninguna civilización alienígena se ha puesto en contacto con nosotros. Esta era su paradoja.

Mientras charlaba con sus colegas a la hora del almuerzo en 1950. Fermi, al parecer, se preguntó: «¿Dónde están?». Nuestra galaxia contiene miles de millones de estrellas y hay miles de millones de galaxias en el universo, así que hay billones de estrellas. Si sólo una pequeña fracción de ellas tuviera planetas, eso suponía un gran número de ellos. Si una parte de esos planetas albergaba vida, debería haber millones de civilizaciones ahí afuera. Así que, ¿por qué no las hemos visto? ¿Por qué no se han puesto en contacto con nosotros?

Así pensaba Carl Sagan, respecto a la vida extraterrestre: ¿hay alguien ahí fuera con quien hablar? ¿Es posible, habiendo una tercera parte o una mitad de un billón de estrellas en nuestra galaxia Vía Láctea, que la nuestra sea la única acompañada por un planeta habitado?.

Es mucho más probable que las civilizaciones técnicas sean una trivialidad, que la galaxia esté pulsando y vibrando con sociedades avanzadas, y por lo tanto que no esté muy lejos la cultura de este tipo más próxima: quizás esté transmitiendo con antenas instaladas en un planeta de una estrella visible a simple vista, en la casa de al lado.

Quizás cuando miramos el cielo nocturno, cerca de uno de esos débiles puntos de luz hay un mundo en el cual alguien muy distinto de nosotros esté contemplando distraídamente una estrella que nosotros llamamos Sol y acariciando, sólo por un momento, una insultante especulación.

Es muy difícil estar seguros. Puede haber impedimentos graves en la evolución de una civilización técnica. Los planetas pueden ser más raros de lo que pensamos. Quizás el origen de la vida no es tan fácil como sugieren nuestros experimentos de laboratorio. Quizás la evolución de formas avanzadas de vida sea improbable. 0 quizás las formas de vida compleja evolucionan fácilmente pero la inteligencia y las sociedades técnicas requieren un conjunto improbable de coincidencias: del mismo modo que la evolución de la especie humana dependió del fallecimiento de los dinosaurios y de la recesión de los bosques en la era glacial; de aquellos árboles sobre los cuales nuestros antepasados se rascaban y se sorprendían vagamente de algo. 0 quizás las civilizaciones nacen de modo repetido e inexorable, en innumerables planetas de la Vía Láctea, pero son en general inestables; de modo que sólo una pequeña fracción consigue sobrevivir a su tecnología y la mayoría sucumben a la codicia y a la ignorancia, a la contaminación y a la guerra nuclear.

Ecuación de Drake: En 1961, Frank Drake trasladó a una ecuación la probabilidad de que una civilización alienígena con la que pudiéramos contactar viva en otro planeta de la Vía Láctea. Se conoce como la ecuación de Drake. Nos dice que existe la posibilidad de que coexistamos con otras civilizaciones, pero la probabilidad es bastante incierta. Carl Sagan sugirió una vez que hasta un millón de civilizaciones alienígenas podrían vivir en la Vía Láctea, pero más adelante rechazó su propia afirmación, y desde entonces otros científicos han considerado que esa cifra se reducía a una civilización, concretamente, la humana.

 número de estrellas en la galaxia Vía Láctea; fracción de estrellas que tienen sistemas planetariosnúmero de planetas en un sistema dado que son ecológicamente adecuados para la vida,fracción de planetas adecuados de por sí en los que la vida nace realmente,fracción de planetas habitados en los que una forma inteligente de vida evoluciona,fracción de planetas habitados por seres inteligentes en los que se desarrolla una civilización técnica comunicativa;fracción de una vida planetaria agraciada con una civilización técnica.=N

FORMULA DE DRAKE: Es posible continuar explorando este gran tema y hacer una estimación basta de N, el número de civilizaciones técnicas avanzadas en la Galaxia. Definimos una civilización avanzada como una civilización capaz de tener radioastronomía. Se trata desde luego de una definición de campanario, aunque esencial. Puede haber innumerables mundos en los que los habitantes sean perfectos lingüistas o magníficos poetas pero radioastrónomos indiferentes. No oiremos nada de ellos. N puede escribirse como el producto o multiplicación de unos cuantos factores, cada uno de los cuales es un filtro y, por otro lado, cada uno ha de tener un cierto tamaño para que haya un número grande de civilizaciones:


Nt, número de estrellas en la galaxia Vía Láctea;
fp, fracción de estrellas que tienen sistemas planetarios,
ne, número de planetas en un sistema dado que son ecológicamente adecuados para la vida,
fj, fracción de planetas adecuados de por sí en los que la vida nace realmente,
f¡, fracción de planetas habitados en los que una forma inteligente de vida evoluciona,
fc, fracción de planetas habitados por seres inteligentes en los que se desarrolla una civilización técnica comunicativa; y
fL, fracción de una vida planetaria agraciada con una civilización técnic
a.

Esta ecuación escrita se lee N = N*. fp . ne . f1 . fi . fc . fL Todas las efes son fracciones que tienen valores entre 0 y 1; e irán reduciendo el valor elevado de N0.

Para derivar N hemos de estimar cada una de estas cantidades. Conocemos bastantes cosas sobre los primeros factores de la ecuación, el número de estrellas y de sistemas planetarios. Sabemos muy poco sobre los factores posteriores relativos a la evolución de la inteligencia o a la duración de la vida de las sociedades técnicas. En estos casos nuestras estimaciones serán poco más que suposiciones. Os invito, si estáis en desacuerdo con las estimaciones que doy, a proponer vuestras propias cifras y ver cómo afectan al número de civilizaciones avanzadas de la Galaxia. Una de las grandes virtudes de esta ecuación, debida originalmente a Frank Drake, de Cornell, es que incluye temas que van desde la astronomía estelar y planetario hasta la química orgánica, la biología evolutiva, la historia, la política y la psicología anormal. La ecuación de Drake abarca por sí sola gran parte del Cosmos.

Conocemos N*, el número de estrellas en la galaxia Vía Láctea, bastante bien, por recuentos cuidadosos de estrellas en regiones del cielo, pequeñas pero representativas. Es de unos cuantos centenares de miles de millones; algunas estimaciones recientes lo sitúan en 4 x 1011. Muy pocas de estas estrellas son del tipo de gran masa y corta vida que despilfarran sus reservas de combustible nuclear. La gran mayoría tienen vidas de miles de millones de años o más durante los cuales brillan de modo estable proporcionando una fuente de energía adecuada para el origen y evolución de la vida de planetas cercanos.

Hay pruebas de que los planetas son un acompañamiento frecuente de la formación de estrellas. Tenemos los sistemas de satélites de Júpiter, Saturno y Urano, que son como sistemas solares en miniatura; las teorías del origen de los planetas; los estudios de estrellas dobles; las observaciones de los discos de acreción alrededor de estrellas, y algunas investigaciones preliminares de las perturbaciones gravitatorias de estrellas cercanas. Muchas estrellas, quizás la mayoría, pueden tener planetas.

Consideramos que la fracción de estrellas que tienen planetas, es aproximadamente de 1/3. Entonces el número total de sistemas planetarios en la galaxia sería N. fp = 1,3 x 1011 (el símbolo = significa aproximadamente igual a ). Si cada sistema tuviera diez planetas, como el nuestro, el número total de mundos en la Galaxia sería de más de un billón, un vasto escenario para el drama cósmico.

En nuestro propio sistema solar hay varios cuerpos que pueden ser adecuados para algún tipo de vida: la Tierra seguro, y quizás Marte, Titán y Júpiter. Una vez la vida nace, tiende a ser muy adaptable y tenaz. Tiene que haber muchos ambientes diferentes adecuados para la vida en un sistema planetario dado. Pero escojamos de modo conservador ne = 2. Entonces el número de planetas en la Galaxia adecuados para la vida resulta
N. fp
ne = 3 x 1011.

Los experimentos demuestran que la base molecular de la vida, los bloques constructivos de moléculas capaces de hacer copias de sí mismas, se constituye de modo fácil en las condiciones cósmicas más corrientes. Ahora pisamos un terreno menos seguro; puede haber por ejemplo impedimentos en la evolución del código genético, aunque yo creo que esto es improbable después de miles de millones de años de química primigenio.

Escogemos f1=1/3, implicando con esto que el número total de planetas en la Vía Láctea en los cuales la vida ha hecho su aparición por lo menos una vez es N* fp ne f1 = 1 x 1011, un centenar de miles de millones de mundos habitados. Esta conclusión es de por sí notable. Pero todavía no hemos acabado.

La elección de fi y de fc es más difícil. Por una parte tuvieron que darse muchos pasos individualmente improbables en la evolución biológica y en la historia humana para que se desarrollara nuestra inteligencia y tecnología actuales. Por otra parte tiene que haber muchos caminos muy diferentes que desemboquen en una civilización avanzada de capacidades específicas.

Tengamos en cuenta la dificultad aparente que para la evolución de grandes organismos supone la explosión del cámbrico, y escojamosfi x fc = 1/100; es decir que sólo un uno por ciento de los planetas en los cuales nace la vida llegan a producir una civilización técnica.

Esta estimación representa un punto medio entre opiniones científicas opuestas. Algunos piensan que el proceso equivalente al que va de la emergencia de los trilobites a la domesticación del fuego se da de modo fulminante en todos los sistemas planetarios; otros piensan que aunque se disponga de diez o de quince mil millones de años, la evolución de civilizaciones técnicas es improbable.

Se trata de un tema que no permite muchos experimentos mientras nuestras investigaciones estén limitadas a un único planeta. Multiplicando todos estos factores obtenemos: N* fp ne f1 fi fc = 1 X 109, mil millones de planetas donde han aparecido por lo menos una vez civilizaciones técnicas. Pero esto es muy distinto a afirmar que hay mil millones de planetas en los que ahora existe una civilización técnica. Para ello tenemos que estimar también fL.

¿Qué porcentaje de la vida de un planeta está marcado por una civilización técnica? La Tierra ha albergado una civilización técnica caracterizada por la radioastronomía desde hace sólo unas décadas, y su vida total es de unos cuantos miles de millones de años. Por lo tanto, si nos limitamos a nuestro planeta fL es por ahora inferior a 1/108, una millonésima de uno por ciento. No está excluido en absoluto que nos destruyamos mañana mismo. Supongamos que éste fuera un caso típico, y la destrucción tan completa que ninguna civilización técnica más o de la especie humana o de otra especie cualquiera fuera capaz de emerger en los cinco mil millones de años más o menos que quedan antes de que el Sol muera.

Entonces N = N* fp ne f1 fi fc fL = 10 y en cualquier momento dado sólo habría una reducida cantidad, un puñado, una miseria de civilizaciones técnicas en la Galaxia, y su número se mantendría continuamente a medida que las sociedades emergentes sustituirían a las que acababan de autoinmolarse. El número N podría incluso ser de sólo 1.

Si las civilizaciones tienden a destruirse poco después de alcanzar la fase tecnológica, quizás no haya nadie con quien podamos hablar aparte de nosotros mismos, y esto no lo hacemos de modo muy brillante. Las civilizaciones tardarían en nacer miles de millones de años de tortuosa evolución, y luego se volatilizarían en un instante de imperdonable negligencia.

Pero consideremos la alternativa, la perspectiva de que por lo menos algunas civilizaciones aprendan a vivir con una alta tecnología; que las contradicciones planteadas por los caprichos de la pasada evolución cerebral se resuelvan de modo consciente y no conduzcan a la autodestrucción; o que, aunque se produzcan perturbaciones importantes, queden invertidas en los miles de millones de años siguientes de evolución biológica. Estas sociedades podrían vivir hasta alcanzar una próspera vejez, con unas vidas que se medirían quizás en escalas temporales evolutivas de tipo geológico o estelar.

Si el uno por ciento de las civilizaciones pueden sobrevivir a su adolescencia tecnológica, escoger la ramificación adecuada en este punto histórico crítico y conseguir la madurez, entonces fL = 1 / 100, N= 107, y el número de civilizaciones existentes en la Galaxia es de millones. Por lo tanto, si bien nos preocupa la posible falta de confianza en la estimación de los primeros factores de la ecuación de Drake, que dependen de la astronomía, la química orgánica y la biología evolutiva, la principal incertidumbre afecta a la economía y la política y lo que en la Tierra denominamos naturaleza humana. Parece bastante claro que si la autodestrucción no es el destino predominante de las civilizaciones galácticas, el cielo está vibrando suavemente con mensajes de las estrellas.

Estas estimaciones son excitantes. Sugieren que la recepción de un mensaje del espacio es, incluso sin descifrarlo, un signo profundamente esperanzador. Significa que alguien ha aprendido a vivir con la alta tecnología; que es posible sobrevivir a la adolescencia tecnológica. Esta razón, con toda independencia del contenido del mensaje, proporciona por sí sólo una poderosa justificación para la búsqueda de otras civilizaciones.


Si hay millones de civilizaciones distribuidas de modo más o menos casual a través de la Galaxia, la distancia a la más próxima es de unos doscientos años luz. Incluso a la velocidad de la luz un mensaje de radio tardaría dos siglos en llegar desde allí. Si hubiésemos iniciado nosotros el diálogo, sería como si Johannes Kepler hubiese preguntado algo y nosotros recibiéramos ahora la respuesta.

Es más lógico que escuchemos en lugar de enviar mensajes, sobre todo porque, al ser novicios en radioastronomía, tenemos que estar relativamente atrasados y la civilización transmisora avanzada. Como es lógico, si una civilización estuviera más avanzada, las posiciones se invertirían.

Más de medio siglo después de que Fermi planteara su pregunta, todavía no hemos oído nada. A pesar de nuestros sistemas de comunicación, nadie ha llamado. Cuanto más exploramos nuestro vecindario local, más solitario parece. Ni en la Luna, ni en Marte, ni en asteroides ni en los planetas del sistema solar exterior se ha encontrado rastro alguno de signos concretos de vida, ni siquiera de la bacteria más simple. Tampoco hay signos de interferencia en la luz de las estrellas que pudieran indicar máquinas gigantes orbitando a su alrededor y cosechando energía de ellas. Y no es porque no haya mirado nadie. Dado lo que está en juego, se presta mucha atención a la búsqueda de inteligencia extraterrestre.

Búsqueda de vida ¿Cómo saldríamos a buscar signos de vida? La primera manera es buscar microbios en nuestro sistema solar. Los científicos han escudriñado las rocas de la Luna, pero son basalto inanimado. Se ha sugerido que los meteoritos de Marte podrían contener vestigios de bacterias, pero todavía no se ha probado que las burbujas ovoides de esas rocas hayan albergado vida alienígena o no se hubieran contaminado después de haber caído a la Tierra, o bien que se hayan producido por procesos naturales.

Las cámaras de naves y sondas han recorrido las superficies de Marte, de asteroides y ahora incluso de una luna del sistema solar exterior (Titán, que órbita Saturno). Pero la superficie de Marte está seca, y la de Titán está empapada de metano líquido y, por ahora, desprovista de vida. Europa, una luna de Júpiter, puede albergar mares de agua líquida debajo de su superficie congelada. Por tanto, el agua líquida tal vez no sea un artículo extraño en el sistema solar exterior, lo que aviva las esperanzas de que pueda encontrarse vida algún día.

Sin embargo, los microbios no van a venir a llamar a nuestra puerta. ¿Y qué hay de los animales o plantas más sofisticados? Ahora que se están detectando planetas alrededor de estrellas lejanas, los astrónomos planean diseccionar la luz que proviene de ellos en busca de algún vestigio de vida.

Fuente Consultada: COSMOS Carl Sagan

Medida de La Via Lactea Cantidad de Estrellas en la Galaxia

Medida de La Via Láctea y Descripción
Cantidad de Estrellas en la Galaxia

LA VÍA LÁCTEA: Los astrónomos saben ahora que el conjunto de estrellas que vemos durante la noche es parte de un gigantesco sistema. La forma de este sistema estelar se parece bastante a la de dos platos encarados con sus bordes en contacto y una especie de abultamiento en su parte central.

El sistema solar no está ni mucho menos cerca del centro de este sistema estelar, sino a unos dos tercios de él. Las estrellas aparecen concentradas con mayor densidad en la parte central y en la porción plana situada entre los dos bordes de los “platos”, esto es, en el plano central. Podemos darnos cuenta de esto al observar el cielo en una noche clara: una tenue banda luminosa atraviesa el cielo de un extremo al otro.

Los hombres primitivos ya se dieron cuenta de la presencia de esta banda luminosa muchas leyendas tuvieron su origen en ella, conociéndose con el nombre de Vía Láctea. Tras la invención del telescopio, los astrónomos observaron que está constituida por gran número de estrellas individuales, y ahora sabemos que tal conjunto de estrellas representa el plano central de nuestra Galaxia.

Aunque el sistema solar esté situado cerca del borde de este. sistema estelar, la Vía Láctea se ve atravesando todo el, cielo eh forma de una batida rectilínea, tanto al norte como al sin del ecuador, lo cual indica que el sistema solar se encuentra el el plano central de la Galaxia, de modo que de cualquier lado que nos volvamos podemos observar esta densa reunión. de estrellas.

Cuando miramos hacia el cielo en una dirección distinta a la de la Vía Láctea, vemos que las estrellas no están ya tan agrupadas; por el contrario, aparecen muy repartidas por el firmamento. Esto es debido a que entonces miramos hacia fuera del plano central y a través de la parte menos densa de la Galaxia. En efecto, la Vía Láctea nos señala en el espacio la dirección del plano central del sistema de estrellas del cual el Sol es un miembro más.

Nuestra Galaxia es inmensa en comparación con la magnitud de las distancias estelares antes mencionadas. Desde la «parte superior a la inferior” —esto es, a lo largo del diámetro menor de su abultamiento central— tiene un espesor de 20.000 años-luz. Y desde un borde al otro la distancia es de 100.000 años-luz.

DESCRIPCIÓN DE LA VÍA LÁCTEA: DIMENSIONES, CANTIDAD DE ESTRELLAS Y CARACTERÍSTICAS

La mitología griega dice que la diosa Hera, esposa de Zeus, se negaba a amamantar al pequeño Hércules pues había sido fruto de una aventura. En una ocasión lo acercaron a su pecho mientras dormía, pero Hera despertó, lo retiró suavemente de su pezón y la leche se derramó por los cielos, dando forma a las brillantes constelaciones que admiramos en la noche.

Estos valores no incluyen, sin embargo, la distancia a ciertas estrellas que se encuentran por encima y por debajo de ‘la propia Galaxia. Algunas de estas estrellas están solas, pero la mayoría de ellas constituyen grandes cúmulos estelares. Estos cúmulos (denominados cúmulos globulares) forman una especie de halo alrededor de la Galaxia. Cada cúmulo lo forman millares y, a veces, decenas de millares de estrellas agrupadas en forma de esfera o de globo. El más cercano de ellos se encuentra a unos 20.000 años-luz del sistema solar.

Nuestra Galaxia, por lo tanto, está constituida por un conjunto de estrellas, la mayor parte de las cuales se encuentra en el plano o en el abultamiento centrales, junto con mi halo de estrellas individuales y de cúmulos globulares. En nuestro siglo los astrónomos han demostrado que la Galaxia contiene además una considerable cantidad de gas y de polvo.

Observado a través del telescopio, parte de este gas y polvo presenta el aspecto de grandes nubes luminosas nebulosas, de la palabra latina que significa nube. La más famosa de das estas nebulosas es la gran nube gaseosa de la constelación de Orión. A simple vista aparece como un puntito luminoso en medio de las tres estrellas que representan la espada de Orión. Pero aun a través de un pequeño telescopio se convierte en un objeto interesante para la observación.

Las estrellas del cúmulo abierto, denominado las Pléyades, están rodeadas de polvo iluminado por las mismas. Si barremos el cielo con un telescopio, descubriremos muchas más nebulosas que las que se aprecian a simple vista.

La propia Vía Láctea contiene gran número de ellas. Por ejemplo, nebulosas del tipo de las que presenta la Vía Láctea al cruzar Sagitario cubren regiones que miden centenares de años-luz, y muchas contienen brillantes estrellas sumergidas en su seno.

«La Vía Láctea es parte de un barrio cósmico más grande –un grupo de más de 35 galaxias conocido como el Grupo Local. Estas galaxias se mueven por el espacio como una sola unidad, unidas por su mutua atracción gravitatoria. El número de galaxias que pertenecen al Grupo Local es incierto, debido a que los astrónomos siguen encontrando nuevos residentes de este barrio galáctico. Por ejemplo, una de las galaxias del Grupo Local fue descubierta en 1997, a unos tres millones de años luz de la Tierra. Esta nueva galaxia es diminuta: sólo contiene un millón de estrellas aproximadamente, comparado con los cientos de miles de millones de la Vía Láctea.»

En muchas nebulosas gaseosas aparecen surcos y regiones oscuras. La Vía Láctea también presenta surcos entre las estrellas, como si existieran huecos en el fondo estrellado. Las regiones oscuras en la Vía Láctea, así como en las nebulosas gaseosas brillantes, son debidas a gas no luminoso y a polvo. Como veremos más adelante, los astrónomos pueden distinguir el gas carente de luz del polvo cósmico, pero aquí consideramos sólo el hecho de que ambos oscurecen la luz procedente de las estrellas y nebulosas brillantes situadas más allá de los mismos. Este efecto de cobertura en la Vía Láctea nos impide observar lo que debe ser una visión grandiosa.

Debido al gran número de nebulosas situadas entre nosotros y el centro de la Galaxia, no podemos ver el brillante y compacto conjunto estelar que constituye el núcleo de la Galaxia. Nuestros telescopios registran únicamente aquellas estrellas que están situadas de este lado de la densa parte central.

A pesar del problema inherente a la presencia del polvo y del gas oscuro, se ha descubierto que la totalidad de nuestra Galaxia experimenta un movimiento de rotación. El Sol  que es una estrella bastante común, toma parte en esta rotación cósmica, arrastrando consigo a la Tierra a los demás planetas. Como otras estrellas cercanas, el Sol se mueve a través del espacio a razón de 240 Km./seg, velocidad que permitiría dar la vuelta a la Tierra en poco más de dos minutos y medio. Aun así, la Galaxia es tan enorme, que el Sol tarda tarda 225  millones de años en completar una revolución. Este inmenso período de tiempo, denominado ano cósmico, cae fuera de nuestro significado al considerar que hace dos años cósmicos la vida en la Tierra estaba en sus albores, y hace menos de media centésima de año cósmico que apareció el hombre.

Todas las estrellas de la Galaxia intervienen en la rotación cósmica, aunque sus velocidades varían. Las situadas más hacia el centro de la Galaxia generalmente se mueven con mayor rapidez que las que se encuentran cerca del borde, Este movimiento alrededor de la Galaxia constituye el principal desplazamiento de las estrellas, pero cada una precedía a su vez pequeños movimientos locales. Dicho de otro-modo, las estrellas no se mueven alrededor del centro de la Galaxia como si se tratara de una masa sólida. Es más bien como si un grupo de personas se dirigiera a tomar el Metro durante las horas punta; aunque todas van en la misma dirección general, la trayectoria de cada individuo está constituida por muchos movimientos distintos, hacia la izquierda y hacia la derecha, a medida que evita el tráfico o a los demás peatones. Lo mismo sucede con las estrellas de nuestra Galaxia: la dirección general es la de giro alrededor del denso núcleo central.

Fuente Consultada:  Secretos del Cosmos Tomo 2 (Salvat)

Otros Temas Tratados en Este Sitio

Big Bang

Origen de la Vida

Origen del Hombre

Teoría de la Evolución

Muerte de una Estrella Los Pulsares Enana Blanca

Peso de Una Estrella de Neutrones

La Vida del Sol Tiempo de Vida Hidrogeno del Sol

La Luna Muestra Siempre la Misma Cara

Origen del aire que respiramos El Oxigeno

EL Tamaño del Universo Distancias del Sistema Solar

EL Tamaño del Universo
Distancias del Sistema Solar Planetas

Si se pudiera reducir el globo terráqueo al tamaño de una manzana, el hombre mediría en proporción una cienmilésima parte de milímetro. Ante él cualquier ínfimo bacilo o bacteria alcanzaría dimensiones verdaderamente monstruosas. Por otra parte, como el Sol es una esfera de materia incandescente, que supera en ciento nueve veces el diámetro de la Tierra, si mantuviéramos las proporciones anteriores este Sol estaría representado por un globo de nueve metros de diámetro, situado a casi 1 Km. del planeta que, con el tamaño de una manzana, significaría la Tierra. Pero en los límites de la familia solar, Plutón, el último y más distante de los planetas, figuraría como una bola de billar a 40 kilómetros del citado Sol de! ejemplo.

Ahora bien; sobre la bóveda infinita del espacio brillan las estrellas, enormes masas globulares de gases ardientes. La más próxima, denominada Alfa del Centauro, es otro sol similar al que nos ilumina, con casi su mismo peso y dimensiones. Al igual que todas las estrellas. Alfa del Centauro no permanece inmóvil. Surca el firmamento a una velocidad de 22 kilómetros por segundo, y debido a la enorme distancia que nos encontramos de ella, solamente a lo largo de siglos se apreciaría un movimiento casi imperceptible, puesto que dista de nosotros ¡42 billones de kilómetros!

Si se aplicara a esta distancia la misma proporcionalidad que se empleó al equiparar la Tierra con una manzana y se viera dónde habría que situar la estrella vecina, como se hizo con la distancia del Sol y Plutón, saltaría a la vista la imposibilidad de concretar el objetivo, ya que se necesitaría para esta escala un mapa de unos 260.000 kilómetros de amplitud, es decir, casi las dos terceras partes de nuestra distancia al satélite de la Tierra. Se puede comprobar, de este modo, que la proporción entre la estatura de un ser humano y su distancia a la estrella más cercana es igual a la que existe entre un organismo ultramicroscópico y 260.000 kilómetros.

Un poco más distante, otra brillante estrella de azul tonalidad atrae nuestra atención. Se trata de Sirio, notable por su magnitud en el espacio y por una estrellita que la acompaña y que constituyen con aquélla un sistema físico similar al que forman los planetas del sistema solar El diámetro de Sirio es 1,8 veces el del astro mayor, lo que no significa mucho; sin embargo, situado en el lugar de éste proporcionaría 40 veces más luz y calor del que actualmente suministra.

El misterio revelado
Con respecto a la diminuta estrella que gira en torno de Sirio corresponde aclarar someramente su singular historia. Poco luminosa y lejana, fue ignorada durante siglos por los estudiosos, quienes por razones de tipo especulativo intuían su existencia. Intentaremos explicarlo: la altura del Sol sobre ei horizonte varía con la hora del día; del mismo modo, respecto del movimiento de las estrellas se puede establecer exactamente la hora correspondiente a un momento determinado.

Debido a su gran luminosidad Sirio era utilizada por los astrónomos como estrella horaria. Pero en el firmamento ésta resultaba un astro poco puntual, que se retrasaba o adelantaba temporalmente. Observaciones posteriores permitieron constatar que la estrella describía en el firmamento una levísima órbita elíptica. Sin duda alguna, un astro perturbador, aún invisible, era el causante, con la atracción de su masa, del titubeante comportamiento de Sirio. Apelando a la ley de la gravitación universal se admitió la existencia de un nuevo astro, cuya órbita y posición fueron determinadas en 1850 por el astrónomo alemán Frederick Peters.

En 1862, mediante el uso de un anteojo, a la sazón recién fabricado, se lo descubrió inesperadamente y comenzó a plantearse un nuevo interrogante referido a la especial naturaleza de la materia que lo compone.

La incógnita fue revelada en 1924, cuando el astrónomo estadounidense Walter Adams, empleando el interferómetro de Michelson, logró la doble comprobación del efecto Einstein, y la confirmación de la extraordinaria densidad (23.000 veces más que la del platino) de la diminuta estrella. El «misterio» de la substancia radicaba en lo siguiente: en tamaño, el satélite de Sirio es sólo tres veces más grande que la Tierra, pero su masa es casi igual a la del Sol.

A fin de que toda esta materia pueda caber en tan escaso volumen hay que someterla a una intensa presión, comprimirla enormemente. Los átomos, elementos que componen toda materia, tienen un límite de resistencia mecánica, tras lo cual son deshechos en un confuso montón de núcleos y electrones que invaden y desbordan los espacios interatómicos. Roto el equilibrio interno del átomo, los espacios vacíos son cubiertos por los componentes de otros átomos triturados.

Así, el espacio ocupado disminuye y por lo tanto la densidad media (relación entre volumen y masa) se acrecienta. Era éste, pues, el íntimo secreto que guardaba en su seno la estrella más brillante del cielo.

La «fuga» del universo
Se se miden las velocidades de esos universos-islas se llega a la conclusión de que parecen alejarse entre sí, acrecentando su velocidad a medida que se van distanciando. Esta fuga desordenada no afecta las dimensiones propias de las galaxias, que, alejándose, siguen conservando su tamaño.

Habida cuenta de esto, y calculando el tiempo necesario para que todas esas islas estelares volvieran a juntarse marchando a idéntica velocidad, pero inversamente, se necesitarían unos 13.000 millones de años para volver a reunirse en un conjunto de estrellas distribuidas en un solo universo de manera uniforme.

Si a partir de este conjunto único de densidad estelar se han condensado en grupos de estrellas de modo similar a como suponemos que el gas primitivo se fue condensando en estrellas, sigue aún en pie uno de los tantos interrogantes que se plantea la astronomía, para cuya respuesta el hombre acude con su ciencia al más allá.

Con el misterio de la creación ha quedado atrás en el tiempo y sumida en las sombras del espacio, a 1.500millones de años de luz, una imperceptible manchita nebulosa: es nuestro universo. Confundido entre corpúsculos titilantes hay un sol que nos es familiar, y como un punto minúsculo, donde el hombre lucha por penetrar en el misterio de lo infinito, está la Tierra, nuestro planeta.

La mediciones indicadas mas abajo van variando según se logran técnicas
e instrumentos mas precisos para su medición

Magnitud
Visual
Distancia
Años-Luz
Diámetro
Años-Luz
Vía Láctea97.800
Nube de Magallanes (mayor)0,9156.48032.600
Nube de Magallanes (menor)2,5182.56026.080
Sistema de la Osa Menor228.2003.260
Sistema del Escultor8,0270.5807.170
Sistema del Dragón326.0004.560
Fornax8,3619.400 21.520
Sistema del León II12,04749.8005.220
Sistema del León I12,0912.8004.890
NGC 68228,91.500.0008.800
NGC 1479,731.858.0008.780
NGC 1859,431.858.0007.500
NGC 2058,172.217.00016.300
NGC 221 (M 32)8,162.217.0007.820
IC 16139,612.217.00015.300
Andrómeda (M 31)3,472.217.000130.400
NGC 538 (M 33)5,792.347.20055.420
Maffei I11,0

3.260.000

 

EstrellaConstelacionesMagnitud
Aparente
Distancia
Año-Luz
Sirio +
Canope +
Rigil Kent
Arturo
Vega
Rigel +
La Cabra +
Proción
Achernar
Hadar +
Altair.
Aldebarán +
Acrux +
Betelgeuse + + +
Antares +
La Espiga +
Pólux
Fomalhaut
Deneb
Mimosa
Régulo +
Adhara +
Bellátrix
Shaula
Alnath
Alfa del Can Mayor
Alfa de Argos (Carina) .
Alfa del Centauro
Alfa del Boyero
Alfa de la Lira
Beta de Orión
Alfa del Cochero (Auriga)
Alfa del Can Menor
Alfa de Erídano
Beta del Centauro
Alfa del Águila
Alfa del Toro
Alfa de la Cruz del Sur
Alfa de Orión
Alfa del Escorpión
Alfa de la Virgen
Beta de los Gemelos
Alfa del Pez Austral
Alfa del Cisne
Beta de la Cruz del Sur
Alfa del León
Epsilón del Can Mayor
Gamma de Orion
Lamda del Escorpión
Beta del Toro
-1,47
-0,71
-0,27
-0,06
0,03
0,08
0,09
0,34
0,49
0,61
0,75
0,78
0,80
0,85
0,92
0,98
1.15
1.16
1,26
1,28
1,33
1,42
1,61
1,61
1,64
8.7
300
4
36
26
850
45
11
75
300
16
65
270
650
400
220
35
23
.500
370
85
620
450
300
270
(+):Estrella Doble  (+++): Estrella Variable

Fuente Consultada: Mundorama Geografía General Tomo I

Otros Temas Tratados en Este Sitio

Big Bang

Origen de la Vida

Origen del Hombre

Teoría de la Evolución

Muerte de una Estrella Los Pulsares Enana Blanca

Peso de Una Estrella de Neutrones

La Vida del Sol Tiempo de Vida Hidrogeno del Sol

La Luna Muestra Siempre la Misma Cara

Origen del aire que respiramos El Oxigeno

La Era Espacial Las Misiones Espaciales Carrera Espacial Guerra Fria

Era Espacial y Las Misiones Espaciales – La Carrera Espacial

GUERRA FRÍA: Luego de la segunda guerra mundial Nada quedó sin ser afectado: ni puentes, ni ferrocarriles, ni caminos, ni transportes.  La mano de obra se resintió y grandes extensiones de tierras se perdieron para el cultivo.  La actividad industrial se atrasó, faltaban materias primas, herramientas apropiadas, tecnología moderna y energía. 

Ante esta realidad, Europa perdió su papel decisivo en la política internacional, y surgió entonces, un nuevo orden mundial representado por la hegemonía de los Estados Unidos y de la Unión Soviética, alrededor de los cuales, y formando dos bloques enfrentados, el bloque occidental y el bloque oriental, se alinearon los restantes países del mundo.  La tensión entre ellos, dio lugar a la llamada «Guerra fría» que dominó por completo las relaciones internacionales en la última mitad del siglo XX. 

HISTORIA DE LA CARRERA ESPACIAL:
La U.R.S.S. toma la delantera:
Primer Satélite en el Espacio:

Sputnik Primer Satelite Enviado al Espacio Comienzo de la Era EspacialEl 4 de octubre de 1957 se inaugura una nueva era en la historia de la civilización: la conquista del Cosmos. Ese día los científicos soviéticos pusieron en órbita el primer satélite artificial, construido por Leonid Ivanovich Sedov. El artefacto, puesto en el último piso del cohete, recibió el nombre de Sputnik I («compañero de ruta»).

Las informaciones por él suministradas indicaban la temperatura, presión atmosférica y radiaciones del espacio por donde cruzaba. Después de dar 1.367 vueltas en torno del globo, paulatinamente fue perdiendo altura por los residuos atmosféricos que encontraba en su marcha y finalmente penetró en la atmósfera interior. El roce y la gran velocidad lo incendiaron y destruyeron (4 de enero de 1958).

En los primeros días de noviembre de 1957 los rusos pusieron en órbita un segundo satélite artificial, a! que denominaron Sputnik II. El artefacto estaba equipado con diversos accesorios para captar y medir los rayos cósmicos, radiaciones solares, ultravioletas y rayos X, juntamente con la temperatura y la presión atmosférica.

En él viajaba la perra Laika, con alimento, agua y aire para varios días, e instrumentos para registrar sus reacciones biológicas. La disminución sucesiva del período de este satélite fue controlada por radiotelescopios y radar desde el momento mismo de su puesta en órbita hasta su destrucción, en abril de 1958. Había dado 2.378 vueltas en torno de nuestro planeta y recorrido 120 millones de kilómetros o sea casi la distancia entre la Tierra y las proximidades de! Sol. Primeros intentos estadounidenses.

Se inicia la gran puja espacial. Los éxitos alcanzados por los soviéticos acuciaron a los científicos estadounidenses, quienes en el transcurso del Año Geofísico Internacional (1957) previeron el lanzamiento de un aparato del llamado Plan Vanguard. Así, el 1° de febrero de 1958 fue lanzado el primer satélite de los Estados Unidos y e! tercero de la Historia. Lo bautizaron Explorer alfa 1958 y su diseño y construcción se debieron al científico alemán, nacionalizado estadounidense, Werner von Braun, inventor de las V-2. El cohete que lo portaba se denominó Júpiter C.

E! día 17 de marzo de 1958 fue puesto en órbita un segundo satélite de la Unión, instalado en un coheteVanguard. Con el lanzamiento de estos primeros artefactos comenzó virtualmente la carrera espacial entre soviéticos y estadounidenses.

A partir de las fechas mencionadas fueron enviados al espacio satélites cuyo destino principal era conocerlas diferentes condiciones físicas a fin de asegurar el buen desplazamiento de otros y su comunicación con el planeta. También verificaban distintas mediciones geofísicas y cósmicas, y algunos de ellos abrieron con sus exploraciones el camino a las naves espaciales tripuladas. A continuación figuran las referencias sintéticas de algunos de los artefactos volantes que EE.UU. y la U.R.S.S. enviaron al espacio.

El 28 de marzo de 1958 tuvo lugar desde Cabo Cañaveral (luego Cabo Kennedy) el lanzamiento del Explorer III, provisto de un registrador automático de todas las observaciones que recogía. Cayó cerca de las costas estadounidenses, el 28 de junio del mismo año.

Por su parte, los rusos pusieron en órbita al Sputnik III (15 de marzo de 1958), considerado ya satélite habitable porque llevaba 968 kilogramos de instrumentos dispuestos en un cuerpo de 1,73 m y una altura de 3,57 metros. La parte baja del satélite estaba provista, para alimentar la corriente, de unas baterías eléctricas en forma de acumuladores de cinc y plata que se cargaban mediante células fotoeléctricas de silicio. Llevaba además el emisor de radio y el cerebro electrónico que dirigía todas las operaciones de los aparatos de medida.

El aspecto exterior del satélite era complicado por la múltiple variedad de funciones a que estaba destinado: detectaba, medía y analizaba datos relacionados con el aire, el Sol y la Tierra, en tanto que un aparato electrónico de calcular retransmitía toda esa información a las estaciones de control correspondientes.

Puede decirse que el Sputnik III sirvió de antesala para el conocimiento ulterior de! espacio por parte del hombre, en sus viajes por el cosmos. Los estadounidenses, a su vez, lanzaron el Explorer IV (julio de 1958),el Pioner (octubre de 1958) y el Pioner III, que llegó hasta 100.000 kilómetros y descubrió el segundo cinturón de radiaciones de Van Alien. Importante acontecimiento significó también el lanzamiento del cohete estadounidense Atlas-Score, en diciembre de 1958. Por medio de! satélite, que pesaba 68 kilogramos, el entonces presidente Eisenhower envió una salutación de Navidad a todos los habitantes del planeta.

El 17 de febrero de 1959 los EE.UU. colocaron en órbita el Vanguard II. El satélite de este vehículo llevaba baterías solares y células para rayos infrarrojos a fin de captar la presencia o no de nubes. En marzo del mismo año se lanzó el Pioner IV, que se convirtió en un planetoide, ya que describe su órbita en torno de! Sol. El tiempo para su caída se prolongará indefinidamente.

El 28 de mayo de ese año los Estados Unidos realizaron el primer vuelo suborbital de la historia; a bordo del satélite iban dos monas (Able y Baker) que son los primeros viajeros que regresaron vivos del espacio exterior.

La exploración del espacio, viajes tripulados
El viaje tripulado a la Luna fue la culminación de una serie cuidadosamente planificada de complejos ensayos. El primero fue un espectacular fracaso. Ante el desafío del Sputnik soviético en 1957, Estados Unidos sólo disponía del cohete Vanguard, de la marina, para poner en órbita un satélite propio. En diciembre de 1957, el cohete estalló en la plataforma de lanzamiento. Un segundo intento, previsto para el mes siguiente, tuvo que ser cancelado a última hora.

Estados Unidos inició entonces el proyecto de los satélites Explorer, lanzados por el cohete militar ICBM Júpiter C. El Explorer I entró en órbita en enero de 1958 y, en el curso de dos años, le siguieron casi una veintena de satélites, con toda una serie de aparatos experimentales.

Pero estos viajes no eran más que breves excursiones. En octubre de 1958, la NASA (National Aeronautics and Space Administration), fundada para coordinar todos los proyectos espaciales de carácter civil, lanzó elPioneer I, cuyo objetivo era entrar en órbita alrededor de la Luna y enviar a la base información sobre su superficie. Por desgracia, uno de sus motores auxiliares falló y la nave cayó a la Tierra.

Mientras tanto, los soviéticos habían conseguido algunos éxitos espectaculares con sus sondas de la serie Luna. La primera pasó junto a la Luna a una distancia de 7.000 km, para luego quedar en órbita alrededor del Sol, convirtiéndose así en el primer planeta artificial. El Luna III causó sensación en octubre de 1959 al sobrevolar la cara oculta de la Luna (que siempre está vuelta en dirección opuesta a la Tierra) y enviar fotografías de la superficie hasta entonces desconocida del satélite.

En ese momento la suerte dejó de sonreír a los soviéticos y tuvieron que esperar seis años para conseguir otro éxito importante, que una vez más fue espectacular. En enero de 1966, el Luna IX se posó sobre la superficie de la Luna y envió a la Tierra una larga serie de fotografías. Estas imágenes fueron un gran alivio para los norteamericanos, que todavía no podían estar seguros de que la superficie lunar no estuviera cubierta de una capa tan gruesa de polvo que fuera capaz de engullir toda una nave espacial y su tripulación. De hecho, las cámaras soviéticas revelaban un paisaje árido, rocoso y sembrado de cráteres; totalmente inhóspito, pero sólido.

Mientras tanto, Estados Unidos había acumulado información esencial sobre la geografía lunar, principalmente como orientación para seleccionar un sitio adecuado para el alunizaje. La serie de sondas Ranger tuvo un mal comienzo, ya que las seis primeras resultaron un fracaso.

Sin embargo, las naves Ranger VII, VIII y IX enviaron miles de fotografías antes de destruirse. Con su gusto por la publicidad, Estados Unidos televisó al mundo las imágenes enviadas por el Ranger IX, bajo el título «En vivo desde la Luna». Poco después, en mayo de 1966, también Estados Unidos consiguió un alunizaje con la primera nave de las de la serie Surveyor, que, en conjunto, enviaron un total de decenas de miles de fotografías desde sus diferentes puntos de alunizaje.

Las naves en órbita alrededor de la Luna enviaban simultáneamente numerosas imágenes de grandes áreas del satélite, tomadas a gran altura sobre su superficie. En febrero de 1967, se había aprendido ya todo lo que podía aprenderse mediante vuelos no tripulados y se dio inicio al segundo paso: el desarrollo de la tecnología necesaria para llevar al hombre a la Luna.

El método finalmente escogido por la NASA para la misión fue el acoplamiento en órbita lunar. El sistema consistía en poner en órbita alrededor de la Luna una nave doble, tripulada por tres personas. En el momento apropiado, el módulo lunar, con dos de los astronautas a bordo, se separaría del módulo de mando y, controlado por sus cohetes propulsores, se posaría sobre la superficie de la Luna.

Una vez que los dos astronautas hubieran desembarcado y cumplido con las tareas que debían efectuar, regresarían al módulo lunar, pondrían en funcionamiento los cohetes para volver a poner en órbita la nave y se reunirían con su compañero en el módulo de mando. Los tres astronautas iniciarían entonces el largo viaje de regreso a la Tierra y finalmente descenderían en el Pacífico.

Como primer paso, se organizó una serie de vuelos con dos tripulantes (el proyecto Géminis), cuyo principal objetivo era perfeccionar la técnica de acoplamiento de dos satélites en el espacio. Después de que varias misiones capaces de acabar con los nervios de cualquiera se cumplieran con éxito, llegó el momento de emprender la fase final, las misiones Apolo, en las que los astronautas serían impulsados en su trayectoria hacia la Luna por el enorme cohete Saturno V. (Con cerca de 3.000 toneladas de peso, era el mayor cohete jamás construido y representaba el 98 % del total del equipo lanzado al espacio.) Antes de intentar el primer alunizaje, se efectuarían varias misiones experimentales consistentes en orbitar alrededor de la Luna.

El proyecto comenzó con una tragedia, cuando tres astronautas murieron en un incendio en el módulo de mando durante una práctica realizada en tierra. La catástrofe retrasó la operación en más de un año, pero finalmente, el 21 de diciembre de 1968, tres hombres fueron enviados a la Luna en el Apolo VIII. Después de orbitar alrededor del satélite, regresaron sanos y salvos a la Tierra.

La siguiente misión, en marzo de 1969, puso a prueba el módulo lunar en órbita terrestre y a continuación, en la misión Apolo X, en órbita lunar (mayo del mismo año). Los astronautas del Apolo X llevaron el módulo lunar a 14 km de distancia de la superficie lunar antes de regresar al módulo de mando.

Finalmente, el 20 de julio de 1969 se produjo el triunfo del Apolo IX, cuando el astronauta Neil Armstrongn se convirtió en el primer hombre en caminar sobre la Luna: «Un pequeño paso para un hombre que es un salto de gigante para la humanidad.» De las otras seis misiones Apolo, una (la del Apolo XIII) estuvo a punto de acabar en desastre, sin que llegara a producirse el alunizaje, pero las otras cinco se desarrollaron sin incidentes. El último alunizaje tuvo lugar en diciembre de 1972; a partir de entonces, la Luna ha vuelto a sumirse en su ancestral soledad.

Se calcula que el coste total del proyecto fue de unos 25.000 millones de dólares; pero, ¿cuáles fueron sus beneficios? En cuanto a objetos tangibles, produjo alrededor de 400 kg de muestras de rocas de gran interés geológico, pero de importancia relativa.

Los soviéticos demostraron de manera convincente que era posible obtener el mismo resultado de forma más económica y sin arriesgar vidas humanas, con alunizajes no tripulados. Lo mismo puede decirse de los experimentos científicos realizados en la superficie lunar por los astronautas norteamericanos. Desde el punto de vista de la exploración, los astronautas sólo cubrieron una minúscula parte del satélite y, con las técnicas modernas, es posible estudiar toda su superficie desde naves en órbita. Como medio para realizar observaciones científicas, el proyecto tuvo literalmente un coste astronómico.

Los objetivos del programa espacial soviético siguen siendo un misterio porque, si bien los norteamericanos trabajaban bajo los focos de la publicidad, los soviéticos ofrecían información con cuentagotas. El envío de cuatro naves Zond no tripuladas para orbitar la Luna, entre 1968 y 1970, sugiere que podrían haber considerado un alunizaje tripulado; de haber sido así, la catastrófica explosión en 1969 de su cohete de lanzamiento  parece haber sido un golpe del que nunca se recuperaron.

En su lugar, emprendieron el programa Soyuz («unión»), consistente en poner en órbita laboratorios permanentes (Salyut), con la tripulación relevada y periódicamente reabastecida mediante acoplamientos con las naves Soyuz. El Salyut I fue lanzado con todo éxito en abril de 1971, y una tripulación de tres hombres permaneció a bordo del laboratorio durante 23 días en junio.

Trágicamente, los integrantes de esta tripulación perecieron en el viaje de regreso a causa del simple fallo de una válvula en la nave Soyuz. Otros tres Salyut lanzados mas tarde fueron un fracaso, incluido el COSMOS 55, el 11 de mayo de 1973. Tres días más tarde, Estados Unidos puso en órbita su primer laboratorio espacial, el gigantesco Skylab, que tuvo graves dificultades cuando uno de los paneles solares se desprendió de la nave y el otro no pudo abrirse. Sólo gracias a unos arreglos extremadamente ingeniosos y arriesgados, realizados en el espacio, se salvó la misión y el laboratorio comenzó a funcionar dos semanas más tarde. El programa soviético Salyut tuvo que esperar hasta el final de 1977 para lograr un éxito comparable.

Los principales beneficios de estas actividades precursoras en el espacio tuvieron dos vertientes. En primer lugar, generaron en un período de tiempo extremadamente breve gran cantidad de conocimientos sobre la forma de maniobrar vehículos en el espacio.

Estas técnicas constituyeron la base para el actual enjambre de satélites, que hacen posible la existencia de sistema; de telecomunicaciones sumamente perfeccionados y ofrecen información sobre el clima mundial, los recursos minerales del planeta y la cambiante distribución de la vegetación. Asimismo, los adelantos técnicos en el campo de los cohetes han tenido gran importancia militar.

En segundo lugar, el proyecto de los viajes a la Luna fue muy estimulante para la moral norteamericana, después de la «humillación» de los Sputnik; (aunque es preciso decir que en 1969 la superioridad de la tecnología norteamericana había quedado convincentemente demostrada en otros muchos sectores.

El último paseo de un hombre por la superficie lunar tuvo lugar en 1972, pero la Unión Soviética demostró que los vuelos no tripulados podían producir resultados comparables. En noviembre de 1970, e: Luna XVII depósito en la superficie del satélite un vehículo de control remoto, el Lunojod, seguido por e. Lunojod II en 1971. Estos vehículos recorrieron 50 km transmitieron miles de fotografía, recogieron y analizaron muestras de rocas y efectuaron mediciones de los rayos cósmicos.

LOS PRIMEROS PASOS DE LA UNIÓN SOVIÉTICA…

El peso del segundo satélite lanzado por los soviéticos, que formaba un todo único con la última fase del cohete lanzador, era de 508,3 kg. La inclinación del plano orbital era de 65°, como la del Sputnik-1; su altura, 225 Km. en el perigeo y 1.671 en el apogeo. Dada la mayor distancia a la Tierra en el punto de apogeo, la órbita resultó muy alargada respecto a la del Sputnik-1.

Como la velocidad era la misma, aumentó el período de rotación, que llegó a ser de 103 minutos. Sobre un bastidor adecuado, dispuesto en la cabeza del misil, había dos aparatos: uno para los rayos ultravioleta y el otro para los rayos X, que el satélite podía detectaren la luz solar. Bajo estos dispositivos había un cuerpo esférico, análogo al del Sputnik-1, equipado con varios aparatos de radio.

Finalmente, también contenía un recipiente cilíndrico: el habitáculo de Laika, que, además de albergar a la perrita, llevaba la reserva de alimentos, un sistema automático de acondicionamiento de aire, dispositivos para la medición de la temperatura y la presión de la cabina, y aparatos de control de algunas funciones fisiológicas del animal.

En la parte terminal del cohete lanzador, se habían colocado las baterías eléctricas, los detectores de rayos cósmicos y un completo equipo radiotelemétrico para enviar a la Tierra los datos recogidos por el satélite en el espacio. El Sputnik-2 se desintegró el 14»de abril de 1958, unos tres meses después del final de la misión del Sputnik-1 (4 de enero de 1958).

perra laika

El destino de la perrita siberiana Laika, estaba decidio de antemano, Moscú anunciaba el 12 de diciembre de 1958 que «la perrita murió antes de que los aparatos dejaran de funcionar». En el comunicado se decía que, según lo previsto, se había matado a Laika mediante una pequeña ampolla de gas venenoso hecha explosionar en el interior de la cápsula. El lanzamiento del Sputnik-1 y del Sputnik-2 significó una grave afrenta para la tecnología estadounidense, aunque, desde el punto de vista de la investigación electrónica, Estados Unidos era sin duda alguna un país mucho más avanzado. Precisamente este factor permitió a los estadounidenses una rápida recuperación en los meses siguientes, ya que muy pronto pudieron enviar sus satélites al espacio y, más tarde, sus astronautas a la Luna.

El Vuelo de Gordon Cooper Faith 7 Viajes de la Exploración Espacial

El Vuelo de Gordon Cooper

Historia de la Exploración Espacial El Vuelo de Gordon Cooper Faith 7

El vuelo espacial de la “Faith 7”, además de ser el primero de importancia (en relación con los efectuados por los soviéticos), resultó de suma trascendencia ya que dio respuesta a distintos interrogantes.

Asimismo, su tripulante, Gordon Cooper, fue él primer astronauta que debió prescindir para el reingreso a la atmósfera y descenso en la Tierra del sistema automático maniobrado desde el centro espacial, resolviendo un problema estimado en ese entonces de la mayor gravedad.

Cooper estaba llamado a realizar luego proezas relevantes en el programa Géminis (junto a Conrad completó 120 órbitas), .pero fue, sin duda, en aquellos días de mayo de 1963. cuando resultó de una utilidad mayor para los técnicos y científicos de la NASA. Por otra parte, develó un enigma que se mantenía desde el vuelo de Johh Glenn: la presencia de partículas luminosas que, a manera de luciérnagas, seguían o aparecían cerca de las cápsulas espaciales.

Cooper demostró que no se trataba de partículas congeladas que se desprendían del vehículo —como se supuso en un primer momento— Sino que provenían de los pequeños motores de reacción de la cabina

Por todas estas circunstancias, trataremos de revivir los momentos vividos a bordo de la “Faith 7”, cuyas 22 orbitas indicaron que las diferencias se estaban acortando en relación con la URSS, no obstante que en ese mismo año, 1963, la astronáutica soviética seguiría sorprendiendo al mundo  con nuevos éxitos.

UN INSTANTE DRAMÁTICO: El lanzamiento se cumplió sin inconvenientes el 15 de mayo, en las condiciones Casi cosmonauta dentro de la cápsulade rutina en el centro espacial norteamericano. Lo que distó de ser “rutina” fueron las cosas que le ocurrieron al cosmonauta dentro de la cápsula. (imagen )

El primer problema se produjo en las instalaciones de eliminación de vapor de agua que se condensaba en el interior de su pesado traje de vuelo.

Tuvo que accionar durante más tiempo que el previsto una bomba especial pero, aún así, el agua se acumuló en la escafandra, molestándolo bastante. A pesar de este inconveniente, realizó otro de los objetivos previstos lanzando un satélite: una pequeña esfera luminosa que tomó una órbita muy cercana a la de la astronave.

En la cuarta órbita, preocupado en la atención de otros aspectos de su misión, Cooper observó de pronto un resplandor atravesando la noche, Esto le causó un breve sobresalto hasta que comprobó que, simplemente, se trataba de dicho satélite.

Por un momento, supuso que se trataba de un cohete que pudiera haber sido disparado desde Tierra y no precisamente desde territorio norteamericano. Posteriormente estudió el misterio de las “luciérnagas” logrando establecer su procedencia.

Luego se dedicó a dormir. Sus periodos de sueño no superaron una hora, aunque posteriormente declaró que no recordaba nada de sus “siestas” en el espacio.

Al despertaste se sintió un poco confuso, y por un momento no supo si se hallaba en un vuelo simulado; en la punta del cohete Atlas aguardando el momento de la partida o en su propia casa. Esta confusión fue la causa de que en tierra se le registrase una aceleración del pulso y una mayor presión sanguínea.

Durante las 34 horas 20 minutos que estuvo volando a alturas oscilantes entre los 161 (perigeo) y 272 kilómetros (apogeo) tuvo perfecta visibilidad y reconoció sin mayor esfuerzo los distintos accidentes geográficos que abarcaba su campo visual.

LA FALSA SEÑAL:

En la órbita 18, a 28 horas 59 minutos desde el momento del lanzamiento, una falla eléctrica dejó a oscuras la cabina. Cooper debió apelar a todas sus reservas para mantener la serenidad y solucionar el desperfecto. Cuando volvió la luz, advirtió que se habla encendido espontáneamente la “05G”. Esta solo debía encenderse cuando la nave espacial registrara el primer indicio de gravitación, o sea una vigésima parte de la gravedad terrestre. En consecuencia, de ser cierto lo que estaba viendo el astronauta, su nave habla comenzado a descender (lo cual era falso).

El mismo Cooper relatara la tremenda experiencia: «Al principio pensé que simplemente no le haria caso, pero luego decidí que eso no me convenía, pues el problema no se resolverla solo.” Al confirmársele que no estaba reingresando a la atmósfera terrestre, demostración de que el sistema, automático no funcionaba bien, realizó algunas pruebas. Así llegó a la conclusión de que dicho sistema, más que dañado, en realidad había dejado de funcionar. Asimismo, al fallas  del dispositivo eléctrico que dejó a oscuras la cabina, todos los controles automáticos quedaron eliminados (“Entonces decidí que reingresaría prescindiendo de todo lo que no fuera el instrumental manual”).

Tomar este tipo de decisiones “allá abajo”, en nuestro mundo, puede revelar un mayor o menor  grado de rapidez mental. Pero hacerlo a más de 200 kilómetros de altura sin saber si el vehiculo en el que se viaja está  o no cayendo o puede precipitase, convertido en una tea, en cualquier momento resulta sin duda una experiencia estremecedora.»

Y quien la pasa, revela un temple mucho más allá de lo común, casi sobrehumano. Lo importante es que la decisión confirmó algo que estaba previsto, pero no demostrado:hasta que punto el entrenamiento puede convertir a un hombre en un ser capacitado para las anís fantásticas empresas.

Cooper se mantuvo sereno. En Tierra no se registró una sola pulsación que demostrara temor frente al riesgo. Tranquilamente cumplió la órbita 22 estipulada y, de inmediato, anunció que descendería. Manualmente disparó los retrocohetes. La cana del cono apuntó hacia la superficie del planeta. Y allá fue.. (“La multiplicación de la fuerza de la gravedad al reingresar no presentó ningún problema. La oscilación no fue objetable. La maniobra resultó lo más fácil del mundo. … en verdad, más fácil de lo que  esperaba. Al soltar el paracaídas de estabilización, este se abrió con un traqueteo, un rugido y un golpe sordo…»)-

UN BARCO TRASTORNADO

Descendió muy cerca del portaaviones “Kearsarge”. En las partes altas de la nave, la marinería le saludaba agitando sus gorras “(Yo suponía, mejor aún, estaba seguro de que el barco se trastornaría”). Se sintió muy bien al comienzo, pero mientras le tomaban la presión sanguínea experimentó un ligero vahido.  Le tomaron de los brazos para que no cayese, y enseguida volvió a sentirse bien, Luego bebió varios litros de liquido (“Estaba completamente deshidratado y con una sed increíble»).

Más tarde fueron los agasajos, los honores, la familia, El astronauta que había estado más cerca de la muerte; el que abrió los caminos para la gloria de otros de sus camaradas, volvió a vivir. Una trampa del destino quedó atrás.

En la dimensión fantástica de la “era espacial”, una coincidencia sellé los avances prodigiosos de poco más de una década. Cooper cumplió su vuelo casi exactamente a 36 años del día en que Charles Lindbergh, en su “Sprit of Saint Louis” saltaba sobre el océano en vuelo sin etapas para unir Nueva York con Paris. ‘El Águila Solitaria”, en 33 horas 29 minutos, volando a lo largo de 5800 kilómetros, abrió un camino en una fecha en la que Cooper tenía dos meses de edad. El intrépido de la “Faith 7”, en sus 22 órbitas, habla cubierto 960.000 kilómetros, los suficientes, para ir y volver a la Luna, Y todo ello en una hora más que el asombroso piloto de aviones correo que estremeció al mundo con su hazaña.

John Glenn Primer Americano en Orbitar Terrestre Carrera Espacial

John Glenn Primer Americano en Orbitar

John Glenn Primer Americano en Orbitar Terrestre Carrera EspacialEL VUELO DEL CORONEL GLENN:
El 20 de febrero de 1962 los norteamericanos, después de haberlo aplazado varias veces y anunciado sin reserva a todo el mundo, pusieron en órbita el cohete Friendship VII que llevaba una cápsula dentro de la cual se encontraba el astronauta piloto John H. Glenn de 40 años de edad.

A la hora prevista la cápsula se desprendió de los cuerpos del cohete Atlas y entró en órbita.

Después de dar tres vueltas a la Tierra, el astronauta pulsó los mandos que le llevaron a descender en aguas del Atlántico donde fue recogido por el destructor «Noah».

El vuelo había durado 4 horas, 55 minutos.

Durante el mismo, millones de espectadores habían podido seguir, gracias a la televisión, todos los detalles del lanzamiento.

Glenn había comunicado constantemente sus impresiones y repitiendo muchas veces que se sentía bien. Este vuelo, que causó gran impresión por su preparación, anuncio y exhibición, demostró que el astronauta puede dirigir las fases de marcha y controlar los mecanismos para su propia recuperación y la de la cápsula.

Hasta aquí la historia, con sus datos, sus hechos concretos y sus cifras irrebatibles.

Al iniciarse 1962, las dos grandes potencias espaciales, Estados Unidos y la URSS, se preparaban para emprender otras proezas.

El presupuesto para investigación espacial y tecnológica para dicho año en los Estados Unidos se elevó a 2.400 millones de dólares.
A partir de este año se suceden en forma ininterrumpida los vuelos espaciales tripulados.

Salida del cohete Atlas-Mercury MA6

Salida del cohete Atlas-Mercury MA6 llevando a bordo al primer astronauta americano John Glenn

1962John Glenn fue el primero en orbitar la Tierra1998
Aunque fue el tercer norteamericano en el espacio,John Glenn fue el primero en orbitar la Tierra. Aquí algunas cifras sobre su vueloEl año pasado, el senador Glenn regresó a la órbita como miembro de un viaje espacial. Como lo demuestra este informe algunas cosas —no todas— han cambiado.
El astronauta
Altura: 1,80 metro
Color de pelo: colorado

Edad: 40 años

Salario: 12.000 dólares.
Entrenamiento diario:
3,2 kilómetros trote
El astronauta
Altura: 1,80 metro
Color de pelo: blanco

Edad: 77 años

Salario: 136.672 dólares.
Entrenamiento diario:
3,2 kilómetros de caminata rápida
La nave
Nombre:  Friendship 7 (Amistad 7)
Tripulación:         1
Ventanas:   1
Computadoras: 0
Peso:    1,930 kilos
La nave
Nombre:  Discovery
Tripulación:         7
Ventanas:   10
Computadoras: 5
Peso:    69,770 kilos
La misión
Nombre:  Mercury 6

Despegue:  20 de Febrero de 1962.
a las 9h 47, 39″
La misión
Nombre:  STS-95

Despegue:  29 de octubre de 1998
a las 14 h.

Duración:
4
h. 55’ 23”.
Velocidad orbital:
28.234 kilómetros por hora
Tiempo por órbita:
1 h.28’29”.
Distancia recorrida:
121 .794 kilómetros
Lugar de aterrizaje:
Océano Atlántico, 800 kilómetros al sudeste de Bermudas
Rescate:
Un barco de la Armada recuperó la nave luego de caer al océano.

 Duración:
Aproximadamente 8 días y 20 h.Velocidad orbital:
8.164 kilómetros por horaTiempo por órbita:
90 minutosDistancia recorrida:
5.800.000 kilómetrosLugar de aterrizaje:
Centro espacial Kennedy, Florida

Rescate:
No fue necesario

Cronología de las
Misiones Espaciales
 Hitos de la
Carrera Espacial

Primer Hombre en el Espacio Orbita la Tierra Yuri Gagarin Ruso

Primer Hombre en el Espacio Orbita la Tierra: Yuri Gagarin Ruso

Despegue transbordadorUno de los rasgos más destacados de la ciencia moderna es la rapidez con que lo imposible se convierte en algo cotidiano. En 1956, cuando el recién nombrado «astrónomo real» británico llegó a Londres procedente de Sudáfrica, la prensa le pidió su opinión sobre los viajes espaciales y él replicó que no le hablaran de «tonterías».

Sin embargo, apenas cinco años más tarde, los soviéticos pusieron en órbita a Yuri Gagarin en el Vostok I, y sólo faltaban trece años para que Neil Armstrong y Edwin Aldrin pisaran la Luna ante un público estimado de unos 600 millones de televidentes.

Este último servicio tenía entonces poco más de 30 años de edad, pero aun así había en el mundo 200 millones de aparatos de televisión. A principios de los 80, más de un centenar de personas se había aventurado a visitar el espacio.

Acababan de dar las 10 de la mañana aquel 12 de abril de 1961, cuando los cohetes que impulsaban al cosmonauta soviético Yuri Gagarin alcanzaron su máxima potencia, comenzando a elevar su nave, la Vostok 1, desde la estepa de Kazajstán.

En poco menos de 10 minutos, ésta traspasaría la atmósfera y comenzaría a orbitar alrededor del planeta, un hecho sin precedentes para la humanidad.

Yuri Gagarin, astronautaYURI A. GAGARIN: astronauta soviético nacido Gzhatz hoy lleva su nombre Gagarin, fue el primer hombre en volar una nave espacial fuera de la atmósfera de la Tierra y hacer una revolución completa alrededor del planeta.

Creció en una granja colectiva, donde su padre trabajaba como carpintero. A los 7 años, los alemanes invadieron Rusia y su padre se unió al ejército, mientras que su madre lo llevó junto a su hermano mayor y su hermana, a un lugar más seguro.

También durante sus estudios básicos decidió seguir una carrera técnica, y se inició en una escuela técnica cerca de Moscú. Se graduó en  metalurgia (1951), y se inscribió en una universidad industrial, donde se interesó en los aviones.

Se matriculó en el sitio de vuelo de la escuela, la Escuela de Aviación de Oremburgo, y pronto demostró que tenía un talento natural para el vuelo. Graduado de controlador de vuelo con distinción (1955), se unió a la Fuerza Aérea Soviética, donde se convirtió en un piloto de pruebas de nuevos aviones y experimental.

Se recomendó entonces como cosmonauta al proyecto espacial soviético  y poco después fue seleccionado entre los mejores pilotos de prueba en el país, y durante el período de prueba, siempre lograba las más altas calificaciones de sus instructores.

Conocido por sus instructores como un hombre difícil, incluso imposible de aburrirse y de pequeña estatura, tenía la altura ideal para viajar en el pequeño Vostok 1, lanzado el 12 de abril (1961) por la Unión Soviética, iniciando el período de viajes tripulados. Permaneció una hora y 48 minutos en órbita, realizando una vuelta completa alrededor del planeta y regresar a la Tierra sin problemas.

Al ver nuestro planeta desde un punto nunca alcanzado antes, dijo: La Tierra es azul!. Estas palabras se convirtieron en la imagen-símbolo del planeta en la era espacial. Fue aclamado como un héroe en la Unión Soviética, un año antes de que los EE.UU. pudieran llegar a la Luna de la mano de Neil Armstrong.

Murió en un accidente durante un vuelo experimental con un MIG-15 a la edad de 34 años, estrellándose contra el suelo en Kirzhach, en Rusia.

La familia de Gararin se enteró del vuelo por la radio, cuando los noticieros anunciaron que Gagarin estaba en el espacio. Los periodistas acudieron en tropel a la casa, ansiosos por saber quién era Yuri. La madre del cosmonauta tomó un tren a Moscú para reunirse con la esposa de Yuri, Valya y sus dos pequeñas hijas. Le habían permitido a Gagarin informar a Valya del vuelo, pero él le había mentido al decirle que sería el 14 de abril, para que no se preocupara el verdadero día del lanzamiento.

DIALOGO Y VISIÓN DEL VUELO: «El vuelo va bien. Las fuerzas G van aumentando lentamente, en forma insignificante. Los copio bien. Las vibraciones son suaves. Me siento genial. Puedo ver a la Tierra. Está tapada de nubes. Cambio». Fueron sus primeras palabras en órbita, en un trayecto que lo fue llevando hacia el Pacífico, con rumbo sur, donde reinaba la noche. Pasó sobre el estrecho de Magallanes, y mientras llegaba el amanecer, cruzó el Atlántico. Sobre África, distinguió el desierto del Sahara. Comenzaría su descenso cerca del mar Caspio, eyectándose y cayendo con paracaídas.

Fueron 108 minutos de un viaje único e histórico. Su enorme sonrisa, así como su acotada altura —medía 1,57 metros—, quedaron inmortalizadas en las tapas de los periódicos del mundo. Aunque Yuri no volvería al espacio. En una gran paradoja, murió el 27 de marzo de 1968 al estrellarse el avión que piloteaba, aunque ya no cargaba con sueños pendientes: «Todo lo que he hecho y he vivido, ha sido para esto», había dicho justo antes de emprender su solitaria epopeya espacial.

Gagarin tenía 27 años y se había desempeñado de joven en una fábrica metalúrgica. Pero en 1955, decidió enlistarse en la fuerza aérea para poder cumplir, un día, su gran sueño: surcar los aires. Poco después, apostó más fuerte e inició los entrenamientos para transformarse en cosmonauta, actividad que contaba con fuerte impulso del comunismo, en plena carrera espacial contra Estados Unidos.


REGRESO PELIGROSO: Cuando las principales conexiones de la esfera se separaron del módulo de equipo trasero, el descenso de la nave comenzó. Pero se presentó un problema: el cable central no se desprendió totalmente, y la esfera y el módulo seguían unidos. Todo el conjunto daba vueltas en su acelerado trayecto hacia tierra.

La esfera llevaba un lastre para hacerla girar, de tal manera que la gruesa pared de un lado quedara de frente y la protegiera del calor generado por la fricción de la atmósfera terrestre. Como el módulo trasero estaba alterando el flujo de aire, esta alineación ya no era posible. «La nave empezó a girar rápidamente», refirió Gagarin después. «Esperé la separación, pero no ocurría. Algo había fallado. Sentí que la nave oscilaba y quila temperatura aumentaba».

Finalmente, el calor de la fricción quemó el cable, y el módulo se separó entonces la esfera fue lanzada tangente, lo cual aceleró sus giros. En algún momento la rotación se hizo tan rápida, que Gagarin sintió que iba a perder el conocimiento.

Poco a poco la rotación fue haciéndose menos intensa. Por la portilla carbonizada, Gagarin vio un cielo azul claro. Estaba muy asustado, y sabía que el peligro aún no había pasado. Cuando estuviera a siete kilómetros del suelo, la escotilla se desprendería automáticamente, y él sería lanzado fuera de la esfera. El asiento de eyección se separaría, y entonces él descendería en paracaídas.

La atmósfera más densa desaceleró el descenso de la esfera, y el calor de la fricción disminuyó. Yuri informó que las cargas gravitacionales aún eran fuertes y tiraban de él en distintas direcciones. Los controladores en tierra le dijeron que aguantara; sin embargo, la esfera seguía girando a una velocidad que mareaba, así que Gagarin se eyectó antes de tiempo. En cuanto se agotó la carga de los cohetes del asiento de eyección, un enorme paracaídas se desplegó para aminorar la caída. Luego el asiento se separó, como estaba previsto, y el cosmonauta bajó suavemente a tierra con su propio paracaídas.

MOMENTO HISTÓRICO

A la 1:07 de la madrugada, hora de Washington, las estaciones de radar estadounidenses registraron el lanzamiento del Vostok, y 15 minutos después un puesto de vigilancia en Alaska captó señales de un diálogo con Gagarin. En las horas previas al amanecer, el servicio noticioso de Radio Moscú anunció el aterrizaje: exitoso del cosmonauta.

Gagarin había tocado suelo en los límites de una aldea llamada Smelovka, en el suroeste de Rusia. Una mujer y una niña fueron las primeras en verlo, y él les aseguró que no era un espía enemigo. Pronto llegaron los militares, y Yuri saludó al oficial:

—Camarada mayor, el cosmonauta de la URSS, teniente primero Gagarin, a sus órdenes!
—Usted ya es mayor también —le respondió el oficial, sonriendo—.

Lo ascendieron durante el vuelo. Gagarin fue llevado en helicóptero a una base, y después de un examen médico y un día de descanso, voló a Moscú, donde se reunió con su madre, Valya y el resto de su familia.

Desde lo alto del mausoleo de Lenin, con Nikita Krushev a su lado, pronunció un discurso a la multitud que se había congregado, en el que celebró que un hombre había volado más allá del cielo, y que ese hombre fuera ruso.

Yuri Gagarin conquistó a Krushev y al resto del mundo, y viajó de Europa a Canadá y luego a Cuba como el héroe de la nueva era espacial. Posteriormente regresó al programa espacial soviético, pero las autoridades lo retiraron de los vuelos espaciales. El 27 de marzo de 1968 despegó en un avión caza MiG y se estrelló debido al mal tiempo. Acababa de cumplir 34 años. Su vida se truncó, pero siempre será recordado como el primer hombre que viajó al espacio.

estatua de gagarin

Desde 1980, esta estatua de titanio domina la Plaza Gagarin de Moscú.

Después del lanzamiento del Sputnik por parte de los soviéticos, el principal objetivo de estadounidenses y rusos fue el envío de un hombre al espacio. Una vez más, los rusos se adelantaron a los estadounidenses. Pero el desfase entre las dos superpotencias quedó superado cuando partieron las naves Mercury, primer paso hacia las misiones Apolo que llevaron al hombre a la Luna.

alan shepard

El 5 de mayo de 1961 Alan Shepard se convirtió a sus 37 años en el primer estadounidense en subirse a una nave espacial. El vuelo fue suborbital y apenas duró 15 minutos pero sirvió a EE.UU. para demostrar a los rusos que también ellos podían ir al espacio.

AMPLIACIÓN:
ANTECEDENTE DE LA HAZAÑA: Las condiciones para iniciar la era astronáutica estaban dadas: sumados estos aportes de Alemania a los que lentamente se hallaban forjando los técnicos aliados, no faltaba más que estudiar la forma que permitiera al hombre intervenir en estos vuelos.

Y así surge, el 23 de diciembre de 1946, una propuesta de los científicos británicos Harry Ernest Ross y Ralph Andrew Smith para lanzar un ser humano al espacio. Dos años lucharon éstos para que el gobierno de Londres aceptara su propuesta, llamada Proyecto BIS (siglas de Brirish Interplanetary Society), que colocaría a Gran Bretaña al frente de la astronáutica. Pero todo fue inútil; los académicos ingleses juzgaron absurda la idea. Por otra parte, el ministerio de economía contaba con escasos recursos y todo quedó postergado. Sin embargo, mientras en Gran Bretaña se discutía el tema, los Estados Unidos y la Unión Soviética perfeccionaban sus cohetes con éxito.

A partir de ese momento la historia de la conquista del espacio por el hombre toma dos rumbos diferentes; uno bajo la influencia de Washington, donde después de discutir en torno a cuál sería el proyecto por adoptar, se consideraron los siguientes: el de la fuerza aérea, el del ejército y el de la marina; por el otro, uno hasta hoy muy poco conocido, el soviético.

Respecto a los proyectos norteamericanos cabe destacar que fueron de avanzada en lo que respecta a la puesta en órbita. Tras desechar la posibilidad de alcanzarla por medio de un modelo similar al X-15, el gobierno consideró el proyecto Adán -del ejército- que contemplaba el envío de una cápsula hasta 270 kilómetros de altura que sería luego recuperable con un paracaídas; el MER de la marina, que proponía el lanzamiento, ya en órbita, de un planeador neumático inflable que regresaría a tierra como un avión común; y el Discoverer, de la fuerza aérea, que propugnaba el envío progresivo, aunque lento, de cápsulas con instrumentos, animales y, por último, el hombre. El aceptado por ARPA (Advance Research Proyects Agency) fue, finalmente, este último.

A partir de 1957 ya se estaba trabajando y se continuó haciéndolo febrilmente cuando, en 1959, se crea la NASA (National Aeronautics and Space Administration, organismo que rige el desarrollo espacial de los Estados Unidos.

Nace así en febrero de 1959 el Proyecto Mercury, que tras haber logrado dos vuelos suborbiales con los cosmonautas Shepard y Grisson, logró poner un hombre en órbita terrestre, John Glenn, el 20 de febrero de 1962; pero ya alguien se había adelantado: el soviético Yuri Gagarin había cumplido, el 12 de abril de 1961, a bordo del Vostok-1, una órbita alrededor de la Tierra.

Fue un vuelo muy breve, de apenas 1 hora 48 minutos. Recorrió una sola órbita a una altura de 181 kilómetros de perigeo y 327 de apogeo, pero que resultó suficiente para conmover a la humanidad. El primer ser humano lanzado al espacio, demostró que el hombre podía soportar las condiciones imperantes fuera de la Tierra.

Pocos meses después, antes de que los Estados Unidos lanzaran a John Glenn en el proyecto Mercury, con el Friendship-7, la Unión Soviética lograba que Germán Titov recorriera a bordo del Vostok-2,14 órbitas durante 25 horas 18 minutos. La puerta del cosmos estaba abierta para la humanidad.

Fuente Consultada:
Enciclopedia Ciencia Joven Fasc. N°32 Edit. Cuántica