El Flogisto

Resumen Los Estados de la Materia y Sus Propiedades Cuadro Sinóptico

Resumen De Los Estados de la Materia
Sus Propiedades  – Cuadro Sinóptico

¿QUE ES LA MATERIA?

Hace miles de millones de años, el Universo estaba reducido a un pequeño volumen con densidad y temperatura infinitas. Luego de la Gran Explosión (Big Bang) , materia y energía se expandieron, formando poco a poco el Universo tal como lo conocemos. ¿Pero qué es la materia? ¿Y la energía?. Estos dos términos, materia y energía, están incorporados a nuestro lenguaje cotidiano, sin embargo, cuando queremos definirlos las cosas se complican.

La manera más aproximada de definir la materia es decir que es todo aquello que tiene masa, que ocupa un lugar en el espacio y que es perceptible, o sea, que puede impresionar directa o indirectamente nuestros sentidos.»

Si pudieramos introducirnos dentro de la materia demuestraríamos que la misma está constituida por estructuras infinitamente pequeñas, los átomos. En el átomo pueden distinguirse una parte central o núcleo, formada por dos tipos de partículas subatómicas, los neutrones y los protones, y rodeada por una nube de otras partículas subatómicas, los electrones, que se desplazan alrededor del núcleo en regiones del espacio llamadas orbitales.(sobre esto hablaremos mas abajo).

Todo el Universo está formado por materia. Una porción limitada de materia constituye un cuerpo.

La materia está formada, en general, por una mezcla más o menos compleja de diferentes sustancias. El aire que respiramos, el agua que bebemos, prácticamente todo lo que nos rodea en la vida es materia compleja, aunque a veces pueda parecer lo contrario. Existen muy pocos casos en la naturaleza de materia pura, es decir, formada por una única sustancia.

Sustancia pura es aquella clase de materia que no puede descomponerse en otras mas elementales por procedimientos fisicos sencillos y mantienen sus composición y propiedades quimicas y físicas constantes como el color, olor, conductividad, densidad, etc..

Mediante métodos físicos y químicos de purificación (destilación, extracción con disolventes, cristalización, etc.) es posible identificar si una clase de materia es o no una sustancia pura. Si una muestra de materia o una parte de ella no cambia sus propiedades tras someterla a uno o varios procesos de purificación, se puede afirmar que es materia pura.

Las sustancias puras no suelen encontrarse solas, sino formando mezclas:

Una mezcla es la reunión de dos o más sustancias puras que permanecen en contacto, sin que entre ellas ocurra una reacción química.

a) Si los componentes de la mezcla no se pueden distinguir, por ejemplo el aire, el agua de mar, la gasolina, una taza de chocolate, se dice que la mezcla es homogenea.

b) En el caso que en la mezcla se puedan distinguir sus componentes, por ejemplo un guiso de arroz, decimos que la mezcla es heterogenea.

Resumiendo, la materia está formada por sustancias puras o mezclas, las primeras pueden ser elementos químicos como el hierro, plomo, calcio, etc. o bien compuestas como el agua pura (H2O), la sal (ClNa), etc. Las mezclas pueden ser homogeneas u heterogeneas.

https://historiaybiografias.com/archivos_varios5/cuadro-materia3.jpg

Materia es todo aquello que tiene masa y ocupa un lugar en el espacio. Un árbol, el aire, una roca, tu libro escolar y un ser humano son cuerpos materiales.

La masa es definida como la cantidad de materia que contiene un cuerpo. La unidad de masa que se usa en química es el gramo (g).

La masa y el peso están relacionados. El peso es la fuerza de atracción que ejerce la gravedad de la Tierra sobre la masa de los cuerpos. Esto significa que el peso y la masa no son iguales.

La masa permanece constante pero el peso varía de acuerdo con la gravedad de los cuerpos.

El volumen de un cuerpo corresponde al espacio tridimensional que ocupa. Las sustancias como los líquidos y los gases tienen la propiedad de escurrirse con facilidad, es decir, de tomar la forma del recipiente que los contiene. Esta propiedad se llama fluir, por lo cual se les ha llamado a los gases y a los líquidos fluidos.

estrella1_bullet

Estados Físicos de la Materia: Sólido, Líquido y Gaseoso

En la naturaleza, la materia puede presentarse en uno de los tres estados fundamentales, conocidos como estados físicos:

• Un cuerpo es sólido cuando tiene forma y volumen definidos.

• Un líquido tiene un volumen definido pero forma indeterminada (pues adopta la forma del recipiente que lo contiene).

• Un cuerpo es gaseoso cuando no tiene ni forma ni volumen definidos (porque adopta la forma y el volumen del recipiente que lo contiene y, si está libre, se expande indefinidamente).

PROPIEDADES DE LOS SÓLIDOS:
• Tienen forma propia y, algunos, regular.
• Prácticamente no se comprimen, por lo cual su volumen es constante.
• Su densidad es bastante próxima a la de los líquidos.
• No fluyen.

PROPIEDADES DE LOS LÍQUIDOS:
• Adoptan la forma del recipiente que los contiene.
• Se comprimen con dificultad, por lo que su volumen es prácticamente constante.
• Son más densos que los gases.
• Pueden fluir.

PROPIEDADES DE LOS GASEOSOS:
• No tienen forma propia.
• Se comprimen con facilidad y se expanden llenando el volumen del recipiente que los contiene.
• Sus densidades son muy bajas comparadas con las de los líquidos y sólidos.
• Pueden fluir.
• Ejercen fuerzas sobre todas las paredes del recipiente que los contiene.

estrella1_bullet

CUADROS SINÓPTICOS SOBRE LOS ESTADOS DE LA MATERIA

cuadro sinoptico estado de la materia

Una misma sustancia y tres estados diferentes: La materia se presenta, según la disposición y el comportamiento de sus moléculas, en tres estados posibles, conocidos como estados de agregación: sólido, líquido y gaseoso.

Estado sólido. Las moléculas de los sólidos se disponen según un ordenamiento regular y se mantienen fuertemente unidas, por lo que sólo pueden vibrar alrededor de posiciones fijas.

Los cuerpos sólidos son incompresibles (no se pueden comprimir, es decir, su volumen no disminuye aunque sobre ellos se apliquen fuerzas muy grandes), tienen forma propia y propiedades específicas. Por ejemplo, la ductilidad (algunos sólidos se pueden estirar hasta formar alambres o hilos); la maleabilidad (algunos metales, al ser extendidos, forman placas o láminas); la tenacidad (oponen resistencia a romperse o deformarse cuando se los golpea) y el punto de fusión (temperatura a la cual pasan al estado liquido).

Estado líquido. Las moléculas de los líquidos se disponen de manera desordenada, y su fuerza de cohesión es menor que la de los sólidos, por lo que se mueven al azar, muy lentamente. Al igual que los sólidos, los cuerpos líquidos son incompresibles. Pero, a diferencia de los sólidos, no tienen forma propia, es decir, adoptan la forma del recipiente que los contiene.

Entre las propiedades específicas de los líquidos cabe mencionar la viscosidad, o capacidad de fluir más o menos lentamente (el aceite, por ejemplo es un líquido más viscoso que el alcohol y fluye más despacio); la volatilidad, o capacidad de evaporarse con mayor o menor facilidad (por ejemplo, al abrir un frasco de éter se percibe el olor, pues es un líquido muy volátil), y el punto de ebullición (temperatura a la cual pasan al estado gaseoso).

Estado gaseoso. La fuerza de cohesión entre las moléculas de los gases es muy débil, y éstas tienden a separarse unas de otras (se mueven al azar, muy rápidamente). Todos los cuerpos gaseosos son compresibles, es decir, su volumen disminuye cuando se aplica alguna fuerza sobre ellos. Además, los gases no tienen forma propia y siempre tienden a ocupar el mayor volumen posible.

Como propiedad específica, se puede definir el punto de licuefacción (temperatura a la cual se condensan, es decir, pasan al estado líquido; este valor coincide con el punto de ebullición).

El estado de agregación se define para una sustancia dada y a una temperatura determinada. Así, podemos decir que el oxígeno es gaseoso a la temperatura ambiente, el agua es sólida a menos de 4 °C, el vidrio es líquido a más de 1.200 °C, etcétera.

 cuadro sinoptico estado de la materia

estrella1_bullet

Cambios de Estado de la Materia:

A la temperatura ambiente, cada sustancia se encuentra en un estado determinado; el agua es líquida, el oxígeno es gaseoso, el hierro es sólido. Pero a otras temperaturas, las sustancias cambian de estado: el agua puede ser sólida; el mercurio, gaseoso, y el oxígeno, líquido, por ejemplo.

Así pues, la materia cambia de estado según la temperatura a la que se encuentra.

A continuación aparecen los nombres de los diferentes cambios de estado:

cuadro cambio de estados de la materia

Los cambios de estado que se producen por absorción de calor se denominan progresivos, y aquellos que al producirse desprenden calor se llaman regresivos.

Los cambios de estado se pueden esquematizar de la siguiente manera:

1. Fusión. Pasaje del estado sólido al líquido.

2. Vaporización. Pasaje del estado líquido al gaseoso. Cuando se verifica a través de la superficie libre.se denomina evaporación; en cambio, cuando tiene lugar en toda la masa de un líquido se llama ebullición.

3. Volatilización. Pasaje del estado sólido al gaseoso, sin pasar por el estado líquido.

4. Sublimación. Pasaje del estado gaseoso al sólido sin pasar por el estado líquido. Algunos autores emplean este término para definir también el camino inverso, es decir, la volatilización.

5. Solidificación. Pasaje del estado líquido al sólido.

6. Licuefacción. Pasaje del estado gaseoso al estado líquido.

Sabemos que es posible encontrar estas sustancias en otro estado distinto del habitual.

¿De qué factores depende el que una sustancia se encuentre en un estado físico determinado?

• En primer lugar depende, evidentemente, del tipo de sustancia que estemos considerando.

• También depende de la temperatura: calentando se puede transformar en vapor toda el agua de una cacerola; enfriando, esa misma agua se puede transformar en hielo.

• La presión es el tercer factor a tener en cuenta. Si se somete una sustancia a grandes presiones, se puede conseguir que cambie de estado, aunque no se modifique la temperatura. El gas butano con el que se cocina se encuentra en estado líquido dentro de la garrafa que lo contiene, y se transforma en gas al salir de ella. Esto es debido a que la presión atmosférica es mucho menor que la presión a la que está envasado el butano.

El estado físico en que se encuentra una cierta sustancia depende de la temperatura y de la presión a las que dicha sustancia se encuentra sometida. Modificando uno de estos dos factores, o los dos, es posible conseguir que la sustancia cambie de estado.

En la figura  se representan en un diagrama los posibles cambios de estado y el nombre característico que recibe cada uno de ellos.

cuadro cambio de estados de la materia

Cuadro cambio de estados de la materia


Es de destacar que el paso de líquido a gas o vaporización puede producirse por dos mecanismos diferentes:

• La evaporación, que tiene lugar a cualquier temperatura y únicamente ocurre en la superficie del líquido.
• La ebullición, que tiene lugar a una temperatura característica de cada sustancia y ocurre en todo el líquido.

estrella1_bullet

PROPIEDADES DE LA MATERIA

Los distintos materiales se diferencian gracias a ciertas cualidades que afectan en forma directa o indirecta nuestros sentidos y que se denominan propiedades físicas. Estas propiedades pueden medirse y observarse sin que se modifique la composición la materia. ¿Cómo se clasifican las propiedades físicas?.

Antes de responder a la pregunta, analicen estas dos situaciones sencillas:

1. Al medir la masa de un terrón de azúcar, se comprobó que era diferente de la masa de una bolsa de azúcar.

2. Al observar un grano de azúcar, se comprobó que su color era igual al de un terrón.

En el primer caso, se dice que la masa es una propiedad extensiva, porque depende de la cantidad de materia analizada. Si la cantidad de materia se modifica, se modifica en forma proporcional la propiedad extensiva. Entre las propiedades extensivas, además de la masa podemos mencionar el volumen (que se define para una presión y una. temperatura determinadas), el calor acumulado por un cuerpo, etc. Las propiedades extensivas son aditivas, es decir que la masa del terrón y la masa de la bolsa se pueden sumar para calcular la masa total de azúcar.

En la segunda situación, se dice que el color del azúcar es una propiedad intensiva, porque no depende de la cantidad de materia analizada, y constituye una característica específica de la materia.

Entre las propiedades intensivas se encuentran:

• La densidad, que es la relación entre masa y volumen en condiciones de presión y temperatura determinadas.

• El índice de refracción, que es el cociente entre la velocidad de propagación de la luz en esa sustancia y la velocidad en un medio de referencia.

• Las temperaturas a las cuales ocurren los cambios de estado (a una presión determinada): el punto de fusión, que es la temperatura a la cual coexisten en equilibrio el estado sólido y el estado líquido, y el punto de ebullición, que es la temperatura a la cual coexisten en equilibrio el estado líquido y el estado gaseoso.

• La dureza de los sólidos, que es la resistencia de un cuerpo a ser rayado o cortado.

• La tensión superficial, referida a los líquidos, que es la cantidad de energía que se requiere para extender o aumentar la superficie de un líquido por unidad de área.

• La elasticidad o capacidad de los cuerpos de deformarse, cuando se aplica una fuerza sobre ellos y de recuperar su forma original al suprimir la fuerza aplicada.

Las propiedades intensivas no son aditivas. Por ejemplo, si registran el punto de ebullición del agua contenida en dos recipientes, y luego juntan el agua de los dos en un solo recipiente y vuelven a registrar el punto de ebullición, éste no cambia.

Por otro lado, las propiedades químicas determinan qué cambios o transformaciones puede experimentar la materia en su composición. Estos cambios ocurren a través le las reacciones químicas.

estrella1_bullet

NATURALEZA DE LA MATERIA

La naturaleza nos muestra una multitud de objetos distintos formados por diferentes materiales y, a la vez, vemos la desintegración de muchos de estos cuerpos: las montañas sufren la erosión del viento y del agua, que convierten en polvo lo que fueron inmensas piedras, la materia orgánica que forma a los seres vivos se degrada en componentes microscópicos por la acción de bacterias y otros organismos. ¿Hasta qué punto puede llegar en la desintegración de un objeto material?

Si tomamos una hoja de papel y la rompemos una y otra vez obteniendo en cada corte trozos más y más pequeños, ¿hasta dónde podrá continuar el proceso? Esta pregunta la formularon los griegos (y probablemente también otras civilizaciones) hace muchos siglos.

Algunos, como Aristóteles, creían que el proceso de división de algo material era infinito, o dicho de otro modo: afirmaban que la materia es continua. El espacio entre los astros estaría ocupado por la materia más sutil y perfecta: el éter. (Teoría Fracasada)

Pero bien, ¿Cómo está constituida la materia? Esta es una pregunta que ha preocupado siempre al hombre y lo ha hecho meditar muchísimo.

En la antigüedad los griegos pensaron acerca de dos posibilidades: o bien sería posible dividir un trozo de materia una y otra vez, indefinidamente; o bien la materia podría dividirse hasta llegara cierto punto; a este límite lo llamaron átomo, precisamente porque «a — tomo» quiere decir «no — cortable» o «no — divisible».

Leucipo, Demócrito y Epicuro especularon con una estructura atómica de la materia, siglos antes de Cristo; pero en aquella época todo era cuestión de opinión, pues no había medios para comprobar experimentalmente la existencia de lo que hoy conocemos como átomo o como molécula. Para ello fue necesario llegar a los tiempos modernos.

El químico inglés John Dalton, en 1806, propuso formalmente la teoría atómica para explicar las relaciones cuantitativas en que se combinan ciertos gases. Posteriormente un químico italiano, Amadeo Avogadro, introdujo la idea de molécula.

Uno de los descubrimientos científicos más notables del siglo XX fue que «los átomos no son tales», en el sentido de que sí se los puede dividir, pues están formados por un núcleo, que contiene protones y neutrones y una corteza que contiene a electrones en capas energéticas que giran a su alrededor.

estrella1_bullet

LOS «LADRILLOS» DE LA MATERIA

Es muy tentadora la idea de que la materia esté constituida por unos pocos elementos. Hace siglos se pensó que éstos podrían ser el agua, el fuego, la tierra y el aire; más adelante, en el siglo XIX, llegó a afirmarse que todas las sustancias tendrían come base una sola, el hidrógeno, pues las masas atómicas de todos los elementos son, aproximadamente, múltiplos enteros de la mase atómica del hidrógeno.

Pero prontamente se desechó esa hipótesis.

Actualmente la situación se ha aclarado mucho; y una descripción sencilla (útil para comenzar a estudiar el tema pero incompleta) se basa en la existencia de tres clases de partículas componentes fundamentales de la materia: el protón, el neutrón, (ambos son llamados nucleones) y el electrón. (actualmente hay también decenas de partículas mas elementales)

COMPONENTES DEL ÁTOMO

Núcleo

Corteza

Protones (+)Neutrones (neutros)Electrones que Giran (-)

El átomo mas simple se llama Hidrógeno, y tiene solo un protón en su núcleo y un electrón girando a su alrededor.

La carga del protón siempre es (+) y la del electrón (-), los neutrones no tienen carga eléctrica. Los protones van aumentando de uno en uno, y el siguiente elemento se llama Helio, dos protones y dos electrones, luego sigue el Litio con tres , y así se van sumando hasta el átomo mas complejo conocido como Uranio que contiene 92 protones en su núcleo, junto a 146 neutrones. Todos los átomo se puede agrupar ordenadamente en una tabla llamada Tabla Periódica de los Elementos Químicos, o bien , tabla de Mendeleiev, quien fue el autor de la misma. Actualmente se ha incrementado de forma artificial el numero de elementos químicos, llegando a 114.

Los átomos son neutros, porque hay tantas cargas positivas en el núcleo como cargas negativas en la «corteza» electrónica. Pero en las cercanías del átomo, una carga eléctrica es atraída en unas zonas y rechazada en otras: el átomo no actúa rigurosamente como neutro.

Por eso, cuando dos átomos están a distancias relativamente cercanas unos de otros (a pocos diámetros atómicos), ejercen atracciones y repulsiones entre ellos, según la estructura de cada átomo en particular.

Esas interacciones tienen como consecuencia que los átomos se reúnan en estructuras, algunas sumamente simples y otras sumamente complejas: las moléculas . Estas son las estructuras más pequeñas en que las sustancias manifiestan sus propiedades químicas características: en que el agua es agua, la sal común es sal común, el oxígeno es oxígeno, el ácido sulfúrico es acido sulfúrico, etc.

LAS SUSTANCIAS PURAS SIMPLES: Son las sustancias cuyas moléculas tienen una sola clase de átomos: sus nombres coinciden con los de los elementos químicos. Estas moléculas pueden estar constituidas por diversos números de átomos: monoatómicas (como la plata, el cobre y los metales en general); diatómicas (como el oxígeno, el hidrógeno, el nitrógeno, y muchos otros gases); triatómicas (como el ozono).

Una molécula se representa con el símbolo químico y un número como subíndice de acuerdo con el número de átomos que forman la molécula: O3, Hz, Ag (en las monoatómicas se omite el subíndice), O3 (ozono), etc. El estado (sólido, líquido o gaseoso) en que se encuentre una sustancia pura simple depende de las condiciones de temperatura y presión; y en condiciones normales hay sólo dos líquidas (mercurio y bromo), once gaseosas y el resto sólidas.

LAS SUSTANCIAS PURAS COMPUESTAS: Cuando reaccionan dos o mas átomos entre sí para formar una sustancia, a dicha unión se la llama: molécula, y por lo tanto dicha molécula tienen varias clases de átomos: el agua, con dos átomos de hidrógeno y uno de oxígeno (H2O); la sal de cocina, o sal común, o cloruro de sodio, con un átomo de cloro y uno de sodio (NaCl); el ácido sulfúrico, con un átomo de azufre, cuatro de oxígeno y dos de hidrógeno (H2SO4); y otros innumerables ejemplos.

Como en la naturaleza todas las partículas están en movimiento, cuando dos o más átomos se chocan o se acercan suficientemente, actúan fuerzas eléctricas entre ellos. Y cuando las condiciones son las necesarias y suficientes, los átomos se agrupan formando moléculas.

Una sustancia compuesta estará en estado sólido, líquido o gaseoso según las condiciones de temperatura y presión. Pueden coexistir distintos estados, como en el agua: agua líquida en un arroyo mientras está nevando y hay trozos de- hielo en el suelo y vapor en la atmósfera; pero se están transformando unos estados en otros.

RESUMEN: Si la materia se encuentra en estado puro, se denomina sustancia pura; éstas tienen siempre la misma composición y pueden ser elementos y compuestos.

Los elementos son sustancias que no pueden descomponerse en otras más sencillas por métodos químicos. En la naturaleza existen 92 elementos en estado natural, los restantes han sido creados en el laboratorio. Éstos se encuentran organizados en la tabla periódica donde se han clasificado 114 elementos.

Cada clase de elemento se representa por un símbolo. El oxígeno es O; el hidrógeno es H, por ejemplo.

Los compuestos son sustancias formadas por la combinación de elementos. Los compuestos pueden descomponerse por métodos químicos en sus respectivos elementos. Las propiedades de un compuesto son distintas de las propiedades de los elementos que lo forman.

Una molécula está formada por dos o más átomos. Las moléculas pueden separarse químicamente.
Una molécula de agua está formada por dos átomos de hidrógeno y un átomo de oxígeno.

La división química de una molécula en otras moléculas más pequeñas o en átomos produce cambios en la composición y por lo tanto, cambio en las propiedades.

El agua es un compuesto formado por los elementos hidrógeno y oxígeno. Cuando una corriente eléctrica fluye por el agua, la acción de la electricidad termina descomponiéndola en oxígeno e hidrógeno. Es decir, en sus elementos.

La sal de cocina es un compuesto llamado cloruro de sodio. La molécula de sal está formada por los elementos cloro y sodio.

El oxígeno que respiramos es un compuesto formado por dos átomos del mismo elemento.

Hasta aquí hemos dicho que:

MEZCLAS

SUSTANCIAS PURAS

ELEMENTOS COMPUESTOS

Oxígeno
Hidrógeno
Sodio

Agua
Alcohol
Sal

 Física Moderna: La Materia de Comporta Como Onda?

Fuente Consultada:
Enciclopedia CONSULTORA Tomo V Física – Los Estados de la Materia
QUIMICA I Sistemas Materiales y Estructura de la Materia Editorial Santillana – Alegria, Bosack, Dal Fávero y Otros

Concepto de Temperatura Relacion Entre Escalas Centigrado y Fharenheit

Concepto de Temperatura – Relación Entre las Escalas

Qué es la temperatura?
Hemos dicho antes que calor y temperatura son dos cosas diferentes. Sin embargo, están estrechamente relacionadas entre sí; en realidad, la temperatura no es más que uno de los efectos del calor. Para hacernos una idea clara del concepto de temperatura, imaginemos una vasija llena de agua y un pequeño recipiente situado encima, comunicados ambos por un tubo.

Si vertemos agua en el recipiente superior, a través del tubo se unirá con el agua de la vasija, ya que aquélla se halla a un nivel más elevado. Sin embargo, si no recurrimos a una bomba no podremos hacer pasar el agua de la vasija al recipiente superior. Pues lo mismo sucede con el calor, si bien éste es movimiento y no materia: para que la energía calorífica pueda pasar de un cuerpo a otro, es necesario que en uno de ellos el calor se encuentre a un nivel superior al del otro.

Al cuerpo con nivel calorífico superior lo llamamos cuerpo caliente o fuente calorífica; y al de nivel calorífico inferior cuerpo frío o refrigerante.

La temperatura nos indica, pues, el nivel térmico de un cuerpo. Se dirá que un cuerpo está caliente respecto a otro cuando le cede calor; y, viceversa, que está frío respecto a otro, cuando lo recibe. El cuerpo caliente tiene una temperatura mayor; el frío, menor. ¿Cómo se determina la temperatura? Comparando el nivel térmico de un cuerpo con el de otros en condiciones dadas, los cuales se toman como términos de referencia para establecer una escala termométrica.

La temperatura de un cuerpo, entre estrechos límites, es perceptible por nuestros sentidos, por lo que se denominó también grado de calor sensible, expresión imperfecta e incompleta. Ahora podemos advertir mejor la diferencia entre las expresiones «calor» y «temperatura». Un cuerpo puede contener mayor cantidad de calor que otro, y sin embargo tener menos temperatura. La cantidad de calor necesaria para elevar en una unidad (grado), la temperatura de la unidad de masa de un cuerpo, se llama calor específico, y se establece mediante el empleo de una unidad denominada caloría.

VISIÓN MICROSCÓPICA DE LA TEMPERATURA  Una característica de la materia es la movilidad incesante de sus átomos y moléculas en todas direcciones y sentidos, con las velocidades más variadas.

Esas velocidades se intercambian por interacciones entre las moléculas, sea por choques, sea por atracciones; pero si un cuerpo está a una determinada temperatura, entonces la velocidad promedio de sus moléculas también está determinada: podrán las moléculas intercambiar velocidades entre sí, una veloz transformarse en lenta por un choque, o a la inversa; pero el promedio no cambia si la temperatura no cambia.

Hay, entonces, una relación entre temperatura y velocidad promedio de las moléculas: si la temperatura sube, la velocidad media de las moléculas aumenta, y recíprocamente.

Pero hay otra cuestión: si tenemos a una misma temperatura moléculas de diferentes sustancias, como ocurre con el aire (mezcla de oxígeno y de nitrógeno, y de otros gases en pequeñas cantidades) las moléculas de oxígeno tienen su propia velocidad media a esa temperatura; y las de nitrógeno tienen, a la misma temperatura, su velocidad media propia, diferente de la del oxígeno.

Y aquí viene lo importante: las velocidades medias son diferentes, así como son diferentes las masas de las moléculas; pero… a una misma temperatura todas las moléculas de todas las sustancias tienen una misma energía cinética media. Es decir que la temperatura de un cuerpo es una medida del promedio de las energías cinéticas de sus moléculas, y recíprocamente.

particulas solido particulas liquido particulas gas
En los sólidos, las partículas están muy juntas y ordenadas; solo pueden realizar pequeños movimientos de vibración en torno a una posición de equilibro. En los líquidos, las fuerzas entre partículas son menos intensas y las partículas tienen cierta libertad para moverse. En los gases, las partículas pueden moverse libremente en todas las direcciones.

De acuerdo con la teoría cinético-molecular de la materia, los cuerpos esa formados por partículas (moléculas, átomos e iones) que están en continuo  movimiento. Es decir, a nivel microscópico, las partículas que forman la materia que nos rodea (átomos, moléculas, iones) se mueven constantemente y tiene» portante, cierta energía cinética.

• En un sólido, los átomos guardan sus posiciones realizando solamente movimientos de vibración y rotación.

• En los fluidos (gases y sólidos), las partículas están libres y, portante, pueden desplazarse también por el recipiente.

La cantidad de energía cinética media que tienen las partículas de un cuerpo se refleja en su temperatura.

Un aumento en la temperatura de cualquier cuerpo (sólido, líquido o gas nos informa de un aumento en la agitación de las partículas del mismo.

• Cuando las partículas se mueven deprisa, el cuerpo se encuentra a temperatura elevada.

• Cuando las partículas se mueven más despacio, el cuerpo se encuentra a baja temperatura.

La temperatura es una magnitud relacionada con la energía cinética media que tienen las partículas de un cuerpo. La unidad de temperatura en el SI (sistema internacional)  es el kelvin (K).

Cuando decimos que un sólido o un líquido está más caliente que otro realmente estamos indicando que las partículas que forman uno de ellos se están moviendo más deprisa que las del otro.

Equilibrio térmico
La medida de la temperatura como magnitud física adquiere sentido a pan de la idea de equilibrio térmico. Un sistema físico se encuentra en equilibrio térmico con el ambiente que lo rodea si no Intercambia energía con él, lo cual Implica que ambos se encuentran a la misma temperatura. Si no lo están, es porque llevan en contacto menos tiempo del necesario para que se alcance el equilibrio, pero si los dejamos juntos el tiempo suficiente, acabarán por alcanzar la misma temperatura, llamada
temperatura de equilibrio.

MEDIR LA TEMPERATURA: La forma más frecuente de determinar estados térmicos es mediante un termómetro de mercurio. Los más comunes entre estos instrumentos consisten en un pequeño volumen de mercurio encerrado en un tubo capilar de vidrio con un ensanchamiento en un extremo (bulbo del termómetro).

La parte interior del tubo no ocupada por mercurio está vacía. Como se ve en la figura hay dos formas diferentes de termómetros de esta clase. Al calentarse el mercurio se dilata, y el nivel de la columna en el capilar aumenta de altura.

A cada altura corresponde un determinado estado térmico del termómetro. Se lo pone en contacto con hielo en fusión ya nivel de la parte superior de la columna de mercurio se señala una marca y se le asigna el cero. Se coloca entonces el termómetro en los vapores que produce agua destilada en ebullición  cuando la presión atmosférica es la normal: 760 mm. (más adelante veremos la razón de esta exigencia).

En verdad es menester tomar otras precauciones; pero no las consignamos por razones de simplicidad en la exposición. Se señala el nivel de la columna en estas condiciones y se le asigna el número 100. El intervalo entre ambas señales (0 y 100) se divide en 100 partes iguales (de igual volumen) y se asigna un número entero entre 1 y 99 a cada una de las nuevas señales. Cada uno de los intervalos entre dos señales corresponde a un calentamiento del termómetro de 1°C: un grado centígrado de la escala de mercurio que, de este modo, queda definida.

La graduación se puede prolongar, si se desea, por arriba de 100°C y por debajo de 0°C, lo que se hace con mucha frecuencia. Hay termómetros para ámbitos más o menos grandes. Con los termómetros descritos sólo se puede tener una escala entre —39°C y + 357°C. Para temperaturas más bajas se usan otros líquidos, y para temperaturas más altas es menester recurrir a dispositivos diferentes o utilizar termómetros de mercurio con gas en la parte no ocupada con mercurio (termómetros «a presión»). El grado centígrado se puede también dividir y se pueden tener 1/10 y hasta 1/100 de grado centígrado en termómetros muy especiales.

La escala que acabamos de describir es la escala centígrada o Celsius. Existen las de Reamur y la de Fahrenheit, cuyas correspondencias con la centígrada aparecen en la Fig. 10. 6. En la práctica se usan las tres escalas, aun cuando la más utilizada es la centígrada. Para ciertos fines se utilizan la Reamur en Alemania y la Fahrenheit en los EE.UU.. de Norte América.

Para distintos fines existen termómetros con diversas características: termómetros de máxima (por ejemplo los clínicos: para «tomar la temperatura de pacientes») y de mínima; termómetros de alcohol, termómetros diferenciales, etc. También existen, aun cuando basados en la dilatación de sólidos o en otros fenómenos, termómetros registradores (termógrafos).

Como hemos dicho, si un termómetro se pone en contacto durante un tiempo suficiente con un cuerpo, ambos adquieren el mismo estado térmico. El del termómetro está determinado por la temperatura que en él se lee. Por lo tanto, también queda definido, por esa misma temperatura, el estado térmico del cuerpo del cual se determina, de esta manera, la temperatura.

termometros clasicosTermómetros comunes de vidrio, a mercurio.
a) Es un termómetro macizo. Está fabricado con un tubo de vidrio de diámetro interior capilar y exterior bastante grande (tubo de paredes gruesas). La escala está grabada sobre el mismo tubo. Es un tipo de termómetro robusto, esto es, resistente a golpes moderadamente fuertes.

b) Termómetro con un tubo capilar de paredes delgadas, fijo sobre una escala plana construida sobre una lámina de vidrio opaco o material cerámico del tipo de la porcelana. Todo ello se halla dentro de un tubo de paredes delgadas y de diámetro exterior grande. Son termómetros más frágiles que los anteriores; pero son, en general, mucho más exactos.

Termómetros diversos.
a) De máxima y b) de máxima y mínima. En este último, cuando asciende la temperatura el índice i asciende arrastrado por el mercurio; pero cuando la temperatura desciende queda retenido en la posición de temperatura máxima por el alcohol que está sobre el mercurio.

Análogamente, el índice queda retenido en la posición de temperatura mínima. Una vez hechas las lecturas, un imán permite poner los índices en contacto con el mercurio, c) Termómetro clínico (de máxima).

El estrangulamiento impide que el mercurio que ha llegado en I a su altura máxima, descienda, quedando, cuando la temperatura desciende, como se ve en II. Para hacer que las dos porciones de mercurio se reúnan nuevamente se da al termómetro unas sacudidas bruscas.

termometros de maxima y minima

Aunque la escala de temperaturas centígrada (o de Celsius) se utiliza ahora casi universalmente en los laboratorios científicos, la escala de Fahrenheit todavía tiene una gran aplicación en ingeniería, en países de procedencia sajona.

Durante muchos años los informes meteorológicos del Reino Unido expresaban la temperatura en grados Fahrenheit, pero a partir de 1962 la Oficina Meteorológica tomó la determinación de usar la escala centígrada.

Momentáneamente, hasta que se acepte universalmente el uso de la escala centígrada, se presentarán muchos casos en los que será necesario convertir las temperaturas de una escala a otra. Este caso se presenta cuando es necesario aplicar los ensayos de laboratorio para resolver problemas de ingeniería.

ESCALA TERMOMÉTRICAS: Se toman por acuerdo como puntos fijos el punto de fusión del hielo y el punto de ebullición del agua. Una escala termométrica vendrá definida por los valores de temperatura asignados a los dos puntos, aceptando una variación lineal de la magnitud termométrica con la temperatura.

Escala Celsius o centígrada
La escala Celsius o centígrada asigna el valor cero al punto de congelación o solidificación del agua y el valor 100 al punto de ebullición de la misma a la presión de una atmósfera. Cada unidad, debido a la variación lineal con la temperatura, será 1/100 del intervalo y se llama grado Celsius o centígrado (°C).

Escala Kelvin o absoluta
La escala absoluta o termodinámica utiliza como unidad de medida de temperatura el kelvin (K), cuyo valor coincide exactamente con el de 1°C, ya que el intervalo entre los puntos fijos también se divide en 100 unidades. Sin embargo, se asigna el valor 273 al punto de fusión del hielo y, portante el valor 373 al punto de ebullición del agua. En consecuencia, la relación entre la temperatura medida en Kelvin y la medida en grade; centígrados es la siguiente:

T (K) = t (°C) + 273

es decir, se trata de la misma escala que la centígrada pero desplazada hacia abajo en 273 unidades.
La importancia de la escala absoluta radica en que es posible demostrar que el cero absoluto de temperatura se corresponde con la ausencia total de energía cinética interna del cuerpo considerado, es decir, con la Inmovilidad total de sus partículas.

Escala Fahrenheit
Otra escala de temperaturas, muy utilizada en Norteamérica fuera de los ambientes científicos es la escala Fahrenheit. En esta escala se efectúan 180 divisiones en el intervalo definido por los puntos fijos, asignando a estos puntos los valores 32 y 212, respectivamente. La relación entre la temperatura expresada en grados centígrados y la correspondiente en grados Fahrenheit.

t (°F) = 1,8 t (°C) + 32

La escala absoluta correspondiente a la Fahrenheit, es decir, con unidades ¡guales, es la escala Rankine, cuyos puntos fijos son 491,69 y 671,67. Evidentemente, el intervalo en ambos cas:: es de 180 unidades. La relación entre la temperatura expresada en °F y °R es la siguiente:

t(°R) = t(°F) +491

EXPLICACIÓN: La conversión se realiza fácilmente recurriendo a la aritmética elemental, pero cuando no se exige una precisión grande y es necesario realizar gran numero de conversiones, se pueden usar varias tablas de mano que dan el valor directamente.

Las escalas de temperaturas se basan en un método de comparación entre una temperatura determinada y unos puntos de referencia. Los dos datos más importantes son la temperatura de fusión del hielo (que constituye el punto fijo inferior) y la temperatura de ebullición del agua a la presión atmosférica (punto fijo superior) En la escala centígrada, al punto fijo inferior se le da el valor 0°C, mientras que el punto fijo superior es 100°C.

La escala, entre estos dos puntos, se divide en 100 intervalos o grados. Por su parte la escala Fahrenheit se extiende desde 32°F, que es el punto inferior, a 212°F., o punto superior, de tal forma que el número de grados entre ellos es de 180.

El número de divisiones entre los puntos fijos de las dos escalas proporciona la clave para realizar las conversiones. Cien divisiones de la escala centígrada equivalen a 180 divisiones de la escala Fahrenheit. Utilizando una relación más simple, 5 divisiones de la escala centígrada equivalen a 9 divisiones de la escala Fahrenheit.

Puesto que todas las conversiones se deben realizar utilizando como dato el punto fijo inferior, es decir, todas las temperaturas se miden con relación a este nivel, se presenta una complicación, derivada de los distintos valores que se han asignado a los dos puntos inferiores en las dos escalas.

Por tanto, si se convierte una temperatura de la escala centígrada a la escala Fahrenheit, el número equivalente de divisiones en esta escala sobre el punto fijo inferior se calcula multiplicando primero el valor de la escala centígrada por 9/5 (1,8). Pero, puesto que el punto fijo inferior tiene en la escala Fahrenheit el valor 32, se debe añadir esta cifra al resultado del primer cálculo. Por el contrario, si una temperatura en grados Fahrenheit se quiere pasar a grados centígrados, en primer lugar hay que restar 32 de la cifra original.

Así se averigua el número de divisiones en que excede el valor Fahrenheit del nivel del punto fijo inferior; a continuación, esta cifra se multiplica por 5/9. El resultado de este cálculo proporciona la temperatura en grados centígrados.

ALGUNAS TEMPERATURAS

Reacción termonuclear del carbono5 X 108
Reacción termonuclear del helio108
Interior del Sol107
Corona solar106
Onda de choque en el aire para Mach 202.5 X 104
Nebulosas luminosas104
Superficie solar6 X 103
Fusión del wolframio3.6 X 108
Fusión del plomo6.0 X 102
Solidificación del agua2.7 X 10s
Ebullición del oxígeno (1 atm)9.0 X 101
Ebullición del hidrógeno (1 atm)2.0 X 101
Ebullición del helio (He4)  (1 atm)4.2
Ebullición del He3   a la presión baja que se puede alcanzar3.0 X 10-1
Desmagnetización adiabática de sales paramagnéticas10-3
Desmagnetización adiabática de núcleos10-6

Fuentes Consultadas:
Elementos de Física y Química – Prelat
Enciclopedia del Estudiante Tomo 7 Física y Química
Revista TECNIRAMA N°70

La materia y los cuatro elementos tierra agua fuego aire Fundamental

La materia y los Cuatro Elementos
Tierra, Agua ,Fuego, Aire

QUE ES LA MATERIA?

La naturaleza nos muestra una multitud de objetos distintos formados por diferentes materiales y, a la vez, vemos la desintegración de muchos de estos cuerpos: las montañas sufren la erosión del viento y del agua, que convierten en polvo lo que fueron inmensas piedras, la materia orgánica que forma a los seres vivos se degrada en componentes microscópicos por la acción de bacterias y otros organismos. ¿Hasta qué punto puede llegar en la desintegración de un objeto material?

Si tomamos una hoja de papel y la rompemos una y otra vez obteniendo en cada corte trozos más y más pequeños, ¿hasta dónde podrá continuar el proceso? Esta pregunta la formularon los griegos (y probablemente también otras civilizaciones) hace muchos siglos. Algunos, como Aristóteles, creían que el proceso de división de algo material era infinito, o dicho de otro modo: afirmaban que la materia es continua. El espacio entre los astros estaría ocupado por la materia más sutil y perfecta: el éter.

Aristóteles afirmaba que el espacio está completamente lleno de sustancia y, por consiguiente, que el vacío no existe.

La materia y los cuatro elementos tierra agua fuego airePor otro lado, Demócrito, que nació algunos años antes que Aristóteles, postulaba que al dividir un cuerpo material se podría llegar (con instrumentos con los que él no contaba) a obtener una porción mínima de materia que ya no sería divisible. A esta partícula la llamó átomo (palabra que en griego significa precisamente “no divisible”) y a su postura se la llama atomismo. Ciertamente, estas conjeturas no estaban respaldadas por ningún tipo de experimentación y se debatían sólo en el ámbito del pensamiento abstracto al que los griegos eran tan proclives.

Demócrito afirmaba que “lo único que existe son los átomos y el vacío”.

En todos los tiempos, para los que creían en la existencia del átomo fue una cuestión fundamental estimar cual sería, aproximadamente, su tamaño. Los antiguos ya habían notado que con una pequeñísima cantidad de tintura podía teñirse una inmensa cantidad de agua.

Esto les daba la pauta del increíble número de átomos presentes en una pequeña porción de materia Pero hubo que esperar hasta el siglo XVIII para obtener números que aproximaran un orden de magnitud para el tamaño del átomo. Hubo varias experiencias similares, entre ellas, la de Benjamín Franklin (1706-1790), quien en 1773 notó que una cucharada de aceite (unos 4 cm3 de volumen) derramada sobre la superficie tranquila de un lago se extendía abarcando un área de 2.000 m². A partir de esto dedujo que el tamaño de la molécula de agua no podía superar el valor:

4cm3/2.000m² 2.1O-7 cm

El valor promedio que actualmente se acepta para el tamaño del átomo es 10-8 cm.

A lo largo de la historia, el atomismo pasó por largas etapas de olvido y resurgió con fuerza en otros momentos. Inicialmente, mientras las ideas de Aristóteles marcaban el camino del conocimiento, el concepto de átomo fue dejado de lado. Pero a medida que la Física y la Química se fueron afirmando como ciencias, la existencia del átomo salió del ámbito de la especulación filosófica y surgió como necesaria a partir de la investigación de la materia, pero con características diferentes de las que Demócrito le había asignado. El átomo, tal como se lo conoce en la actualidad, ya no es una microscópica esferita sólida, indivisible, eterna e inmutable, sino que tiene una estructura interna cuya complejidad aún no termina de desentrañarse.

De todas maneras, todavía a principios del siglo XX la teoría atómica estaba en discusión y eminentes científicos (entre ellos, el Premio Nobel de Química Wilhelm Ostwald consideraban al átomo como una ficción muy poderosa, pues explicaba muchos de los comportamientos macroscópicos de la materia, a la cual no podían dar crédito.

Ver: El Átomo

Los primeros elementos: Tierra, Aire, Agua y Fuego

Una cuestión que sigue lógicamente a la postulación de la existencia de los átomos es la siguiente: ¿Existe un solo tipo de átomos que forman, según su disposición, todas las sustancias conocidas, o existen muchas variedades diferentes? Y si hay muchas variedades, ¿cuántas son? ¿Y en qué se diferencian los distintos átomos?

Así como la enorme cantidad de palabras de un idioma se arma a partir de unas pocas decenas de letras, todos los objetos que podemos conocer ¿estarán formados a partir de unos pocos constituyentes elementales?

Si prendemos fuego a un trozo de leña verde veremos que, a medida que la combustión avanza, el liquido (savia) en su interior burbujea, emanan vapores y, finalmente, cuando el fuego se extingue, sólo queda un polvo oscuro. Probablemente fue basándose en observaciones de este tipo que muchas de las civilizaciones antiguas, entre las cuales surgió la pregunta por los constituyentes elementales de la materia, llegaron a una respuesta similar: todos los cuerpos están compuestos por sólo cuatro constituyentes elementales: agua, aire, tierra y fuego. De acuerdo con esta concepción, las distintas sustancias que existen se diferencian según la proporción en que está presente cada elemento.

Algunos asociaban distintas formas y tamaños con los átomos de cada elemento: por ejemplo, los átomos de agua serían esferitas perfectas que les permitirían deslizarse unas sobre otras, mientras que los de tierra tendrían formas irregulares que los ayudarían trabarse entre sí dando más rigidez a la sustancia de la que participaran.

Aristóteles, en particular, adhería a esta teoría, pero agregaba un quinto elemento o quinta esencia: el éter, que formaba la esfera celeste.

Es interesante notar que existe un paralelismo entre los cuatro elementos y las formas en que la materia puede presentarse:

FUEGO——>ENERGÍA
AGUA——>LIQUIDO
TIERRA——>SÓLIDO
AIRE——>GASEOSO

El concepto de estos cuatro elementos primordiales fue mantenido durante siglos. Los egipcios y los árabes experimentaban y manipulaban sustancias en busca de combinaciones útiles para ramas tan diversas como la Medicina, los cosméticos, la metalurgia o el embalsamamiento.

En Europa, durante la Edad Media, los alquimistas fueron los herederos de esta tradición. La idea básica que manejaban era la de la transmutación. Esto implicaba la alteración de las proporciones de los cuatro elementos fundamentales presentes en una sustancia para obtener otra diferente.

Si bien la Alquimia, con su dosis de magia y sus métodos primitivos, estaba muy lejos de poder lograr su objetivo, permitió la producción y el reconocimiento de muchas nuevas sustancias (arsénico, cinc, bismuto, fósforo; los ácidos sulfúrico, nítrico y clorhídrico; las sales carbonato de sodio, sulfato de amonio y sulfato de sodio; etc.) y sentó las bases de lo que sería más tarde la experimentación química. Por otro lado, la idea de transmutar una sustancia en otra no era disparatada, y siglos más tarde los científicos modernos pudieron llevarla a cabo en sus laboratorios.

PROPIEDADES: Distintos tipos de materia poseen diferentes propiedades que las vuelven útiles para determinadas aplicaciones. El titanio, por ejemplo, es resistente y liviano al mismo tiempo; el cobre es buen conductor de la electricidad y se puede moldear en hilos para fabricar cables. El plástico no es corroído por los ácidos y se puede utilizar como recipiente. Los ejemplos son innumerables

Propiedades extensivas
Se trata de características relacionadas con i la cantidad de la materia, que permiten clasíficar cuerpos y sistemas materiales.

VOLUMEN:Se refiere aL espacio que ocupa la materia. En el caso de los líquidos, el volumen suele medirse en ütros. Para los sólidos, lo más habitual es utilizar metros cúbicos.

MASA: Se la define corno la cantidad de materia presente en un objeto, aunque para los físicos el concepto es algo más complejo. Para la física clásica es una medida constante y se mide en kilogramos.

PESO: Para definir el peso entra en juego también la fuerza fie gravedad, ya que se trata de la fuerza que ejerce la gravedad sobre un objeto, A mayor masa, mayor será el peso. Del mismo modo, mayor será el peso cuanto mayor sea la fuerza de gravedad.

Propiedades intensivas
No dependen sólo de la cantidad de la materia, sino del tipo de material. En muchos casos, son funciones de dos propiedades extensivas.

DENSIDAD
Surge de relacionar la masa de un cuerpo sobre su volumen. Por definición, se conside que la densidad del agua es de 1.000 kg/m3
Utilidad                                         Densidad (1.000 kg/m3)
Agua……………………………………………………….1.000
Aceite………………………………………………………920
Planeta Tierra…………………………………………. 5.515
Aire …………………… …………………………………. 1.3
Acero……………………………………………………… 7.850

SOLUBILIDAD
Es la capacidad que tienen algunas sustancias de disolverse en otras.

DUREZA
Se define como la resistencia que opone una sustancia a ser rayada por otra. La sustancia con mayor índice de dureza raya a la de menor índice de dureza.

La escala de Mohs
Se utiliza en mineralogía y establece la dureza de un mineral de acuerdo con una tabla:
Talco: El paso de una uña basta para rayarlo
Yeso: Una uña puede rayarlo, pero con mayor dificultad
Calcita: Se la puede rayar con una moneda
Fruorita: Un cuchillo puede provocar el rayón
Apatito: Se raya con un cuchillo y algo de fuerza
Ortoclasa: Se raya con lija de acero
Cuarzo: Raya el Vidiro
Topacio: Raya el  cuarzo
Coridón: Raya el topacio
Diamante: Raya el material mas duro

PUNTO DE FUSIÓN
Vulgarmente se lo define como la temperatura en la que un sólido se vuelve líquido.

PUNTO DE EBULLICIÓN
Generalmente se lo define como la temperatura a partir de la cual una sustancia líquida se vuelve gaseosa.

CONDUCTIVIDAD
Es la capacidad de una sustancia de permitir el paso de una corriente eléctrica, del calor o del sonido, a través de sí misma, Los metales suelen ser buenos conductores eléctricos, como el cobre, muy utilizado para fabricar cables.

OTRAS PROPIEDADES
Además de las citadas, existen otras numerosas propiedades intensivas para clasificar la materia. Algunas de ellas son índice de refracción, tenacidad, viscosidad, maleabilidad, etc.

Ver: El Átomo Para Principiantes

Doctrina Monroe America Para Los Americanos Fundamentos Principios

Doctrina Monroe América Para Los Americanos

La doctrina de Monroe:
«América para los americanos «

Doctrina Monroe America Para Los AmericanosPreocupados con sus problemas e intereses, los norteamericanos volvieron la espalda a Europa y proclamaron de modo solemne y oficial la total independencia de la República estrellada, así como su decisión de mantenerse al margen de la política europea. Tal fue, en síntesis, la célebre declaración del presidente Monroe (imagen) el 2 de diciembre de 1823.

La historia había de denominar a esta actitud política la «doctrina Monroe» si bien John Q. Adams contribuyó a ella tanto por lo menos como el propio jefe del Estado. Principio fundamental de la doctrina era que, en lo sucesivo, las dos partes —septentrional y meridional— del continente americano no estarían sometidas a colonización por parte de potencia alguna no americana.

El sistema político de las potencias de la Alianza europea difiere esencialmente del sistema aplicado en América. Consideramos como una amenaza contra la paz y la seguridad toda tentativa de cualquiera de tales potencias para extender su sistema a una u otra parte de este hemisferio. No hemos participado en las guerras promovidas entre las potencias europeas y no pensamos en el porvenir actuar de manera distinta.

El texto es explícito y basta citar un solo comentario coetáneo, el de Tomás Jefferson: «De este modo queda fijado el rumbo que siempre seguiremos a través del océano de los siglos». La declaración presidencial no sólo se refería a los Estados Unidos sino a ambas partes del continente americano. La causa inmediata de esta alusión eran los movimientos de liberación nacidos en las colonias españolas de la América del Sur, a consecuencia de la ocupación de la metrópoli por Napoleón en 1808-1813.

Europa contemplaba tales rebeliones y desórdenes con escaso interés y poco entusiasmo. Para mantenerse fieles a los principios del orden y gobierno monárquico absoluto, y ser consecuentes con ellos, las potencias que formaban la Santa Alianza debían intervenir y hacer volver a la obediencia de España a las colonias rebeldes.

Por supuesto, los Estados Unidos no estaban dispuestos a permitir tales propósitos porque una vez desembarcadas en América del Sur las tropas de las potencias europeas podrían muy bien dejarse arrastrar por la tentación de llevar a cabo alguna expansión en los territorios del Norte. Los posesiones de los países europeos en el continente americano eran considerables.

A principios del siglo XIX, España poseía vastísimos territorios en el Nuevo Mundo; por otra parte, la Gran Bretaña y Rusia podían considerarse también como potencias americanas, ya que Inglaterra poseía el Canadá, yen el transcurso del siglo XVIII Rusia había avanzado considerablemente por Alaska, en el extremo noroeste, reivindicando, además, extensos territorios en las mal definidas fronteras occidentales del Canadá en el litoral californiano,

Todo aquello inquietaba seriamente a John Quincy Adams, que imaginaba con horror a los Estados Unidos detenidos en su expansión, hacia el Oeste, en el caso de que se establecieran los rusos en California, y con la posibilidad remota de una ocupación francesa en México o de los ingleses en Cuba.

La «doctrina Monroe» afirmaba de modo inequívoco que los Estados Unidos se reservaban su propia esfera de influencia en el continente y que Europa no tenía por qué intervenir en sus asuntos, del mismo modo que América no deseaba en modo alguno inmiscuirse en la política europea, cuyo sistema social consideraba con la natural reserva. La declaración de Monroe pretendía formular una clara advertencia y así fue interpretada en el lado europeo del Atlántico.

Fuente Consultada: La Cultura de Dietrich Swanittz

La Dilatacion Termica Resumen Los Efectos Termicos del Calor

Resumen Sobre La Dilatación Térmica 
Los Efectos Térmicos del Calor

Los efectos comunes de cambios de temperatura son cambios de tamaño y cambios de estado de los materiales. Consideremos los cambios de tamaño que ocurren sin cambios de estado. Tomaremos como ejemplo un modelo simple de un sólido cristalino. Los átomos están sostenidos entre sí, en un ordenamiento regular, mediante fuerzas de origen eléctrico. Las fuerzas entre los átomos son similares a las que ejercería un conjunto de resortes que unieran los átomos, de manera que podemos imaginar al cuerpo sólido como un colchón de muelles.

Estos «resortes” son muy rígidos , y hay aproximadamente 1022 resortes por cada centímetro cúbico. A una temperatura cualquiera, los átomos de los sólidos están vibrando. La amplitud de vibración es del orden de 10-9cm y la frecuencia aproximadamente de 1013/seg.

Cuando aumenta la temperatura se incrementa la distancia media entre los átomos. Esto conduce a una dilatación de todo el cuerpo sólido conforme se eleva la temperatura. El cambio de cualquiera de las dimensiones lineales del sólido, tales como su longitud, ancho espesor, se llama dilatación lineal.

Si la longitud de esta dime lineal es L, el cambio de longitud, producido por un cambio de temperatura DT, es Al. Experimentalmente encontramos que, si DT suficientemente pequeña, este cambio de longitud Al es proporcional al cambio de temperatura DT y a la longitud original L. Por con siguiente, podemos escribir:(D=delta, letra griega)

La Dilatacion Termica Por Temperatura Efectos Termicos del Calor

Un sólido se comporta de muchos aspectos como si fuera un «colchón de muelles» microscópico, en el las moléculas están sostenidas entre si mediante fuerzas elásticas

AD [email protected]  (se lee alfa L por delta T)

en la ecuación anterior, «, que se llama coeficiente de dilatación U tiene diferentes valores para diversos materiales. Escribiendo otra manera esta fórmula obtenemos:

@= 1.DT/L.DT

o sea, que podemos interpretar a como la fracción de cambio de  longitud por cada grado que varia la temperatura.

Estrictamente hablando, el valor de @ depende de la temperatura a que esté el cuerpo y de la temperatura de referencia que se para determinar a L. Sin embargo, su van ordinariamente es insignificante comparada con la exactitud con es necesario hacer las mediciones en ingeniería. Con toda confianza podemos tomarla como constante para un material dado, independientemente de la temperatura.

En la Tabla  se muestra una lista de los valores experimentales del coeficiente medio de dilatación lineal de algunos sólidos comunes. Para todas las sustancias se encuentran en la lista, el cambio de tamaño consiste en una dilatación al elevarse la temperatura, porque a es positivo. El orden de magnitud de la dilatación es aproximadamente de 1 milímetro por metro de longitud por 100 modulos Celsius.

EJjemplo: Se va a elaborar el rayado de una escala métrica de acero de manera que los intervalos de milímetro sean exactos dentro de un margen de precisión de 5×10-5mm. a una cierta temperatura. ¿Cuál es la máxima variación de temperatura permisible durante el rayado?

[email protected]

Tenemos: 5 x 10-5 mm = (11 X 10-6/C)(1.0 mm) DT

en la expresión anterior hemos usado @ para el acero, tomada de la Tabla. De esta expresión se obtiene DT=5 C°. La misma temperatura a la cual se haga el proceso de rayado será la temperatura a la cual deba conservarse la escala cuando se use y deberá mantenerse siempre dentro de un margen de aproximadamente 5 C°.

Nótese (tabla)  que si se usara la aleación invar en lugar del acero, entonces, para la misma tolerancia requerida, se podría permitir una variación de temperatura de aproximadamente 75 C° o para la misma variación de temperatura (DT = 5°), la tolerancia que se obtendría sería más de un orden de magnitud mejor.

TABLA ALGUNOS VALORES DE @

Aluminio 23 X 10-6     Goma dura 80 X 10-6

Latón 19 X 10-6       Hielo 51X10-6

Cobre 17 X 10-6         Invar 0.7 X 10-6

VIDRIO (ordinario) 9 x 10-6  Plomo 29 X 10-6

Vidrio (pyrex) 3.2 x 10-6    Acero 11 X 10-6

Al nivel microscópico la dilatación térmica de un sólido sugiere un aumento en la separación media entre los átomos en el sólido. La curva de energía Potencial para dos átomos adyacentes en un sólido cristalino en función de su separación internuclear es una curva asimétrica como la de figura.

 Al acercarse los átomos, disminuyendo su separación del valor de equilibrio  entran en juego intensas fuerzas de repulsión y la curva de potencial se eleva con gran pendiente (F — dU/dr); conforme los átomos se separan aumentando su separación con respecto al valor de equilibrio.

Ver: Concepto de Cantidad de Calor