Erupción del Krakatoa

Percival Lowell Canales y Vida en el Planeta Marte

Percival Lowell Canales y Vida en el Planeta Marte

Percival Lowell creía firmemente que existía vida en el planeta Marte y que su población estaba formada por seres muy civilizados. Ellos habrían construido la red de canales para irrigar el planeta, que, de otro modo, estaría seco y polvoriento. Los canales se podían ver, mediante un telescopio, como unas líneas débiles que se entrecruzaban sobre la superficie del planeta. En el cruce de los canales, Lowell descubrió manchas, que él llamó oasis, y pensó que eran centros de población.

Percival Lowell

Lowell nació en Boston, Massachusetts, en 1855; se educó en Harvard, estuvo en el Lejano Oriente y, posteriormente, decidió dedicarse a la astronomía. Lowell era de buena posición económica y pudo adquirir un telescopio de refracción, con el cual instaló su propio observatorio en Flagstaff, Arizona.

Se interesaba especialmente por los planetas, y su libro, en el que expuso sus ideas sobre Marte, se publicó en 1908 con el título Marte, morada de la vida. Lowell trazó mapas de Marte, que mostraban el sistema de canales con gran detalle; sin embargo, ningún otro astrónomo logró ver la superficie del planeta con tanta precisión.

Por ello las ideas de Lowell iniciaron una gran controversia. Ahora se sabe que los «canales» no son líneas rectas regulares, sino manchas mal definidas; que no hay suficiente agua en el planeta para llenar un río y, mucho menos, una red extensa de canales.

Aunque, probablemente, Lowell estaba equivocado en sus teorías acerca de Marte, era un buen matemático. Después de representar cuidadosamente las órbitas de dos de los planetas más alejados, Urano y Neptuno, calculó que las pequeñas perturbaciones en la órbita de Urano se debían a la existencia de otro planeta más alejado del Sol que Neptuno.

Lowell no pudo descubrirlo, pero, en 1930, 14 años después de su muerte, se localizó el planeta Plutón. Los astrónomos del propio observatorio de Lowell encontraron a Plutón en el sitio calculado por aquél, pero el planeta era más pequeño y menos visible que lo predicho por Lowell. Este fue el motivo fundamental de que se tardara tanto en descubrirlo.

Los Canales de Percival Lowell

Detalle del mapa de Marte trazado por Lowell. Éste vio manchas y rayas oscuras en la superficie del planeta, que se unían para formar una extensa red de «canales». Creyó que las manchas en el cruce de dos o más canales eran centros de población.

Consecuencias de la Erupcion de un Volcan Composicion de la Lava

La Erupción de Un Volcán – Los Desequilibrios Ecológicos

LISTA DE LOS TEMAS TRATADOS:

1-Huracanes
2-Olas de Frío
3-Tormenta de Arena
4-Incendios
5-Terremotos
6-Volcanes
7-Sequías
8-Olas de Calor
9-Inundaciones
10-Desastres Naturales

Los volcanes
Las erupciones volcánicas constituyen uno de los fenómenos geológicos que más han impresionado al ser humano, por su grandiosidad y por los terribles efectos que provocan.

El vulcanismo es un hecho geológico que tiene lugar en la corteza terrestre y que se manifiesta arrojando a la superficie material fundido o magma como resultado de intensos desequilibrios en el seno de la corteza, originados durante las fricciones que ocurren entre las grandes masas geológicas sometidas a fenómenos de compresión y deslizamientos.

Generalmente los volcanes aparecen como promontorios muy elevados, formados por la solidificación del magma expulsado.

Desde antiguo estas erupciones han sido muy temidas por el hombre, y hasta el mito se ha ocupado de ellas. Recordemos el Hefesto o Vulcano de la mitología grecorromana: el fuego de las fraguas de sus herrerías salía al exterior y hacía temblar la Tierra.

Cómo es un volcán
Un cono volcánico se forma por la acumulación del magma solidificado. En su cima se halla el cráter, que se prolonga hacia el interior por la chimenea por donde ascienden las materias en fusión o los gases. Muchas veces, en torno del cráter principal se originan cráteres secundarios o parásitos formados por las bifurcaciones de la chimenea central. La montaña que forma el volcán en ignición tiende naturalmente a crecer en altura y volumen. El Chimborazo (Ecuador) mide 6.267 metros.

La rapidez con que se forman estos montes volcánicos suele ser sorprendente. El cono del Monte Nuovo (Nápoles) surgió en la noche del 27 al 28 de setiembre de 1538, ante los azorados ojos de los pobladores. El Parícutin (México, febrero de 1943) es otro ejemplo.

Hay conos volcánicos de una regularidad perfecta (Cotopaxi en Ecuador) y otros que tienen deformaciones debidas a los distintos agentes de la erosión. Existen otros que presentan en sus flancos conos secundarios o adventicios cuyo número puede variar a menudo (Etna).

Las dimensiones de los cráteres varían: algunas son enormes (Vesubio, Poás). Los cráteres volcánicos sin conos son de explosión están formados por gases que han arrojado los fragmentos del fondo rocoso en torno de la chimenea volcánica sumamente abierta, pero sin producto sólido alguno procedente del magma interior Otros volcanes curiosos son los denominados volcanes-calderas. Provienen del hundimiento o explosión de la zona central de un gran cono volcánico, de cual solamente quedan los flancos.

El sábado 22 de octubre de 2005, el volcán Sierra Negra, en las islas Galápagos, luego de 27 años de inactividad, comenzó a expulsar cenizas y gases. Tres días después, la lava comenzó a fluir. Este, sin embargo, no fue el único ejemplo eruptivo del año. Una semana antes, un grupo de observadores de El Salvador anunció que la columna de gases del volcán Santa Ana o Ilamatepec era muy débil y difusa. (ver mapa de Volcanes Activos)

Tres horas después era ya de 300 metros. Las piedras y cenizas que arrojó el Santa Ana mataron a dos personas. No obstante, desde el mes de junio se había intensificado su vigilancia debido a que se habían registrado microsismos de mayor intensidad de los que suele mostrar ese volcán.

Éstas fueron dos de las cinco erupciones volcánicas que tuvieron lugar el año pasado. En los últimos 10.000 años se han activado 1.415 volcanes en el mundo. Una de las peores fue la de 1815 cuando el Tambora, en Indonesia, se cobró la vida de 92.000 personas.

Animación Educativa Sobre Los Volcanes

Lago Toba, la más salvaje

Más cerca en el tiempo fue la explosión del Pinatubo, en Filipinas, que tuvo un saldo de 800 víctimas fatales. Algunos, como éste, entran en erupción cuando ya nadie se lo espera. Otros, como el Estrómboli, el Etna o los de Hawaii, se activan con frecuencia.

¿Pero qué ocurre en las entrañas de la Tierra? Sucede que nuestro planeta se comporta como un alto horno; a unos 100 km de profundidad, las rocas se funden para formar el magma, que tiene tendencia a ascender hacia la superficie y escapar aprovechando las zonas más frágiles de la corteza terrestre.

Y, en ciertas ocasiones, dicen algunos especialistas, la Tierra experimenta una erupción tan salvaje que hasta cambia el clima y amenaza la existencia sobre el planeta. Hace 75.000 años se produjo la mayor erupción de la historia en el Lago loba, Sumatra. Hay quienes opinan que existe otra en ciernes y que es probable que tenga un volcán que yace bajo el Parque Yellowstone, en EE.UU.

Más de 40 especialistas afirman que este supervolcán ya ha entrado en erupción varias veces. Las últimas mediciones confirman que el suelo del parque emite entre 30 y 40 veces más calor que el promedio de Estados Unidos. “No queremos ser catastrofistas —dice uno de los geólogos—, pero debemos reflexionar sobre la posibilidad de que sea el turno de un volcán”.

Lava en estudio El Etna, arriba, ha entrado en erupción varias veces en los últimos 100 años. La imagen de la izquierda muestra un volcanólogo recogiendo lava para estudiarla posteriormente. 

 LA LAVA DE LOS VOLCANES:  En el interior de la Tierra se encuentra en su mayor parte en estado liquido e incandescente a elevadísimas temperaturas. A esa inmensa masa de roca fundida, que además contiene cristales disueltos y vapor de agua, entre otros gases se la conoce como magma terrestre. Cuando parte de ese magma surge hacia el exterior a través de los fenómenos volcánicos, se la llama lava; 1000 °C es la temperatura media de la lava líquida

Al alcanzar la superficie de la corteza o el fondo oceánico , la lava comienza a enfriarse y se convierte así en diversos tipos de roca sólida, según su composición original. Ésta es la base de los procesos por los que se ha formado la superficie de nuestro planeta y por los cuales sigue en permanente cambio. Los científicos estudian la lava para conocer en profundidad nuestro planeta.

La lava es la sangre de toda erupción. Está cargada de vapor y de gases como el dióxido de carbono, el hidrógeno, el monóxido de carbono y el dióxido de azufre. Al salir, estos gases ascienden violentamente a la atmósfera, formando una nube turbia que descarga, a veces, copiosas lluvias. Los fragmentos de lava que son arrojados fuera del volcán se clasifican en bombas, brasas y cenizas. Algunas partículas, grandes, vuelven a caer dentro del cráter. La velocidad eje la lava depende en gran parte de la pendiente de la ladera del volcán. Hay corrientes de lava que pueden llegar a los 150 Km. de distancia

Composición mineralógica
La lava tiene un alto contenido de silicatos, que son minerales livianos formados de rocas y constituyen el 95% de la corteza terrestre. En proporción, el otro elemento importante es el vapor de agua. Los silicatos determinan la viscosidad de la lava, es decir, su capacidad de fluir, cuyas variaciones han originado una de las clasificaciones más difundidas: la lava basáltica, andesítica y riolítica, ordenadas de menor a mayor contenido de silicatos.

Poder destructor de los volcanes
La predicción de las actividades volcánicas puede reducir o evitar las pérdidas de vidas, pero poco puede hacer sin embargo para controlar los daños de los elementos y bienes inamovibles. Se ha intentado incluso desviar las corrientes de lava utilizando chorros de agua para enfriarla, y formar una sólida pared de lava solidificada bombardeando a continuación los costados de la colada para dividirla en varias corrientes de menor tamaño.

Durante la erupción del Etna de 1971 se vieron anegados por la lava casas, viñedos y carreteras. Nada pudo hacerse para prevenirlo, pues la desviación de las corrientes de lava es ilegal en Sicilia. Las coladas de lava y los espesos mantos de escoria inutilizan la tierra para su explotación agrícola durante muchos años; el ritmo de recuperación es más rápido en las regiones tropicales húmedas, pero muy lento en climas severos.

Tanto la avalancha de lodos como la colada de lava, se originaron por una erupción surgida de una fisura (aún humeante) que apareció en la parte superior del flanco del Villarica. Las erupciones más destructivas son las grandes erupciones explosivas con desprendimientos de piroclastos, que dan lugar a coladas de cenizas y a avalanchas de lodos. La mortalidad de estas erupciones depende de la densidad de población de la zona; la que produjo mayor número de víctimas mortales tuvo lugar en Indonesia.

Durante la erupción del Tambora en 1815 murieron 12.000 personas, pero otras 70.000 fueron víctimas de las enfermedades y el hambre que siguieron a esta gigantesca erupción. Para minimizar el riesgo de las avalanchas de lodo en Kelu, Java, se construyeron una serie de túneles que drenaron el lago surgido en el cráter del volcán.

Erupcion Volcanica del Nevado Ruiz Tragedia en Colombia

Erupción Volcánica: La Tragedia  del Nevado Ruiz

En ocasiones, los distintos procesos naturales pueden producirse de manera violenta. Las fuerzas naturales se desatan, afectan a los asentamientos humanos y las actividades económicas, produciendo una catástrofe o desastre natural. Se denomina riesgo natural a la posibilidad que tiene un espacio geográfico de sufrir las consecuencias violentas de un proceso natural; por ejemplo, San Juan y Mendoza tienen alto riesgo sísmico.

En América, los complejos procesos de la naturaleza generan diversas catástrofes naturales: Erupciones volcánicas, en particular en el llamado cinturón de fuego del Pacífico, que coincide con las altas cordilleras del oeste.

La erupción volcánica del Nevado del Ruiz

El caso de Nevado del Ruiz debe ser una lección para todos los gobiernos. Los estados tienen que desarrollar tecnologías que permitan enfrentar los riesgos: estudios científicos sobre los fenómenos naturales, mapas de riesgos, instrumental para medir las fuerzas de la naturaleza.

También, tienen la obligación de preparar a la población que vive en áreas de riesgos naturales para enfrentar esos desastres, brindándole información que le permita saber cómo actuar en tales casos, y así disminuir la pérdida de vidas humanas. Las escuelas pueden colaborar con la función informativa en estas situaciones.

ciudad de armero erupción del nevado ruiz

Casi un año antes de la tragedia, la cumbre del volcán había empezado a inquietar a los científicos, a las autoridades y a los habitantes de la zona de influencia. A las emanaciones de gases, vapores de agua y algunos flujos de magma siguieron trepidaciones más frecuentes de la montaña nevada que finalmente rugieron tras una fuerte emisión de cenizas y arenas.

Pero una evacuación era muy costosa. Hubo largos debates teóricos y, algunas horas antes del drama, una interminable reunión de las autoridades regionales, donde al final no fue tomada ninguna decisión. La comunidad de Armero no estaba preparada. Apenas visible cuando el tiempo es claro, el Nevado no era considerado como una amenaza y las destructivas avalanchas de lodo de los siglos pasados habían sido olvidadas.

El 13 de noviembre de 1985 el cráter Arenas de la cadena volcánica Nevado del Ruiz, entró en erupción sepultando a 25.000 pobladores de Armero, un pueblo agrícola de los Andes colombianos. En esa noche  se generó la mayor tragedia natural en toda la historia del país: Armero desapareció y el 90% de sus 25.000 habitantes murieron sepultados 200 kilómetros al oeste de Bogotá.

El volcán se hallaba apagado desde 1845, y su última actividad volcánica de magnitud se había producido cuatro siglos atrás. En los días anteriores, los geólogos habían anunciado que el deshielo que se produciría al entrar en erupción el volcán, podría tener graves consecuencias.

En efecto, el calentamiento provocado por las emanaciones de gases y cenizas del volcán originaron el deshielo de los glaciares que coronaban el cráter del Nevado. Las cenizas del volcán fundidas con el hielo, conformaron torrentes de lodo y rocas que aplastaron al asentamiento ubicado en el valle, por donde se encauzó la corriente. El lodo se solidificó sepultando a los sorprendidos pobladores.

Como una tromba apocalíptica, más de 350.000 metros cúbicos de lodo, rocas, árboles y animales aumentaron paulatinamente el caudal de esa masa que se inició a 5.400 metros de altura sobre el nivel del mar, descendió por la cordillera andina, arrastró todo a su paso y llegó a los llanos del departamento del Tolima.

El gobierno colombiano no pudo rescatar los cadáveres y declaró al área campo santo, es decir, un cementerio común. El problema se agravó cuando los médicos anunciaron la existencia de un alto riesgo de epidemias, por la ausencia de agua potable.
La ciudad blanca, como se conocía a Armero, por estar ubicada en un área de plantaciones de algodón, fue borrada del mapa por el efecto devastador de la catástrofe. La destrucción también alcanzó a las fincas rurales vecinas donde se cultivaba café, maíz y sorgo, y se criaba ganado.

Las cadenas de TV retransmitieron durante tres días la agonía de la pequeña Omayra Sánchez, de 13 años, sumergida hasta el mentón en lodo, atrapada entre los escombros de su casa. Hablaba con los socorristas.
No se quejaba. Agonizó 60 horas en el fango y murió finalmente víctima de la gangrena gaseosa.

FUE INESPERADA LA ERUPCIÓN DEL NEVADO RUIZ?: La amenaza natural representada por la posibilidad de erupción del Nevado del Ruiz (y su efecto secundario, el lahar) no eran desconocidos en Colombia: Armero ya había sido sepultada por otro flujo de lodo en el año 1845,y el 70 % de su población había perecido. Sin embargo, Armero volvió a ser construida sobre el lodo sólido.

Por otra parte, la erupción que destruyó Armero en 1985 tampoco fue imprevista e inesperada. Científicos colombianos y expertos internacionales habían identificado actividad sísmica y anomalías en el volcán desde al menos un año antes de la catástrofe. Más aun, se habían detectado erupciones de mayor intensidad, sin consecuencias para las poblaciones de las laderas.

Esto demuestra el conocimiento que se tenía de la actividad del volcán y el aprendizaje de experiencias previas, inclusive de erupciones ocurridas en otros volcanes cubiertos con nieve (como, el Monte Santa Helena, en EE.UU., que entró en erupción en 1982). La erupción que desencadenó los torrentes de lodo en el Ruiz fue relativamente pequeña: solamente arrojó cerca de 5.000.000 m3 de magma. Sin embargo, esta cantidad de magma generó unos 60.000.000 m3 de lahares, que contenían unos 20.000.000 m3 de agua. Estas cifras señalan el especial cuidado que requiere, para el futuro manejo de esta amenaza, la consideración de erupciones de pequeña y mediana intensidad en volcanes cubiertos de nieve.

El desastre de Armero no fue provocado por una erupción sin precedentes del Nevado del Ruiz, ni por el desconocimiento de la amenaza; tampoco puede atribuirse sencillamente a la fatalidad. En esa oportunidad, se conjugaron factores relacionados con el estado de la sociedad expuesta, sobre todo con la lentitud, la excesiva burocracia y la indecisión de las autoridades; basta decir que se dio la orden de evacuación cuando el lahar ya estaba sobre Armero.

No es posible atribuir la catástrofe a la fatalidad: el Nevado del Ruiz registra actividad volcánica de distinto tipo desde que se tiene noticia. Luego de la erupción de noviembre de 1985, nuevos episodios sucedieron sin que hayan sido afectados bienes o personas. Sin embargo, esto no implica que no sea necesario monitorear constantemente la actividad del volcán, a fin de conocer la amenaza con la mayor precisión posible.