Fabricación de Ladrillos

La Polinizacion de las Plantas Agentes y Mecanismos Tipos

La Polinización de las Plantas
Tipos, Agentes y Mecanismos

Las abejas y otros insectos tan comunes en las flores durante los meses de verano, no se dedican solamente a alimentarse del néctar, sino que están realizando un servicio vital para la planta. Cuando los insectos revolotean de flor en flor, están llevando involuntariamente polen de una parte a otra y realizando la polinización de las flores.Se llama polinización al paso o tránsito del polen desde el estambre en que se ha producido hasta el pistilo en que ha de germinar.

El trasporte de polen desde los estambres hasta el estigma es un proceso que recibe el nombre de polinización, y es la primera fase del ciclo por el cual las células masculinas llegan a las células femeninas, u óvulos, para formar las semillas. La segunda fase del proceso (fecundación) se describirá más abajo.

Todas las partes de la flor pueden desempeñar un papel en la polinización, pero los principales órganos que aquí intervienen son los estambres y el estigma. Cada estambre (órgano masculino) consiste en un filamento y un par de anteras, que son los sacos productores de polen. Cuando los granos de polen están maduros, las paredes de la antera se abren y los dejan en libertad.

El estigma es la superficie de recepción de la parte femenina de la flor, el carpelo. El estigma puede estar colocado, o no, sobre una columna, el estilo. Cuando el polen de la misma especie cae sobre el estilo, el proceso de la fecundación comienza.

polinizacion

Partes de una flor

Cuando las semillas se producen mediante la trasferencia de polen de una flor a otra (polinización cruzada), las plantas resultantes son, a menudo, más vigorosas que si el polen y el óvulo (célula femenina) procediesen de la misma flor (autopolinización).

No es sorprendente, por lo tanto, que la mayoría de las flores tengan algún método de evitar la autopolinización y de asegurar la polinización cruzada. Las flores que están adaptadas a la polinización cruzada producirán una descendencia más robusta, y con más posibilidades que las no adaptadas a ella.

Así se va introduciendo la propiedad que sirve para asegurar este tipo de polinización entre las distintas plantas de la especie, o, dicho de otro modo, la planta va evolucionandp hacia la adquisición de esta posibilidad.

La mayoría de las flores contienen a la vez estambres y carpelos (son hermafroditas), pero algunas plantas tienen flores con un solo sexo. Ciertas especies (por ejemplo, el sauce) tienen incluso las flores  masculinas  y  femeninas  en plantas de morfología distinta. En estos casos, la autopolinización es imposible. Cuando en la misma flor existen órganos de los dos sexos, la autopolinización se evita por la separación de las anteras o de los estigmas en el espacio o en el tiempo.

En la antena del estambre se libera el polen y cae en el óvulo de la misma flor

En una flor erecta, las anteras pueden estar debajo de los estigmas, y lo contrario ocurre en una flor colgante, de tal forma que el polen no cae en los estigmas. El mecanismo más frecuente, es que los estambres maduren antes de que el estigma esté preparado para recibir el polen. Esto es lo que se conoce con el nombre de protandria. El proceso inverso (protoginia) se encuentra en algunas flores, cuyos estigmas maduran antes de que los estambres dejen caer el polen.

Cierto número de plantas cuyas flores no están adaptadas estructuralmente para evitar la autopolinización son autoestériles. El polen cae sobre el estigma, pero no se realiza la fecundación, por existir, al parecer, una barrera química. En ciertos experimentos de genética, realizados para obtener nuevas variedades de plantas, es necesario evitar la autopolinización, incluso para especies de plantas que la poseen como un mecanismo normal.

Para ello, se procede a amputar artificialmente los estambres, y a realizar la polinización frotando el estigma con estambres tomados de otra flor, con la que se quiere realizar el cruzamiento. Con frecuencia, se cubren las flores con bolsitas o cucuruchos de papel, para impedir el acceso al estigma del polen de otras flores extrañas al experimento. En otros casos, interesa, por el contrario, favorecer la autopolinización, a fin de obtener líneas o variedades puras.

Los resultados de la polinización cruzada entre dos variedades muy diferentes son, con frecuencia, una descendencia de mayor vigor, lo cual puede tener agrícolamente un gran interés. Éste es el caso de los maíces “híbridos”, en los que se busca obtener este fenómeno por la polinización de dos variedades puras diferentes.

A pesar de que la polinización cruzada es preferible, la autopolinización debe realizarse en el caso de que no haya otra posibilidad. Con frecuencia, los estambres y los estigmas se doblan unos contra otros antes de que la flor muera, para que se efectúe la autopolinización, si la polinización cruzada ha fallado. Un grupo de plantas (en las que se incluye la violeta) produce, al final de la estación de crecimiento, flores especiales que se autopolinizan. Incluso no llegan a abrirse, y el polen pasa directamente desde los estambres hasta el estigma, asegurando, al menos, la producción de algunas semillas.

LOS AGENTES POLINIZANTES: Insectos, viento y agua
Los insectos desempeñan un papel importante en la polinización, pero existen otros agentes, como el viento. La polinización por el viento (anemofilia) tiene lugar en muchos árboles y gramíneas. Las flores están, generalmente, en amentos o inflorescencias colgantes en forma de plumeros o borlas que el viento puede sacudir fácilmente.

Algunos tipos de inflorencia de las flores. Son diversos tipos de agrupaciones de flores, pues normalmente las mismas no se encuentran aisladas

Los estambres poseen también largos filamentos, que hacen que las anteras puedan ser sacudidas por el viento con mayor eficacia. De esta manera, el polen puede soltarse con gran facilidad. El polen es ligero y se produce en grandes cantidades, ya que la polinización por el viento desperdicia una gran cantidad y sólo una pequeña parte llega a su meta, constituida por el pequeño blanco que presenta la superficie del estigma.

El polen de muchas plantas anemófilas (por ejemplo, en los pinos) presenta unos pequeños “flotadores” o vesículas huecas adosadas que contribuyen a aumentar su superficie, disminuyendo su peso específico aparente. Así el polen puede ser trasportado a muchos kilómetros de distancia por el viento, e incluso ascender a gran altura en la atmósfera, siguiendo los movimientos turbulentos (de remolino) del aire. Se ha observado un caso de polinización de una planta de palmera en el sur de Europa por el polen aparentemente procedente del norte de África.

El  agua tambien es un agente que trasporta el polen de algunas plantas acuáticas. Los granos de polen tienen flotadores finos que los llevan sobre la superficie del agua hasta que alcanzan alguna flor que esté en la superficie. Los pájaros son polinizadores’frecuentes en los trópicos (p. ejemplo, colibríes). Las flores, generalmente, son rojas y producen grandes cantidades de néctar. Los murciélagos pueden ser los polinizadores de algunas flores, especialmente en los trópicos. Otros animales pueden también polinizar durante sus viajes, pero no son polinizadores regulares.

Los estigmas son normalmente muy grandes y plumosos en las plantas polinizadas por el viento, para que pueda ser atrapado más polen. La polinización por el viento parece ser la forma más primitiva de polinización y es muy poco diferente de la dispersión de las esporas de los hongos y de los heléchos. Quizá era el único método empleado por las gimnospermas (plantas que no tienen las semillas cubiertas) fósiles, que formaban bosques de árboles enormes en épocas pasadas.

Hoy día es el método de polinización de las gimnospermas vivientes, como las coniferas (pinos, abetos, cedros, etc.), si hay que tomar como criterio la cantidad de polen producido. En momentos determinados, puede desprenderse el polen en tales cantidades que cubre el suelo, coloreándolo de amarillo y dando origen a lo que popularmente se han llamado “lluvias de azufre”. A veces se ve el polen flotando como una nube sobre los bosques de coniferas. En las típicas “lluvias de azufre”, parece que el polen es realmente arrastrado por las gotas de lluvia, procediendo de las capas relativamente altas de la atmósfera, donde han ido a parar por efecto del aire.

Esta inflorescencia es más bien fea y tiene un olor desagradable, que, sin embargo, atrae a las moscas. Las flores individuales están en una espiga, las femeninas debajo de las masculinas. Por encima de lis flores hay un anillo de pelos y toda la inflorescencia está envuelta en una vaina. Las moscas, atraídas del exterior, penetran en el tubo y quedan encerradas por los pelos que están dirigidos hacia abajo. Las flores femeninas maduran primero y se polinizan por los insectos que llevan algo de polen. Después maduran las flores masculinas y los pelos se marchitan. Cuando los insectos escapan, llevan polen que trasportan a la flor siguiente.

RECOGIDA DE POLEN AÉREO
Para analizar el polen flotante en el aire se disponen portaobjetos de microscopio al aire libre, cubiertos con una capa muy fina de vaselina. El polen de las plantas anemófilas queda pegado y puede examinarse al microscopio. La determinación se hace por comparación con el polen tomado directamente de las plantas. Los granos de polen presentan complicados y variables relieves en su superficie que son distintos para cada especie, y se utilizan para la identificación. Los inventarios de polen aéreo se hacen frecuentemente con fines médicos, debido a que el polen puede producir trastornos alérgicos en algunas personas (fiebre del heno), a para conocer las épocas de polinización de las plantas.

Entre las plantas que tienen flores (angiospermas), las flores anemófilas se caracterizan por lo sencillo de su estructura, lo cual parece ser un fenómeno de reducción posterior y no un carácter primitivo. Los pétalos suelen faltar, las flores no son llamativas, no producen néctar, y no llaman la atención de los insectos. Producen muchísimo más polen que las flores de plantas relativamente parecidas en cuanto a su estructura, pero que son polinizadas por insectos, y el polen es seco y pulverulento.

Hay una marcada tendencia a la separación de sexos y a la aparición de las flores, muy tempranamente en la primavera, antes que las hojas, lo que ocurre, especialmente, en los árboles y en los arbustos. Una de las características más interesantes de la anemofilia es que aparece en familias de plantas totalmente distintas, lo que muestra que es una adquisición reciente de tipo evolutivo. Se encuentra en las gramíneas (hierbas), que se polinizan todas por el viento, a excepción de la avena cultivada y algunas variedades de trigo que se autopolinizan, en los robles, chopos, etc.

En algunas de estas plantas, las anteras pueden “explotar”, proyectando el polen en el aire. El avellano, por ejemplo, produce sus flores en unas borlas colgantes alargadas (amentos). Las flores femeninas, sin embargo, son unas estructuras delicadas y de pequeño tamaño, con estigmas rojos ramificados. La separación de las flores por sexos asegura la polinización cruzada.

polinizacion

Dispersion de semillas

Las flores de las gramíneas (hierbas) tienen los estambres con largos filamentos, que aseguran que no haya autopolinización por su manera de colgar de la flor, lejos de los estigmas. Las especies de llantén producen espigas de flores protóginas. Las flores situadas en la parte más baja de la espiga se abren las primeras, y dejan sus estigmas al descubierto. Cuando éstos se marchitan, aparecen los estambres colgantes, pero no polinizan a las flores más jóvenes, ya que están siempre situados por debajo de los estigmas que se van abriendo en la parte superior de la espiga.

Algunas flores no están limitadas a un solo método de polinización, y, si no las visitan los insectos, descargan el polen en el aire. Estos casos sugieren la idea de que, cuando los tipos florales estaban adaptados a la polinización por el viento o por insectos y las condiciones se alteraron, las flores adoptaron un método diferente de polinización, pero la estructura floral se mantiene igual.

LA POLINIZACIÓN POR INSECTOS

La polinización por insectos (entornofilia) es el método más común de trasporte de polen para la fecundación. Hace mucho tiempo que se sabe que el brillante color, y el aroma de las flores, no se han hecho para la satisfacción estética del hombre, y que su objeto principal es atraer los insectos.

Polinización Cruzada

Hay bastantes flores que no están condicionadas y que pueden polinizarse por casi todos los insectos, pero otras son polinizadas por muy pocas especies. Las complicadas asociaciones entre flores e insectos no son, en absoluto, una casualidad, sino el resultado de las fuerzas de evolución, que actuaron desde que los primeros insectos empezaron a alimentarse en las flores.

Las primeras flores anemófilas debieron atraer a los insectos de alguna manera, probablemente a causa del alto valor nutritivo del polen. Las flores visitadas por insectos fueron polinizadas de una manera eficaz, y produjeron una descendencia en mayor número que aquellas que no tuvieron contacto con los insectos. Esta descendencia fue también atractiva para los insectos, por haber conservado el carácter hereditariamente de sus antecesores.

La Polinización Cruzada

A partir de este momento, debe haberse originado toda la serie de refinados mecanismos de las flores entomófilas. Se han escrito libros enteros sobre los mecanismos que los insectos, por una parte, y las flores, por otra, han desarrollado para perfeccionar esta cooperación. Algunos insectos tienen estructuras especiales para almacenar el polen —y por lo tanto para polinizar— de manera más eficaz.

El “cestillo del polen” y la fina pelosidad plumosa de las abejas son un ejemplo. Las abejas se cubren de polen al penetrar en las flores, después se cepillan (por medio de una estructura especial existente en las patas en forma de brocha) y aglomeran el polen en bolitas, que meten en el cestillo. Sin embargo, siempre queda polen adherido al cuerpo, y este polen puede ser retenido por el estigma pegajoso de las flores que el insecto visite a continuación.

Las flores entomófilas son, casi siempre, de colores brillantes y olorosas, aunque el olor no siempre es agradable para el hombre. Normalmente contienen un líquido dulce —el néctar—  además del polen; aunque algunas flores (como, por ejemplo, la rosa silvestre) tienen solamente polen, que producen en mayor cantidad, como alimento de los insectos. En el néctar dominan compuestos ricos en hidratos de carbono, que son utilizados como fuente de energía por los insectos, mientras que en el polen predominan compuestos nitrogenados, muy importantes para la alimentación de las larvas.

Los flores de este tipo (p. ejemplo, el guisante de olor) están muy especializadas para asegurar la polinización. Las abejas de “lengua” larga, atraídas por las flores, se posan en los pétalos laterales (alas). El peso de la abeja hace descender los pétalos y deja al descubierto los órganos sexuales, que frotan el cuerpo del insecto. La polinización tiene lugar cuando la abeja busca el néctar en la base de la flor. Sólo los insectos pesados, como las abejas, pueden polinizar esta clase de flores.

El polen de las flores entomófilas es pegajoso y se adhiere al cuerpo de los insectos. Dado que la polinización por los insectos es un mecanismo más eficaz que la anemofilia, el polen se produce menos en estas flores. Las abejas son los insectos polinizadores más importantes. En sus búsquedas de polen y néctar, visitan un gran número de flores, generalmente de la misma especie, polinizándolas. Su “lengua” (proboscis), relativamente larga, las capacita para encontrar y recoger el néctar “encerrado” (por ejemplo, en recovecos o en espolones formados por los pétalos).

Las abejas, cuyos ojos no son sensibles a la luz roja, visitan las flores purpúreas, azules, amarillas, algunas veces las blancas y, muy raramente, las de color rojo. Las líneas oscuras en los pétalos (guías de la miel) parecen guiar a los insectos hacia, el néctar, los estambres y el estigma. Para la fructificación de los árboles frutales, las abejas tienen una gran importancia, habiéndose comprobado que los árboles frutales plantados a los lados de las carreteras son cada vez menos fértiles, a medida que va uno alejándose de los pueblos donde hay numerosas colmenas.

Para obtener una buena polinización, se aconseja colocar colmenas en las plantaciones de frutales en una densidad de, por lo menos, dos por hectárea. Las mariposas, tanto diurnas como nocturnas (polillas), son también importantes agentes polinizadores. Las mariposas visitan todo tipo de flores, especialmente las rojas y las blancas.

Sus largas “lenguas” (espiritrompa) les permiten alcanzar el néctar en las flores tubulares. Las mariposas nocturnas se mantienen en el aire frente a las flores y obtienen el néctar con sus larguísimas espiritrompas. Las flores son, generalmente, blancas o amarillas (de forma que son visibles fácilmente en la oscuridad) y están perfumadas fuertemente. Sus estambres y estigmas sobresalen, de forma que tocan el cuerpo de la mariposa cuando ésta se mantiene en el aire¿ vibrando rápidamente sus alas.

Otros insectos que visitan con frecuencia las flores son las moscas y los coleópteros (escarabajos). Estos insectos no están especializados para llegar al néctar “encerrado”, y se encuentran normalmente sobre flores “abiertas”, como las de la familia de las umbelíferas.

Las inflorescencias planas suelen estar frecuentemente cubiertas por insectos, que se alimentan del néctar al descubierto. Las flores son marcadamente protándricas, y los insectos llevan el polen desde las flores jóvenes del centro de la inflorescencia a las del borde que, siendo más viejas, tienen ya maduros los estigmas. Las flores de la familia de las compuestas son también visitadas por numerosos insectos.

La mayoría de las flores entomófilas emplean alguno de los métodos ya descritos para evitar la autopolinización. A veces, la cooperación entre planta e insecto llega a traducirse en mecanismos muy complejos.

Las inflorescencias (cabezas) del trébol blanco producen flores erguidas. Cuando alguna flor ha sido visitada por una abeja, se inclina doblándose por el pedúnculo y quedando en posición colgante bajo la inflorescencia. Con esto, las abejas que llegan después no “pierden el tiempo” en visitas inútiles, y aumentan las oportunidades de que otras flores reciban su visita. En algunos casos, la falta del insecto para la polinización ha motivado que las plantas introducidas en una región, donde antes no existían, sigan estériles.

Esto ocurrió con la higuera de Esmirna, cuando se llevaron los primeros árboles de esta clase a California. Algunos años más tarde (1899) se llevaron de Argelia inflorescencias masculinas de la higuera de Esmirna, que se suspendieron en las ramas altas de los árboles, y la polinización  (y por lo tanto, la formación de higos) fue posible gracias a un pequeño himenóptero (familia de las avispas y las abejas), que llegó involuntariamente con las inflorescencias.

Fuente Consultada:
Revista Enciclopedia de la Ciencia y la Tecnologia N°46 TECNIRAMA

Que Significa Cebada Malteada en la Elaboracion de Cerverza?

Que Significa Cebada Malteada en la Elaboración de Cerverza?

La cerveza no es una bebida descubierta recientemente. Se sabe con seguridad que los antiguos griegos y romanos ya la elaboraban, y es probable, incluso, que sea anterior a aquel tiempo. A pesar de que la maquinaria utilizada en una gran fábrica de cerveza es muy complicada, en realidad, el proceso de la obtención del producto es sencillo, y para su fabricación en pequeña escala no se necesita máquinas tan complejas.

La cerveza se obtiene por la fermentación de los azúcares derivados de la cebada, y para darle sabor y conservarla se utiliza normalmente el lúpulo,  aunque es posible fabricarla sin él. Para producir un barril de cerveza se necesitan unos 35 Kg. de cebada, 1/2 kilo de lúpulo, 1/2 de azúcar (para suplementar el contenido por la cebada), y un puñado de levadura para la fermentación.

Los granos de cebada son unas pequeñas semillas que, durante su período de maduración, almacenan cierta cantidad de hidratos de carbono insolubles (almidones) y de proteínas, protegidos por una envoltura de celulosa. Cuando se siembran las semillas, la planta que germina utiliza, para su desarrollo, el almidón y las proteínas almacenadas.

Sin embargo, no puede utilizarlas en su forma insoluble, sino que primero debe trasformar los almidones para convertirlos en azúcares solubles. Antes de comenzar a germinar, las semillas absorben agua y se hinchan, y unas sustancias químicas llamadas enzimas se encargan de realizar dicha conversión en azúcares.

El almidón no puede fermentar; los azúcares, sí. Por lo tanto, antes de que la cebada fermente, sus hidratos de carbono deben convertirse en azúcares.

La cebada se convierte en malta. Esto se realiza en los malteadores, situados cerca de los mismos campos de cebada. El proceso consiste en dejar que germine la cebada y detener la germinación antes de que el brote haya podido utilizar demasiada cantidad del azúcar formado.

Cebada Malteada

Para todo lo cual, primero, los duros granos de cebada se colocan en montones, se remojan con agua, y se permite su germinación. Luego, cuando empiezan a salir pequeñas raicillas, se extiende la cebada sobre el suelo del malteador, y se facilita la germinación mediante agua y calor. Pasados algunos días, se dificulta la velocidad de crecimiento, extendiendo el grano en capas más finas sobre el mismo suelo.

Cuando las raicillas han alcanzado una longitud de unos 2 cm. se detiene por completo su crecimiento, secando y tostando los granos germinados en un horno. Esto se realiza extendiendo el grano sobre el suelo perforado del horno, y tostándolo por medio del aire caliente que sube a través de dicho suelo y que proviene de un fuego de antracita, que no despide humo, encendido debajo. La malta para la cerveza clara sólo se tuesta ligeramente.

Para obtener cervezas más oscuras y de mayor sabor el grano se tuesta a temperaturas más elevadas. Para otros tipos especiales de cerveza, se puede utilizar fuegos de leña u hornos de gas.

El color y el sabor de la cerveza dependen mucho del modo de obtención de la malta. Aunque por el aspecto externo no es posible diferenciar el grano de cebada no tostado del malteado, es fácil distinguirlos masticándolos. La cebada es dura y correosa, porque está constituida por sustancias insolubles, y la malta es dulce y crujiente por su contenido de azúcar.

Las raicillas secas que quedan con la malta resultan un estorbo para el fabricante de cerveza pero tienen aplicaciones por la gran cantidad de nitrógeno que contienen. Se separan tamizando la malta, y se utilizan para fabricar alimentos destinados a las aves de corral y al ganado. La malta, ya a punto para ser usada, se almacena; el fabricante escoge diferentes tipos de ella y los mezcla para producir la cerveza que tenga el sabor y el color deseados.

Ver: La Elaboración Completa de la Cerveza

Fuente Consultada:
Enciclopedia de la Ciencia y la Tecnología Fasc. N°55 La Fabricación de la Cerveza

Propiedades de las Piedras Preciosas y sus Minerales Características

Propiedades y Características de las Piedras Preciosas y sus Minerales

1-Piedra Preciosa: Gema Diamante

2-Piedra Preciosa: Gema Rubí

3-Piedra Preciosa: Gema Zafiro

4-Piedra Preciosa: Gema Esmeralda

5-Piedra Preciosa: Gema Ópalo

6-Piedra Preciosa: Gema Amatista

7-Piedra Preciosa: Gema Ágata

8-Piedra Preciosa: Gema Turmalina

9-Piedra Preciosa: Gema Jade

La mayoría de las piedras preciosas o gemas son minerales que se han formado en lugares muy variados en el interior de la Tierra. Estos minerales poseen una composición química definida y una ordenación atómica, que hace que sus propiedades físicas y ópticas permanezcan constantes o varíen solamente dentro de estrechos límites. Algunas propiedades tales como densidad e índice de refracción pueden medirse con precisión y ser utilizadas para identificar un mineral.

Casi todo el relieve de la Tierra se forma con rocas, y éstas con minerales. Algunas, como el mármol, se componen de un solo mineral. Otras, como el granito, comprenden varios, que en el granito pulido se ven a simple vista.

Las rocas más antiguas tienen tres mil millones de años. Otras son más recientes porque han pasado por una serie de vicisitudes: al principio la roca es ígnea, es decir, sale fundida por algún volcán o grieta de la Tierra; luego, el tiempo y el clima la dfishacen en polvo y se va acumulando en forma de sedimentos donde, con los años, forma rocas sedimentarias; por último, las altas presiones y temperaturas transforman rocas sedimentarias (la tiza) en rocas “me-tamórficas” (el mármol).

Los minerales son los componentes de las rocas, es decir, sus unidades básicas. Son sustancias naturales de composición química característica y se conocen muchos centenares. Algunos son elementos puros, como el oro, el cobre, la plata, etc., que se presentan en estado nativo; pero la mayoría de ios minerales son compuestos. No suelen clasificarse entre los minerales ciertas sustancias (eí petróleo) que provienen de restos de plantas y animales.

La identificación de los minerales es de gran importancia para la búsqueda de yacimientos; también es un pasatiempo interesante para el que tiene algunas nociones fundamentales. Cada mineral posee una composición química definida y características físicas propias (dureza, brillo, transparencia, etc.) que permiten identificarlo: son como sus impresiones digitales. Su estructura suele ser cristalina, o sea que sus partículas elementales se disponen, como en un panal, en una “malla cristalina” bien ordenada.

Ciertos minerales no son cristalinos, como el ópalo (una variedad de cuarzo): se los llama amorfos. Hay minerales bastante fáciles de reconocer, pero otros exigen cierto número de pruebas para distinguirlos.

Idealmente las gemas deben ser duras y no verse afectadas por las temperaturas, presiones, polvos abrasivos y agentes químicos que encontramos en nuestra vida diaria. La mayoría son silicatos que incluyen a las esmeraldas aguamarinas, peridotos y amatistas, así como otras muchas de rareza exótica.

El rubí, zafiro, espinela y crisoberilo son óxidos. El diamante es la única gema compuesta por un solo elemento químico —el carbono—. La nefrita, jadeíta y lapislázuli son rocas, es decir, agregados de uno o más minerales.

Las plantas y animales son las fuentes de las gemas «orgánicas» más frágiles que han sido usadas como adorno desde los tiempos más antiguos. El azabache y el ámbar son madera y resina fosilizadas de árboles extinguidos, mientras las perlas, las conchas y los corales son estructuras de carbonato calcico formadas por animales acuáticos. Los marfiles son los colmillos y dientes de los mamíferos terrestres y marinos.

CRISTALOGRAFÍA
Al examinar la mayoría de los minerales, que son cristales, vemos con sorpresa que sólo hay seis grupos básicos o sistemas de cristales. Estas seis familias tienen cada una muchos hijos, aunque todos ellos con un “aire de parentesco”.

Los minerales suelen ser impuros; sus impurezas son, a veces, las responsables del color; el rojo del rubí se debe al cromo; el azul del zafiro al titanio: ambos son sólo corindón, un óxido de aluminio cuya masa de fondo es incolora.

Hay seis grandes sistemas de formas cristalinas, o sea seis grandes grupos de redes cristalinas: regular o cúbico, tetragonal, hexagonal, rómbico, monoclínico y triclínico.

La división se basa en el número de líneas imaginarias, o ejes de simetría, que pasan por el centro del cristal, su longitud relativa y los ángulos que forman. En el sistema cúbico, por ejemplo, los cristales poseen tres ejes de igual longitud y perpendiculares entre sí, característicos del cubo, en geometría. La sal común se compone de pequeños cubos.

El tamaño de los cristales varía enormemente; algunos son invisibles, mientras ciertos cristales de espodumento, silicato con aluminio y litio, pueden alcanzar varios metros. Rara vez se encuentra un espécimen perfecto, y sólo una larga experiencia permite reconstruir el cristal tipo, a partir de un fragmento. El tamaño de un cristal depende de la lentitud con que se ha formado, o sea, de la oportunidad de que gozaron las partículas de ubicarse en la trama inicial ya formada.

La estructura-cristalina determina muchas de las propiedades minerales que son importantes en el tallado y la identificación de las piedras preciosas Por ejemplo, los átomos pueden estar menos fuertemente enlazados en algunos planos del cristal, indicando la dirección en la que se rompe más fácilmente o los planos de exfoliación.

La dureza puede cambiar también con la dirección del cristal. La estructura cristalina afecta a la trayectoria de propagación de la luz a través de esa sustancia.

En todos los minerales, salvo en los del sistema cúbico y los minerales no cristalinos, la luz se refracta formando dos rayos que viajan a distintas velocidades y con diferentes trayectorias a lo largo de la estructura cristalina. En los minerales coloreados los rayos pueden ser absorbidos de forma diferente en el interior de la estructura y emerger en forma de dos o tres colores distintos o sombras del mismo color. Este efecto se denomina pleoavísmo.

Desde tiempos antiguos muchos materiales, naturales y artificiales, han sido utilizados enjoyas y otros objetos preciosos. Sin embargo durante siglos el término piedra preciosa ha significado un mineral natural descable por su belleza, valioso por su rareza y suficientemente resistente para proporcionar un placer duradero.

PESO ESPECÍFICO
Es un buen indicio; el del azufre es 2, el del corindón 4, el de la casiteria 7, etc. Se necesita un aparato especial para determinarlo; es imposible hacerlo en el campo, aunque puede distinguirse manualmente entre minerales livianos y pesados. Un trozo de talco (peso específico 2,8) parece mucho más liviano que uno de apatita (peso específico 3,2).

ESCALA DE DUREZA DE MOHS
Una característica fácil de determinar es la dureza. Se recurre a la prueba del rayado; un material más duro raya a otro más blando, y dos de igual dureza no se rayan entre sí. Hay una escala convencional de dureza, la escala de Mohs. Se divide en diez grados numerados, cada uno más duro que el anterior; los índices son: 1, talco (el más blando); 2, yeso; 3, calcita; 4, feldespato; 5, apatita; 6, ortoclasa; 7, cuarzo; 8, topacio; 9, corindón; 10, diamante.

La dureza de un mineral se determina encontrando el más blando de la serie que lo raye. Por ejemplo, la calcita raya la galena, pero esta última rayará el yeso, de manera que su índice de dureza estará entre 2 y 3. Las piritas de hierro, parecidas al oro, tienen una dureza entre el 6 y el 7, mientras la del oro verdadero se sitúa entre el 2 y el 3.

Las series de Mohs se venden comercialmente. El número 10, diamante, suele faltar, pero no tiene mayor importancia porque difícilmente se hallará un mineral más duro que el corindón (si se lo encuentra es posiblemente diamante). Puede determinarse aproximadamente la dureza de un mineral aun sin esa colección. La uña tiene una dureza Mohs de alrededor de 2,5; un lápiz, 3; el vidrio común alrededor de 5,5; y la hoja de un cortaplumas aproximadamente 6.

tabla dureza de las pidras preciosas

Para ser apreciada, una joya debe ser también resistente. A pesar de que la esmeralda y el zircón son más duras que el cuarzo, son, sin embargo, frágiles, es decir, se separan en láminas fácilmente. El diamante y el topacio están entre las mucha gemas que pueden partirse si caen o son golpeadas contra objetos duros y lo hacen entonces según planos en los que los enlaces atómicos son más débiles. Las gemas más resistentes son la jadeíta, la negrita y el ágata; todas ellas tienen sin embargo una dureza igual o menor que 7. Su resistencia deriva del tipo de su estructura, que consiste en una masa de fibras o granos interconectados entre sí, lo que las permite ser modeladas en formas de exquisitos cuencos e intrincadas esculturas.

LOS MINERALES Y LA LUZ
Algunos minerales son transparentes: permiten ver nítidamente a través de ellos. Otros son opacos: la
luz no los atraviesa. Hay grados intermedios, translúcidos, lechosos. Pero la mayoría de los minerales opacos dejará pasar algo de luz si se los convierte en láminas muy delgadas.

Existen minerales que muestran doble refracción, es decir, que un texto leído a través de. ellos se ve doble; aquí los citamos únicamente por la influencia trascendental que han tenido en el desarrollo de toda la óptica.

El color es una característica importante de los minerales, especialmente para identificar los metálicos, pues sólo presenta ligeras variantes. Pero en minerales como el cuarzo, el corindón y el granate, el color se debe principalmente a las impurezas y puede variar notablemente. Minerales como la turmalina tienen diferentes colores, variables según desde donde se los mire.

Los minerales en polvo pueden tener un color distinto del superficial: el talco es verde, pero una vez molido es blanco. Del mismo modo, la hema-tita es superficialmente gris o negra, pero en polvo es pardo rojiza. La ventaja de moler los minerales es que su color es más uniforme que el superficial variable. Para conocer qué color tiene un mineral en polvo basta frotar un trozo sobre porcelana áspera.

La razón por la cual el color del polvo es diferente al del sólido se debe a la reflexión. La reflexión del vidrio, por ejemplo, es blanca, de manera que si pulverizamos una botella de vidrio verde, el polvo se vuelve cada vez más blancuzco debido a que aumenta el número de superficies que reflejan luz blanca.

El lustre o brillo del mineral depende de la cantidad de luz que refleja o absorbe. Puede ser resinoso (similar al de la resina) como en el azufre, perlado como la mica, sedoso en minerales fibrosos como el crisotilo, vitreo como el cuarzo, adamantino (de diamante) o metálico. Hay minerales que no poseen brillo: son de superficie mate (p. ej. la caolinita). Una interesante característica de los minerales es el grado en que desvían la luz. Los rayos de ésta siempre se desvían cuando pasan de un medio a otro de diferente densidad.

Si colocamos en agua vidrio molido cuyo índice de refracción o capacidad para desviar la luz, sea igual al del agua, se volverá invisible; si el índice de refracción de la luz es algo bajo podemos añadirle sal común: poco a poco llegará el momento en que no se vean más los trozos de vidrio. Para reconocer diamantes y otras sustancias, a fin de distinguirlas de sus falsificaciones, se usan líquidos especiales muy refractivos como el sulfuro de carbono.

Hay sustancias que, al recibir rayos invisibles como los rayos X o los rayos ultravioleta, devuelven rayos visibles: este fenómeno se llama fluorescencia. Bajo la luz ultravioleta ciertos minerales exhiben hermosos colores, como los de uranio. Algunos poseen esa propiedad por sus impurezas u otros factores. Uno de los materiales fluorescentes más hermosos es el rubí, que emite un brillante resplandor rojo al ser sometido a la luz ultravioleta.

Esta propiedad del rubí ha dado origen a la invención del Láser, instrumento que revoluciona la óptica y las telecomunicaciones, y del que nos ocuparemos en una nota especial. La luz es una onda, un serpenteo, que se produce en todos los planos. Pero en ciertos casos se la puede polarizar, es decir, hacerla vibrar en un solo plano. Las características ópticas especiales de un mineral, una vez reducido a una fina lámina y visto a través de un microscopio de luz polarizada, pueden servir de guía para su identificación.

El valor comercial de una gema depende de la calidad del color, de la ausencia de manchas internas y del peso. El peso de una gema se mide en quilates (5 quilates = 1 gramo) y las gemas son normalmente vendidas por peso, a tanto por quilate. La densidad de un mineral gema varía de manera que un zafiro amarillo parecerá más pequeño que una citrina menos densa de peso similar. La densidad de las gemas se mide como peso específico, comparando el peso de la gema con el peso de un volumen igual de agua.

CLIVAJE Y FRACTURA
Las fracturas de un mineral son otro indicio para clasificarlo. Se llama clivaje la tendencia a partirse más fácilmente según ciertos planos, llamados planos de clivaje. El tipo de clivaje se define seeún el número de “planos” y sus ángulos relativos. Tomemos un ejemplo sencillo: la galena tiene clivaje cúbico; se observan tres planos de clivaje que forman ángulos rectos entre sí. Cuando se desmenuza un cristal de galena se obtiene una cantidad de pequeños y brillantes cubos. Uno de los tipos más interesantes es el clivaje basal o laminar, en el cual hay un solo plano, paralelo a la base del cristal, como en la mica, que se divide en finísimas Láminas u hojas.

Cuando un mineral no se rompe según planos determinados, se dice que se fractura. Todos los minerales pueden fracturarse, pero no es probable que lo hagan, si poseen un plano definido de clivaje. Hay ¡diferentes tipos de fractura, por ejemplo: fibrosa, concoidea, irregular, etc. Por ejemplo el crisotilo (mineral de amianto) forma fibras que pueden hilarse y tejerse. La fractura concoidea puede apreciarse en la obsidiana (vidrio volcánico).

ANALISIS A LA LLAMA: Existe un gran número de ensayos químicos para determinar la naturaleza de un mineral. El ensayo a la llama se basa en el color característico que el mineral imparte a ésta. Con los minerales de sodio (sal común, sulfato de sodio, bórax, etc.) la llama adquiere una intensa coloración amarillenta. Los de estroncio producen un hermoso color carmín; por eso se usa en los fuegos artificiales.

analiis de minerales a la llama

Los minerales de cobre la colorean de azul o verde, etc. Si se usa un mechero de Bunsen conviene recordar que, si no recibe suficiente aire, su (lama es amarillo brillante; pero si tiene suficiente oxígeno hay una zona interior oscura tan fría, que una cabeza de cerilla, perforada por un alfiler y suspendida en esta zona, no se enciende. El mineral debe colocarse en la zona azul violeta o cono exterior de la llama del mechero de Bunsen. Ésta llega a una temperatura suficiente para los metales alcalinos (minerales que contienen sodio, potasio, etc.); pero otros precisan Mamas más calientes.

ANÁLISIS ESPECTROQUÍMICO
Ld luz emitida o absorbida por un átomo es como su fotografía individual. Cada átomo tiene su propio espectro de rayos, que son de luz o de sombra, según el átomo las emita o las absorba. Pero de todos modos el espectro de un átomo es un método de análisis: para ello basta obligarlo a que emita luz. Actualmente se prefieren las chispas, más enérgicas.

ANÁLISIS CON MICROSCOPIO
Este es un método moderno. Por ejemplo, el zafiro y el rubí natural tienen líneas de acumulación hexagonales y burbujas angulares, mientras que en los sintéticos las líneas de acumulación son curvas y las burbujitas son esféricas. Los microscopios electrónicos permiten observar partículas ínfimas en las arcillas, definiéndolas claramente. Cada vez la industria se acerca más a los minerales sintéticos, como en el caso de los rubíes para los relojes.

Cuando se sumergen un diamante falso y uno genuino en un líquido que desvíe los rayos luminosos en la misma proporción que el diamante falso, sólo el diamante real quedará visible.

LA BELLEZA: La belleza del color combinada con una perfecta transparencia es el ideal de belleza de muchas gemas. Sin embargo, en ciertas ocasiones, las inclusiones de minerales pueden ser la atracción principal de algunas de ellas, produciendo el colorido similar al de las lentejuelas del cuarzo venturina y la piedra del sol, y reflejando los ojos de gato y estrellas que brillan desde algunos crisoberilos y zafiros.

La atracción de las más sutiles ágatas coloreadas y jaspes está ligada a la enorme variedad de modelos y texturas que se desarrollan cuando ese mineral crece: su crecimiento en bandas y los fragmentos minerales incorporados hacen que se asemejan a menudo a exóticos paisajes y jardines.

La mayoría de las gemas muestran muy poca belleza en estado bruto: su auténtico color y lustre se revelan solamente por la destreza del tallado y del pulido. La mayor belleza del diamante alcanza todo su esplendor con el tallado preciso y apropiado al tamaño de la piedra.

Cuando llevamos joyas nuestros movimientos crean unos continuos cambios, que resultan de la relación mutua entre las piedras preciosas y la luz que las atraviesa, añadiendo destellos y luces a su color. Los focos realzan la «vida» de los diamantes, rubíes y esmeraldas, mientras suaves luces aportan el brillo al ámbar y a las perlas.

Respecto a la rareza, las gemas pueden ser raras en uno o más aspectos. Muchas son variedades de materiales comunes, y su rareza reside en un color o transparencia excepcionales. El cuarzo y el feldespato juntos constituyen cerca de las dos terceras partes de la corteza terrestre, pero la mayoría de sus variedades son grises o cremas.

Muy poco cuarzo posee el bonito color y la intachable transparencia de una fina amatista y raramente el feldespato labradorita muestra la iridiscencia del arco-iris . Los minerales gemas son raros aun en sus yacimientos: los diamantes constituyen una mínima proporción de su roca madre, la kimberlita —alrededor de 5 g. en 100 T.—.

FINALMENTE EL TALLADO: Un diamantista hábil puede convertir un guijarro en bruto en una brillante y valiosa piedra preciosa. El conocimiento necesario para conseguir estas transformaciones se ha ido haciendo a lo largo de muchos siglos, y hoy día es posible seleccionar el tallado que ponga de manifiesto las cualidades de cada gema.

Cuando se elige la mejor talla para una piedra preciosa, el diamantista debe considerar la forma del material en bruto y la magnitud y posición de los posibles defectos, tales como las fracturas o inclusiones. También debe tener en cuenta las propiedades ópticas del mineral y sus características cristalinas: es difícil conseguir un buen pulido paralelo a las direcciones de exfoliación, y las gemas pleocroicas han de estar talladas con una determinada orientación para que puedan mostrar su más bello color.

Sin embargo el tallado es a menudo un compromiso entre alcanzar el máximo lucimiento de la belleza de la gema y obtener la piedra preciosa de mayor tamaño posible.

Partes y Facetas de una Talla Brillante

IMAGENES DE LAS GEMAS MAS UTILIZADAS EN JOYAS

Diamante

Gema: Rubí

Gema: Zafiro

Gema: Esmeralda

Gema: Ópalo

Mineral: Amatista

Gema: Ágata

Gema: Turmalina

Gema: Jade

ALGO MAS…
LAS PIEDRAS PRECIOSAS ARTIFICIALES

La fabricación de las piedras preciosas artificiales ha sido, desde la antigüedad, un constante empeño del hombre. Estos esfuerzos tuvieron en general muy poco éxito hasta que, a principios del siglo XX, se sintetizaron los primeros rubíes. Gracias al considerable avance tecnológico producido por la segunda guerra mundial y a los recientes avances en la física del estado sólido, se han conseguido, en este campo, considerables progresos.

La posibilidad de estudiar determinados procesos físicos en monocristales ha aumentado su importancia, y los cristales producidos artificialmente no sólo son utilizados en investigación sino que también han encontrado aplicaciones en la industria.

La importancia de las piedras preciosas se debe, principalmente, a su dureza y, en segundo lugar, a los cambios que determinan en su color y en sus propiedades físicas, en general, las trazas de impurezas. En uno de los métodos empleados ,el método de presiones ultraelevadas, es necesario utilizar, simultáneamente, grandes presiones y altas temperaturas, problema que fue parcialmente resuelto con el empleo de un material denominado pirofilita, que tiene la ventaja de que su punto dé fusión aumenta considerablemente con la presión.

La síntesis del diamante, efectuada por la General Electric estadounidense en 1955, se consiguió por este método, con el que pueden lograrse, en la zona de trabajo, presiones de unas 150.000 atmósferas a 3.500°C, siendo necesaria por tanto una prensa hidráulica de gran capacidad, que resulta difícil de construir. Este problema fue parcialmente resuelto con la introducción del yunque tetraédrico, el cual emplea cuatro émbolos, que ejercen la presión sobre las cuatro caras del yunque. Con esta disposición, es posible conseguir 80.000 atmósferas a bajo costo y con maquinaria fácil de construir. Además de diamantes, se han sintetizado, con este método, borazón (forma cúbica del nitruro de boro) y una variedad del granate.

Con el método de fusión a la llama, se obtienen rubíes de alta calidad. Su fundamento es muy sencillo: sobre uno de los extremos de una semilla de rubí (pequeño monocristal alargado, obtenido previamente) se va dejando caer alúmina finamente pulverizada, mientras se calienta con un soplete. El polvo de alúmina funde y cae sobre el extremo superior de la semilla, que se va retirando lentamente de la llama a medida que el cristal crece. De este modo, se pueden obtener con facilidad mono-cristales cilindricos de hasta 45 cm. de longitud.

Todos los procesos descritos están, naturalmente, automatizados: el flujo de polvo, la temperatura y posición de la llama, así como el desplazamiento vertical del monocristal. Uno de los inconvenientes principales de este método es que los cristales se encuentran sometidos a elevadas presiones internas, como resultado de la desigual distribución de temperaturas, por lo que es frecuente él agrietamiento espontáneo.

El método hidrotérmico ha demostrado ser extraordinariamente valioso en la producción de monocristales de cuarzo (y otras sustancias silíceas) que se obtienen por cristalización a partir de soluciones acuosas. Para ello se utiliza un autoclave de paredes gruesas, capaces de resistir unos 1.000 atmósferas y 500°C de temperatura.

Dentro del autoclave se encuentra la disolución acuosa de la sustancia de partida (por encima de 100°C la solubilidad en agua aumenta considerablemente), y suspendidas de su parte superior se sitúan las semillas. La solución se calienta por una plancha metálica adosada a la base del autoclave, con lo que se crea en su interior un gradiente de temperatura. La sustancia de partida se disuelve en el fondo y la solución asciende por confección.

En la región superior, más fría, la solución está sobresaturada y la sustancia cristaliza sobre las semillas. Este método presenta varias limitaciones, como pueden ser el elevado costo del instrumental necesario y la imposibilidad de observar el crecimiento, lo que impide que en un momento dado puedan regularse la temperatura y le velocidad de cristalización con el fin de controlar los sucesivos pasos del proceso.

Actualmente se han desarrollado procesos con el misme fundamento, pero que utilizan, en vez de agua, tundentes sólidos ce puntos de fusión relativamente altos, tales como los halogenuros y carbonatos alcalinos, y el óxido v el fluoruro de plomo.

Se han obtenido diamantes de 0,2 g. por el método de las presiones ultraelevadas, con el empleo adicional de catalizadores metálicos que aceleran la conversión directa del carbono en diamante. El color de los cristales obtenidos puede modificarse alterando las condiciones de crecimiento.

Las variedades más conocidas del corindón son el rubí y el zafiro. Como ya hemos indicado pueden obtenerse ambas piedras preciosas por el método de fusión a la llama. El cromo proporciona al corindón una tonalidad roja; el níquel, amarilla; el titanio, azul, y el vanadio, azul verdoso. Aunque los detalles son secretes, el proceso más apropiado para la síntesis de esmeraldas (BeO – Al2O3 – 6 SiO2) parece estar fundado en el método hidrotérmico, aunque no pueda descartarse la utilización de un fundente sólido, si tenemos en cuenta los éxitos obtenidos con este último procedimiento en la obtención de otros monocristales.

Ver: Las Rocas   –   Minerales Para La Industria    –   Minerales de la Tierra

Fuente Consultada
Revista TECNIRAMA N°6 Encilopedia de la Ciencia y la Tecnología – Como se identifican los minerales
Las Piedras Preciosas Geological Musseum Ciencias de la Naturaleza

La Historia Universal Es la Historia de Occidente?

¿PORQUE CUANDO ESTUDIAMOS HISTORIA UNIVERSAL
SOLO HABLAMOS DE GRECIA Y ROMA?

¿Es correcto hablar de “las cuatro edades de la historia”?
La periodización tradicional de la historia europea —que se enseña en las escuelas y se sigue utilizando por costumbre— en las edades Antigua, Media, Moderna y Contemporánea puede ser actualmente cuestionada. “Este sistema cuatripartito (cuatro partes) de organización de la historia universal es un hecho francés. En otros países el pasado está organizado de manera distinta, en función de puntos de referencia distintos.

Cumple una función ideológica y política. El cuatripartismo da por resultado privilegiar el papel del Occidente en la historia del mundo y reducir cuantitativamente y cualitativamente el lugar de los pueblos no europeos en la evolución universal. Por esta razón, forma parte del aparato intelectual del imperialismo. Las fechas elegidas no tienen significación alguna para la inmensa mayoría de la humanidad: fin del Imperio romano, caída de Bizancio.

Es decir que, clasificando la historia “universal” desde la periodización europea, se es:a evando a cabo una discriminación con la historia de los otros continentes, tomando a la historia europea como la superior, la de las “civilizaciones”, creando una situación de eurocentrismo que en realidad no se puede justificar.

Chesneaux señala que el análisis de la historia que hace la teoría marxista intenta salvar el cuatripartismo sobre la base de la sucesión de los grandes modos de producción: “la Antigüedad correspondería al esclavismo, la Edad Media al feudalismo, los Tiempos Modernos al capitalismo ascendente, el mundo contemporáneo al capitalismo desarrollado…”

La periodización europea, vigente en gran parte del mundo debido a la expansión de la cultura occidental, proviene del Renacimiento y se consolida en el siglo XVII con Cellarius, que publicó su Historia dividida en tres partes: Historia Antigua, Historia Medieval, Historia Nueva.

Cuando se produjo la Revolución Francesa de 1789, este último período -denominado también Edad Moderna— se da por finalizado, comenzando la Edad Contemporánea. Como vemos, son períodos con nombres muy subjetivos, ya que “moderno” quiere decir “perteneciente a la actualidad, reciente”, y “contemporáneo” significa también “relativo al tiempo o época actual”, o “existente al mismo tiempo que otra persona o cosa”.

Los cuatro grandes períodos de la historia europea son: Edad Antigua, Edad Media, Edad Moderna y Edad Contemporánea. Si bien se realiza esta periodización en base a fenómenos de larga duración, como características de la organización social y política, desarrollo de las ciencias, artes y tecnología, los hitos que se utilizan como límites entre una edad y otra son acontecimientos, que supuestamente cambiaron el devenir de esas sociedades.

Etapas de la Historia Universal

Sin embargo, veremos que ningún acontecimiento por sí solo produce un cambio tal; si existe esa transformación, es porque ya se venía dando un fenómeno, quizá secular (que dura un siglo) , de transición, de modificaciones en las mentalidades, de búsqueda de nuevos paradigmas científicos, etc.

La elección de tales fechas quedó a criterio de historiadores, pero a muchos tal criterio les puede resultar arbitrario. Por ejemplo, para finalizar la Edad Antigua y comenzar la Edad Media, se toma la caída de Roma bajo los bárbaros en el 476 d.C. (año en que Odoacro, caudillo de las milicias de este origen, tras dar un golpe de Estado se proclamó jefe absoluto de Italia); sin embargo, la decadencia del Imperio Romano de Occidente había comenzado antes: durante el siglo V Roma había sido jaqueada, tomada, saqueada e incendiada, y el poder de sus emperadores se desmoronaba. Hay quienes opinan, entonces, que la Edad Media comenzó a principios del siglo V.

Un caso similar es el de la finalización de la Edad Media, para la cual se toma generalmente la caída del Imperio Romano de Oriente bajo el poder de los turcos (1453 d.C), cuando para nosotros y para muchos países europeos fue un acontecimiento más clave la llegada de Colón a América (1492), y muchos prefieren mencionar esta última. Organizar la historia de la humanidad en base a la historia de la civilización “occidental” (o sea teniendo en cuenta los acontecimientos que afectaron a Europa), es un enfoque eurocentrista.

Para ellos, los pueblos de los otros continentes recién entraron a la historia propiamente dicha en el momento de la conquista y colonización europea. Su historia, entonces, no está narrada desde el punto de vista de sus propios habitantes sino desde la visión del conquistador.

Fuente Consultada:
Histroria Mundial Contemporánea 1° Año Polimodal  – De Teresa Brass – Marisa Gallego

Fabricación de Fósforos o Cerillos Historia y Composición

LA  FABRICACIÓN  DE CERILLOS/AS O FÓSFOROS

En 1812, se había inventado una especia de cerillos, que consistían en un palito de madera que se introducía en azufre fundido, y la “cabeza” se formaba con una mezcla de azúcar y clorato potásico. Se inflamaban introduciéndolas en un frasco que contenía asbesto humedecido con ácido sulfúrico. Como puede observarse, en la composición de aquellos palitos no intervenía el fósforo, y, por tanto, no se podían llamar “fósforos”.

En 1827, el químico y boticario inglés John Walker descubrió que si cubría el extremo de un palillo con ciertas sustancias químicas y lo dejaba secar, podía encender un fuego en cualquier lugar, tan sólo frotando el palillo. Estos fueron los primeros cerillos de fricción.

Las sustancias que utilizó fueron sulfuro de antimonio, clorato de potasio, goma y almidón. Los cerillos se encendían al frotarlos contra un pliegue de papel de lija.

Walker John invnetor del cerillo

Walker no patentó sus cerillos, a los que llamó Congreves, en honor del cohete inventado por Sir William Congreve en 1808 y usado en la guerra contra los Estados Unidos. Eran también conocidos como “fósforos químicos”, proporcionando un gran adelanto en los medios para   producir  fuego.

Los cerillos de Walker prendían al tallarse en cualquier superficie, pero no eran muy confiables.

En 1830, el francés Charles Suria creó un cerillo mucho mejor, con cabeza de fósforo blanco. Al cerillo de este tipo se le llamó “lucifer” (portador de luz), y se usó hasta finales del siglo XIX.

Los luciferes prendían bien, pero eran sumamente peligrosos. El fósforo blanco produce emanaciones venenosas, y la prolongada exposición a éstas causa una enfermedad que pudre los huesos de la mandíbula y llega a ser mortal.

Los más afectados eran los obreros de las fábricas de cerillos, hasta que, a principios de siglo, se prohibió el uso del fósforo blanco, sustituido luego por el quisulfuro de fósforo.

En los primeros años, los cerillos contenían fósforo blanco, un agente oxidante (bióxido de manganeso, clorato o nitrato potásicos) y goma, en cantidad suficiente para formar una pasta espesa. La goma, además de actuar como adhesivo, protegía al fósforo de la oxidación.

El calor originado por frotamiento sobre arena, o papel esmeril, producía la inflamación, que a veces era explosiva, sobre todo cuando se utilizaba clorato como agente oxidante. La mezcla inflamable se prepara agitando lentamente el fósforo en una solución caliente de dextrino. o cola; se adicionan entonces les materiales oxidantes, y lo pasto sigue agitándose hasta que se enfrío.

Frecuentemente, se colorea con ultramar, cromato de plomo, negro de humo, etc. Se esparce luego uniformemente en capa delgada sobre uno tabla, y se hacen penetrar en ella, una o dos veces, palitos previamente preparados, con lo que se forman las cabezas. Cuando están secas las cabezas, suelen introducirse en un barniz o goma, para cubrirlas con una   ligera  capa  que  las protege  de  lo  humedad.

Desde hace bastantes años está prohibido en algunos pases el empleo del elemento fósforo (que es venenoso) en la fabricación de cerillas y se ha sustituido por el trisulfuro tetrafosforoso P1S3.

En líneas generales, la composición de las cerillas modernas es la siguiente: una sustancia que arde fácilmente por frotamiento, como el PiS3 un agente oxidante, clorato potásico; un agente oxidable, parafina o azufre; un adhesivo, goma; y un material de relleno, para la frotación, tal como vidrio molido. Formada la cabeza, se recubre con un barniz protector. Existen también los fósforos de seguridad, o cerillas suecas.

La cabeza es, generalmente, de azufre, o trisulfuro de antimonio con clorato potásico, o bicromato como material oxidante. En algunos casos, se utilizan minio, peróxido de plomo o bióxido de manganeso, formando parte del material oxidante.

Estas cerillas no pueden arder si no se frotan sobre una superficie especia], formada de fósforo rojo, trisulfuro de antimonio y dextrina, o cola, a la que se añade, a veces, vidrio pulverizado o esmeril para aumentar  la  fricción.

Las composiciones de distintas clases de fósforos se mantienen como secreto industrial por las respectivas fábricas. A continuación damos una de ellas:

Composición   de   la   cabeza
Clorato   potásico   (ClO3K)    ….      5   partes
Bicromato potásico (CraO;K2) ….    2     ”
Polvo  de   vidrio   ……………………     3     ”
Goma     …………………………………     2      “

Superficie   de   fricción
Trisulfuro de antimonio (S3Sb2) ….     5 partes
Fósforo   rojo   ……………………………      3   ”
Bióxido  de manganeso  (MnO2) …..    1,5  ”
Cola …………………………………………..      4   “

Cerillas modernas

A mediados del siglo XIX, el sueco John Lundstrom inició la fabricación de cerillos de seguridad. Utilizó el inocuo fósforo rojo en una franja de frotación y mezcló diversos elementos combustibles para formar la cabeza del cerillo. Las máquinas modernas producen hasta dos millones de cerillos por hora, ya empacados y listos para usarse.

John Lundstrom

Curiosidad: En 1861, la empresa de Bryant & May logró el primer cerillo de seguridad, en su planta de Bow, Londres. Al final de su primer año, la fábrica producía 1 800 000 cerillos a la semana. Tenían tanta demanda que en 1871 el ministro de Hacienda propuso un “impuesto al cerillo”, de un penique por caja.

primera fabrica de cerillos

La propuesta causó gran alboroto en el Parlamento y la prensa, y miles de obreros protestaron por lo que consideraron sería una amenaza a su subsistencia. Estalló la violencia y se abolió el tributo. Las máquinas modernas producen unas 800 cajas de cerillos por minuto, que sería una cantidad mucho mayor que la que causó el problema.

Fuente Consultada:
TECNIRAMA Enciclopedia de la Ciencia y la Tecnología Fasc. N°57
Como son y como funcionan casi todas las cosas Reades Degeas´t

El Corcho Propiedades, Producción y Usos Arbol Alcornoque

El Corcho Propiedades, Producción y Usos País de Origen

Las primeras noticias acerca del uso del corcho se encuentran en algunos escritos griegos, que mencionan el empleo de este material en los flotadores de las redes de pesca. Desde esa época, el corcho ha venido sirviendo a la humanidad de muchas maneras, y la demanda de este producto sigue aumentando a pesar del enorme avance en la producción de plásticos.

El corcho es una materia natural que producen los árboles como capa protectora. Todos los árboles lo producen en pequeñas cantidades; a escala comercial, sólo se utiliza el corcho del alcornoque (Quercus súber). Como es una materia natural, el corcho está formado por pequeñas células (acumulación de células muertas), que son compartimientos muy pequeños, rodeados cada uno de ellos por paredes resistentes, suberificadas, elásticas e impermeables. Cada centímetro cúbico de corcho contiene unos 40 millones de estas pequeñas celdillas.

Corcho Natural del Alcornoque

El corcho tiene que pasar un periodo de al menos 6 meses desde que
fue extraído del alcornoque hasta que es cocido.

La importancia del corcho proviene de su estructura celular elástica, que le da unas propiedades que no tienen otros materiales; por otra parte, es imposible obtener artificialmente una estructura tan complicada. El poliestireno expandido es un material celular artificial, pero los espacios son mucho más grandes que en el corcho.

Varios operarios arrancan tiras de corcho. Es característico el color rojizo del árbol, una vez que se le ha arrancado el corcho.

Cuando se aprieta el corcho, por ejemplo, colocando un peso sobre él, este se comprime el aire que hay dentro de sus células y, al quitarle ei peso, recobra su estado normal. La goma, en cambio, se ensancha al apretarla.

Las pequeñas celdillas no contienen más que aire, y esta característica da al corcho su extremada ligereza (su peso específico es 0,2). Cuando se aprieta el corcho, lo que se comprime es el aire que hay en las celdillas y, por ello, cuando cesa la presión, el corcho recobra su volumen normal, siendo, por tanto, un material muy elástico con una excelente capacidad amortiguadora.

Las células del corcho están distribuidas de un modo muy compacto, y ésta es la razón por la que el corcho no deja pasar a través de él líquidos o gases. Así, pues, resulta un material extremadamente idóneo para fabricar tapones y para hacer cierres de juntas. El corcho es resistente a muchas sustancias orgánicas e impide el paso del petróleo y los aceites. Es muy indicado para fabricar con él juntas y arandelas para bombas y motores de petróleo.

Sin embargo, hay que hacer una importante objeción en lo que respecta a la penetración de los líquidos. El corcho natural está atravesado por una serie de pequeños poros (lenticelas), que permiten respirar a las células interiores del tronco. Para evitar la evaporación o las filtraciones, los tapones de corcho deben cortarse siempre de manera que los poros sean transversales.

El corcho se puede utilizar como tapón para muchos líquidos orgánicos, que
destruirían rápidamente los tapones de goma ordinaria. (hoy se usa el plástico)

Su estructura celular hace del corcho un material ideal cómo aislante del sonido y la vibración. El efecto amortiguador es tan grande que si se instalan grandes máquinas sobre piezas de corcho funcionan sin transmitir vibraciones al resto del edificio. Las máquinas de precisión también se pueden proteger de este modo de las vibraciones exteriores.

El aserrín de corcho, mezclado con aceite de linaza oxidado, se emplea para fabricar linóleo. El vacío es el mejor aislante para los cuerpos, sean fríos o calientes. Sin embargo, no siempre resulta posible usar este aislante; en este caso, lo mejor es utilizar una protección de corcho. Éste es un mal conductor del calor, y el aire de sus células también lo es, debido aque, por estar encerrado y no poder circular, no hay convección de calor.

Además, presenta la ventaja de que no absorbe agua como otros materiales aislantes (por ejemplo, el fieltro) y de que no es atacable por muchos productos químicos. Esto lo hace todavía más útil. Aparte de sus propiedades estructurales, el corcho tiene propiedades químicas muy ventajosas. Su constituyente más característico y abundante es la suberina, una mezcla compleja de esteres de ácidos orgánicos, que está depositada, junto con algunos materiales detipo céreo menos abundantes, en las paredes de las células.

Estas sustancias son muy resistentes a la acción química y por eso se puede utilizar el corcho como tapón en frascos que contengan muchos compuestos químicos. También es insípido y no afecta el sabor de los vinos más delicados. Las paredes de las células son resistentes á la acción delos insectos.

Por otra parte, es muy difícil hacerlo arder, por lo que puede ser utilizado como material aislante. Debido a su estructura celular, el corcho tiene muchas aplicaciones. Sin embargo, solamente la mitad de su producido se utiliza en su forma originaria. Cada vez se usa más el corcho de composición, que puede moldearse en las formas que la industria requiera. El corcho de composición, o aglomerado de corcho, está hecho generalmente de corcho natural. Para su obtención se reduce el corcho natural (incluyendo los recortes de tapones, etc.) a pequeños fragmentos.

El tamaño de éstos depende del grado de aglomeración que se requiera. Aunque el corcho se reduzca a pequeños fragmentos, su estructura celular no se destruye, porque cada uno de ellos conserva millares de células. El corcho así tratado se pasa a un molde; luego se calienta hasta que las resmas naturales y otros compuestos fundan y empiecen a surgir. Entonces se enfrían los moldes, y estas resinas unen entre sí los fragmentos de corcho.

Este tipo de material se utiliza mucho para recubrimientos aislantes, arandelas de cierre impermeable a los aceites, y para el montaje de maquinaria pesada. La gran flexibilidad y resistencia del corcho hacen que las planchas amortiguadoras colocadas bajo las maquinarias resistan durante muchos años sin deteriorarse.

celulas del corcho

Estructura celular del corcho, muy ampliada. Las propiedades extraordinarias del corcho se deben a sus células de paredes elásticas. Debido a que es insípido e innocuo, el corcho se utiliza como tapón para ios vinos más finos.

tapon de cocho de vino

PRODUCCIÓN DE CORCHO
El corcho es un tejido protector que se forma en el tronco de los árboles. Sin embargo, el corcho del alcornoque (“Quercus súber”) es la principal fuente del corcho comercial. Sus tejidos productores de corcho crecen año tras año y pueden formar una capa de considerable espesor.

Luego de haber formado las células, ¡as sustancias del corcho se depositan en las paredes y las células .mueren. Los líquidos celulares van desapareciendo a medida que las paredes se hacen más gruesas. Las células de corcho sólo contienen aire.

El alcornoque se cultiva en toda el área mediterránea, pero la producción es más intensa en España y en Portugal, donde hay grandes plantaciones. El primer eorcho se arranca cuando el árbol tiene veinte años. Este “corcho virgen” o “corcho bornizo” es d? baja calidad y está lleno de agujeros. Un árbol descortezado comienza a formar corcho con bastante rapidez, produciendo alrededor de tres milímetros por año. Las leyes de los países productores ordenan que Se descortecen los árboles una vez cada nueve años.

Con esto se obtiene corcho de un espesor de 2,5 centímetros. El corcho de la segunda recolección y de las siguientes se llama “corcho cultivado”. Es suave y uniforme, pero al cabo de ochenta años la calidad del corcho recogido empeora. Antes de utilizarlo, el corcho suele hervirse durante una hora o dos, con lo cual se elimina el tonino, en gran parte.

Portugal es el país mas importante en el cultivo mundial del corcho; casi una tercera parte de la superficie total de los alcornocales, que se ha estimado en 2.150.000 hectáreas, se encuentra en ese país, país que produce aproximadamente la mitad del corcho que se cosecha anualmente en todo el mundo (unas 310.000 toneladas).

Los arbolados de alcornoque se extienden por todo el país, aunque naturalmente, la intensidad de producción y la calidad del corcho varían según las diferentes zonas productoras. Esta especie, que cubre aproximadamente el 8 por ciento de la superficie total de Portugal y constituye el 28 por ciento de sus bosques, se da mejor en las regiones central y meridional del país, donde se hallan los alcornocales más extensos que suministran el mayor porcentaje de corcho de alta calidad.

El corcho de mejor calidad que se produce en Portugal procede de la provincia de Algarve y algunos sectores del Alentejo. El que se obtiene en el norte del país suele, en general, ser inferior.

//historiaybiografias.com/archivos_varios5/corcho.jpg

El noventa por ciento del corcho se usa en la fabricación de tapones. Ya los romanos conocían ese empleo en ánforas pompeyanas en las que se habían usado tapones de corcho. Durante el Medioevo y el Renacimiento se empleaban tapones de plomo. En el siglo XVII, el padre bodeguero de la abadía’ de Hauteville empezó a utilizar el corcho para tapar botellas.

ALGO MAS SOBRE EL ARBOL Y LA COSECHA…

El árbol del corcho pertenece al género Quercus (encina). La altura y la robustez del tronco varían según la edad y la especie. Generalmente alcanza los diez o quince metros de altura, pudiendo llegar hasta veintidós metros, mientras el tronco, cuyo perímetro medio es de dos metros cincuenta centímetros, puede alcanzar cuatro metros de circunferencia. Sus hojas coriáceas, más o menos ovaladas, dentadas o lisas, según las especies, son de color verde obscuro en su cara superior y blanquecino en la parte inferior, y están dispuestas oblicuamente en la rama. Dejan pasar la luz, y esto permite que la vegetación prospere en el bosque, con gran ventaja para esa clase de árboles que necesitan de la humedad del suelo.

El alcornoque florece en primavera, y su fruto, cupuliforme, contiene una bellota como la del roble. Este árbol presenta la particularidad de fructificar solamente año por medio.

El alcornoque, pese a poder prosperar en terrenos secos y rocosos, prefiere el clima templado, terrenos húmedos y profundos, y una altitud inferior a los mil metros. El clima ideal para su crecimiento y para la obtención de un buen producto, es generalmente el clima de la cuenca mediterránea y de Portugal, donde las influencias del Mediterráneo y las del Atlántico aseguran condiciones climáticas ideales sin interrupción.

En la cuenca mediterránea prospera la mejor especie: la Súber hispánium que no soporta trasplante a otras tierras y cuyo cultivo es fuente considerable de riqueza para España y Portugal. Crece igualmente en Francia, Argelia, Italia, Grecia y Turquía.

Las tierras que se extienden a orillas del mar Tirreno, y sobre todo Cerdeña y Sicilia, son las zonas italianas de mayor producción de corcho, pero la materia prima de esas localidades se manufactura en otras provincias, más industrializadas.

LA COSECHA
El tronco del alcornoque está provisto de doble corteza: la interna, llamada “madre” o “libro”, está formada por tejidos fibrosos y muy delgados por los que corre abundantemente la savia; para proteger ese líquido precioso y muy delicado, cuya perfecta circulación es indispensable para la salud del árbol, la naturaleza ha cubierto el “libro” con una capa (el “manto” o “capa” felógena) que tiene la propiedad de producir un tejido celular, blando y esponjoso, excelente aislante del calor y del frío, y absolutamente impermeable.

Ese tejido es el corcho. Año tras año, las capas se van acumulando y alcanzan, a los catorce años, el espesor máximo (veinte a setenta milímetros).
En determinadas épocas, cuando las condiciones climáticas no pueden dañar al árbol por el frío o el calor excesivos, se procede a la separación del corcho, cuidando de no dañar la capa felógena durante la operación de descortezamiento.

Muy pacientes deben ser los cultivadores del alcornoque. Ese árbol puede soportar el primer descortezamiento entre el primero y el vigésimo año de edad, cuando el tronco, vigorizado ya, ha alcanzado una circunferencia  de  treinta  a   cuarenta  centímetros.

El producto de esa primera recolección se llama “corcho bornizo”, “corcho primario”, o “macho”; es muy áspero y nudoso.

No puede ser utilizado en la fabricación de tapones, pero se emplea en la preparación de “aglomerados”.
En las recolecciones siguientes, que se realizan a intervalos de siete y hasta catorce años, se obtiene un corcho de mejor calidad, llamado “corcho segundero” o “hembra” que el alcornoque seguirá produciendo con intensidad uniforme, hasta los sesenta o setenta años. A esta edad, el árbol empieza a disminuir su rendimiento, dejando por completo de producir a los doscientos años.

Historia del Sacarcorcho

Fuente Consultada:
TECNIRAMA – Enciclopedia de la Ciencia y la Tecnología Fasc. N°93
LO SE TODO Tomo V Editorial Larousse – El Corcho –

Cobre: Usos, Propiedades, Minerales y Yacimientos Aplicaciones

Cobre: Usos, Propiedades, Minerales y Yacimientos

El  cobre fue, probablemente, el primer metal que se extrajo de sus minerales. Era conocido en épocas prehistóricas, y las primeras herramientas y enseres fabricados probablemente fueran de cobre. Se han encontrado objetos de este metal en las ruinas de muchas civilizaciones antiguas, como en Egipto, Asia Menor, China, sureste de Europa, Chipre (de donde proviene la palabra cobre), Creta y América del Sur. El cobre puede encontrarse en estado puro.

Qumicamente el cobre, es de símbolo Cu, uno de los metales de mayor uso, de apariencia metálica y color pardo rojizo. El cobre es uno de los elementos de transición de la tabla periódica, y su número atómico es 29.Todavía se encuentra entre los más importantes metales de la época actual. Se necesita en grandes cantidades para la electrificación doméstica, cables de trasporte eléctrico, etc., debido a que entre la gama de los metales más económicos es, con mucho, el mejor conductor de la electricidad.

USOS o APLICACIONES DEL COBRE POR GRADO DE IMPORTANCIA:

Uso 1-Manufacturas  eléctricas

Uso 2-Teléfono   y   telégrafo

Uso 3-Conducciones  de energía  eléctrica

Uso 4-Alambre

Uso 5-Automóviles

Uso 6-Construcción

Uso 7-Colado

Uso 8-Municiones

Uso 9-Ferrocarriles

Uso 10-Refrigeradores

Uso 11-Construcción   de   barcos

Uso 12-Acondicionamiento   de   aire

El cobre fue obtenido y utilizado por el hombre ya en los tiempos prehistóricos, pero hasta los comienzos de la era industrial su empleo no empezó a revestir cierta importancia. Los primitivos egipcios hicieron cuchillos de cobre y armas hace ocho mil años, y tubos y cañerías en el año 2750 a. de J. C. Los romanos lo extraían de Chipre, por lo cual se conoció como aes cyprium; de aquí se derivó el nombre latino cuprum; y, de éste, el español cobre y el símbolo químico Cu.

Durante la primera década del siglo XIX, la producción anual mundial no era muy superior a la mensual de algunas de las minas importantes de la actualidad. En 1869, en Michigan estaba la mayor factoría del mundo, que sólo producía 6.200 toneladas de cobre. En 1877, las minas de Río Tinto, hasta finales del siglo XIX, eran las mayores productoras del mundo con cerca de 30.000 toneladas.

El descubrimiento (y la explotación) de minas de cobre con mineral de bajo contenido, a principios del siglo xx, inició una industria de minería en gran escala con bajos costos. Posteriormente se introdujeron procesos de flotación, que hicieron posible la obtención del cobre de minerales de bajo contenido a costos reducidos.

Las mejoras en los métodos de minería, la flotación, la lixiviación, y otros procesos, han beneficiado mucho más a los grandes productores con minas de bajo rendimiento que a los pequeños, aun con minas mucho más ricas. El resultado de esto ha sido que unos pocos industriales, cada uno de los cuales puede producir anualmente 700.000 toneladas, o más, dominan y controlan la producción mundial de cobre y las reservas mineras de mayor interés.

Mineral de Cobre

Los usos del cobre son muy diversos, pero la casi totalidad de ellos atienden a su conductibilidad eléctrica y a su ductilidad; por esto el 25 por 100 de la producción total lo utiliza la industria eléctrica, que es su principal consumidor. La mayor parte de los equipos eléctricos y líneas de conducción se hacen de cobre puro, pero se emplean asimismo considerables cantidades de este metal en la obtención de aleaciones, principalmente latón (cobre-cinc) y bronce (cobre-estaño-cinc).

En la actualidad conocemos más de 150 minerales de cobre, pero sólo unos pocos revisten importancia económica. Citaremos el cobre nativo, los sulfuros (de cobre, calcosina y covellina; de cobre y hierro, calcopirita y bornita), los sulfoarseniuros y sulfoantimoniuros (enargita y cobres grises), los óxidos (melaconita y cuprita) y las diversas oxisales hidratadas (malaquita, azurita, crisocola, etc.).

La elevada cotización del cobre, así como su metalurgia relativamente económica, permiten la explotación de yacimientos de baja concentración. Resultan perfectamente rentables las masas piritosas que contienen del 1 al 4 por 100 de cobre.

Se ha hablado de la existencia de yacimientos de cobre de origen magmático. La realidad de tales tipos ha sido vivamente discutida y acaso no exista ejemplo alguno de ellos.

Así, podemos decir que todos o casi todos los yacimientos conocidos han sido originados por aportes hidrotermales. La formación de los minerales a partir de sus soluciones acuosas a temperaturas más o menos elevadas se ha producido gracias a dos mecanismos diferentes: el relleno de oquedades preexistentes y el reemplazamiento. El primero de ellos puede haberse producido en fisuras, vesículas, cuevas o espacios porosos.

En lo que se refiere al segundo, se trata de un proceso mediante el cual materiales preexistentes, rocas o minerales, son lentamente sustituidos por intercambios que se efectúan entre tales masas y las soluciones hidrotermales. El reemplazamiento puede haber sido filoniano, diseminado o masivo, como en el yacimiento de Riotinto (Huelva), el mayor depósito de cobre pirítico del  mundo.

Este criadero comenzó a explotarse hace más de 3.000 años, con objeto de extraer oro; luego se pasó a la obtención de azufre y cobre. Su riqueza es extraordinaria: su producción se eleva, hasta el presente, a unos 5 millones de toneladas de cobre y a algo más de 200 millones de toneladas de pirita. Se calcula que las reservas son del mismo orden que el mineral obtenido.

Las masas minerales aparecen en forma de enormes lentejones, asociados a intrusiones de rocas porfídicas en las pizarras. Se han explotado unas 50 masas, la mayoría a cielo abierto, ya que la erosión ha desmantelado la roca suprayacente. Las de San Dionisio, Eduardo y Veta del Sur, que aparecen relacionadas entre sí, son las de mayor importancia: el conjunto se extiende sobre una longitud de 3 kilómetros, una anchura de 2,5, y una profundidad de 500 metros.

La mayoría de los yacimientos de importancia se encuentran en América del Norte (U.S.A., Canadá, México) y en ambos lados de la gran cordillera de los Andes. Estos últimos pertenecen a Chile, que es el segundo productor mundial, al Perú, a Bolivia y a la Argentina. Debemos citar asimismo los extraordinarios depósitos de Rhodesia y de Katanga, que constituyen la zona exclusivamente cuprífera más importante que se conoce.

La mayor cantidad del cobre se extrae a partir de piritas de cobre, conocidas como calcopiritas. El cobre bruto que se obtiene de sus minerales no es suficientemente puro para usos eléctricos, y se purifica posteriormente por electrólisis. Para esto se sumerge un bloque de cobre impuro en una disolución de sulfato cúprico y se conecta el bloque al terminal positivo de una fuente de corriente continua (esto es, actúa como ánodo), y una lámina delgada de cobre puro se conecta al terminal negativo como cátodo. Los iones de cobre pasan, a través de la disolución, del ánodo al cátodo.

El ánodo aumenta de tamaño, a medida que el cobre puro se va depositando a la disolución, o caen, depositándose en el fondo. El oro y la plata, en el barro que se recoge bajo el ánodo, son suficientes en muchos casos para pagar el proceso de refinado del cobre. El oro y la plata están íntimamente relacionados con el cobre, y por eso es frecuente que aparezcan junto a él en pequeñas cantidades.

Bornita

Calcopirita

Calcosina

Azurita

ALEACIONES  DE COBRE
El cobre es la base de muchas aleaciones de las cuales el bronce (cobre y estaño) es, probablemente, la más conocida; es mucho más duro y resistente al desgaste que el cobre puro. El descubrimiento del cobre cambió completamente el modo de vivir de la Edad de Piedra. Las nuevas armas de bronce, afiladas, facilitaron la caza de animales para la alimentación e hicieron posible la guerra organizada.

Las aleaciones que contienen más de 98 % de cobre se llaman cobres; cuando la cantidad de este metal es inferior, se denominan latonesbronces.

Inicialmente, el latón era una aleación de cobre y cinc, y el bronce, una aleación de cobre con estaño. Sin embargo, el término bronce se ha extendido a las aleaciones en las que intervienen otros elementos  diferentes del  estaño.

Para evitar confusiones se ha decidido aplicar el término bronce a todas las aleaciones de cobre con otros elementos que contengan como máximo el 96 % de cobre, excepto para el caso del cinc. El término latón se aplica a las aleaciones del cobre con el cinc, aunque pueden estar presentes otros metales, siempre que sus efectos (es decir, las propiedades que confieren a la aleación) estén subordinados a los del cinc.

USOS DEL COBRE POR GRADO DE IMPORTANCIA:

Manufacturas    eléctricas
Teléfono   y   telégrafo  
Conducciones  de energía  eléctrica
Alambre  
Automóviles   
Construcción   
Colado   
Municiones    
Ferrocarriles   
Refrigeradores    
Construcción   de   barcos   
Acondicionamiento   de   aire 

PRINCIPALES CONSTANTES DEL COBRE

Punto  de  fusión: 1.083°C
Punto de ebullición: 2.325°C
Densidad  específica: 8,94
Calor   específico: 0,0918
Calor de fusión: 50,6 Cal/gr.
Coeficiente lineal de dilatación: 16,42 x 10-6  cm/°C ó 0,00001642
Conductividad térmica  a  20°: 0,923  eal/sec/cm²/ °C/cm.
Dureza de Mohs:  3,0
Potencial   electrolítico: 0,344 Volt.
Resistencia esp.: 1,682 x 10-6 ohm/cm. ó 0,000001682

PROPIEDADES FÍSICAS Y QUÍMICAS DEL METAL

El cobre tiene tres capas electrónicas completas y sólo un electrón en la capa más externa. Cabría, por tanto, esperar que este elemento tuviera de valencia uno y, de hecho, el cobre tiene dicha valencia en una serie de compuestos, llamados cuprosos.

Todos los iones cuprosos han perdido su electrón más externo; son iones con una carga positiva. Sin embargo, los iones cuprosos son muy inestables, ya que a pesar de que el cobre puede tener una valencia uno, es más frecuente que tenga una valencia dos. Además del electrón más externo, se pierde un electrón de una capa interna, con lo que se produce un ion cúprico. Los compuestos cuprosos son muy inestables y fácilmente se convierten en compuestos cúpricos, que son mucho más estables.

El cobre puro cristaliza en forma cúbica centrada en las caras. Es un metal relativamente estable en condiciones atmosféricas normales. El color rojo distintivo del metal puro varía de acuerdo con las influencias externas, y esto tiene interés desde el punto de vista artístico, sobre todo en su uso como material de ornamentación.

La superficie del cobre, si no se pulimenta, varía de color al recubrirse con uno o con varios de los siguientes compuestos:  óxido cuproso, Cu2O, sustancia roja que da un color vivo a la superficie del cobre enfriado en agua, cuando está al rojo vivo;  óxido cúprico, CuO, de color negro, que se forma cuando el cobre caliente se enfría al aire;  carbonato cúprico hidratado, CO3Cu-H2O (o carbonato básico de cobre, C03Cu[OH]2) que es la sustancia verde que se forma en el cobre expuesto a la atmósfera (verdín).

La formación de este verdín, contrariamente a lo que le ocurre al hierro en las mismas condiciones, sirve de protección que evita la persistencia del ataque del gas carbónico sobre el metal. El cobre metálico es resistente a los álcalis, excepto a los que contienen amoníaco.

Su ataque por ácidos minerales y orgánicos depande, fundamentalmente, de la existencia de un oxidante en la disolución. El cobre resiste la oxidación por vapor de agua a altas temperaturas, y resiste la acción de la mayoría de las disoluciones salinas. Sin embargo, es poco resistente al ataque del azufre y de los compuestos del azufre, pero aleándolo con cinc, para producir el latón, se aumenta mucho su resistencia al azufre.

Aunque el cobre no desplaza al hidrógeno de los ácidos, se disuelve rápidamente en ácidos oxidantes (tales como ácido nítrico fumante), o en soluciones acidas que contienen agentes oxidantes, como son las soluciones de ácido sulfúrico, que tiene sulfato férrico. Los iones cúpricos tienen tendencia a asociarse con cuatro moléculas de agua, tanto cuando están en disolución como cuando se encuentran en forma cristalina. Esta agua está débilmente unida y si, por ejemplo, se calientan cristales de sulfato cúprico, se elimina el agua y la estructura cristalina se destruye.

El amoníaco también tiende a asociarse con los iones cúpricos. Así, las sales cúpricas se disuelven en disoluciones de amoníaco para formar un complejo de cuproamoníaco, en el cual cuatro moléculas de amoníaco, están asociadas alrededor de cada ion cúprico. Este complemento de cobre y amoniaco puede disolver la celulosa, y se ha ensayado como un medio de fabricar rayón.

El proceso de obtención de rayón, utilizando sales de cobre, se basa en el descubrimiento (de Schweintzer, en 1857) de que la celulosa se disuelve en el hidróxido de cuproamoníaco. El material básico de cobre se prepara tratando soluciones concentradas de sulfato cúprico con disoluciones frías de amoníaco, o hidróxido sódico.

La disolución de la celulosa purificada y desintegrada se hace también en frío, y en presencia de la cantidad adecuada de disolución de amoníaco (24-28 %). En general, el proceso del cuproamoníaco no puede competir económicamente con el proceso más extendido de la viscosidad, pero es más económico cuando se trata de obtener filamentos muy finos de rayón; por eso existen todavía numerosas fábricas que utilizan este proceso

COMPUESTOS  DE COBRE
El sulfato cúprico hidratado con cinco moléculas de agua es el más importante de todos los compuestos del cobre, en cuanto a su uso general y a su producción industrial. Un gran número de compuestos de cobre se fabrican a partir del sulfato cúprico.

El proceso de obtención industrial más común del sulfato cúprico consiste en inundar un depósito que contiene chatarra de cobre con ácido sulfúrico diluido y caliente. A pequeños intervalos, se vacía el ácido, y se recicla hasta que, prácticamente, se neutraliza. Es probable que en este proceso el sulfato cúprico actúe, sobre el metal en la disolución, formando sulfato cuproso, que oxida por reacción al sulfato cúprico con el óxido disuelto. El sulfato de cobre y otros compuestos de cobre son relativamente tóxicos, aunque, por regla general, la ley no exige que se les ponga la etiqueta de venenos, sino una advertencia de que son perjudiciales, en caso de ingestión.

El sulfato cúprico se utiliza, principalmente, en la agricultura. Desde hace muchos años es el más importante funguicida para el control de enfermedades de la vid, patata, tomate y otros cultivos agrícolas. Se utiliza en forma del llamado caldo bórdeles, que consiste en añadir yeso (lime) a la disolución de sulfato. Se aplica por aspersión.

Fuente Consultada:
Revista TECNIRAMA N°48 Enciclopedia de la Ciencia y la Tecnología
NATURA Reservas Económicas

Historia de la Cerámica Origen, Evolución y Técnicas

Historia de la Cerámica Origen, Evolución y Técnicas

Que la alfarería haya sido en todas partes la más antigua de todas las industrias domésticas, aparece tan natural como inevitable. En su grado más sencillo, no necesita instrumentos o herramientas especiales. La mano del hombre basta. El hombre más agreste, habitador de las selvas, tiene que experimentar la necesidad de alguna cosa donde poder conservar su bebida. Advierte que el suelo arcilloso, por donde le cuesta trabajo andar cuando está húmedo, se moldea bajo sus pies, y retiene el agua en las oquedades.

Ve que, cuando el Sol ha evaporado el agua, ha endurecido la arcilla que vuelve a ablandarse al humedecerse. ¿Qué puede haber más sencillo, entonces, que recoger una porción de aquel barro, amasarlo y moldearlo con la mano, dándole forma conveniente y ponerlo a secar y endurecer al Sol para obtener un receptáculo donde contener el agua para apagar la sed o eíconder el alimento para que un animal ladrón no se lo arrebate? Un chiquillo puede moldear la arcilla y, generalmente, para él es una diversión el hacerlo.

Cuando los arqueólogos cavaron el suelo, encontraron vestigios de antiguas ciudades lacustres, casas desaparecidas y también fragmentos de vasijas y ánforas de terracota. ¡Habían pasado tantos milenios desde que primitivos artesanos las modelaran! Esos pocos fragmentos de tierra cocida de la época neolítica son, junto con las piedras labradas, los únicos y preciosos documentos de una civilización en la cual se iniciaron los progresos técnicos que tanto nos enorgullecen actualmente. Desde la época de Sos palafitos, la historia de la cerámica es la historia misma del hombre.

En la edad neolítica la cerámica era todavía un arte muy rudimentario. No había esmaltes, ni siquiera dibujos. Mucho más tarde, el hombre comprendió que un objeto útil podía ser también bello. Entonces aprendió a barnizar vasos; lo que, por otra parte, no servía sólo para que lucieran más y fueran más agradables de ver, sino también para terminar de impermeabilizarlos. Surgieron así las vasijas esmaltadas de los sumerios y las ánforas decoradas de los egipcios, de las que se encontraron muchas en las tumbas del IV milenio antes de nuestra era.

Cerámica Egipcia

Los pueblos de la Mesopotamia: los sumerios, los acadios y los caldeos fabricaron ladrillos policromos (es decir, de muchos colores)   para revestir los frentes de sus palacios.

ceramica de los sumerios

El nombre “cerámica” proviene de épocas menos lejanas. Todos coinciden en que deriva del griego; pero para unos se originó en el nombre de Ceramos, hijo de Ariadna y de Dionisio (Baco), a quien los helenos atribuyeron el invento de la alfarería, y para otros simplemente de la voz keramiké, que significa arcilla.

Si pensamos en el Extremo Oriente nos será fácil recordar que, tres mil años antes de nuestra era, los chinos cultivaban ya este arte, pero no con fines utilitarios.

Cerámica china

Para ellos, la cerámica tenía sólo el valor de sus formas exquisitas. Esmaltaban, adornaban y esculpían por el placer
de contemplar. La porcelana (Tsé-Ki) nació en China en el,  segundo siglo de la era cristiana, cuando los chinos  tuvieron la idea de emplear esa fina arcilla blanca que es el caolín.

Pero volvamos al Mediterráneo, en el segundo milenio antes  de Jesucristo.  Tenemos  a  la  vista  una  máquina muy
sencilla: es una rueda de madera accionada por un pedal,  la cual permite conseguir vasos de forma perfecta, de superficie lisa y de espesor uniforme, en un tiempo relativamente corto.

torno a pedal para ceramica

Los griegos aprovecharon la experiencia de sus maestros, los ceramistas asirios y caldeos, y los aventajaron. En la isla de Creta, en Tirinto, Atenas y Samos se fabricarón ánforas y copas que eran verdaderas obras de arte y estaban decoradas con paisajes marinos.

Las cerámicas halladas en los palacios de Cnosos y de Faistos pertenecen a épocas distintas; las más recientes datan del primer milenio antes de Jesucristo y,no obstante, sus dibujos y colores nos asombran porque son sorprendentemente “modernos”. Las cerámicas de Samos —ánforas, copas, platos— a menudo llevaban  dibujos rojos sobre  fondo  negro  o  azul.

ceramica griega

En ltalia, dos mil años antes de nuestra era, los etruscos estaban muy adelantados en el arte cerámico. Más tarde, tanto la cerámica etrusca como la griega y la perita fueron muy apreciadas por los romanos.

Cerámica etrusca

Los musulmanes enriquecieron la alfarería con dibujos y colores nuevos, pero sufrieron la influencia de los pueblos asiáticos y de los países ribereños del Mediterráneo. Hacía trescientos años que los árabes de España conocían el barniz, o vidriado plomífero, cuando un alfarero de Selestat (Aliacia) encontró el procedimiento para realizarlo.

Entonces comenzó la fabricación de vajillas, tiestos y azulejos decerámica barnizada, que dio origen a la loza común actual. Parece que esta loza fue llevada a Italia por ceramistas de las islas Baleares, aunque algunos historiadores afirman que fue el escultor Lucca Della Robbia.

Este artista florentino destinaba sus cerámicas a la decoración de edificios, como nuestros actuales azulejos y mayólicas. Sólo un siglo después se inició en Pésaro la industria de la alfarería esmaltada para uso doméstico. Ya al tanto del empleo del vidriado de plomo, los alfareros de esa ciudad del Adriático tuvieron la idea de utilizar el vidriado de estaño.

En seguida los imitaron otros artesanos. La loza pasó de Italia a Alemania, y fue al ver una copa fabricada en este país que Bernardo de Palissy (1510-1590),a quien más tarde se lo llamó el glorioso alfarero, emprendió las búsquedas que lo hicieron famoso y lo llevarían a perfeccionar  extraordinariamente  el  arte  cerámico.

alfarero Palissy

Bernardo de Palissy construyó su propio horno. Como era pobre tuvo que quemar leña prestada y, cuando ésta le faltó, fue echando a las llamas las maderas que sacaba de las sillas y de los pocos muebles que le quedaban. Sus experimentos fracasaban siempre… Una mañana, al levantarse del lecho, se sintió enfermo; estaba demacrado, pálido, más triste que de costumbre… A pesar de todo, intentó la última prueba y apeló a un recurso, desesperado: arrancó las maderas del piso y las echó al horno; con los ojos afiebrados seguía ansiosamente la transformación del esmalte sobre la arcilla.

Su familia lo había abandonado creyéndolo demente, los vecinos lo acusaban de haber dejado su oficio por haraganería; sus hijos padecían hambre… Pero después de dieciséis años de lucha llegó la recompensa, y, en aquel hogar azotado por la miseria, entraron la fortuna y la dicha.

La loza francesa comenzó a difundirse a principios del siglo XVII, impulsada por Carlos de Gonzaga, duque de Nevers, que había llamado a su provincia a un grupo de artesanos italianos.

En cuanto a la porcelana, sabemos que unos navegantes portugueses la descubrieron en China en el siglo XVI y trajeron muchas muestras que despertaron gran admiración, pero en vano se intentó imitarlas. No se tenía la menor idea sobre la composición de la pasta, ni acerca del vidriado. Se procedió a tientas hasta que, en 1695, la fábrica de Saint-Cloud produjo una magnífica porcelana parecida a la china, pero mucho más blanda.

En 1709, un químico alemán descubrió, por casualidad, el caolín. Así nació la porcelana alemana e inmediatamente se abrió una fábrica en Meissen, Sajonia.

cerámica meisser alemana

Todavía no hemos dicho nada de América. Cuando Colón llegó al Nuevo Mundo, los indígenas ya conocían la alfarería y el esmalte. Algunas de sus vasijas podrían compararse con las de las  antiguas civilizaciones mediterráneas.

En México, aztecas y tolfecas modelaban, esculpían y adornaban ánforas y jarrones de formas muy variadas. En el Perú, los incas favorecían el desarrollo de una artesanía particularmente hábil, que se extendió mucho hacia el sur; los conquistadores se sorprendieron del alto grado de civilización que habían alcanzado estos pueblos.

ceramica inca

La maravillosa rueda del alfarero se ha inventado muchas veces: En todas partes se fabrica loza, sea de una clase, sea de otra. El género y estilo dependen del ingenio de la gente de cada lugar, y la calidad, de la del barro disponible.

Antes de que existiese mucho comercio o cambio de productos entre países distantes, y, especialmente, de objetos tan frágiles como los de alfarería, toda comunidad importante que tuvo vitalidad intelectual suficiente para constituir un núcleo característico, desarrolló un estilo peculiar de cerámica y, en muchos casos, llegó a un alto grado de perfección en su manufactura, logrando no sólo satisfacer las conveniencias prácticas, sino también atender a la belleza, al gusto artístico.

Teniendo en cuenta estas circunstancias, es absurdo hablar de prioridad en el desenvolvimiento de esta industria. La rueda o torno del alfarero, ese sencillo mecanismo que vino desde tiempos bien remotos en auxilio de la mano del hombre, surgió como cosa natural en muchos sitios distintos. Indudablemente, fué inventado en diferentes lugares y épocas, y con toda independencia en cada caso. Los griegos pretenden haber sido los inventores; pero la útil rueda fué conocida por los egipcios y los chinos mucho tiempo antes de que los griegos aparecieran como pueblo de individualidad manifiesta. Varias mitologías hablan de la rueda del alfarero como de un don hecho al hombre por los dioses.

En realidad, los dioses a que debió su nacimiento tan sencillo como beneficioso mecanismo, fueron la necesidad y la invención; y la rueda apareció tan pronto como fué precisa, lo mismo en Egipto y en Caldea, que en China y en el Perú, ofreciendo un ejemplo notable de esa aspiración hacia mejorar, que, juzgada en globo por sus resultados, se llama progreso, y que es una marca de la mano de la Divinidad.

LA CERÁMICA HOY: Convertir arcilla u otros materiales en porcelana fina, o incluso en ladrillos y tejas, es algo que requiere gran habilidad. Básicamente, el proceso consiste en moldear la pieza con tierra amorfa, fijándose a continuación la forma por tratamiento térmico.

Lo que sucede es que, a altas temperaturas, los minerales que constituyen la arcilla pierden agua, modificándose sus estructuras. Algunos se funden parcialmente, en particular los feldespatos y las micas; al enfriarse (vitrificación), la materia vitrea contribuye a mantener unidos los granos arcillosos, convirtiéndolos en un producto duradero y resistente.

En esto consiste el oficio y arte de la cerámica, una ocupación tan antigua como el hombre mismo. El hombre primitivo se limitó a la fabricación de vasijas y otros útiles domésticos. Hoy se hacen también materiales estructurales (ladrillos, tubos y tejas) y productos refractarios.

Las arcillas más puras, usadas en la fabricación de materiales cerámicos, son las arcillas de porcelana o de China (caolín), compuestas casi enteramente por mineral caolinita (un silicato alumínico hidratado). La arcilla grasa (constituida por diminutos granos redondeados), se ha formado por la descomposición de los feldespatos, aunque los granos de caolinita han sidoy en este caso, trasportados desde las rocas de origen y depositados en otros lugares.

La arcilla grasa está constituida por granos más finos y más plásticos que las arcillas de China. Además, contienen otros minerales, como cuarzo y mica.

Una variedad de la arcilla grasa, con más sílice de la normal, es conocida con el nombre de arcilla de alfareros. La arcilla refractaria, como su nombre indica, se usa en la fabricación de materiales muy resistentes al calor. Se extrae de las rocas carboníferas, formadas hace 250 millones de años, que actualmente se encuentran  fosilizadas   en   los   suelos   pantanosos.

Además de los minerales del tipo caolinita, contienen mucha alúmina (Al2O3). Esta última sustancia es la que da a las arcillas refractarias sus propiedades térmicas. Las llamadas arcillas rojas y arcillas estructurales engloban compuestos de hierro, como impurezas. Al calentarse en atmósfera de oxígeno, estos compuestos toman un color rojo-ladrillo.   Este tipo de arcillas es el más importante en la fabricación de materiales para la construcción. A menudo, antes de moldear y cocer la arcilla se le añaden ingredientes no arcillosos.

El feldespato y la mica blanca son los más importantes. Actúan como fundentes, bajando el punto de fusión de la arcilla, puesto que ellos funden muy fácilmente. Durante el enfriamiento, el vidrio que se produce proporciona más dureza y cohesión al producto. Los fundentes sirven también para dar a la pieza una resistencia extra, haciéndola impermeable al agua.

El mineral cuarzo, que se .añade como material de aporte, evita la excesiva contracción, cuando la arcilla se está secando y cociendo. En la fabricación de cerámicas resistentes a las temperaturas muy altas no pueden usarse las arcillas refractarias comunes. Se utilizan materias primas de característica no plástica, algunas de las cuales no se encuentran en la naturaleza y tienen que ser preparadas artificialmente.

Para los ensayos de los productos cerámicos refractarios se usan aparatos especiales; por ejemplo, instalaciones de rayos X, para comprobar la naturaleza de los componentes cristalinos, tanto de las materias primas como de los productos finales.

ALFARERÍA: Las primeras piezas de alfarería se hicieron de loza. Las arcillas ordinarias se moldeaban hasta darles la forma definitiva, y se cocían a unos 1.200°C, Como sólo hay presentes pequeñas cantidades de materiales vitreos (feldespatos y micas) durante la recristalización, la loza, al contrario que otros tipos de porcelana, es porosa y permite que los líquidos la atraviesen. A pesar de esto, la loza puede hacerse impermeable vitrificando su superficie. Los lavabos y la porcelana económica se fabrican de este modo.

Las piezas de vajilla, incluidas las de mejor calidad, se hacen cociendo arcillas que tienen una considerable cantidad de fundentes naturales o añadidos. La porcelana es blanca y se fabrica con arcillas de China (caolín), que contienen cuarzo y feldespatos, y a las que, a veces, se añade arcilla grasa (granular).

La cocción tiene” lugar a temperaturas comprendidas entre 1.200 y 1.400° C, con lo que se asegura una vitrificación máxima y, consecuentemente, una máxima impermeabilidad. Ésta es mucho más esencial para las porcelanas y utensilios eléctricos y químicos.

Estrictamente, la denominación de porcelana china se refiere sólo a la bella porcelana de huesos. En su fabricación se mezcla la arcilla con fundentes y se añade una considerable cantidad de huesos calcinados de animales (fosfato calcico). Las piezas así obtenidas son traslúcidas y muy bonitas.

alfarero

El alfarero contemplando una masa amorfa de arcilla colocada en su rueda y a la que puede dar a voluntad formas innumerables.

Utilizando sus manos y la rueda giratoria va modelando una vasija, ejerciendo al mismo tiempo presión interior y exterior sobre la masa.

La vasija va surgiendo bajo las diestras manos del obrero hasta tomar forma apreciable, pero no definitiva.

Al fin, mediante la delicada aplicación de la mano, la arcilla ha quedado definitivamente transformada en una vasija esbelta y elegante.

MATERIALES CERÁMICOS PARA LA CONSTRUCCIÓN
Dos requisitos importantes que se exigen a los materiales de construcción son la cantidad y el bajo precio. Afortunadamente, las arcillas impuras, apropiadas para la fabricación de ladrillos, tubos y tejas, son muy abundantes.

En primer lugar, las rocas arcillosas deben ser desmenuzadas en fragmentos pequeños. Antiguamente, este proceso se efectuaba apilando la arcilla y dejando que el tiempo hiciera el trabajo. En la actualidad, los métodos de trituración mecánica y secado aceleran el proceso.

Para dar forma a la arcilla, ésta debe ser suficientemente plástica. A veces hay que añadirle agua, para proporcionarle la consistencia adecuada. En el pasado, los ladrillos se moldeaban a mano. Actualmente, son máquinas las que realizan este trabajo.

La fabricación de ladrillos por el llamado método del alambre cortante hace necesaria una arcilla con un contenido del 15 al 20 por ciento de agua. Mediante unas paletas rotatorias, se fuerza a la arcilla a que salga, como una columna continua, a través de una boquilla de forma especial. A continuación, esta columna pasa por una máquina que corta las piezas en el tamaño adecuado.

Con el método plástico – resistente (“súff -plástic“), en la arcilla sólo es necesaria una cantidad de agua equivalente al 10 o al 15 %. Se fuerza a la arcilla laminada para introducirla en un molde cerrado y, después, es sometida a presión, mediante una máquina, con lo que se consigue un ladrillo de mejor calidad. En los procesos semi-secos, sólo se necesita del 5 al 10 % de agua. La arcilla pulverulenta y húmeda se somete a presiones comprendidas entre 36 y 1.400 kg./cm2. Esto proporciona gran cohesión a los constituyentes arcillosos.

Antes de someter los ladrillos a cocción es necesario secarlos. De otro modo, la rápida eliminación de agua produciría una contracción excesiva, con el consiguiente cuar-teamiento. La atmósfera existente en el horno influye notablemente en el color de los ladrillos. La abundancia de oxígeno produce la oxidación de algunos compuestos férreos, que lo colorean de rojo.

Reduciendo el oxígeno adquiere un color azul, mientras que, con una cantidad mediana de oxígeno, el producto es parduzco. A los tubos usados en los drenajes y alcantarillas se les da forma haciendo salir la arcilla plástica a través de una abertura adecuada. Las tejas se hacen también por extrusión; después, se cortan en tiras, a las que se da la forma curva por presión, antes de cocerlas.

REFRACTARIOS
Los productos cerámicos que no se funden a altas temperaturas (por encima de los 1.000° C.) son llamados refractarios. Un grupo de refractarios es el formado por los ladrillos resistentes al calor, que se usan para recubrir los hornos. Estos ladrillos deben tener también una cierta resistencia mecánica, e incluso, a veces, ser resistentes al ataque de distancias químicas fundidas.

Los refractarios ácidos son ladrillos especíales, usados para recubrir chimeneas domésticas y fábricas de gas, donde no son atacados por sustancias químicas básicas. Como materia prima se usa la arcilla refractaria (cocida a 1.400° C.) o la sílice. Ésta, que se presenta en la naturaleza en forma de arena, es sometida a presión, para darle forma, y se le añade algo de cal, para mantener la cohesión.

Cociéndolos a una temperatura de 1.400° C, los cristales de sílice adquieren una consistencia que no se altera con las altas temperaturas. Cuando las piezas tienen que estar en contacto con sustancias químicas básicas, como ocurre en los hornos para la fabricación de hierro y acero, se usan refractarios básicos. Éstos podrían ser corroídos por las sustancias acidas.

Un refractario básico corriente es la dolomita (carbonato doble de calcio y magnesio). La magnesita (carbonato de magnesio) sirve también para el mismo fin. Hay yacimientos de este mineral en muchas partes del mundo y también puede ser extraído del mar.

En el trabajo científico y en la industria, a veces son necesarios objetos particularmente fuertes y resistentes, que puedan soportar enormes temperaturas y también cambios bruscos de ésta (choques térmicos). Incluso las arcillas refractarias y otros refractarios corrientes pueden ser inadecuados. Debe usarse un nuevo tipo de materia prima. Para estos fines, tienen gran valor ciertos carburos y nitruros, preparados artificialmente, así como los óxidos de los metales aluminio, berilio, magnesio, torio y circonio.

El óxido de aluminio (alúmina) combina una gran resistencia térmica (punto de fusión: 2.050° C.) con una gran dureza y una notable resistencia eléctrica. Por ello, se usa en la fabricación de herramientas para cortar y como material aislante, para las bujías de encendido en los motores. Incluso, se aplica en partes vitales de los cohetes espaciales.

El óxido de berilio se utiliza como envoltura resistente al calor, para recubrir las varillas de metales radiactivos usados en los reactores atómicos.

Para la química y la metalurgia de altas temperaturas son esenciales los aparatos hechos con.estos óxidos resistentes al calor (el óxido de circonio no. funde hasta los 3050° centígrados).

Para moldear los materiales no plásticos, se les añade alguna sustancia orgánica, la cual, al darles cohesión, evita que la pieza se desintegre mientras está blanda. Durante la cocción, esta sustancia orgánica es destruida y sólo quedan los componentes del material no plástico sinterizados, es decir, fuertemente unidos.

Fuente Consultada
TECNIRAMA La Enciclopedia de la Ciencia y la Tecnología N°107  Productos Cerámicos
LO SE TODO Historia de la Cerámica

LECTURA COMPLEMENTARIA:
Clases de cerámica que se mezclan y funden al encontrarse: Los objetos de cerámica pueden dividirse en tres grupos: de barro cocido a poco fuego y sin vidriar; de barro cocido a alta temperatura, hasta la vitrificación interna de la masa; y de porcelana.

Los productos del primer grupo son porosos v comprenden desde los tiestos comunes para plantas y de las vasijas ordinarias de loza basta, porosa, hasta los de china blanca; los del segundo grupo son duros, vitrificados en su estructura y pueden ser decorados mediante un vidriado exterior o barniz a fuego, tales son los objetos de gres.

La porcelana, que forma el tercer grupo, puede ser hecha con pasta blanda o con pasta dura; con esta última, resulta la verdadera porcelana, que es blanca, vitrificada y trasluciente. El barro cocido del primer grupo, cuando es blanco, y la porcelana, exigen la arcilla de la mayor pureza.

Considerando en conjunto las varias formas y clases de cerámica en el pasado y en el presente, se aprecia que cualquiera que sea el nombre con que cada tipo se designe o el lugar del origen, seis circunstancias determinan su calidad. Está, en primer lugar, la arcilla empleada o los materiales que con la arcilla se mezclan para darle las características necesarias.

La cerámica primitiva ha dependido casi enteramente, en cuanto a su color y consistencia, de la naturaleza de la arcilla de la localidad en donde se operase. La supremacía de China respecto a la porcelana se marcó desde un principio por disponer de arcillas de extraordinaria pureza y por la excelencia de la manipulación, a causa de la gran habilidad operatoria conseguida por una minuciosa subdivisión del trabajo.

Las cartas que desde China escribió el misionero jesuíta P. d’Entrecolles, que fué el primero en describir a los europeos con todo detalle los métodos empleados por los manufactureros chinos a principios del siglo XVIII, consignan que la mejor loza china sólo podía fabricarse en ciertos lugares, y que los intentos hechos para atraer los obreros de aquellos sitios a localidades diferentes dieron por resultado el que los obreros trasplantados fracasasen en su obra.

Pero, actualmente, el alfarero no está adscrito a la arcilla como no sea cuando solamente elabora productos muy inferiores; hoy día, la localización de una fábrica de cerámica está determinada por otras muchas consideraciones distintas de la naturaleza de la arcilla que se le proporcione. Viene después el modo de preparar la arcilla, a fin de darle la composición y consistencia que corresponden a la calidad que se apetezca. Esto se hace, en lo fundamental, siguiendo los mismos métodos que estaban en uso hace dos mil anos. El P. d’Entrecolles refiere que, en el caso de las clases más finas de porcelana china, un cabello o un grano de arena que se deje en la pasta, puede echar a perder todo el trabajo de la obra más esmerada.

Sigue luego fijar el tamaño, forma y dibujo del artículo que haya de fabricarse. El hombre primitivo elaboró ya vasijas de gusto artístico, esbeltas, elegantes y graciosas, antes de la invención de la rueda. Así, los indios primitivos, preparaban la arcilla formando con ella largas tiras, a modo de longanizas, que arrollaban para formar la vasija, uniéndolas o soldándolas por presión, y alisando o decorando el exterior mediante toscos utensilios. En todos los países y en todos los tiempos, se ha manifestado cierta disposición a repetir dibujos convencionales, resultando que los mismos tipos sencillos del arte cerámico han sido producidos independientemente por muchos artífices distintos.

El repetido P. d’Entrecolles menciona que en el centro donde se manufacturaba la mejor porcelana china, en los días más florecientes de aquella industria de reputación universal, en elaboración de un solo objeto intervenían, sucesivamente, hasta 17 operarios y, con frecuencia, el mismo objeto era ía-bricado por partes separadamente.

El resultado fue caer en la rutina y no poder crear nuevos tipos, nuevas formas y di bujos nuevos. Nadie podía modelar y terminar una obra que presentase novedad en el conjunto; y cuando la porcelana llegó a utilizarse para hacer regalos o presentes a los reyes y el emperador de la China dio orden para que los objetos fabricados representasen ideas sugeridas por el mismo emperador, fué imposible representar con la cerámica tales ideas, y algunos de los obreros chinos convertidos al cristianismo pidieron al misionero jesuíta que interpusiera su gran influencia para que se revocase la orden imperial.

La obra es tan delicada que la menor equivocación la estropea e inutiliza
La fase que después hay que considerar, común a todo trabajo cerámico, es la cocción de la arcilla ya moldeada. Esta operación se efectúa, generalmente, por dos o tres veces, según se explicará más adelante; y lo peligroso de ella, en el caso de obras delicadas, como cuando se trata de porcelana fina, explica hasta cierto punto lo costoso de los objetos fabricados Aunque parezca que todo marcha bien, es lo más probable, al abnr el horno, encontrarse con que el trabajo se ha perdido, a menos que en todas las operaciones anteriores se haya cumplido exactamente con todas las precauciones precisas.

La menor diferencia en cuanto a la composición adecuada de la mezcla arcillosa, el menor exceso o delecto en la temperatura del horno, la demasiada rapidez en el caldeo o en el enfriamiento, todo puede ser causa de que se estropee el total o gran parte de lo contenido en el horno. En realidad, han sido precisos muchos años de experimentación y muchos gastos para llegar a aprender los secretos del arte cerámico moderno, cuyos productos, hechos indelebles por su bautismo de fuego, son la admiración de todos.

Intercalado con las sucesivas cocciones, se practica el vidriado o esmaltado, operación que tiene por objeto dar lustre a la superficie de los objetos y privarles de porosidad. El uso del vidriado de la loza ha sido conocido desde tiempos bien remotos, como se aprecia en la antigua cerámica egipcia, aunque sus vidriados alcalinos sean muy inciertos. Para la loza ordinaria, el material más geneíalmente empleado es la galena o sulfuro de p’omo (llamada por esto «alcohol de alfareros»); para la porcelana dura se emplea el feldespato ortosa no alterado («petuncé»), y para la loza fuerte, como el gres, la sal.

El colorido y los dibujos se dan unas veces bajo el vidriado, y otras, sobre éste. La loza que se deja sin vidriar se llama «bizcocho». Después que se ha efectuado el vidriado se practica una nueva cocción.

Fuente Consultada:
Enciclopedia Moderna de Conocimientos Universales Tomo III – Editores W.M. Jackson , Inc. Capítulo 24 – La Cerámica –