Historia Primer Motor 4 Tiempo

Principio de Funcionamiento de Maquina Termicas Calderas y Turbinas

Funcionamiento de Máquina Térmicas

maquina termica

MÁQUINAS TÉRMICAS. Durante muchos siglos el hombre utilizó la energía térmica para calentarse, sin darse cuenta que ésta podría trabajar para él. Pero este hecho ocurrió en época muy reciente, hace poco menos de 200 años.

La invención de las máquinas térmicas abrió nuevos horizontes, cambiando en pocos años la marcha de la civilización, y contribuyó eficazmente a la revolución industrial, que caracteriza a los siglos XVIII y XIX. Los dispositivos destinados a transformar energía calorífica en energía mecánica se denominan máquinas térmicas, las cuales se pueden clasificar en dos tipos fundamentales: máquinas de vapor, que utilizan el vapor de agua producido por calentamiento, y motores de explosión, que funcionan gracias a la expansión de los gases producidos por la combustión de una mezcla explosiva.

LAS PRIMERAS MAQUINAS DE VAPOR.
En 1712, el inglés Newcomen construyó un dispositivo que transformaba el calor en trabajo, y que guarda un cierto parecido con las máquinas de vapor utilizadas en la actualidad. Estaba constituido por una caldera que mediante un tubo comunicaba con un cilindro vertical, cuyo pistón se unía al brazo de una palanca.

El vapor de la caldera empujaba el pistón hacia arriba, hasta alcanzar la posición superior; en este momento se proyectaba dentro del cilindro un chorro de agua fría, mediante una válvula accionada por la palanca. De este modo, el vapor se enfriaba y condensaba creando un vacío en el interior del cilindro y en la caldera. Entonces la presión de la atmósfera empujaba el pistón hacia abajo.

La máquina de Newcomen presentaba el inconveniente de que en cada carrera del pistón, el agua perdía la temperatura de ebullición, precisando recuperar ésta para que se repitiera el proceso.
Durante más de dos décadas este dispositivo se utilizó para bombear agua de las minas y de los pozos.

La utilización industrial de la máquina de vapor fue llevada a cabo por James Watt, ingeniero escocés, que modificó el dispositivo de Newcomen en el sentido de evitar las pérdidas de calor. Para ello construyó un aparato que llevaba una cámara separada que aspiraba el vapor y donde se condensaba por medio de un sistema de refrigeración. De este modo consiguió disminuir el tiempo de subida y bajada del émbolo y ahorró gran cantidad de combustible, lo que representa una considerable economía.

Hay que notar que estas máquinas no utilizan la presión del vapor, sino que su funcionamiento está basado en el vacío que se origina al condensar el gas que permite actuar a la presión atmosférica y hace descender el émbolo y, por consiguiente, da el impulso necesario para la ascensión.

La necesidad de refrigerar el vapor lleva consigo la utilización de grandes cantidades de agua que hace a la máquina de vapor inaplicable a la tracción. Unos años más tarde, el propio Watt ideó un dispositivo de doble efecto, y a partir de este momento la máquina de vapor fue utilizada para el transporte, construyéndose diversos tipos de vehículos y empleándose, también, para mover los barcos.

Para disminuir el riesgo que supone la elevada presión a que está sometido el vapor de la caldera, Watt ideó un dispositivo, llamado «regulador centrífugo», de cuyo fundamento nos hemos ocupado en páginas anteriores, para evitar posibles explosiones.

LA MÁQUINA DE VAPOR ACTUAL. Modernamente se utilizan dos tipos principales de generadores de vapor.

a) Caldera con tubos de humo, constituida por un haz de tubos de acero colocados en el interior de la caldera, a través de los cuales circulan los productos de la combustión procedentes del hogar.
b) Caldera con tubos de agua, que está provista de numerosos tubos por los que circula el agua de la caldera propiamente dicha, y que son lamidos superficialmente por las llamas y los gases calientes.

En el hogar se quema el combustible, que puede ser carbón, leña, aceites pesados, gas, etc. Cuando se utiliza carbón o leña, el hogar está dividido en dos partes por una parrilla. En la superior están las llamas y en la inferior, o cenicero, se recogen las cenizas procedentes de la combustión.

El vapor producido en la caldera entra en una caja de distribución, provista de una corredera a la que una excéntrica da movimiento de vaivén. Esta corredera distribuye alternativamente el vapor a ambos lados del émbolo, de modo que cuando el vapor penetra por la cara derecha empuja el émbolo hacia la izquierda, mientras el vapor contenido en el otro lado del émbolo escapa por un canal de la izquierda a través de la corredera. De este modo se origina el movimiento de vaivén del émbolo que por medio de un sistema de biela y manivela se transmite a la rueda.

Para obtener un mayor aprovechamiento de la energía calorífica se han ideado asociaciones de cilindros, como en las máquinas tándem o en serie, constituidas por dos cilindros que actúan sobre el mismo eje, o las máquinas compound o en paralelo, en las que los cilindros forman ángulo recto, y mediante unas manivelas actúan sobre un mismo eje.

La asociación también puede ser de más de dos cilindros. Muchas veces el vapor pasa de un cilindro a otro, cuyos diámetros son cada vez mayores, con lo que se producen varias expansiones, por lo que se habla de doble, triple y múltiple expansión.

TURBINAS. Mientras la máquina de vapor es un dispositivo de presión, la turbina es una máquina basada en el flujo del vapor. Obtiene la energía a partir de pequeñas fuerzas que trabajan a gran velocidad.

turbina

La constitución de la turbina de vapor es semejante a la hidráulica, de la que nos hemos ocupado anteriormente, El rodete recibe sobre sus paletas un chorro de vapor a presión dirigido por unos tubos llamados «toberas». El vapor penetra en la turbina y hace girar los discos, luego pasa a baja presión a una segunda cámara donde imprime movimiento a otros discos. A continuación entra en un condensador, donde por medio de un serpentín refrigerado se licúa, para volver de nuevo a la caldera y repetir el proceso.

El rendimiento es mucho mayor que en las máquinas de vapor antes descritas, llamadas de , pistón, por lo que cada día son más utilizadas las turbinas, sobre todo cuando se trata de obtener grandes potencias, como en las locomotoras, barcos, centrales termoeléctricas, etc.

La potencia de las turbinas empleadas en los barcos es muy grande. Para el buque «Queen Mary» se construyó una de 200.000 CV. Los barcos de guerra también van provistos de turbinas que les permiten desarrollar grandes velocidades y tienen la ventaja de ocupar un espacio reducido. La desventaja de este sistema de propulsión es que la turbina no puede girar en sentido contrario, por lo que la nave debe llevar una turbina auxiliar para la marcha atrás.

Principio Fisico del Funcionamiento de un Motor Explosion

Principio Físico del Funcionamiento
De Un Motor Explosión o Combustión Interna

El motor de combustión interna (o motor de explosión) es un mecanismo destinado a transformar la energía calorífica en trabajo. La combustión tiene lugar en el cilindro mismo de la máquina, lo que permite un mayor rendimiento en la transformación.(Tutoriales sobre Mecánica)

El motor de combustión interna fue diseñado a finales del siglo XIX. Su funcionamiento es, en algunos aspectos, similar al de la máquina de vapor: un pistón situado en un cilindro se expande y contrae ejerciendo una fuerza. El líquido introducido dentro del cilindro es un derivado del petróleo al que, a continuación, se prende fuego. Al estar sometido a presión, el combustible no arde normalmente, sino que estalla. Esta explosión empuja el pistón hacia afuera, ejerciendo un trabajo. Posteriormente, entra nuevo combustible en el cilindro y se vuelve a comprimir para empezar de nuevo el ciclo.

Los motores comerciales se fabrican con varios cilindros, ya que este sistema permite obtener más potencia y ofrece menos problemas que los que plantea un motor provisto de un único cilindro de mayor tamaño. En este dispositivo, la posición de los cilindros se calcula para que, en un momento dado, cada uno se halle en un ciclo distinto, uno en admisión, otro en compresión, otro en explosión y otro en escape. De este modo, se obtiene un funcionamiento más estable, sin vibraciones, y en el que cada cilindro, al hacer explosión, ayuda a los demás a moverse.

Los cilindros de un motor pueden estar dispuestos de varias formas, siempre en relación con su número y con las dimensiones del vehículo que deban impulsar. En el motor de los automóviles, se colocan generalmente en línea, si van todos paralelos; en y, si la mitad se halla inclinada en un pequeño ángulo con respecto a la otra mitad; y en Boxer o contrapuestos, si unos se encuentran enfrentados a los otros.

El motor de combustión interna ha sustituido a la gran mayoría de máquinas de vapor debido a sus considerables ventajas. En primer lugar, el aprovechamiento de la energía es mayor. El origen de la energía se sitúa en el interior del cilindro, y no en el exterior como en la máquina de vapor. Por otra parte, no es necesario cargar con grandes cantidades de agua.

Los vapores empleados son los propios del combustible al explosionar. El tamaño del motor se reduce considerablemente y facilita su instalación en vehículos pequeños. Por último, este motor es capaz de realizar en poco tiempo una gran variación de energía, comparado con la máquina de vapor.

Un motor de combustión interna ligero puede pasar en pocos segundos de una posición de reposo a otra en la que proporcione la máxima energía, tardando sólo unos minutos en sistemas de grandes dimensiones, como los barcos. Esta característica lo convierte en el mecanismo ideal para aplicaciones con cambios frecuentes de energía, como puede ser el motor de un automóvil, un tren o un barco.

Clasificación de motores de combustión interna

Existen distintos criterios para clasificar los motores de combustión interna: según el combustible utilizado, el número y la disposición de los cilindros, el tipo y la colocación de las válvulas o el sistema de enfriamiento empleado. La clasificación más frecuente se basa en el tipo de ciclo, es decir, en el número de tiempos por ciclo (entendiendo por tiempo una carrera hacia arriba o hacia abajo del émbolo a lo largo del cilindro).

En el denominado motor de explosión de cuatro tiempos, en cada ciclo de motor (llamado ciclo de Otto) se suceden cuatro tiempos (admisión, compresión, explosión y escape).

Principio Fisico del Funcionamiento de Un Motor Explosion Combustion Interna

En el denominado motor de dos tiempos, cada ciclo de motor consta de sólo dos tiempos, combinándose en uno la admisión y la compresión y en el otro la expulsión y el escape. Estos motores se emplean con gasoil.

Funcionamiento del motor de explosión de cuatro tiempos

El motor de explosión de cuatro tiempos es utilizado en la mayor parte de los automóviles. En su funcionamiento se suceden cuatro tiempos o fases distintas, que se repiten continuamente mientras opera el motor. A cada uno de estos tiempos le corresponde una carrera del pistón y, por tanto, media vuelta del cigüeñal.

En el primer tiempo, llamado de admisión, el pistón se encuentra en el punto muerto superior y empieza a bajar. En ese instante se abre la válvula de admisión, permaneciendo cerrada la de escape. Al ir girando el cigüeñal, el codo va ocupando distintos puntos de su recorrido giratorio, y, por medio de la biela, hace que el pistón vaya bajando y provocando una succión en el carburador a través del conducto que ha abierto la válvula de admisión, arrastrando una cantidad de aire y gasolina, que se mezclan y pulverizan en el carburador.

Estos gases van llenando el espacio vacío que deja el pistón al bajar. Cuando ha llegado al punto muerto inferior, se cierra la válvula de admisión y los gases quedan encerrados en el interior del cilindro. Durante este recorrido del pistón, el cigüeñal ha girado media vuelta.

Al comenzar el segundo tiempo, llamado de compresión, el pistón se encuentra en el punto muerto inferior y las dos válvulas están cerradas. El cigüeñal sigue girando y, por tanto, la biela empuja al pistón, que sube. Los gases que hay en el interior del cilindro van ocupando un espacio cada vez más reducido a medida que el pistón se acerca al punto muerto superior. Cuando alcanza este nivel, los gases ocupan el espacio de la cámara de compresión y, por tanto, están comprimidos y calientes por efecto de la compresión. Al elevarse la temperatura, se consigue la vaporización de la gasolina y la mezcla se hace más homogénea, por lo que existe un contacto más próximo entre la gasolina y el aire. Durante esta nueva carrera del pistón, el cigüeñal ha girado otra media vuelta.

El tercer tiempo es el llamado de explosión. Cuando el pistón se encuentra en el punto muerto superior después de acabada la carrera de compresión, salta una chispa en la bujía, que inflama la mezcla de aire y gasolina ya comprimida y caliente, la cual se quema rápidamente. Esta combustión rápida recibe el nombre de explosión y provoca una expansión de los gases ya quemados, que ejercen una fuerte presión sobre el pistón, empujándolo desde el punto muerto superior hasta el inferior. A medida que el pistón se acerca al punto muerto inferior, la presión va siendo menor, al ocupar los gases un mayor espacio.

En este nuevo tiempo, el pistón ha recibido un fuerte impulso, que transmite al cigüeñal, que por inercia seguirá girando hasta recibir un nuevo impulso. Cuando el pistón llega al punto muerto inferior, se abre la válvula de escape, y permanece cerrada la de admisión. Durante esta nueva carrera del pistón, denominada motriz por ser la única en que se desarrolla trabajo, el cigüeñal ha girado otra media vuelta.

Al comenzar el cuarto tiempo, llamado de escape, el pistón se encuentra en el punto muerto inferior, y la válvula de escape se ha abierto, por lo que los gases quemados en el interior del cilindro escaparán rápidamente al exterior a través de ella, por estar sometidos a mayor presión que la atmosférica. El cigüeñal sigue girando y hace subir al pistón, que expulsa los gases quemados al exterior. Cuando llega al punto muerto superior, se cierra la válvula de escape y se abre la de admisión. Durante el tiempo de escape, el pistón ha realizado una nueva carrera y el cigüeñal ha girado otra media vuelta. Acabado el tiempo de escape, el ciclo se repite.

Como ha quedado expuesto, las válvulas se abren y cierran coincidiendo con el paso del pistón por el punto muerto superior e inferior. Para conseguir un mayor rendimiento en los motores, se hace que las válvulas se abran y cierren con un cierto adelanto o retraso respecto a los momentos indicados. Son las llamadas cotas de la distribución, cuyos valores son determinados por el fabricante y calculados para que el motor desarrolle la máxima potencia.

ciclo del motor a explosion

Motor Wankel

El motor Wankel posee una forma especial de la cámara de combustión del pistón que permite un mejor aprovechamiento de la potencia obtenida

Principio Fisico del Funcionamiento de Un Motor Explosion Combustion InternaEn un motor tradicional, el pistón sube y baja verticalmente y un eje unido a ése encarga de transformar dicho movimiento en otro vertical que se transmite al cigüeñal. Este movimiento vertical del pistón tiene inconvenientes.

El primero consiste en que los bruscos cambios de dirección, de abajo hacia arriba y viceversa fatigan el metal y provocan una rotura anticipada Otro problema es que la transferencia de energía es ineficiente y parte se pierde en mover el pistón verticalmente sin invertirse en girar el cigüeñal.

El motor Wankel fue diseñado para que la fuerza de la explosión se empleara íntegramente en mover el cigüeñal y para que utilizara menos partes móviles. Consta de una cavidad curva que es la cámara de combustión  Dentro de ella se halla el pistón, que tiene forma de triángulo con los bordes cóncavos. La parte interior de dicho pistón tiene una circunferencia dentada que va unida a un engranaje del cigüeñal.

Al ir girando el pistón en la cavidad, toma el combustible en un punto y lo comprime hasta llegar a un segundo Punto en el que se produce la explosión Siguiendo con el giro, llega al área de expulsión de gases al exterior, ya Continuación vuelve a admitir combustible Se puede Considerar por tanto como un motor de explosión de cuatro tiempos.

Dado que el pistón tiene forma triangular, puede entenderse como si fueran tres Pistones Separados, cada uno en una fase cada vez. La energía se emplea en mover circularmente el Pistón y los cambios bruscos de movimiento se reducen en gran medida.

Con este motor se ha llegado, incluso, a doblar la Potencia de un motor normal, pero problemas de diseño y de desgaste, en especial de las esquinas del pistón que rozaban con la pared de la cámara han impedido su difusión a gran escala.

Haciendo ahora un poco de historia, podemos decir que la historia del motor de explosión de gasolina es la siguiente:

Primer motor de explosión de cuatro tiempos: Otto y Rochas (1861-1862).
Primer motor de explosión comercial: Otto (1876).
Primer automóvil con motor de explosión: Marcus (1875).
Primer motor comercial útil, aplicable a vehículos: Daimler y Maybach (1885, aproximadamente).
Primer automóvil moderno: «Mercedes» de Maybach  (1900)

Ampliar la historia desde aquí

Ver: Funcionamiento Motor Eléctrico

Ver:  Resumen Historia La Patente de Selden