Principio Fisico del Funcionamiento de un Motor Explosion
Principio Físico del Funcionamiento
De Un Motor Explosión o Combustión Interna
El motor de combustión interna (o motor de explosión) es un mecanismo destinado a transformar la energía calorífica en trabajo. La combustión tiene lugar en el cilindro mismo de la máquina, lo que permite un mayor rendimiento en la transformación.
El motor de combustión interna fue diseñado a finales del siglo XIX. Su funcionamiento es, en algunos aspectos, similar al de la máquina de vapor: un pistón situado en un cilindro se expande y contrae ejerciendo una fuerza.
El líquido introducido dentro del cilindro es un derivado del petróleo al que, a continuación, se prende fuego.
Al estar sometido a presión, el combustible no arde normalmente, sino que estalla.
Esta explosión empuja el pistón hacia afuera, ejerciendo un trabajo.
Posteriormente, entra nuevo combustible en el cilindro y se vuelve a comprimir para empezar de nuevo el ciclo.
Los motores comerciales se fabrican con varios cilindros, ya que este sistema permite obtener más potencia y ofrece menos problemas que los que plantea un motor provisto de un único cilindro de mayor tamaño.
En este dispositivo, la posición de los cilindros se calcula para que, en un momento dado, cada uno se halle en un ciclo distinto, uno en admisión, otro en compresión, otro en explosión y otro en escape.
De este modo, se obtiene un funcionamiento más estable, sin vibraciones, y en el que cada cilindro, al hacer explosión, ayuda a los demás a moverse.
Los cilindros de un motor pueden estar dispuestos de varias formas, siempre en relación con su número y con las dimensiones del vehículo que deban impulsar.
En el motor de los automóviles, se colocan generalmente en línea, si van todos paralelos; en y, si la mitad se halla inclinada en un pequeño ángulo con respecto a la otra mitad; y en Boxer o contrapuestos, si unos se encuentran enfrentados a los otros.
El motor de combustión interna ha sustituido a la gran mayoría de máquinas de vapor debido a sus considerables ventajas.
En primer lugar, el aprovechamiento de la energía es mayor.
El origen de la energía se sitúa en el interior del cilindro, y no en el exterior como en la máquina de vapor.
Por otra parte, no es necesario cargar con grandes cantidades de agua.
Los vapores empleados son los propios del combustible al explosionar.
El tamaño del motor se reduce considerablemente y facilita su instalación en vehículos pequeños.
Por último, este motor es capaz de realizar en poco tiempo una gran variación de energía, comparado con la máquina de vapor.
Un motor de combustión interna ligero puede pasar en pocos segundos de una posición de reposo a otra en la que proporcione la máxima energía, tardando sólo unos minutos en sistemas de grandes dimensiones, como los barcos.
Esta característica lo convierte en el mecanismo ideal para aplicaciones con cambios frecuentes de energía, como puede ser el motor de un automóvil, un tren o un barco.
Gentiliza Icografia:https://automociononline.com/
Clasificación de motores de combustión interna
Existen distintos criterios para clasificar los motores de combustión interna: según el combustible utilizado, el número y la disposición de los cilindros, el tipo y la colocación de las válvulas o el sistema de enfriamiento empleado.
La clasificación más frecuente se basa en el tipo de ciclo, es decir, en el número de tiempos por ciclo (entendiendo por tiempo una carrera hacia arriba o hacia abajo del émbolo a lo largo del cilindro).
En el denominado motor de explosión de cuatro tiempos, en cada ciclo de motor (llamado ciclo de Otto) se suceden cuatro tiempos (admisión, compresión, explosión y escape).
En el denominado motor de dos tiempos, cada ciclo de motor consta de sólo dos tiempos, combinándose en uno la admisión y la compresión y en el otro la expulsión y el escape.
Estos motores se emplean con gasoil.
Funcionamiento del motor de explosión de cuatro tiempos
El motor de explosión de cuatro tiempos es utilizado en la mayor parte de los automóviles.
En su funcionamiento se suceden cuatro tiempos o fases distintas, que se repiten continuamente mientras opera el motor.
A cada uno de estos tiempos le corresponde una carrera del pistón y, por tanto, media vuelta del cigüeñal.
• Primer tiempo
En el primer tiempo, llamado de admisión, el pistón se encuentra en el punto muerto superior y empieza a bajar.
En ese instante se abre la válvula de admisión, permaneciendo cerrada la de escape.
Al ir girando el cigüeñal, el codo va ocupando distintos puntos de su recorrido giratorio, y, por medio de la biela, hace que el pistón vaya bajando y provocando una succión en el carburador a través del conducto que ha abierto la válvula de admisión, arrastrando una cantidad de aire y gasolina, que se mezclan y pulverizan en el carburador.
Estos gases van llenando el espacio vacío que deja el pistón al bajar.
Cuando ha llegado al punto muerto inferior, se cierra la válvula de admisión y los gases quedan encerrados en el interior del cilindro.
Durante este recorrido del pistón, el cigüeñal ha girado media vuelta.
• Segundo tiempo
Al comenzar el segundo tiempo, llamado de compresión, el pistón se encuentra en el punto muerto inferior y las dos válvulas están cerradas.
El cigüeñal sigue girando y, por tanto, la biela empuja al pistón, que sube.
Los gases que hay en el interior del cilindro van ocupando un espacio cada vez más reducido a medida que el pistón se acerca al punto muerto superior.
Cuando alcanza este nivel, los gases ocupan el espacio de la cámara de compresión y, por tanto, están comprimidos y calientes por efecto de la compresión.
Al elevarse la temperatura, se consigue la vaporización de la gasolina y la mezcla se hace más homogénea, por lo que existe un contacto más próximo entre la gasolina y el aire.
Durante esta nueva carrera del pistón, el cigüeñal ha girado otra media vuelta.
• Tercer tiempo
El tercer tiempo es el llamado de explosión.
Cuando el pistón se encuentra en el punto muerto superior después de acabada la carrera de compresión, salta una chispa en la bujía, que inflama la mezcla de aire y gasolina ya comprimida y caliente, la cual se quema rápidamente.
Esta combustión rápida recibe el nombre de explosión y provoca una expansión de los gases ya quemados, que ejercen una fuerte presión sobre el pistón, empujándolo desde el punto muerto superior hasta el inferior.
A medida que el pistón se acerca al punto muerto inferior, la presión va siendo menor, al ocupar los gases un mayor espacio.
En este nuevo tiempo, el pistón ha recibido un fuerte impulso, que transmite al cigüeñal, que por inercia seguirá girando hasta recibir un nuevo impulso.
Cuando el pistón llega al punto muerto inferior, se abre la válvula de escape, y permanece cerrada la de admisión.
Durante esta nueva carrera del pistón, denominada motriz por ser la única en que se desarrolla trabajo, el cigüeñal ha girado otra media vuelta.
• Cuarto tiempo
Al comenzar el cuarto tiempo, llamado de escape, el pistón se encuentra en el punto muerto inferior, y la válvula de escape se ha abierto, por lo que los gases quemados en el interior del cilindro escaparán rápidamente al exterior a través de ella, por estar sometidos a mayor presión que la atmosférica.
El cigüeñal sigue girando y hace subir al pistón, que expulsa los gases quemados al exterior.
Cuando llega al punto muerto superior, se cierra la válvula de escape y se abre la de admisión.
Durante el tiempo de escape, el pistón ha realizado una nueva carrera y el cigüeñal ha girado otra media vuelta.
Esquema motor a explosion de cuatro tiempos
Acabado el tiempo de escape, el ciclo se repite.
Como ha quedado expuesto, las válvulas se abren y cierran coincidiendo con el paso del pistón por el punto muerto superior e inferior.
Para conseguir un mayor rendimiento en los motores, se hace que las válvulas se abran y cierren con un cierto adelanto o retraso respecto a los momentos indicados.
Son las llamadas cotas de la distribución, cuyos valores son determinados por el fabricante y calculados para que el motor desarrolle la máxima potencia.
Motor Wankel
El motor Wankel posee una forma especial de la cámara de combustión del pistón que permite un mejor aprovechamiento de la potencia obtenida
En un motor tradicional, el pistón sube y baja verticalmente y un eje unido a ése encarga de transformar dicho movimiento en otro vertical que se transmite al cigüeñal.
Este movimiento vertical del pistón tiene inconvenientes.
El primero consiste en que los bruscos cambios de dirección, de abajo hacia arriba y viceversa fatigan el metal y provocan una rotura anticipada
Otro problema es que la transferencia de energía es ineficiente y parte se pierde en mover el pistón verticalmente sin invertirse en girar el cigüeñal.
El motor Wankel fue diseñado para que la fuerza de la explosión se empleara íntegramente en mover el cigüeñal y para que utilizara menos partes móviles.
Consta de una cavidad curva que es la cámara de combustión Dentro de ella se halla el pistón, que tiene forma de triángulo con los bordes cóncavos.
La parte interior de dicho pistón tiene una circunferencia dentada que va unida a un engranaje del cigüeñal.
Al ir girando el pistón en la cavidad, toma el combustible en un punto y lo comprime hasta llegar a un segundo Punto en el que se produce la explosión.
Siguiendo con el giro, llega al área de expulsión de gases al exterior, ya continuación vuelve a admitir combustible.
Se puede considerar por tanto como un motor de explosión de cuatro tiempos.
Dado que el pistón tiene forma triangular, puede entenderse como si fueran tres pistones separados, cada uno en una fase cada vez.
La energía se emplea en mover circularmente el pistón y los cambios bruscos de movimiento se reducen en gran medida.
Con este motor se ha llegado, incluso, a doblar la Potencia de un motor normal, pero problemas de diseño y de desgaste, en especial de las esquinas del pistón que rozaban con la pared de la cámara han impedido su difusión a gran escala.
Haciendo ahora un poco de historia, podemos decir que la historia del motor de explosión de gasolina es la siguiente:
Primer motor de explosión de cuatro tiempos: Otto y Rochas (1861-1862).
Primer motor de explosión comercial: Otto (1876).
Primer automóvil con motor de explosión: Marcus (1875).
Primer motor comercial útil, aplicable a vehículos: Daimler y Maybach (1885, aproximadamente).
Primer automóvil moderno: "Mercedes" de Maybach (1900)
Ampliar la historia desde aquí
Ver: Funcionamiento Motor Eléctrico
Ver: Resumen Historia La Patente de Selden