Inventos De Uso Diario

Los Inventos Durante La Revolucion Industrial Lista Cronologica

Lista de los Inventos Durante La Primera y Segunda Revolución Industrial

La siguiente es una lista de los inventos más importantes que se desarrollaron entre 1700 y 1829, con el nombre de su inventor.

1730. Cultivo sin barbecho, lord Townshend.
1733. Lanzadera volante, Kay.

1765. Máquina de hilar,Hargreaves.

1767. Tejedora, Arkwright.

1774. Máquina de vapor, Watt.

1777. Lavandina, Bertholet.
1779. Mulé Jenny, Crompton.
1783. Aeróstato, Montgolfier.


1784. Sistema de pudelaje del hierro, Cort Laminaje, Onions.
1801. Pila eléctrica, Volta.

pila de volta


1802. Iluminación, Leblanc.
1805. Telar para seda, Jaquard.
1807. Barco de vapor, Fulton.

barco fulton


1810. Trilladora a vapor, Meickle.
1814. Primera locomotora, Stephenson.

locomotora original a vapor de agia


1825. Arado metálico, Deere.
1826. Segadora, Bell.

La siguiente es una lista de los inventos más importantes que se desarrollaron entre 1830 y 1914 con el nombre de su inventor.

1834 Motor eléctrico, Jacobi

1837 Telégrafo, Morse

1839 Martillo pilón, Nasmyth Fotografía, Daguerre
1840 Abono químico
1841 Primer colorante sintético
1854 Producción industrial de aluminio, Sainte-Claire Deville
1855 Convertidor de acero, Bessemer

convertidor bessemer

1861 Horno, Siemens
1864 Soda caustica, Solvay
1865 Celuloide, Hyatt
1867 Dinamita, Nobel y el Dínamo de Siemens

dinamita

1870 Transporte frigorífico
1876 Teléfono, Bell

telefono de bell


1877 Fonógrafo, Edison
1879 Locomotora eléctrica, Siemens

1884 Seda artificial, Chardonnet Motor a explosión, Daimler
1885 Neumático de caucho, Dunlop Automóvil, Daimler

1893 Motor diesel, Diesel

primer motor diessel

1895 Cinematógrafo, Lumiére

hermanos lumiere

1897 Telegrafía sin hilos, Marconi

telegrafia marconi

1900 Dirigible, Zeppelin

zepellini dirigible

1903 Aeroplano, hermanos Wright

primer avino hermanos wright

Calor Producido Por la Corriente Electrica Aplicaciones

Calor Producido Por la Corriente Electrica Aplicaciones

Una corriente eléctrica se asemeja a una caravana de electrones; en movimiento; el conductor sería como un bosque contra cuyos árboles chocarían los electrones al recorrerlo produciendo una agitación general. Los «árboles» son en este caso átomos o moléculas del conductor y el movimiento que nace del choque con los electrones se traduce en un aumento de las vibraciones habituales de los átomos y moléculas. Dichas oscilaciones se perciben como temperatura. De ahí que el calor sea uno de los efectos invariables de la corriente eléctrica al pasar por un conductor. Podemos decir también que ese calor se produce al tratar la corriente de superar la resistencia del conductor.

RESISTENCIA
La resistencia de una sustancia es la dificultad que ofrece al paso de una corriente eléctrica. Puesto que una corriente es un flujo de electrones que saltan de un átomo a otro, la resistencia depende fundamentalmente de la firmeza con que los electrones están sujetos a los átomos.

En un buen conductor como el cobre, algunos de los electrones están muy débilmente unidos a los átomos y ía resistencia es muy pequeña, mientras que en un mal conductor de la electricidad (aislador) como el caucho, todos los electrones están firmemente unidos a sus respectivos núcleos y la resistencia es muy grande.

En los buenos conductores la resistencia depende del calibre y de la longitud. Cuanto más grueso y corto sea un conductor, tanto menor será su resistencia; cuanto más fino y largo, más resistirá al paso de la corriente, pues al reducirse su sección los electrones tienen menos espacio para pasar.

CONDUCTIBILIDAD Y  NATURALEZA QUÍMICA
Hay dos tipos de sustancias: las que conducen la corriente, llamadas «conductoras», y las que.no la conducen o «aisladoras». Pero entre las primeras se distinguen dos clases: conductores de primera clase y conductores de segunda clase.

Entre los de primera clase se encuentran los metales, cuya estructura química no varía por el paso de la corriente eléctrica; en ellas los electrones «viajan» solos. Los de segunda clase son los electrólitos, sustancias cuyas moléculas disueltas en agua se separan en iones o partículas electrizadas que al conducir la corriente (en solución o fundidos) sufren reacciones «electrolíticas» que alteran su constitución.

En estas sustancias los electrones son transportados por los iones hasta los bornes o «electrodos». De allí la disociación de los electrólitos al apartarse los iones de cargas eléctricas opuestas.

EL CALOR,  FORMA DE ENERGÍA
Veamos qué relación hay entre calor y trabajo. El calor es una forma de energía o capacidad de realizar un trabajo que consiste en vencer una cierta resistencia. Las distintas formas de energía pueden transformarse unas en otras. Por ejemplo, un cuerpo colocado a cierta altura posee energía «potencial» que, al caer el cuerpo, se transforma gradualmente en «cinética».

Al caer contra el suelo produce una pequeña cantidad de calor, como el martillo al dar contra el clavo. La energía se conserva (éste es un principio fundamental de la Física): en el ejemplo de la caída a medida que la energía potencial disminuye, la energía cinética o de movimiento aumenta  y  la  suma de  ambas permanece  constante.

EL TRABAJO MECÁNICO
Cuando una fuerza mueve un cuerpo efectúa un trabajo mecánico (en nuestro ejemplo, la fuerza que actúa es el peso del cuerpo) y ese trabajo es igual al producto de la fuerza por el camino recorrido en su dirección, es decir, por una longitud.

De modo que si queremos expresar el trabajo en unidades, la unidad de trabajo será igual a la unidad de fuerza multiplicada por la unidad de longitud. La unidad de fuerza se llama dina (en el sistema de medidas cuyas unidades fundamentales son el centímetro, el gramo-masa y el segundo, llamado por eso «sistema c.g.s.»).

La dina es la fuerza que aplicada al gramo-masa le comunica una aceleración de 1 centímetro por segundo a cada segundo. La unidad de longitud es el centímetro. Pero como la dina es una unidad muy pequeña, el trabajo de una dina a lo largo de 1 centímetro es una unidad diminuta, llamada ergio. Por eso se usa como unidad otra de diez millones de ergios, denominada julio (o joule).

EQUIVALENTE MECÁNICO DEL CALOR
En numerosas experiencias se comprueba que a la realización de un trabajo corresponde la aparición de una cantidad de calor. Por ejemplo, cuando usamos un inflador de bicicleta comprimimos un gas (el aire) y notamos que el tubo metálico se calienta.

Si se ha convertido un trabajo T en una cantidad de calor Q que verifica que T= J x Q, esa «J» es una cantidad constante que permite calcular la reciprocidad entre joules y calorías y se llama equivalente mecánico del calor.

Su valor es 4,18 (1 caloría equivale a 4,18 joules) y lo descubrió el gran sabio inglés James Joule (1818-1889) quien también enunció una sencilla fórmula que permite conocer la cantidad de calor producida poruña corriente eléctrica.

CORRIENTE  ELÉCTRICA Y CALOR
Para abreviar sus fórmulas, los físicos representan las magnitudes por letras, que son generalmente las iniciales de la palabra o la unidad que expresan. «T» significa «trabajo», medido en joules. «I» significa  «intensidad de la corriente», medida en  amperios. «R« significa «resistencia» del circuito, medida en ohmios. «t»  significa  «tiempo»,  medido en  segundos. «V» significa «voltaje», medido en  voltios.

El   trabajo   realizado   por  una   corriente   eléctrica depende del voltaje, de la intensidad de la corriente y, naturalmente, del tiempo transcurrido, o sea T = V x I x t que ue se expresa T = V .I. t (1) pues los signos de multiplicación (.) se sobreentienden.

Pero según la ley de Ohm: volt = ohmio x amperio,… ósea V = R x I

Al reemplazar «V» por su valor I x R en la fórmula anterior tenemos: T=R x I x l x t  ósea, T = R. I². t (2)

En otros términos, el trabajo  que efectúa una corriente eléctrica es, medido en joules, el resultado de multiplicar la resistencia del circuito en ohmios por el cuadrado de la intensidad en amperios y por los segundos de tiempo transcurrido.

El trabajo se obtiene en joules. Para transformarlo en calorías (una pequeña caloría es la cantidad de calor necesaria para elevar en un grado centígrado la temperatura de un gramo de agua) basta dividir por 4,18 ya que 4,18 julios equivalen a una pequeña caloría.

De modo que conociendo esta relación podemos saber con exactitud cuánto calor produce una corriente. Pero ignoraremos aún cuánta energía   útil  se  produce porque  ésta  depende  de nuestro  designio y siempre  se  gasta  una  parte  de esa energía en fenómenos colaterales indeseables.

CÓMO SE  APROVECHA   EL  EFECTO  CALÓRICO DE LA ELECTRICIDAD
En casi todos los artefactos eléctricos que producen calor o luz se emplean hilos metálicos de muy pequeño calibre y gran longitud, o que por su naturaleza oponen mucha dificultad al paso de la corriente. Estos hilos, arrollados en espiral, se llaman resistencias y logran un rendimiento próximo al 100 % al transformar la energía eléctrica en calor (no en luz).

Otro sistema basado en el mismo principio es el arco eléctrico, donde el hilo metálico es reemplazado por dos electrodos de carbón que también constituyen una resistencia. El arco se forma merced a los vapores de carbón incandescente y se logran temperaturas muy elevadas (unos 3.600°C). Hay otros métodos de producir calor y que sólo mencionaremos. Mediante corrientes alternas de alta frecuencia es posible calentar en todo su espesor sustancias no conductoras (aisladoras llamadas también «dieléctricos»)   por  el   sacudimiento   que   el  campo eléctrico produce en su masa.

Se logra un calentamiento muy uniforme, aprovechable en ciertas industrias (plásticos). Otro método es el calentamiento por inducción en el que se utiliza un campo electromagnético variable (ya hemos visto la relación entre electricidad y magnetismo). También se logra un calentamiento muy uniforme. Pero en estos dos métodos el rendimiento es muy inferior al ciento por ciento.

RESISTIVIDAD Y RESISTENCIA
La resistencia total de un circuito depende, además de su longitud y calibre, de la resistencia especifica o resistividad de la sustancia que lo constituye, y que indicaremos por la letra «r».

La fórmula se obtiene así: la resistencia R del circuito es tanto más grande cuanto mayor es su longitud «l» y la resistividad «r» del material que lo compone. Por otra parte R es tanto más pequeño cuanto mayor es la sección «s» del conductor.

En resumen, R es igual a la resistividad multiplicada por la longitud y dividida por la sección del conductor, o sea: R = r.l/s

Esta fórmula guía a ios ingenieros en la elección de la sustancia conductora apropiada a cada caso, pues la resistividad «r» es característica de cada material, y hay tablas para conocerlas. Generalmente aumenta con la temperatura (excepto en los semiconductores, el carbón y otras sustancias o mezclas).

Ejemplo: Un calentador electrico para 220 Volt, tiene una resistencia  de 80 Ohmios. Calcular la cantidad de calor T que produce este calentador en 2 minutos.

Antiguo Calentador Eléctrico

Sabemos que: T = R. I². t

La corriente I la obtenemos de la ley de Ohm: I=V/R=220/80=2,75 Amperios

Entonces: T=80. (2.75)². 120 seg.=72.600 Joules y multiplicado por 0,24 lo pasamos a calorias: 17.224 cal.

LÁMPARAS ELÉCTRICAS DE FILAMENTO
Las aplicaciones prácticas del efecto térmico de la corriente son muy numerosas. Una de las más importantes es la lámpara eléctrica. Ésta se compone de un largo y fino filamento de tungsteno que ofrece una considerable resistencia al paso de la corriente (el filamento puede tener hasta 60 centímetros de largo aunque está arrollado en una espiral de menos de 2,5 centímetros de longitud).

La fórmula de Joule nos dice que cuanto mayor sea la resistencia del hilo conductor, mayor es el calor producido. En este caso, debido al escaso calibre y gran longitud, se produce suficiente calor como para que que el tungsteno se vuelva incandescente y emita una luz casi blanca. Aunque ahora parezca simple, los primeros intentos para hallar un filamento adecuado fueron penosos.

Thomas Alva Edison, el inventor americano de la primera lámpara eléctrica útil (1879) empleó hilos de bambú carbonizado y evitó que ardieran haciendo el vacío dentro de la lámpara, es decir, retirando el oxígeno necesario para la combustión. Luego se recurrió al filamento de tungsteno pero el metal se vaporizaba gradualmente y depositábase en una capa negruzca en la pared de vidrio. Para impedirlo, la mayoría de las lámparas actuales están llenas de un gas inerte como el argón, que no reacciona   con   el  metal   y  evita su   vaporización.

ESTUFAS ELÉCTRICAS
Las estufas eléctricas se componen también de un alambre arrollado en espiral que se calienta al rojo cuando pasa la corriente; entonces el hilo conductor no sólo caldea el aire sino que emite rayos caloríficos. El filamento se arrolla sobre un soporte de material no conductor y refractario para que soporte temperaturas bastante altas. Generalmente se usa mica o materiales cerámicos.

El metal de la resistencia es una aleación, por lo general de níquel y cromo. La mayoría de los otros metales se oxidarían (combinación con el oxígeno del aire) y se quemarían muy rápidamente. Existen calentadores llamados de inmersión porque se colocan dentro del agua que se desea calentar, construidos en forma similar a las estufas; su filamento queda  aislado  del  agua  por una  cápsula  metálica  hermética.

FUSIBLES
Los fusibles usados para proteger circuitos eléctricos, representan otra útil aplicación del efecto calórico de la electricidad. Si, por alguna razón, pasa por ellos una corriente más intensa que la prevista se calientan excesivamente y se derriten. Evitan así que el contacto fortuito entre dos cables desnudos, que permite a la corriente utilizar un camino más corto y fácil (de allí viene el nombre de «cortocircuito») sobrepase la capacidad prevista para el circuito  y pueda provocar un desastre.

El alambre de un fusible se compone de un metal o aleación de bajo punto dé fusión. Si una corriente demasiado intensa recorre el circuito engendra suficiente calor como para fundir el alambre del fusible. Esto corta el  circuito  y se  evitan  serios daños.

El fusible es un simple trozo de alambre fino cuya temperatura de fusión es muy inferior a la del resto del circuito. Se lo intercala de modo que toda la corriente deba pasar por él, y si la intensidad de ésta sobrepasa cierto límite el alambre del fusible se calienta hasta fundir, interrumpiendo el circuito.

HORNOS  ELÉCTRICOS
Otra aplicación importante son los hornos eléctricos. Existen dos tipos: el horno de resistencia que funciona como las estufas domésticas aunque en mayor escala y el horno de arco que se base en el arco eléctrico ya mencionado. Se utiliza la formación de chispas entre los dos electrodos mantenidos a corta distancia y la gran cantidad de calor producida se debe a la resistencia que ofrece el aire al paso de corriente por ser mal conductor.

Estos hornos de arco se usan para fundir metales y en algunos el metal se funde por el calor de dos electrodos de carbón puestos por encima del metal. En otros el mismo metal sirve de electrodo mientras que el otro es de carbono y se funde por el calor del arco.

PLANCHA ELECTRICA: Idem al caso anterior, utiliza calor generado por una resistencia a partir de la corriente eléctrica. las amas de casa todavía no no la podían utilizar ya que no existía la conexion a la red eléctrica y no se había inventado aun el termostato. El calor se producía en una resistencia colocada en el interior de la plancha que con el paso de la corriente eléctrica se calentaba por el efecto Joule.

Esto consiste en que la circulación de corriente eléctrica por la resistencia, desprende mas o menos cantidad de calor dependiendo de tres factores: el valor del cuadrado de la intensidad, la resistencia y el tiempo de funcionamiento del aparato eléctrico.

Fuente Consultada:
Revista TECNIRAMA N°14 Enciclopedia de la Ciencia y La Tecnología – Ciencia: La Electricidad-

Vida y Obra de Henry Ford Biografia Que es el fordismo?

BIOGRAFIA DE HENRY FORD – VIDA Y OBRA  (1863-1947)

El desarrollo industrial de los Estados Unidos de América, en los años de 1860 a 1920, no fue sólo relativo y parcial, sino absoluto en todos los sentidos.

La riqueza nacional se había multiplicado rápidamente y el país pasó de su estado colonial a ser una potencia de primer orden.

A este avance extraordinario de la industria americana contribuyó no sólo la riqueza inexplorada que el Nuevo Mundo ocultaba en sus entrañas, sino también la casi ilimitada libertad de la iniciativa privada —perjudicial en otros aspectos— y el desmesurado interés y afán de conseguir los fines materiales más poderosos y extensos.

Fue en esta época cuando Norteamérica se convirtió en la tierra prometida para aquellos que supieron encauzar a su favor el caudal de estos ríos de oro.

Esta conducta —sería superficial llamarla «sistema»— provocó serios problemas sociales, difíciles de resolver con la misma rapidez que se producía el ascenso industrial.

Pero también dio lugar a la fructífera industrialización del país. Entre los más destacados forjadores de esta etapa figura Henry Ford, «rey de los automóviles americanos», que revolucionó, con su sistema de producción en serie, toda la industria.

Nació el 30 de julio de 1863 en Dearborn, cerca de Detroit, en una pequeña cabana. Fue el primer hijo de un inmigrante irlandés, William Ford, que llegó a Estados Unidos en busca de riqueza y bienestar.

Falleció en 1947 a la edad de 84 años, dejando una enorme fortura de mas de 1.000 millones de dólares y a la industria su sistema de producción en serie con la cadena de montaje que fue la base de su grandeza industrial y que revolucionó la producción de todas las grandes empresas.

Su genio fue indiscutible, aunque se manifestó únicamente en la simplicidad del sistema de trabajo y de la venta en grandes cantidades, con beneficio muy reducido.

Él creó el más conocido tipo de coche «popular» y contribuyó eficazmente a la ampliación del potencial militar de los Estados Unidos durante las dos últimas guerras mundiales.

También contribuyó poderosamente en la industrialización de la agricultura norteamericana.

henry ford

Henry Ford en 1930.  La clara y fría mirada, los finos labios apretados, delatan su temperamento roqueño, su férrea voluntad, su espíritu rectilíneo refractario a claudicaciones y concesiones y generosidades sin por qué. En fin, ese espíritu, esa voluntad, ese temperamento que necesitan todos los grandes creadores de algo útil para mejor vivir. Porque ni los grandes caritativos, ni los blandengues de voluntad, ni los tímidos consiguen otra cosa que sumar fracasos, desilusiones…

******** 00000 ********

¿Que es el fordismo?: El término “fordismo” se refiere al modo de producción en serie que llevo a la practica Henry Ford; fabricante de coches de Estados Unidos. Este sistema supone una combinación de cadenas de montaje, maquinaria especializada, altos salarios y un número elevado de trabajadores en plantilla.

Este modo de producción resulta rentable siempre que el producto pueda venderse a un precio bajo.

Introducción: Nació en Greenfield y murió en Dearborn.

Empezó a trabajar desde muy niño en un taller de maquinarias en Detroit.

Despúes estudió ingeniería, llegando a ingeniero jefe de la Edison Iluminating Co. y en 1903 se estableció por su cuenta en Detroit, fundando Ford Motor Co. que bajo su presidencia llegó a ser la mayor fábrica de autos y tractores del mundo.

Creó el automóvil más popular que ha existido, el famoso modelo T, llamado vulgarmente Fortingo, del que vendió 10.000.000 de 1908 a 1924, luego se superó con otros modelos como el V-8 que también logró gran difusión. Escribió: Mi Filosofía Industrial en 1929.

******** 00000 ********

SU BIOGRAFÍA:

Henry Ford, pionero de la gran industria norteamericana del automóvil, nació el 30 de julio de 1863 en Dearborn, cerca de Detroit. Fue el primer hijo de los muchos que tuvo el emigrante irlandés William Ford, alto, fuerte, tenaz para el trabajo, decidido a conquistar el bienestar para él y los suyos.

En busca de ese prometedor futuro emigró a los Estados Unidos, donde los fuertes y audaces solían encontrar su paraíso. El sabía muy bien que su  humilde esfuerzo realizado en Irlanda le rendía en Norteamérica diez veces más, en el mismo tiempo, que le rindiera en la tierra natal.

En efecto, a los dos años de establecido, sin dejarse arrastrar por los aún más audaces que él, buscones insaciables del oro del Oeste, William Ford había empezado a ahorrar.

Como su familia aumentaba de año en año, William Ford pudo irse ahorrando los jornales de algunos braceros, ya que sus hijos, todos ellos fuertes, ayudábanle a labrar la tierra y a cuidar del ganado, aunque su primogénito no tenái mucho interés.

Henry era sumamente competitivo, le gustaba luchar contra algo, contra alguien, y su claro talento le hacía saber que contra la Naturaleza no había posibilidades de luchar y… vencer.

También sabía que la educación forjaba el futuro de los jóvenes, siempre se destacó como alumno hasta el punto de que el director de la escuela aconsejó a William Ford que permitiera a su hijo seguir estudios superiores de química o mecánica.

De regreso a su casa le interesaba investigar en una vieja herrería  cercana para maravilalrse ante las magias del fuego con los metales. ¿Presentía Henry que de los metales y el fuego le llegarían su fama y fortuna?.

El caso fue que, terminada la primera enseñanza, el muchacho logró dos éxitos personales : que se le permitiera asistir a la herrería como aprendiz, y que se le consintiera instalar en una choza próxima a su casa un pequeño taller de chapuzas metalúrgicas.

El taller contaba con fragua, yunque, incontables herramientas; y él, el avispado mócete, lo mismo arreglaba un reloj que forjaba unas herraduras, igual componía alguna máquina agrícola que el fogón de alguna cocina.

Unos de sus primeros proyecto fue el de construir un carruaje movido por un motor que fuera más ligero de peso, más rápido de avance y más cómodo que otros carruajes que había conocido.

Cumplidos los dieciséis años,  marchó a Detroit, entrando como aprendiz en un taller de maquinaria. Diez horas de intensa jornada diaria y un pobre sueldo  que no le daba para vivir.También aprendió técnicas sobre relojería y sumo a las diez horas otras cuatro diarias en un negocio del ramo.

Al tiempo regresó  a la granja de su padre. Pagó a su padre lecho y comida con su trabajo durante seis horas diarias. Y dejando otras seis para el sueño, se dedicó con pasión a trabajar en el taller que había montado con sus ahorros, y en el que reparó cuantas máquinas se les estropeaban a sus vecinos.

Otra vez en Detroit — 1882— entró en una manufactura de maquinaria agrícola en calidad de montador-reparador. Sus progresos técnicos asombraron a sus jefes y maestros, y bien pronto pudo pensar en la necesidad de casarse.

Lo hizo en 1885 con Clara Bryant, amiga de sus hermanas Margarita y Juanita, vecina de Greenfield, pero que pasaba algunas temporadas en Dearborn. Papá William le dio, como regalo de bodas, cuarenta acres de tierra.

En el centro de esta propiedad levantó Henry su morada, y la levantó con su único esfuerzo, dedicando a la empresa sólo algunas horas hurtadas a los trabajos remunerados.

taller de henry ford

Interior de la fábrica Ford situada en la avenida Bagley. — Según confesó el viejo Henry Ford I en su interesante libro Mi vida y mi obra —publicado en 1926 y traducido a todos los idiomas cultos—, de cuantos talleres tuvo durante su larga y fecundísima aventura automovilística, ninguno le fue tan querido como éste, sencillo y pobretón, de la avenida Bagley. Sus inmensas riquezas y fama las adquirió en talleres descomunales; pero fue precisamente en éste donde el joven «viejo» Henry Ford I empezó a soñar con esa fama que le enriquecería tanto como le ennoblecería.

En el mismo año de su boda, por el otoño, le aconteció a Henry Ford algo que sería el punto de arranque de su rápida y universal fama. Estando en el taller mecánico Eagle, Henry se enteró que directores, ingenieros y técnicos de las diferentes secciones estaban perplejos en torno a un motor Otto, adquirido en Alemania, que no arrancaba.

Sin el menor alarde de suficiencia, modestamente se ofreció Henry para intentar ponerlo en marcha. Sencillamente empezó Henry a hurgar en el motor….en pocas horas ese motor funcionaba correctamente.

En Detroit, comenzó a trabajar como «mecánico especializado» en la Edison Illuminating Cbmpany. En sus escasos momentos libres de servicio, entre 1892 y 1893, construyó, pieza a pieza, su primer automóvil: un cuatriciclo con motor de potencia de «cuatro caballos», refrigerado con agua, pero que carecía de marcha atrás.

En el año 1899 se asoció con los dirigentes de la Compañía «Automóviles Detroit». Pero como su participación en el capital era insignificante, no logró imponer sus proyectos, el más importante de los cuales consistía en fabricar automóviles en serie.

Porque la Detroit Automobile Company sólo fabricaba automóviles de encargo y uno a uno. Obsesionado por producir coches baratos en serie, se apartó de esta Compañía y fundó — 1903— su propia Ford Motor Company.

Poco después había revolucionado con sus métodos la técnica y la organización industrial, convirtiendo su compañía en una gigantesca empresa, creando uno de los más grandes imperios industriales de nuestra época, con fábricas y sucursales en más de cuarenta países.

Antes que él, los constructores se limitaron a montar los coches, pero compraban las piezas en distintas manufacturas. Ford fue quien primero empezó a fabricar sus coches por completo.

Para ello impuso su sistema: alcanzar la máxima autarquía económica posible por medio de la autofinanciación, de la adquisición de las fuentes de las materias primas, de la erección de factorías para elaborar dichas materias primas, de la posesión de medios de transporte por mar y tierra; de la racionalización de la producción: fábricas modelo, división del trabajo, trabajo en cadena…

Sólo así consiguió aumentar extraordinariamente la productividad, abaratar las mercancías, reducir la jornada de trabajo, aumentar los salarios…

Henry Ford tuvo que ganar la competencia entablada con otros constructores de autos: los hermanos Duryea, cuyo primer automóvil circuló en 1892; Elwood Haynes y los hermanos Apperson, que lanzaron su modelo dos años después.

Pero a Henry Ford no le preocupó esta competencia de modelos más o menos «bonitos», sino la que le planteó Alejandro Wintón, de Cleveland, cuyo coche alcanzaba una velocidad superior a los 60 Km/h.

Como ya se ha dicho entre 1892 y 1893 construyó Ford su primer coche: 230 kilos de peso, motor montado en el eje trasero, dos cilindros, potencia 4 HP., velocidad máxima 30 kilómetros a la hora.

En 1896 construyó su segundo automóvil: 215 kilos, 40 kilómetros a la hora.

En 1897, el tercero, más perfecto, ligero y rápido. Se iba aproximando Henry Ford a su sueño maravilloso: retar a Winton y ganarle.

Ideó un nuevo motor compacto y lo montó en una carrocería de 200 kilos. Y desafió a Winton. La carrera se desarrolló el 1º de diciembre de 1902 en la pista de Grosse Pointe, próxima a Detroit.

Ante el asombro de miles de técnicos y aficionados, el coche Ford ganó la carrera a «la estremecedora velocidad» de ochenta kilómetros por hora.

Siguió construyendo sus coches sólo con la preocupación de dotarlos de mayor fuerza expansiva. Por ello se lanzó a construir dos coches de carreras a los que llamó La Flecha y 999, equipados con motor de 8 HP.

Con ellos ganó varias carreras y entusiasmó a los aficionados y preocupó a sus competidores. Y ya pudo darse el gustazo de elegir a sus socios, que fueron; Alex Malcolmson, comerciante al por mayor de carbones, los abogados John W. Anderson y Horace H. Rackhem y los seis o siete amigos que le habían ayudado económicamente en los días difíciles.

Quedó fundada la ya mencionada Ford Motor Company, la cual, sin descuidar el muy importante punto de la velocidad, se preocuparía de aplicar esta velocidad a los autos construidos en serie.

PRIMER auto ford

Modelo de coche Ford A-1903. — Primer coche nacido en la recién inaugurada — 1903— Ford Motor Co. Coche calificado de devorador de kilómetros: treinta a la hora, y que permitía a sus viajeros disfrutar de los vientos levantados con fuerza y rebozarse en polvos y lodos. Como este coche nacieron otros 5.000 en 1904, 15.000 en 1906, 25.000 en 1907… Quince años después, coches bastante más rápidos y complicados nacieron en número de 3.500…por día. Anécdota:por un modelo Ford A-1903 en «buen estado» fueron pagados en 1956… ¡quince mil dólares!

Curiosa noticia: los socios de Ford acordaron que éste no tendría que aportar capital alguno, y, sin embargo, recibiría el veinticinco por ciento de las acciones y un sueldo de trescientos dólares al mes como director e ingeniero jefe de la Compañía, cuya presidencia ostentó el poderoso banquero de Detroit John S. Gray.

También resulta curiosa esta otra noticia: que antes de que Ford independizase su fábrica, procurándose las primeras materias y los métodos rápidos de traslado, los primeros seiscientos cincuenta chasis y motores de los coches Ford fueron construidos en los talleres de los hermanos Dodge, quienes advirtiendo la eficacia de la fórmula Ford, decidieron construir motores y chasis por cuenta propia y bajo su marca.

Y yendo de anécdota en anécdota, puede contarse que el coche Ford, que en 1904 costaba mil trescientos dólares, costaba doscientos noventa en 1924.

Y cuando la producción alcanzaba cifras más altas, el costo llegaba a precios más bajos.

En 1910 salieron tres mil coches de la fábrica Ford, y quince mil en 1913, y setenta y cinco mil en 1915, y ¡veintiocho millones en 1940! Y terminada la primera guerra mundial — 1918 —, la baratura y la abundancia de coches Ford — con quien ningún otro constructor europeo podía competir— a punto estuvo de poner en la bancarrota a los más acreditados constructores de Inglaterra, Italia y Francia.

Enemigo tenaz tanto de los sindicatos como de los poderes públicos, Ford firmó — 1914— un contrato con la Unión de los Trabajadores del Automóvil, por el cual se comprometía a salvar las diferencias con sus empleados y operarios por medio de comités integrados por el mismo número de aquéllos y de capitalistas.

Estas radicales medidas de Ford desagradaron decisivamente a la mayoría de sus socios, quienes tampoco aprobaron que Ford subiese los sueldos a sus obreros de dos dólares treinta y cinco centavos a cinco dólares.

Sumamente expeditivo, cada vez más aficionado a no acatar otra voluntad que la suya, Ford compró sus acciones a los principales de sus socios: Couzans, hermanos Dodge, abogados Anderson y Rockhem, herederos de Gray.

Por esta decisión, tomada en el momento más oportuno para sus intereses, Ford se convirtió en uno de los más grandes multimillonarios de Norteamérica, y debe saberse que tuvo que pagar setenta y cinco millones de dólares por acciones que valieron en tiempo de la fundación de la Ford Motor Company sólo veinticinco mil dólares.

Duro, inflexible, tenaz, voluntarioso, decían de él sus competidores «que llevaba su negocio como pudiera llevar la economía de una tienda de pueblo». Durante la guerra mundial 1914-1918, dedicó sus fábricas gigantescas a la fabricación de armamento.

En 1919 nombró presidente y jefe ejecutivo de su Compañía a su hijo Edsel, de gran talento, pero de escasa energía, por lo que Henry, desde la sombra, siguió siendo motor absoluto de la empresa, cuyo capital superó —1940— los dos mil millones de dólares. Muerto Edsel recobró Henry el mandato oficial.

Pero a partir de 1943 la cabeza de este titán de la industria moderna empezó a sufrir caídas alarmantes, caídas que motivaron colapsos en la empresa.

Por lo cual su nieto, Henry Ford II, edición corregida y aumentada, pero más pulida y atemperada a los tiempos actuales, de su abuelo, tomó el mando pleno de la Ford Motor Company.

Claro está que a Henry Ford II le costó más trabajo que eliminar la preponderancia ya senil de su abuelo, la que tenía un exboxeador llamado Harry Bennett, guardaespaldas de Henry Ford I, y su gran consejero durante casi treinta años.

henry ford y su nieto

Henry FordI y Henry Ford II, abuelo y nieto, en 1946. — El abuelo, fundador de la dinastía Ford y de acaso la más popular y fecunda industrialización del automóvil, está subido en un coche Ford modelo 1896. Su sonrisa, un tantico engreidilla, delata la satisfacción que le ocasiona retratarse sobre su criatura mecánica, cumplidora muy terne del medio siglo. Por el contrario, Henry Ford II, «muy de su época», mira con profundo disgusto al que debe considerar como matusalénico «cacharro». La Historia nos enseña que ningún heredero de un reino se sintió identificado con la política de su antecesor, y que procuró modificarla en seguida.

Henry Ford, el creador de la más sensacional empresa de automóviles que haya existido hasta hoy, potentísimo impulsador de varias industrias norteamericanas, murió — 1947— cuando contaba ochenta y cuatro años y su mente llevaba ya mucho tiempo muerta.

Pero, además, Henry Ford fue un escritor muy interesante de obras que comparten temas económicos, sociales y autobiográficos. De ellas han alcanzado gran éxito — traducidas a doce o catorce idiomas — las tituladas My Life and Work — 1922— (Mi vida y mi obra), Today and Tomorrow — 1926— (Hoy y mañana), The International Jew — 1928— (El judío internacional).

Fuente Consultada:Grandes Figuras de la Humanidad Editorial Ediciones Cadyc – Biografía de Henry Ford

Ver: Decadencia del Imperio Automotriz de Ford

******* 00000 *******

EL FORDISMO

Mientras que en sus primeros momentos el «proceso de industrialización» fue un fenómeno exclusivamente inglés, se inició luego la industrialización masiva de otras sociedades como Francia, en la primera mitad del siglo XIX y Alemania y Norteamérica en la segunda mitad.

La última fase de este proceso de industrialización se gesta a partir de un cambio en el proceso de trabajo introducido por las experiencias de Henry Ford en su fábrica de autos en Estados Unidos de Norteamérica, generando una nueva forma de organizar la producción y el trabajo.

La introducción del ‘transportador de cinta o de cadena  aseguró la circulación de las  piezas mientras los obreros permanecían quietos en sus puestos de trabajo. Al hacer pasar delante de cada trabajador la pieza principal a la cual debía montarles otras piezas, al final del circuito el producto estaba terminado. Gracias a esta línea de montaje, el ritmo de trabajo era regulado mecánicamente por la velocidad del transportador que pasaba delante de cada obrero.

Los transportadores y la cadena de montaje permitieron relacionar la producción de unas máquinas con otras, reduciendo la necesidad de fuerza de trabajo. El movimiento continuo de los objetos a ensamblar facilitó la producción ininterrumpida de una masa de bienes homogéneos y estandarizados para hacer frente a la demanda.

Al reducirse el tiempo de trabajo utilizado para ensamblar cada unidad de producto, creció la productividad, por lo que fue posible trasladar los beneficios a los consumidores a través de la baja de precios, situación que generó el incremento de la demanda.

******* 00000 *******

La empresa Ford, además, fue precursora al realizar’ estudios sociológicos sobre los parámetros de vida de sus trabajadores y la simplicancias de los mismos en el proceso de trabajo.

Esto funcionó a modo de «disciplinamiento» de la mano de obra a través de controles realizados por asistentes sociales. Y generó una suerte de «intercambio» con los empleados, quienes, al modificar algunos hábitos de su vida, recibían a cambio aumentos de salario. Estos estudios dieron nacimiento al Departamento de Sociología en la empresa, antecesor del Departamento de Personal.

Las normas de consumo y de vida, se modificaron debido a que se les exigía a los trabajadores cumplir con determinadas pautas, acordes con la nueva situación. El Departamento de Sociología asesoraba a las familias acerca de esas pautas que, en última instancia, eran funcionales con el proceso productivo instalado.

Ford expresó: «La experiencia me ha enseñado mucho en materia de salarios.

Yo creo, en primer lugar, dejando de lado toda otra consideración, que nuestro propio éxito depende en parte de los salarios que nosotros pagamos. Si nosotros repartimos mucho dinero, ese dinero se gasta. Éste enriquece a los comerciantes, a los minoristas, a los fabricantes y a los trabajadores de todo tipo. Esa prosperidad se traduce por un crecimiento de la demanda para nuestros automóviles.[…] Nosotros no hemos cambiado los salarios simplemente porque teníamos ganas de hacerlo y porque podíamos. Si nosotros hemos decidido pagar salarios más altos es para colocar nuestro negocio sobre una base durable. Eso no lo hicimos para repartir regalos, sino para asegurar el porvenir. Una industria con bajos salarios está siempre en peligro».

Asimismo, Ford decía que «así como nosotros adaptamos las máquinas y herramientas en el taller para producir la clase de autos que tenemos diseñados en nuestras mentes, así nosotros hemos construido un sistema educacional en vista a generar el producto humano que tenemos en mente».

Para lograrlo, se realizaba el seguimiento de las pautas de vida de los obreros más allá del ámbito de la fábrica, a través de actividades relacionadas con la formación, como la creación de escuelas; el fomento del deporte; la creación de asociaciones para paliar problemas como el del alcoholismo, que poseía índices sumamente altos en ese momento; el fomento de la construcción de viviendas y los créditos al personal.

Algunos de los resultados observados en los trabajadores de la empresa Ford fueron la disminución del alcoholismo, del ausentismo, del analfabetismo y de la rotación de trabajadores, con un claro incremento de la productividad, aun con reducción de la jornada de trabajo de 9 a 8 horas diarias.

Después de la crisis de 1929, en los Estados Unidos, el Estado asumirá la tarea de asegurar a los trabajadores los distintos beneficios, como educación, recreación, vivienda y salud, que inicialmente, como hemos dicho, estuvieron bajo responsabilidad de la empresa.

El modo de desarrollo fordista tuvo plena vigencia a partir de la Segunda Guerra Mundial y hasta principios de la década del 70. Desde entonces, el «modelo» fordista entra en una etapa de crisis que perdura hasta la actualidad.

Sin embargo, durante su período de vigencia, el fordismo solucionó uno de los principales problemas del capitalismo: las crisis de sobreproducción o subconsumo.

La generalización de las pautas de consumo masivo de bienes durables y el crecimiento de los salarios reales lograron crear el mercado necesario para la creciente producción masiva de bienes homogéneos, resolviéndose así -al menos en los países desarrollados- el problema de las crisis de subconsumo.

En síntesis, el «círculo virtuoso» generado por el fordismo garantizó a los países industrializados, durante los 30 años de posguerra, el incremento en la producción, la productividad, las tasas de ganancias, la inversión, el empleo y los salarios.

Fuente Consultada:
Economía Las Ideas y los Grandes Procesos Económicos Rofman-Aronskind-Kulfas-Wainer
Grandes Figuras de la Humanidad Editorial Ediciones Cadyc – Biografía de Henry Ford

Toyotismo Criterio Para La Organizacion Industrial de Producion

TOYOTISMO, Organización Industrial Científica
En Busca de la Eficacia Productiva

ABANDONO DE LA PRODUCCIÓN EN CADENA
Al final de los años sesenta se llegó a la conclusión —principalmente en los países escandinavos— de que ya no era totalmente válido el principio de Ford según el cual un producto resulta tanto más barato cuanto más racional es su fabricación. El crecimiento de la producción se veía amenazado por los altos índices de absentismo laboral, frecuentes bajas por enfermedad, descenso de la calidad y dificultad para contratar nueva mano de obra. Algunas grandes empresas suecas, entre ellas Saab-Scania y Volvo, crearon equipos de investigación en los cuales los propios trabajadores pudieron aportar sus experiencias y sugerencias. En 1972 se eliminó la cadena de producción en el taller de fabricación de motores de las fábricas Saab-Scania. En Volvo cada trabajador monta «su» automóvil de forma ampliamente autónoma.

El dinamismo de la empresa japonesa se atribuye a los secretos” de la organización productiva que presenta fuertes diferencias con el taylorismo y fordismo de la industria norteamericana.

toyotismo, produccion japonesa

Estas características de las empresas japonesas son, en primer lugar, el sistema de empleo «de por vida», el sindicato por empresa que tiende más a la cooperación que al conflicto (huelgas) y el salario por antigüedad

Pero son sin duda las innovaciones introducidas por el ingeniero Ohno de la empresa automotriz Toyota  que impusieron un modelo de producción —el toyotismo— con las siguientes características:

  • Se produce a partir de los pedidos hechos a la fábrica (demanda), que ponen en marcha la producción
  • La eficacia del método japonés está dado por los llamados “cinco ceros”: “cero error, cero avería (rotura de una máquina), cero demora, cero papel (disminución de la burocracia de supervisión y planeamiento y cero existencias (significa no inmovilizar capital en stock y depósito: sólo producir lo que ya está vendido, almacenar ni producir en serie como en el fordismo). Lo comercial (el mercado) organiza el taller.
  • La fabricación de productos muy diferenciados y variados (muchos modelos) en bajas cantidades (producción acotada). Recordemos que el fordismo implicaba la producción masiva de un mismo producto esta standard, ppor ejemplo, el Ford T negro).
  • Un modelo de fábrica mínima, con un personal reducido y flexible.
  • Un trabajador multifuncional que maneja simultáneamente varias máquinas diferentes. Los puestos bajo son polivalentes, cada obrero se encarga de operar tres o cuatro máquinas y realiza varias tareas de ejecución, reparación, control de calidad y programación. En el taylorismo los obreros realizan tareas parciales y un trabajo repetitivo.
  • La disposición de las máquinas y de los trabajadores en torno a ellas también es distinto a la que imponía  la cinta transportadora en la cadena de montaje de Ford.
  • La adaptación de la producción a la cantidad que efectivamente se vende: producir «justo lo necesario a tiempo”.
  • La llamada autonomatizacíón, introduce mecanismos que permiten el paro automático de la máquina so de funcionamiento defectuoso, para evitar los desperdicios y fallos.

El automóvil de mayor producción en el mundo después del Ford T, el Volkswagen «escarabajo», se montaba en la cadena de producción, en la que cada trabajador realizaba una única operación  La firma sueca Volvo ha prescindido de este sistema; cada operario monta «su» automóvil.

CRISIS DEL FORDISMO: La suba del 400 % del precio del petróleo crudo, establecida por la Organización de Países Exportadores de Petróleo (OPEP) entre 1973 y 1974, determinó la disminución de la producción de los países industriales. A pesar de las estrictas restricciones impuestas por los gobiernos al consumo de petróleo y sus derivados, el encarecimiento se trasladó al resto de los productos, cuyos precios aumentaron en forma vertiginosa y la inflación se incrementó notablemente, tanto en Europa como en los Estados Unidos.

Las innovaciones tecnológicas no alcanzaron a resolver estos problemas. Al mismo tiempo, la progresiva saturación de los mercados internos condujo a una mayor apertura internacional del comercio, y se hicieron sentir los efectos de la competencia de otros países con economías pujantes, como el Japón. Mientras tanto, las múltiples fundones que desarrollaba el Estado determinaron que el gasto público creciera a la par de la inflación, y las ideas de Keynes comenzaron a ser discutidas.

Con más gastos que ingresos, es decir, con déficit, los gobiernos recurrieron al endeudamiento externo, a la emisión de moneda y al aumento de los impuestos para poder financiar su gestión. Esta conjunción de situaciones desalentó las inversiones de las empresas y el consumo de la población. Entonces, el crecimiento económico se estancó y el Estado obtenía aún menos recursos, lo que condujo al aumento del déficit, el endeudamiento y a la inflación. Así, progresivamente, las economías entraron en crisis.

No hay una explicación unánime acerca de los ciclos de crecimiento y depresión de las economías capitalistas. Para algunas teorías, esta sucesión se atribuye solo a factores económicos (por ejemplo el precio de las materias primas, el estancamiento del consumo, la tecnología); para otras, inciden también factores sociales o políticos (como migraciones y conflictos gremiales). Por ello, el debate sobre las causas de la crisis del fordismo sigue vigente.

TABLA COMPARATIVA DE AMBOS SISTEMA

tabla comparativa: producción ford - toyota

Historia de los Descubrimientos Electricos Estudio de los Fenómenos

Historia de los Descubrimientos Eléctricos

INTRODUCCIÓN:
PRIMEROS CIENTÍFICOS Y PRIMERAS EXPERIENCIAS

Las primeras nociones de la electricidad.
Se da el nombre de electricidad a un agente físico imponderable, que produce una multitud de fenómenos como atracciones, repulsiones, producción de luz y calor, conmociones orgánicas y reacciones químicas.

El hombre primitivo sintió los efectos ingentes de la electricidad atmosférica manifestada por el trueno y por el rayo, pero a pesar del terror que le ocasionaban, no supo explicárselos, atribuyéndolos a la pujanza de la divinidad irritada con los hombres. Según los griegos, Zeus, para castigar a los mortales arrojaba las flechas de su aljaba cada una de las cuales era un rayo.

La electricidad por frotamiento, obtenida del ámbar y manifestada por atracciones de cuerpos ligeros, fue conocida desde los tiempos más remotos, por el año 3400 antes de J. C, pero distaban mucho los hombres de creer que se produjese esto por una causa común a la productora del rayo.

Tales, filósofo griego de la escuela jónica que vivió desde el año 640 hasta el 548 antes de J. C, descubrió que estos fenómenos eran debidos a un fluido que, según él existía únicamente en el ámbar y como éste en griego se llama » electrón», el fluido derivado de él tomó mucho más tarde el nombre de electricidad. Plinio, antiguo naturalista que pereció en la erupción del Vesubio en el 79 de la era cristiana, escribió sobre el ámbar y sus cualidades comparándolo con la piedra imán cuya propiedad era ya bien conocida.

Progreso en el estudio de la electricidad.
Guillermo Gilbert, célebre físico y médico de la Reina Isabel de Inglaterra, fue el primero que se dedicó al estudio metódico de la electricidad, descubriendo que no era la resina la única substancia que la producía. Comprobó idénticos resultados frotando azufre, lacre, goma, sal gema y varias otras substancias.

Historia de los Descubrimientos Electricos

Otto de Guericke, físico alemán nacido en Magdeburgo en 1602 y muerto en 1686, inventor de la máquina neumática, parece haberlo sido también de la primera máquina eléctrica, basada en el frotamiento del azufre. Constaba su invento en una esfera de azufre que giraba mecánicamente y era frotada con la mano, obteniéndose diminutas chispas. Más tarde la substituyó con vidrio y perfeccionado el procedimiento de la frotación, obtuvo mejores resultados.

guerike

Esteban Gray, que consagró su vida al estudio de la electricidad hizo verdaderos progresos en el campo de la Física. Después de innúmeras experiencias clasifico los cuerpos en buenos y malos conductores de la electricidad, y notó la posibilidad de electrizar un cuerpo por contacto. Fue el primero que utilizó el hilo metálico para trasladar la electricidad de un punto a otro.

Gray

Dufay, continuando los estudios de Gray descubrió las dos clases de electricidad llamadas positiva y negativa. El descubrimiento de la electrización por influencia marcó el punto de partida para los grandes inventos que mostraron la importancia excepcional de la electricidad a la que, hasta entonces, no se le había dado importancia. Entre las máquinas basadas en la influencia merecen citarse como las más importantes, el eletróforo de Volta, la máquina de Ramsden y la de Wimshurt.

El problema del almacenamiento de la electricidad era el más esencial tal vez, para llegar a su aprovechamiento y después de muchos estudios fue solucionado a la vez, pero separadamente por un monje y por un catedrático de Leiden, ciudad de Holanda, aparato que quedó consagrado con el nombre de » Botella de Leiden «.

LOS DESCUBRIMIENTOS: Hace ya más de 2.000 años los griegos descubrieron que al ser frotado con una tela el ámbar atrae objetos livianos como plumas, polvo, etc. Se descubrió que dos varillas de ámbar luego de ser trotadas se repelían. Pero la razón de estos fenómenos no era comprendida.

gilbertGuillermo Gilbert, releyendo los escritos de los griegos alrededor del 1600, se interesó más por el magnetismo (sugirió que la Tierra se comportaba como un inmenso imán). Con todo, se dio cuenta de que las fuerzas de atracción y repulsión entre varillas frotadas eran similares a las fuerzas que ejercen entre sí los imanes naturales. Fue Gilbert quien dio al nuevo campo de estudio el nombre de electricidad, que derivó del nombre griego del ámbar.

Con el transcurso del tiempo se comprobó que muchas otras sustancias podían producir también efectos eléctricos. Otto Von Guericke, en el siglo XVII, construyó una esfera de azufre que podía hacer girar con una mano y frotar con la otra.

Además de atraer pequeños trozos de papel producía (lo cual era inesperado) crujidos y diminutas chispas mientras se la frotaba. Por primera vez se veía que la electricidad podía fluir; en realidad se pensaba que era un fluido que podía ser transferido de un objeto a otro por frotamiento.

La esfera de azufre de Guericke fue muy empleada y desarrollada por los primeros investigadores. Fue uno de los primeros métodos deelectricidad estatica producir electricidad. Posteriormente encontraron la forma de conservar la electricidad así producida en la botella de Leyden —una botella parcialmente llena de agua con una cadena metálica que colgaba a través del corcho—. Éste fue el antecesor del capacitor.

Benjamín Franklin vio la conexión entre las diminutas chispas de la esfera de azufre a las gigantes chispas del rayo —ambos eran flujos de «fluido» eléctrico—. Demostró su afirmación con su famoso experimento que consistió en hacer volar un barrilete hacia una nube ele tormenta. El cable húmedo del barrilete condujo hasta tierra la carga eléctrica de la nube.

El italiano Galvani hizo otro descubrimiento importante en forma accidental hacia fines del siglo XVIII.

galvaniDescubrió que tocando con alambres de hierro y latón los músculos de las patas de una rana recién muerta, se los hacia contraer del mismo modo que cuando se los tocaba con la electricidad almacenada en una jarra de Leyden.

Galvani pensaba que, de alguna manera misteriosa, las patas habían producido su propia electricidad.

Había muy poco, en los estudios que se hacían en aquellos tiempos, que tuviera verdadero significado. A la electricidad se la consideraba más bien como un juego, para atraer o repeler y producir chispitas.

Y en realidad, las minúsculas cantidades de electricidad generadas por las máquinas de frotamiento no tenían ninguna utilidad práctica. Casi todos los conocimientos actuales de electricidad se adquirieron en los últimos 160 años.

El descubrimiento, Von Alejandro Volta, de la pila » eléctrica marcó una nueva senda al estudio de la electricidad. Volta demostró que la contracción de las patas de la rana observadas por Galvani no tenían nada que ver con la rana en sí, sino que era debida a los alambres de hierro y latón, que al entrar en contacto con la humedad salina de la rana generaban electricidad.

Constituían, en verdad, una forma primitiva de célula electrolítica. Volta fabricó su pila con placas de cobre y cinc puestas en una solución salina. Luego construyó una batería más útil conectando una cantidad de estas unidades entre sí.Carlisle

El primer efecto importante que se descubrió con las corrientes eléctricas fue su facultad de descomponer en sus elementos componentes a ciertos compuestos químicos: la electrólisis. A principios del siglo XIX, dos científicos ingleses, Carlisle y Nicholson, conectaron los extremos de una pila de Volta a dos alambres de platino colocados en tubos que contenían ácido diluido.

De los alambres surgieron burbujas y se comprobó que las que salían de un cable eran de oxígeno y las que salían del otro eran de hidrógeno. Los químicos llegaron correctamente a la conclusión de que el agua había sido descompuesta en los elementos que la componen por el paso de la corriente eléctrica.

Con las pilas de Volta la electricidad podía producirse fácil y continuamente. Científicos de todas partes adoptaron la pila de Volta y la empezaron a utilizar para sus propios experimentos. Una de las grandes dificultades que encontraron fue que no se disponía de un método para medir la electricidad.

Hasta 1820 los únicos instrumentos de medición eléctrica se basaban en las fuerzas de atracción y repulsión entre cargas de electricidad estática y no servían para medir corrientes eléctricas. En 1819 salió a la luz un aspecto enteramente nuevo de la electricidad. Desde los días de Gilbert se pensaba que la electricidad y el magnetismo debían estar relacionados de alguna manera desconocida.

oersterdCuando Juan Oersted provocó la deflexión de una brújula magnética colocándole encima un cable que conducía una corriente eléctrica, demostró la naturaleza de esta relación —un conductor por el cual circule una corriente eléctrica se comporta como un imán—.

Al año siguiente Oersted demostró que el conductor queda rodeado por un campo magnético. Andrés María Ampére desarrolló estos descubrimientos con una maravillosa serie de experimentos, mediante los cuales pudo deducir claramente las leyes de atracción y repulsión entre cables conductores de corrientes eléctricas.

Como las fuerzas obedecían a ciertas leyes —y cuanto más grande la corriente mayor la fuerza que ejercía— este efecto pudo ser utilizado para precisas mediciones eléctricas. Es el principio en que se basan el galvanómetro y la mayoría de los amperímetros y voltímetros. Por primera vez la electricidad pasó a ser una ciencia exacta.

Jorge Ohm y más tarde Kirchoff pudieron establecer la relación existente entre corriente, voltaje (presión eléctrica) y resistencia en un circuito. Miguel Faraday fue el siguiente descubridor de importancia.

Siguió rápidamente el trabajo de Oersted empleando grandes bobinas de alambre para obtener poderosos electroimanes. Mediante éstos Faraday consiguió hacer el primer motor eléctrico sencillo. Las fuerzas actuantes entre dos bobinas, una fija y otra móvil, harían girar a esta última.

A continuación se les ocurrió a varios científicos que si una corriente eléctrica podía producir un campo magnético, la inversa también podría ampereser posible y un imán serviría para producir una corriente eléctrica. Durante 10 años Faraday estudió, este problema hasta que finalmente consiguió mostrar que una corriente variable en un conductor puede producir una corriente en un conductor cercano.

Este fenómeno se denomina ahora inducción electromagnética. El descubrimiento de Faraday condujo directamente al del dinamo, o principio del generador: cuando Una bobina gira dentro de un campo magnético en el cable se genera una corriente eléctrica.

edisonThomas Alva Edison, el científico e inventor estadounidense, desarrolló este concepto y construyó un generador eléctrico capaz de producir corrientes eléctricas mucho mayores que la pila de Volta. Ya era obvio que la electricidad en movimiento era una forma de energía.

En realidad, el generador eléctrico convertía la energía mecánica en eléctrica. Un cable que conduce corriente se calienta porque la resistencia del cable convierte parte de la energía eléctrica en calor. Ésta es la base de todos los aparatos eléctricos de calefacción o similares.

Humphrey Davy descubrió que la electricidad podía emplearse también para producir luz.

Conectó los terminales de una batería muy potente a dos varillas de carbón apenas separadas entre sí, y obtuvo una luz muy brillante; la primera lámpara de arco había sido inventada.

Edison introdujo la lámpara eléctrica haciendo pasar una corriente eléctrica a través de un fino filamento de carbón encerrado en una ampolla de vidrio, en cuyo interior había hecho el vacío. El filamento se ponía incandescente e iluminaba.

Hacia el año 1850, casi todos los efectos eléctricos importantes habían sido descubiertos y explicados. Había dos importantes excepciones. Una de ellas era la existencia de ondas electromagnéticas.

Jaime Clerk Maxwell demostró matemáticamente que las ondas, alteraciones electromagnéticas, están asociadas a todas las corrientes eléctricas variables, y Enrique Hertz, 24 años después (1887) produjo y detectó en la realidad las ondas previstas por Maxwell.

Maxwell

El descubrimiento condujo a la idea, desarrollada extensamente por Guillermo Marconi, de que las ondas electromagnéticas podían ser empleadas para transmitir mensajes sin cables, a través del aire. Al principio se las utilizó para enviar señales telegráficas y luego, en este siglo, para transmitir sonidos e imágenes.

Marconi

La pregunta acerca de qué era realmente la electricidad y qué era lo que fluía por el circuito eléctrico no fue contestada hasta 1897, en que J. f. Thompson descubrió el «ladrillo» de que estaba construida la electricidad: el electrón.

Mediante un fuerte campo eléctrico deflectó una corriente eléctrica que circulaba por el vacío y constatando en qué dirección se desviaba, probó que estaba constituida por cargas eléctricas negativas, o electrones. Roberto Millikan en 1911 demostró que el electrón transportaba la menor carga eléctrica posible. Las minúsculas partículas, presentes en toda materia, pueden ser distinguidas por la cantidad de electricidad que transportan.

boton

PRIMEROS ARTEFACTOS ELECTRICOS HOGAREÑOS

primeros artefactos elctricos para el hogar

Ver: La Era de la Energía Eléctrica

Concepto del tiempo segun diferentes culturas Medicion del Tiempo

Concepto del Tiempo Según Diferentes Culturas

INTRODUCCIÓN:

Existen diferentes maneras de acercarnos al tiempo que ya pasó. Una de ellas es a través de los recuerdos y otra es a partir de los vestigios de la actividad humana, es decir, las fuentes históricas.

Todos nosotros guardamos en nuestros recuerdos y en las cosas que producimos o acumulamos la memoria del tiempo. Los álbumes de fotos, las cartas, los «recuerdos» de momentos especiales, las grabaciones y todo lo que preservamos de la destrucción nos ayuda a recuperar el tiempo pasado.

Sin embargo, nunca recuperaremos una imagen estática del pasado porque nuestro presente siempre determinará la forma que damos a los sucesos del tiempo que ya pasó

Para hablar del TIEMPO, consideramos oportuno remitirnos a la Biblia, cuya temática constituye el hombre, sencillamente como tal sin recurrir a adjetivos de ninguna naturaleza.

«El Libro de los Libros», dice David Ben Gurión, “comienza con la historia del primer hombre, que no era más que eso: sencillamente hombre”. De esa manera, la Biblia puede considerarse como la tradición y la historia del planeta Tierra y de la humanidad que lo habita.

Eclesiastés 2.3, nos relata de que en este mundo todo tiene su tiempo y todo lo que hay debajo del cielo pasa en el término que se ha prescrito.

Un tiempo para nacer

y un tiempo para morir,

Un tiempo para plantar

y un tiempo para arrancar lo plantado.

Un tiempo para destruir,

y un tiempo para construir.

Un tiempo para el amor,

y un tiempo para el odio.

Un momento para callar,

y un momento para hablar…

Definición del Tiempo

El hombre ha buscado definir el tiempo, ha tratado de responder algunas preguntas: ¿existe en realidad?, ¿Cuál es su forma?. ¿Es constante y eterno, o bien, cambiante y efímero?.

¿Cuándo se originó el tiempo? Hace unos 15 mil millones de años sucedió un fenómeno cósmico llamado Big Bang o «gran estallido» que dio origen al Universo.

Para el hombre primitivo, el tiempo era una sucesión confusa de días y noches, advertía la existencia de fenómenos de carácter cíclico… la luna cambiaba su forma…

Platón : “El tiempo es la imagen de la Eternidad, el tiempo es tanto una idea abstracta, como una realidad de la vida”

“El tiempo es implacable porque nunca deja fluir y todo lo que existe está sometido a su efecto”. (A.Einstein)

El tictac de los relojes parece un ratón que roe el tiempo. Alphonse Allais (1855-1905) Escritor francés.

El tiempo es como un río que arrastra rápidamente todo lo que nace. Marco Aurelio Emperador romano

¿Qué es, pues el tiempo?

Si nadie me lo pregunta, lo sé; si quiero explicarlo a quien me lo pide, no lo sé.

San Agustín (354-439) Obispo y filósofo

Medición del tiempo

El tiempo más inmediato lo medimos, lo controlamos, con el reloj y el tiempo más amplio lo medimos con el  Calendario. Mientras nos deslizamos por los años, los meses, las semanas, las horas, los minutos y los segundos, raramente pensamos de dónde vienen estas cosas o por qué hemos dividido el tiempo de una forma y no de otra.

No siempre ha sido así. Durante miles de años, el esfuerzo por medir el tiempo y crear un calendario factible ha sido una de las grandes luchas de la humanidad, un enigma para los astrónomos, matemáticos, sacerdotes, reyes y todos los que han necesitado contar los días que faltan para la siguiente cosecha, calcular cuándo hay que pagar los impuestos, o determinar el momento exacto de realizar un sacrificio para calmar a un Dios colérico.

Para el hombre primitivo, el tiempo era una sucesión confusa de días y noches, no obstante de ello, advertía la existencia de fenómenos de carácter cíclico… la luna cambiaba su forma…

El sol y la luna, establecieron con sus movimientos aparentes, puntos de referencia para medir el tiempo. Uno de los primeros instrumentos utilizados en la antigüedad fue el gnomon, una varilla clavada en el piso, cuyos cambios en su sombra determinaba el desplazamiento del sol en su ciclo diario.

Es imposible determinar cuando se descubrió que el movimiento aparente del sol se ajustaba a un ciclo temporal, desde luego que este fue el primer hallazgo científico del hombre. En este descubrimiento emplearon un punto de observación; tras comprobar que el sol no salía siempre por el mismo punto, fueron señalando por medio de estacas, la salida diaria del sol, al cabo de un tiempo, las estacas demostraron que después de 365 marcas, el sol volvía a salir por el mismo punto, ello dio origen al período de un año de 365 días.

Algo similar a lo mencionado, es el monumento megalítico de Stonehenge (al sur de Inglaterra), que constituye el mayor calendario del mundo, fue construido aproximadamente 2.500 años antes de nuestra Era.

El desarrollo de la civilización motivó la adopción de unidades regulares para medir el tiempo. El calendario es el sistema que se utiliza para marcar el tiempo en años, meses, semanas y días, la palabra calendario deriva del latín “calendarium”, con esa designación los romanos se referían a los libros de contabilidad. Calendarium viene de Kalendae, era el primer día del mes lunar, cuando se tenía que pagar las cuentas.

La palabra almanaque proviene del árabe (al-manakh, ciclo anual), los primeros almanaques eran unos calendarios que servían para documentar fechas de fiestas religiosas. En árabe “al-manakh” significa parada en un viaje.

Almanaque Bristol se originó en 1832 en Nueva Jersey por gestión del médico, Charles Bristol cuya faz ilustra la portada. El motivo de creación del almanaque, fue para que sirva de guía para que los pacientes tomaran sus medicamentos de forma correcta.

Posteriormente se añadieron otros datos como el santoral, los cuentos y los chistes. Bristol fue el dueño de la farmacia que aún conserva su nombre, en 1856 la firma Lanman y Kemp Barclay compró la empresa y añadió al almanaque anuncios de sus productos, como el Agua de Florida Murray y Lanman, el Tricófero de Barry o la Brillantina Alka

CONCEPTO DEL TIEMPO EN LAS DIFERENTES CULTURAS

Egipto, cuatro milenios antes de Cristo se conocía el año solar de 365 días, con 12 meses de 30 días y 5 complementarios. El inicio del año estaba determinado por la primera aparición en el amanecer de la estrella Sirius, este acontecimiento coincidía ordinariamente con la crecida del río Nilo.

Babilonia, 500 años a de C. el astrónomo Naburiano, calculó la duración de un año en trescientos sesenta y cinco días, seis horas y quince minutos. De Babilonia hemos heredado la semana de siete días, la hora de sesenta minutos, y el minuto de sesenta segundos, desde luego tenían formas ingeniosas para realizar esos cálculos, convirtiendo la sombra de las estacas en grados, minutos y segundos de ángulo, también utilizando Clepsidras o relojes de agua, datan de la antigüedad egipcia y se usaban especialmente durante la noche, cuando los relojes de sombra no servían.

Las primeras clepsidras consistieron en una vasija de barro que contenía agua hasta cierta medida, con un orificio en la base de un tamaño suficiente como para asegurar la salida del líquido a una velocidad determinada y, por lo tanto, en un tiempo fijo.

Los griegos, establecieron en el año 776 a. de C. un calendario luni-solar que contaba con 12 meses de 29 y 30 días alternativamente. El filósofo griego Heráclito, afirmaba que toda la existencia constituye un flujo en movimiento: » No puedes bañarte dos veces en el mismo río, pues las aguas que fluyen sobre ti son siempre nuevas». El tiempo es representado como un río, donde todo se halla sometido a un proceso de cambio en el instante en que es percibido.

En Roma el año luni-solar, constaba de 10 meses lunares, los meses estaban dedicados a sus dioses: Enero, procede de Jano, el dios romano. Su símbolo era una cabeza de dos caras, mirando al Este y al Oeste (por donde sale y se pone el sol). Febrero, nace del latín februa. Refiere a los Festivales de la Purificación. Era el mes en el que los psicólogos romanos se tomaban vacaciones. Marzo, nombrado así en honor a Marte, Dios de la guerra. Abril, probablemente derive de aperire (abrir), ya que es la estación en la que empiezan a abrirse las flores. Mayo, debe su nombre a Maia, la diosa romana de la primavera y los cultivos.

Las celebraciones en honor a Flora, la diosa romana de las flores, alcanzaba su punto culminante el primero de mayo. Junio, puede derivar de Juno, la diosa del matrimonio, o del nombre de un clan romano, Junius. Otros creen que nace de juniores (jóvenes) en oposición a maiores (mayores, por mayo). Julio, era el quinto mes del calendario romano primitivo, por lo que se llamaba quintilis.

En el año 44 a. C., luego del asesinato de Julio César, se lo llama Julio porque ese había sido el mes de su nacimiento. Agosto, se llama así en homenaje al primero de los emperadores romanos: Cayo Julio César Octavio Augusto. Septiembre, era el séptimo mes del calendario antiguo, por lo que se tomó su nombre de septem, siete. Octubre, durante los ocho años del emperador Riveritum se lo llamaba ¡octo!, que significa ocho. Noviembre, fue el noveno mes, en latín novem. Diciembre, es el mes más festivo del calendario gregoriano.

DIAS DE LA SEMANA

LUNES: Luna, Diana, diosa de la caza. MARTES: Marte dios de la guerra, MIERCOLES: Mercurio mensajero de los dioses JUEVES: Júpiter rey de los dioses, VIERNES: Venus diosa de la belleza SABADO: shabbath, DOMINGO: dedicado a Dios (Domine significa Señor)

AÑOS BISIESTOS

En el año 45 a. de C. Julio Cesar, decidió corregir los errores del antiguo calendario romano y encargo al astrónomo egipcio Sosigenes de Alejandría, la confección de un nuevo calendario introduciendo un día más cada cuatro años (año bisiesto), los meses de abril, junio, septiembre y noviembre tendrían 30 días. Enero, marzo, mayo, julio, agosto, octubre y diciembre con 31 días y febrero con 28 días, cada cuatro años, se duplicaría el 24, al que se conocía como el «Sextus calendas martias» (que significa sexto día antes de marzo).

El calendario judío es de tipo luni-solar, según Samuel, tiene su origen en la creación del mundo, corresponde al año 3761 antes de Cristo, comienza con la conmemoración de la salida de Egipto. Actualmente el calendario judío corresponde al año 5766. Para calcular el año que concierne con el calendario judío, se suma 3761 al año civil en curso. Los 7 días de la Creación marcan la unidad básica del calendario hebreo, que culmina con el Shabat, los días comienzan con la puesta del sol y terminan al anochecer siguiente

El calendario Musulmán, tiene su origen en Hégira, marca la huida de Mahoma (imagen izquiera) de la Meca a Medina en el año 622 de la era Cristiana, consta de 12 meses lunares de 29 y días alternativamente. La palabra Almanaque deriva del árabe Al-amanach o «circulo de los meses» o calendario.

En China el conocimiento de la astronomía se remonta al siglo IX a. de C. lamentablemente en el año 230 a. de nuestra Era, un emperador destruyó los textos antiguos, en los pocos textos que se salvaron, aparecen descripciones como el Solsticio de Invierno, El calendario era lunar y el año se hallaba dividido en 12 partes, comenzaba el día del Solsticio de Invierno

Los Mayas en el tercer milenio a.C., tuvieron un desarrollo astronómico polifacético, muchas de sus observaciones han llegado hasta nuestros días, por ejemplo un eclipse lunar del 15 de febrero de 3379 a.C.. Conocían con exactitud la posición de los planetas, y la periodicidad de los eclipses. El Calendario Maya se inicia con el día cero, de acuerdo al cómputo del tiempo correspondería al 8 de junio de 8498. El año maya comprendía 365 días.

Los Aztecas tenían dos calendarios, uno de ellos determinaba sus ceremonias religiosas. El más importante, llamado Tonalpohualli, que ha sido encontrado tallado en una gran piedra, que se conserva en el Museo Nacional de México. Consiste en la unión de una serie de veinte signos, con otra serie de 13 números, la combinación de ambas series proporciona 260 días.

La cultura Incaica (Perú y Bolivia), tuvo un gran desarrollo, los incas conocían la revolución sinódica de los planetas con admirable exactitud, las anotaciones en los quipus (cordeles con nudos) marcaban los días del calendario, que consistía en un año solar de 365 días.

CALENDARIO GREGORIANO.-

El Papa Gregorio XIII (imagen izquierda) introdujo el calendario que lleva su nombre, reunió a los mejores astrónomos de la época, los cuales establecieron que en el Calendario Juliano, se presentaba un desfase de 11 días, el equinoccio de primavera caía el 11 de marzo en lugar del 21 de marzo y la Iglesia Católica enfrentaba una creciente confusión para determinar fechas como la Semana Santa.

Eventualmente como resultado del Concilio de Trento (1545-1563) se encomendó al Papa hacer las reformas necesarias al calendario, en el mes de octubre de 1582 el Papa Gregorio XIII literalmente descontó diez días con el fin de restaurar el equinoccio de primavera a la fecha correspondiente. Al abolir 10 días, del jueves 4 de octubre que correspondía al Calendario Juliano se paso al día siguiente viernes 15 de octubre, dando origen al primer día del Calendario Gregoriano.

Este cambio, suscitó algunas curiosidades, por ejemplo los dos exponentes más importantes de la Literatura Castellana e Inglesa: Don Miguel de Cervantes Saavedra y William Shakespeare murieron en la misma fecha. pero con diez días de diferencia (Inglaterra no adopto del Calendario Gregoriano hasta el año de 1752.

Santa Teresa de Jesús murió el 4 de octubre de 1582, le dieron sepultura al día siguiente el 15 de octubre de 1582.

El , que es el que utilizamos actualmente, tiene un error de un día cada 3.000 años.

CONCEPTO DEL TIEMPO EN EL CRISTIANISMO

Con la consolidación del cristianismo, la noción de tiempo experimentó un importante cambio, ya que esta religión niega la posibilidad de un tiempo cíclico. La pasión, muerte y resurrección de Jesucristo son hechos únicos, irrepetibles, y dan un sentido a la existencia humana. De esta manera el tiempo es considerado fundamentalmente lineal y orientado hacia el futuro, y el sentido de toda la historia aparece como un desplazamiento en el tiempo, que tiene su origen en la creación y que culminará en el juicio final, que será el final de los tiempo.

LOS RELOJES

En el siglo XIII, en el lindero final de la Edad Media, apareció la primera máquina industrial: el reloj. Los relojes primitivos, fabricados por herreros, estaban hechos de acero y sufrían de la expansión y contracción que provocaban los cambios en la temperatura. Eran inexactos en un rango de 15 a 30 minutos al día y tenían que ser ajustados diariamente. Su propósito inicial era hacer sonar las campanas cada hora en las torres de castillos, iglesias o centros de población.

En el siglo XV se inventaron los relojes de una manecilla para marcar las horas y en 1505 el herrero alemán Peter Henlein consiguió construir relojes mecánicos tan pequeños que podían llevarse en el bolsillo. Estos relojes, que se popularizaron con el nombre de «relojes de saco» se montaban en cajas y en lugar de pesas utilizaban resortes. Se llevaban en una bolsa, sonaban cada hora y funcionan durante unas 40 horas.

La primera revolución relojera se dio en el siglo XVII, cuando el científico holandés Christiaan Huygens inventó el reloj de péndulo, alcanzando una exactitud similar a la de los relojes de sol. El péndulo de Huygens funcionaba movido principalmente por las fuerzas de la gravedad y sus relojes fueron los primeros cronómetros capaces de contar los segundos. La idea de emplear el péndulo para su aplicación al reloj la había formulado en 1636 Galileo Galilei pero, viejo y ciego, no la pudo llevar a la práctica.

En el primer reloj eléctrico, que se inventó en el siglo XIX, el péndulo no se movía gracias a la acción de la fuerza de la gravedad sobre una pesa, sino mediante un electroimán alimentado por una batería. En 1914 el norteamericano Henry Ellis Warren accionó un reloj mediante un dispositivo electromotor y gracias a esto inventó los primeros relojes eléctricos fiables.

Con el desarrollo de la tecnología, se descubrió que un cristal de cuarzo vibra con una frecuencia de 16.000 a 30.000 ciclos por segundo; en 1948 se construyó el primer reloj atómico, con un margen de error de diez mil millonésima de segundo, lo que equivale un error de un segundo cada 300 años.

Los científicos alemanes han construido un Superreloj CS1, de cesio, con un peso de una tonelada, durante un año de funcionamiento, ha permitido calcular que tiene un error de un segundo cada treinta millones de años. Su funcionamiento se halla relacionado con la Escala Coordinada del Tiempo Mundial, su sincronización perfecta en el ámbito internacional, es indispensable para las redes de noticias, mediciones de la tierra efectuadas a gran distancia para todo tipo de orientación tanto en la aviación como en la navegación

EL RELOJ DE LA CATEDRAL DE SUCRE

El arzobispo Pedro Miguel de Argandoña encargo la compra en Londres (1765) de un reloj para la catedral de Sucre, con un costo de 568 libras esterlinas.El reloj arribó en barco a Buenos Aires, fue trasladado a Sucre en una recua de mulas, vía Jujuy. En 1784 llegó a Sucre, se estrenó en 1786, hasta el día de hoy sigue en funcionamiento

EL TIEMPO EN LA LITERATURA.-

En la literatura el concepto del tiempo ha sido motivo de permanente especulación. Dante, imagina emprender un viaje por los fantásticos ambientes que se ofrecen para el alma humana, lejos de la vida terrenal, citando pasajes anteriores a su vida y profetizando acontecimientos como el descubrimiento de nuevas tierras en occidente.

Goethe, describe a Fausto vendiendo su alma a Mefistófeles a cambio de revivir su pasado. Así podríamos mencionar innumerables obras de la literatura mundial que tienen como argumento fundamental el tiempo y el espacio: Julio Verne en «20.000 leguas de viaje submarino». H.G. Wells en su obra «La máquina del tiempo», que cautivo la imaginación con el lanzamiento de su viajero en el tiempo.

Jorge Luis Borges, vivió fascinado con el concepto del tiempo. Borges define: «El tiempo es la sustancia de que estoy hecho, el tiempo es un río que me arrebata, pero yo soy el río; él es el tigre que me destroza, pero yo soy el tigre. Es un fuego que me consume, pero yo soy el fuego».Borges resume el concepto del tiempo en un solo momento «el momento en que el hombre sabe para siempre quién es».

”Mirar el río hecho de tiempo y agua

y recordar que el tiempo es otro río,

saber que nos perdemos como el río

y que los rostros pasan como el agua.

EL TIEMPO FISICO Y EL TIEMPO BIOLOGICO.-

Desde el punto de vista biológico, todos los ritmos naturales que afectan la vida del hombre, se hallan regulados por el tiempo. La duración del hombre, al igual que su estatura, varía según la unidad que se utiliza para medirla, la vida del hombre se mide valiéndose los movimientos de las agujas del reloj. Para el reloj que mide el día de un niño, es igual al de sus padres, pero en realidad esas 24 horas representan una fracción muy pequeña en la futura vida del niño, y una fracción muy grande en la vida de sus padres, de esa manera el valor del tiempo físico varía según miremos el pasado o el futuro.

Al describir un tiempo físico, necesariamente debemos referirnos a un tiempo fisiológico. Este se halla presente en todos los niveles fisiológicos del universo, ya sea en el soma de una célula o en el mismo hombre. El tiempo fisiológico depende de las modificaciones del medio y la respuesta de los seres a esas modificaciones. El tiempo fisiológico, difiere del tiempo físico, por que no tiene la precisión de un reloj.

La relación que existe entre el tiempo físico y el fisiológico es comparada por Alexis Carrel «Como un ancho río que corre por la llanura. En los albores de la vida, el hombre corre alegremente a lo largo de la orilla, va más deprisa que la corriente. Hacia el medio día su marcha disminuye, las aguas se deslizan con tanta rapidez como su paso. Al anochecer, el hombre está fatigado, la corriente continúa con su flujo. El hombre se queda atrás, luego se detiene y cae para siempre, el río sigue su curso inexorable».

En realidad, el río nunca ha acelerado su marcha, sólo se tiene esa ilusión al retardo progresivo de nuestro paso. Cada uno de nosotros es el hombre que corre a lo largo de la orilla del río y ve pasar las aguas del tiempo físico.

Dr.Antonio Dubravcic Luksic
Ex Catedrático de Nefrología –Facultad de Medicina –Universidad de Chuquisaca, Bolivia
Ex Editor de la Revista del Instituto Médico “Sucre” (Bolivia
Premio Nacional al Mérito Profesional (Medalla de oro) otorgada por el Colegio Médico de Bolivia (1998) Premio al mérito profesional (medalla de oro) otorgada por la Sociedad Boliviana de Urología

REFERENCIAS BIBLIOGRAFICAS

Cejudo Velásquez P. “Cuando Israel cumplió treinta años” pág 17 Instituto Central de Relaciones culturales Israel, Ibero América, España y Portugal Imprenta Trejos Costa Rica 1978

“La Biblia: Dios habla hoy” Eclesiastés 3.1; pág 810; Sociedades Bíblicas Unidas. CELAM, Puebla México 1979

Gran Historia Universal Larousse “El nuevo calendario” Vol. N° 9 Pág. 1101 Impreso Cochrane Santiago Chile 1999

Welss George “Breve historia del mundo” Discursos de David Ben Gurion, cap XXII, Centro de Información de Israel, Jerusalén 1972

Millán Saúl, García Paola “Lagunas del tiempo” Instituto Nacional de Antropología e Historia México 2000

López María Jesús “El calendario musulmán” Edit La Alambra, Granada, España 1999

Ibáñez Martí Félix “El misterio y el secreto” Ensayo del Director; Revista MD en Español Vol. IX; N° 5; Mayo 1971

Chalaby Abbas “Egipto” Los Orígenes Casa editora Bonechi; Florencia Italia 1996

“La aventura del Arte” Mesopotamia y Egipto; Revista MD Vol IX N° 5 Pág. 57 Mayo 1971

Needhan Joseph “La histórica civilización de la China” MD en español Vol. X N° 3; 1972

Bataller Estornell Francisco

http://www.fh.userena.cl/ciel/octavio_paz_identidad_y_lenguaje

Castro Leal M. “México Arqueológico” Calendario Maya, Calendario Azteca; Monclem Ediciones Florencia Italia 1998

Culto Solar Diccionario histórico de Bolivia T. 1: 649; Edit. Tupac Katari

Borges Jorge Obra poética, 2. Edición Emecé Editores (Buenos Aires, 1977) Alianza Editorial. Biblioteca Borges. Madrid, 1998.

Historia de la Lampara Electrica Fabricacion y Material Usado

Historia de la Lámpara Eléctrica
Fabricación y Material Usado

La historia de la lamparita empieza hace casi doscientos años, cuando Davy, químico inglés, hizo aparecer por primera vez, ante los atónitos miembros de la Royal Institution de Londres, un brillante hilo luminoso, entre dos electrodos formados por varillas de carbón de leña y unidos a dos polos de una enorme pila eléctrica. Desgraciadamente, este “arco voltaico”, que fue llamado “huevo eléctrico de Davy”, no se prestaba para usos prácticos, porque los carbones no producían una luz estable.

Sólo después de 1840, gracias a la invención de un nuevo tipo de pila, hecha por Daniell y Bunsen, que suministraba una corriente más intensa y duradera, el problema relativo a la iluminación eléctrica pudo ser afrontado con seriedad y gradualmente resuelto. Se debe al francés Foucault el primer gran paso adelante. Sustituyendo el carbón de leña por el que se forma en las retortas durante la producción de gas de alumbrado, llegó a preparar dos auténticos aparatos de iluminación que permitieron a una cuadrilla de obreros trabajar durante una noche entera en la construcción del Palacio de la Industria (Exposición de París de 1855). Veintitrés años después, siempre en París, se llevaba a cabo, con éxito, la primera tentativa de iluminación pública en la Plaza de la Ópera.

LA LAMPARITA DE EDISON: Durante el siglo XIX se mantuvo la iluminación a gas, con su luz suave y agradable, pero el mundo estaba ya preparado para el aprovechamiento de la energía eléctrica en este campo. Un grupo de financistas e industriales norteamericanos se dirigió a Edison, inventor del fonógrafo, y ya conocido como el “Mago de Menlo Park”, para que hiciese el milagro. Edison tuvo una idea feliz; volver incandescente un filamento de carbón en una ampolla de vidrio en la que se haría previamente el vacío perfecto; pero la realización de esta idea le costó muchos años de estudio y de minucioso y perseverante trabajo.

Los experimentos iniciados por él en 1870, sólo concluyeron en 1882. Los neoyorquinos, entusiasmados con el nuevo prodigio de Edison, “mandaron a descansar” los viejos fanales de gas y el familiar farol. En realidad, la lamparita de Edison ya había tenido su bautismo de luz en la exposición universal de París de 1881. En la ampolla, la incandescencia luminosa era obtenida mediante filamentos carbonizados de fibras de bambú del Japón, y tenía la virtud de asegurar una luz constante durante centenares de horas.

Desde este momento, el problema fue solamente perfeccionar el nuevo sistema de instalación eléctrica. Una vez establecido el hecho de que las “radiaciones visibles producidas por un cuerpo incandescente aumentan con el aumento de la temperatura”, se comprendió rápidamente que el efecto luminoso sería tanto más sensible cuanto más se pudiese “elevar la temperatura del filamento e impedir la dispersión del calor”.

LA LAMPARITA DE FILAMENTO METÁLICO: A partir de 1890, las fábricas se sirvieron de sutilísimos hilos de metal, con una temperatura dé fusión mucho mas alta. Fueron sucesivamente experimentados el osmio, el tantalio, y, en 1906, el tungsteno, que es  hoy considerado el mejor porque, además de ser resistente, es también un óptimo conductor de la electricidad. Para obtener filamentos de muy pequeño diámetro, fue usada primero una mezcla de polvo de tungsteno y sustancias adhesivas.

Desde 1911, como consecuencia del progreso de los procedimientos industriales, se consiguió trefilar el tungsteno y aumentó la duración del filamento. Además se cambió la disposición del filamento mismo en la ampolla. De esta manera, su poder de absorción fue reducido a un vatio por bujía; de ahí el nombre de “monovatio” dado a este tipo de lámpara.

LA LÁMPARA DE MEDIO VATIO: Otro paso adelante fue dado, en 1913, con un nuevo procedimiento. Para aumentar la temperatura del filamento, y para frenar la dispersión de calor, se tuvo la idea de rellenar las ampollas, en las que se había hecho el vacío, con un gas inerte que no diese lugar a alteraciones químicas. Se obtuvo así el aumento de temperatura deseado, pero fue más difícil limitar la fuga de calorías. El físico Langmuir comprendió que de esto dependía la disposición del filamento dentro de la ampolla, y demostró que se podía alcanzar una dispersión mínima de calor arrollando el filamento en hélice sobre sí mismo.

Así perfeccionadas, las lamparitas con filamento en hélice fueron llamadas de “medio vatio”, pues se calculó haber llegado a crear el tipo en el cual la potencia de absorción de la corriente era reducida a la “mitad de un vatio por bujía”. Pero el triunfo más resonante fue que, con la nueva fórmula, se llegó a retardar notablemente la disgregación del filamento, logrando una duración mayor de la lamparita.

Historia de la Lampara Electrica Fabricacion y Material UsadoFABRICACIÓN, METALURGIA DEL TUNGSTENO: Si las vidrierías han resuelto fácilmente el problema del vidrio adecuado para la fabricación de ampollas (o bulbos) para lámparas, la fabricación del filamento es, en cambio, extremadamente delicada. Debido a que el metal, para ser utilizado eficazmente, no debe fundirse, se le extrae del “wolframio” mediante complicados procesos químicos.

El tungsteno, que se obtiene bajo forma de “óxido” del tungsteno puro, es mezclado primeramente a pequeñas cantidades de sustancias capaces de mejorar sus propiedades, siendo luego pasado a hornos especiales en atmósfera de hidrógeno (para evitar la oxidación) de estos hornos sale bajo forma de un tenue polvo gris.

Este polvo es prensado dentro de moldes a presión, y los panes que resultan son colocados en otros hornos (también de atmósfera hidrogenada), en los cuales adquieren la solidez necesaria. Por medio de una fuerte corriente eléctrica, estos panes son llevados a una temperatura próxima a la de fusión, sin alcanzarla; son forjados luego por un martinete, a alta temperatura, hasta obtenerse hilos finísimos.

Estos hilos pasan a la “trefilación”, pero antes de ser confiados a las hileras (que son de tungsteno o de diamante, según el diámetro que se quiere conseguir), se los somete de nuevo a alta temperatura.

Finalmente, pulido y libre de todo resto de grafito, el delgado filamento que se obtiene está listo para ser arrollado en hélice. El tungsteno es arrollado, por medio de máquinas de gran velocidad, alrededor de un soporte de acero o molibdeno. Siendo imposible desenrollar la espiral del soporte sin provocar la rotura del filamento, es necesario “disolver” el soporte mismo con un ácido que no ataque al tungsteno.

En 1835, el escocés James Bowman Lindsay fabrica el primer bulbo  experimental. Seguía sin funcionar y más de una docena de científicos lo intentaron hasta que en enero de 1879, el inglés Joseph Swan hace la primera demostración de un bulbo incandescente que no se apaga en Sunderland. Inglaterra.

Ese mismo año, en octubre, Thomas Edison que llevaba meses trabajando en el mismo invento, consigue el mismo resultado con el modelo N°9. Edison tenía más recursos, y al año siguiente puso a la venta las primeras bombillas. El truco estaba en encontrar el filamento adecuado, y hacer el vacío dentro del bulbo de vidrio.

MONTAJE DEL PIE DE LA LÁMPARA: Una parte esencial de la ampolla de las lamparitas está constituida por el pie, el cual se compone de:
a) un borde entrante de vidrio, destinado a ser soldado al cuello de la lamparita;
b) un pequeño tubo de vidrio que sirve primero para producir el vacío y después para el rellenamiento con gas;
c) un bastoncillo de vidrio al que se aplican los soportes para el filamento:
d) los hilos que traen la corriente de alimentación.

Todo, esto es sujetado sólidamente por un aplanamiento parcial de las extremidades del borde entrante y por la estrangulación del tubito de vidrio. Para obtener esta estrangulación, se ablanda el vidrio exponiéndolo a la llama, y, antes de que se endureca, un chorro de aire frío es dirigido a través de la extremidad inferior del tubito para provocar en la estrangulación misma un orificio mediante el cual el interior de la ampolla se comunica con el exterior. Los hilos conductores, fijados sólidamente dentro del pie, por medio de la estrangulación, están por lo general constituidos por tres partes distintas soldadas eléctricamente entre sí.

El pie es montado totalmente con máquinas que sueldan después en forma automática la parte superior del bastoncillo para formar un botón, sobre el cual la máquina misma fija los ganchos de sostén o apoyo. Cada uno de estos minúsculos ganchos termina en una pequeñísima “colita de cerdo” destinada a retener el filamento.

También el montaje del filamento es mecánico. Éste es fijado primeramente a la extremidad de los hilos que traen la corriente de alimentación, y aquí un dispositivo de precisión anuda los filamentos a los ganchos. El pie queda unido a la ampolla mediante la soldadura del borde entrante, hecha con la llama de un soplete de gas.

La lamparita es, al mismo tiempo, bañada por un potente chorro de aire que arrastra la parte superflua del cuello del bulbo, que sobresale del punto de soldadura. De aquí, la lámpara es transportada por cadena hacia la máquina que produce el vacío. La misma máquina, calentando la ampolla, procede a la extracción del aire y al rellenamiento con gas (generalmente formado por una mezcla de nitrógeno-argán-criptón).

Inmediatamente después del llenado, el tubito de vidrio, que ha servido para esta operación, es cerrado mediante estrangulamiento a la llama. La fabricación de la lamparita propiamente dicha, se da así por terminada. Ahora no falta más que unirla al casquillo, operación que se hace en caliente mediante resinas especiales. Existe una enorme variedad de lámparas incandescentes para cuya realización fueron necesarios años de estudio, de pacientes búsquedas y de pruebas de laboratorio.

Es útil aquí recordar que, además de las diversas lamparitas que todos conocemos, desde la pequeñísima para linterna de bolsillo hasta la grande para iluminación de calles, existen lámparas “incandescentes” destinadas a usos especiales. Estas lámparas difieren de las comunes por la disposición interna del filamento y por otros requisitos de aislamiento y sistemas de montaje, relacionados con la carga de corriente que deben absorber.

Se trata de lámparas con muy potente emisión de luz, necesarias para la fotografía, rodajes cinematográficos, proyecciones, etc. En cuanto a las lámparas fluorescentes, tan de actualidad en nuestra época, poseen, en lugar de filamento, una gruesa espiral. Tampoco debe olvidarse las lámparas térmicas que, iguales en todo a las lámparas de uso común, son hoy usadas con enormes ventajas tanto en la industria como en la terapéutica.

ALGO MAS…

Por aquella época el problema consistía en encontrar una materia más fuerte y preservando mayor resistencia al paso de la corriente que el filamento de carbón. Se veía de modo claro era necesario buscar un metal, y todos los que se ocupaban de estos trabajos comenzaron a estudiar metales raros, con la misma tenacidad que lo habrían hecho antes al ensayar las tierras de esta clase. Un investigador llamado Auer fue el primero que fabricó la lámpara de osmio, puesta a la venta en 1904.

El osmio es un metal que se encuentra entre los minerales de platino, y cuando se quema al aire se combina con el oxígeno, produciendo un vapor cáustico, peligroso. En el vacío del globo de cristal de la lámpara eléctrica no hay oxígeno que pueda actuar sobre él, y el filamento construido con este metal hizo bajar el coste de la luz a muy cerca de la mitad.

Pero—tales son las vicisitudes en las invenciones modernas—-un año después se presentó en el mercado otra nueva lámpara eléctrica con filamento de tántalo. Inventada por Werner von Bolton, esta lámpara daba un quinto más de intensidad que su rival, pero poco después, en 1905, se descubrió otro filamento de metal raro aún más eficaz.

Entre los escombros de algunas minas, había una substancia muy pesada, de color gris acerado, a la que no se encontraba ninguna aplicación. Los suecos la dieron el nombre de «tungsteno», que significa «piedra pesada».  Ahora bien: este material que, aparentemente, no tenía utilidad alguna, es hoy uno de los metales más importantes y necesarios.

 Unido con el acero, forma el empleado en las máquinas-herramientas para preparar los titiles con el corte resistente preciso para los mecanismos que marchan a gran velocidad—tornos, taladros, perforadoras, acepilladoras y tantos otros, y que han revolucionado la industria metalúrgica. Ahora el tungsteno está camino de ser el principal manantial de luz. en el mundo. Al principio, ha habido una gran lucha entre la lámpara de tungsteno y la de tántalo. Este metal pasaba por ser uno de los más duros de los conocidos, y en sus primeros ensayos, von Bolton encontró imposible taladrar una chapa de tántalo de 1,016 milímetros. Pero refinando el metal en el arco eléctrico, y reduciendo algo su dureza, fue posible estirarle hasta conseguir alambres muy finos, y laminarle para formar hojas de pequeñísimo espesor.

Por este medio, von Bolton pudo obtener un alambre estirado para servir de filamento. La lámpara de tántalo no sólo daba Un rendimiento algo mayor del doble comparada con la de carbón, sino que también, lo que era importantísimo en la práctica, su duración era mucho mayor. Como, por otro lado, se acababan de descubrir ricas minas de tántalo en Australia, la nueva lámpara prometía ser tan económica como la ordinaria.

El tungsteno produce aún mejor luz que el tántalo, y, además, su rendimiento es una mitad mayor. La unidad de energía eléctrica produce una vez y media más intensidad con el tungsteno que con el tántalo, pero se presentaba la dificultad de que el nuevo metal era tan excesivamente duro, que no se podía estirar para convertirlo en alambre, por los medios usuales. Si se disolvía y obtenía el filamento por precipitación, era éste tan quebradizo, que la lámpara resultaba muy frágil y no se podía transportar a grandes distancias, y aun colocada en las casas, duraba muy poco. Pero, al fin, el tungsteno pudo estirarse, y con él se fabrican lámparas muy resistentes, dando clara e intensa iluminación. Produce una luz blanquísima, y es tres veces más económica que la lámpara ordinaria. Gracias a ella, el alumbrado eléctrico ha llegado al mayor grado de perfección.

Ahora lo que se precisa es encontrar metal abundante y mejorar los métodos de fabricación, para poder vender la lámpara que aparece en el mercado a un precio menor. Por de pronto, se ha encontrado tungsteno en grandes cantidades en muchas partes del mundo.

CRONOLOGÍA HISTÓRICA

l802 — El británico Humphry Davy hace la primera demostración de iluminación poniendo incandescente un hilo de platino sometido al paso de una corriente eléctrica.

1807 — Davis hace una nueva demostración; esta vez del arco eléctrico entre dos electrodos de carbono.

1835 — El escocés James Bowman Lindsay fabrica el primer bulbo de luz experimental.

1841 — Primera demostración de luz eléctrica en la Plaza de la Concordia de París con el sistema de arco eléctrico.

1854 — El inventor alemán Heinrich Goebel desarrolla el primer bulbo de luz moderno, en una ampolla con un filamento de bambú carbonizado en la que se ha hecho el vacío. Pero no patenta el invento y los americanos se apuntan el tanto. Goebel denunció a Edison, pero el juez le dio la razón al americano.

1860 — El británico Joseph Swan patenta el primer bulbo incandescente, es decir, la primera bombilla experimental.

1879 — En enero, Joseph Swan muestra al mundo la primera bombilla de hilo incandescente. En octubre, Edison hace lo mismo.

1901 — La empresa inglesa Cooper Hewitt Cop. produce la primera lámpara de vapor de mercurio.

1910 — El francés George Claude fabrica el primer tubo de neón.

1933 — El americano George Elmer fabrica el primer tubo fluorescente de la historia.