Ley de Inercia

El Cobalto Propiedades, Características y Aplicaciones

El Cobalto Propiedades, Características y Aplicaciones

Algunos compuestos de cobalto constituyen pigmentos azules fijos, de gran calidad, que han sido empleados durante 4.000 años por diversas civilizaciones. Los asirio-babilonios usaron pinturas de cobalto en sus pequeñas estatuas talladas en madera, y, en tiempos más recientes, los compuestos de cobalto se han utilizado para decorar en azul la porcelana china de Delft, y para teñir de azul oscuro algunos vidrios.

Mineral de Cobalto

A pesar de que el cobalto es todavía valioso como pigmento, su valor en este sentido se ha visto eclipsado, durante los últimos años, por las propiedades del metal en sí, ya que el cobalto es ferromagnéticó, no tan intensamente magnético como el hierro, pero mucho más que la mayoría del resto de los metales.

Este hecho no es sorprendente, puesto que la estructura de los átomos de hierro y cobalto es muy similar. Los imanes fabricados de hierro dulce pierden rápidamente el magnetismo, pero si el hierro se alea con cobalto, la aleación resultante conserva esta propiedad durante un prolongado período de tiempo.

Ciertos imanes permanentes contienen hasta un 50 % de cobalto, empleándose en muchas piezas de aparatos eléctricos. Las aleaciones de cobalto tienen otra importante aplicación comercial basada en que conservan su dureza y filo (poder de corte), incluso a temperaturas elevadas.

De hecho, la mayoría de las herramientas de corte para trabajos a altas temperaturas contienen cobalto. Todavía más resistentes al efecto de ablandamiento de las temperaturas elevadas son las aleaciones de cobalto-cromo-volfranio-carbono, que se emplean también para fabricar herramientas de corte. La mayoría de la producción mundial de cobalto se destina a imanes o a aleaciones de «alta velocidad» (aceros rápidos).

A pesar de que menos de la quinta parte del cobalto producido se emplea bajo la forma de sus compuestos, éstos tienen demasiada importancia para no considerarlos. Los únicos compuestos de cobalto estables son los cobaltosos, en los que el metal presenta valencia 2. Las sales cobálticas (valencia 3) tienden a ser inestables.

La vitamina B12, de gran importancia, es una gran molécula, muy compleja, formada por 183 átomos, de los cuales sólo uno es de cobalto; pero, si falta este átomo resulta imposible que se produzca la vitamina Bu. La deficiencia de vitamina BJ2 en el ganado puede deberse a la ausencia de cobalto, y se corrige tratando el terreno, o los alimentos, con compuestos de aquél.

El óxido de cobalto se emplea en la industria cerámica no sólo como pigmento, sino también como agente de blanqueo. Los productos de alfarería fabricados con arcilla tienen con frecuencia impurezas de hiem , que les comunican un aspecto amarillento por lo que se les da un ligero tinte azul con óxido de cobalto, que oculta el color amarillo, de la misma forma que el añil agregado al lavado de ropa confiere a ésta un aspecto más blanco.

Las sales orgánicas de cobalto se emplean con profusión en pinturas, barnices y tintas para imprimir, a fin de que sequen con rapidez. Dichas sales absorben el oxígeno atmosférico para formar peróxidos, que polimerizan en una estructura de tipo celular, la cual actúa como el papel secante, absorbiendo el aceite remanente y transformando la masa total en un gel.

Los compuestos de cobalto son excelentes catalizadores de numerosas reacciones, hecho que se descubrió, por primera vez, al emplear este tipo de catalizador para obtener metano (CH4) a partir de monóxido de carbono e hidrógeno. En la actualidad, se emplean ampliamente en la industria del petróleo, para transformar moléculas inservibles en otras adecuadas para combustibles.

Debido a que el cobalto se presenta en una gran variedad de minerales y está, en general, mezclado con cobre, plata o níquel, existen diversos procesos para extraerlos, que dependen del tipo de mineral de partida. Los mayores productores de cobalto son Ka-tanga y Rhodesia, donde éste se encuentra asociado al cobre.

Fuente Consultada:
Enciclopedia de la Ciencia y la Tecnología Fasc. N°41 El Cobalto y sus propiedades

Primera Máquina de Calcular de Pascal o Pascalina

FUNCIONAMIENTO DE LA MAQUINA DE SUMAR MECÁNICA DE PASCAL

Durante mucho tiempo se lian usado los abacos (tableros contadores) como auxiliares del cálculo. Ahora la mecánica ayuda al cálculo con sus máquinas.

La primera máquina de calcular (es decir, una en la que el resultado se lee directamente) fue construida por Pascal en 1642, que la diseñó para ayudar a su padre en sus cálculos monetarios.

Siguiendo el mismo principio, se construyeron otras máquinas del mismo tipo. La que vamos a describir data de 1652.

Blas Pascal

El original se conserva en el Conservatoire des Arts et Metiers de París, y una copia en el Science Museum de Londres. La máquina de Pascal usa principios que aún se utilizan hoy en las modernas calculadoras.

Pascalina

Consiste en una caja que contiene seis equipos de cilindros y ruedas dentadas (ver ilustración). Cada cilindro lleva los números del 0 al 9 alrededor de su eje, dispuestos de tal forma que solamente uno de ellos es visible a través de un agujero de la caja.

Las ruedas dentadas están conectadas a seis mandos horizontales (algo así como un disco de un teléfono) y cuando se gira el mando, el cilindro gira con él.

Para explicar el manejo de la calculadora, vamos a suponer que queremos sumar los números 2, 5 y 3. Giramos el disco de la derecha en sentido contrario al de las agujas de un reloj, desde donde está marcado el 2 hasta el cero.

El disco se mueve de modo inverso al del teléfono y no vuelve a la posición de partida, aunque se suelte.

Gira la rueda dentada en el interior y, simultáneamente, el cilindro gira 2/10 de vuelta. Ahora repetimos la operación con el número 5. La rueda hace que el cilindro avance 5/10 de revolución, de forma que el total registrado es 7.

A continuación repetimos el proceso con el número 3, y el cilindro gira en el interior 3/10. Como quiera que el cilindro está marcado en décimas, y hemos añadido 10 unidades (2, 3, 5), el dial vuelve de nuevo a cero.

Un mecanismo dispuesto en el interior de la calculadora lleva el número 1 al cilindro inmediato de la izquierda, es decir, hace girar el cilindro contiguo 1/10 de revolución, de cero a uno.

En total, hay en la caja seis cilindros, que representan (de derecha a izquierda) unidades, decenas, centenas, millares, decenas de millar y centenas de millar, respectivamente.

La suma de 2, 5 y 3 produce un cero en el cilindro de las unidades y un uno en las decenas, dando el total de 10.

Con los seis cilindros se puede realizar una suma cuyo total sea de 999.999. En realidad, el modelo descrito tiene dos equipos de números en los diales, de forma que el segundo equipo gira en la dirección opuesta (es decir, de 9 a 0, en vez de hacerlo de 0 a 9). Este último puede usarse para la sustracción, y está cubierto por una tira Hp metal cuando no se usa.

Algunas de las máquinas de Pascal fueron diseñadas para sumar libras, céntimos y de-narios (monedas francesas), y pueden ser consideradas como las antecesoras de las máquinas registradoras.

Aunque el invento de las calculadoras es muy importante, Pascal no sólo es conocido como su inventor, sino que su obra comprende, además, física, matemáticas y filosofía.

Pascal nació en Clermont-Ferrand en 1623 y desde temprana edad se interesó por las matemáticas.

Se dice que a la edad de doce años descubrió él mismo algunas ideas geométricas de Euclides.

Construyó la primera máquina de calcular antes de tener 20 años. Unos años más tarde fue capaz de demostrar que la presión atmosférica decrece con la altura.

Hoy día, 300 años después de su muerte, se recuerda a Pascal por su ley de la presión en los fluidos y por su triángulo.

La ley sobre la presión en los fluidos resultó de sus trabajos en hidrostática, y es en la que se basa la acción de prensas hidráulicas, gatos hidráulicos y máquinas semejantes. El triángulo de Pascal es una figura de números que se usa en los estudios de probabilidades.

La extensión de la obra de Pascal es aún más sorprendente si se tiene en cuenta que no gozó de buena salud durante su vida y que murió a la edad de 39 años, en 1662.

Fuente Consultada:
TECNIRAMA Enciclopedia de la Ciencia y la Tecnología Fasc. N°49 – Pascal y su máquina de calcular

El Disco de Newton Descoposicion de la Luz

El Disco de Newton
Descoposición de la Luz

Kepler describió la armonía de los movimientos de los planetas. Newton, que probablemente nunca leyó sus obras, creó la mecánica celeste, es decir, que explicó el movimiento de los astros y, simultáneamente, las mareas, la caída, etc.

El gran matemático Lagrange dijo: «Hay sólo una ley del universo, y fue Newton quien la descubrió.» En la obra de Newton, jamás igualada por sabio alguno, culminan milenios de esfuerzos de las mentes más ilustres.

Su publicación constituye uno de los acontecimientos más notables, no sólo de la historia de la ciencia, sino de toda la historia humana.

Seguimos encarando como Newton la mecánica celeste (las modificaciones introducidas por Einstein sólo se refieren a factores mínimos, dentro de los márgenes de error previstos).

Al mismo tiempo que Leibniz, pero independientemente de él, Newton inventó el cálculo diferencial e integral y desarrolló diversas teorías matemáticas.

Fue también él quien construyó el primer telescopio a reflexión e inició el estudio experimental de la composición de la luz, fuente de toda la espectroscopia moderna, rama absolutamente indispensable de los estudios físicos y químicos actuales.

En esta nota veremos solamente cómo Newton explicó que la luz que consideramos blanca es, en realidad, una luz compuesta de varios colores.

En primer lugar, descompuso la luz solar: alrededor de 1666, mediante un prisma triangular de cristal atravesado por un haz luminoso, obtuvo lo que hoy llamamos un espectro, debido al diferente índice de refracción o desviación de cada uno de los colores que componen la luz blanca.

disco de newton

Es éste el experimento que se representa, en forma simplificada, en la ilustración superior. La división de un rayo de luz en sus componentes, debido a su diferente refracción, se denomina dispersión de la luz. El arco iris se basa en ella; las diminutas gotas de agua actúan como prismas, pero, a veces, el fenómeno natural es bastante más complicado que la experiencia que explicamos, porque intervienen además una o dos reflexiones.

Faltaba luego recomponer la luz blanca mediante la suma de los colores. Esto se consigue mediante un aparato denominado disco de Newton, que se ve en la ilustración inferior. Este disco, pintado con los mismos colores que componen el espectro de la luz blanca, adquiere, si gira muy rápidamente y recibe una iluminación intensa, un color uniformemente blanco.

El disco se hace girar y los colores forman la luz blanca

A medida que aumenta la velocidad del disco se van «sumando» los colores, el matiz general se hace grisáceo y, por último, sólo se observa un circulo uniforme de color blancuzco.

Estos dos experimentos completan, así, la descomposición y la recomposición de la luz blanca, en sus colores fundamentales.

Fuente Consultada:
Enciclopedia TECNIRAMA De La Ciencia y la Tecnología N°10

Tabla de Radiaciones Electromagneticas Ejemplos

Tabla de Radiaciones Electromagnéticas Ejemplos

Todas las emisión de radiaciones están presentes en los aspectos más variados de nuestra realidad, desde la función clorofílica de las plantas hasta las comunicaciones intercontinentales. Tal variedad de fenómenos determina, con frecuencia, una confusión sobre las particularidades y características de cada tipo de radiación; porque, aun cuando en conjunto sean todas emisiones de ondas sinusoidales, sus frecuencias y longitudes de onda peculiares les permiten desarrollar efectos  determinados.   Así,  los  rayos X,  que tienen  frecuencias muy altas pero cortas longitudes de onda, pueden atravesar perfectamente los tejidos animales y otros diversos materiales.

La radiación electromagnética se propaga en forma de ondas creadas por la oscilación en el espacio de campos eléctricos y magnéticos perpendiculares entre sí y a la dirección de propagación. Todas las ondas electromagnéticas viajan a la misma velocidad en el vacío, la velocidad de la luz c (300.000 Km/seg.), pero los distintos tipos de ondas tienen diferente longitud de onda y diferente frecuencia.

Estas dos magnitudes están relacionadas por la ecuación λ.f=c, de modo que a cada frecuencia le corresponde una única longitud de onda. El espectro completo de radiaciones electromagnéticas comprende una amplia variedad en longitudes de onda, desde las enormes ondas de baja frecuencia tan grandes como la Tierra, hasta los penetrantes rayos gamma, con longitudes más pequeñas que el núcleo de los átomos. Estos distintos tipos de radiación, si bien son producidos y detectados de maneras que les son propias, responden todos a la misma descripción ondulatoria de campos electromagnéticos.

Según la teoría electromagnética, las partículas cargadas aceleradas, como los electrones en una corriente variable dentro de un cable, irradian energía en forma de ondas. Las ondas de radio, de menos de 1010 Hz y longitudes mayores que 1 cm, pueden producirse y detectarse por circuitos eléctricos capaces de producir corrientes variables.

Este tipo de ondas es el que se ha utilizado para transmitir información «sin hilos», es decir, sin un cable que se extienda entre el transmisor y el receptor de información, desde los famosos experimentos de Hein-rich Hertz en el siglo pasado.

Al igual que la luz visible, las ondas de radio pueden ser reflejadas, refractadas y absorvidas.

En el cuadro siguiente se han reunido, por orden decreciente de frecuencias y creciente de longitudes de onda, los principales tipos de radiaciones que existen; los procesos de emisión, sus causas y medios de detección permitirán catalogar, de modo simple y rápido, las diversas clases de radiaciones, cuya serie, en conjunto, se denomina espectro electromagnético.

Es interesante observar que los receptores sensoriales del hombre sólo perciben las radiaciones de una pequeña zona del espectro (luz visible  y rayos  infrarrojos).

LA RADIACIÓN SE PRODUCE ENPOR FRECUENCIA
(CICLOS/SEG.)
TIPO DE LA RADIACIÓNPUEDE SER
DETECTADA POR
Explosión atómicaNúcleo atómico en oscilación1020Rayos gammaContador Geiger
Tubo de rayos X Trayectoria espiral de un electrón interno1018Rayos XPantalla de rayos X
Lámpara Trayectoria espiral de un electrón externo1016Rayos ultravioleta
Luz visible
Cámara fotográficaOjo
Estufa Trayectoria espiral de un electrón externo1012
1014
Rayos infrarrojos Receptores corporales
Sol Trayectoria espiral de un electrón1010 Micro-ondasPantalla de radar
Circuito oscilanteAntena Oscilación de la Carga En Un Conductor

106

104

Ondasde radio TelevisiónReceptor de radio

 

Ya se sabía que la luz era un movimiento ondulatorio antes de que Maxwell hiciera sus descubrimientos, pero no se había podido establecer de qué tipo era. Maxwell pudo demostrar que las oscilaciones provenían del campo eléctrico y magnético. Las ondas de Hertz tenían una longitud de onda de unos 60 cm, o sea que tenían una longitud de onda mucho más larga que las ondas de luz.

Actualmente reconocemos un espectro de radiación electromagnética que se extiende de  10 elevado a -15 m a 10 elevado a la 9 m.

Se subdivíde en franjas más pequeñas que a veces se solapan.

La ampliación del campo de la observación astronómica de las longitudes de onda visibles a otras longitudes de onda electromagnéticas ha revolucionado nuestro conocimiento del universo.

Las ondas de radio tienen una gama amplia de longitudes de onda, desde unos cuantos milímetros hasta varios kilómetros.

Las microondas son ondas de radio con longitudes de onda más cortas, entre I mm y 30 cm. Se utilizan en el radar y en los hornos de microondas.

Las ondas del infrarrojo de diferentes longitudes de onda son irradiadas por cuerpos a determinadas temperaturas. (Cuerpos a temperaturas más altas irradian bien ondas visibles, bien del ultravioleta).

La Tierra y su atmósfera irradian ondas del infrarrojo con longitudes de onda medías de unos 10 micrometros (u m) o I0″5 m (I u m = 10-6 m) a una temperatura media de 250K (-23°C).

Las ondas visibles tienen longitudes de onda de 400-700 nanómetros (nm) y  1 nm = 10 elevado a -9 m). El punto más alto de la radiación solar (con una temperatura de 6000K/6270°C) se alcanza a una longitud de onda de unos 550 nm, que es donde el ojo humano es más sensible.

Las ondas ultravioletas tienen longitudes de onda de entre unos 380 nm hasta 60 nm. La radiación de estrellas más bien calientes (más de 25.000K/25.000°C) se desvía hacia las zonas violetas y ultravioletas del espectro.

Los rayos X tienen longitudes de onda de aprox. 10 nm a 10 elevado a -4 nm.

Los rayos gamma tienen longitudes de onda menores a 10″‘1 m. Los emiten determinados núcleos radioactivos y se desprenden en algunas reacciones nucleares.

Nótese que los rayos cósmicos que continuamente bombardean la Tierra desde el espacio exterior no son ondas electromagnéticas, sino protones y partículas x (es decir, núcleos de átomos de hidrógeno y helio; de alta velocidad, además de algunos núcleos más pesados.

frecuencias y longitud de onda del espectro electromagneticoHaz Clic Para Otra Tabla

La Electrolisis del Agua Descomposición en Oxigeno Hidrogeno

Electrólisis:Descomposición Del Agua en Oxígeno e Hidrógeno

LA  ELECTRÓLISIS  DEL AGUA: El agua (H2O) tiene una molécula que se compone de dos átomos de hidrógeno y un átomo de oxígeno.

Por tanto, no es de extrañar que se haya pensado en utilizarla como materia prima para la obtención de alguno de los dos elementos, especialmente teniendo en cuenta su abundancia, ya que constituye casi el 7 % de la masa de la Tierra.

Normalmente, el agua se utiliza para obtener hidrógeno, ya que el oxígeno se puede producir más económicamente por otros medios (por ejemplo, licuando el aire y destilándolo a continuación).

Entre los diversos métodos con que hoy cuenta la química para descomponer el agua se halla la electrólisis, procedimiento que implica la utilización de energía eléctrica y que, por tanto, no es de los más económicos.

No obstante, al obtenerse simultáneamente oxígeno como subproducto, el método no resulta, en realidad, tan costoso, y mucho menos para aquellos países, como los escandinavos, que disponen de energía eléctrica a bajo precio.

A primera vista, se diría que el agua no se puede descomponer por electrólisis, pues para que se verifique el transporte de electrones en el seno de un líquido es necesario que éste contenga iones, (átomos o grupos atómicos con carga), y el agua no los contiene.

Esto último no es rigurosamente cierto, puesto que el agua, aunque poco, está ionizada, según  la siguiente reacción:

H2O <===>  H+ + OH—

Es decir, parcialmente se encuentra en forma de iones hidrógeno (H+) e iones oxidrilo (OH—).

Pero, además, este fenómeno (la ionización del agua) se acentúa agregándole ciertos reactivos que, en teoría, pueden ser: una sal, un ácido o un álcali (base).

En la práctica, la utilización de sales presenta el inconveniente de que se producen reacciones que atacan los electrodos, por lo cual habría que utilizar electrodos inertes, de grafito o de platino.

Si se utilizan ácidos (sulfúrico o clorhídrico) sucede algo análogo, ya que la descarga de los aniones correspondientes (S04=,Cl-) es de gran actividad.

Por último, la utilización dé bases, como la soda (Na OH) o el carbonato sódico (CO3 Na2), casi no presenta inconvenientes y, por ello, es la que se practica.

Puesto que hay que partir del punto de que la energía eléctrica es costosa, se precisa estudiar minuciosamente el método, o lo que es lo mismo, el diseño de la cuba electrolítica o célula, para obtener rendimiento máximo con mínima energía.

electrolisis

La potencia de cualquier aparato eléctrico y, por tanto, la de la cuba, se obtiene mediante la siguiente expresión (Ley de Joule):

W= I x V

en donde I es la intensidad de corriente y V, el voltaje.

La intensidad de la corriente en amperios necesaria para producir una determinada cantidad de hidrógeno se sabe con facilidad, teniendo en cuenta las leyes de la electrólisis, de Faraday (96.500 culombios depositan un equivalente  gramo  de   cualquier   sustancio),   y  que   1   amperio= 1 culombio/segundo

Por   un   razonamiento   sencillo  se  desegundo, mostraría que,durante una horc,  1.000 amperios pueden liberar cerca de medio metro cúbico de hidrógeno.

En cuanto al voltaje de la corriente, interviene una serie de factores, que son los que, en realidad, determinan ios características a las que se ha de ajustar la célula electrolítica.

Se ha comprobado experimentalmente que el voltaje necesario se compone de tres factores, o sea:

V=V1+V2 + V3

V1 es el  voltaje necesario para descomponer el  agua;
V2  es  la sobretensión  de  los electrodos,  y
V3  es la caída óhmica a  lo largo de la cuba electrolítica.

Para obtener el mínimo consumo de electricidad (o sea, la potencia, en vatios, mínima) en la liberación del hidrogene es evidente que, siendo fija la intensidad de la corriente, hay que disminuir lo más posible el voltaje (V).

Pero V1 es una  cantidad constante y,  por tanto,  no se  puede actuar sobre ella. Quedan así por examinar V2 y V3.

En la sobretensión (V2) influyen los siguientes factores: la  naturaleza  de  los  electrodos  (los  que  producen  mencr sobretensión   son   los  de   níquel   y  hierro),   la   temperatura del  baño,   la  viscosidad del  electrolito,  la  densidad  de   le corriente que atraviesa el baño, etc.

En la caída óhmica (V3), y teniendo en cuenta que hay que introducir en la cuba unos diafragmas para evitar que se mezclen el hidrógeno y el oxígeno producidos , influyen la longitud de la cuba (l1), el coeficiente de resistividad del electrodo, el espesor del diafragma (l2), el coeficiente de resistividad de éste, la resistividad del electrolito, etc.

Del estudio de las variables anteriores se deduciría que le célula electrolítica ideal debería tener unos electrodos en forma de láminas muy grandes —para que admitan muchos amperios—, colocados bastante próximos, para que li fuera mínima; entre ellos se colocaría el diafragma c película metálica de pequeño espesor —para que l¡¡ sea mínimo— y con unos orificios de diámetro suficiente, para no ofrecer resistencia al paso de los iones.

En la práctica, existe una serie de células que presente diversas ventajas e inconvenientes, como resultado de haberse tenido en cuenta, en mayor o menor grado, las variables que intervienen en el proceso, algunas de las cuales no se pueden armonizar.

Una de las más utilizadas es la «Schmidt-Oerlikon» que trabaja a 2,3 voltios y consume 6 kwh por cada metro cúbico de hidrógeno liberado (simultáneamente se libere 0,5 m3 de oxígeno).

Conceptos básicos de lubricantes Disminuir el Rozamiento

Conceptos Básicos de Lubricantes
Disminuir el Rozamiento

FUNCIÓN DE LOS LUBRICANTES: Los lubricantes son productos que presentan la propiedad de disminuir el coeficiente de rozamiento entre dos superficies, que se deslizan una sobre otra con movimiento relativo.

lubricar concepto basico

Es fácil comprender que» tengan una importante aplicación en todos los aparatos mecánicos donde hay movimiento de piezas, puesto que ejercen una doble función: a) mecánica, de disminuir la carga, al reducir el coeficiente de rozamiento, y b) térmica, de evitar que se eleve lo temperatura de la máquina, puesto que absorbe y elimina el  calor producido en  el  roce.

Así como el consumo de ácido sulfúrico indica el grado de industrialización de un país, el de lubricantes da el índice de mecanización; este último también se puede saber partiendo del consumo de carburantes. Lubricantes y carburantes presentan un consumo proporcional: el de los primeros es el 3,5 % de los segundos.

Según lo anterior, el país más mecanizado del mundo es Estados Unidos, que en el año 1964 consumió lubricantes a razón de 25 kilogramos por habitante.

Veamos ahora cuál es el concepto de coeficiente de rozamiento. Si se supone una pieza de peso V, que está deslizándose sobre una superficie S (véase figura), para que el movimiento no cese sólo será necesario aplicar una fuerza F que compense el rozamiento.

fuerza de rozamiento y lubricantes

Es evidente que, cuanto mayor sea el peso P, más grande tiene que ser F. Entonces, se define como coeficiente de rozamiento Ω a la relación  entre  la   fuerza aplicada   (F)  y  la   presión   (P)   que ejerce el cuerpo sobre la superficie que ocupa, o sea:

formula rozamiento

Cuanto más grande sea el coeficiente de rozamiento de una pieza de un material determinado, mayor será la fuerza que se necesita para desplazarlo.

Para dar una idea de cómo pueden disminuir los lubricantes las resistencias de rozamiento, baste decir que, en el vacío, los metales pulimentados tienen un coeficiente de rozamiento mil veces superior al que presentan agregándoles   un   lubricante.

Las condiciones generales que debe reunir un lubricante son las siguientes:

1) buena circulación, para que la refrigeración de las partes en rozamiento sea eficaz;

2) viscrosidad suficientemente alta, para que trabaje en régimen hidrodinámico (régimen estable);

3) Untuosidad, para que se reparta bien por la superficie a lubricar.

Todas estas condiciones se dan en determinados tipos de aceites, como los que se obtienen en la destilación y el fraccionamiento del petróleo.

Ello no quiere decir que los aceites vegetales sean malos lubricantes; pueden ser, incluso, mejores que los minerales, pero durante corto plazo, porque su estabilidad es muy inferior. No obstante, estas buenas cualidades de los aceites vegetales se aprovechan para mejorar los lubricantes dé petróleo.

Así, es muy frecuente añadir ácido palmítico al aceite mineral, para que el lubricante adquiera la untuosidad y adherencia a las superficies metálicas que aquel producto le confiere; por ejemplo, la adición de un 0,5 % de ácido palmítico al aceite mineral determina, una disminución del coeficiente de rozamiento en los metales, que oscila  entre  el   30′ %   y  el   40 %.

Un  lubricante que trabaje en condiciones de gran presión necesita  aditivos de los siguientes tipos:

a)    ácidos grasos (palmítico, esteárico, etc.), para que. soporte presiones de arranque elevadas; por ejemplo, en la caja de cambios de los motores se producen presiones de hasta 28  toneladas por centímetro cuadrado;
b)    polímeros, para, que la variación de la viscosidad con la   temperatura   sea   mínima;
c)    productos antigripantes (palmitato de plomo, oleato de plomo,  grafito,  azufre,  etc.).

Hoy se fabrican lubricantes más amigables con el medio ambiente, que duran más tiempo en el motor. Se habla de los lubricantes sintéticos, semisintéticos, los hechos con bases más refinadas, lo cual permite que el motor, como el medio ambiente, tengan mejor cuidado. Ya no son lubricantes para  5.000 kilómetros, ese mito se rompió hace tiempo, los productos de hoy permiten 10.000 kilómetros en condiciones normales de trabajo

Las principales funciones de los aceites lubricantes son:

  • Disminuir el rozamiento.
  • Reducir el desgaste
  • Evacuar el calor (refrigerar)
  • Facilitar el lavado (detergencia) y la dispersancia de las impurezas.
  • Minimizar la herrumbre y la corrosión que puede ocasionar el agua y los ácidos residuales.
  • Transmitir potencia.
  • Reducir la formación de depósitos duros (carbono, barnices, lacas, etc.)
  • Sellar

Fuente Consultada:
TECNIRAMA Enciclopedia de la Ciencia y la Tecnología N°96

Biografía de Evangelista Torricelli Fisico Presion Atmosferica

Biografía de Evangelista Torricelli
Físico Que Investigó Presión Atmosférica

Físico y matemático italiano que descubrió la forma de medir la presión atmosférica, para lo cual ideó el barómetro de mercurio. Por este invento pasó a la posteridad. En 1644 publicó su obra Opera geométrica (Obra geométrica), donde expuso sus hallazgos sobre fenómenos de mecánica de fluidos y sobre el movimiento de proyectiles.

Fruto de sus observaciones, perfeccionó el microscopio y el telescopio. Asimismo, sus aportes a la geometría fueron determinantes en el desarrollo del cálculo integral

BIOGRAFÍA TORRICELLI Evangelista (1608-1647)
Físico y matemático italiano nacido el 15 de octubre de 1608 en Faenza y fallecido enFlorencia el 25 de octubre de 1647. Sus padres fueron Gaspare Torricelli y Caterina Angetti.

Era una familia humilde, Gaspare era obrero textil. Evangelista fue el mayor de los tres hijos del matrimonio.

Sus padres notaron el talento de su hijo y como no tenían recursos para educarlo lo enviaron a estudiar con su tío, el Hermano Jacopo, un monje Camaldolese, al colegio Jesuita entre tos años 1624-1626 en Faenza.

Su tío observa el talento de Evangelistay arregla que estudie privadamente con otro monje Camatdolese, Benedetto Castetli, de quien se convierte en ayudante hasta 1632. Castelli enseñaba en la Universidad de Sapienza, en Roma.

Torricelli no fue alumno de esa universidad. Torricellireemplazaba a Castelti cuando estaba ausente de Roma.

El 11 de septiembre de 1632 Castelli escribió a Galileo una carta en la cual informa sobre los notables progresos científicos de Evangelista. Galileo te contesta a Castelli, pero como éste no estaba en Roma, su secretario Torricelli aprovecha para contestar la carta y explicarle directamente a Galileo sobre sus trabajos matemáticos.

Durante los siguientes nueve años (1632-1641), fue secretario de Giovanni Ciampoli, amigo de Galileo y de otros profesores.

No se sabe exactamente donde vivió Torricelli durante estos años, pero como Ciampoli fue gobernador de muchas ciudades, debe haber vivido en distintos períodos en Montatto, Norcia, San Severino y Fabriano.

Para 1641 Torricelli había completado gran parte del trabajo que iba a publicar en tres partes en 1644, Opera geométrica. La segunda parte del trabajo es el De motu gravium, que es un tratado sobre el movimiento parabólico de los proyectiles. Torricelli pidió opinión a Castelti sobre tratado en 1641.

Castelti estaba tan impresionado que él mismo te escribió a Gatileo, que vivía en Arcetri, cerca de Florencia, vigilado por la Inquisición. En abril de 1641 Castelli fue de Roma a Venecia y de paso se detuvo en Arcetri para entregarte a Galileo una copia del manuscrito de Torricelli y le sugiere que lo contrate como asistente.

Mientras Castelli viajaba, Torricelli permanecía en Roma a cargo de sus clases. Galileo aceptó la propuesta de Castelli y el 10 de octubre de 1641, Torricelli llegó a La casa de Galileo en Arcetri.

Se convirtió así en su discípulo (1641). Permaneció viviendo con Galileo durante su ceguera, cuidándolo hasta el día de su muerte en enero de 1642 y, un año más tarde, lo sucedió en el cargo de matemático de la corte del Gran Duque Fernando II de Toscana, pero no recibió el titulo de Filósofo de la Corte, que tenía Galileo.

Torricelli mantuvo este cargo hasta su muerte, viviendo en el palacio ducal en Florencia.

Otro discipulo de Castelli era Cavalieri, que era titular de la cátedra de Matemática en Bolonia. Torricelli estudió los métodos de Cavalieri y al principio desconfió de ellos. Pero pronto se convenció de su exactitud y comenzó a profundizarlos.

Uno de sus resultados más importante tiene que ver con la extensión del método de los indivisibles de Cavaliería los indivisibles curvo.

Para 1641 había probado un número impresionante de resultados usando el método que publicaría tres años después. Examinó los cuerpos tridimensionales que se obtienen al rotar un polígono regular alrededor de un eje de simetría.

También calculó el área y centro de gravedad de la cicloide.

El tema de La cicloide surgió de una disputa con Roberval. En una carta fechada en octubre de 1643 Le informa a Roberval sobre sus puntos de vista y resultados sobre el centro de gravedad de la parábola, la superficie de la cicloide y su historia, el sólido de revolución generado por una cónica y un sólido hiperbólico.

No hay duda que ambos matemáticos llegaron a descubrimientos similares sobre La cicloide pero que ninguno influyó sobre La ideas del otro.

Otra contribución de Torricelli fue en 1640, la resolución del problema de Fermat: dados tres puntos en un plano, encontrar un Cuarto punto tal que la suma de las distancias a los tres dados sea la menor posible (conocido como el centro isogónico del triángulo). Torricelli fue la primera persona en crear un vacío sustentable. su nombre se asocia a La invención del barómetro de mercurio en 1644 para La medición de La presión atmosférica.

Este experimento, además de la importancia de sus aplicaciones prácticas, permitía demostrar la inconsistencia de Las afirmaciones de los que aún seguían las teorías aristotélicas sobre la imposibilidad de la existencia de vacío, ya que por encima de la columna de mercurio de su barómetro se producía dicho vacío.

En De motu gravium también probó que la velocidad de salida de un liquido a través de un pequeño orificio en la pared delgada de un recipiente es proporcional a la raíz cuadrada de la altura entre el orificio y base del recipiente, enunciado conocido como el Teorema de Torricelli. Algunos lo consideran el fundador de la hidrodinámica.

En esta publicación estudia el movimiento de un proyectil, desarrolla las ideas de Galileo sobre la trayectoria parabólica de un proyectil lanzado horizontalmente y da una teoría sobre los proyectiles disparados en cualquier ángulo.

Por otra parte, construyó los mejores anteojos de la época y hasta ahora, las lentes preparadas por él, se destacan por su perfección.

También construyó telescopios, microscopios. Aparentemente aprendió estas técnicas mientras vivió con Galileo. Torricelli ganó mucho dinero por sus habilidades en la construcción de lentes durante la última parte de su vida en Florencia y recibió muchos regalos del Gran Duque.
En 1647 Torricelli; contrajo fiebre tifoidea y murió a tos 39 años.

Torricelli, físico

«Yo afirmo que vivimos en un mar de aire»
El mérito de Torricelli fue haber sido el primero en medir el valor de la presión que
la atmósfera imprime a la superficie terrestre.

Por qué se lo recuerda
LA ACEPTACIÓN DEL VACIO
Demostró que los efectos atribuidos al «horror del vacío» se debían en realidad a la presión del airé. Inventó el barómetro de mercurio.

PREDICCIÓN DEL TIEMPO
Aunque Torricelli nunca lo supo, el descubrimiento del barómetro iba a ser muy importante para pronosticar el tiempo.

APARATOS DE ÓPTICA
Construyó telescopios superiores a los conocidos hasta entonces y otros aparatos de óptica. También desarrolló el teorema que lleva su nombre, acerca del movimiento de los fluidos.
Medición atmosférica

PARA SABER MAS…
La conquista del vacío .

Hasta el siglo XVII era imposible aceptar la idea de que el vacío era parte del espacio. Aristóteles había intentado sin éxito verificar el peso del aire y durante mucho tiempo el pensamiento imperante afirmaba que el vacío era, sobre todo, un concepto inconsistente. Sin embargo, el camino de la investigación y la experimentación, iniciado en gran medida por los descubrimientos de Galileo, Newton y Torricelli, cambió de manera radical el punto de vista de la ciencia.

Evangelista Torricelli, discípulo de Galileo, fue quien demostró que el aire es un fluido gaseoso que nos rodea, nos envuelve y nos presiona.

Su aporte fue muy importante ya que muchos fenómenos que ocurrían en la naturaleza hasta entonces extraños-eran derivados simplemente de la presión atmosférica.

¿Qué hizo Torricelli? Llenó un tubo con mercurio, lo invirtió y sumergió la parte abierta en un recipiente con más mercurio. El nivel de éste en el tubo descendió algunos centímetros, lo qué dio lugar en el extremo cerrado a un espacio sin mercurio, que no podía estar sino vacío.

Al principio muchos hombres de ciencia de la época se negaron a aceptar la teoría de Torricelli, verificada por el barómetro que él mismo había construido. Tuvo que transcurrir un tiempo para que la sociedad reconociera que por sobre la columna de mercurio operaba el propio peso de la atmósfera que rodea la Tierra.

Nuevos descubrimientos
Las experiencias de Torricelli fueron conocidas en Francia a través de su correspondencia con el religioso Marín Mersenne, quien a su vez estaba en contacto con otros investigadores que se sintieron entusiasmados a seguir explorando el fenómeno del espacio vacío.

Así fue como el físico Blaise Pascal (1623-1662), en Francia, reveló las variaciones de la presión atmosférica según las condiciones climáticas y la altura. A su vez Robert Boyle (1627-1691), en Inglaterra, llevó a cabo diversos estudios sobre la elasticidad del aire.

La carrera por perfeccionar los instrumentos que se usan para conocer el macro y microcosmos continúa hasta la actualidad. Hoy, al escuchar las noticias meteorológicas sabemos que las altas y bajas presiones sobre determinadas zonas del planeta tienen una influencia muy importante sobre el estado del tiempo y gran parte se la debemos a Torricelli, el físico italiano.

Fuente Consultada: Gran Atlas de la Ciencia National Geographic

Biografia de John Nash Matematico Premio Nobel Teoría de Juegos

Biografia de John Nash Matemático Premio Nobel

John Forbes Nash: Matemático, Premio NobelLa verdadera vida de John Forbes Nash, Jr.: John Forbes Nash (Virginia Occidental, 13 de junio de 1928 – Monroe, Nueva Jersey, 23 de mayo de 2015)​ fue un matemático estadounidense, especialista en teoría de juegos,​ geometría diferencial​ y ecuaciones en derivadas parciales,​ que recibió el Premio Nobel de Economía en 19945​ por sus aportes a la teoría de juegos y los procesos de negociación, junto a Reinhard Selten y John Harsanyi,6​ y el Premio Abel en 2015.

 «Una mente maravillosa», «A beautiful Mind» es un magnífico producto de Hollywood inspirado en la vida de John Nash pero que no pretende ser su biografía. En realidad son muy pocos los hechos o situaciones de la vida real de Nash que son contados en la película.

El padre se llamaba también John Forbes Nash por lo que distinguiremos al padre del hijo al estilo americano, añadiéndoles el calificativo «Senior» o «Junior» (Jr.).

Nash Senior nació en Texas en 1892 y estudió ingeniería eléctrica. Después de luchar en Francia en la primera guerra mundial, fue durante un año profesor de ingeniería eléctrica en la Universidad de Texas tras lo que se incorporó a la empresa Appalachian Power Company en Bluefield, West Virginia.

La madre de Nash Jr., Margaret Virginia Martin, estudió idiomas en las universidades Martha Washington College y West Virginia University.

Fue profesora durante diez años antes de casarse con Nash Senior, el 6 de septiembre de 1924.

Johnny Nash, así le llamaba su familia, nació en Bluefield Sanatorium el 13 de junio de 1928 y fue bautizado en la iglesia Episcopaliana. Sus biógrafos dicen que fue un niño solitario e introvertido aunque estaba rodeado de una familia cariñosa y atenta.

Parece que le gustaban mucho los libros y muy poco jugar con otros niños. Su madre le estimuló en los estudios enseñándole directamente y  llevándole a buenos colegios.

Sin embargo, no destacó por su brillantez en el colegio. Por el contrario, debido a su torpeza en las relaciones sociales, era considerado como un poco atrasado. Sin embargo, a los doce años dedicaba mucho tiempo en su casa a hacer experimentos científicos en su habitación.

Su hermana Martha, dos años más joven que él, era una chica muy normal. Dice de su hermano:

«Johnny era siempre diferente. Mis padres sabían que era diferente y también sabían que era brillante. Él siempre quería hacer las cosas a su manera. Mamá insistía en que yo le ayudase, que lo introdujera entre mis amistades… pero a mí no me entusiasmaba lucir a un hermano tan raro».

A los catorce años Nash empezó a mostrar interés por las matemáticas. Parece ser que influyó la lectura del libro de Eric Temple Bell,  «Men of Mathematics» (1937). Entró en el Bluefield College en 1941. Comenzó a mostrarse hábil en matemáticas, pero su interés principal era la química. Se suponía que iba a seguir la misma carrera de su padre,  ingeniería eléctrica, pero continuaba con sus experimentos químicos. Parece ser que tuvo alguna relación con la fabricación de unos explosivos que produjeron la muerte a uno de sus compañeros de colegio.

Nash ganó una beca en el concurso George Westinghouse y entró en junio de 1945 en el Carnegie Institute of Technology (hoy llamado Carnegie-Mellon University) para estudiar ingeniería química. Sin embargo empezó a destacar en matemáticas cuyo departamento estaba dirigido entonces por John Synge, que reconoció el especial talento de Nash y le convenció para que se especializara en matemáticas.

Se licenció en matemáticas en 1948. Lo aceptaron para estudios de postgrado en las universidades de Harvard, Princeton, Chicago y Michigan. Nash consideraba que la mejor era Harvard, pero Princeton le ofreció una beca mejor por lo que decidió estudiar allí, donde entró en septiembre de 1948.

En 1949, mientras se preparaba para el doctorado, escribió el artículo por el que sería premiado cinco décadas después con el Premio Nobel. En 1950 obtiene el grado de doctor con una tesis llamada «Juegos No-Cooperativos«. Obsérvese que el libro inicial de la teoría de juegos, «Theory of Games and Economic Behavior» de von Neumann y Oskar Morgenstern,  había sido publicado muy poco antes, en 1944.

En 1950 empieza a trabajar para la RAND Corporation, una institución que canalizaba fondos del gobierno de los Estados Unidos para estudios científicos relacionados con la guerra fría y en la que se estaba intentando aplicar los recientes avances en la teoría de juegos para el análisis de estrategias diplomáticas y militares. Simultáneamente seguía trabajando en Princeton.

En 1952 entró como profesor en el Massachusetts Institute of Technology. Parece que sus clases eran muy poco ortodoxas y no fue un profesor popular entre los alumnos, que también se quejaban de sus métodos de examen.

En este tiempo empezó a tener problemas personales graves que añadidos a las dificultades que seguía experimentando en sus relaciones sociales. Conoció a Eleanor Stier con la que tuvo un hijo, John David Stier, nacido el 19 de junio de 1953. A pesar de que ella trató de convencerlo, Nash no quiso casarse con ella. Sus padres solo se enteraron de este asunto en 1956. Nash Senior murió poco después de enterarse del escándalo y parece que John Nash, Jr. se sintió culpable de ello.

En el verano de 1954, John Nash fue arrestado en una redada de  la policía para cazar homosexuales. Como consecuencia de ello fue expulsado de la RAND Corporation.

Una de las alumnas de Nash en el MIT, Alicia Larde, entabló una fuerte amistad con él. Había nacido en El Salvador, pero su familia había emigrado a USA cuando ella era pequeña y habían obtenido la nacionalidad hacía tiempo. El padre de Alicia era médico en un hopital federal en Maryland. En el verano de 1955 John Nash y Alicia salían juntos. En febrero de 1957 se casaron.

En el otoño de 1958 Alicia quedó embarazada, pero antes de que naciera su hijo, la grave enfermedad de Nash ya era muy manifiesta y había sido detectada. Alicia se divorció de él más adelante, pero siempre le ayudó mucho. En el discurso de aceptación del Nobel, en 1994, John Nash tuvo palabras de agradecimiento para ella.

En 1959, tras estar internado durante 50 días en el McLean Hospital, viaja a Europa donde intentó conseguir el estatus de refugiado político. Creía que era perseguido por criptocomunistas. En los años siguientes estaría hospitalizado en varias ocasiones por períodos de cinco a ocho meses en centros psiquiátricos de New Jersey. Unos años después, Nash escribió un artículo para una revista de psiquiatría en el que describió sus pensamientos de aquella época:

«.. el personal de mi universidad, el Massachusetts Institute of Technology, y más tarde todo Boston, se comportaba conmigo de una forma muy extraña.  (…) Empecé a ver criptocomunistas por todas partes (…) Empecé a pensar que yo era una persona de gran importancia religiosa y a oir voces continuamente. Empecé a oir algo así como llamadas telefónicas que sonaban en mi cerebro, de gente opuesta a mis ideas.  (…) El delirio era como un sueño del que parecía que no me despertaba.»

A finales de los sesenta tuvo una nueva recaída, de la que finalmente comenzó a recuperarse. En su discurso de aceptación del Premio Nobel describe su recuperación así:

«Pasó más tiempo. Después, gradualmente, comencé a rechazar intelectualmente algunas de las delirantes líneas de pensamiento que habían sido características de mi orientación. Esto comenzó, de forma más clara, con el rechazo del pensamiento orientado políticamente como una pérdida inútil de esfuerzo intelectual».

En la actualidad sigue trabajando en el Departamento de Matemáticas de la Universidad de Princeton.

Su página web oficial es: http://www.math.princeton.edu/jfnj/

Su dirección electrónica: [email protected]  (hasta el 05-10-2002)

Descubrimiento de Nuevos Metales: Fosforo Cobalto y Niquel

HISTORIA DEL DESCUBRIMIENTO DE NUEVOS METALES EN EL SIGLO XVII

A pesar de todas estas trampas, la «era del flogisto» produjo algunos muy importantes descubrimientos. Un alquimista de aquel tiempo descubrió un nuevo elemento: el primer (y último) alquimista que, de una forma definida, identificó un elemento y explicó exactamente cuándo y cómo lo había encontrado. El hombre fue un alemán llamado Hennig Brand.

Algunas veces se le ha llamado el «último de los alquimistas», pero en realidad hubo muchos alquimistas después de él. Brand, al buscar la piedra filosofal para fabricar oro, de alguna forma se le ocurrió la extraña idea de que debía buscarla en la orina humana.

Recogió cierta cantidad de orina y la dejó reposar durante dos semanas. Luego la calentó hasta el punto de ebullición y quitó el agua, reduciéndolo todo a un residuo sólido. Mezcló tampoco de este sólido con arena, calentó la combinación fuertemente y recogió el vapor que salió de allí.

Cuando el vapor se enfrió, formó un sólido blanco y cerúleo. Y, asómbrense, aquella sustancia brillaba en la oscuridad. Lo que Brand había aislado era el fósforo, llamado así según una voz griega que significa «portador de luz».

Relumbra a causa de que se combina, espontáneamente, con el aire en una combustión muy lenta. Brand no comprendió sus propiedades, naturalmente, pero el aislamiento de un elemento (en 1669) resultó un descubrimiento espectacular y causó sensación. Otros se apresuraron a preparar aquella sustancia reluciente. El propio Boyle preparó un poco de fósforo sin conocer el precedente trabajo de Brand.

El siguiente elemento no fue descubierto hasta casi setenta años después. Los mineros del cobre en Alemania, de vez en cuando encontraban cierto mineral azul que no contenía cobre, como les ocurría, por lo general, a la mena azul del cobre.

Los mineros descubrieron que este mineral en particular les hacía enfermar a veces (pues contenía arsénico, según los químicos descubrieron más tarde). Los mineros, por tanto, le llamaron «cobalto», según el nombre de un malévolo espíritu de la tierra de las leyendas alemanas.

Los fabricantes de cristal encontraron un empleo para aquel mineral: confería al cristal un hermoso color azul y una industria bastante importante creció con aquel cristal azul. En la década de 1730, un médico sueco llamado Jorge Brandt empezó a interesarse por la química del mineral.

Lo calentó con carbón vegetal, de la forma comente que se usaba para extraer un metal de un mineral, y, finalmente, lo condujo a un metal que se comportaba como el hierro.

Era atraído por un imán: la primera sustancia diferente al hierro que se había encontrado que poseyera esta propiedad. Quedaba claro que no se trataba de hierro, puesto que no formaba  oxidación de tono pardo rojizo, como lo hacía el hierro.

Brandt decidió que debía de tratarse de un nuevo metal, que no se parecía a ninguno de los ya conocidos. Lo llamó cobalto y ha sido denominado así a partir de entonces. Por tanto, Brand había descubierto el fósforo y Brandt encontrado el cobalto (el parecido de los apellidos de los dos primeros descubridores de elementos es una pura coincidencia).

A diferencia de Brand, Brandt no era alquimista. En realidad, ayudó a destruir la Alquimia al disolver el oro con ácidos fuertes y luego recuperando el oro de la solución. Esto explicaba algunos de los, trucos que los falsos alquimistas habían empleado. Fue un discípulo de Brandt el que realizó el siguiente descubrimiento.

Axel Fredrik Cronstedt se hizo químico y también fue el primer mineralógolo moderno, puesto que fue el primero en clasificar minerales de acuerdo con los elementos que contenían. En 1751, Cronstedt examinó un mineral verde al que los mineros llamaban kupfernickel («el diablo del cobre»).

Calentó los residuos de este mineral junto con carbón vegetal, y también él consiguió un metal que era atraído por un imán, al igual que el hierro y el cobalto. Pero mientras el hierro formaba compuestos, pardos y el cobalto azules, este metal producía compuestos que eran verdes. Cronstedt decidió que se trataba de un nuevo metal y lo llamó níquel, para abreviar lo de kupfernickel.

Se produjeron algunas discusiones respecto de si el níquel y el cobalto eran elementos, o únicamente compuestos de hierro y arsénico. Pero este asunto quedó zanjado, en 1780, también por otro químico sueco, Torbern Olof Bergman.

Preparó níquel en una forma más pura que lo que había hecho Cronstedt, y adujo mi buen argumento para mostrar que el níquel y el cobalto no contenían arsénico y que eran, por lo contrario, unos nuevos elementos. Bergman constituyó una palanca poderosa en la nueva química y varios de sus alumnos continuaron el descubrimiento de nuevos elementos.

Uno de éstos fue Johan Gottlieb Gahn, que trabajó como minero en su juventud y que siguió interesado por los minerales durante toda su vida. Los químicos habían estado trabajando con un mineral llamado «manganeso», que convertía en violeta al cristal. («Manganeso» era una mala pronunciación de «magnesio», otro mineral con el que lo habían confundido algunos alquimistas.) Los químicos estaban seguros que el mineral violeta debía contener un nuevo metal, pero no fueron capaces de separarlo calentando el mineral con carbón vegetal.

Finalmente, Gahn encontró el truco, pulverizando el mineral con carbón de leña y calentándolo con aceite. Como es natural, este metal fue llamado manganeso. Otros discípulo de Bergman, Pedro Jacobo Hjelm, realizó mucho mejor este mismo truco con una mena a la que llamaron «molibdena».

Este nombre deriva de una voz griega que significa «plomo», porque los primeros químicos confundieron este material con mena de plomo. Hjelm extrajo del mismo un metal blanco argentado, el cual, ciertamente, no era plomo.

Este nuevo metal recibió el nombre de «molibdeno». El tercero de los discípulos de Bergman descubridores de elementos no fue sueco. Se trataba del español don Fausto de Elhúyar. Junto con su hermano mayor, José, estudió una mena pesada llamada «tungsteno» (palabra sueca que significa «piedra pesada»), o «volframio».

Calentando la mena con carbón vegetal, los hermanos, en 1783, aislaron un nuevo elemento al que, en la actualidad, según los países, se denomina tungsteno o volframio. Bergman tuvo todavía una conexión indirecta con otro nuevo metal.

En 1782, un mineralógolo austríaco, Franz Josef Müller, separó de una mena de oro un nuevo metal que tenía algún parecido con el antimonio. Envió una muestra a Bergman, como hacían los más importantes mineralógolos de su época. Bergman le aseguró que no era antimonio. En su momento, el nuevo metal recibió el nombre de telurio, de una voz latina que significaba «tierra». Mientras todos estos elementos hablan sido descubiertos en Europa, también iba a ser descubierto uno en el Nuevo Mundo.

En 1748, un oficial de Marina español llamado Antonio de Ulloa, cuando viajaba de Colombia a Perú en una expedición científica, encontró unas minas que producían unas pepitas de un metal blanquecino. Se parecía algo a la plata, pero era mucho más pesado.

El parecido con la plata (y tomando como base esta palabra española) hizo que se diese a este nuevo metal el nombre de platino. Al regresar a España, Ulloa se convirtió en un destacado científico y fundó el primer laboratorio en España dedicado a la Mineralogía.

También se hallaba interesado por la Historia Natural y por la Medicina. Además, acudió a Nueva Orleáns como representante del rey español, Carlos III, cuando España adquirió la Luisiana, que antes pertenecía a Francia, tras la Guerra India, en Estados Unidos.

Incluso los antiguos metales conocidos por los alquimistas tuvieron una nueva trayectoria en aquellos primeros tiempos de la Química moderna. En 1746, un químico alemán, Andreas Sigismund Marggraff, preparó cinc puro y describió cuidadosamente sus propiedades por primera vez; por tanto, se le ha atribuido el descubrimiento de este metal.

Probablemente, Marggraff es más conocido, sin embargo, por encontrar azúcar en la remolacha. Con un microscopio detectó pequeños cristales de azúcar en aquel vegetal, y, al mismo tiempo, proporcionó al mundo una nueva fuente de azúcar.

Marggraff fue el primero en emplear el microscopio en la investigación química. Lo que Marggraff había hecho con el cinc, lo realizó un químico francés, Claude-François Geoffrey, con el antiguo metal del bismuto. En 1753, aisló el metal y describió cuidadosamente su comportamiento, por lo que, algunas veces, se le ha atribuido el descubrimiento de este elemento.

LISTA DE ELEMENTOS QUÍMICOS DESCUBIERTOS EN EL SIGLO XVII: (Era del Flogisto)

Fósforo                             1669 Brand
Cobalto                             1735 Brandt
Platino                              1748 Ulloa
Níquel                               1751 Cronstedt
Hidrogeno                          1766 Cavendish
Nitrógeno                           1772 Rutherford
Oxígeno                             1774 Priestley
Cloro                                 1774 Scheele
Manganeso                         1774 Gahn
Molibdeno                           1781 Hjelm
Telurio                               1782 MüIIer Juan José de
Tungsteno                          1783 Elhúyar Fausto de Elhúyar

Fuente Consultada: En Busca de los Elementos de Isaac Asimov

USO DE LOS METALES EN LA INDUSTRIA

Aluminio Se usa desde hace pocas décadas y ocupa el tercer tugar detrás del hierro y el cobre. Utensilios, aleaciones livianas para aviación, cables eléctricos de alta tensión.
Antimonio: Endurece el plomo de los tipos de imprenta, productos medicinales. Ignífugos. Se dilata al enfriar.
Arsénico Insecticidas, productos medicinales, industria química.
Berilio Pigmentos, cristales, fuegos artificiales. Berilio Único metal liviano con alto punto de fusión, ventana para rayos X, industrias atómicas, aleaciones con cobre, resistentes a vibraciones externas.
Bismuto Aleaciones de muy bajo punto de fusión (37°C); productos farmacéuticos.
Boro Ácido bórico. Endurecimiento del acero.
Cadmio Endurecimiento de los conductores de cobre. Aleaciones de bajo punto de fusión. Galvanoplastia.
Calcio Materiales de1 construcción, sales diversas.
Cesio Materiales refractarios livianos, semiconductores, aleaciones duras y refractarias. Cesio Células fotoeléctricas.
Cinc Galvanoplastia,- pilas.
Circonio Usos atómicos, aceros, lámparas-flash.
Cobalto Piezas de cohetes y satélites, herramientas para altas temperaturas, radioisótopos.
Cobre Conductores eléctricos, bronces diversos.
Columbio Sólo en laboratorio. Duro y pesado.
Cromo Acero inoxidable, galvanoplastia. Estaño Envoltorios, soldaduras, bronces.
Estroncio Fuegos artificiales, refinerías de azúcar.
Galio Termómetros para alta temperatura (funde antes de los 35° y hierve a más de 1.900°C.
Germanio Transistores, válvulas termoiónicas.
Hafnio Filamentos de tungsteno.
Hierro Acero, construcción. El metal por excelencia.
Indio Galvanoplastia, aleaciones resistentes a los esfuerzos y la corrosión. –
Litio Aleaciones ligeras, pilas atómicas, síntesis orgánica.
Magnesio Aleaciones ligeras, productos medicinales, síntesis orgánicas.
Manganeso Aceros especiales (extrae el oxígeno y el azufre de la mezcla, dando un metal limpio y sólido). Usos químicos y eléctricos.
Mercurio Termómetros, barómetros, aleaciones dentarias (amalgamas).
Molibdeno Aceros especiales.
Níquel Bronces blancos, monedas, revestimientos de metales.
Oro Alhajas, monedas, espejos telescópicos.
Osmio Metal pesado para aleaciones de la familia del platino.
Paladio Aleaciones con el platino, aceros, catálisis química.
Plata Espejos, alhajas, bronces.
Platino Catálisis, contactos eléctricos, alhajas.
Plomo Aleaciones para soldaduras, cañerías, pinturas.
Plutonio Radiactivo, bomba atómica.
Polonia Radiactivo, compuestos luminosos.
Potasio Metal alcalino, fertilizantes.
Radio Radiactivo, medicina, pinturas luminosas.
Renio Pares termoeléctricos, sustituto del cromo en los aceros.
Rodio Aleaciones, cátodos, pares termoeléctricos.
Rubidio Productos medicinales.
Selenio Células fotoeléctricas, baterías solares.
Silicio Vidrio, aleaciones duras y refractarias.
Sodio Jabones, sal de mesa, bicarbonato de sodio.
Talio Compuestos químicos venenosos, insecticidas, raticidas
Tántalo Filamentos para lámparas, aleaciones refractarias.
Tecnecio Primer elemento producido por él hombre.
Teluro Semiconductores, fotopilas, aleaciones diversas.
Titanio Pigmentos, compuestos muy refractarios, aceros especiales.
Torio Radiactivo, aleaciones.
Tungsteno Filamentos para lámparas, herramientas duras.
Uranio Radiactivo, pilas atómicas.
Vanadio: Aceros Especiales

AMPLIACIÓN DEL TEMA
ALGUNAS GENERALIDADES SOBRE EL FÓSFORO:

Fue descubierto por Brandt en 1669 mientras buscaba la piedra filosofal cuyo objeto era transformar cualquier sustancia en oro. Obtuvo fosfato a partir de la orina, luego de un proceso laborioso. Pero el primer trabajo publicado con cierto fundamento científico pertenece a D. Krafft. El fósforo, como elemento, fue reconocido por Lavoisier en 1777.

El fósforo no se encuentra libre en la naturaleza, pero sí combinado en forma de compuestos inorgánicos como la fosforita (fosfato de calcio) y la fluorapatíta (fluofosfato de calcio).

El fósforo es el principal constituyente de los huesos y dientes; además se encuentra formando parte de los tejidos animales y vegetales y constituye parte de las fosfoproteínas y otros compuestos orgánicos.

La sangre, la yema de huevo, la leche, los nervios y el cerebro contienen fósforo en forma de lecitinas. Por esta razón, los animales y las plantas necesitan fósforo para desarrollarse.
Una parte del fósforo contenido en el organismo se elimina diariamente por la orina y los excrementos, en la proporción de 2 gramos cada 24 horas.

El uso más común del fósforo consiste en la fabricación de cerillas, las cuales son de dos tipos: comunes y de seguridad. Las primeras encienden por frotamiento sobre cualquier superficie áspera y se componen de un pabilo de algodón, madera o cartón, cuya extremidad está recubierta por una sustancia combustible compuesta con fósforo o sulfuro de fósforo, como sustancia inflamable, bióxido de plomo o clorato de potasio, como materia oxidante, dextrina y una sustancia colorante.

Los fósforos de seguridad, llamados también cerillas suecas, sólo contienen una mezcla oxidante, sin fósforo. Este último elemento se coloca sobre la superficie del raspador de la caja, de modo que para producir la llama es imprescindible que ambas partes se pongan en contacto. La mezcla con que se recubre el palillo contiene clorato de potasio como sustancia oxidante, trisulfuro de antimonio, cofa y algo de creta para aumentar la masa. La superficie del raspador contiene fósforo rojo, trisulfuro de diantimonio y vidrio para aumentar la aspereza.

Los abonos fosfatados son muy útiles en la agricultura. Se trata de una serie de sustancias naturales o artificiales que se agregan a las tierras agotadas para reponer en ellas las sustancias desaparecidas. Generalmente esas tierras han perdido (por excesivo cultivo o por acarreos), algunos de los elementos químicos indispensables, como el nitrógeno, fósforo, potasio o calcio, lo que las imposibilita para la plantación o la siembra.

Uno de los abonos más importantes por su riqueza en fósforo y calcio, es el fosfato neutro de calcio. Lamentablemente el fosfato tricoideo (como los huesos) no puede utilizarse porque es prácticamente insolubfe y entonces las plantas no pueden asimilarlo. Debe por lo tanto tratarse con ácido sulfúrico para convertirlo en difosfato monocálcico soluble.

Los huesos molidos (fosfato tricálcico), tratados con ácido sulfúrico, se tornan en sustancias solubles, es decir en fosfatos y sulfatos. Mezclados constituyen el abono denominado superfosfato de calcio.

En los laboratorios de las cátedras de química, durante las lecciones acerca del fósforo, se realizan importantes experimentos. El profesor muestra un trozo de fósforo rojo y otro blanco y hace notar sus diferencias de color, consistencia, solubilidad en sulfuro de carbono, fusibilidad, etc. Para esta última propiedad, se corta debajo del agua con un cortaplumas, un pedazo de fósforo blanco y otro de fósforo rojo. Sometidos ambos a la temperatura de 55°C, el fósforo blanco funde, en tanto que el rojo permanece inalterable.

Para demostrar la oxidación del fósforo en presencia del aire, se disuelve un trozo de fósforo blanco en sulfuro de carbono, se impregnan papeles con esta solución y se dejan secar sobre un trípode; evaporado el solvente, el fósforo se inflamará y con él, los papeles.

La oxidación en presencia del oxígeno: se echa un trozo dé fósforo en agua y se funde al baño de María; se hace circular una corriente de aire y se comprobará la inflamación.

La fosforescencia del fósforo se comprueba de la siguiente manera: se toma un matraz de un litro, se llena con agua hasta la mitad, y se coloca en su interior un trozo de fósforo blanco. Se lleva el agua a ebullición, se oscurece el cuarto y se observará, especialmente en el cuello del matraz, el fenómeno de la fosforescencia.

La diferencia de inflamabilidad entre el fósforo blanco y el rojo se comprueba como sigue: sobre una chapa de cobre de 30 centímetros de largo, dispuesta sobre un trípode, se coloca en cada extremo un trocito de fósforo blanco y rojo, respectivamente; se calienta el centro de la chapa con llama baja de un mechero Bunsen y se podrá observar la inflamación casi espontánea del primero y tardía en el segundo. Para comprobar la acción del cloro sobre el fósforo, se introduce en un frasco lleno de cloro una capsulita que contenga un trozo de fósforo blanco; se observa la inflamación espontánea del fósforo.

Los envenenamientos por el fósforo blanco, constituyen un riesgo para los obreros que trabajan en las fábricas que preparan el producto y de los que lo manejan y transforman.

Las fábricas de cerillas deben estar .muy bien ventiladas, pues las emanaciones fosforadas que, sin esa precaución, podrían aspirarse, intoxicarían más o menos a los operarios. Éstos deben cuidar mucho de la higiene, no comer sin lavarse bien las manos y cambiarse las ropas de trabajo. Será preciso que no dejen su comida dentro del local de la fábrica y a la hora del almuerzo buscarán en el exterior un lugar aireado.
Una dolencia muy común en los que trabajan con el fósforo, es la denominada necrosis fosfórica, que ataca al hueso dé la mandíbula y que suele necesitar operación quirúrgica.

Cuando sobrevienen envenenamientos por ingestión de fósforo, mientras llega el médico, puede administrarse una solución de 2 gramos de sulfato de cobre en un litro de agua, con frecuencia y abundancia, pues el cobre se depositará sobre las partículas de fósforo haciéndolo inofensivo o debilitando considerablemente su acción. Suprímase en absoluto la leche, los aceites y las grasas.

La fosfamina, que es un fósforo gaseoso, se prepara como sigue: en un baloncito de unos 300 ce. se ponen 20 ce. de potasa cáustica en solución acuosa concentrada y seis u ocho blobuliílos de fósforo; se cierra el baloncito con un tapón bihoradado que trae dos tubos acodados, uno estrecho que se sumerge en la potasa y otro ancho y largo (de desprendimiento), cuyo extremo anterior está doblado en U y el interior termina junto al tapón. Se hace pasar una corriente de hidrógeno y el tubo ancho se sumerge en un recipiente con agua caliente. Se calienta el baloncito hasta una ebullición moderada. Se desprende fosfamina.

Grande es la importancia que tiene en todo el universo la fabricación del fósforo, no tan sólo aplicable a la preparación de cerillas, abonos, etc., sino también como agente reductor.

Primeros Barcos de Acero Historia de la Construcción y Evolución

Primeros Barcos de Acero – Historia de su Construcción

LAS ULTIMAS EMBARCACIONES DE MADERA: Hasta que, al influjo de la civilización moderna, comenzó a agitarse el espíritu de las naciones europeas de la costa del Atlántico, no se hicieron progresos suficientes en la construcción de barcos que dotasen a los hombres de medios para realizar largos viajes a través del océano, con relativa seguridad.

Durante siglos, Gran Bretaña ha estado tristemente retrasada, con relación a los países continentales, en lo que se refiere a la construcción de barcos; solamente en la época de ‘Pudor parecieron revivir las tradiciones de los sajones y daneses como constructores de barcos y navegantes. Pero su positiva supremacía en el arte naval, muy diferente de su potencia naval guerrera, es de fecha reciente.

Dos ingenieros navales ingleses no han sido notables por la ciencia encerrada en sus proyectos. Dejaron a los portugueses y españoles, y más tarde a los franceses y americanos, mejorar la forma y líneas de los barcos. Fue más bien la sana y honrada labor de sus obreros y la valentía y audacia de sus marinos lo que hizo a Inglaterra la dueña de los mares.

Sus ingenieros navales no fueron más que perseverantes imitadores de otros más emprendedores proyectistas extranjeros, cuyos barcos capturaban sus marineros. Por otra parte, los éxitos conseguidos por Inglaterra en las numerosas guerras sostenidas con los países continentales fueron de tal naturaleza que el desarrollo de su marina mercante se retrasó notablemente por las operaciones de su escuadra. Y la extraordinaria expansión de su comercio en la primera mitad del siglo XIX permitió retener, durante la paz, la supremacía en la marina mercante que, en parte, había conseguido con la guerra.

Sin embargo, en la segunda mitad de dicha centuria, encontró serias dificultades para sostener su situación. Talados sus bosques de robles, la madera nacional para construcción de barcos, comenzó a escasear, siendo además costosa y defectuosa; a esto había que agregar la pasividad de sus proyectistas que, en general, se conformaban con copiar las antiguas y poco estudiadas líneas de los navíos construidos en el siglo XVIII.

La aparición del clipper americano, de construcción económica y velocidad sin rival

En cambio, se ofrecían brillantes oportunidades y extenso campo de acción a los ingenieros navales y constructores de los países ricos en madera. El resultado fue que el clipper americano, construido bajo líneas más nuevas, permitiendo alcanzar mayor velocidad y en un país con enorme cantidad de madera, fuerte y barata, triunfó completamente sobre el barco construido en Inglaterra.

Fue una de las más sorprendentes y rápidas revoluciones industriales que hasta entonces se habían presenciado. No tenía competencia detrás de ella, como la máquina de vapor en el sistema moderno industrial. Sencillamente, por el minucioso estudio de sus planos, el ingeniero naval americano creó un barco cuya velocidad ningún otro podía igualar, y los constructores de barcos de aquel país, que tenían detrás de sí millares de kilómetros cuadrados de selvas, se aprovecharon de las ventajas que éstas les ofrecían y de las que sus técnicos habían alcanzado para ellos.

Muchas casas inglesas hicieron bancarrota y parecía imposible que el país recobrase la posición que había perdido, pues aunque los ingleses trataron de copiar las líneas generales del clipper, el elevado coste de la madera no les permitía competir con los constructores americanos, cuya producción era más perfecta y económica.

clipper americano

La industria naval es la más antigua de las americanas. En 1845, Estados Unidos era la segunda nación en cuanto a la importancia de la marina, y en 1855 el mayor buque a flote era norteamericano, así como en aquel tiempo la construcción naval era doble que en 1913. Desde 1855 los navieros de aquel país continuaron siendo los más importantes en este comercio, pero la transición de la madera al hierro en la construcción, y de la vela al vapor, hizo que la marina americana fuera perdiendo terreno en la lucha.

Gran Bretaña fue la primera potencia en la producción de hierro y en su preparación científica, y en su progreso en las artes mecánicas sobrepasaban a los americanos. Estos adoptaron más despacio el hierro en sus construcciones navales. Sobrevino el pánico de 1857, que hizo paralizar las empresas industriales de todas clases, y antes que el país pudiera reponerse, estalló la guerra civil.

Cuando la guerra terminó, volvieron a reanimarse los negocios en general, pero no ocurrió lo mismo con los navieros, debido en parte a que, por aquel entonces, llamaban más la atención los de ferrocarriles, que absorbían todo el capital americano disponible. Pero la guerra de tarifas, siempre en aumento, y, finalmente, la ley de Underwood, fueron el golpe de gracia para la marina mercante de los Estados Unidos.

Se elevó el coste de los materiales y mano de obra en los astilleros, creándose con ello trabas que comprometían la existencia de la marina comercial. El trabajo aumentó de valor y las exigencias de los marineros americanos llegaron a tal punto, que se hacía imposible la navegación si se quería competir con barcos manejados por tripulaciones extranjeras económicas. Cuando los rápidos veleros de madera comenzaron a ser sustituidos por barcos de vapor, de hierro y acero, Inglaterra, gracias a sus minas de carbón y hierro, pudo recobrar su antigua posición en la construcción naval.

En 1776 fue botado al agua un barco de hierro en el río Foss, Yorkshire; pero el primero de que se tiene una descripción algo detallada, ha sido la lancha para transportes en canales «Irial», construida en 1787 por un fundidor de Lancasbire, Juan Wilkinson. Tenía 21,30 metros de longitud y se construyó con planchas de palastro de unos ocho milímetros de grueso, cosidas con remaches como las calderas de vapor.

Pesaba ocho toneladas, y comenzó su servicio transportando 23 toneladas de hierro, sin ningún tropiezo, hasta Birmingham. Después se construyeron muchos barcos de hierro que navegaban por el Severn y los canales deStaffordshire. Más tarde, en 1817, Tomás Wilson, un carpintero del valle, en el Clyde, fue el iniciador, en unión de un herrero, de la enorme moderna industria de aquella región, construyendo un barco de pasajeros llamado elVulcano.

Tenía 18,60 metros de largo, 3,35 de ancho y un calado de 1,50 metros. Construido su casco con planchas de hierro y su armazón interior formado con barras planas forjadas a mano en el yunque, el pequeño barco de pasajeros navegó en el Forth y en el canal de Clyde durante setenta años de duro servicio.

A estos ensayos siguieron los del Aaron Manby, el primer barco de hierro movido a vapor; fue construido enTipton, Staffordshire, en 1820, y tenía 36,50 metros de largo, 5,50 de ancho y llevaba dos máquinas de 80 caballos.

Este barco se transportó desarmado hasta el Támesis, y allí se botó al agua, enviándose con un cargamento de hierro al Havre. Remontando el Sena, llegó hasta París, donde causó enorme sensación. Después continuó navegando en el Shannon, durante treinta y cuatro años. La vida de estos primeros barcos de hierro era mucho más larga que la de los mejores de madera de la misma época. Un barco de esta clase de la Compañía de las Indias Orientales, por ejemplo, sólo podía hacer cuatro viajes, para los que precisaba ocho años.

Frecuentemente quedaban después inservibles, y aun cuando fueran completamente reparados, su vida se agotaba en seis viajes; es decir, en doce años. Y mientras esto se conseguía de la suave y tranquila fuerza del viento sobre las velas, la potencia de una máquina de vapor era capaz de convertir rápidamente en astillas toda la madera de un barco.

Y aunque Symington adoptó el vapor para la locomoción en 1801, y Fulton instaló su famosa máquina en el Clermont en 1807, el barco de madera impedía que se desarrollase debidamente la máquina de vapor aplicada a la navegación.

Así, en 1850, las cuatro quintas partes de los barcos ingleses eran aún de madera. Pero empujados por la competencia del clipper americano, bien pronto se inició un gran cambio, y en 1860 cinco sextas partes de los barcos más importantes ingleses eran ya de hierro. Debido a esta sustitución de la madera por el hierro, los astilleros y navieros ingleses consiguieron alcanzar la supremacía que aun conservan.

Sus constructores tienen ahora tras sí más de sesenta años de experiencia, y sus obreros continúan dándose cuenta de los cambios continuos que es preciso introducir en los métodos y organización de una industria tan progresiva y competidora.

La introducción de maquinaria para economizar la mano de obra, mucha de ella inventada por americanos o alemanes, ha hecho disminuir la persistente lucha entablada, y en la cual intervenía, como elemento desfavorable a los americanos, el elevado coste de sus jornales; pero los ingleses, adoptando los nuevos métodos de trabajo, han logrado retener las ventajas que habían conseguido.

Esto dio lugar a descontento considerable, pues la introducción en la industria de las herramientas neumáticas, hidráulicas y eléctricas, obligó a reducir el número de obreros de extensa y reconocída práctica. Pero desde los lejanos tiempos en que los tejedores manuales trataron de impedir la introducción en la industria de las máquinas de hilatura, quedó demostrado que, con las nuevas invenciones no se restringe el campo de aplicación del obrero, sino que, por el contrario, se le da mayor extensión.

La construcción naval ha estado siempre en continua revolución, pero hubo un momento, en 1875, en que se ofreció una gran oportunidad a los proyectistas para demostrar su competencia, cuando los astilleros ingleses estaban aún produciendo barcos de hierro en gran número.

Planeando en el suelo con una tiza las piezas en escala 1:1Planeando en el suelo con una tiza las piezas en escala 1:1

En 1873 los franceses, que a menudo habían demostrado su saber en la ciencia naval, comenzaron a emplear el acero dulce en la construcción de sus barcos. Sin embargo, pasaron algunos años antes que su uso fuese aprobado por el Lloyd, y en 1880 sólo se habían clasificado como construidas con este material 35.400 toneladas.

A mitad del siglo XX las cifras correspondientes al registro alcanzan a 18 millones de toneladas. Hay registrados muy pocos barcos de madera o mixtos, y es despreciable el número de los de hierro. El acero dulce es el que transporta todos los pasajeros, cargamentos de mercancías, cañones y tripulaciones de guerra que cruzan los mares.

A pesar de que el hierro forjado es más barato, más fácil de trabajar y, como material de construcción es más seguro que la madera, el acero dulce reúne las mismas ventajas, y aun pueden señalarse otras que le hacen muy superior a aquél. Donde una barra o una plancha de hierro se rompe en una colisión o por un golpe, el acero sólo se dobla.

En otras palabras, su fuerza de tensión es mucho mayor así como su ductilidad. Un barco de acero que pese 8.000 toneladas es tan fuerte como uno de hierro de 10.000; así, pues, necesitándose menos material para construirle, resulta mucho más barato; y, a causa de su mayor ligereza, puede llevar un cargamento más pesado, siendo mayor su rendimiento económico.

Los primeros barcos que se construyeron en acero costaron doble que los de hierro, pero a partir de 1930, su coste es menor. Si en los últimos setenta años los constructores de otras naciones hubieran conseguido, por sí mismos, esta notable mejora, hubieran triunfado sobre los astilleros ingleses.

Pero, felizmente para éstos, la fábrica de acero Siemens, en Landore, condado de Gales del Sur, consiguió en 1875 producir excelente acero dulce por el proceso de hornos abiertos, alcanzándose como resultado que, cuando se comenzó a emplear este nuevo material, los ingleses pudieron construir sus barcos de acero, ligeros, de poco coste y capaces para navegar con seguridad por todos los mares.

remachadora de barcos
Màquina Remachadora

Casi todos los países que precisan buenos barcos mercantes tienen que encargarlos a los astilleros del Reino Unido, y un gran número de barcos de guerra extranjeros se han construido también por firmas inglesas. Así ha acontecido que en una fecha, relativamente reciente, y sólo con el empleo eficaz del acero, los arquitectos navales ingleses hicieron de su país la nación más importante en la industria naval.

Y es digno de notar que uno de sus más famosos astilleros—el de Harland y Wolff—produce en la más desfavorable de las condiciones. Estos astilleros irlandeses tienen que importar todo el carbón y el metal que emplean; pero la perfección de sus procedimientos y organización ha creado un enorme centro industria!, donde todas las condiciones, excepto una, son adversas. Belfast es un puerto a donde pueden transportarse los materiales económicamente, no sólo desde la Gran Bretaña, sino también desde tan espléndidos centros mineros como España y Suecia.

Los grandes distritos para construcción naval en el Clyde tampoco han sido dotados por la Naturaleza con las condiclones precisas para ser el lugar de donde viniesen al mundo los grandes buques. Pues aunque están próximos a las minas de carbón y de minerales, tienen por acceso una extensa y tortuosa ruta marítima. Y únicamente, gracias al persistente trabajo de dragado de la ría se ha. conseguido conservar un canal donde se pueden botar los grandes navíos.

Costillas de un casco de un barco
Costillas de acero de un barco en construcciòn

Al estallar la guerra, la marina mercante americana apenas existía más que en el nombre, La necesidad de construir un gran número de barcos mercantes para cubrir las pérdidas debidas a los submarinos hizo cambiar la situación en asombroso breve espacio de tiempo. Los astilleros ya de antiguo establecidos, se transformaron, ampliándose con nuevas instalaciones.

El más interesante de los modernos fue el de Hog Island, cerca de Filadelfia; en realidad, en aquel tiempo, sólo era una instalación para montar las distintas piezas que constituyen un barco; porque con objeto de utilizar, en toda su capacidad, las facilidades industriales del país, se adoptaron dos tipos de barcos mercantes, y las diversas partes que forman el casco y la maquinaria de estos navíos se construían en muchos talleres y fábricas metalúrgicas, transportándose a Hog Island donde se hacía el montaje y acoplamiento de ellas. Esta ha sido, sin duda, la tentativa mayor que se ha hecho en construcciones de esta clase, en la que se alcanzó un completo éxito.

La producción de este y otros astilleros dio a los Estados Unidos una gran marina mercante, y aunque muchos de los barcos construidos durante la guerra fueran de inferior calidad, la mayoría estaban bien hechos y muchos eran de gran tonelaje. Con la terminación de la guerra, esta gran actividad en la construcción de barcos se paralizó por completo. Hog Island y muchas otras instalaciones similares fueron desmontadas y vendidas, en tanto que los astilleros particulares volvieron a la situación en que se encontraban antes de la guerra.

ALGO MAS…
LA SOLDADURA
Desde medidos del siglo XX, la soldadura eléctrica y autógena ha desalojado casi totalmente a la roblonadura (remaches) en la unión de las planchas de acero con que se construye el barco, y esto ha permitido la aplicación de una nueva técnica, llamada de prefabricación. Antes, cada plancha, luego de ser preparada en el taller, era llevada a su posi ción y allí, tal vez a muchos metros del suelo, los remachadores debían unirla a las demás.

Hoy se fabrican secciones enteras de hasta 40 toneladas que luego se transportan a su posición y se sueldan al resto. Como gran parte del trabajo se hace en talleres bajo techo, el mal tiempo influye mucho menos en el progreso de éste, al par que han mejorado notoriamente las condiciones del mismo para los operarios.

Gran parte del trabajo de soldadura lo efectúan soldadores individuales, que utilizan equipo manual, especialmente en la parte de estructura del barco que se lleva a cabo en la rampa de deslizamiento. Pero el trabajo en talleres se presta a la aplicación de la soldadura automática; así que los astilleros modernos poseen una cantidad de máquinas de soldar, completamente automáticas, en continuo uso.

MÁXIMA PRECISIÓN
Es imperativo que los materiales y métodos empleados en la construcción de un barco estén libres de todo defecto, porque la falla en alta mar de una plancha, una soldadura, una pieza de fundición o forjada, puede tener graves consecuencias.

Por eso, se comienza por efectuar las comprobaciones habituales sobre muestras representativas de los materiales a utilizar, para verificar que cumplen o superan los mínimos establecidos de resistencia a la tracción, fatiga e impacto. Luego, durante la construcción, se utilizan los instrumentos científicos más modernos para examinar las planchas de acero en busca de grietas superficiales o defectos internos.

También se examinan así las piezas forjadas o de fundición, y todas las soldaduras. Los equipos empleados comprenden radiografías por medio de rayos X y por rayos gamma, ensayo con ultrasonidos para encontrar defectos internos (la transmisión de ondas sonoras de alta frecuencia a través del material), y la determinación de grietas superficiales mediante aparatos magnéticos.

ENSAMBLAMIENTO Y BOTADURA
Cuando todo está preparado, los andamios en posición, se comienza el trabajo colocando en su lugar las placas de la quilla, previamente cortadas y dobladas como corresponde.

A medida que las secciones prefabricadas van siendo terminadas y las planchas laterales cortadas y dobladas, según las suaves curvas del casco, son llevadas, puestas en posición y soldadas a sus vecinas. Gradualmente el barco crece; la quilla, los lados, los mamparos, que, a intervalos, se extienden de lado a lado y de arriba abajo a todo lo largo del barco, dividiéndolo en compartimientos estancos; las planchas que forman los sucesivos puentes o cubiertas; la superestructura, hasta que todo el trabajo que puede ser efectuado en la rampa de lanzamiento queda terminado.

 Se prepara la botadura y se aseguran cables al barco para frenarlo cuando entra al agua. La nave está lista para la botadura, ceremonia en la cual se le da nombre mientras una botella de champagne se rompe contra su proa. Se quitan las últimas cuñas y el barco se desliza suavemente en el agua.

EL BARCO SE COMPLETA
Mientras el casco ha ido progresando en el astillero, otros talleres han estado construyendo la maquinaria (las turbinas de vapor y calderas para impulsarlo, los motores auxiliares que proveen la energía para los servicios necesarios: iluminación, calefacción, aire acondicionado, manejo del barco, radio y radar, accionamiento de guinches y cabrestantes, y muchas otras necesidades).

Después de la botadura se remolca el barco hasta el muelle, donde se le instala la maquinaria pesada. Mediante gigantescas grúas se bajan lentamente las máquinas y calderas. Esas grúas pueden llegar a levantar cargas de hasta 350 toneladas. Viene luego el turno de los electricistas, plomeros, carpinteros y pintores, que completan las instalaciones y dejan al barco listo para los primeros ensayos en mar abierto.

También en esta etapa se aplican nuevos materiales y técnicas. En lugar de limpiar la superficie del acero con cepillos especiales, se les envía arena a presión con un soplete. Los plásticos juegan un papel importantísimo en las terminaciones interiores. Casi todos los equipos accesorios, como ventiladores, lavatorios, roperos, etc., se envían en forma de unidades completas listas para colocar.

Después que ha sido colocada toda la maquinaria principal y accesoria, y mientras se dan los últimos toques a las cabinas y camarotes, se efectúan, ante las autoridades oficiales de control, las pruebas en dársena, para comprobar que todo ha sido completado satisfactoriamente. Cuando estas pruebas han finalizado, el barco pasa al dique seco para limpiar y pintar el fondo, y queda lisio para las pruebas en mar abierto.

Éstas son la culminación de todo el trabajo que ha sido realizado en el navio desde el momento en que el ingeniero naval hizo los primeros croquis sobre papel, en base a las ideas del propietario, alrededor de tres años antes.

Las pruebas se realizan en un circuito abierto, sobre una longitud previamente medida que se recorre en ambas direcciones para comprobar la velocidad, a favor y en contra de las corrientes y vientos, y se hacen toda clase de pruebas para verificar su maniobrabilidad.

Cuando éstas quedan completadas, se arría la bandera del astillero, se iza la del propietario, se firman los documentos necesarios y se entrega el barco. Es bueno destacar que no todas las construcciones navales responden a la forma clásica en que se describe en este post, las técnicas y materiales van cambiando mucho día a día y se aplican modificaciones constructivas al mismo ritmo, que mejoran la calidad y el tiempo de ejecución.

Como toda realización industrial, tiene sus rarezas, de las que muchas veces surge un nuevo camino, la solución a una emergencia, o la revolución de los métodos existentes.

Cuadro Comparativo De Los Barcos en la Edad Moderna

Fuente Consultada:
Historia de las Comunicaciones Transportes Terrestres J.K. Bridges Capítulo «Puentes en la Antigüedad»
Colección Moderna de Conocimientos Tomo II Fuerza Motriz W.M. Jackson , Inc.
Revista TECNIRAMA N°19 Enciclopedia de la Ciencia y la Tecnología
Lo Se Todo Tomo III

Balanza de Henry Cavendish Medir la Constante de Gravitacion

Balanza de Henry Cavendish: Constante de Gravitación

Desde hace tiempo, la Universidad de Cambridge ha sido considerada como el hogar de los descubrimientos científicos y matemáticos. El protagonista de mayor envergadura y grandiosidad de esta historia de éxitos científicos fue Isaac Newton, con sus masivas contribuciones a la física y a la matemática. Gran parte del trabajo experimental realizado por él tuvo lugar en sus habitaciones privadas del Trinity College.

Muchos de los grandes científicos de los siglos XVII y XVIII trabajaron en circunstancias similares, siendo, la mayoría de ellos, personas con medios pecuniarios propios que proseguían sus investigaciones por estar profundamente interesados en las causas que entrañaban los fenómenos materiales.

La física misma no fue enseñada en Cambridge como objeto de asignatura universitaria hasta mediados del siglo xix, ya que hasta 1871 —pocos años después de haberse instituido los exámenes en las asignaturas de calor, electricidad y magnetismo— no decidió la Universidad nombrar un profesor de física, al que proporcionaron un aula y un laboratorio.

Las 6.300 libras esterlinas necesarias para su edificación fueron donadas por el jefe de la familia Cavendish, a cuyo antepasado, Enrique Cavendish, se debía la realización de muchos experimentos famosos, en uno de los cuales determinó exactamente la masa de la Tierra. Debido a ello, el nuevo laboratorio recibió el nombre de Cavendish.

Cavendisch La Revolución CientíficaDETERMINAR EL PESO DE NUESTRO PLANETA TIERRA: La maniobra de Maskelyne contra Harrison se recuerda ahora en contra suya. Pero en su posición de astrónomo real estaba involucrado en una empresa científica que lo situó bajo una luz favorable.

Un siglo después de la publicación de los Principia de Newton, todavía quedaba sin realizar un experimento sugerido en el libro: aunque Newton había establecido la existencia de la fuerza de la gravedad, no había podido darle un valor concreto.

Todos los cálculos involucrados en la gravedad estaban basados en la atracción relativa entre objetos de masas diferentes.

El valor que permitiría establecer la fuerza absoluta de la gravedad en cualquier situación dada —la constante gravitatoria— era desconocido.

Newton sugirió que si se suspendía una plomada junto a una montaña, la gravedad de la montaña la empujaría ligeramente fuera de la vertical, y la desviación podría ser lo bastante grande como para ser mensurable.

Si así fuera, la desviación permitiría calcular las masas relativas de la montaña y de la Tierra, y si la masa de la montaña podía ser calculada con una exactitud razonable, entonces sería posible llegar hasta el valor de la masa de la Tierra y, por consiguiente, a la constante de la gravitación. Dado que se conocía el volumen de la Tierra, eso también haría posible determinar la densidad media de la Tierra.

El problema era encontrar una montaña adecuada. Para estimar su masa, tendríamos que saber su densidad media. Y si también había que estimar su volumen, cualquier error se multiplicaría hasta un grado inaceptable.

Así que la montaña necesitaría tener una forma regular para estar bastante seguro de su volumen. A sugerencia de Maskelyne, la Royal Society se lanzó a buscar una montaña conveniente.

La tarea le fue asignada a un amigo superviviente de Maskelyne llamado Charles Mason (el Mason de la línea Mason-Dixon), que regresó informando que había encontrado una montaña hermosamente proporcionada llamada Schiehallion, en las highlands escocesas, que parecía ideal para su propósito.

El estudio de la montaña fue supervisado por el propio Maskelyne, que en 1774 pasó cuatro meses en un campamento al pie de la mole.

Los cálculos se delegaron en un joven matemático llamado Charles Hutton, que dio la primera cifra científicamente calculada de la masa terrestre: 5 x 1021 toneladas métricas (5.000.000.000.000.000.000.000 toneladas).

El cálculo de la masa terrestre era un acontecimiento excitante por sí mismo, pero la importancia del resultado fue inmensamente mayor. Como la teoría de Newton ya había establecido las masas relativas de la Tierra, del Sol, de la Luna y de todos los planetas, ahora era posible calcular sus masas reales. Sólo ciento sesenta y cinco años después de que Galileo apuntase su primer telescopio a los cielos, todo el sistema solar había sido pesado y medido. La astronomía había alcanzado su mayoría de edad.

Maskelyne se sintió justificadamente contento con el resultado de su campaña para calcular la masa de la Tierra, pero otros estaban menos satisfechos. El cálculo sólo había sido posible basándose en suposiciones. La forma delimitada de la montaña y la cuidadosa medición de sus dimensiones aportaban cierta seguridad sobre la estimación de su volumen, pero para llegar a la cifra clave del cálculo —la masa de la montaña— había sido necesario hacer una estimación de su densidad basándose en el tipo de roca que la componía. Si esa estimación resultaba ser incorrecta, la respuesta final también lo sería.

La estimación de Hutton de 5.000 trillones de toneladas sólo era una aproximación útil; pero los científicos pronto empezaron a buscar una forma de conseguir una cifra más exacta. En 1798, otro inglés obtuvo esa medida exacta que todo el mundo estaba buscando… y lo consiguió sin salir de su casa.

Henry Cavendish nació en 1731, en la ciudad francesa de Niza, donde vivía su madre por motivos de salud. Ella murió cuando él tenía dos años. Cavendish se educó en Inglaterra y pasó cuatro  años en la Universidad de Cambridge, pero no consiguió ningún título, ya que era demasiado tímido para enfrentarse a los examinadores.

El ser nieto de dos duques y heredar cierta fortuna de una tía lo convirtió en uno de los hombres más ricos de su tiempo. También fue uno de los más recluidos. Vivía solo, evitaba a sus visitantes y pedía las comidas dejando una nota para su ama de llaves. Llevaba una vida sencilla y nunca le importó el dinero.

En cierta ocasión, su banquero le comentó que poseía en su cuenta corriente el equivalente a 7 millones de euros, y le sugirió que él podría invertirlo para conseguirle el máximo interés. Cavendish le respondió que si volvía a molestarlo, se llevaría su dinero a otro banco.

Cavendish heredó de su padre el interés por la ciencia, y fue su pasión durante sesenta años. No le preocupaba la fama y publicó poco, por lo que muchos de sus descubrimientos no se conocieron hasta después de su muerte. Su nombre se conmemoró en el Laboratorio Cavendish de Cambridge y en el famoso «Experimento Cavendish» que él mismo dirigió.

Éste había sido concebido por su amigo John Michell, clérigo y geólogo perspicaz, que también diseñó el aparato, pero que murió antes de poder realizar el experimento. Cavendish adquirió su equipo, y lo instaló en una de sus casas londinenses.

El aparato era sencillo: Consistía en 2 bolas metálicas, de 30 centímetros! 12 pulgadas de diámetro, suspendidas de un caballete de acero; y 2 bolas más pequeñas de 5 centímetros! 2 pulgadas de diámetro, suspendidas cerca de las primeras y conectadas entre sí por un fino cable de cobre.

Constituía lo que técnicamente se llama una báscula de torsión. Estaba diseñado para medir el movimiento de torsión creado en el alambre por la atracción gravitatoria que ejercían las bolas más grandes sobre las más pequeñas mientras se movían sobre unas poleas que las mantenían suspendidas.

Balanza de Cavendish

Balanza de Cavendish

Para que la proximidad de los investigadores no perturbase el ajuste del equipo, el experimento se dirigió por control remoto. Cavendish utilizó un telescopio, montado fuera del cuarto, para leerla escala graduada minuciosamente que medía el movimiento (una centésima de pulgada) y que se iluminaba mediante un estrecho haz de luz dirigido desde fuera del cuarto.

La gravedad es una fuerza débil, y las mediciones que Cavendísh se proponía realizar eran tan sutiles que casi desafiaban la credulidad. Pero tanto su aparato como él estaban muy capacitados para la tarea, y finalmente propuso que la densidad de la Tierra era de 5,48 veces la densidad del agua. Resultaba un 20 % mayor que lo obtenido en el experimento de Schiehallion, y dentro del 1 % de margen de error que se acepta hoy día.

Tras su muerte se descubrió que había cometido un error en sus cálculos, sin el cual el resultado habría llevado a un 1,5 % de error sobre el valor correcto, pero dado que la atracción que ejercían unas bolas sobre las otras era únicamente de 1!50.000.000 parte de la que la Tierra ejercía sobre ellas, se le puede perdonar la inexactitud.

UN POCO DE HISTORIA…
EL LABORATORIO  CAVENDISH

En 1871, Jacobo Clerk Maxwell fue nombrado para desempeñar el puesto de primer profesor del Cavendish, pero el propio laboratorio no estuvo terminado hasta 1874. Maxwell, antes de ir a Cambridge, se había distinguido por sus trabajos sobre la naturaleza de las ondas luminosas y sobre la teoría cinética de los gases. Mientras estuvo en Cambridge, no añadió gran cosa a sus trabajos originales.

Sin embargo, organizó un laboratorio donde se inculcaba a los alumnos que el trabajo experimental convenientemente orientado constituía la única base de certeza para la física, y creó una escuela de investigación cuyos tipos de experimento y trabajo teórico jugaron un papel decisivo en el nacimiento de la física moderna.

Lord Rayleigh, nombrado en 1879 para suceder a Clerk Maxwell, continuó el trabajo sobre constantes eléctricas iniciado por éste, y extendió ampliamente el campo de los temas de su investigación, desde el telescopio a las ondas sonoras. Cuando Rayleigh, pasados cinco años, abandonó el Cavendish, éste se había convertido en un importante laboratorio de investigación.

Bajo su nuevo director, J. J. Thomson, el laboratorio progresó hasta convertirse en una institución donde se adiestraban o realizaban sus investigaciones los mejores físicos del mundo. Thomson mismo, sin conocérselo aún como gran experimentador, fue capaz de aclarar la mayoría de los secretos del átomo, valiéndose de un simple y primitivo conjunto de aparatos. Descubrió el electrón, lo que proporcionó el primer paso en el desarrollo de la moderna teoría atómica.

Independientemente del trabajo experimental, la institución, que había progresado bajo el mando de Thomson, adquirió renombre universal. Uno de los científicos atraídos por dicha fama fue el joven neozelandés Ernesto Rutherford, quien dio comienzo a sus trabajos de física atómica al colaborar con Thomson en Cavendish,» labor que continuó al trasladarse luego a Toronto y después a Manchester.

Su regreso a Cavendish tuvo lugar en 1918, como sucesor de Thomson en la cátedra de física. La mayoría de sus experimentos, que contribuyeron a explicar la naturaleza de la radiactividad y la estructura del átomo, fueron realizados, según la tradición del laboratorio, con aparatos de sorprendente sencillez.

Sin embargo, a medida que fue desarrollándose la ciencia atómica, el instrumental del Cavendish hubo de transformarse, necesariamente, de un más complicado y avanzado diseño, incluyendo aparatos tales como el equipo para acelerar partículas de J. Cockroft y E, T. S. Walton, y del físico ruso L. P. Kapitza.

Es impresionante la lista de los sabios ganadores de premios Nobel que pasaron por Cavendish durante el período de Thomson y Rutherford; los 50 años abarcados por su dirección combinada señalan una época en la que el laboratorio fue el principal protagonista en el desarrollo de la ciencia nuclear.

A partir de entonces se han mantenido las grandes tradiciones de Cavendish como institución docente y de investigación. A Ernesto Rutherford lo sucedió, en 1938, Guillermo Lorenzo Bragg, y a éste Neville Mott, en 1954. Ambos científicos han realizado notables trabajos sobre la estructura de los sólidos.

Fuente Consultada: Historia de las Ciencias Desiderio Papp y Historias Curiosas de la Ciencia

Caida Libre de Cuerpo Experiencias de Galileo Galilei Historia Ciencia

Caída Libre de un Cuerpo: Experiencias de Galileo Galilei, Historia – Ciencia

Caída Libre de los cuerpos

Aristóteles había establecido que cuanto más pesado era un cuerpo, más rápidamente caía. Esa afirmación parecía razonable. ¿Por qué un cuerpo más pesado no había de caer con más rapidez? Está claro que la Tierra lo atrae con más fuerza; de otro modo no sería más pesado. Y si uno ve caer una pluma, una hoja o una piedra, al punto se percata de que la piedra cae con más rapidez que la hoja y ésta con más que la pluma.

El problema radica en que los objetos ligeros son frenados por la resistencia del aire; no deben, por tanto, considerarse sólo relativamente pesados. Si se observa la caída de dos piedras, una que pese medio kilo y otra que pese cinco, la resistencia del aire es insignificante en ambos casos. ¿Cómo percatarse entonces de que la piedra de cinco kilos cae, pese a todo, más aprisa que la de medio kilo?

texto de GalileoSe cree que en 1586 Simon Stevin (véase 1583) dejó caer dos piedras a la vez, una considerablemente más pesada que la otra, y demostró que ambas golpeaban el suelo al mismo tiempo. Relatos posteriores pretenden que fue Galileo quien realizó esta demostración, dejando caer simultáneamente diversos pesos desde la Torre inclinada de Pisa. Una y otra historia pueden ser o no ciertas. (imagen: texto de Galileo)

Pero sí es cierto que en 1589 Galileo emprendió una serie de meticulosas pruebas con caída de cuerpos. Estos caían con demasiada rapidez como para facilitar la medición de la velocidad de caída, en especial porque aún no había manera adecuada de medir períodos breves de tiempo.

Galileo dejó rodar bolas por planos inclinados, y cuanto menos pronunciada era la pendiente, más despacio se movían las bolas, impulsadas por la gravedad, y más fácilmente podía ser medida su velocidad de caída con métodos primitivos, como el goteo del agua a través de un orificio.

De este modo, Galileo encontró muy fácil demostrar que mientras las bolas eran lo bastante pesadas como para que la resistencia del aire fuera inapreciable, rodaban por un plano inclinado a la misma velocidad.

También fue capaz de demostrar que las bolas rodaban plano abajo con una aceleración constante, o sea que ganaban velocidad de manera constante en una unidad de tiempo, bajo el empuje asimismo constante de la gravedad.
Dejó sentado otro punto importante. Aristóteles había sostenido que a fin de mantener en movimiento un cuerpo, debía aplicársele una fuerza continua.

Esto también parecía corroborarlo la observación. Si se dejaba deslizar un objeto por el pavimento, no tardaría en perder velocidad hasta detenerse. Para que continuara moviéndose, era necesario seguir empujándolo.

Por esta razón, se creía que los planetas, en su eterno movimiento en torno a la Tierra, debían ser continuamente impulsados por ángeles.

Las observaciones de Galileo demostraron que no era necesario ese empuje continuo para mantener un objeto en movimiento, si se suprimía la fricción. Si la gravedad ejerciera un empuje constante, por ejemplo, un objeto se movería a una velocidad constantemente creciente. En consecuencia, no eran necesarios los ángeles para que los planetas siguieran moviéndose.

Los experimentos de Galileo sobre el movimiento de los cuerpos impresionaron a tal punto, que si bien no fue el primero en llevarlos a cabo — Pedro Peregrino le precedió en más de tres siglos —, por lo general, se le atribuye el mérito de ser el fundador de la ciencia experimental.

LA EXPERIENCIAS DEL CIENTÍFICO RENACENTISTA GALILEO GALILEI SOBRE LA CAÍDA LIBRE DE LOS CUERPO