Máquinas Simples

Fuerzas en un Plano Inclinado: Descomposicion del Peso

FUERZAS EN UN PLANO INCLINADO
Descomposición de un Peso en un Plano Inclinado

► Plano Inclinado, Una Máquina Simple

este tipo de máquina simple se utiliza muy a menudo para cargar o descargar cuerpos pesados sobre una plataforma, por ejemplo cuando queremos cargar el acoplado de un camión.

No es lo mismo levantar el peso total del cuerpo verticalmente, que hacerlo sobre una superficie inclinada, pues al colocar el peso sobre dicha superficie aparecen nuevas fuerzas en juego que ayudaran a realizar el trabajo.

Estas fuerzas pueden observarse en la figura de abajo, que pronto vamos a estudiar su valor, y que logicamente dependen del peso del cuerpo.

Antes vamos a decir que también ayuda a bajar los cuerpo, pues si soltaríamos el objeto sobre la vertical del acoplado de un camión el mismo caería al piso con todo su peso y tendría grandes posibilidades de romperse, en cambio, al soltarlo sobre el plano inclinado una fuerza que tiene la dirección del plano y con sentido hacia abajo lo llevará lentamente hasta el piso.

Hay que aclarar que entre el objeto y el plano hay una fuerza de rozamiento (que no está dibujada) con sentido contrario al moviento, es decir hacia arriba, entonces para moverse la fuerza Px deberá ser mayor a la de rozamiento. (ya lo estudiaremos).

Sigamos ahora con el caso mas simple , sin rozamiento, y analicemos las dos fuerzas que aparecen, que resultan de la descomposición del peso P en dos direcciones, una paralela al plano, llamada Px y otra perpendicular, llamada Py.

Como se observa, y Ud. debería analizarlo, el ángulo de inclinacion del plano que se llama @ , es el mismo que existe entre el peso P y Py. (se puede estudiar aplicando la teoría de triángulos semejantes).

►Fuerzas Al Descomponer Un Peso

fuerzas en un plano inclinado

Al descomponerse el peso P en dos direcciones perpendiculares, es como si P desapareciera para siempre, y de aqui en mas solo trabajaremos con sus componentes Px y Py.

Para obtener el valor de ambas fuerzas usaremos la figura de abajo y aplicaremos trigonometría, las famosas funciones seno y coseno.

►Diagrama de Fuerzas en el Plano Inclinado

►Cálculo de las Componentes del Peso

Para hallar las componentes observemos la descoposción gráfica y aparece un triángulo rectángulo que llamalos ABO, en donde el ángulo B=90°, [email protected] (inclinación del plano), entonces según las reglas de la trigonometría podemos escribir lo siguiente:

sen(@)=Px/P ====> Px=P. sen(@)=m.g.sen(@)=Px , la componente sobre el eje x

cos(@)=Py/P ====> Py=P. cos(@)=m.g.cos(@)=Py , la componente sobre el eje y

Resumiendo podemos decir, que para obtener el valor de las componentes de las fuerzas en que se descompone un peso sobre un plano inclinado solo debemos tener como datos: el peso P y el angulo de inclinación @.

Si no tenemos dicho ángulo podemos usar como alternativa (y en la mayoría de los casos en así) las dimensiones del plano, y obtener directamente el seno y coseno de @.

Podemos escribir que: sen(@)=h/L (longitud inclinada) y cos(@)=l/L y listo. Hallando la función inversa arco seno o arco coseno, podemos calcular el valor del ángulo, pero generalmente no hace falta.

La fuerza Px no llevará el cuerpo hacia abajo, hasta el piso, pero bien que pasa con la fuerza Py hacia abajo normal al plano?….como en cuerpo no se mueve en esa dirección significa que hay algo que lo evita y justamente es la reacción en la superficie de contacto, pues aparece por la 3° ley de Newton una reacción que es de igual magnitud a Py, pero de sentido contrario, y que se anulan entre si, y no hay movimiento en ese sentido.

Oberva la figura de abajo, la fuerza color verde, es la reacción del plano.

Ejemplo: el peso de una caja es de 1200 Newton y se apoya sobre un plano que tiene 3 m. de largo y asciende 1,75 m. Determine el valor de las componentes del peso sobre el plano.

1) Tenemos el peso en Newton, que es 1200 y por lo tanto: m.g=1200

2) No tenemos el ángulo pero sabemos que: sen(@)=1,75/3= 0,58 y que cos(@)=l/L=l/3, nos falta l.

Para calcular l, usamos el teorema de Pitágoras, pues l=es el cateto mayor del triángulo, y dá: 2,44 m, ósea cos(@)=2.44/3=0,813

Ahora hallamos: Py=1200 . 0,81=976 Newton y Px=1200 . 0,58=700 Newton

A la fuerza de 976 N la absorbe el plano, de lo contrario se rompe el material y la otra hacia abajo de 700 moverá el bloque hasta el piso, o si lo debemos cargar, habría que empujarlo hacia arriba con una fuerza de 700 N., ósea, 500 N menos que si quisieramos levantarlo verticalmente, sin usar el plano.

► TEORÍA SOBRE PLANO INCLINADO:

Una máquina tiene por objeto utilizar ventajosamente energía para producir trabajo.

En general, la máquina proporciona un modo más fácil de hacer el trabajo, pero en ningún caso se puede conseguir de la máquina más trabajo que el que se le, suministra. Oros post en este sitio sobre palancas y poleas han demostrado que es posible, en comparación, levantar grandes pesos mediante la aplicación de fuerzas pequeñas.

El plano inclinado es otro medio para levantar un gran peso con facilidad. Es especialmente útil para cargar barriles y toneles, puesto que se pueden rodar hacia arriba por la pendiente. Este método se usa, actualmente, para cargar barriles de cerveza en carros y camiones de reparto, pero hace tiempo se utilizó mucho más ampliamente.

El plano inclinado debe de haber sido una de las pocas máquinas que el hombre tenía en la antigüedad. Por ejemplo, los primitivos egipcios utilizaron las pendientes en gran escala para la construcción de las pirámides.

Se requiere una fuerza mayor para mover la carga en un plano con fuerte ángulo de inclinación que en otro menos inclinado.

Sin embargo, el trabajo total que se requiere para levantar la carga a una misma altura es el mismo, cualquiera que sea el ángulo de inclinación del plano.

Por otra parte, se ha de realizar un trabajo adicional para vencer las fuerzas de fricción entre la carga y el plano, y éstas son menores cuanto mayor sea el ángulo de inclinación del plano con la horizontal.

El cociente de velocidad de cualquier máquina se obtiene dividiendo la distancia a lo largo de la cual se traslada la fuerza aplicada (o esfuerzo) por la altura a la cual se eleva la carga.

Como en las otras máquinas, el cociente de velocidad de un plano inclinado se calcula a partir de sus dimensiones.

Por lo tanto, si no hubiera resistencia debida a rozamientos, una carga de 100 Kg. se podría subir por el pleno con un esfuerzo de 25 Kg. Pero en la práctica sería de 35 Kg. a 45 Kg., según la naturaleza de las superficies

La distancia que recorre la fuerza aplicada es la distancia a lo largo del plano, mientras que la distancia a la cual se eleva la carga es la altura a la que se encuentra.

Puesto que las fuerzas de fricción, o rozamiento, tienen un efecto mucho mayor en el rendimiento del plano inclinado que en otras máquinas (especialmente poleas), se gana muy poco intentando calcular la ventaja mecánica (carga/esfuerzo) a partir de consideraciones teóricas.

Es más conveniente encontrar experimentalmente la ventaja mecánica, y utilizarla como un medio de calcular la magnitud de las fuerzas de rozamiento.

————-  00000 ————

Los rodillos del plano disminuyen el rozamiento, haciendo mas fácil la subida al camión.

————-  00000 ————

La fricción por la acción de rodar que se experimenta al cargar barriles (y otros objetos de sección circular) es pequeña si se compara con la fricción de deslizamiento que se debe vencer cuando se empujan cajas (o se tira de ellas) por un plano inclinado.

Por esta razón, el plano inclinado se ha utilizado durante muchos años para cargar barriles.

Recientemente, sin embargo, el trabajo adicional necesario para cargar cajas se ha reducido considerablemente, mediante el empleo de planos inclinados provistos de rodillos metálicos.

En este caso, los rozamientos se han reducido al cambiar la fricción de deslizamiento por fricción de rodadura.

Fuente Consultada:
Revista TECNIRAMA N°48 Enciclopedia de la Ciencia y La Tecnología -Plano Inclinado-

Temas Relacionados:

El Conocimiento Científico La Fisica y de la Naturaleza
El Cuanto de Energia:Fisica Cuantica
Que es un Caballo de Fuerza (HP)?
Las Leyes del Pendulo Fisico
Ventajas de la Actividad Fisica Para Mejorar la Calidad de Vida

Enlace Externo:• Fisica y Matematicas: Descomposicion de Fuerzas

Calculo Superior,Limite,Derivada,Integrales Online Ecuaciones

 CALCULO SUPERIOR ONLINE

RESOLVER EXPRESIONES ALGEBRAICAS
Evaluar Una ExpresiónExpandir Una ExpresiónResolver Una Ecuación
CALCULO SUPERIOR
Hallar Un LimiteDerivarIntegrarSuma de Riemann
GRAFICAR FUNCIONES MATEMÁTICAS
Gráfica Paramétrica 2DGrafica Normal 2DGráfica 3D

 Sistema de Ecuaciones

Geometría Analítica Online

Descargar Software Gratuitos Para Ingeniería Civil

Ponte esta herramienta de cálculo, con capacidad de conversión entre diferentes unidades de medida, bases numéricas, funciones científicas, fórmulas, estadísticas, matrices, números primos, operaciones con fechas, fracciones, números complejos, polinomios, etc.

Formula del Vértice de una Parabola Cuadrática Ejemplo Online

Fórmula del Vértice de una Parábola Cuadrática: Ejemplo Online

La función general de segundo grado y = ax² + bx+c  representa gráficamente en el plano cartesiano una parábola.

Asignando valores reales a la variable independiente x para obtener los valores de la variable dependiente y, podemos graficar sobre un par de ejes coordenados la curca parabólica.

Por Ejemplo:
—    Elaborar el gráfico de la función:      y  =   x² — 2 x — 2.

En donde según la fórmula general, los coefecientes son: a=1, b=-2 , c=-2

Se elabora la siguiente tabla:

x-3-2-10123
y1361-2-3-21

LLevando estos puntos a plano cartesiano, se tiene la siguiente curva:

grafica parábola

Se puede graficar desde aquí

Para calcular el vértice de cualquier parabola, usamos la siguiente fórmula:

formula vertice parabola cuadrática

Fórmula General Vértice Parabola Cuadrática

Para el caso que venimos estudiando es:

Coordenada X=(-(-2)/2.1)=1

Coordenada Y=(-(-2)²/4.1)-2)=-3

Coordenadas del vértice es: V(1,-3)


Formula del Vértice de una Parabola Cuadrática Ejemplo Online

Temas Relacionados

Resolvente de Segundo Grado Online
Propiedades de las Raices de una Ecuación Cuadratica
Aplicar la Resolvente Para Ecuaciones de Segundo Grado
Sistema de Ecuaciones Lineales

Enlace Externo:Hallar Ecuación vértice y pendiente

Software Calculo de Esfuerzos en Vigas Corte y Momento Flector

USO DEL SOFTWARE ARQUIMEDES

  • Debes ingresar la longitud de la viga
  • Elegir el tipo de carga e ingresar los datos de la misma
  • Puedes ir sumando cargas o distintos estados
  • Si es un tramo de una viga continua, puedes ingresar los momentos en los extremos
  • Pulsando sobre los botones de mto. flector y corte puede ver los diagramas
  • Puedes visualizar e imprimir los diagramas

Picar aquí para comenzar la descarga

Bajar Complementos

Es una versión de prueba, pero ideal para estudiantes de ingeniería
(en las vigas simplemente apoyadas puede aparecer un mínimo momento flector en uno de los extremos, pero debes considerarlo como cero)

Software para esfuerzo en vigas isostaticas

Software para esfuerzo en vigas isostaticas

Los Archivos de Ambas Descargas Se Deben Colocar Adentro de una Misma Carpeta
Descargar SoftwareDescargar Complementos

Ver También: Método de Cross Para Vigas

Esfuerzos en una Viga Isotática Online

Volver a Ingeniería Civil

Ver Tambien: Cross Para Vigas

Resolucion Ecuacion de Segundo Grado,Aplicando la Resolvente

RESOLUCIÓN ECUACIONES DE 2º GRADO

CALCULO DE LAS RAÍCES EN ECUACIONES CUADRÁTICAS


Por Silvia Ele Profesora de Matemáticas

RESOLVER UNA ECUACIÓN DE SEGUNDO GRADO CON UNA INCÓGNITA:1ra. Parte

Una ecuación de segundo grado es aquella en la cual la incógnita

(generalmente simbolizada por x ) aparece elevada a la segunda potencia.

En general, puede simbolizarse como

MATH

donde $a$ representa al coeficiente del término cuadrático, y nunca puede

ser$=0$ , pero sí puede ser igual a cualquier otro número real.

MATH es el coeficiente del término lineal, es decir aquel en que $x$ aparece elevada

a la primera potencia. Puede o no ser igual a $0$. Y

MATH es el término independiente, pues es el coeficiente del término donde

$x$ aparece elevada a la potencia $0$, o sea, $x$ no aparece porque $x^{0}=1$.

Según los valores de $\ \ a$, $b$ y $c$, las ecuaciones de segundo grado se clasifican en

1.Completas, cuando $a,b$ y $c$ son distintas de $0$.

2.Incompletas, cuando

2.1 $b=0$, o sea, no contiene término lineal,

o bien $\ $cuando 2.2 $c=0,$ es decir, no existe término independiente.

Veamos 2.1. La forma general sería

MATH

En este caso, la resolución es fácil:

MATH $\ \ \ \ \ \ $de donde MATH

Por lo tanto

MATH MATH y MATH

Por ejemplo:

$4x\U{b2}-25=0,$

se resuelve así: $\ $

de $\ 4x\U{b2}=25$, es MATH, y MATH

Por lo tanto, MATH $\ \ \ \ \ \ \ \ $ y MATH

2.2Si $\ \ \ c=0$, es $\ \ \ ax^{2}+bx=0$

En este caso, para resolver, extraemos el factor común, y nos queda

MATH $si$ $a=1$

Que es lo mismo que $(x-0)(x+b)=0,$

y este producto dará $=0$ sólo si $x\U{2081} =0$ , (porque el primer factor será $0$,

y multiplicado por lo que sea que valga el otro, dará producto $0$), o bien si

$x\U{2082} =-b$ (ya que $-b+b=0$ ).

Por ejemplo, $\ x^{2}-4x=0$ se puede pensar como

MATH o sea $x(x-4)$ $=0$ , que tendrá

como raíces $x\U{2081} =0$ y $x\U{2082} =4.$

Volviendo al caso general, si $\ \ a=1$, se dice que las ecuaciones son Reducidas.

Veamos cómo se resuelve una de estas joyitas cuando $a=1$, y $b$ y $c$ son

distintas de $0$.

Su forma sería MATH

Pensémoslo en un ejemplo: $\ x^{2}-6x-16=0$ .

Si hacemos un conveniente pasaje de miembro ( el viejo truco ),

nos queda $x2-6x=16$ [1]

Si observamos el primer miembro, vemos que podría corresponder a los dos

primeros términos de un trinomio cuadrado perfecto ( o sea, el cuadrado de un

binomio), donde

MATH es el cuadrado del primer término del binomio,

MATH sería el doble producto del primero por el segundo,

pero nos faltaría el cuadrado del segundo.

Ahora bien, si $\ x$ es el primer término del binomio, $\ $

$-6$ sería el producto de $2$ (doble producto, dijimos) por el segundo.

Si llamamos $q$ al segundo, donde

$2q=-6$ implica que $q=-3$.

Y el binomio sería $(x-3)$

Entonces, apelando al otro viejo truco: «sumo y resto lo mismo y no altero

la suma», puedo escribir

MATH (porque $9-9=0$)

Y, asociando convenientemente, queda

MATH

o sea, MATH

Entonces, reemplazando en [1], queda MATH

y, resolviendo, será

MATH

y

MATH

o sea MATH de donde $\ x\U{2081} =8$

y $x\U{2082} =-5+3,$ $x\U{2082} $ $=-2$

Generalizando lo anterior, se ve que este mismo proceder es aplicable a

cualquier ecuación general de 2º grado con una incógnita. O sea, si:

MATH

será $\ x^{2}+bx=-c.$

Y si utilizamos el recurso del trinomio cuadrado perfecto, veremos que

$\ bx=2.x.q$ .

Entonces, es $q=\frac{b}{2}.$

y, si sumamos y restamos $\ q^{2}$ en ambos miembros (nuestro querido y

viejo truco), será MATH

Luego, antes de caer en el colpaso cerebral, hacemos el conveniente

pasaje de miembro y el factoreo del trinomio, y nos quedará

MATH 

De donde, MATH

y

MATH ; MATH ; MATH ;

MATH; MATH

que es lo mismo que

MATH .

esto es lo mismo que

MATH 

Y si aún queda alguien que desconfíe de este razonamiento, veamos si,

aplicando esta fórmula en la ecuación anterior, llegamos a las mismas

raíces. (Atención: un ejemplo no es una demostración válida, pero si el ejemplo

no coincide con la conclusión, vale para demostrar la no validez de la misma.)

Recordemos que era:

$a=1$; $\ \ b=-6$; $\ \ c=-16$

entonces MATH

de donde

MATH,

pero $36+64=100$, entonces

MATH o sea MATH entonces

$\ x\U{2081} =8$ ( que coincide con una de las que hallamos antes)

y

MATH entonces $\ x\U{2082} =-2$ (y que también coincide con la otra que hallamos)

APLICACIÓN ONLINE DE LA RESOLVENTE

Una vez aceptado esto, es una buena idea proponernos, para cuando

egresemos de la sala de terapia intensiva para cerebros exhaustos,

preguntarnos si esta fórmula sirve para todos los casos. O sea,

¿sirve tanto para completas como para las incompletas y para las

que no son reducidas?.

También nos queda para después el análisis de la relación entre el

valor y la «realidad» de las raíces, y el signo de la expresión sub-radical

en la fórmula.

Estos desarrollos los dejamos para otro día, cuando la convalescencia

esté avanzada, y nuestras neuronas hayan recuperado su actividad.

Por hoy, les deseo feliz terapia.

Y les digo «¡Hasta el próximo suplicio!»

«Silvia Ele, la autora de esta colaboración, es una profesora de matemática de muchos años, con quien podés comunicarte enviándole un mensaje a  [email protected] «

Temas Relacionados

Regla de Ruffini Online Para Hallar Raices de un Polinomio

Historia del Sistema Metrico Decimal

Trisecar un Angulo con Reglas y Compás

Duplicar el volumen de un cubo

Fórmulas de Volumenes de Cuerpos Geométricos

Enlace Externo:• Ecuaciones de segundo grado y bicuadradas

Importancia del Rozamiento Para Nuestra Vida Diaria en la Tierra

Importancia del Rozamiento Para Nuestra Vida Diaria en la Tierra

Si no existiera rozamiento:  Sin rozamianto no pudieramos caminar, no pudieramo tomar una taza de café, y menos aún comer,…la fuerza de rozamiento se presenta todos los días a nuestro alrededor de diversas e inesperadas formas.

El rozamiento toma parte muy importante incluso allí donde nosotros ni lo sospechamos.

Si el rozamiento desapareciera repentinamente, muchos de los fenómenos ordinarios se desarrollarían de formas completamente distintas.

El papel del rozamiento fue descrito de una manera muy pintoresca por el físico francés Guillaume: «Todos hemos tenido ocasión de salir a la calle cuando ha helado.

!Cuánto trabajo nos ha costado evitar las caídas! ¡Cuántos movimientos cómicos tuvimos que hacer para poder seguir en pie!.

Esto nos obliga a reconocer que, de ordinario, la tierra por que andamos posee una propiedad muy estimable, gracias a la cual podemos conservar el equilibrio sin gran esfuerzo.

Esta misma idea se nos ocurre cuando vamos en bicicleta por un pavimento resbaladizo o cuando un caballo se escurre en el asfalto y se cae.

Estudiando estos fenómenos llegamos a descubrir las consecuencias a que nos conduce el rozamiento.

Los ingenieros procuran evitar el rozamiento en las máquinas, y hacen bien.

En la Mecánica aplicada se habla del rozamiento como de un fenómeno muy pernicioso, y esto es cierto, pero solamente dentro de los límites de un estrecho campo especial.

En todos los demás casos debemos estar agradecidos al rozamiento.

El nos da la posibilidad de andar, de estar sentados y de trabajar sin temor a que los libros o el tintero se caigan al suelo o de que la mesa resbale hasta toparse con algún rincón o la pluma se nos escurra de entre los dedos.

El rozamiento es un fenómeno tan difundido que, salvo raras excepciones, no hay que pedirle ayuda; él mismo nos la ofrece.

El rozamiento da estabilidad.

Los albañiles nivelan el suelo de manera que las mesas y las sillas se quedan allí donde las ponemos.

Si sobre una mesa colocamos platos, vasos, etc., podemos estar tranquilos de que no se moverán de sus sitios, a no ser que esto ocurra en un barco cuando hay oleaje.

Imaginémonos que el rozamiento se puede eliminar por completo.

En estas condiciones, los cuerpos, tengan las dimensiones de una peña o las de un pequeño granito de arena, no podrán apoyarse unos en otros: todos empezarán a resbalar o rodar y así continuarán hasta que se encuentren a un mismo nivel.

Si no hubiera rozamiento, la Tierra sería una esfera sin rugosidades, lo mismo que una gota de agua.»

A esto podemos añadir, que si no existiera el rozamiento los clavos y los tornillos se saldrían de las paredes, no podríamos sujetar nada con las manos, los torbellinos no cesarían nunca, los sonidos no dejarían de oírse jamás y producirían ecos sin fin, que se reflejarían en las paredes sin debilitarse.

Arriba, un trineo cargado sobre un camino de hielo; dos caballos arrastran una carga de 70 toneladas. Abajo, el camino de hielo; A, carril; B, deslizaderas del trineo; C, nieve apisonada; D, fundamento de tierra de la carretera

Las heladas nos dan siempre buenas lecciones de la gran importancia que tiene el rozamiento.

En cuanto nos sorprenden en la calle nos sentimos incapaces de dar un paso sin temor a caernos.

Como muestra instructiva reproducimos las noticias que publicaba un periódico en una ocasión (en diciembre de 1927):

«Londres, 21: Debido a la fuerte helada, el tráfico urbano y tranviario se ha hecho muy difícil en Londres. Cerca de 1 400 personas han ingresado en los hospitales con fracturas de brazos y piernas».

«Cerca del Hyde Park chocaron tres automóviles y dos vagones del tranvía. Los automóviles resultaron totalmente destruidos por la explosión de la gasolina …»

«París, 21. La helada ha ocasionado en París y sus alrededores numerosos accidentes …»

Y sin embargo, el hecho de que el hielo ofrezca poco rozamiento puede ser útil para fines técnicos.

Un ejemplo son los trineos ordinarios.

Otra demostración aun más convincente son los llamados caminos de hielo, que se hacían para transportar los leños desde el lugar de la tala hasta el ferrocarril o hasta el punto de lanzamiento a un río para su transporte por flotación.

Por estos caminos , que tienen una especie de raíles lisos helados, un par de caballos puede arrastrar un trineo cargado con 70 toneladas de troncos.

Fuente: Yakov Perelman –  Física Recreativa

Temas Relacionados:

Cuestion 1: Volar Barato Con Solo Elevarse

Cuestion 2: En El Mar Muerto Nadie Se Ahoga ¿Porque?

Cuestion 3: La Presión Atmoferica en el Interior de una Mina

Cuestión 4: La Presión Atmosferica En El Espacio

Cuestión 5: La Fuerza de la Gravedad ¿Es Grande?

Cuestión 6: La Importancia del Rozamiento

Ir al Menú de Cuestiones Físicas

Enlace Externo:Cosas reales que desafían las leyes de la física