Sondas Espaciales Voyager

Concepto de Fuerza Centrífuga Aplicaciones Prácticas

Concepto de Fuerza Centrífuga – Aplicaciones Prácticas

Si se hace girar con rapidez un balde parcialmente lleno de agua, con los brazos extendidos alrededor del cuerpo, el contenido no se derrama, aun cuando el balde esté volcado sobre un costado. El principio responsable de este fenómeno es conocido por los físicos con el nombre de fuerza centrifuga.

Al mismo tiempo que se hace girar el balde, el agua tiende a permanecer dentro de éste, presionada hacia el fondo (es decir, hacia afuera con respecto a quien hace girar el balde) o al centro de giro por la fuerza centrífuga. Este es un ejemplo bastante directo de como se origina esta fuerza, aunque hay muchas otras aplicaciones más prácticas.

Sabemos, según las leyes de los cuerpos en movimiento, enunciadas por Isaac Newton, que las fuerzas siempre se originan por pares, siendo cada una de las mismas de igual valor y sentido contrario. La fuerza que se necesita para mantener un cuerpo que gira dentro de su trayectoria, evitando que se vaya hacia afuera, se conoce como fuerza centrípeta y es igual pero de sentido contrario a la fuerza centrífuga.

Fuerza centrífuga en un balde girando. El agua no sale del balde porque es empujada hacia el exterior o fondo.

En el caso del ejemplo mencionado, esta fuerza centrípeta se manifiesta como el esfuerzo realizado por el brazo para sostener el balde. Podemos ver, bastante fácilmente, cómo estas fuerzas se relacionan con la velocidad a la cual el objeto se mueve dentro de su órbita. Un ejemplo emocionante lo constituye, en el espec táculo circense, un motociclista que da vueltas dentro de una gran esfera de malla metálica.

Cuando su máquina se mueve lentamente, el motociclista no puede subir muy alto, pero a velocidades mayores la fuerza centrífuga que tiende a lanzarlo hacia afuera es tan grande, que puede trepar verticalmente hasta la cúspide de la esfera y girar sin perder contacto con la «pista», a pesar de desplazarse «cabeza abajo».

La inclinación que se observa en las curvas de las vías férreas obedece al mismo principio: la fuerza centrífuga que impulsa hacía afuera al tren cuando éste toma la curva, es contrarrestada por la fuerza centrípeta que se manifiesta cuando el costado de las ruedas presiona sobre los rieles. Este esfuerzo se reduce considerablemente inclinando las vías en un cierto ángulo, de modo que el riel exterior (el más alejado del centro de la curva) esté a mayor altura que el interior.

Otro ejemplo parecido lo constituye aquella famosa primera pista de Avus, en Alemania, donde ya en el año 1937, los promedios de velocidad establecidos por los coches de carrera llegaban a 261 Km./h., con records hasta de 280 Km./h. Esto podía lograrse porque aquella pista tenía curvas construidas con un extraordinario peralte que llegaba a los 45 grados. De esta manera, se conseguía precisamente vencer la gran fuerza centrífuga que esas velocidades provocaban en los giros. Una idea de dicha fuerza la da el cálculo de que, en el momento de paso sobre la curva, los neumáticos debían soportar nada menos que 3 veces el peso de la máquina.

Peralte o Inclinacion de la Carretera

Los llamados trajes de presión, creados por los japoneses durante la segunda guerra mundial y adoptados luego por casi todas las demás fuerzas aéreas, constituyen una solución bastante aceptable al problema de la tremenda fuerza centrífuga a que está sometido el piloto en un combate aéreo. Este traje evita que, en los giros violentos, la sangre se desplace y se agolpe por centrifugación, con el consiguiente desvanecimiento y pérdida momentánea de la visión. Pero no siempre ¡a fuerza centrífuga resulta negativa; muchas veces el hombre se vale de ella para obtener provecho.

Un buen ejemplo de aplicación práctica de este principio lo tenemos en el aparato denominado centrifuga. Si tenemos una suspensión de un sólido en un líquido, o una mezcla de líquidos de diferentes densidades, es decir, que tienen relaciones diferentes de peso a volumen (por ejemplo crema y leche), y que han sido mezclados hasta formar una emulsión, podemos separarla si la dejamos reposar tiempo suficiente.

Una centrifugadora es una máquina que pone en rotación una muestra para –por fuerza centrífuga– acelerar la decantación o la sedimentación de sus componentes o fases (generalmente una sólida y una líquida), según su densidad. Existen diversos tipos, comúnmente para objetivos específicos.

La atracción que ejerce la gravedad sobre la leche es mayor que sobre la crema, menos densa, que va a la superficie. Este proceso se puede acelerar centrifugando la mezcla (estas centrifugadoras tienen la forma de un cuenco que gira rápidamente). De este modo la leche es impulsada más lejos del centro que la crema, la cual, por no ser tan densa, no sufre con tanta intensidad los efectos de la fuerza centrífuga que se origina.

También bombas centrífugas y turbinas centrífugas que trabajan con líquidos y aire, respectivamente, son un acierto mecánico. Debemos recordar que los turborreactores centrífugos reciben este nombre porque su alimentación de aire lo produce una turbina de ese tipo.

Bomba centrifugadora

En la fundición de metales, las inyectaras centrífugas son insustituibles por la precisión, seguridad y calidad de los colados. Este tipo de inyectora recibe el metal fundido por un tragadero central, y mantiene adosada una batería de matrices a su contorno. Girando a gran velocidad, el metal es centrifugado con gran presión, e inyectado al interior de las matrices.

RAZÓN POR LA CUAL LA TIERRA NO ES ATRAÍDA POR EL SOL

Esquema Sistema Tierra-Sol

Esto se debe a que, a pesar de la atracción gravitacional (fuerza de gravedad) la fuerza centrífuga tiende constantemente a empujar a la Tierra hacia afuera. En este caso, las dos fuerzas están equilibradas. La fuerza de gravedad entre el Sol y la Tierra actúa como una fuerza centrípeta, que tiende a atraer al planeta, que gira en su órbita, hacia el Sol. La fuerza centrífuga originada por el movimiento de rotación, tiende a empujar al planeta en sentido contrario, es decir, fuera del Sol., El resultado es que la distancia entre el Sol y la Tierra se mantiene constante, suponiendo que la velocidad del planeta también se mantenga igual (en realidad, la velocidad de la Tierra sufre pequeñas variaciones, con la consiguiente alteración en la distancia al Sol). El mismo principio se aplica a los satélites artificiales que se ponen en órbita para girar alrededor de la Tierra. La atracción de la gravedad equilibra las fuerzas centrífugas, y los satélites pueden moverse a distancia más o menos constante de la Tierra, «suponiendo que su velocidad sea también constante». De todos modos, la velocidad se reduce gradualmente, a causa del rozamiento con la atmósfera, y los satélites tienden a caer hacia la Tierra.

Formula de la Fuerza Centrípeta:

Diagrama de un cuerpo girando, Fuerza Centrifuga

Ejemplo: si se toma una piedra de 2 Kg. de masa, atada a una cuerda y se la hace girar con un radio de 1,2 m. a razon de 2 vueltas por segundo. Cuanto vale la fuerza centrífuga que debe soportar la cuerda?.

La masa es de 2 Kg., el radio: 1,20 metro, pero nos falta la velocidad tangencial Ve, pues la del problema es la velocidad angular.

Para ello se sabe que dá dos vueltas en un segundo, entonces el recorrido es, dos veces el perímetro de la circunferencia por segundo. Podemos hallarlo asi: 3.14. 1.2. 2=7.53 m. cada vuelta , por dos es: 15,07 m. distancia que la masa recorre en 1 segundo, por lo tanto la velocidad tangencial es: 15,07 m/seg.

Aplicando la formula se tiene que Fc= ( 15,07 )². 2 /1,2² =454/1.44=315,27 Newton

Fuente Consultada:
Revista TECNIRAMA N°21 Enciclopedia de la Ciencia y La Tecnología -La Fuerza Centrífuga-

Cuadro sinoptico del Universo, Sistema Solar, Planetas y Galaxias

SINTESIS EN UN CUADRO SOBRE EL SISTEMA SOLAR

Nuestro sistema solar que está contenido en la galaxia llamada Vía Láctea, está conformado por el Sol y ocho planetas que gravitan a su alrededor. Los planetas siguen órbitas que, casi en su totalidad, están situadas en el mismo plano; y todos se desplazan en torno al Sol en el mismo sentido.

El tiempo que tardan en dar una vuelta constituye el año de cada planeta: Mercurio, el más cercano, demora tres meses terrestres. Además de los planetas, entre Marte y Júpiter circulan cuerpos pequeños, bloques de rocas cuyo diámetro no suele pasar los pocos kilómetros. Se cree que estos asteroides son los restos de un planeta que, o bien se fragmentó, o no llegó a formarse jamás.

Ampliar Sobre la Evolución del Universo

cuadro sinoptico universo

Ver Tambien: Sistema Solar Para Niños de Primaria

Diferentes clases de astros
Los astros se pueden dividir en cuatro tipos:

a) los que poseen luz propia, como el Sol, las estrellas, las nebulosas de emisión y algunos cometas:

b) los que brillan con luz reflejada, como la Luna, los planetas, satélites, asteroides, ciertos cometas y ciertas nebulosas:

c) los que no emiten luz alguna, como las nebulosas obscuras, cuya existencia se conoce en virtud de que impiden pasar la luz de los astros situados detrás de ellas; y

d) las estrellas fugaces y bólidos, que lucen porque al entrar velozmente en nuestra atmósfera se tornan incandescentes al rozar con los gases de ésta.

Los movimientos aparentes de los astros difieren según los casos.

Las estrellas, los conglomerados, las nebulosas y las galaxias, describen un círculo completo alrededor de la Tierra en 24 horas menos cuatro minutos.

Los planetas tienen un movimiento aparente complejo. Se clasifican eñ interiores o exteriores según sea que su órbita esté, respectivamente, dentro o fuera de la que sigue la Tierra. Los planetas interiores, Mercurio y Venus, siguen una ruta cercana al astro mayor y sólo son visibles antes de orto o salida de éste, y después de su ocaso o puesta. Vistos a través del telescopio los planetas interiores presentan fases porque,estando sus órbitas dentro de la terrestre, su disco se ve más o menos iluminado por el Sol.

Cuando se hallan a la mayor distancia aparente del Sol -máxima elongación- tienen la mitad del disco iluminado.La elongación puede ser oriental u occidental, de acuerdo a cómo están situados respecto del Sol.

Los planetas exteriores se ven de noche y, por lo común, viajan aparentemente de O a E a través de las estrellas, pero, según los movimientos combinados de cada planeta y la Tierra, hay un momento en que parece que se detienen: están estacionarios; acto seguido cambian de rumbo y se dirigen de E a O, hasta llegar a otro punto donde permanecen de nuevo estacionarios, para continuar posteriormente con su marcha normal.

Entre dos posiciones estacionarias llegan a la oposición, en que se sitúan en la línea Sol, Tierra y planeta. Si la disposición es planeta, Sol y Tierra, se dice que el planeta está en conjunción (con el Sol interpuesto).

Los planetas se mueven dentro del Zodíaco, que es una faja de 8o de anchura a cada lado de la eclíptica.

Otros Temas Tratados en Este Sitio

Big Bang

Origen de la Vida

Origen del Hombre

Teoría de la Evolución

Muerte de una Estrella Los Pulsares Enana Blanca

Peso de Una Estrella de Neutrones

La Vida del Sol Tiempo de Vida Hidrogeno del Sol

La Luna Muestra Siempre la Misma Cara

Origen del aire que respiramos El Oxigeno

Mapa de la Luna Superficie de La Luna Crateres Mares y Montañas

Mapa de la Luna Superficie de La Luna
Crateres, Mares y Montañas

¿Por qué vemos más de la mitad de la superficie lunar? Hoy, esta y otras preguntas relativas al movimiento de nuestro satélite ya tienen respuesta. Sin embargo, a pesar de que la Luna es el objeto celeste más  próximo a nosotros, calcular su órbita todavía es difícil: se han descubierto más de 37.000 factores que influyen en sus movimientos.

Hace millones de años la Luna estuvo bombardeada por distintos cuerpos celestes, como asteroides y  cometas, dejando una superficie característica , totalmente «rugosa y ondulada», formada por miles de cráteres que pueden observarse a simple vista. Inicialmente fueron grandes cuerpos, mientras que en una segunda etapa,  los cuerpos que impactaban fueron mas pequeños, provocando cráteres mas chicos, y todo esto ocurrió hace unos 3800 millones de años aproximadamente.

 El análisis de impactos responde al nuevo catálogo de alta resolución de los cráteres lunares de 20 metros de diámetro o superior -que son 5.185 en total- que se ha hecho gracias a los datos tomados por el altímetro de la sonda espacial de la NASA Lunar Reconnaissance Orbiter (LRO). China también está desde hace pocos años en un proyecto para fotografiar, estudiar y armar un meticuloso y fiel plano de la superficie lunar, por lo que ha enviado una nave que orbita la Luna consiguiendo imágenes en 3D. También estaría previsto enviar una nave no tripulada que alunizara.

Cráter Lunar

Cráter Lunar

INFORMACIÓN BÁSICA DE LA LUNA:
Durante e una órbita de la Luna alrededor de la Tierra, la distancia que separa ambos cuerpos celestes puede variar muchísimo: hasta 1/8 del valor medio. A la distancia máxima de la Tierra, el diámetro aparente de la Luna es aproximadamente 9/10 del que nos muestra cuando se encuentra a la distancia mínima.

Tampoco el perigeo y el apogeo son fijos. A pesar de que se trata del objeto celeste más cercano a la Tierra, calcular el movimiento de la Luna es una tarea difícil. Este tipo de medidas se refiere . siempre a los centros de los dos cuerpos celestes y no a sus superficies.

Deben considerarse también las perturbaciones debidas a la atracción gravitatoria del Sol, al abultamiento ecuatorial de la Tierra y a la influencia de los planetas. Además, la magnitud de las perturbaciones provocadas por todos estos cuerpos varía continuamente, ya que también varían las posiciones de cada uno de ellos en el sistema solar.

Las técnicas más modernas para medir la distancia Tierra-Luna se basan en el empleo del láser. Se envía un rayo láser a la Luna, el cual, por reflexión, vuelve a la Tierra. Sabiendo la velocidad del rayo enviado y calculando el tiempo que emplea en cubrir el recorrido de ida y vuelta, es posible obtener, con una diferencia muy pequeña (pocos centímetros), el valor que se busca. L; teoría que predice el comportamiento de la órbita lunar tiene en cuenta muchos factores periódicos, algunos de los cuales apenas modifican el valor en 2 cm.

Sin embargo, la precisión que se obtiene con el láser obliga a los astrónomos a tener presentes incluso las variables más pequeñas.

IMPORTANCIA DE LA DISTANCIA TIERRA-LUNA
Esta medida no sólo permite verificar nuestras teorías sobre el movimiento lunar, sino también conocer exactamente la distancia Tierra-Luna. Esta información es importante porque influye sobre otros fenómenos. Las mismas teorías sobre el material que forma el interior de la Luna dependen en parte de tales valores.

Gracias a esta medida, es posible obtener en un tiempo muy breve indicaciones exactas sobre la disminución de velocidad (no regular) de la rotación terrestre. La distancia de la Luna a k Tierra interviene también en la medición de la deriva de los continentes, cuyos desplazamientos pueden ser de algunos centímetros por año.

LA ÓRBITA LUNAR
El tiempo que emplea la Luna en efectuar una órbita completa merece un discurso especial: a pesar de que gira alrededor de la Tierra, ésta no está inmóvil en el espacio, sino que, a su vez, gira alrededor del Sol. Respecto a las estrellas que son fijas, un mes lunar dura 27,32 días (mes sideral), pero el tiempo que tarda la Luna en volver a la misma fase respecto a la Tierra es diferente, ya que interviene el movimiento de ambos cuerpos. Este intervalo, llamado mes sinódico, equivale a 29,5 días.

El plano de la órbita lunar no coincide con el terrestre (eclíptica), sino que está inclinado unos 5° 19′. Esto es importante porque gracias a la existencia de un ángulo entre los dos planos no se producen cada mes eclipses en la superficie terrestre.

Con el tiempo, los nodos -puntos de intersección de los dos planos- se mueven con un desplazamiento de 19° por año. También la línea de los ápsides -la que une el perigeo con el apogeo- se mueve, aunque en dirección opuesta. El período de este último movimiento es de 8,85 años.

ROTACIÓN Y TRASLACIÓN
Como ya se ha indicado en otras ocasiones, el movimiento de rotación y el de traslación están sincronizados, es decir, la Luna tarda el mismo tiempo en efectuar una rotación completa alrededor de su propio eje que en girar alrededor de la Tierra. Esto se debe a la fuerza gravitatoria terrestre, que, a lo largo del tiempo, ha hecho disminuir la velocidad inicial de la rotación lunar.

Una consecuencia interesante de ello es que los movimientos del Sol en el firmamento de la Luna son muy lentos: basta decir que el Sol permanece sobre el horizonte durantes 354 horas consecutivas y que el disco solar tarda mas de una hora en emerger completamente. En una semana, el Sol asciende desde el horizonte hasta el punto mas alto del firmamento, y en otra llega a la puesta. El eje de rotación de la Luna está poco inclinado respecto al plano de la órbita y, por lo tanto las variaciones estacionales son mínimas.

ALGO MAS SOBRE LA SUPERFICIE LUNAR…

Un paisaje totalmente desolado, más severo y más áspero que cualquier escenario terrestre, daría la bienvenida a un visitante de la Luna. Elevadas cadenas de montañas., imponentes picos dentados de más de 10.000 metros de altura se alzan sobre una superficie marcada con profundas hendiduras e innumerables cráteres, cubierta por una delgada capa de polvo de ceniza.

Uno de los caracteres más distintivos de la superficie lunar son los cráteres. Éstos varían de tamaño, desde pequeños hoyos hasta enormes depresiones de más de ICO Km. de ancho. Algunos están cercados por empinadas paredes que se elevan quizá a 5.000 metros sobre el piso del cráter y algunos kilómetros sobre la superficie genera! del «terreno». Otros son depresiones poco profundas con paredes de sólo algunos cientos de metros de altura. Muchos tienen pisos a nivel, pero en otros casos se puede ver en el centro un pico solitario.

El origen de los cráteres ha sido motivo de gran número de discusiones. Dos hipótesis principales se formularon a este respecto: la que los atribuía a un origen volcánico, y la que los explicaba como debidos a grandes colisiones de cuerpos, tales como meteoritos, contra la superficie lunar.

La teoría volcánica adquirió bastante crédito antes de que los científicos comprobaran que era un hecho cierto la caída de meteoritos sobre la Tierra; fue necesaria une larga discusión, que se prolongó durante un siglo, antes de que todos los astrónomos aceptaran que la mayoría de los cráteres eran debidos a choques. De hecho, como luego pudo demostrarse, se pueden también hallar sobre la superficie de la Tierra cráteres formados de un modo semejante.

Uno de los más famosos, el cráter Meteoro, en Arizona, tiene 1.200 metros de ancho y 150 metros de profundidad. La razón de que la Tierra no esté marcada con cráteres, como la Luna, es porque el agua, el viento, y el hielo, han borrado en el trascurso del tiempo todas las huellas, excepto las de los cráteres más recientes.

Pero en la Luna no hay erosión alguna (ya que allí no existen el viento, el agua y el hielo), de modo que se guarda cuidadosamente la evidencia acumulativa de muchos millones de años de castigo meteorice Esta falta de erosión explica también la aspereza del paisaje. Actualmente se reconoce que existen también pequeños cráteres que no pueden ser debidos a choques y, por lo tanto, deben ser de origen volcánico, aun cuando su forma no es la de los volcanes terrestres. En este sentido, se plantea la cuestión de si la Luna se encontró en algún momento en forma de una masa fundida, a alta temperatura, o bien se formó a más baja temperatura a partir de materiales sólidos. Todos los indicios, resultantes de consideraciones de distintos tipos, parecen indicar que la Luna ha debido formarse a baja temperatura, si bien, desde luego, es posible que presente actualmente un interior parcialmente fundido.

La fuente de calor quizá no es su origen residual primitivo; al igual que actualmente se acepta para el origen de los volcanes terrestres, se puede derivar de acumulaciones de materiales radiactivos.

Otra interesante característica del paisaje luna-está constituida por la presencia de grandes áreas oscuras, que los primeros astrónomos creyeron que eran mares. Aunque actualmente se sabe que no son mares (no hay agua líquida en la Luna), continúan utilizándose los nombres antiguos. Un «mar» lunar es una especie de planicie seca situada a cierta distancia por debajo del nivel medio de la superficie. Así, por ejemplo, el océano de las Tormentas, que se sitúa totalmente a la izquierda en la fotografía de la superficie lunar. Un poco más al centro, en la parte superior, se halla el mar de las Lluvias («Mare imbricum»), con la bahía o golfo de los Iris, de forma semicircular, en su parte superior.

En la parte de abajo, el mar de los Nublados. El astrónomo Gilbert, estadounidense, fue el primero que estudió con gran detalle las características de la imponente colisión que dio lugar a la formación de uno de estos mares, la que se ha denominado «colisión imbria», por haber originado el mar de las Lluvias. Según todos los indicios, un enorme bólido, con un diámetro de más de 150 Km., incidió sobre la región del golfo de los Iris, procedente del noroeste, elevando una inmensa ola en todas las direcciones de la superficie lunar, pero especialmente en la dirección de su movimiento, esto es hacia el centro del disco visible de la Luna. La energía liberada por la colisión debió ser fabulosa.

Se estima que sería del orden de unos cien millones de veces superior a la de los mayores terremotos conocidos en la Tierra o, si se prefiere una medida más «actual», ¡del orden de cerca de un billón de bombas atómicas! Un choque de esta magnitud debió producir efectos muy notables. La región afectada se pulverizaría hasta el grado de arena fina, una parte de la cual pudo extenderse sobre un área considerable. Grandes trozos de materia de la superficie lunar y del mismo meteorito fueron probablemente lanzados en alto para caer después en grandes bloques, formando varias masas montañosas. Trozos más pequeños, animados de grandes velocidades, produjeron surcos y estrías en la superficie, que se extienden a grandes distancias del área del choque.

En otras ocasiones la energía desarrollada por la colisión pudo originar la fusión de una parte del material, dando lugar a la formación de las corrientes de lava que parece ser la sustancia principal de algunos de los mares. Este tipo de fenómenos se especula que pudieron ocurrir durante un período del orden de un millón de años, hace unos 4.500 millones de años. Posteriormente, los cuerpos que cayeron sobre la Luna fueron más pequeños, produciendo cráteres menores.

Fuente Consultada: El Universo Enciclopedia de la Astronomía y del Espacio Tomo 3 – Movimientos y Fases de la Luna

Escala del Sistema Solar
Distancia a las Estrellas
La Vía Láctea
Más Allá de la Vía Láctea
Características del Módulo Lunar
La Fases De La Luna
El Hombre Llegó a la Luna
Lugares de Alunizajes

Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia

Evolución del Universo
Resumen Cronologico de  Linea del Tiempo

El enigma del origen del Universo siempre fue tema de estudio y discusión para los científicos. Hasta el presente, la teoría que mejor ha podido explicar este acontecimiento es la propuesta por el físico George Gamow (1904-1968), llamada teoría del Big-Bang o de la Gran Explosión. Está basada en las observaciones del astrónomo Edwin Hubble (1889-1953), quien demostró que las galaxias se alejan unas de otras continuamente.

BIG BANG

13.700 millones de años

Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
NACIMIENTO DEL SISTEMA SOLAR 4500 millones de años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
COLISIÓN PLANETARIA ORIGINA LA LUNA 4500 millones de años
PRIMEROS SIGNOS DE VIDA MICROSCÓPICA 3700 millones de años
PRIMEROS ORGANISMOS PLURICELULARES 500 millones de años
ALGUNOS ANIMALES EMERGEN DEL AGUA 400 millones de años
LA MAYOR EXTINCIÓN EN MASA 252 millones de años
APARICIÓN DE LOS DINOSAURIOS 240 millones de años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
DESARROLLO Y EXPANSIÓN DE LAS FLORES 150 millones de años
EVOLUCIÓN DE LOS MAMÍFEROS 150 millones de años
EXTINCIÓN DE LOS DINOSAURIOS 65 millones de años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
EXPANSIÓN DE LOS MAMÍFEROS POR LA TIERRA 55 millones de años
INICIO DE LA EDAD DEL HIELO 40 millones de años
LOS MONOS BAJAN DE LOS ÁRBOLES 7 millones de años
PRIMEROS HUMANOS PREHISTÓRICOS (homo habilis) 2.5 millones de años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
EVOLUCIÓN DEL LINAJE MODERNO EN ÁFRICA 130.000 años
DATACIÓN DE LA PINTURA RUPESTRE MAS ANTIGUA 30.000 años
NACIMIENTO DE LA AGRICULTURA Y GANADERÍA 10.000 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
ARMAS DE BRONCE, CABALLOS Y CARROS 3.500 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
COMIENZAN LOS JUEGOS OLÍMPICOS EN GRECIA 2.700 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
NACIMIENTO DEL BUDISMO 2.500 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
NACIMIENTO DEL CRISTIANISMO 2.000 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
EL IMPERIO ROMANO ALCANZA SU APOGEO 2.000 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
NACIMIENTO DEL ISLAM 1.500 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
LAS CRUZADAS 1.000 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
LA PÓLVORA Y EL PAPEL LLEGAN A OCCIDENTE 800 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
CONQUISTA EUROPEA DEL NUEVO MUNDO 500 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
CULTIVOS, ANIMALES Y ENFERMEDADES SE GLOBALIZA 400 años
REVOLUCIONES FRANCESA Y AMERICANA 250 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
ERA DE LOS IMPERIALISMO OCCIDENTALES 250 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
COMIENZA LA REVOLUCIÓN INDUSTRIAL 200 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
PRIMERAS VACUNAS 200 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
LA POBLACIÓN MUNDIAL SUPERA LOS 1000 MILLONES 180 años
FERROCARRIL, ELECTRICIDAD Y AUTOMOVILES 150 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
PRIMER VUELO CON MOTOR 100 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
GUERRAS MUNDIALES 80 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
DESCUBRIMIENTO DE LA ENERGÍA ATÓMICA 60 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
ERRADICACIÓN MUNDIAL DE LA VIRUELA 40 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
COLAPSO DE LA UNIÓN SOVIÉTICA 25 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
LA POBLACIÓN MUNDIAL SUPERA LOS 6000 MILLONES 10 años Evolucion del Universo Resumen Cronologia Linea del Tiempo Historia
CIENTÍFICOS PREDICEN LA SEXTA EXTINCIÓN EN MASA 5 años

Aún hoy, después de tanto avances científicos y progresos en la exploración del espacio,  el origen del universo sigue siendo mi misterio. Los astrónomos no pueden más que recurrir a diversas hipótesis. Según la teoría del Big Bang, el universo que se observa en la actualidad se habría formado hace diez mil o veinte mil millones de años, debido a una explosión que formó una «bola de fuego primigenia» en cuya composición entrarían protones, electrones, fotones y neutrones, a una temperatura extremadamente alta; más de un millón de grados. Este gas, en permanente expansión, sería el que, al condensarse, dio origen a las galaxias y, dentro de ellas, a las estrellas y los planetas.

Los astrónomos no se han puesto de acuerdo acerca de la duración de esta expansión: ¿será indefinida, o en algún momento se detendrá? Algunos sugieren que podría detenerse poco a poco. Otros predicen que a la detención le seguiría una contracción y toda la materia volvería, entonces, a su condensación inicial; luego se produciría otra explosión, y el ciclo recomenzaría. También hay quienes sostienen que el universo no tendría principio ni fin, y que permanecerá por siempre en el estado actual. No obstante, debido a que el universo no es estático y hay una creación continua de materia para reemplazar a las galaxias que se alejan, las dos primeras teorías se consideran más consistentes.

Una galaxia es un inmenso sistema conformado por billones de estrellas. Las hay de diversos tipos: irregulares, espirales, elipsoidales; la Vía Láctea, que nos contiene, es una galaxia espiral. Los centros de las galaxias suelen ser luminosos; y en varias de ellas hay indicios de que se hubieran producido explosiones.

Las galaxias forman «racimos» con distinto número de componentes: de una veintena a miles. La Vía Láctea forma parte de un grupo de veinticuatro miembros, denominado Grupo Local, en el cual la más importante es la galaxia de Andrómeda, que tiene el doble del tamaño de la nuestra. En torno a las estrellas, pueden apreciarse nubes de gas y polvo, a veces visibles como en el caso de la nebulosa de Orión. Son estas nubes las que, al condensarse, dan origen a las estrellas.

Imagen del Universo

Nuestro sistema solar está conformado por el Sol y ocho planetas que gravitan a su alrededor. Los planetas siguen órbitas que, casi en su totalidad, están situadas en el mismo plano; y todos se desplazan en torno al Sol en el mismo sentido. El tiempo que tardan en dar una vuelta constituye el año de cada planeta: Mercurio, el más cercano, demora tres meses terrestres. Además de los planetas, entre Marte y Júpiter circulan cuerpos pequeños, bloques de rocas cuyo diámetro no suele pasar los pocos kilómetros. Se cree que estos asteroides son los restos de un planeta que, o bien se fragmentó, o no llegó a formarse jamás.

En la periferia del sistema existen, además, una serie de cuerpos que no alcanzan la categoría de planeta, como es el caso de Pintón, «degradado» recientemente, además de otros, descubiertos en los últimos años gracias a los nuevos instrumentos de detección, como Eris, Sedna y Xena. Además hay cuerpos de menor tamaño, como los meteoros. Son rocas que, al entrar en la atmósfera terrestre, se inflaman por el roce del aire y se convierten en estrellas fugaces. Los cometas, por su parte, son bloques sólidos cuya materia comienza a evaporarse a medida que se aproximan al Sol, lo que genera su característica cabellera de gases. Vienen do muy lejos, de más allá de los límites del sistema solar; algunos son periódicos, como el cometa Halley, que se aproxima al Sol cada 75 años.

El trabajo del astrónomo ha variado mucho desde que se estudiaba el movimiento de los astros a simple vista. Los medios de observación actuales —radiotelescopios, receptores espaciales, telescopios ópticos— surgieron del aporte de disciplinas variadas, como la óptica, la mecánica de precisión, le electrónica. Tanto la recolección como la interpretación de datos ya no corren por cuenta de astrónomos individualistas, sino que surgen del trabajo coordinado de un equipo interdisciplinario.

El astrónomo nunca podrá recurrir a la comparación directa del objeto de estudio ni podrá ver por sí mismo la estructura de un astro ni visitar un agujero negro, por lo que constante» mente debe recurrir a la reformulación de sus modelos teóricos. Esto implica un alto grado de interacción de las diversas ciencias, lo que hace de la astronomía actual una disciplina dinámica y en constante evolución, que con el tiempo puede brindar los frutos más inesperados.

EVOLUCIÓN DEL COSMOS

Tiempo cero

Existen cuatro fuerzas unificadas: la fuerza de gravedad, que atrae a los cuerpos; la nuclear débil, que mantiene unidas las partículas subatómicas; la nuclear fuerte, que une los núcleos atómicos y la electromagnética, que atrae a las cargas positivas y negativas. La materia y la energía están concentradas en un pequeño volumen. La temperatura es superior a los 1.011 °C. Se produce una gran explosión o Big-Bang. A partir de allí, el Universo comienza a expandirse.
10-43 10-43segundos después del Big-Bang. La fuerza de gravedad se independiza del resto de las fuerzas. El Universo se visualizaría del tamaño de una uva.
10-35 10-35segundos después del Big-Bang. Se independiza la fuerza nuclear fuerte. Abundan los quarks, los electrones, los positrones y los neutrinos.
1 segundo 1 segundo después del Big-Bang. El electromagnetismo y la fuerza nuclear débil se separa.  Se fusionan las primeras partículas formando los protones y los neutrones.
1 minuto1 minuto después del Big-Bang. Se forman los núcleos de helio (He) y deuterio (H)
30 minutos30 minutos después del Big-Bang. Continúa la expansión, la temperatura del Universo baja a 3 . 108 °C.
4 . 105 años después del Big-Bang.Se forman átomos de hidrógeno (H) y sus isótopos y helio (He). Comienza a separarse la radiación de la materia: se liberan microondas, que se expanden en todas las direcciones.
106 años después del Big-Bang. Las nubes de gas (de hidrógeno y helio) se atraen por fuerzas gravitatorias. Aparecen las primeras galaxias y quasares. Se forman los primeros elementos químicos más pesados que el hidrógeno y el helio. Continúan la expansión y el enfriamiento.
109 años después del Big-Bang. Se origina la Vía Láctea, galaxia espiral en la cual se encuentra el Sistema Solar.
109 años después del Big-Bang. Se originan el Sol y los planetas (entre ellos la Tierra). En las estrellas se producen fusiones nucleares que dan origen a los restantes elementos.
109 años después del Big-Bang. Se forman las primeras moléculas orgánicas en a Tierra
Época actual. 15 . 109 años después del Big-Bang. Continúa la expansión. La temperatura de las radiaciones de microondas (descubiertas en 1965) es de apenas -270°C. Diámetro estimado del Universo actual: 30.000 millones de años luz (cada año luz equivale a 9,463 x 1012 Km.). El futuro del Universo es incierto. Algunas teorías estiman que seguirá expandiéndose, otras dicen que se contraerá y otras que ocurrirán ambas cosas alternativamente.

Fuente Consultada:
Grandes Inventos Que Cambiaron El Mundo Michael Spiers
Todo sobre nuestro mundo de Christopher LLoyd

 

El planeta sedna, Características y datos, Distancia y medidas

OPINION CIENTIFICA –1

Sedna: el décimo planeta en el Sistema Solar

Aunque es más pequeño que Plutón, es el cuerpo más grande en órbita alrededor del Sol identificado desde el descubrimiento de Plutón, en 1930. Existe discusión entre los astrónomos si, por su pequeño tamaño, tendrá o no status de planeta…o será solamente un planetoide.

planeta sedna

Planeta Sedna, N°:10 del sistema solar

Mercurio, Venus, Tierra, Marte, Júpiter, Saturno, Urano, Neptuno, Plutón… ¡y Sedna!… Sí, porque entre los astrónomos ya se hizo oficial el descubrimiento del décimo planeta del Sistema Solar, el cuerpo celeste más lejano al Sol y de un tamaño muy similar a Plutón.

Está tan lejos del Sol que es el más frío del Sistema Solar. De hecho, su temperatura nunca sobrepasa los -240º C. Pero es el cuerpo celeste más importante y más grande en órbita alrededor del Sol identificado desde el descubrimiento de Plutón, en 1930.

¿Cómo se hizo posible la confirmación de este nuevo planeta?… El equipo encabezado por el investigador Mike Browne, del California Institute of Technology (Caltech) lo detectó por primera vez el 14 de noviembre del 2003, con la ayuda del telescopio Samuel Oschin, en el Observatorio Palomar de Caltech, cerca de San Diego, en California. Con el correr de los días, los telescopios de Chile, España, Arizona y Hawai confirmaron la existencia de Sedna. También lo hizo el nuevo telescopio infrarrojo espacial Spitzer, de la NASA.

Michael Brown dijo que era tanta la distancia de Sedna con respecto al sol, que desde el nuevo planeta se podría tapar el sol con la cabeza de un alfiler.

Más acerca de Sedna

Este nuevo planeta fue bautizado como Sedna en honor a la diosa del mar entre los pueblos inuit, habitantes esquimales del Norte de Canadá y Groenlandia, dama de las profundidades del mar y de las emociones humanas.

Según el pueblo inuit, la diosa Sedna dio origen a las criaturas marinas desde una cueva congelada que ocupa en el fondo del océano.

Sedna se encuentra aproximadamente a 12.800 millones de kilómetros de la Tierra y su tamaño parece ser tres cuartas partes el de Plutón. Es seis veces más pequeño que la Tierra.

Posee un diámetro de unos 2.000 kilómetros y una superficie recubierta de hielo y roca, y debido a su dimensión pequeña, algunos científicos expresaron sus dudas a que pueda ser considerado un planeta más. Y es que – dicen – tal vez sería más correcto hablar de un «planetoide».

Sedna es más rojo que cualquier otro cuerpo del Sistema Solar, con la excepción de Marte, y sigue una órbita muy elíptica, que en su punto más alejado lo sitúa a unos 135.000 millones de kilómetros del Sol, una distancia equivalente a 900 veces la existente entre el Sol y nuestro planeta, por lo cual tarda 10.500 años terrestres! en completar una sola órbita.

Para tener una idea, Plutón, el noveno planeta del Sistema Solar, y hasta ahora el último, tiene un diámetro de dos mil kilómetros y se encuentra a 6 mil millones de kilómetros de la Tierra.

Los primeros cálculos sugieren que Sedna se encuentra ubicado exactamente en una región del espacio llamada Cinturón de Kuiper. Éste posee cientos de objetos conocidos y los astrónomos creen que aún existen muchos otros esperando ser encontrados.

La mayoría son pequeños mundos de roca y hielo, aunque algunos también podrían ser tanto o más grandes que Plutón. La importancia de Sedna radica específicamente en que es el primero de este tipo de mundos que mantiene una órbita regular, ya que otros objetos similares son menos estables.

¿Qué viene ahora?…Intentar determinar si Sedna posee algún grado de atmósfera. Además, los científicos usarán el Hubble para descubrir por qué posee el tono rojizo más brillante después de Marte.

OPINION CIENTIFICA -2-

Sedna no es el décimo planeta del sistema solar. Numerosos medios de comunicación han cometido varios errores a la hora de describir el último descubrimiento de la NASA.

Entre otras cosas Sedna, un planetoide descubierto por astrónomos del Instituto Tecnológico de California ( Caltech) en cooperación con la NASA, no es un planeta ni tampoco, como se ha dicho, forma parte del cinturón de Kuiper.

El mismo equipo descubrió hace unos días otro planetoide, denominado 2004DW , y este si que forma parte del cinturón de Kuiper. De hecho, por su tamaño de 1600 km de diámetro, su descubrimiento habría sido una gran noticia sino fuera porque Sedna, a pesar de ser de un tamaño similar , tiene la particularidad de ser el primer planetoide situado más allá del cinturón de Kuiper, en una zona que hasta ahora era sólo intuida por la teoría y que se conoce como Nube de Oort.

Sedna está a más del doble de distancia que los objetos más lejanos de nuestro sistema conocidos hasta ahora y tres veces más lejos que Plutón. Por eso es noticia.

En nuestro sistema conocemos el cinturón de asteroides que se encuentra entre Marte y Júpiter, y un cinturón similar llamado Cinturón de Kuiper que se encuentra más allá de Plutón. De echo muchos astrónomos consideran que Plutón no es en realidad un planeta sino uno de los objetos que forman el Cinturón de Kuiper, ya que su tamaño es relativamente pequeño, su órbita es demasiado inclinada y a diferencia de los demás planetas sigue una trayectoría que hace que en ocasiones no sea el más alejado de la Tierra. Sedna es aún más pequeño que Plutón, su órbita también es muy inclinada, y su trayectoria es tan parabólica que sólo lo hemos detectado por casualidad, ya que dentro de unos 70 años volverá a alejarse de nuevo para no regresar y ser visible en las mismas condiciones en los próximos 10,500 años.

Ningún astrónomo calificaría a Sedna como planeta, y muchos dudan que Plutón lo sea, así que difícilmente se puede afirmar que Sedna es el décimo planeta de nuestro sistema. Se trata sólo de una exageración periodística.

Algunos Datos Sobre el Sistema Solar…

– El Sistema Solar está formado por una estrella central, el Sol, los cuerpos que le acompañan y el espacio que queda entre ellos.

– El Sol contiene el 99.85% de toda la materia en el Sistema Solar. Los planetas, los cuales están condensados del mismo material del que está formado el Sol, contienen sólo el 0.135% de la masa del sistema solar.

– Júpiter contiene más de dos veces la materia de todos los otros planetas juntos. Los satélites de los planetas, cometas, asteroides, meteoroides y el medio interplanetario constituyen el restante 0.015%.

– Los planetas terrestres son los cuatro más internos en el Sistema Solar: Mercurio, Venus, Tierra y Marte. Éstos son llamados terrestres porque tienen una superficie rocosa compacta, como la de la Tierra.

– Los planetas Venus, Tierra y Marte tienen atmósferas significantes, mientras que Mercurio casi no tiene.

– A Júpiter, Saturno, Urano y Neptuno se les conoce como los planetas Jovianos (relativos a Júpiter), puesto que son gigantescos comparados con la Tierra, y tienen naturaleza gaseosa como la de Júpiter. También son llamados los gigantes de gas, sin embargo, algunos de ellos tienen el centro sólido.

– Los asteroides son rocas más pequeñas que también giran, la mayoría entre Marte y Júpiter. Además, están los cometas que se acercan y se alejan mucho del Sol. Por su parte, los meteoritos son fragmentos de tierra extraterrestre que se encienden y se desintegran cuando entran a la atmósfera.

Resumen de la Vida de las Estrellas Evolucion Estelar y Muerte

Resumen de la Vida de las Estrellas y Su Evolución Estelar Hasta La Muerte

LA VIDA DE UNA ESTRELLA: Las estrellas tienen una fuente interna de energía. Pero, al igual que todo tipo de combustible, sus reservas son limitadas. A medida que consumen su suministro de energía las estrellas van cambiando y cuando se les acaba, mueren.

El tiempo de vida de las estrellas, aunque muy largo comparado con las escalas de tiempo humanas, es, por lo tanto, finito.

A medida que envejecen sufren profundos cambios en sus tamaños, colores y luminosidades, siempre como consecuencia de la disminución de sus reservas.

Para aumentar su expectativa de vida, la estrella lucha continuamente contra la fuerza gravitatoria que intenta contraerla. Las distintas etapas evolutivas son sucesiones de contracciones que terminan cuando la estrella comienza a quemar otros combustibles que mantenía en reserva y logra establecer una nueva situación de equilibrio.

Galaxias y estrellas del universo

El factor más importante en el desarrollo de una estrella es su masa inicial.

Las estrellas más masivas tienen mayores temperaturas centrales y, en consecuencia, producen energía y consumen combustible a un ritmo creciente.

Este hecho fue determinado observacionalmente y se llama relación masa-luminosidad.

Podría parecer que las estrellas más masivas, las que tienen más combustible, deberían tener vidas más largas.

Pero en realidad sucede exactamente lo contrario. Al igual que con el dinero o la comida, la duración del combustible estelar depende tanto de la cantidad disponible como del ritmo de consumo. Por ejemplo, la vida del Sol será de 10 mil millones de años.

Una estrella de masa 10 veces mayor tiene 10 veces más combustible, pero lo quema a un ritmo tan grande (de acuerdo a la relación masa-luminosidad) que termina de consumirlo en 30 millones de años.

En el otro extremo, una estrella de 0,1 M0 brillará durante 3 billones de años antes de morir.

¿Cómo se mide la masa, esa propiedad fundamental que determina completamente la estructura y evolución de una estrella?

El único método de determinación directa de masas es el estudio del movimiento de estrellas binarias. Las estrellas dobles o binarias están muy próximas entre sí y cada estrella gira alrededor del centro de gravedad del par.

Aplicando a estos sistemas las leyes de Newton es posible deducir su masa. Sin embargo, la masa de cada estrella del sistema se puede determinar sólo en el caso de que el sistema binario sea ecipsante (es decir cuando una de las estrellas eclipsa a la otra).

Estas mediciones, aunque pocas en número, son interesantes porque a partir de ellas se han podido establecer algunos resultados que dieron la clave para comprender la evolución estelar.

Una manera indirecta de determinar la masa estelar es usando la relación masa-luminosidad que pudo ser establecida cuando se desarrolló una de las herramientas más poderosas con que cuentan los astrofísicos, el diagrama R-R que consideraremos a continuación.

Se han observado estrellas muy masivas, hasta 120 M0, pero ¿hay una masa mínima para las estrellas? La respuesta a esta pregunta está todavía en estudio. Las estrellas de menor masa observadas son Ross 614B, de 0,08 M0 y Luyten 726-8B con 0,04 M0, pero la mayoría de las estrellas tienen masas de entre 0,3 y3 M0.

EL DIAGRAMA H-R  

En el año 1911 el astrónomo danés E. Hertzsprung comparó la magnitud absoluta y la luminosidad de estrellas pertenecientes a varios cúmulos.

Trazó la curva de variación de uno de estos parámetros en función del otro y observó que los puntos no estaban esparcidos al azar en el diagrama, sino que se distribuían a lo largo de una línea bien definida.

En 1913, el astrónomo norteamericano H. Russell llegó a la misma conclusión con datos de otras estrellas. Mostró empíricamente la existencia de una relación entre la luminosidad y temperatura estelares.

El diagranta resultante se llama diagrama Hertzprung-Russell (H-R), y está representado en la figura.

La posición de unaa estrella en el diagrama H-R depende de su estado de evolución, y por eso la estructura y la historia de nuestra galaxia se pueden estudiar con este instrumento básico.

Así como los botánicos pueden estimar la edad de un árbol a partir de la cantidad de anillos de su tronco, los astrónomos encuentran en el H-R la herramienta que les permite estimar la edad de una estrella.

Diagrama estelar E. Hertzsprung

El diagrama Herzprung-Russell. Cada estrella se representa según su magnitud absoluta, que mide su brillo intrínseco, y su tipo espectral, que refleja su color y su temperatura. Esta última aumenta hacia la izquierda

Un examen en el diagrama H-R de las estrellas con distancias conocidas muestra que no están distribuidas al azar, sino que muchas (entre ellas el Sol) están agrupadas en una banda angosta sobre la diagonal, llamada secuencia principal.

Otro grupo de estrellas, la rama de las gigantes, se extiende horizontalmente sobre la secuencia principal. Las estrellas con luminosidades mayores que las gigantes se llaman supergigantes, mientras las estrellas sobre la secuencia principal se llaman enanas.

Estudiando los sistemas binarios se pudo establecer que la luminosidad de una estrella de secuencia principal es proporcional a su masa elevada a la potencia 3,5. Es decir que una estrella 2 veces más masiva que el Sol será 11 veces más 1 luminosa.

Esta relación masa-luminosidad es una forma de estimar la masa de una estrella que no pertenece a un sistema binario a partir de su luminosidad, con la condición de que pertenezca a la secuencia principal, lo que se puede determinar, como veremos, con criterios espectroscópicos.

Las cantidades fundamentales que definen este diagrama se pueden medir con distintos parámetros, dándole así distintas formas. El H-R clásico usa dos cantidades: el tipo espectral (que es una determinación cualitativa de la temperatura) y la magnitud absoluta.

El tipo espectral

La única fuente de información sobre la naturaleza de las atmósferas estelares es el análisis de su espectro, del que se pueden hacer dos tipos de aproximaciones: cuantitativas y cualitativas.

Como hemos visto en el capítulo anterior, el análisis cuantitativo pernúte determinar los parámetros físicos que describen la atmósfera estelar. El análisis cualitativo descansa en la simple observación de que los espectros pueden agruparse en familias: esta clasificación espectral considera sólo la apariencia del espectro en el visible.

Según ella, las estrellas se ordenan en 7 clases principales (de acuerdo a su temperatura) a las que se designa con las letras O, B, A, F, G, K y M. Para tener en cuenta las diferencias de apariencia entre espectros de la misma clase fue necesario establecer una subdivisión decimal, y entonces el tipo espectral se representa por BO, B1, B2, …, B9, AO, A1…

La clasificación espectral se basa en la presencia o ausencia de líneas de ciertos elementos, lo que no refleja una composición química diferente de las atmósferas sino sólo las diferencias de temperatura atmosférica.

Así el H, que es el elemento más abundante del universo y del que todas las estrellas tienen casi la misma abundancia, predomina en las líneas espectrales de estrellas con temperaturas cercanas a lO.0000K, porque la excitación del átomo de H es máxima a esta temperatura.

En las atmósferas de las estrellas más calientes, de tipo espectral o, el H está casi todo ionizado y entonces no produce un espectro significativo de líneas de absorción.

En las atmósferas de estrellas frías (por ejemplo de tipo espectral K) los átomos de H son neutros (no ionizados) y prácticamente todos están en el estado fundamental, no excitado. El espectro de líneas así producido pertenece principalmente al rango ultravioleta, no observable desde la Tierra, mientras que las líneas de H observadas en el visible son muy débiles.

Las estrellas de tipo o que son las más calientes, muestran en sus espectros líneas de He ionizado, pero no líneas de H. Yendo a tipo BO hasta AO la intensidad de las líneas de He también decrece cuando las condiciones de temperatura no son favorables y la de los metales (elementos más pesados que el He) crece para tipos espectrales correspondientes a temperaturas más bajas.

En las estrellas más frías, las líneas de metales neutros se hacen más y más intensas y aparecen bandas características de moléculas.

Las clasificación en “gigantes” y “enanas”, tiene sentido sólo para un dado tipo espectral. Si se consideran dos estrellas del mismo tipo espectral, una de la secuencia principal y la otra de la rama de las gigantes, las dos muestran gran diferencia en luminosidad.

Como son del mismo tipo espectral, tienen la misma temperatura.

La diferencia de luminosidad se origina entonces en la diferencia de tamaño. Comparemos, por ejemplo, dos estrellas de clase M. La luminosidad de la gigante es 10.000 veces mayor que la de la enana (o de secuencia principal).

Por lo tanto su área superficial debe ser 10.000 veces mayor y entonces el radio de la gigante será 100 veces mayor que el de la enana. (La ley de Stefan-Boltzmann dice que:  L es proporcional a R2.T4).

Las estrellas que aparecen por debajo de la secuencia principal son las enanas blancas, cuyos radios son muy pequeños.

NACE UNA ESTRELLA

Como ya hemos dicho la vida estelar es una sucesión de contracciones. La primera gran contracción es la de la nube interestelar que crea la estrella. La cuna de las nuevas generaciones de estrellas en nuestra galaxia parece estar en las nubes interestelares de átomos y moléculas. La densidad promedio del medio interestelar en la galaxia es de cerca de un átomo por cm3.

La formación de una estrella requiere una densidad 1024 veces mayor. El único mecanismo capaz de actuar a grandes distancias y de originar tal factor de compresión es la fuerza de la gravedad, que juega aquí un papel esencial.

Por otro lado el movimiento térmico de las moléculas y el movimiento turbulento del gas interestelar producen una presión que impide una contracción abrupta impuesta por el campo gravitatorio.

Cuando la gravedad rompe este equilibrio se puede formar una estrella o un grupo de estrellas. En términos muy generales, esto sucede cuando la masa de la nube sobrepasa una cierta masa crítica.

Una nube colapsará si, por ejemplo, su masa aumenta por colisiones con nubes más pequeñas, pero su temperatura promedio sólo aumenta ligeramente, o si la masa de una nube permanece constante, pero su temperatura disminuye, de manera que la presión no puede frenar el colapso. Estas dos situaciones podrían ocurrir simultáneamente.

Los cálculos indican que en nubes con masas mayores que unas 2.000 M0 la gravedad gana sobre las fuerzas de presión. La nube se hace gravitatoriamente inestable y se contrae más y más rápido. Como la masa de una estrella típica es unas 1.000 veces menor, hay que concluir que la nube se fragmenta.

Los complejos moleculares gigantes muy fríos, con temperaturas de unos 10 a 90 0K, son los lugares reconocidos de formación estelar. Sus masas son muy grandes; alcanzan hasta 1.000.000 M0. El polvo de la nube oculta las nuevas estrellas al astrónomo óptico, pero éstas se pueden detectar en el infrarrojo.

Hay un tipo de nubes moleculares pequeñas, llamadas “glóbulos de Bok”, algunos de los cuales se han observado en contracción gravitatoria. Su velocidad de colapso es de aproximadamente medio km/seg, y su radio es del orden de 2 años luz.

Si nada frena su colapso, estos glóbulos se condensaran en estrellas dentro de 1.000.000 años, lo cual, en términos de la vida total de la estrella, es un período muy breve.

Estos objetos aislados (que se ven como zonas negras contra el fondo de la Vía Láctea) ilustran los modelos teóricos de formación estelar. La región central, altamente comprimida y mucho más densa que la periferia, atrae a la materia que la rodea. La temperatura aumenta progresivamente y la presión se hace suficientemente alta como para parar momentáneamente el colapso del núcleo.

Poco a poco toda la materia en la envoltura cae hacia la protoestrella. Cuando su temperatura pasa los 10 millones de °K, comienzan las reacciones termonucleares, es decir el autoabastecimiento de energía.

En este momento la estrella entra en la secuencia principal y comienza su vida normal. En las galaxias espirales, como la nuestra, las estrellas se forman en los brazos espirales, donde se encuentran el polvo y el gas interestelares.

La observación de estrellas en formación o estrellas muy jóvenes junto con su ambiente provee importantes contribuciones a la teoría de formación estelar. En el esquema presentado la formación de estrellas está directamente relacionada a la evolución de las nubes moleculares, pero aunque es el caso más estudiado, no es el único. Una forma de aprender más sobre formación estelar es investigar galaxias vecinas.

La formación estelar en la Gran Nube de Magallanes presenta algunos problemas para este esquema: en una región llamada 30 Dorado se observan unas 50 estrellas O y B asociadas con una nube de 50 millones de M0 de hidrógeno neutro.

No hay polvo en esta región ni se ha detectado ninguna nube molecular. Esto muestra claramente que la teoría de formación estelar basada en nubes moleculares no explica todos los nacimientos estelares. Este es un tema de gran actualidad en astrofísica que todavía no está resuelto.

La protoestrella entra al diagrama H-R por la derecha (la parte roja o fría), en el momento en que la temperatura central se hace suficientemente alta (recordemos que bajo compresión la temperatura de un gas aumenta) y la estrella comienza a convertir H en He.

La posición inicial de la estrella en el H-R define la llamada secuencia principal de edad cero (ZAMs). Cuanto más masiva nace una estrella más arriba comienza su vida de secuencia principal y más luminosa es.

La posición de la ZAMS sobre el diagrama H-R depende de las composiciones químicas de las estrellas que se forman. La abundancia de metales (elementos más pesados que el He) aumenta de generación a generación, a medida que las estrellas más viejas evolucionan y enriquecen el medio interestelar con elementos pesados.

En consecuencia la ZAMS se desplaza cada vez más hacia la derecha sobre el H-R a medida que la galaxia envejece, y este corrimiento permite estimar la edad de la galaxia.

La secuencia principal representa la primera pausa y la más larga en la inexorable contracción de la estrella. Durante este intervalo las estrellas son hornos nucleares estables y a esta estabilidad debemos nuestras propias vidas, ya que el Sol se encuentra en esta etapa. A medida que la estrella envejece se hace un poco más brillante, se expande y se calienta. Se mueve lentamente hacia arriba y a la izquierda de su posición inicial ZAMS.

Evolución de las Estrellas

Para una persona, incluso para una toda generación de seres humanos resultaimposible observar una única estrella para descubrir todo lo que le sucede en el transcurso de su existencia, ya que la vida estelar media es del orden de los miles de millones de años.

Identificar y ordenar las distintas etapas en la vida de las estrellas, puede compararse con obtener una fotografía en conjunto de todos los habitantes de una ciudad; en la foto se tendría una visión de las posibles fases o estadios de la vida humana: habrían recién nacidos, niños, adultos, ancianos, etc.

Al analizar la imagen obtenida de cada persona y clasificándola de acuerdo a cierto carácter, podría establecerse el ciclo de la vida humana con bastante precisión; se podría estimar el ciclo completo, captado en un único instante de tiempo en la fotografía de conjunto.

Debido a la cantidad y a la gran variedad de estrellas existentes, se logra tener una idea de su evolución observando estrellas en las diversas fases (o etapas) de su existencia: desde su formación hasta su desaparición.

Al respecto se debe tener en cuenta que, efectivamente, se han visto desaparecer estrellas (por ejemplo, la supernova de 1987) como también se han hallado evidencias de la formación de otras nuevas (como en el profundo interior de la Nebulosa de Orión, por ejemplo).

Ya mencionamos que en el estudio de las estrellas, se utilizan parámetros físicos como la temperatura o la masa, entre otros. Pero debe señalarse también otra de las técnicas usuales en Astronomía, denominada Espectroscopía.

La luz estelar se descompone en su gama intrínseca de colores, llamándose «espectro» al resultado de esa descomposición cromática (la palabra espectro que significa «aparición», fue introducida por I. Newton, quien fue el primero es descubrir el fenómeno). En el espectro de las estrellas, además de los colores, aparecen ciertas líneas o rayas bien nítidas.

Esas líneas o mejor dicho, cada una de las series de líneas, se corresponde, según su posición en el espectro, por una parte con la T de la superficie estelar y por otra, con los elementos químicos presentes en la atmósfera de la estrella.

Diferentes elementos químicos absorben o emiten luz según la temperatura a que se encuentren; de esta manera la presencia (o ausencia) de ciertos elementos en la atmósfera de la estrella, indica su temperatura.

Los astrónomos han diseñado un sistema de clasificación de estrellas, de acuerdo a las características que presentan sus respectivos espectros. En ese esquema, las estrella s se ordenan desde las más calientes a las más frías, en tipos espectrales que se identifican según el siguiente patrón de letras: O B A F G K M

Las estrellas más calientes (O) tienen temperaturas de unos 40.000 ºC; en el otro extremo, las más frías (M), alcanzan sólo 2.500 ºC; en este esquema, el Sol, con una temperatura superficial de 6.000 ºC, resulta una estrella de tipo espectral intermedio entre las más calientes y las más frías: es una estrella tipo G.

Este sistema de clasificación se corresponde además con los colores de las estrellas: las de tipo (O) son azules-violáceas y las de tipo M, rojas; el Sol (tipo G) es amarillo. Los colores observados también se relacionan con la temperatura, ya que las estrellas más calientes emiten la mayor parte de su luz en la zona azul del espectro electromagnético, mientras que las más frías lo hacen en la zona roja.

En las estrellas más calientes, las distintas capas interiores deben vencer mayor atracción gravitacional que las capas más externas, y por lo tanto la presión del gas debe ser mayor para mantener el equilibrio; como consecuencia, mayor es la temperatura interna.

Implica que la estrella debe «quemar» combustible a gran velocidad, lo que produce una ingente cantidad de energía. Esta clase de estrellas sólo puede tener una vida limitada: unos pocos millones de años.

Las estrellas frías (generalmente pequeñas y con una fuerza de gravedad débil) sólo producen una modesta cantidad de energía; en consecuencia aparecen brillando tenuemente. Así, estas estrellas pueden existir como tales sólo algunas decenas de miles de millones de años.

En la siguiente Tabla se indican la temperatura característica (en grados centígrados, ºC) de cada tipo espectral (T.E.).

Tipo EspectralTemperatura (ºC)
O40.000
B25.000
A11.000
F7.600
G6.000
K5.100
M2.500

Ahora bien, la temperatura y consecuentemente, la cantidad de energía que emite una estrella, depende de su masa: cuanto mayor es su masa, mayor es la temperatura y por consiguiente mayor es la cantidad de energía que irradia. Pero hasta que en su núcleola temperatura no alcance un valor de algunos millones de grados, no se producirán transformaciones nucleares (del tipo de transmutación de hidrógeno en helio) y, por lo tanto, mientras eso no ocurra, la cantidad de energía que emiten será bastante pequeña (objetos de esta clase son denominados protoestrellas). Cuando se inicia la vida de una estrella, el calor de su interior procede de la energía gravitacional, es decir, de la nube de gas que se comprime sobre sí misma (colapso).

La etapa de protoestrella se corresponde con grandes inestabilidades en su estructura interna, las que acaban cuando la temperatura de su núcleo alcanza los 10 millones de grados, iniciándose entonces la transmutación del hidrógeno en helio y, por lo tanto, la generación de energía desde su núcleo: en esa etapa el astro se considera ya una estrella.

Las estrellas contienen suficiente hidrógeno como para que la fusión en su núcleo dure un largo tiempo, aunque no para siempre. La velocidad de combustión del hidrógeno depende de la masa, o sea de la cantidad de materia que compone la estrella.

Llegará un momento en que se acabará todo el hidrógeno disponible y sólo quede helio. En esas condiciones la estrella sufrirá diversos tipos de transformaciones: aumentará de tamaño y el helio acumulado se transmutará en elementos más pesados como el carbono, el nitrógeno, el oxígeno, etc, mediante otras reacciones nucleares. Entonces la estrella dejará de ser estable: sufrirá cambios de volumen y expulsará al espacio parte de su material. Las capas mas externas serán las primeras en alejarse.

Después de cinco a diez mil millones de años, una estrella como el Sol evoluciona a un estado denominado de gigante roja: un objeto de gran tamaño (de dimensiones mayores que las originales), mucho más fría y de una coloración rojiza. Su temperatura superficial disminuye y por lo tanto toma color rojizo. La gigante roja brillará hasta que su núcleo genere cada vez menos energía y calor. En esas condiciones la estrella empieza a contraerse: disminuye su diámetro y al mismo tiempo aumenta su temperatura superficial.

Si la estrella, al formarse, tiene una masa cuarenta veces mayor que la masa del Sol, pasará al estado de gigante roja en sólo unas pocas decenas de millones de años. Luego irá disminuyendo de tamaño y perderá rápidamente una cantidad significativa de su masa expulsando materia hacia el espacio.

Otra modo de expulsar materia es lentamente, a través de fuertes vientos estelares; de esta forma los astrónomos han observado que se forma una envoltura gaseosa que circunda la estrella y que puede llegar a ser bastante densa; si ese proceso continúa puede dar lugar a un objeto denominado nebulosa planetaria.

Con el nombre de nebulosas planetarias, se define a una estrella muy caliente y pequeña, rodeada por una esfera de gas fluorescente en lenta expansión; algunas fotografiadas con potentes telescopios, muestran que esas nebulosas tienen forma de anillo, razón por la cual se le ha dado ese nombre, ya que su aspecto observada en el telescopio es similar al disco de un planeta.

Finalmente, hacia el término de su existencia, esas estrellas se convierten en objetos de pequeñas dimensiones (del tamaño de la Tierra o aún menor), calientes y de color blanco: son las enanas blancas. La materia de estos objetos se halla extremadamente comprimida: 1 centímetro cúbico de la misma puede pesar varias toneladas. En otras palabras, en un volumen similar al de nuestro planeta se halla condensada la misma cantidad de materia que hay en un volumen comparable al del Sol.

Pero no todas las estrellas acaban como enanas blancas. Cada estrella termina su vida de un modo que depende mucho de su masa inicial, aquella que tuvo cuando comenzó su existencia. Una estrella de gran masa (varias veces la del Sol) y que no pierde mucha materia durante su evolución termina su vida en una explosión muy violenta que se denomina supernova; cuando esto ocurre la estrella brillará tanto como toda la galaxia en la cual se encuentra, aunque su brillo será efímero: la estrella ya está condenada a extinguirse como tal.

En el siguiente cuadro se muestran los distintos estados evolutivos finales para estrellas de diferente masa inicial (M). La masa está expresada en masas solares (Msol = 1).

Masa InicialEstado evolutivo final
M < 0,01Planeta
0,01 < M < 0,08Enana marrón
0,08 < M < 12Enana blanca
12 < M < 40Supernova + estrella de neutrones
40 < MSupernova + agujero negro

Distintos estados evolutivos finales para estrellas de diferente masa inicial <M>. La masa está expresada en masas solares (Msol = 1).

Los restos gaseosos de una supernova (que se denominan remanentes) se esparcen cubriendo una extensa zona del espacio, formando una nube en permanente expansión que se aleja a varios miles de kilómetros por segundo y cuyas características son bastante peculiares (por ejemplo, aparecen campos magnéticos sumamente intensos).

El gas que compone un remanente de supernova es bastante diferente al gas de la nube que formó a la estrella. La nube de origen estuvo compuesta casi exclusivamente por helio y helio, mientras que en el remanente existe una gran variedad de elementos químicos, restos de la fusión nuclear que ocurriera en la estrella desaparecida y también otros formados durante la explosión que se produce en la fase de supernova.

En el siguiente cuadro se muestran algunas estrellas con sus características físicas más importantes.

Estrella Magnitud
aparente (m)
Magnitud
Absoluta
Temperatura
(en ºC)
Radio
(en radios solares)
Características
Centauri 0,6-5,021.00011gigante
Aurigae 0,1-0,15.50012gigante
Orion 0,4-5,93.100290supergigante
Scorpi 0,9-4,73.100480supergigante
Sirio B 8,711,57.5000,054enana blanca

 De este modo se recicla el material estelar: las estrellas que se formen con el gas expulsado en una explosión de supernova, serán menos ricas en hidrógeno y helio, pero más ricas en los elementos químicos más pesados, que las estrellas de su generación anterior.

Pero sucede que luego de la explosión de una supernova, lo que queda del astro, además de sus remanentes, es un cuerpo de apenas algunos kilómetros de diámetro, conformado por él núcleo de la estrella original.

En la explosión de supernova se produce un catastrófico colapso de la estrella; debido a su gran masa, la enorme fuerza de gravedad comprime la materia con mucha más intensidad que en el proceso que genera a una enana blanca .

En estas condiciones toda la masa de una estrella ordinaria (como el Sol) se comprime en una pequeña esfera de apenas 15 Km. de diámetro; a estos diminutos astros se los ha bautizado estrellas de neutrones (su denominación se debe a que se trata de objetos compuestos básicamente de neutrones). La materia en estos objetos se ha comprimido a tal extremo y su densidad alcanza a valores tan grandes, que los electrones se combinan con los protones dando lugar a la formación de nuevos neutrones.

evolucion estelar desde la nube de gas hasta agujero negro

Fuente Consultada: Astronomía Elemental de Alejandro Feinstein y Notas Celestes de Carmen Nuñez

SÍNTESIS DEL TEMA…

Ningún astrónomo ha podido contemplar, hasta ahora, el interior de las estrellas, pero todos los científicos conocen ya los fenómenos que se producen en el centro de éstas y en los estratos que lo cubren hasta llegar a la superficie visible.

Las estrellas son enormes esferas de gas, de un diámetro medio, equivalente a cien veces el de la Tierra. El gas que las compone contiene, aproximadamente, un 80 % de hidrógeno y un 18 % de helio. La mayor parte de los elementos se hallan presentes en ellas, aunque en cantidades insignificantes.

La superficie de las estrellas está incandescente: su temperatura oscila, según el tipo de estrella, entre miles y decenas de millares de grados centígrados. Pero, a medida que se penetra en su interior, esa temperatura va haciéndose cada vez más alta, hasta alcanzar, en el centro, decenas de millones de grados, lo cual pone a los átomos en un estado de «agitación» tan violenta, que los lleva a chocar entre sí, perdiendo electrones y formando iones (átomos que han perdido, por lo menos, uno de sus electrones). El gas de los iones y electrones se ve sometido a presiones tan altas, que en ocasiones alcanza una densidad miles de veces superior a la del agua.

¿Qué es lo que comprime el gas en el interior de las estrellas? El peso de los estratos superiores. Todo el mundo ha oído hablar de las elevadas presiones existentes en el fondo del mar o en el centro de la Tierra (éstas, particularmente, alcanzan cifras asombrosas). Pero, en el centro de una estrella, a una profundidad cien veces mayor, las presiones son tan enormes, que bastan para comprimir toda la materia estelar en un reducidísimo espacio. Los átomos, chocando entre sí, perdiendo y, a veces, adquiriendo electrones, emiten una gran cantidad de luz, comparada con la cual la superficie del Sol parecería oscura.

Llegados a este punto, conviene explicar que la luz ejerce presión sobre los cuerpos que ilumina: poca presión, cuando su intensidad es débil, y mucha, cuando es fuerte. Esta propiedad de la luz se encuentra, naturalmente, fuera de los límites de nuestra experiencia, ya que la Tierra, por fortuna, nunca se ve expuesta a radiaciones luminosas de tanta intensidad. Pero éstas son lo suficientemente intensas, en el interior de las estrellas, como para ejercer, sobre los estratos superficiales, presiones que llegan al millón de toneladas por centímetro cuadrado. Es decir: equilibran, en parte, la presión hacia el interior de estos estratos y evitan que la estrella se convierta en un pequeño y densísimo núcleo.

A las temperaturas descritas, los átomos chocan en forma tan violenta que, cuando los núcleos de hidrógeno entran en colisión entre si, o con núcleos de otros elementos (carbono y nitrógeno), se funden y originan núcleos de helio. Este proceso de fusión de núcleos se llama «-reacción termonuclear», lo que significa «reacción nuclear provocada por la temperatura». Cada vez que se forma un nuevo gramo de helio, se libera una energía equivalente a la que se obtendría quemando media tonelada de carbón. ¡Y se forman millones de toneladas de helio por segundo!

La fusión del hidrógeno es, pues, la reacción que mantiene el calor de las estrellas. Como la mayor parte de éstas contiene casi exclusivamente hidrógeno, y basta consumir un poco para obtener una gran cantidad de energía, se comprende que las estrellas puedan brillar ininterrumpidamente durante miles de millones de años.

La zona del interior de las estrellas en las que se produce ,La energía termonuclear es pequeña: muy inferior a una décima parte del volumen total de la estrella. Lo cual dificulta notablemente la llegada del calor a la superficie.

Una parte de éste se transmite por radiación (es decir: la energía térmica producida en el núcleo central es enviada, bajo forma de radiaciones electromagnéticas, a los átomos exteriores, que la absorben y la envían, a su vez, hacia átomos más exteriores, hasta que así, de átomo en átomo, la energía llega a la superficie de la estrella, irradiándose en el espacio). Pero la mayor parte de la energía térmica es transportada a la superficie por la circulación de la materia estelar, que se halla en continuo movimiento: sube caliente del centro, se enfría en la superficie, por cesión de calor, y vuelve fría al centro, en busca de más calor. Esta forma de transporte se llama transporte por «convección».

Los movimientos convectivos de la materia estelar provocan importantes fenómenos magnéticos, que repercuten en la superficie, produciendo maravillosas y fantasmagóricas manifestaciones: fuentes de gas incandescente, gigantescas protuberancias de gas luminoso coloreado, y manchas oscuras de materia fría, rodeadas por campos magnéticos, de extensión .e intensidad enormes. De esta naturaleza son las famosas manchas solares descubiertas por Galileo, que siempre han despertado gran interés entre los investigadores, por su influencia sobre la meteorología de nuestro planeta, sobre las transmisiones electromagnéticas, e incluso, al parecer, sobre algunos fenómenos biológicos.

La existencia de una estrella depende, por tanto, del perfecto equilibrio entre los mecanismos que producen la energía en su interior y los encargados de transportarla a la superficie. Cuando este equilibrio es inestable, las estrellas experimentan variaciones (estrellas variables); cuando, en cambio, se altera completamente, puede producirse uno de los más grandiosos fenómenos cósmicos: la explosión de una estrella, de lo cual nos ocuparemos en otro artículo.

Otros Temas Tratados en Este Sitio

Big Bang

Origen de la Vida

Origen del Hombre

Teoría de la Evolución

Muerte de una Estrella Los Pulsares Enana Blanca

Peso de Una Estrella de Neutrones

La Vida del Sol Tiempo de Vida Hidrogeno del Sol

La Luna Muestra Siempre la Misma Cara

Origen del aire que respiramos El Oxigeno

Agujeros Negros Origen, Formación y Características Breve y Fácil

Origen y Características de los Agujeros Negros
Muerte de Estrellas

Desde hace mucho tiempo uno de los temas predilectos de la ciencia-ficción han sido los agujeros negros, y en estrecha relación con ellos, el viaje a través del tiempo.

El concepto de agujero negro fue popularizado por el físico británico Stephen Hawking, de la Universidad de Cambridge, quien describe con ese nombre a una región del Universo de la que no puede salir ningún objeto una vez que entró allí.

Con esto en mente, sería interesante preguntarse qué le sucedería a alguien en el hipotético caso de encontrarse en las cercanías de una de estas regiones, qué sensaciones tendría y si la realidad que lo rodea sería igual a la que nos es familiar.

Hawking Físico astronomo

Para el físico Stephen Hawking y para la mayoría de los científicos un agujero negro es una región del Universo de la que no puede salir ningún objeto una vez que entró allí.

Agujeros negros: Como hemos visto en el nacimiento de las estrellas, una vez que el H y el He, el combustible termonuclear se han consumido en el núcleo de la estrella, sobreviene un colapso gravitatorio.

La evolución estelar culmina con la formación de objetos extremad mente compactos como enanas blancas o estrellas de neutrones cuando masa de la estrella no excede las 3 Mo (masa del Sol).

Si la masa es mayor, la compresión gravitatoria ya no se puede compensar con las fuerzas de repulsión de 1 electrones o neutrones degenerados y continúa tirando materia sobre la estrella: se forman los agujeros negros. En efecto, cuando los neutrones entre en colapso no existe ningún mecanismo conocido que  permita detener contracción.

Esta continúa indefinidamente hasta que la estrella desaparce, su volumen se anula y la densidad de materia se hace infinita. ¿Cómo entender una “estrella” más pequeña que un punto y con semejante densidad de materia en su interior?

Si una estrella se contrae, el campo gravitatorio en su superficie aumenta, aunque su masa permanezca constante, porque la superficie está más cerca del centro. Entonces, para una estrella de neutrones de la misma masa que el Sol la velocidad de escape será de unos 200.000 km/seg. Cuanto mayor es la velocidad de escape de un cuerpo más difícil es que algo pueda escapa de él.

En cierto momento la velocidad de escape llega al limite de 300.000 km/s. Esta es la velocidad de las ondas electromagnéticas en particular de la luz que será entonces lo único que puede escapar de estos objetos. Ya hemos mencionado que no es posible superar esta velocidad y por lo tanto cuando la velocidad de escape de una estrella sobrepasa este limite, nada podrá escapar de ella. Los objetos con esta propiedad se llaman agujero negros.

Desde 1915, con la teoría de la relatividad general de Einstein se sabía que la gravedad generada por un cuerpo masivo deforma el espacio, creando una especie de barrera; cuanto más masivo es el cuerpo, mayor es la deformación que provoca. Los agujeros negros se caracterizan por una barrera  profunda que nada puede escapar de ellos, ni materia ni radiación; así t da la materia que cae dentro de esta barrera desaparece del universo observable.

Las propiedades físicas de estos objetos son tan impresionantes que por mucho tiempo quitaron credibilidad a la teoría.

Esta predice la existencia de agujeros negros de todos los tamaños y masas: los miniagujeros negros tendrían la masa de una montaña concentrada en el tamaño de una partícula; un agujero negro de 1cm. de radio sería tan masivo como la Tierra; los agujeros negros estelares tendrían masas comparables a las de las estrellas dentro de un radio de pocos kilómetros; finalmente, los agujeros negros gigantes tendrían una masa equivalente a varios cientos de millones de estrellas dentro de un radio comparable al del sistema solar.

Una forma de detectar agujeros negros sería a través de ondas gravitatorias. Estas ondas son para la gravedad lo que la luz es para el campo electromagnético. Sin embargo la tecnología actual no permite todavía esta posibilidad. El colapso de una estrella o la caída de un cuerpo masivo sobre un agujero negro originarían la emisión de ondas gravitatorias que podrían ser detectables desde la Tierra con antenas suficientemente sensibles.

 Aunque estas tremendas concentraciones de materia no se han observado todavía directamente hay fuerte evidencia de la existencia de estos objetos. Los astrofísicos comenzaron a interesarse activamente en los agujeros negros en la década del 60, cuando se descubrieron fenómenos sumamente energéticos.

Las galaxias superactivas, como las Seyferts, cuásares y objetos BL Lacertae emiten una cantidad de energía mucho mayor que una galaxia normal, en todas las longitudes de onda. Todos estos violentos fenómenos parecen asociados con cuerpos compactos muy masivos: estrellas de neutrones o agujeros negros estelares en el caso de binarias X, estrellas supermasivas o agujeros negros gigantes en los núcleos galácticos activos.

Las aplicaciones más importantes de los agujeros negros a la astrofísica conciernen a los núcleos activos de galaxias y cuásares. Los efectos de las enormes energías involucradas allí podrían ser sumamente interesantes y podrían permitir explicar fenómenos que todavía no se comprenden.

Fuente Consultada:Notas Celestes de Carmen Nuñez

GRANDES HITOS EN LA HISTORIA DE LOS AGUJEROS NEGROS
1783 El astrónomo británico John Michell señala que una estrella suficientemente masiva y compacta tendría un campo gravitatorio tan grande que la luz no podría escapar.

1915 Albert Einstein dio a conocer su teoría de la gravitación, conocida como Teoría General de la Relatividad.

1919 Arthur Eddington comprobó la deflexión de la luz de las estrellas al pasar cerca del Sol.

1928 S. Chandrasekhar calculó el tamaño de una estrella que fuera capaz de soportar su propia gravedad, una vez  consumido todo si combustible nuclear. El resultado fue que una estrella de masa aproximadamente una vez y media la del Sol nc podría soportar su propia gravedad. Se le otorgó el Premio Nobel 1983.

1939 R. Opphenheimer explice qué le sucede a una estrella qué colapsa, de acuerdo con la Teoría de la Relatividad General.

1963 M. Schmidt identifica un quasar desde el observatorio de Monte Palomar.

1965 – 1970 R. Penrose y S, Hawking demuestran que debe haber una singularidad, de densidad y curvatura del espacio-tiempo infinitas, dentro de un agujero negro.

agujero negro

En el interior de un agujero negro, el retorcimiento del tiempo y el espacio aumentan hasta el infinito.
A esto los físicos llaman singularidad.

■ Un rayo de luz se curva al pasar cerca de un objeto masivo ya que está curvado el espacio que atraviesa. Si el rayo pasa sucesivamente por varios cuerpos su trayectoria se curvará hasta que el rayo quede girando en círculo, del que no puede escapar. Este es el efecto gravitatorio de los agujeros negros.

■ Un agujero negro es una zona del universo con una gravedad tan enorme que ni el tiempo puede salir de él.

■ Los pulsares y los quasars proporcionan información complementaria sobre la ubicación de los agujeros negros.

■ Detectar un agujero negro no es fácil. Se los descubre por la poderosa emisión de rayos X que los caracteriza.
Si un astronauta penetrara en un agujero negro no tendría forma de vivir. Debido a la intensísima fuerza gravitoria nos estiraríamos como un fideo hasta despedazarnos.

■ En el interior de un agujero negro el espacio y el tiempo aumentan hasta lo, infinito.

■ Se estima que el número de agujeros negros en el Universo es muy superior al número de estrellas visibles y son de mayores dimensiones que el Sol.

■ Existen varios agujeros negros identificados, uno se halla en nuestra Via Láctea: el Cygnus X-1.

AMPLIACIÓN DEL TEMA:
Fuente: Magazine Enciclopedia Popular: Los Agujeros Negros

Hagamos un ejercicio mental e imaginemos por un momento que somos intrépidos astronautas viajando al interior de un agujero negro…

Repasemos algunas ideas importantes. Los físicos saben desde hace mucho que un rayo de luz se curva al pasar cerca de un objeto masivo ya que está curvado el espacio que atraviesa. Pero ¿qué sucede si este rayo pasa sucesivamente cerca de varios cuerpos?.

Cada vez su trayectoria se curvará un poco más hasta que finalmente el rayo estará girando en círculo, del que no podrá escapar. Este efecto gravitatorio se manifiesta en los agujeros negros, donde la atracción es tan fuerte que nada, ni siquiera la luz, puede escapar de él una vez que entró.

La gravitación distorsiona además del espacio, el tiempo. Veamos qué sucede en la superficie de un agujero negro, el horizonte de sucesos, que coincide con los caminos de los rayos luminosos que están justo a punto de escapar, pero no lo consiguen.

DONDE EL TIEMPO SE DETUVO
Según la Teoría de la Relatividad, el tiempo para alguien que esté en una estrella será distinto al de otra persona lejana, debido al campo gravitatorio de esa estrella. Supongamos que nosotros, astronautas, estamos situados en la superficie de una estrella que colapsa, y enviamos una señal por segundo a la nave espacial que está orbitando a nuestro alrededor.

Son las 11:00 según nuestro reloj y la estrella empieza a reducirse hasta adquirir untamaño tal que el campo gravitatorio es tan intenso que nada puede escapar y nuestras señales ya no alcanzan la nave.

Desde ella, al acercarse las 11:00, nuestros compañeros astronautas medirían intervalos entre las señales sucesivas cada vez mayores, pero este efecto sería muy pequeño antes de las 10:59:59. Sin embargo, tendrían que esperar eternamente la señal de las 11:00. La distorsión del tiempo es aquí tan tremenda que el intervalo entre la llegada de ondas sucesivas a la nave se hace infinito y por eso la luz de la estrella llegaría cada vez más roja y más débil.

El tiempo, desde nuestro punto de vista como astronautas sobre la superficie de la estrella, se ha detenido. Llegaría un punto en que la estrella sería tan oscura que ya no podría verse desde la nave, quedando sólo un agujero negro en el espacio.

Pero como astronautas, tenemos un problema más angustiante.

La gravedad se hace más débil cuanto más nos alejamos de la estrella, es decir, varía rápidamente con la distancia. Por lo tanto, la fuerza gravitatoria sobre nuestros pies es siempre mayor que sobre nuestra cabeza. Esto significa que debido a la diferencia de fuerzas, nos estiraríamos como un fideo o, peor aún, nos despedazaríamos antes de la formación del horizonte de sucesos (a diferencia de lo que sucede en la Tierra, donde la gravedad para nosotros prácticamente no varía con la altura). Este experimento no es, por ahora, recomendable.

¿Qué ocurre con la materia dentro del agujero negro? Las teorías de Stephen Hawking y Roger Penrose, de la Universidad de Oxford aseguran que en el interior el retorcimiento del espacio y del tiempo aumentan hasta el infinito, lo que los físicos llaman una singularidad. Si una estrella esférica se encogiera hasta alcanzar el radio cero, ya no tendría diámetro, y toda su masa se concentraría en un punto sin extensión. ¿Qué sucede si la materia no puede salir del agujero?.

Sólo caben dos respuestas: o deja de existir o viaja a otra parte. Esta última posibilidad dio pie a la teoría del agujero de gusano: al caer en el agujero podríamos salir en otra región de Universo. Para desgracia de los novelistas de ciencia-ficción, esta posibilidad no posee gran aceptación científica hasta ahora.

¿ALGUIEN HA VISTO UN AGUJERO NEGRO?
Dado que se conoce muy poco acerca de estos huecos en el espacio, su estudio comenzó a desarrollarse mediante modelos matemáticos, aun antes de que hubiese evidencia de su existencia a través de observaciones. Pero, ¿cómo podemos creer en objetos cuya existencia se basa sólo en cálculos?.

La lista de evidencias comienza en 1963, cuando desde el observatorio de Monte Palomar en California, se midió el corrimiento al rojo de un objeto parecido a una estrella en dirección a una fuente de ondas de radio. Este corrimiento era muy grande, por lo que se pensó que se debía a la expansión del Universo y, por lo tanto, el objeto estaba muy lejos. Para ser visible, este objeto debería ser muy brillante y emitir una enorme cantidad de energía. A ellos se los llamó quasars (quasi-strange objects), y podrían proporcionar evidencia acerca de la existencia de los agujeros negros.

Otros candidatos para darnos información sobre los agujeros negros son los pulsares, que emiten ondas de radio en forma de pulso debido a la compleja interacción entre sus campos magnéticos y el material intergaláctico. También las estrellas de neutrones, objetos muy densos, podrían colapsar para convertirse en agujeros negros.

Detectar un agujero negro no es tarea fácil. La forma más utilizada está basada en el hecho de que estos objetos son fuentes emisoras de rayos X. Esto se relaciona con los sistemas binarios, formados por una estrella y un agujero negro. La explicación para este hecho es que de alguna forma se está perdiendo materia de la superficie de la estrella visible.

Como en una pareja de baile en una habitación pintada de negro donde la chica está vestida de blanco y el chico de negro, muchas veces se han observado sistemas en los que sólo hay una estrella visible girando alrededor de algún compañero invisible. Vemos girar a la chica, aunque no podamos distinguir a su pareja. Cuando la materia va cayendo en este compañero comienza a girar como una espiral y adquiere gran temperatura, emitiendo rayos X. Además, el agujero negro debe ser pequeño.

Actualmente se han identificado varios agujeros negros: uno de ellos es el caso de Cygnus X-l en nuestra galaxia, y otros en dos galaxias llamadas Nubes de Magallanes. Sin embargo, el número de agujeros negros se estima que es muy superior, pudiendo ser incluso mayor al de estrellas visibles y de mayores dimensiones que el Sol.

Formacion de una Estrella de Neutrones y Sus Caracteristicas

Formacion de una Estrella de Neutrones y Sus Caracteristicas

Ante todo definimos una estrella, gran cuerpo celeste compuesto de gases calientes que emiten radiación electromagnética, en especial luz, como resultado de las reacciones nucleares que tienen lugar en su interior.

Por ejemplo el Sol es una estrella. El número de estrellas observables a simple vista desde la Tierra se ha calculado en un total de 8.000, la mitad en el hemisferio norte celeste y la otra mitad en el sur. Durante la noche no se pueden ver más de 2.000 al mismo tiempo en cada hemisferio.

En 1934 los teóricos usaron la mecánica cuántica para predecir la existencia de las estrellas de neutrones: cuando la gravedad se hace demasiado fuerte como para que una enana blanca resista el colapso, los electrones son empujados al interior de los núcleos atómicos convirtiendo a los protones en neutrones.

Pero al igual que los electrones, los neutrones obedecen un principio de exclusión, de acuerdo al cual cada neutrón puede ocupar un determinado nivel de energía que no puede compartir con otro.

Cuando todos estos niveles son ocupados, los neutrones están completamente degenerados y ejercen una presión capaz de frenar el colapso gravitatorio.

Así, una estrella de neutrones es en muchos aspectos una versión extrema de una enana blanca: para la misma masa (aproximadamente 1 Mo*) una estrella de neutrones tiene un radio mucho menor (unos 15 km) y una densidad fantástica (un millón de toneladas por cm3).- (*):Mo es igual a la masa del Sol.

La temperatura es de unos 10 millones de grados, pero debido a su tamaño pequeño, estos objetos son en general imposibles de detectar ópticamente.

La masa de una estrella de neutrones no puede exceder 3 Mo: por encima de este valor la gravedad le gana a la presión de los neutrones degenerados y el único estado final posible es un agujero negro.

La rápida rotación y los fuertes campos magnéticos son dos características importantes de estas estrellas ultradensas. Sabemos que todas las estrellas rotan.

Al colapsar, la velocidad de rotación aumenta de manera de conservar el momento angular (así como un patinador baja los brazos para girar más rápidamente) La velocidad de rotación de las estrellas de neutrones es de varias vueltas por segundo.

También todas las estrellas tienen campos magnéticos pero cuando colapsan, éste aumenta.

Los campos magnéticos de las estrellas de neutrones son un billón de veces más intensos que el terrestre. Estas dos propiedades son las que permiten detectar a las estrellas de neutrones en forma de púlsares.

La primera detección de un púlsar se produjo en 1986 en Inglaterra, 34 años después de haber sido predichos teóricamente.

Aparece como un objeto que emite pulsos de radio de intensidad variable, pero espaciados a intervalos de tiempo regulares: el período, increíblemente preciso, es de 1,33730113 segundos.

El fenómeno fue interpretado como una estrella de neutrones cuyas líneas de campo magnético aceleran los electrones a lo largo del eje magnético, causando la emisión de un rayo de ondas de radio que rotan con la estrella y producen un pulso cuando el rayo intercepta la línea de Visión del observador.

Desde entonces se han descubierto otros varios púlsares y se ha encontrado que algunos de ellos no sólo emiten en radio, sino también en frecuencias más altas como rayos x y y.

Se conocen actualmente más de 300 púlsares, situados mayormente en el plano galáctico, a unos pocos kpc del Sol. Los lugares con más posibilidades para encontrar púlsares son los remanentes de supernova.

La famosa Nebulosa del Cangrejo es el remanente de la supernova de 1054 y contiene efectivamente el púlsar del Cangrejo.

Debido a su reciente formación es uno de los que rotan más rápido: da 33 vueltas por segundo. Podemos predecir con facilidad, que la velocidad de rotación de un púlsar disminuirá lentamente con el tiempo, de acuerdo a la velocidad con que disipa energía. Por eso los púlsares más jóvenes rotan más rápido que los viejos.

Sus períodos van de 0,006 a 0,03 segundos hasta 4,3 segundos. Cuando la velocidad de rotación se hace pequeña, el mecanismo del púlsar no sirve: su vida promedio es de unos pocos millones de años.

Hay otro efecto que contribuye a la modificación de la velocidad de rotación pero de manera más abrupta: son los “glitches”, que disminuyen el período de rotación una parte en un millón en pocos días.

Se interpreta como sismos estelares debido a inestabilidades en la corteza o el núcleo de la estrella de neutrones. Estos fenómenos son muy útiles para estudiar la estructura interna de los púlsares, pero sólo aparecen durante unos pocos pulsos.

El púlsar de la supernova de 1987 trajo muchas sorpresas. Apareció antes de lo esperado y su rotación era extremadamente veloz, su período de 0,5 milisegundos era de lejos el más corto que se conocía. Todavía los científicos encuentran entretenimiento en este objeto.

Aunque la detección de púlsares en los remanentes de supernovas se ha hecho difícil y rara, hay un fenómeno más extendido que permite descubrir muchos de estos objetos: las fuentes compactas de rayos x.

En 1971, a partir del lanzamiento del satélite astronómico Uhuru, se descubrieron fuentes galácticas emisoras de un fuerte flujo de rayos x.

La fuente llamada Centauro x-3, por ejemplo, tiene una luminosidad en rayos x 10 veces mayor que la luminosidad total del Sol.

Se eclipsa cada 2,087 días, lo que demuestra que la fuente de rayos X está en movimiento orbital alrededor de un objeto más masivo.

Esta fuente es parte de un sistema binario formado por la estrella de neutrones y una estrella gigante. La primera atrae el viento estelar de la segunda y convierte la energía gravitatoria del gas en rayos x.

Este tipo de púlsares binarios proveen una de las pruebas de la teoría de la relatividad que predice que un cuerpo masivo acelerado radiará energía en forma de ondas gravitatorias.

La disipación de energía de esta forma causa el temblor de la órbita y en consecuencia una lenta disminución del período orbital del púlsar a lo largo del tiempo.

Las predicciones teóricas de Einstein concuerdan muy bien con las observaciones del periodo orbital de PSR 1913+16, que está disminuyendo unos 76 milisegundo por año.

Fuente Consultada:Notas Celestes de Carmen Nuñez

Estrellas Explosivas Novas y Supernovas Formación y Características

Estrellas Explosivas Novas y Supernovas Formación y Característicasr

Estrellas explosivas: novas y supernovas

Cuenta la leyenda que Hiparco se decidió a confeccionar su catálogo cuan do apareció una estrella nueva en la constelación zodiacal de Escorpio.

Su objetivo era construir un sistema de movimientos planetarios y es probable que la observación de los planetas noche tras noche lo llevara a memo rizar las posiciones de las estrellas más brillantes, especialmente las que se encontraban cercanas a la franja del zodíaco.

La filosofía aristotélica vigente en ese momento suponía al cielo perfecto e inalterable. Entonces es posible imaginarse el asombro del astrónomo griego ante la sorprendente aparición. 

Algunos historiadores consideran que Hiparco observó en realidad un cometa y no una estrella nueva. Pero dado que en la actualidad se observan algunas decenas de novas por año por galaxia es llamativo que no se hubieran observado con anterioridad y que incluso con posterioridad a Hiparco (hasta 20 siglos después!) no se observara ninguna en occidente.

La siguiente observación de una nova en Europa fue realizada por Tycho Brahe en 1572. A él se debe el término nova (del latín, nova stella ) e indica la idea original sobre estos objetos: de repente aparecía una estrella donde previamente no se había observado.

Para descubrir una nueva estrella hay que ser un experto observador del cielo, como hemos mencionado, durante siglos se les prestó muy poca atención a los componentes del paisaje celeste que no fueran los planetas, por lo tanto si la nova aparecía en una constelación lejana al zodíaco muy probablemente pasara inadvertida.

También hay que considerar la fuerza de la teoría aristotélica: cualquier cambio en los cielos inmutables era imposible. La información sobre cualquier cambio celeste podía convertirse en tm sacrilegio y es muy probable que quien lo observara no lo hiciera público para no arriesgarse a ser tratado de loco, ciego o mentiroso.

Pero afortunadamente, durante el período que va de la época de Hiparco hasta el año 1500 los chinos observaron cuidadosamente el cielo y registraron todos los cambios detectados. En la época antigua y medieval reportaron la aparición de cinco estrellas brillantes (en los años 185, 393, 1006, 1054 y 1181). La de 1006 fue por lo menos 200 veces más brillante que Venus, de manera que ni siquiera los desinteresados europeos pudieron ignorarla

Luego de Tycho, el siguiente en observar una nova fue un astrónomo alemán, F. Fabricio en 1596, y en 1604 lo hizo Kepler. Todas estas observaciones coincidían en que aparecía una estrella muy brillante donde previamente no se había observado nada y este brillo disminuía lentamente hasta desaparecer.

En la actualidad sabemos que lo que antiguamente se llamaba nova corresponde en realidad a dos tipos de objetos: novas y supernovas. Al igual que las novas, las supernovas son estrellas eruptivas o explosivas, pero se distinguen de aquéllas en que la cantidad de energía liberada es mucho mayor y además, en el caso de las novas, sólo aparecen afectadas por la explosión las capas exteriores, mientras que la explosión de una supernova afecta toda la estrella. Aún las más luminosas como Nova Cygni 1975, brillan 1.000 veces menos que las supernovas.

Novas: Estas estrellas se clasifican en novas, que ganan más de 10 magnitudes en la explosión, y novas enanas, que sólo aumentan su brillo unas pocas magnitudes. Algunas han explotado sólo una vez desde que fueron observadas, pero se cree que son recurrentes cada 10.000 o 100.000 años. Las novas recurrentes, menos energéticas, experimentan explosiones cada 10 a 100 años.

La observación de varias post-novas a mediados de este siglo demostró que muchas de ellas son miembros de sistemas binarios super próximos en los que una de las estrellas es una enana blanca y la otra una estrella fría (por ejemplo una gigante roja). Cuando la estrella ínicialmente menos masiva comienza a expandirse para formar una gigante roja, etapa que se acelera al aumentar su masa con la que se desprende de su compañera, sus capas exteriores se acercan tanto a la enana blanca que parte de su envoltura queda atrapada en el campo gravitatorio de ésta, formando lo que se llama un disco de acreción.

Tal nombre se debe a que, debido a colisiones entre las partículas del disco, éste pierde energía y algunas partes caen sobre la enana blanca, que gana así cierta masa en un proceso llamado acreción. La gran gravedad superficial de la enana blanca comprime esta masa formada esencialmente de hidrógeno, y la calienta.

La temperatura se hace tan alta que comienza la fusión de este hidrógeno, lo que calienta aún más la superficie y se inicia la fusión en el disco de acreción, produciéndose un enorme destello de luz, y las capas superiores del disco son arrojadas lejos de la influencia gravitatoria de la enana blanca. Este destello de luz es lo que vemos desde la Tierra en forma de nova y la parte del disco de acreción impulsada hacia el exterior es la nube de gas y polvo que se observa alrededor de la post-nova.

El proceso de fusión disminuye gradualmente, pero el ciclo recomienza porque la compañera de la enana blanca sigue perdiendo masa y esto reconstruye el disco de acreción. De esta forma el fenómeno de nova puede repetirse muchas veces antes de que la supergigante finalice su expansión y se transforme ella misma en enana blanca.

Por lo visto, las condiciones necesarias para la formación de una nova son entonces bastante especiales, y muy pocas estrellas de nuestra galaxia las satisfarán. El Sol, como hemos visto, se transformará en enana blanca. Pero como no tiene compañera no será una nova.

Supernovas:El fenómeno de supernova es una explosión fenomenal que involucra la mayor parte del material de una estrella y determina el fin de la evolución de ciertos objetos estelares. Se supone que la mayoría de las supernovas de nuestra galaxia son indetectables debido a la extinción causada por el polvo interestelar. Actualmente se cree que las observaciones chinas de 1054 y las de Tycho y Kepler se trataban de supernovas. La de Kepler, en 1604, fue la última detectada en nuestra galaxia.

Hay esencialmente dos tipos de supernovas: a) las tipo I resultan de la explosión de estrellas viejas, de masa relativamente pequeña y pobres en hidrógeno pero ricas en elementos pesados, tal como corresponde a una fase avanzada de evolución; su composición indica que se trata de enanas blancas. b) Las tipo II son explosiones de estrellas masivas, también al final de su evolución, pero en una fase menos terminal que las de tipo 1; son ricas en hidrógeno y presumiblemente están en la etapa de supergigante roja.

En su máximo de luz, el brillo producido por las supernovas aumenta unas 15 magnitudes; las tipo 1 son casi tres veces más luminosas que las tipo II. Luego el brillo disminuye unas 304 magnitudes durante los primeros días y durante varios meses decrece casi exponencialmente.

La energía liberada durante el corto tiempo de la explosión es equivalente a la que irradiará el Sol durante 9 mil millones de años (recordemos que la edad actual del Sol es de unos 4,5 mil millones de años) o a la explosión simultánea de 1028 bombas de hidrógeno de 10 metagones cada una y la materia expulsada, alrededor de 5 M0,puede alcanzar velocidades de 36 x 106 km/h.

Las supernovas de tipo 1 pueden alcanzar una magnitud absoluta de -18,6, es decir 2.500 millones de veces la luminosidad del Sol o unas 100 veces más brillantes que la luz integrada de toda la galaxia. Según el tipo, la masa eyectada puede ser de 1 a 10 M0, lo que en algunos casos es la masa total de la estrella y, por lo tanto, no queda nada después de la explosión. A partir del descubrimiento de los púlsares (estrellas de neutrones de muy rápida rotación) en 1968, se sabe que después de la explosión puede quedar un objeto extremadamente denso. Este objeto, que es el núcleo de la estrella, está formado exclusivamente por neutrones.

Los mecanismos responsables de estas explosiones no se conocen todavía con certeza. La mayoría de las teorías consideran que la energía liberada por la explosión es principalmente de origen nuclear, en particular la fotodesintegración del Fe. Esta es la etapa final en la cadena de reacciones nucleares que ocurren durante la vida de las estrellas de unas 10 M0. Las estrellas con masas necesarias para terminar como supernovas de tipo 1 son por lo menos 10 veces más numerosas que las estrellas más masivas que dan origen a las supernovas tipo II. Por lo tanto sería razonable suponer que se observarán 10 veces más supernovas de tipo 1 que de tipo II.

Sin embargo no es así: los dos tipos se observan con la misma frecuencia. Por lo tanto hay que concluir que no todas las estrellas de poca masa terminan como supernovas y en consecuencia, que se necesitan ciertas condiciones especiales para que este fenómeno ocurra.

La pre-supernova de tipo II tiene una estructura de cáscara como una cebolla. A medida que descendemos de la capa superficial de H se encuentran capas de elementos de mayor masa atómica. Estas capas son producto de las distintas fases de la nucleosíntesis que han ocurrido durante la vida de la estrella. Las reacciones que originan los elementos más pesados se ordenan de acuerdo a la temperatura.

Los aumentos de temperatura ocurrieron alternándose con contracciones gravitatorias. El centro de la supergigante que explotará como supernova está compuesto por una mezcla de núcleos de Fe y otros núcleos con números atómicos entre 50 y 60. Estos son los elementos con mayor energía de ligadura. Por lo tanto no se puede extraer más energía de ellos. Cualquier cambio nuclear ulterior con estos elementos, tanto si es fusión para dar elementos más complicados como si es fisión para dar núcleos menos complicados, no liberará energía sino que la absorberá.

El núcleo estelar de hierro crece, luchando contra la contracción gravitatoria gracias a la presión de los electrones degenerados. Pero al describir las enanas blancas vimos que hay un limite para esto: cuando la masa del núcleo ha alcanzado el límite de Chandrasekhar (1,4 M0), la presión de los electrones no alcanza para evitar la contracción y la estrella colapsa. En ese momento, todos los productos del proceso de nucleosíntesis se han aniquilado, el gas está formado ahora por neutrones, protones y electrones libres.

Pero éstos últimos experimentan un gran aumento de energía al comprimirse, su energía se hace mayor que la necesaria para transformar un protón en neutrón y así son absorbidos por los protones. Privado de la componente más significativa de presión, el núcleo estelar colapsa a un ritmo acelerado. La distancia entre neutrones es ahora muy pequeña (del tamaño del núcleo atómico, fermi) y la estrella se ha transformado en una estrella de neutrones. Desde el inicio del colapso se requieren sólo unos pocos minutos para alcanza este estado.

Al comenzar el colapso del núcleo, las capas exteriores de la estrella, donde están ocurriendo algunas reacciones nucleares, caen arrastra das por él. Los gases se comprimen rápidamente y aumentan su temperatura. La velocidad de las reacciones nucleares aumenta notablemente, la gran cantidad de energía producida origina inestabilidades y, finalmente, la explosión de las capas exteriores.

Las supernovas de tipo 1 son parte de un sistema binario formado por una supergigante roja y una enana blanca, como el que da origen a las no vas. Sin embargo en este caso la masa de alguna de las componentes o d ambas es mayor que en el caso de la nova.

En esta situación, la enana blanca puede ganar más masa y superar el límite de Chandrasekhar. Entonces sufre un colapso y comprime muy fuertemente los núcleos de carbono y oxígeno en su interior, creando las condiciones para una fusión con tal liberación de energía que su resultado es una explosión de supernova. Probablemente éste fue el caso de las supernovas de Tycho y Kepler ya que en ninguno de los dos casos se ha detectado estrellas de neutrones en las posiciones correspondientes.

Incluso mucho tiempo después de la explosión las supernovas se revelar por sus efectos sobre el medio interestelar. El remanente joven de la supernova aparece como una gran burbuja que emite radiación en todo el espectro y se expande a una velocidad de 10.000 km/seg. A medida que lo hace empuja al gas interestelar y se va frenando. Después de unos cientos de años la cáscara se enfría y el remanente se desintegra en el medio circundante Los remanentes son antigüedades astronómicas muy valiosas, capaces de revelar información sobre la explosión, la evolución posterior y la estructura y composición del medio interestelar.

Las supernovas son uno de los contribuyentes más importantes a la evolución de la materia galáctica. No sólo transmiten al medio interestelar energía térmica y cinética sino que también la enriquecen con elementos pesados de la nucleosíntesis estelar. El interés por las supernovas de los astrónomos interesados en la evolución estelar y el medio interestelar ha aumentado notablemente, dado que se piensa que podrían ser el detonante del proceso de formación de nuevas estrellas.

La última observación de una explosión de supernova ocurrió en 1987 en la Gran Nube de Magallanes. Miles de investigadores renovaron su interés y en los últimos años se han realizado importantísimos avances en nuestra comprensión de estos fenómenos. Esta supernova ha proporcionado la posibilidad de realizar la medición de distancia más precisa que se haya hecho para un objeto fuera de nuestra galaxia. El remanente de SN 1987A (como se denomina) está a 1,60 x 105 años luz, con una certeza de ±5%.

Un anillo hecho del material eyectado por el progenitor de la supernova en su fase de supergigante, ya rodeaba a la estrella unos 5.000 años antes de la explosión, pero sólo se hizo visible cuando se calentó hasta unos 20.000 0K como consecuencia de la misma. Si ese anillo fuera perpendicular a la línea de la visión, se hubiera iluminado todo a la vez. Sin embargo, como está inclinado unos 450 respecto de esta posición, distintas partes se encuentran a distancias diferentes de nosotros.

La parte más cercana pareció encenderse tres meses después de la explosión, mientras que la más lejana permaneció oscura cerca de un año más. Esta diferencia indica que el diámetro del anillo es de 1,3 x 1013 km. La medición del diámetro angular fue realizada por la estación orbital Hubble y es de 1,66 segundos de arco.

Esencialmente, toda la energía cinética del núcleo que colapsa se convierte en una onda de choque que, al encontrar las capas exteriores que están colapsando, las hace rebotar y cambiar de dirección. Este proceso se ve favorecido por la gran cantidad de neutrinos emitidos por la estrella de neutrones que se está creando.

La luz puede ser emitida sólo cuando la onda llega a la capa más externa. En SN 1987A, la onda de choque demoró dos horas en atravesar toda la estrella. Los pocos (pero muy preciados) neutrinos detectados poseían características acordes con las predicciones teóricas —sus cantidades, energías y el intervalo de tiempo en que llegaron a la Tierra—, lo cual aumenta la credibilidad en los modelos.

El 99% de la energía liberada llega de esta forma, en los neutrinos que pueden escapar de la estrella mucho más rápido que los fotones de luz. Estas observaciones permiten abrigar esperanzas de observar más eventos de supernova en la medida en que mejoren los detectores de neutrinos. Se estima que los mismos ocurren cada 10 o 100 años, especialmente en las regiones centrales de nuestra galaxia, pero permanecen ocultos por el material interestelar que opaca la luz.

Si las predicciones teóricas respecto de los neutrinos de supernovas son tan precisas, ¿por qué hay una discrepancia tan grande entre las observaciones y las predicciones respecto de los neutrinos solares? Tal vez, más observaciones de supernovas ayuden a resolver este problema.

FORMACIÓN DE LOS ELEMENTOS QUÍMICOS: El aumento de presión y temperatura, después de producirse los primeros colapsos de la estrella, posibilita la fusión de núcleos de helio para formar uno de carbono. La persistencia de estas condiciones hará que los átomos de carbono se fusionen con otros para constituir otros más complejos. Así, el carbono, al fusionarse con un núcleo de deuterio, forma uno de nitrógeno, y al hacerlo con un núcleo de helio, constituye uno de oxígeno.

A través de reacciones similares se forma el resto de los elementos químicos, siendo necesarias condiciones más extremas: en general, cuanto mayor es el número atómico (Z), mayor presión y temperatura se requieren para la formación.

Ciertas características de la estructura interna de los núcleos de los elementos alteran la proporción que sería previsible: más abundantes los de menor número atómico. No obstante, en muchos casos, los átomos de los elementos químicos muy pesados se descomponen espontáneamente, modificando las proporciones que podrían calcularse.

¿Sabían que el átomo de carbono, debido a su mayor estabilidad, es el más abundante del Universo después del hidrógeno, el helio y el neón? La abundancia del carbono y su característica de generar otros elementos biogénicos son datos de gran importancia para entender la formación de moléculas orgánicas en el Universo y la aparición de vida sobre la Tierra. Es interesante, además, conocer que la abundancia relativa de hidrógeno, nitrógeno, oxígeno, carbono, fósforo y azufre es casi idéntica a la que se encuentra en la materia viva.

SUPERNOVAS INQUIETANTES
Al igual que los seres vivos, las estrellas nacen, viven y murieron Se forman a partir de una nube de gas, encienden sus hornos nucleares, irradian su luz durante millones de milenios y después se apagan colapsan y desaparecen. Una de las formas que tiene de morir es la supernova. Pero para llegar a ese final explosivo el astro tiene que tener por lo menos una masa equivalente a la de tres soles.

La supernova también ocurre cuando la estrella ha consumido casi todas sus fuentes de energía. Entonces dos fuerzas entran en una lucha crítica. La declinante fusión nuclear no puede ya compensar la fuerza de gravitación y esta hace que el astro comience a hundirse sobre sí mismo. Las capas exteriores se precipitan hacia el núcleo en un cataclismo gigantesco que origina un rápido sobrecalentamiento de la materia, proceso que culmina con la explosión que ya hemos descrito.

supernova

La supernova de la Galaxia del Cigarro, que se encuentra a alrededor de 12 millones de años luz de la Tierra

Las supernovas no son fenómenos frecuentes. En grandes sistemas estelares, como la Vía Láctea, se produce una cada siglo. Por esta razón, no son muchas las que el hombre ha podido presenciar en su brevísima existencia como especie.

En el año 1006 apareció una supernova en los cielos del hemisferio sur. En su apogeo brillaba tanto como el cuarto de luna y su luz proyectaba sombras sobre la Tierra. Fue visible durante dos semanas en pleno día, y durante dos años por la noche.

El 4 de julio de 1054, los astrónomos chinos registraron la aparición de una «estrella intrusa». Su brillo era de tal magnitud que también resultaba visible de día. Pronto se transformó en uno de los objetos más notorios del firmamento, al que únicamente el sol y la luna superaban en brillo. Se dejó ver durante dos meses y después comenzó a apagarse paulatinamente hasta desaparecer por completo.

Cuando los astrónomos contemporáneos dirigieron sus telescopios hacia la región del cielo donde hace 900 años había aparecido la «estrella intrusa», encontraron un extraño objeto al que se dio el nombre de Nebulosa del Cangrejo. Es una nube de gas en rápida expansión que sólo pudo originarse a partir de un estallido titánico. Los cálculos indican que nueve siglos atrás toda esa masa de gas debió haber estado comprimida en un volumen pequeño.

Se comprobó, de esa forma, que la mencionada nebulosa no era sino la supernova observada por los astrónomos chinos a comienzos de este milenio, que continúa explotando. El estallido ocurrió, en realidad 6 mil años antes de que su luz llegara a la Tierra y fuera percibida por los hombres.

La última supernova observada en la Vía Láctea fue registrada por el célebre astrónomo y matemático Johannes Kepler,en 1604, antes de la invención del telescopio. Desde entonces el hombre no había tenido ocasión de usar sus modernos instrumentos astronómicos para estudiar una supernova cercana.

Pero a comienzos de 1987, un científico canadiense descubrió desde el Observatorio de Las Campanas, en el norte de Chile, una supernova muy próxima a la Tierra, situada en la Gran Nube de Magallanes, que es una galaxia satélite de la nuestra.

Esta espectacular supernova, bautizada como Shelton 1987 A se hizo visible a simple vista. Ocurrió en realidad hace 170 mil años, es decir, antes de que en la Tierra se irguiera el hombre de Neandertal.

Así, por primera vez los astrónomos han podido seguir el curso evolutivo de una supernova con telescopios poderosos y modernos La supernova es desde luego un fenómeno inquietante. Es posible que el hombre llegue a auscultar las estrellas cercanas para determinar cuales de ellas amenazan con incurrir en esos estallidos catastróficos.

La teoría predice que a las elevadas temperaturas que alcanza el núcleo del astro que está por explotar, se producen, entre otras partículas, los fantasmales y casi inasibles neutrinos. Estos carecen de masa, se mueven a la velocidad de la luz, atraviesan la Tierra con la misma facilidad con que el agua pasa a través de un colador, y rara vez se detienen para interactuar con otras partículas.

El descubrimiento de Shelton 1987 A, ha ayudado a comprobar la teoría. Como resultado de esta supernova, la Tierra está recibiendo una lluvia de  neutrinos que se han captado en detectores especiales instalados en minas subterráneas, en los Estados Unido, Europa Japón y la Unión Soviética.

Cuando se perfeccionen estos detectores y se construyan incluso telescopios de neutrinos, el hombre estará en condiciones de escudriñar  en los núcleos de las estrellas que presenten gigantismo rojo I H acuerdo con las cantidades de neutrinos que éstas emitan será posible predecir con bastante exactitud y antelación cualquiera amenaza cercana de supernova que pudiera sumergir a la Tierra en un peligroso baño de radiación.

Fuente Consultada: Notas Celestes de Carmen Nuñez

Muerte de las Estrella Enanas Blancas Gigantes Rojas Vida y Evolucion

Muerte de las Estrella Enanas Blancas Gigantes Rojas

ESTRELLAS MORIBUNDAS: Enanas blancas: Cuando la estrella agota su combustible no tiene con qué luchar contra la contracción gravitatoria, por lo que entra en colapso y se convierte en enana blanca.

Sin embargo, la compresión que puede sufrir la materia tiene un limite dado por el llamado principio de exclusión de Pauli.

Las altas densidades observadas en las enanas blancas son difíciles de encontrar en otros cuerpos celestes o en la Tierra.

En verdad, la posibilidad de existencia de materia más densa que la observada en el sistema solar no fue considerada hasta que se desarrolló la mecánica cuántica. La comprensión de la naturaleza atómica de la materia permitió considerar la existencia de materia degenerada, mucho más concentrada que la materia ordinaria.

El Sol tiene una densidad promedio semejante a la del agua: cerca de 1 gr/cm3 y se comporta como un gas, con sus partículas moviéndose libremente.

El Hidrógeno (H) en su interior, a una temperatura de 15 millones de grados, está en su mayoría ionizado.

Los electrones se han separado de sus núcleos y la alta temperatura reinante les impide acercarse a ellos.

Como consecuencia, 1 cm3 de materia solar ordinaria es esencialmente vacío. Los protones y electrones pueden moverse libremente casi sin chocar entre sí.

En una enana blanca en cambio, una masa como la del Sol puede estar comprimida en un volumen no mayor que el de la Tierra. La densidad asciende a 1.000 kg/cm3. Aun cuando la temperatura ha disminuido por debajo de la temperatura de ionización, los átomos permanecen disociados por la enorme presión de la gravedad.

Las fuerzas gravitatorias actuantes en un cuerpo celeste masivo pueden comprimir su materia hasta un estado de degeneración electrónica y no más, ya que el principio de exclusión impide a dos electrones ocupar el mismo nivel de energía. Este efecto cuántico se llama presión de degeneración electrónica y es el limite que impone la mecánica cuántica a la compresión de un gas de electrones. Esto es lo que ha sucedido en las enanas blancas.

Su interior es “frío” (aunque la  temperatura puede alcanzar hasta un millón de grados) en el sentido de que para mantener a la estrella en equilibrio, las fuerzas autogravítantes no están compensadas por movimientos térmicos como sucede en las estrellas de secuencia principal, sino por la presión ejercida por los electrones degenerados que llegan al limite de compresión. El interior de una enana blanca no está en estado gaseoso sino que es como mi cristal gigante que se enfría lentamente.

Las partículas están superpuestas y ya casi no hay espacios vacíos entre ellas. Por lo tanto, su posición y velocidad están determinadas cuánticamente. El principio de exclusión impide que dos partículas ocupen el mismo estado de energía y mientras en un gas ordinario quedan niveles de energía libre (no ocupados por ninguna partícula), los electrones de un gas degenerado ocupan todas las posiciones cuánticamente admisibles.

Las enanas blancas se descubrieron en 1910, aunque entonces no se entendían. Su temperatura superficial es muy alta y su luminosidad anormalmente baja. Esto sólo podía explicarse si su radio era muy pequeño, comparable al radio de la Tierra (Ley de Stefan).

S. Chandrasekhar (nacido en 1910) fue quien elaboró la teoría de una esfera de gas degenerado y este trabajo le valió el Premio Nobel de Física de 1983. Contrariamente a lo que podría suponerse, cuanto más grande es la masa de una enana blanca, menor es su radio. Esto resulta de la necesidad de una presión del gas suficiente para balancear la presión gravitatoria.

La masa y el tamaño de una enana blanca están fijos por la composición de la estrella. Los cálculos teóricos indican que si está compuesta esencialmente de H tendrá una masa máxima posible de 5,5 M0. Pero si contiene elementos más pesados llegará sólo a 1,4 M0. Estos valores se conocen como limites de Chartdrasekhar. Una estrella más masiva perdería masa o sufriría una catástrofe antes de transformarse en enana blanca.

Actualmente sólo se han identificado algunos cientos de enanas blancas. Como tienen baja luminosidad intrínseca, sólo pueden observarse aquellas cercanas al sistema solar. Los modelos indican que son la fase evolutiva final de las estrellas de poca masa y, en ese caso, el 10% de las estrellas de nuestra galaxia deberían ser enanas blancas.

Aunque la temperatura central de una enana blanca es menor al millón de grados (compárese con los 15 millones de grados del Sol) su atmósfera es, por lo general, más caliente que la de una estrella de secuencia principal. Los electrones degenerados juegan también un rol muy importante en la determinación de la estructura térmica de la estrella. Esta función es semejante a la de los electrones exteriores de los átomos en los metales ordinarios:

SU capacidad para moverse libremente es responsable de la capacidad de los metales para conducir calor eficientemente. De la misma forma, los electrones degenerados son excelentes conductores de calor en las enanas blancas. En consecuencia, estas estrellas tienen casi la misma temperatura en todo su volumen, son casi isotérmicas. Cerca de la superficie la presión es suficientemente baja y los electrones no están degenerados, entonces las propiedades de la materia son más normales. La temperatura superficial es de unos 10.000°K.

Los espectros de las enanas blancas presentan la sorprendente característica de tener líneas correspondientes a un único elemento. Cerca de 80% de las enanas blancas observadas muestran en sus espectros sólo líneas de absorción de hidrógeno; la mayoría de las restantes tiene sólo líneas de He.

El ciclo de contracciones gravitatorias impuestas por su propia evolución, ha purificado las capas exteriores de las enanas blancas más allá de la estratificación observada en las estrellas normales.

De la misma forma en que los espectros de las estrellas ordinarias se clasifican en B, A, E y G de acuerdo a su temperatura superficial, los de las enanas blancas se dividen en DB, DA, DF Y DG (D indica dwarf :en inglés enana), correspondientes a temperaturas de 100.000 a 4.000 0K. Las más calientes consumen energía a velocidades tan grandes y evolucionan tan rápidamente que esto nos da la posibilidad de observar a estas estrellas envejecer en el transcurso de unos pocos años.

La evolución de las enanas blancas se ha estudiado intensamente en los últimos años y el modelo aceptado actualmente postula que cerca de 10 millones de años después de su formación, la luminosidad de una enana blanca se ha debilitado hasta un décimo de la solar y su temperatura superficial ha disminuido hasta los 30.000 °K.

La teoría sugiere que a una enana blanca le lleva cerca de mil millones de años enfriarse hasta transformarse en una tibia esfera de gas degenerado. Los cálculos indican que en esta etapa la estrella sufre un último cambio importante: comienza a cristalizarse. A través de su evolución hasta este punto permaneció en estado gaseoso.

A medida que se enfría cada ion del gas comienza a sentir fuerzas eléctricas con sus vecinos, produciendo una fase líquida en la materia. Mientras estas fuerzas comienzan a dominar a mayores distancias, más y más núcleos se unen y forman un cristal. Dicho proceso se debe a la disminución de la temperatura, pero es ayudado por la alta presión que comprime a los núcleos.

Este cambio de estado tiene un efecto importante en las etapas finales de evolución de la estrella. Primero el cambio de liquido a sólido libera energía, pero una vez que se ha cristalizado una fracción importante de su interior, la enana blanca se enfría rápidamente. Como el tiempo necesario para que una enana blanca llegue a la etapa de cristalización se calcula semejante a la edad de nuestra galaxia, se puede estimar la época inicial de formación de estrellas en la Vía Láctea observando las enanas blancas más frías.

Fuente Consultada:Notas Celestes de Carmen Nuñez

Historia de la Estacion Espacial Internacional Objetivos y Experimentos

Historia de la Estación Espacial Internacional Objetivos y Experimentos a Realizar

 

 

UN POCO DE HISTORIA…
Las estaciones espaciales
El hombre ha tenido ya bastantes éxitos en el espacio: ha logrado dar vueltas en torno de la Tierra, ha conquistado la Luna y las sondas con que llegó a Marte y a Venus hablan de su inalterable empeño por proseguirlos. El gran instrumento con que cuenta es su taller en el espacio: las estaciones planetarias.

La construcción de estaciones espaciales habitadas por el hombre, importante etapa en los futuros viajes interplanetario, fue puesta en órbita. Tanto podía funcionar automáticamente como con dotación a bordo. El 23 del mismo mes, el Soyuz y así permaneció durante 5 horas 30 minutos, tiempo durante el cual se cumplió un programa completo de experimentos ecológicos y médico-biológicos que incluía también la producción del propio alimento. Transcurrido ese lapso, retornó a la Tierra.

El 30 de junio del mismo año, el Soyuz 11, tripulado por los cosmonautas Dobrolvski, Volkov y Patsaiev, acoplaron su nave al Salyut y pasaron a su interior, donde permanecieron durante más de tres semanas. Ya en la Tierra, el drama: al abrirse la cápsula, los tres cosmonautas estaban muertos.

El 14 de mayo de 1973, por medio de un impulsor Saturno V, los Estados Unidos pusieron en órbita el laboratorio espacial Skylab I no tripulado de 85 toneladas de peso. Averiado al minuto de su lanzamiento, al aumentar peligrosamente la temperatura inicial de la astronave los técnicos de la NASA se abocaron a la tarea de repararlo.

El día 25 del mismo mes y año, los astronautas Conrad, Kerwin y Wwitz, lanzados en una cápsula tipo Apolo, abordaron el Skylab I y sobre la parte averiada desplegaron una especie de parasol para hacer descender la temperatura del laboratorio.

Durante 28 días los cosmonautas realizaron la mayoría de los experimentos previstos, referidos casi todos ellos a observaciones de la Tierra, el Sol y el espacio sidéreo. Cumplida la misión, retornaron a la Tierra en la cápsula Apolo, Los laboratorios orbitales son plataformas con capacidad para dar albergue a varios tripulantes durante un lapso relativamente largo, y están provistos de los elementos necesarios para el transporte de cosmonautas en viajes de ida y vuelta.

La segunda misión del programa se cumplió en la estación Skylab 3, en condiciones similares a la anterior, el 28 de julio de 1973. Los cosmonautas fueron Bean, Garriott y Lousma, quienes tras instalar un parasol adicional, recargar las cámaras de los telescopios y descubrir un detector de meteoritos junto a la pared de la estación, durante 59 días estudiaron la Tierra y la Luna, en especial las reacciones del organismo durante casi dos meses en un ambiente falto de gravedad. Después de una caminata espacial de 6 hs. 31′, que constituyó un nuevo récord, retornaron a la Tierra el 25 dé septiembre. Su estado físico era excelente.

LA ESTACIÓN ESPACIAL INTERNACIONAL: La exploración y la conquista del espacio es uno de los desafíos más grandes y excitantes emprendidos por el hombre, y la aventura más audaz en la historia de la exploración espacial es, sin duda alguna, la construcción de la Estación Espacial Internacional (ISS).

astronautaEn 1984, el gobierno estadounidense lanzó un programa para la construcción de una es espacial. Los enormes costes que suponían las de estudio y de planificación retrasaron la propia marcha del proyecto, que no adquirió forma hasta que finalizó la Guerra Fría. En 1993, Rusia decidió a aportar la experiencia que había  en la construcción —iniciada en el año 1986— de la estación espacial soviética MIR (paz).

En 1998 se inició  la construcción de la ISS. En primer lugar debían crearse las condiciones técnicas para asegurar una colaboración estrecha. En este sentido, la lanzadera estadounidense emprendió varios viajes a la  MIR y efectuó entre otras cosas, maniobras de acoplamiento. 

El 20 de noviembre de 1998 se instaló el primer componente de la ISS, un módulo de carga y de que se colocó a 350 Km. de distancia de la Tierra. Le siguió ese mismo año una pieza de empalme, que el 12 de julio de 2000 atracó el módulo ruso.

Desde noviembre de aquel mismo año hasta el abril de 2003, la ISS acogió varias tripulaciones internacionales formadas por tres astronautas.

Estos permanecen de cinco a siete meses en el espacio, transcurrido este tiempo, son relevados por nuevas dotaciones. Después de la catástrofe del Columbia ocurrida en 1º de febrero de 2003, la tripulación fija debió reducirse a dos personas por problemas de suministro.

Los estudios que se realizaran en la estación son los siguiente:
1-BIOLOGÍA:
– Respuesta fisiológica al vuelo espacial.
– Salud humana y rendimiento.
– Desarrollo de contramedidas a la microgravedad.
– Investigación general en Biología.

2-CONOCIMIENTO SOBRE LA TIERRA

3-MICROGRAVEDAD
– Ciencia de los Materiales.
– Física de Fluidos
– Ciencia de la Combustión
– Biotecnología
– Física fundamental.

4-CIENCIA ESPACIAL
– La estructura y la evolución del Universo
– Exploración del Sistema Solar
– Conexión Tierra-Sol
– Búsqueda de otros sistemas planetarios.

5-INGENIERÍA Y TECNOLOGÍA
– Sistemas de comunicación espaciales de uso comercial, con énfasis en la mejora de la tecnología de satélites para telefonía personal, y comunicación de vídeo y datos.
– Eficiencia en el uso de la energía, y calidad de agua y aire.
– Técnicas de construcción y funciones de mantenimiento automatizadas.

6-ESTUDIO DE NUEVOS PRODUCTOS

 INFORMACIÓN GENERAL DEL MEGA PROYECTO:

1. La Estación Espacial es la mayor dotación objeto jamás enviado al espacio. Se trata de un centro de investigación que mide 108 m. de largo y 80 m. de ancho. Su peso es de más de 450.000 kg.

2. Orbita a 400 km. sobre la tierra y se puede ver en el cielo nocturno a simple vista. Los científicos pueden estudiar la tierra y su entorno. Pueden ver los cambios que están ocurriendo en la tierra, en el mar, y con nuestro clima.

3. La ISS puede ser visto por la gente en la Tierra. Cuando se haya completado, la ISS será visible a más deL 90 por ciento de la población mundial y dará una vuelta a la Tierra cada 90 minutos.

4. Está siendo alimentada por energía solar. Esta energía es necesaria para alimentar los seis laboratorios y todo el espacio de vida a bordo.

5. La Estación Espacial Internacional fue diseñada y construido con la colaboración de 100.000 personas de 16 naciones desde 1998, y cientos de empresas. El proyecto se inició en 1998.

6. El costo de construir la Estación Espacial Internacional es correcto alrededor de 96 mil millones de dólares.

7. Los primeros miembros de la tripulación permanente, incluidos el astronauta estadounidense Bill Shepherd (que era también el comandante de la ISS) y los cosmonautas rusos Sergei Krikalev, como ingeniero de vuelo y Gidaenko Youri como comandante de la Soyuz. Esta expedición duró 140 días, 23 horas y 30 minutos en órbita.

8. Los vehículos espaciales viajan a la estación para traer y llevar científicos y suministros.

9. Los científicos están estudiando cómo los diferentes fluidos, metales y otros materiales  responden en el espacio sin el efecto de la gravedad. Estos estudios podrían ayudar a comprender mejor los virus, las proteínas y enzimas. Se espera que estos nuevos estudios guiarán algún día a los posibles nuevos tratamientos para muchas enfermedades, incluyendo cáncer. Los científicos también están tratando de lograr una medición más precisa que lo posible en la tierra, las formas más eficientes de producción de materiales, y una comprensión más completa del universo.

10. Alrededor de 160 paseos espaciales fueron necesarios para el montaje y mantenimiento de la Estación Espacial Internacional.

DATOS TÉCNICOS: 

* Inicio de las obras: 1998

* Envergadura: 108,6 m.

* Longitud: 79,9 m.

* Profundidad: 88 m.

*Volumen: 1.140m3

* Masa: 450 toneladas. aprox.

* Altitud de la órbita: Alrededor de 350-450 Km. sobre el nivel del mar.

* Inclinación de la órbita: 51,60 º

* Vuelta a la Tierra: Una cada 90 minutos.

* Velocidad relativa: 29.000 Km./h

* Potencia eléctrica: 110 Kw.

* Superficie de las placas solares: 4.500 m2

* Tripulación fija: 3 personas (2000-2003). 2 personas (desde abril 2003).

* Vuelos a la ISS: 28 (hasta julio de 2006).


Fuente Consultada:
MUNDORAMA – Astronáutica
Maravillas del Siglo XX
El Universo Enciclopedia de la Astronomía y el Espacio Tomo V

Ver: Historia de la Astronáutica