Viaje a la Luna

Disputa Newton y Hooke Por las Orbitas Elípticas de los Planetas

HISTORIA DE LA PUBLICACIÓN DE LOS «PRINCIPIAS» – CONFLICTO NEWTON-HOOKE

ANTECEDENTES DE LA ÉPOCA. El incipiente desarrollo científico que se inició en el siglo XVII,  comenzó cuestionando el primitivo y anacrónico aristotelismo (Conjunto de las doctrinas del filósofo griego Aristóteles que explicaban los fenómenos naturales ), como teoría sintetizadora general que da cuenta del conjunto del cosmos, es decir,  fue vulnerado seriamente por los nuevos descubrimientos científicos, pero éstos no bastaron, hasta Newton, para dar ocasión a una teoría que ordenara y diera sentido a la acumulación de descubrimientos parciales.

Ello explica que en los más altos científicos de la época, las nociones matemáticas y astronómicas de la mayor exactitud se dieran junto a ideas místicas y religiosas tradicionales, tal como en el caso de Kepler.

En el campo de la astronomía se continuó la labor de Copérnico, especialmente por obra de Kepler, y los perfeccionamientos del telescopio que llevó a cabo Galileo permitieron comprender mejor la estructura del sistema solar.

La. investigación de la realidad física ensayó con éxito una metodología y una conceptuación nuevas cuando Galileo formuló las leyes del movimiento de los cuerpos, en 1638.

El descubrimiento de la circulación de la sangre por William Harvey (1578-1657), significó un extraordinario avance para la fisiología.

En la segunda mitad del siglo, el mundo científico, tal como aconteciera con el mundo filosófico, estaba dominado por la polémica en torno del cartesianismo. La explicación dada por Harvey a los movimientos del corazón se impuso a la observación empírica, pese a la oposición de Descartes. Leibniz refutó las ideas cartesianas acerca del movimiento, y Pascal estableció la teoría de la probabilidad de las hipótesis.

Pero la culminación científica del siglo XVII fue la obra de Isaac Newton (1642-1727), quien había de resumir en sí y superar todas las tendencias intelectuales de la época. Descubrió el cálculo infinitesimal y formuló la ley de la gravitación universal, que pasó a ser la nueva concepción totalizadora del universo y desplazó definitivamente al aristotelismo.

Newton y Hooke

Robert Hooke (1635-1703), científico inglés, conocido por su estudio de la elasticidad. Hooke aportó también otros conocimientos en varios campos de la ciencia.Nació en la isla de Wight y estudió en la Universidad de Oxford. Fue ayudante del físico británico Robert Boyle, a quien ayudó en la construcción de la bomba de aire.

En 1662 fue nombrado director de experimentación en la Real Sociedad de Londres, cargo que desempeñó hasta su muerte. Fue elegido miembro de la Real Sociedad en 1663 y recibió la cátedra Gresham de geometría en la Universidad de Oxford en 1665.

newton isaac

ISAAC NEWTON (1642-1727): El científico inglés realizó trabajos que revolucionaron el conocimiento y fundaron la ciencia clásica. Sus principios de la luz, del movimiento y de la atracción de las masas sólo serían cuestionados a comienzos del siglo XX, particularmente por Einstein. (Ver: Biografía)

LA HISTORIA Y DESCRIPCIÓN DE LOS «PRINCIPIA»: Hacia 1680 el problema del sistema planetario, en el sentido de dar una explicación racional a las leyes, que Kepler había dado empíricamente, estaba, por así decir, en el aire entre los astrónomos ingleses.

Se sabía, en virtud de las leyes de la fuerza centrífuga, que en un movimiento circular uniforme de un punto, que obedeciera a la tercera ley de Kepler, la fuerza era inversamente proporcional al cuadrado del radio.

¿Sería válida esta ley en el movimiento de los planetas, cuya órbita no era circular sino elíptica, y los cuerpos en cuestión no siempre podían asimilarse a puntos?.

Es a esta pregunta que Newton contesta afirmativamente en su célebre libro, en latín, Principios matemáticos de la filosofía natural (es decir de la física), conocido, abreviadamente como los Principia.

La obra se compone de tres libros, el Libro I de los cuales expone los fundamentos de la mecánica a la manera euclideana con definiciones, axiomas, teoremas y corolarios, introduciendo en los sistemas, además de la ley de inercia, el concepto de masa y el principio de acción y reacción.

Este libro se ocupa del movimiento en el vacío, comprobándose las leyes de Kepler en el caso de un movimiento central en el cual la fuerza que actúa sobre el punto móvil es inversámente proporcional al cuadrado de ia distancia al centro fijo, foco de la órbita elíptica del móvil.

El Libro II se ocupa, en cambio, del movimiento en un medio resistente, y entre las distintas cuestiones que trata aparece la primera fórmula teórica que expresa la velocidad del  sonido.

Los dos primeros libros sientan los principios matemáticos, es decir teóricos, de la ciencia del movimiento; el Libro III estudiará el movimiento «filosóficamente», es decir físicamente, tomando como ejemplo el «sistema del mundo».

Antepone para ello las «Reglas del razonamiento en filosofía», es decir las normas que desde entonces constituyen las bases del método científico en la investigación de los fenómenos naturales; pasando luego al enunciado del grupo de fenómenos celestes que debe explicar, demostrando que la ley: «Dos cuerpos gravitan mutuamente en proporción directa de sus masas y en proporción inversa del cuadrado de sus distancias», es de validez universal, dando así por primera vez una demostración matemática que elimina la milenaria distinción entre el mundo celeste y el mundo sublunar.

A continuación comprueba las leyes de Kepler y de la caída libre, demuestra el achatamiento de la Tierra, explica por vez primera las mareas y la precisión de los equinoccios, incluye los cometas en el sistema planetario…

En las ediciones sucesivas de los Principia que Newton publicó en vida, introdujo modificaciones y agregados entre los cuales el célebre «Escolio general», en el cual el científico da paso al metafísico o, mejor, al creyente, expresando que «Este muy hermoso sistema del Sol, los planetas y cometas sólo puede proceder del consejo y dominio de un Ser inteligente y poderoso… discurrir de Él a partir de las apariencias de las cosas, eso pertenece, sin duda, a la filosofía natural».

EL ORIGEN DEL CONFLICTO: LA LEY DE LA INVERSA DEL CUADRADO
EL ODIO ENTRE NEWTON Y HOOKE

A principios del siglo XVIII, el matemático y astrónomo alemán Johannes Kepplee había propuesto tres leyes del movimiento planetario, que describían con precisión como se mueven los planetas respecto al Sol, pero no conseguía explicar por qué los planetas  se movían como se movían, es decir en órbitas elípticas.

orbita elpitica de un planeta

1° Ley de Kepler: Los planetas recorren órbitas elípticas y el Sol ocupa uno de sus focos

Newton se propuso descubrir la causa de que las órbitas de los planetas fueran elípticas. Aplicando su propia ley de la fuerza centrífuga a la tercera ley de Kepler del movimiento planetario (la ley de las armonías) dedujo la ley del inverso de los cuadrados, que  establece que la fuerza de la gravedad entre dos objetos cualesquiera es inversamente proporcional al cuadrado de la distancia entre los centros de los objetos.

Newton reconocía así que la gravitación es universal que una sola fuerza, la misma fuerza, hace que  una manzana caiga al suelo y que la Luna gire alrededor de la Tierra.

Entonces se propuso contrastar la relación del inverso de los cuadrados con los datos conocidos.

Aceptó la estimación de Galileo de que la Luna dista de la Tierra unos sesenta radios terrestres,  pero la imprecisión de su propia estimación del diámetro de la Tierra le impidió completar esta prueba satisfactoriamente. Irónicamente, fue un intercambio epistolar en 1679  con su antiguo adversario Hooke lo que renovó su interés en este problema.

Esta vez dedicó su atención a la segunda ley de Kepler, la ley de la igualdad de las áreas, Newton pudo demostrar a partir de la fuerza centrífuga.

Hooke, sin embargo, desde 1674 estaba intentando explicar las órbitas planetarias, y había logrado dar con el problema del movimiento orbital.

En un tratado que se publicó aquel mismo año, descartó la idea de un equilibrio entre las fuerzas que empujaban hacia dentro las que empujaban hacia afuera para mantener a un objeto como la Luna en su órbita. Constató que el movimiento orbital resultaba de suma: por una parte, la tendencia de la Luna a moverse en línea recta y, por otra, una fuerza «única» que la atraía hacia la Tierra.

Mientras tanto el propio Newton, Huygens y todos los demás seguían hablando de «una tendencia a alejarse del centro», y Newton había llegado al extremo de aceptar vórtices cartesianos (una vieja teoría de Descartes) como responsables de empujar a los objetos para que volvieran a situarse en sus órbitas, a pesar de su tendencia desplazarse hacia el exterior.

También se sabe que  algunas de las cartas enviadas a Newton sobre este tema resultaron de particular interés para el científico, pues había despertado una gran idea para aplicar como teoría en sus investigaciones.  En una de sus cartas Hooke escribió a Newton para pedirle su opinión sobre estas teorías (que ya se habían publicado).

Le habló de la ley del cuadrado inverso, que Newton ya tenía, de la acción a distancia, y de la idea a la que había llegado: no había fuerza centrífuga ninguna, sino solamente una fuerza centrípeta que apartaba a los planetas de una trayectoria rectilínea y la curvaba mediante la gravedad.

En el gran libro sobre la historia del pensmaiento científico, de Moledo y Olszevicki, conocido como:»Historia de las ideas científicas», nos relata al respecto:

«Probablemente fue esta carta la que liberó a Newton del asunto de la fuerza centrífuga (que es una fuerza artificial, simplemente la reacción a la fuerza centrípeta —esta última sí real—) y lo estimuló para demostrar, en 1680, que una ley de la gravedad con cuadrados inversos a las distancias exige que los planetas se muevan recorriendo órbitas elípticae implica que los cometas deben seguir trayectorias elípticas o parabólicas alrededor del Sol. Ésta es la razón por la que ya tenía la respuesta preparada cuando, en 1684, Halley se apareció en la puerta de su casa.

Porque fue así: aprovechando un viaje, Halley, en agosto de 1684. visitó a Newton en Cambridge, donde debatieron sobre las órbitas de los planetas y la ley del cuadrado inverso. Según contó Newton después, cuando llevaban cierto tiempo reunidos, Halley le preguntó qué tipo de curva creía él que describirían los planetas, suponiendo que la fuerza de atracción hacia el Sol fuera inversa al cuadrado de las distancias respectivas de los planetas a dicho astro.

Newton dijo inmediatamente «una elipse», ante lo cual Halley le preguntó cómo lo sabía. «Porque la he calculado», respondió Newton de inmediato. Tras esto, Halley le pidió que le dejara ver los cálculos, pero Newton buscó entre sus papeles y no pudo encontrarlos. Se comprometió entonces a volver a hacerlos v a enviárselos apenas los tuviera listos.

Ese encuentro entre Halley y Newton y los cálculos que nunca encontro se convertirían en el puntapié inicial para que nuestro protagonis:: se pusiera a escribir los Principia.»

A petición de Halley, Newton pasó tres meses rehaciendo y mejorando la demostración. Entonces, en una explosión de energía sostenida durante dieciocho meses, durante los cuales se absorbía tanto en su trabajo que a menudo se olvidaba de comer, fue desarrollando estas ideas hasta que su presentación llenó tres volúmenes. Newton decidió titular su obra Philosophiae Naturalis Principia Mathemañca, en deliberado contraste con los Principia Philosophiae de Descartes.

Ya en 1684 Newton publicó un trabajo en el que explicaba la ley de cuadrado inverso, pero recién en 1687 vio la luz su gran obra épica.

Los tres libros de los Principia de Newton proporcionaron el nexo entre las leyes de Kepler y el mundo físico. Halley reaccionó con «estupefacción y entusiasmo» ante los descubrimientos de Newton. Para Halley, el profesor Lucasiano había triunfado donde todos los demás habían fracasado, y financió personalmente la publicación de la voluminosa obra como una obra maestra y un regalo a la humanidad.

«Los Principia fueron celebrados con moderación al ser publicados, en 1687, la primera edición sólo constó de unos quinientos ejemplares. Sin embargo, la némesis de  Newton, Robert Hooke, había amenazado con aguar la fiesta que Newton hubiera podido disfrutar.

Cuando apareció el libro segundo, Hooke afirmó públicamente que las cartas que había escrito en 1679 habían proporcionado las ideas científicas vitales para los descubrimientos de Newton. Sus pretensiones, aunque dignas de atención, parecieron abominables a Newton, que juró retrasar o incluso abandonar la publicación del tercero. Al final, cedió y publicó el último libro de los Principia, no sin antes eliminar cuidadosamente cualquier mención al nombre de Hooke.

El odio que Newton sentía por Hooke le consumió durante años. En 1693 todavía  sufrió otra crisis nerviosa y abandonó la investigación. Dejó de asistir a la Royal Society hasta la muerte de Hooke en 1703, y entonces fue elegido presidente y reelegido cacada año hasta su propia muerte en 1727.»

Fuente: «A Hombres de Gigantes»

Fuente Consultadas:
El Saber de la Historia de José Babini Edit. Biblioteca Fundamental del Hombre Moderno
Grandes Figuras de la Humanidad Edit. Cadyc Enciclopedia Temática Familiar
A Hombres de Gigantes Edit. CRÍTICA
Historia de las Ideas Científicas Leonardo Moledo y Nicolás Olszevicki Edit. PLANETA

Trabajo Enviado Por Colaboradores del Sitio

Concepto de Fuerza Centrífuga Aplicaciones Prácticas

Concepto de Fuerza Centrífuga – Aplicaciones Prácticas

Si se hace girar con rapidez un balde parcialmente lleno de agua, con los brazos extendidos alrededor del cuerpo, el contenido no se derrama, aun cuando el balde esté volcado sobre un costado. El principio responsable de este fenómeno es conocido por los físicos con el nombre de fuerza centrifuga.

Al mismo tiempo que se hace girar el balde, el agua tiende a permanecer dentro de éste, presionada hacia el fondo (es decir, hacia afuera con respecto a quien hace girar el balde) o al centro de giro por la fuerza centrífuga. Este es un ejemplo bastante directo de como se origina esta fuerza, aunque hay muchas otras aplicaciones más prácticas.

Sabemos, según las leyes de los cuerpos en movimiento, enunciadas por Isaac Newton, que las fuerzas siempre se originan por pares, siendo cada una de las mismas de igual valor y sentido contrario. La fuerza que se necesita para mantener un cuerpo que gira dentro de su trayectoria, evitando que se vaya hacia afuera, se conoce como fuerza centrípeta y es igual pero de sentido contrario a la fuerza centrífuga.

Fuerza centrífuga en un balde girando. El agua no sale del balde porque es empujada hacia el exterior o fondo.

En el caso del ejemplo mencionado, esta fuerza centrípeta se manifiesta como el esfuerzo realizado por el brazo para sostener el balde. Podemos ver, bastante fácilmente, cómo estas fuerzas se relacionan con la velocidad a la cual el objeto se mueve dentro de su órbita. Un ejemplo emocionante lo constituye, en el espec táculo circense, un motociclista que da vueltas dentro de una gran esfera de malla metálica.

Cuando su máquina se mueve lentamente, el motociclista no puede subir muy alto, pero a velocidades mayores la fuerza centrífuga que tiende a lanzarlo hacia afuera es tan grande, que puede trepar verticalmente hasta la cúspide de la esfera y girar sin perder contacto con la «pista», a pesar de desplazarse «cabeza abajo».

La inclinación que se observa en las curvas de las vías férreas obedece al mismo principio: la fuerza centrífuga que impulsa hacía afuera al tren cuando éste toma la curva, es contrarrestada por la fuerza centrípeta que se manifiesta cuando el costado de las ruedas presiona sobre los rieles. Este esfuerzo se reduce considerablemente inclinando las vías en un cierto ángulo, de modo que el riel exterior (el más alejado del centro de la curva) esté a mayor altura que el interior.

Otro ejemplo parecido lo constituye aquella famosa primera pista de Avus, en Alemania, donde ya en el año 1937, los promedios de velocidad establecidos por los coches de carrera llegaban a 261 Km./h., con records hasta de 280 Km./h. Esto podía lograrse porque aquella pista tenía curvas construidas con un extraordinario peralte que llegaba a los 45 grados. De esta manera, se conseguía precisamente vencer la gran fuerza centrífuga que esas velocidades provocaban en los giros. Una idea de dicha fuerza la da el cálculo de que, en el momento de paso sobre la curva, los neumáticos debían soportar nada menos que 3 veces el peso de la máquina.

Peralte o Inclinacion de la Carretera

Los llamados trajes de presión, creados por los japoneses durante la segunda guerra mundial y adoptados luego por casi todas las demás fuerzas aéreas, constituyen una solución bastante aceptable al problema de la tremenda fuerza centrífuga a que está sometido el piloto en un combate aéreo. Este traje evita que, en los giros violentos, la sangre se desplace y se agolpe por centrifugación, con el consiguiente desvanecimiento y pérdida momentánea de la visión. Pero no siempre ¡a fuerza centrífuga resulta negativa; muchas veces el hombre se vale de ella para obtener provecho.

Un buen ejemplo de aplicación práctica de este principio lo tenemos en el aparato denominado centrifuga. Si tenemos una suspensión de un sólido en un líquido, o una mezcla de líquidos de diferentes densidades, es decir, que tienen relaciones diferentes de peso a volumen (por ejemplo crema y leche), y que han sido mezclados hasta formar una emulsión, podemos separarla si la dejamos reposar tiempo suficiente.

Una centrifugadora es una máquina que pone en rotación una muestra para –por fuerza centrífuga– acelerar la decantación o la sedimentación de sus componentes o fases (generalmente una sólida y una líquida), según su densidad. Existen diversos tipos, comúnmente para objetivos específicos.

La atracción que ejerce la gravedad sobre la leche es mayor que sobre la crema, menos densa, que va a la superficie. Este proceso se puede acelerar centrifugando la mezcla (estas centrifugadoras tienen la forma de un cuenco que gira rápidamente). De este modo la leche es impulsada más lejos del centro que la crema, la cual, por no ser tan densa, no sufre con tanta intensidad los efectos de la fuerza centrífuga que se origina.

También bombas centrífugas y turbinas centrífugas que trabajan con líquidos y aire, respectivamente, son un acierto mecánico. Debemos recordar que los turborreactores centrífugos reciben este nombre porque su alimentación de aire lo produce una turbina de ese tipo.

Bomba centrifugadora

En la fundición de metales, las inyectaras centrífugas son insustituibles por la precisión, seguridad y calidad de los colados. Este tipo de inyectora recibe el metal fundido por un tragadero central, y mantiene adosada una batería de matrices a su contorno. Girando a gran velocidad, el metal es centrifugado con gran presión, e inyectado al interior de las matrices.

RAZÓN POR LA CUAL LA TIERRA NO ES ATRAÍDA POR EL SOL

Esquema Sistema Tierra-Sol

Esto se debe a que, a pesar de la atracción gravitacional (fuerza de gravedad) la fuerza centrífuga tiende constantemente a empujar a la Tierra hacia afuera. En este caso, las dos fuerzas están equilibradas. La fuerza de gravedad entre el Sol y la Tierra actúa como una fuerza centrípeta, que tiende a atraer al planeta, que gira en su órbita, hacia el Sol. La fuerza centrífuga originada por el movimiento de rotación, tiende a empujar al planeta en sentido contrario, es decir, fuera del Sol., El resultado es que la distancia entre el Sol y la Tierra se mantiene constante, suponiendo que la velocidad del planeta también se mantenga igual (en realidad, la velocidad de la Tierra sufre pequeñas variaciones, con la consiguiente alteración en la distancia al Sol). El mismo principio se aplica a los satélites artificiales que se ponen en órbita para girar alrededor de la Tierra. La atracción de la gravedad equilibra las fuerzas centrífugas, y los satélites pueden moverse a distancia más o menos constante de la Tierra, «suponiendo que su velocidad sea también constante». De todos modos, la velocidad se reduce gradualmente, a causa del rozamiento con la atmósfera, y los satélites tienden a caer hacia la Tierra.

Formula de la Fuerza Centrípeta:

Diagrama de un cuerpo girando, Fuerza Centrifuga

Ejemplo: si se toma una piedra de 2 Kg. de masa, atada a una cuerda y se la hace girar con un radio de 1,2 m. a razon de 2 vueltas por segundo. Cuanto vale la fuerza centrífuga que debe soportar la cuerda?.

La masa es de 2 Kg., el radio: 1,20 metro, pero nos falta la velocidad tangencial Ve, pues la del problema es la velocidad angular.

Para ello se sabe que dá dos vueltas en un segundo, entonces el recorrido es, dos veces el perímetro de la circunferencia por segundo. Podemos hallarlo asi: 3.14. 1.2. 2=7.53 m. cada vuelta , por dos es: 15,07 m. distancia que la masa recorre en 1 segundo, por lo tanto la velocidad tangencial es: 15,07 m/seg.

Aplicando la formula se tiene que Fc= ( 15,07 )². 2 /1,2² =454/1.44=315,27 Newton

Fuente Consultada:
Revista TECNIRAMA N°21 Enciclopedia de la Ciencia y La Tecnología -La Fuerza Centrífuga-

Cuadro sinoptico del Universo, Sistema Solar, Planetas y Galaxias

SINTESIS EN UN CUADRO SOBRE EL SISTEMA SOLAR

Nuestro sistema solar que está contenido en la galaxia llamada Vía Láctea, está conformado por el Sol y ocho planetas que gravitan a su alrededor. Los planetas siguen órbitas que, casi en su totalidad, están situadas en el mismo plano; y todos se desplazan en torno al Sol en el mismo sentido.

El tiempo que tardan en dar una vuelta constituye el año de cada planeta: Mercurio, el más cercano, demora tres meses terrestres. Además de los planetas, entre Marte y Júpiter circulan cuerpos pequeños, bloques de rocas cuyo diámetro no suele pasar los pocos kilómetros. Se cree que estos asteroides son los restos de un planeta que, o bien se fragmentó, o no llegó a formarse jamás.

Ampliar Sobre la Evolución del Universo

cuadro sinoptico universo

Ver Tambien: Sistema Solar Para Niños de Primaria

Diferentes clases de astros
Los astros se pueden dividir en cuatro tipos:

a) los que poseen luz propia, como el Sol, las estrellas, las nebulosas de emisión y algunos cometas:

b) los que brillan con luz reflejada, como la Luna, los planetas, satélites, asteroides, ciertos cometas y ciertas nebulosas:

c) los que no emiten luz alguna, como las nebulosas obscuras, cuya existencia se conoce en virtud de que impiden pasar la luz de los astros situados detrás de ellas; y

d) las estrellas fugaces y bólidos, que lucen porque al entrar velozmente en nuestra atmósfera se tornan incandescentes al rozar con los gases de ésta.

Los movimientos aparentes de los astros difieren según los casos.

Las estrellas, los conglomerados, las nebulosas y las galaxias, describen un círculo completo alrededor de la Tierra en 24 horas menos cuatro minutos.

Los planetas tienen un movimiento aparente complejo. Se clasifican eñ interiores o exteriores según sea que su órbita esté, respectivamente, dentro o fuera de la que sigue la Tierra. Los planetas interiores, Mercurio y Venus, siguen una ruta cercana al astro mayor y sólo son visibles antes de orto o salida de éste, y después de su ocaso o puesta. Vistos a través del telescopio los planetas interiores presentan fases porque,estando sus órbitas dentro de la terrestre, su disco se ve más o menos iluminado por el Sol.

Cuando se hallan a la mayor distancia aparente del Sol -máxima elongación- tienen la mitad del disco iluminado.La elongación puede ser oriental u occidental, de acuerdo a cómo están situados respecto del Sol.

Los planetas exteriores se ven de noche y, por lo común, viajan aparentemente de O a E a través de las estrellas, pero, según los movimientos combinados de cada planeta y la Tierra, hay un momento en que parece que se detienen: están estacionarios; acto seguido cambian de rumbo y se dirigen de E a O, hasta llegar a otro punto donde permanecen de nuevo estacionarios, para continuar posteriormente con su marcha normal.

Entre dos posiciones estacionarias llegan a la oposición, en que se sitúan en la línea Sol, Tierra y planeta. Si la disposición es planeta, Sol y Tierra, se dice que el planeta está en conjunción (con el Sol interpuesto).

Los planetas se mueven dentro del Zodíaco, que es una faja de 8o de anchura a cada lado de la eclíptica.

Otros Temas Tratados en Este Sitio

Big Bang

Origen de la Vida

Origen del Hombre

Teoría de la Evolución

Muerte de una Estrella Los Pulsares Enana Blanca

Peso de Una Estrella de Neutrones

La Vida del Sol Tiempo de Vida Hidrogeno del Sol

La Luna Muestra Siempre la Misma Cara

Origen del aire que respiramos El Oxigeno

Mapa de la Luna Superficie de La Luna Crateres Mares y Montañas

Mapa de la Luna Superficie de La Luna
Crateres, Mares y Montañas

¿Por qué vemos más de la mitad de la superficie lunar? Hoy, esta y otras preguntas relativas al movimiento de nuestro satélite ya tienen respuesta. Sin embargo, a pesar de que la Luna es el objeto celeste más  próximo a nosotros, calcular su órbita todavía es difícil: se han descubierto más de 37.000 factores que influyen en sus movimientos.

Hace millones de años la Luna estuvo bombardeada por distintos cuerpos celestes, como asteroides y  cometas, dejando una superficie característica , totalmente «rugosa y ondulada», formada por miles de cráteres que pueden observarse a simple vista. Inicialmente fueron grandes cuerpos, mientras que en una segunda etapa,  los cuerpos que impactaban fueron mas pequeños, provocando cráteres mas chicos, y todo esto ocurrió hace unos 3800 millones de años aproximadamente.

 El análisis de impactos responde al nuevo catálogo de alta resolución de los cráteres lunares de 20 metros de diámetro o superior -que son 5.185 en total- que se ha hecho gracias a los datos tomados por el altímetro de la sonda espacial de la NASA Lunar Reconnaissance Orbiter (LRO). China también está desde hace pocos años en un proyecto para fotografiar, estudiar y armar un meticuloso y fiel plano de la superficie lunar, por lo que ha enviado una nave que orbita la Luna consiguiendo imágenes en 3D. También estaría previsto enviar una nave no tripulada que alunizara.

Cráter Lunar

Cráter Lunar

INFORMACIÓN BÁSICA DE LA LUNA:
Durante e una órbita de la Luna alrededor de la Tierra, la distancia que separa ambos cuerpos celestes puede variar muchísimo: hasta 1/8 del valor medio. A la distancia máxima de la Tierra, el diámetro aparente de la Luna es aproximadamente 9/10 del que nos muestra cuando se encuentra a la distancia mínima.

Tampoco el perigeo y el apogeo son fijos. A pesar de que se trata del objeto celeste más cercano a la Tierra, calcular el movimiento de la Luna es una tarea difícil. Este tipo de medidas se refiere . siempre a los centros de los dos cuerpos celestes y no a sus superficies.

Deben considerarse también las perturbaciones debidas a la atracción gravitatoria del Sol, al abultamiento ecuatorial de la Tierra y a la influencia de los planetas. Además, la magnitud de las perturbaciones provocadas por todos estos cuerpos varía continuamente, ya que también varían las posiciones de cada uno de ellos en el sistema solar.

Las técnicas más modernas para medir la distancia Tierra-Luna se basan en el empleo del láser. Se envía un rayo láser a la Luna, el cual, por reflexión, vuelve a la Tierra. Sabiendo la velocidad del rayo enviado y calculando el tiempo que emplea en cubrir el recorrido de ida y vuelta, es posible obtener, con una diferencia muy pequeña (pocos centímetros), el valor que se busca. L; teoría que predice el comportamiento de la órbita lunar tiene en cuenta muchos factores periódicos, algunos de los cuales apenas modifican el valor en 2 cm.

Sin embargo, la precisión que se obtiene con el láser obliga a los astrónomos a tener presentes incluso las variables más pequeñas.

IMPORTANCIA DE LA DISTANCIA TIERRA-LUNA
Esta medida no sólo permite verificar nuestras teorías sobre el movimiento lunar, sino también conocer exactamente la distancia Tierra-Luna. Esta información es importante porque influye sobre otros fenómenos. Las mismas teorías sobre el material que forma el interior de la Luna dependen en parte de tales valores.

Gracias a esta medida, es posible obtener en un tiempo muy breve indicaciones exactas sobre la disminución de velocidad (no regular) de la rotación terrestre. La distancia de la Luna a k Tierra interviene también en la medición de la deriva de los continentes, cuyos desplazamientos pueden ser de algunos centímetros por año.

LA ÓRBITA LUNAR
El tiempo que emplea la Luna en efectuar una órbita completa merece un discurso especial: a pesar de que gira alrededor de la Tierra, ésta no está inmóvil en el espacio, sino que, a su vez, gira alrededor del Sol. Respecto a las estrellas que son fijas, un mes lunar dura 27,32 días (mes sideral), pero el tiempo que tarda la Luna en volver a la misma fase respecto a la Tierra es diferente, ya que interviene el movimiento de ambos cuerpos. Este intervalo, llamado mes sinódico, equivale a 29,5 días.

El plano de la órbita lunar no coincide con el terrestre (eclíptica), sino que está inclinado unos 5° 19′. Esto es importante porque gracias a la existencia de un ángulo entre los dos planos no se producen cada mes eclipses en la superficie terrestre.

Con el tiempo, los nodos -puntos de intersección de los dos planos- se mueven con un desplazamiento de 19° por año. También la línea de los ápsides -la que une el perigeo con el apogeo- se mueve, aunque en dirección opuesta. El período de este último movimiento es de 8,85 años.

ROTACIÓN Y TRASLACIÓN
Como ya se ha indicado en otras ocasiones, el movimiento de rotación y el de traslación están sincronizados, es decir, la Luna tarda el mismo tiempo en efectuar una rotación completa alrededor de su propio eje que en girar alrededor de la Tierra. Esto se debe a la fuerza gravitatoria terrestre, que, a lo largo del tiempo, ha hecho disminuir la velocidad inicial de la rotación lunar.

Una consecuencia interesante de ello es que los movimientos del Sol en el firmamento de la Luna son muy lentos: basta decir que el Sol permanece sobre el horizonte durantes 354 horas consecutivas y que el disco solar tarda mas de una hora en emerger completamente. En una semana, el Sol asciende desde el horizonte hasta el punto mas alto del firmamento, y en otra llega a la puesta. El eje de rotación de la Luna está poco inclinado respecto al plano de la órbita y, por lo tanto las variaciones estacionales son mínimas.

ALGO MAS SOBRE LA SUPERFICIE LUNAR…

Un paisaje totalmente desolado, más severo y más áspero que cualquier escenario terrestre, daría la bienvenida a un visitante de la Luna. Elevadas cadenas de montañas., imponentes picos dentados de más de 10.000 metros de altura se alzan sobre una superficie marcada con profundas hendiduras e innumerables cráteres, cubierta por una delgada capa de polvo de ceniza.

Uno de los caracteres más distintivos de la superficie lunar son los cráteres. Éstos varían de tamaño, desde pequeños hoyos hasta enormes depresiones de más de ICO Km. de ancho. Algunos están cercados por empinadas paredes que se elevan quizá a 5.000 metros sobre el piso del cráter y algunos kilómetros sobre la superficie genera! del «terreno». Otros son depresiones poco profundas con paredes de sólo algunos cientos de metros de altura. Muchos tienen pisos a nivel, pero en otros casos se puede ver en el centro un pico solitario.

El origen de los cráteres ha sido motivo de gran número de discusiones. Dos hipótesis principales se formularon a este respecto: la que los atribuía a un origen volcánico, y la que los explicaba como debidos a grandes colisiones de cuerpos, tales como meteoritos, contra la superficie lunar.

La teoría volcánica adquirió bastante crédito antes de que los científicos comprobaran que era un hecho cierto la caída de meteoritos sobre la Tierra; fue necesaria une larga discusión, que se prolongó durante un siglo, antes de que todos los astrónomos aceptaran que la mayoría de los cráteres eran debidos a choques. De hecho, como luego pudo demostrarse, se pueden también hallar sobre la superficie de la Tierra cráteres formados de un modo semejante.

Uno de los más famosos, el cráter Meteoro, en Arizona, tiene 1.200 metros de ancho y 150 metros de profundidad. La razón de que la Tierra no esté marcada con cráteres, como la Luna, es porque el agua, el viento, y el hielo, han borrado en el trascurso del tiempo todas las huellas, excepto las de los cráteres más recientes.

Pero en la Luna no hay erosión alguna (ya que allí no existen el viento, el agua y el hielo), de modo que se guarda cuidadosamente la evidencia acumulativa de muchos millones de años de castigo meteorice Esta falta de erosión explica también la aspereza del paisaje. Actualmente se reconoce que existen también pequeños cráteres que no pueden ser debidos a choques y, por lo tanto, deben ser de origen volcánico, aun cuando su forma no es la de los volcanes terrestres. En este sentido, se plantea la cuestión de si la Luna se encontró en algún momento en forma de una masa fundida, a alta temperatura, o bien se formó a más baja temperatura a partir de materiales sólidos. Todos los indicios, resultantes de consideraciones de distintos tipos, parecen indicar que la Luna ha debido formarse a baja temperatura, si bien, desde luego, es posible que presente actualmente un interior parcialmente fundido.

La fuente de calor quizá no es su origen residual primitivo; al igual que actualmente se acepta para el origen de los volcanes terrestres, se puede derivar de acumulaciones de materiales radiactivos.

Otra interesante característica del paisaje luna-está constituida por la presencia de grandes áreas oscuras, que los primeros astrónomos creyeron que eran mares. Aunque actualmente se sabe que no son mares (no hay agua líquida en la Luna), continúan utilizándose los nombres antiguos. Un «mar» lunar es una especie de planicie seca situada a cierta distancia por debajo del nivel medio de la superficie. Así, por ejemplo, el océano de las Tormentas, que se sitúa totalmente a la izquierda en la fotografía de la superficie lunar. Un poco más al centro, en la parte superior, se halla el mar de las Lluvias («Mare imbricum»), con la bahía o golfo de los Iris, de forma semicircular, en su parte superior.

En la parte de abajo, el mar de los Nublados. El astrónomo Gilbert, estadounidense, fue el primero que estudió con gran detalle las características de la imponente colisión que dio lugar a la formación de uno de estos mares, la que se ha denominado «colisión imbria», por haber originado el mar de las Lluvias. Según todos los indicios, un enorme bólido, con un diámetro de más de 150 Km., incidió sobre la región del golfo de los Iris, procedente del noroeste, elevando una inmensa ola en todas las direcciones de la superficie lunar, pero especialmente en la dirección de su movimiento, esto es hacia el centro del disco visible de la Luna. La energía liberada por la colisión debió ser fabulosa.

Se estima que sería del orden de unos cien millones de veces superior a la de los mayores terremotos conocidos en la Tierra o, si se prefiere una medida más «actual», ¡del orden de cerca de un billón de bombas atómicas! Un choque de esta magnitud debió producir efectos muy notables. La región afectada se pulverizaría hasta el grado de arena fina, una parte de la cual pudo extenderse sobre un área considerable. Grandes trozos de materia de la superficie lunar y del mismo meteorito fueron probablemente lanzados en alto para caer después en grandes bloques, formando varias masas montañosas. Trozos más pequeños, animados de grandes velocidades, produjeron surcos y estrías en la superficie, que se extienden a grandes distancias del área del choque.

En otras ocasiones la energía desarrollada por la colisión pudo originar la fusión de una parte del material, dando lugar a la formación de las corrientes de lava que parece ser la sustancia principal de algunos de los mares. Este tipo de fenómenos se especula que pudieron ocurrir durante un período del orden de un millón de años, hace unos 4.500 millones de años. Posteriormente, los cuerpos que cayeron sobre la Luna fueron más pequeños, produciendo cráteres menores.

Fuente Consultada: El Universo Enciclopedia de la Astronomía y del Espacio Tomo 3 – Movimientos y Fases de la Luna

Escala del Sistema Solar
Distancia a las Estrellas
La Vía Láctea
Más Allá de la Vía Láctea
Características del Módulo Lunar
La Fases De La Luna
El Hombre Llegó a la Luna
Lugares de Alunizajes

Resumen de la Vida de las Estrellas Evolucion Estelar y Muerte

Resumen de la Vida de las Estrellas y Su Evolución Estelar Hasta La Muerte

LA VIDA DE UNA ESTRELLA: Las estrellas tienen una fuente interna de energía. Pero, al igual que todo tipo de combustible, sus reservas son limitadas. A medida que consumen su suministro de energía las estrellas van cambiando y cuando se les acaba, mueren.

El tiempo de vida de las estrellas, aunque muy largo comparado con las escalas de tiempo humanas, es, por lo tanto, finito.

A medida que envejecen sufren profundos cambios en sus tamaños, colores y luminosidades, siempre como consecuencia de la disminución de sus reservas.

Para aumentar su expectativa de vida, la estrella lucha continuamente contra la fuerza gravitatoria que intenta contraerla. Las distintas etapas evolutivas son sucesiones de contracciones que terminan cuando la estrella comienza a quemar otros combustibles que mantenía en reserva y logra establecer una nueva situación de equilibrio.

Galaxias y estrellas del universo

El factor más importante en el desarrollo de una estrella es su masa inicial.

Las estrellas más masivas tienen mayores temperaturas centrales y, en consecuencia, producen energía y consumen combustible a un ritmo creciente.

Este hecho fue determinado observacionalmente y se llama relación masa-luminosidad.

Podría parecer que las estrellas más masivas, las que tienen más combustible, deberían tener vidas más largas.

Pero en realidad sucede exactamente lo contrario. Al igual que con el dinero o la comida, la duración del combustible estelar depende tanto de la cantidad disponible como del ritmo de consumo. Por ejemplo, la vida del Sol será de 10 mil millones de años.

Una estrella de masa 10 veces mayor tiene 10 veces más combustible, pero lo quema a un ritmo tan grande (de acuerdo a la relación masa-luminosidad) que termina de consumirlo en 30 millones de años.

En el otro extremo, una estrella de 0,1 M0 brillará durante 3 billones de años antes de morir.

¿Cómo se mide la masa, esa propiedad fundamental que determina completamente la estructura y evolución de una estrella?

El único método de determinación directa de masas es el estudio del movimiento de estrellas binarias. Las estrellas dobles o binarias están muy próximas entre sí y cada estrella gira alrededor del centro de gravedad del par.

Aplicando a estos sistemas las leyes de Newton es posible deducir su masa. Sin embargo, la masa de cada estrella del sistema se puede determinar sólo en el caso de que el sistema binario sea ecipsante (es decir cuando una de las estrellas eclipsa a la otra).

Estas mediciones, aunque pocas en número, son interesantes porque a partir de ellas se han podido establecer algunos resultados que dieron la clave para comprender la evolución estelar.

Una manera indirecta de determinar la masa estelar es usando la relación masa-luminosidad que pudo ser establecida cuando se desarrolló una de las herramientas más poderosas con que cuentan los astrofísicos, el diagrama R-R que consideraremos a continuación.

Se han observado estrellas muy masivas, hasta 120 M0, pero ¿hay una masa mínima para las estrellas? La respuesta a esta pregunta está todavía en estudio. Las estrellas de menor masa observadas son Ross 614B, de 0,08 M0 y Luyten 726-8B con 0,04 M0, pero la mayoría de las estrellas tienen masas de entre 0,3 y3 M0.

EL DIAGRAMA H-R  

En el año 1911 el astrónomo danés E. Hertzsprung comparó la magnitud absoluta y la luminosidad de estrellas pertenecientes a varios cúmulos.

Trazó la curva de variación de uno de estos parámetros en función del otro y observó que los puntos no estaban esparcidos al azar en el diagrama, sino que se distribuían a lo largo de una línea bien definida.

En 1913, el astrónomo norteamericano H. Russell llegó a la misma conclusión con datos de otras estrellas. Mostró empíricamente la existencia de una relación entre la luminosidad y temperatura estelares.

El diagranta resultante se llama diagrama Hertzprung-Russell (H-R), y está representado en la figura.

La posición de unaa estrella en el diagrama H-R depende de su estado de evolución, y por eso la estructura y la historia de nuestra galaxia se pueden estudiar con este instrumento básico.

Así como los botánicos pueden estimar la edad de un árbol a partir de la cantidad de anillos de su tronco, los astrónomos encuentran en el H-R la herramienta que les permite estimar la edad de una estrella.

Diagrama estelar E. Hertzsprung

El diagrama Herzprung-Russell. Cada estrella se representa según su magnitud absoluta, que mide su brillo intrínseco, y su tipo espectral, que refleja su color y su temperatura. Esta última aumenta hacia la izquierda

Un examen en el diagrama H-R de las estrellas con distancias conocidas muestra que no están distribuidas al azar, sino que muchas (entre ellas el Sol) están agrupadas en una banda angosta sobre la diagonal, llamada secuencia principal.

Otro grupo de estrellas, la rama de las gigantes, se extiende horizontalmente sobre la secuencia principal. Las estrellas con luminosidades mayores que las gigantes se llaman supergigantes, mientras las estrellas sobre la secuencia principal se llaman enanas.

Estudiando los sistemas binarios se pudo establecer que la luminosidad de una estrella de secuencia principal es proporcional a su masa elevada a la potencia 3,5. Es decir que una estrella 2 veces más masiva que el Sol será 11 veces más 1 luminosa.

Esta relación masa-luminosidad es una forma de estimar la masa de una estrella que no pertenece a un sistema binario a partir de su luminosidad, con la condición de que pertenezca a la secuencia principal, lo que se puede determinar, como veremos, con criterios espectroscópicos.

Las cantidades fundamentales que definen este diagrama se pueden medir con distintos parámetros, dándole así distintas formas. El H-R clásico usa dos cantidades: el tipo espectral (que es una determinación cualitativa de la temperatura) y la magnitud absoluta.

El tipo espectral

La única fuente de información sobre la naturaleza de las atmósferas estelares es el análisis de su espectro, del que se pueden hacer dos tipos de aproximaciones: cuantitativas y cualitativas.

Como hemos visto en el capítulo anterior, el análisis cuantitativo pernúte determinar los parámetros físicos que describen la atmósfera estelar. El análisis cualitativo descansa en la simple observación de que los espectros pueden agruparse en familias: esta clasificación espectral considera sólo la apariencia del espectro en el visible.

Según ella, las estrellas se ordenan en 7 clases principales (de acuerdo a su temperatura) a las que se designa con las letras O, B, A, F, G, K y M. Para tener en cuenta las diferencias de apariencia entre espectros de la misma clase fue necesario establecer una subdivisión decimal, y entonces el tipo espectral se representa por BO, B1, B2, …, B9, AO, A1…

La clasificación espectral se basa en la presencia o ausencia de líneas de ciertos elementos, lo que no refleja una composición química diferente de las atmósferas sino sólo las diferencias de temperatura atmosférica.

Así el H, que es el elemento más abundante del universo y del que todas las estrellas tienen casi la misma abundancia, predomina en las líneas espectrales de estrellas con temperaturas cercanas a lO.0000K, porque la excitación del átomo de H es máxima a esta temperatura.

En las atmósferas de las estrellas más calientes, de tipo espectral o, el H está casi todo ionizado y entonces no produce un espectro significativo de líneas de absorción.

En las atmósferas de estrellas frías (por ejemplo de tipo espectral K) los átomos de H son neutros (no ionizados) y prácticamente todos están en el estado fundamental, no excitado. El espectro de líneas así producido pertenece principalmente al rango ultravioleta, no observable desde la Tierra, mientras que las líneas de H observadas en el visible son muy débiles.

Las estrellas de tipo o que son las más calientes, muestran en sus espectros líneas de He ionizado, pero no líneas de H. Yendo a tipo BO hasta AO la intensidad de las líneas de He también decrece cuando las condiciones de temperatura no son favorables y la de los metales (elementos más pesados que el He) crece para tipos espectrales correspondientes a temperaturas más bajas.

En las estrellas más frías, las líneas de metales neutros se hacen más y más intensas y aparecen bandas características de moléculas.

Las clasificación en “gigantes” y “enanas”, tiene sentido sólo para un dado tipo espectral. Si se consideran dos estrellas del mismo tipo espectral, una de la secuencia principal y la otra de la rama de las gigantes, las dos muestran gran diferencia en luminosidad.

Como son del mismo tipo espectral, tienen la misma temperatura.

La diferencia de luminosidad se origina entonces en la diferencia de tamaño. Comparemos, por ejemplo, dos estrellas de clase M. La luminosidad de la gigante es 10.000 veces mayor que la de la enana (o de secuencia principal).

Por lo tanto su área superficial debe ser 10.000 veces mayor y entonces el radio de la gigante será 100 veces mayor que el de la enana. (La ley de Stefan-Boltzmann dice que:  L es proporcional a R2.T4).

Las estrellas que aparecen por debajo de la secuencia principal son las enanas blancas, cuyos radios son muy pequeños.

NACE UNA ESTRELLA

Como ya hemos dicho la vida estelar es una sucesión de contracciones. La primera gran contracción es la de la nube interestelar que crea la estrella. La cuna de las nuevas generaciones de estrellas en nuestra galaxia parece estar en las nubes interestelares de átomos y moléculas. La densidad promedio del medio interestelar en la galaxia es de cerca de un átomo por cm3.

La formación de una estrella requiere una densidad 1024 veces mayor. El único mecanismo capaz de actuar a grandes distancias y de originar tal factor de compresión es la fuerza de la gravedad, que juega aquí un papel esencial.

Por otro lado el movimiento térmico de las moléculas y el movimiento turbulento del gas interestelar producen una presión que impide una contracción abrupta impuesta por el campo gravitatorio.

Cuando la gravedad rompe este equilibrio se puede formar una estrella o un grupo de estrellas. En términos muy generales, esto sucede cuando la masa de la nube sobrepasa una cierta masa crítica.

Una nube colapsará si, por ejemplo, su masa aumenta por colisiones con nubes más pequeñas, pero su temperatura promedio sólo aumenta ligeramente, o si la masa de una nube permanece constante, pero su temperatura disminuye, de manera que la presión no puede frenar el colapso. Estas dos situaciones podrían ocurrir simultáneamente.

Los cálculos indican que en nubes con masas mayores que unas 2.000 M0 la gravedad gana sobre las fuerzas de presión. La nube se hace gravitatoriamente inestable y se contrae más y más rápido. Como la masa de una estrella típica es unas 1.000 veces menor, hay que concluir que la nube se fragmenta.

Los complejos moleculares gigantes muy fríos, con temperaturas de unos 10 a 90 0K, son los lugares reconocidos de formación estelar. Sus masas son muy grandes; alcanzan hasta 1.000.000 M0. El polvo de la nube oculta las nuevas estrellas al astrónomo óptico, pero éstas se pueden detectar en el infrarrojo.

Hay un tipo de nubes moleculares pequeñas, llamadas “glóbulos de Bok”, algunos de los cuales se han observado en contracción gravitatoria. Su velocidad de colapso es de aproximadamente medio km/seg, y su radio es del orden de 2 años luz.

Si nada frena su colapso, estos glóbulos se condensaran en estrellas dentro de 1.000.000 años, lo cual, en términos de la vida total de la estrella, es un período muy breve.

Estos objetos aislados (que se ven como zonas negras contra el fondo de la Vía Láctea) ilustran los modelos teóricos de formación estelar. La región central, altamente comprimida y mucho más densa que la periferia, atrae a la materia que la rodea. La temperatura aumenta progresivamente y la presión se hace suficientemente alta como para parar momentáneamente el colapso del núcleo.

Poco a poco toda la materia en la envoltura cae hacia la protoestrella. Cuando su temperatura pasa los 10 millones de °K, comienzan las reacciones termonucleares, es decir el autoabastecimiento de energía.

En este momento la estrella entra en la secuencia principal y comienza su vida normal. En las galaxias espirales, como la nuestra, las estrellas se forman en los brazos espirales, donde se encuentran el polvo y el gas interestelares.

La observación de estrellas en formación o estrellas muy jóvenes junto con su ambiente provee importantes contribuciones a la teoría de formación estelar. En el esquema presentado la formación de estrellas está directamente relacionada a la evolución de las nubes moleculares, pero aunque es el caso más estudiado, no es el único. Una forma de aprender más sobre formación estelar es investigar galaxias vecinas.

La formación estelar en la Gran Nube de Magallanes presenta algunos problemas para este esquema: en una región llamada 30 Dorado se observan unas 50 estrellas O y B asociadas con una nube de 50 millones de M0 de hidrógeno neutro.

No hay polvo en esta región ni se ha detectado ninguna nube molecular. Esto muestra claramente que la teoría de formación estelar basada en nubes moleculares no explica todos los nacimientos estelares. Este es un tema de gran actualidad en astrofísica que todavía no está resuelto.

La protoestrella entra al diagrama H-R por la derecha (la parte roja o fría), en el momento en que la temperatura central se hace suficientemente alta (recordemos que bajo compresión la temperatura de un gas aumenta) y la estrella comienza a convertir H en He.

La posición inicial de la estrella en el H-R define la llamada secuencia principal de edad cero (ZAMs). Cuanto más masiva nace una estrella más arriba comienza su vida de secuencia principal y más luminosa es.

La posición de la ZAMS sobre el diagrama H-R depende de las composiciones químicas de las estrellas que se forman. La abundancia de metales (elementos más pesados que el He) aumenta de generación a generación, a medida que las estrellas más viejas evolucionan y enriquecen el medio interestelar con elementos pesados.

En consecuencia la ZAMS se desplaza cada vez más hacia la derecha sobre el H-R a medida que la galaxia envejece, y este corrimiento permite estimar la edad de la galaxia.

La secuencia principal representa la primera pausa y la más larga en la inexorable contracción de la estrella. Durante este intervalo las estrellas son hornos nucleares estables y a esta estabilidad debemos nuestras propias vidas, ya que el Sol se encuentra en esta etapa. A medida que la estrella envejece se hace un poco más brillante, se expande y se calienta. Se mueve lentamente hacia arriba y a la izquierda de su posición inicial ZAMS.

Evolución de las Estrellas

Para una persona, incluso para una toda generación de seres humanos resultaimposible observar una única estrella para descubrir todo lo que le sucede en el transcurso de su existencia, ya que la vida estelar media es del orden de los miles de millones de años.

Identificar y ordenar las distintas etapas en la vida de las estrellas, puede compararse con obtener una fotografía en conjunto de todos los habitantes de una ciudad; en la foto se tendría una visión de las posibles fases o estadios de la vida humana: habrían recién nacidos, niños, adultos, ancianos, etc.

Al analizar la imagen obtenida de cada persona y clasificándola de acuerdo a cierto carácter, podría establecerse el ciclo de la vida humana con bastante precisión; se podría estimar el ciclo completo, captado en un único instante de tiempo en la fotografía de conjunto.

Debido a la cantidad y a la gran variedad de estrellas existentes, se logra tener una idea de su evolución observando estrellas en las diversas fases (o etapas) de su existencia: desde su formación hasta su desaparición.

Al respecto se debe tener en cuenta que, efectivamente, se han visto desaparecer estrellas (por ejemplo, la supernova de 1987) como también se han hallado evidencias de la formación de otras nuevas (como en el profundo interior de la Nebulosa de Orión, por ejemplo).

Ya mencionamos que en el estudio de las estrellas, se utilizan parámetros físicos como la temperatura o la masa, entre otros. Pero debe señalarse también otra de las técnicas usuales en Astronomía, denominada Espectroscopía.

La luz estelar se descompone en su gama intrínseca de colores, llamándose «espectro» al resultado de esa descomposición cromática (la palabra espectro que significa «aparición», fue introducida por I. Newton, quien fue el primero es descubrir el fenómeno). En el espectro de las estrellas, además de los colores, aparecen ciertas líneas o rayas bien nítidas.

Esas líneas o mejor dicho, cada una de las series de líneas, se corresponde, según su posición en el espectro, por una parte con la T de la superficie estelar y por otra, con los elementos químicos presentes en la atmósfera de la estrella.

Diferentes elementos químicos absorben o emiten luz según la temperatura a que se encuentren; de esta manera la presencia (o ausencia) de ciertos elementos en la atmósfera de la estrella, indica su temperatura.

Los astrónomos han diseñado un sistema de clasificación de estrellas, de acuerdo a las características que presentan sus respectivos espectros. En ese esquema, las estrella s se ordenan desde las más calientes a las más frías, en tipos espectrales que se identifican según el siguiente patrón de letras: O B A F G K M

Las estrellas más calientes (O) tienen temperaturas de unos 40.000 ºC; en el otro extremo, las más frías (M), alcanzan sólo 2.500 ºC; en este esquema, el Sol, con una temperatura superficial de 6.000 ºC, resulta una estrella de tipo espectral intermedio entre las más calientes y las más frías: es una estrella tipo G.

Este sistema de clasificación se corresponde además con los colores de las estrellas: las de tipo (O) son azules-violáceas y las de tipo M, rojas; el Sol (tipo G) es amarillo. Los colores observados también se relacionan con la temperatura, ya que las estrellas más calientes emiten la mayor parte de su luz en la zona azul del espectro electromagnético, mientras que las más frías lo hacen en la zona roja.

En las estrellas más calientes, las distintas capas interiores deben vencer mayor atracción gravitacional que las capas más externas, y por lo tanto la presión del gas debe ser mayor para mantener el equilibrio; como consecuencia, mayor es la temperatura interna.

Implica que la estrella debe «quemar» combustible a gran velocidad, lo que produce una ingente cantidad de energía. Esta clase de estrellas sólo puede tener una vida limitada: unos pocos millones de años.

Las estrellas frías (generalmente pequeñas y con una fuerza de gravedad débil) sólo producen una modesta cantidad de energía; en consecuencia aparecen brillando tenuemente. Así, estas estrellas pueden existir como tales sólo algunas decenas de miles de millones de años.

En la siguiente Tabla se indican la temperatura característica (en grados centígrados, ºC) de cada tipo espectral (T.E.).

Tipo EspectralTemperatura (ºC)
O40.000
B25.000
A11.000
F7.600
G6.000
K5.100
M2.500

Ahora bien, la temperatura y consecuentemente, la cantidad de energía que emite una estrella, depende de su masa: cuanto mayor es su masa, mayor es la temperatura y por consiguiente mayor es la cantidad de energía que irradia. Pero hasta que en su núcleola temperatura no alcance un valor de algunos millones de grados, no se producirán transformaciones nucleares (del tipo de transmutación de hidrógeno en helio) y, por lo tanto, mientras eso no ocurra, la cantidad de energía que emiten será bastante pequeña (objetos de esta clase son denominados protoestrellas). Cuando se inicia la vida de una estrella, el calor de su interior procede de la energía gravitacional, es decir, de la nube de gas que se comprime sobre sí misma (colapso).

La etapa de protoestrella se corresponde con grandes inestabilidades en su estructura interna, las que acaban cuando la temperatura de su núcleo alcanza los 10 millones de grados, iniciándose entonces la transmutación del hidrógeno en helio y, por lo tanto, la generación de energía desde su núcleo: en esa etapa el astro se considera ya una estrella.

Las estrellas contienen suficiente hidrógeno como para que la fusión en su núcleo dure un largo tiempo, aunque no para siempre. La velocidad de combustión del hidrógeno depende de la masa, o sea de la cantidad de materia que compone la estrella.

Llegará un momento en que se acabará todo el hidrógeno disponible y sólo quede helio. En esas condiciones la estrella sufrirá diversos tipos de transformaciones: aumentará de tamaño y el helio acumulado se transmutará en elementos más pesados como el carbono, el nitrógeno, el oxígeno, etc, mediante otras reacciones nucleares. Entonces la estrella dejará de ser estable: sufrirá cambios de volumen y expulsará al espacio parte de su material. Las capas mas externas serán las primeras en alejarse.

Después de cinco a diez mil millones de años, una estrella como el Sol evoluciona a un estado denominado de gigante roja: un objeto de gran tamaño (de dimensiones mayores que las originales), mucho más fría y de una coloración rojiza. Su temperatura superficial disminuye y por lo tanto toma color rojizo. La gigante roja brillará hasta que su núcleo genere cada vez menos energía y calor. En esas condiciones la estrella empieza a contraerse: disminuye su diámetro y al mismo tiempo aumenta su temperatura superficial.

Si la estrella, al formarse, tiene una masa cuarenta veces mayor que la masa del Sol, pasará al estado de gigante roja en sólo unas pocas decenas de millones de años. Luego irá disminuyendo de tamaño y perderá rápidamente una cantidad significativa de su masa expulsando materia hacia el espacio.

Otra modo de expulsar materia es lentamente, a través de fuertes vientos estelares; de esta forma los astrónomos han observado que se forma una envoltura gaseosa que circunda la estrella y que puede llegar a ser bastante densa; si ese proceso continúa puede dar lugar a un objeto denominado nebulosa planetaria.

Con el nombre de nebulosas planetarias, se define a una estrella muy caliente y pequeña, rodeada por una esfera de gas fluorescente en lenta expansión; algunas fotografiadas con potentes telescopios, muestran que esas nebulosas tienen forma de anillo, razón por la cual se le ha dado ese nombre, ya que su aspecto observada en el telescopio es similar al disco de un planeta.

Finalmente, hacia el término de su existencia, esas estrellas se convierten en objetos de pequeñas dimensiones (del tamaño de la Tierra o aún menor), calientes y de color blanco: son las enanas blancas. La materia de estos objetos se halla extremadamente comprimida: 1 centímetro cúbico de la misma puede pesar varias toneladas. En otras palabras, en un volumen similar al de nuestro planeta se halla condensada la misma cantidad de materia que hay en un volumen comparable al del Sol.

Pero no todas las estrellas acaban como enanas blancas. Cada estrella termina su vida de un modo que depende mucho de su masa inicial, aquella que tuvo cuando comenzó su existencia. Una estrella de gran masa (varias veces la del Sol) y que no pierde mucha materia durante su evolución termina su vida en una explosión muy violenta que se denomina supernova; cuando esto ocurre la estrella brillará tanto como toda la galaxia en la cual se encuentra, aunque su brillo será efímero: la estrella ya está condenada a extinguirse como tal.

En el siguiente cuadro se muestran los distintos estados evolutivos finales para estrellas de diferente masa inicial (M). La masa está expresada en masas solares (Msol = 1).

Masa InicialEstado evolutivo final
M < 0,01Planeta
0,01 < M < 0,08Enana marrón
0,08 < M < 12Enana blanca
12 < M < 40Supernova + estrella de neutrones
40 < MSupernova + agujero negro

Distintos estados evolutivos finales para estrellas de diferente masa inicial <M>. La masa está expresada en masas solares (Msol = 1).

Los restos gaseosos de una supernova (que se denominan remanentes) se esparcen cubriendo una extensa zona del espacio, formando una nube en permanente expansión que se aleja a varios miles de kilómetros por segundo y cuyas características son bastante peculiares (por ejemplo, aparecen campos magnéticos sumamente intensos).

El gas que compone un remanente de supernova es bastante diferente al gas de la nube que formó a la estrella. La nube de origen estuvo compuesta casi exclusivamente por helio y helio, mientras que en el remanente existe una gran variedad de elementos químicos, restos de la fusión nuclear que ocurriera en la estrella desaparecida y también otros formados durante la explosión que se produce en la fase de supernova.

En el siguiente cuadro se muestran algunas estrellas con sus características físicas más importantes.

Estrella Magnitud
aparente (m)
Magnitud
Absoluta
Temperatura
(en ºC)
Radio
(en radios solares)
Características
Centauri 0,6-5,021.00011gigante
Aurigae 0,1-0,15.50012gigante
Orion 0,4-5,93.100290supergigante
Scorpi 0,9-4,73.100480supergigante
Sirio B 8,711,57.5000,054enana blanca

 De este modo se recicla el material estelar: las estrellas que se formen con el gas expulsado en una explosión de supernova, serán menos ricas en hidrógeno y helio, pero más ricas en los elementos químicos más pesados, que las estrellas de su generación anterior.

Pero sucede que luego de la explosión de una supernova, lo que queda del astro, además de sus remanentes, es un cuerpo de apenas algunos kilómetros de diámetro, conformado por él núcleo de la estrella original.

En la explosión de supernova se produce un catastrófico colapso de la estrella; debido a su gran masa, la enorme fuerza de gravedad comprime la materia con mucha más intensidad que en el proceso que genera a una enana blanca .

En estas condiciones toda la masa de una estrella ordinaria (como el Sol) se comprime en una pequeña esfera de apenas 15 Km. de diámetro; a estos diminutos astros se los ha bautizado estrellas de neutrones (su denominación se debe a que se trata de objetos compuestos básicamente de neutrones). La materia en estos objetos se ha comprimido a tal extremo y su densidad alcanza a valores tan grandes, que los electrones se combinan con los protones dando lugar a la formación de nuevos neutrones.

evolucion estelar desde la nube de gas hasta agujero negro

Fuente Consultada: Astronomía Elemental de Alejandro Feinstein y Notas Celestes de Carmen Nuñez

SÍNTESIS DEL TEMA…

Ningún astrónomo ha podido contemplar, hasta ahora, el interior de las estrellas, pero todos los científicos conocen ya los fenómenos que se producen en el centro de éstas y en los estratos que lo cubren hasta llegar a la superficie visible.

Las estrellas son enormes esferas de gas, de un diámetro medio, equivalente a cien veces el de la Tierra. El gas que las compone contiene, aproximadamente, un 80 % de hidrógeno y un 18 % de helio. La mayor parte de los elementos se hallan presentes en ellas, aunque en cantidades insignificantes.

La superficie de las estrellas está incandescente: su temperatura oscila, según el tipo de estrella, entre miles y decenas de millares de grados centígrados. Pero, a medida que se penetra en su interior, esa temperatura va haciéndose cada vez más alta, hasta alcanzar, en el centro, decenas de millones de grados, lo cual pone a los átomos en un estado de «agitación» tan violenta, que los lleva a chocar entre sí, perdiendo electrones y formando iones (átomos que han perdido, por lo menos, uno de sus electrones). El gas de los iones y electrones se ve sometido a presiones tan altas, que en ocasiones alcanza una densidad miles de veces superior a la del agua.

¿Qué es lo que comprime el gas en el interior de las estrellas? El peso de los estratos superiores. Todo el mundo ha oído hablar de las elevadas presiones existentes en el fondo del mar o en el centro de la Tierra (éstas, particularmente, alcanzan cifras asombrosas). Pero, en el centro de una estrella, a una profundidad cien veces mayor, las presiones son tan enormes, que bastan para comprimir toda la materia estelar en un reducidísimo espacio. Los átomos, chocando entre sí, perdiendo y, a veces, adquiriendo electrones, emiten una gran cantidad de luz, comparada con la cual la superficie del Sol parecería oscura.

Llegados a este punto, conviene explicar que la luz ejerce presión sobre los cuerpos que ilumina: poca presión, cuando su intensidad es débil, y mucha, cuando es fuerte. Esta propiedad de la luz se encuentra, naturalmente, fuera de los límites de nuestra experiencia, ya que la Tierra, por fortuna, nunca se ve expuesta a radiaciones luminosas de tanta intensidad. Pero éstas son lo suficientemente intensas, en el interior de las estrellas, como para ejercer, sobre los estratos superficiales, presiones que llegan al millón de toneladas por centímetro cuadrado. Es decir: equilibran, en parte, la presión hacia el interior de estos estratos y evitan que la estrella se convierta en un pequeño y densísimo núcleo.

A las temperaturas descritas, los átomos chocan en forma tan violenta que, cuando los núcleos de hidrógeno entran en colisión entre si, o con núcleos de otros elementos (carbono y nitrógeno), se funden y originan núcleos de helio. Este proceso de fusión de núcleos se llama «-reacción termonuclear», lo que significa «reacción nuclear provocada por la temperatura». Cada vez que se forma un nuevo gramo de helio, se libera una energía equivalente a la que se obtendría quemando media tonelada de carbón. ¡Y se forman millones de toneladas de helio por segundo!

La fusión del hidrógeno es, pues, la reacción que mantiene el calor de las estrellas. Como la mayor parte de éstas contiene casi exclusivamente hidrógeno, y basta consumir un poco para obtener una gran cantidad de energía, se comprende que las estrellas puedan brillar ininterrumpidamente durante miles de millones de años.

La zona del interior de las estrellas en las que se produce ,La energía termonuclear es pequeña: muy inferior a una décima parte del volumen total de la estrella. Lo cual dificulta notablemente la llegada del calor a la superficie.

Una parte de éste se transmite por radiación (es decir: la energía térmica producida en el núcleo central es enviada, bajo forma de radiaciones electromagnéticas, a los átomos exteriores, que la absorben y la envían, a su vez, hacia átomos más exteriores, hasta que así, de átomo en átomo, la energía llega a la superficie de la estrella, irradiándose en el espacio). Pero la mayor parte de la energía térmica es transportada a la superficie por la circulación de la materia estelar, que se halla en continuo movimiento: sube caliente del centro, se enfría en la superficie, por cesión de calor, y vuelve fría al centro, en busca de más calor. Esta forma de transporte se llama transporte por «convección».

Los movimientos convectivos de la materia estelar provocan importantes fenómenos magnéticos, que repercuten en la superficie, produciendo maravillosas y fantasmagóricas manifestaciones: fuentes de gas incandescente, gigantescas protuberancias de gas luminoso coloreado, y manchas oscuras de materia fría, rodeadas por campos magnéticos, de extensión .e intensidad enormes. De esta naturaleza son las famosas manchas solares descubiertas por Galileo, que siempre han despertado gran interés entre los investigadores, por su influencia sobre la meteorología de nuestro planeta, sobre las transmisiones electromagnéticas, e incluso, al parecer, sobre algunos fenómenos biológicos.

La existencia de una estrella depende, por tanto, del perfecto equilibrio entre los mecanismos que producen la energía en su interior y los encargados de transportarla a la superficie. Cuando este equilibrio es inestable, las estrellas experimentan variaciones (estrellas variables); cuando, en cambio, se altera completamente, puede producirse uno de los más grandiosos fenómenos cósmicos: la explosión de una estrella, de lo cual nos ocuparemos en otro artículo.

Otros Temas Tratados en Este Sitio

Big Bang

Origen de la Vida

Origen del Hombre

Teoría de la Evolución

Muerte de una Estrella Los Pulsares Enana Blanca

Peso de Una Estrella de Neutrones

La Vida del Sol Tiempo de Vida Hidrogeno del Sol

La Luna Muestra Siempre la Misma Cara

Origen del aire que respiramos El Oxigeno

Agujeros Negros Origen, Formación y Características Breve y Fácil

Origen y Características de los Agujeros Negros
Muerte de Estrellas

Desde hace mucho tiempo uno de los temas predilectos de la ciencia-ficción han sido los agujeros negros, y en estrecha relación con ellos, el viaje a través del tiempo.

El concepto de agujero negro fue popularizado por el físico británico Stephen Hawking, de la Universidad de Cambridge, quien describe con ese nombre a una región del Universo de la que no puede salir ningún objeto una vez que entró allí.

Con esto en mente, sería interesante preguntarse qué le sucedería a alguien en el hipotético caso de encontrarse en las cercanías de una de estas regiones, qué sensaciones tendría y si la realidad que lo rodea sería igual a la que nos es familiar.

Hawking Físico astronomo

Para el físico Stephen Hawking y para la mayoría de los científicos un agujero negro es una región del Universo de la que no puede salir ningún objeto una vez que entró allí.

Agujeros negros: Como hemos visto en el nacimiento de las estrellas, una vez que el H y el He, el combustible termonuclear se han consumido en el núcleo de la estrella, sobreviene un colapso gravitatorio.

La evolución estelar culmina con la formación de objetos extremad mente compactos como enanas blancas o estrellas de neutrones cuando masa de la estrella no excede las 3 Mo (masa del Sol).

Si la masa es mayor, la compresión gravitatoria ya no se puede compensar con las fuerzas de repulsión de 1 electrones o neutrones degenerados y continúa tirando materia sobre la estrella: se forman los agujeros negros. En efecto, cuando los neutrones entre en colapso no existe ningún mecanismo conocido que  permita detener contracción.

Esta continúa indefinidamente hasta que la estrella desaparce, su volumen se anula y la densidad de materia se hace infinita. ¿Cómo entender una “estrella” más pequeña que un punto y con semejante densidad de materia en su interior?

Si una estrella se contrae, el campo gravitatorio en su superficie aumenta, aunque su masa permanezca constante, porque la superficie está más cerca del centro. Entonces, para una estrella de neutrones de la misma masa que el Sol la velocidad de escape será de unos 200.000 km/seg. Cuanto mayor es la velocidad de escape de un cuerpo más difícil es que algo pueda escapa de él.

En cierto momento la velocidad de escape llega al limite de 300.000 km/s. Esta es la velocidad de las ondas electromagnéticas en particular de la luz que será entonces lo único que puede escapar de estos objetos. Ya hemos mencionado que no es posible superar esta velocidad y por lo tanto cuando la velocidad de escape de una estrella sobrepasa este limite, nada podrá escapar de ella. Los objetos con esta propiedad se llaman agujero negros.

Desde 1915, con la teoría de la relatividad general de Einstein se sabía que la gravedad generada por un cuerpo masivo deforma el espacio, creando una especie de barrera; cuanto más masivo es el cuerpo, mayor es la deformación que provoca. Los agujeros negros se caracterizan por una barrera  profunda que nada puede escapar de ellos, ni materia ni radiación; así t da la materia que cae dentro de esta barrera desaparece del universo observable.

Las propiedades físicas de estos objetos son tan impresionantes que por mucho tiempo quitaron credibilidad a la teoría.

Esta predice la existencia de agujeros negros de todos los tamaños y masas: los miniagujeros negros tendrían la masa de una montaña concentrada en el tamaño de una partícula; un agujero negro de 1cm. de radio sería tan masivo como la Tierra; los agujeros negros estelares tendrían masas comparables a las de las estrellas dentro de un radio de pocos kilómetros; finalmente, los agujeros negros gigantes tendrían una masa equivalente a varios cientos de millones de estrellas dentro de un radio comparable al del sistema solar.

Una forma de detectar agujeros negros sería a través de ondas gravitatorias. Estas ondas son para la gravedad lo que la luz es para el campo electromagnético. Sin embargo la tecnología actual no permite todavía esta posibilidad. El colapso de una estrella o la caída de un cuerpo masivo sobre un agujero negro originarían la emisión de ondas gravitatorias que podrían ser detectables desde la Tierra con antenas suficientemente sensibles.

 Aunque estas tremendas concentraciones de materia no se han observado todavía directamente hay fuerte evidencia de la existencia de estos objetos. Los astrofísicos comenzaron a interesarse activamente en los agujeros negros en la década del 60, cuando se descubrieron fenómenos sumamente energéticos.

Las galaxias superactivas, como las Seyferts, cuásares y objetos BL Lacertae emiten una cantidad de energía mucho mayor que una galaxia normal, en todas las longitudes de onda. Todos estos violentos fenómenos parecen asociados con cuerpos compactos muy masivos: estrellas de neutrones o agujeros negros estelares en el caso de binarias X, estrellas supermasivas o agujeros negros gigantes en los núcleos galácticos activos.

Las aplicaciones más importantes de los agujeros negros a la astrofísica conciernen a los núcleos activos de galaxias y cuásares. Los efectos de las enormes energías involucradas allí podrían ser sumamente interesantes y podrían permitir explicar fenómenos que todavía no se comprenden.

Fuente Consultada:Notas Celestes de Carmen Nuñez

GRANDES HITOS EN LA HISTORIA DE LOS AGUJEROS NEGROS
1783 El astrónomo británico John Michell señala que una estrella suficientemente masiva y compacta tendría un campo gravitatorio tan grande que la luz no podría escapar.

1915 Albert Einstein dio a conocer su teoría de la gravitación, conocida como Teoría General de la Relatividad.

1919 Arthur Eddington comprobó la deflexión de la luz de las estrellas al pasar cerca del Sol.

1928 S. Chandrasekhar calculó el tamaño de una estrella que fuera capaz de soportar su propia gravedad, una vez  consumido todo si combustible nuclear. El resultado fue que una estrella de masa aproximadamente una vez y media la del Sol nc podría soportar su propia gravedad. Se le otorgó el Premio Nobel 1983.

1939 R. Opphenheimer explice qué le sucede a una estrella qué colapsa, de acuerdo con la Teoría de la Relatividad General.

1963 M. Schmidt identifica un quasar desde el observatorio de Monte Palomar.

1965 – 1970 R. Penrose y S, Hawking demuestran que debe haber una singularidad, de densidad y curvatura del espacio-tiempo infinitas, dentro de un agujero negro.

agujero negro

En el interior de un agujero negro, el retorcimiento del tiempo y el espacio aumentan hasta el infinito.
A esto los físicos llaman singularidad.

■ Un rayo de luz se curva al pasar cerca de un objeto masivo ya que está curvado el espacio que atraviesa. Si el rayo pasa sucesivamente por varios cuerpos su trayectoria se curvará hasta que el rayo quede girando en círculo, del que no puede escapar. Este es el efecto gravitatorio de los agujeros negros.

■ Un agujero negro es una zona del universo con una gravedad tan enorme que ni el tiempo puede salir de él.

■ Los pulsares y los quasars proporcionan información complementaria sobre la ubicación de los agujeros negros.

■ Detectar un agujero negro no es fácil. Se los descubre por la poderosa emisión de rayos X que los caracteriza.
Si un astronauta penetrara en un agujero negro no tendría forma de vivir. Debido a la intensísima fuerza gravitoria nos estiraríamos como un fideo hasta despedazarnos.

■ En el interior de un agujero negro el espacio y el tiempo aumentan hasta lo, infinito.

■ Se estima que el número de agujeros negros en el Universo es muy superior al número de estrellas visibles y son de mayores dimensiones que el Sol.

■ Existen varios agujeros negros identificados, uno se halla en nuestra Via Láctea: el Cygnus X-1.

AMPLIACIÓN DEL TEMA:
Fuente: Magazine Enciclopedia Popular: Los Agujeros Negros

Hagamos un ejercicio mental e imaginemos por un momento que somos intrépidos astronautas viajando al interior de un agujero negro…

Repasemos algunas ideas importantes. Los físicos saben desde hace mucho que un rayo de luz se curva al pasar cerca de un objeto masivo ya que está curvado el espacio que atraviesa. Pero ¿qué sucede si este rayo pasa sucesivamente cerca de varios cuerpos?.

Cada vez su trayectoria se curvará un poco más hasta que finalmente el rayo estará girando en círculo, del que no podrá escapar. Este efecto gravitatorio se manifiesta en los agujeros negros, donde la atracción es tan fuerte que nada, ni siquiera la luz, puede escapar de él una vez que entró.

La gravitación distorsiona además del espacio, el tiempo. Veamos qué sucede en la superficie de un agujero negro, el horizonte de sucesos, que coincide con los caminos de los rayos luminosos que están justo a punto de escapar, pero no lo consiguen.

DONDE EL TIEMPO SE DETUVO
Según la Teoría de la Relatividad, el tiempo para alguien que esté en una estrella será distinto al de otra persona lejana, debido al campo gravitatorio de esa estrella. Supongamos que nosotros, astronautas, estamos situados en la superficie de una estrella que colapsa, y enviamos una señal por segundo a la nave espacial que está orbitando a nuestro alrededor.

Son las 11:00 según nuestro reloj y la estrella empieza a reducirse hasta adquirir untamaño tal que el campo gravitatorio es tan intenso que nada puede escapar y nuestras señales ya no alcanzan la nave.

Desde ella, al acercarse las 11:00, nuestros compañeros astronautas medirían intervalos entre las señales sucesivas cada vez mayores, pero este efecto sería muy pequeño antes de las 10:59:59. Sin embargo, tendrían que esperar eternamente la señal de las 11:00. La distorsión del tiempo es aquí tan tremenda que el intervalo entre la llegada de ondas sucesivas a la nave se hace infinito y por eso la luz de la estrella llegaría cada vez más roja y más débil.

El tiempo, desde nuestro punto de vista como astronautas sobre la superficie de la estrella, se ha detenido. Llegaría un punto en que la estrella sería tan oscura que ya no podría verse desde la nave, quedando sólo un agujero negro en el espacio.

Pero como astronautas, tenemos un problema más angustiante.

La gravedad se hace más débil cuanto más nos alejamos de la estrella, es decir, varía rápidamente con la distancia. Por lo tanto, la fuerza gravitatoria sobre nuestros pies es siempre mayor que sobre nuestra cabeza. Esto significa que debido a la diferencia de fuerzas, nos estiraríamos como un fideo o, peor aún, nos despedazaríamos antes de la formación del horizonte de sucesos (a diferencia de lo que sucede en la Tierra, donde la gravedad para nosotros prácticamente no varía con la altura). Este experimento no es, por ahora, recomendable.

¿Qué ocurre con la materia dentro del agujero negro? Las teorías de Stephen Hawking y Roger Penrose, de la Universidad de Oxford aseguran que en el interior el retorcimiento del espacio y del tiempo aumentan hasta el infinito, lo que los físicos llaman una singularidad. Si una estrella esférica se encogiera hasta alcanzar el radio cero, ya no tendría diámetro, y toda su masa se concentraría en un punto sin extensión. ¿Qué sucede si la materia no puede salir del agujero?.

Sólo caben dos respuestas: o deja de existir o viaja a otra parte. Esta última posibilidad dio pie a la teoría del agujero de gusano: al caer en el agujero podríamos salir en otra región de Universo. Para desgracia de los novelistas de ciencia-ficción, esta posibilidad no posee gran aceptación científica hasta ahora.

¿ALGUIEN HA VISTO UN AGUJERO NEGRO?
Dado que se conoce muy poco acerca de estos huecos en el espacio, su estudio comenzó a desarrollarse mediante modelos matemáticos, aun antes de que hubiese evidencia de su existencia a través de observaciones. Pero, ¿cómo podemos creer en objetos cuya existencia se basa sólo en cálculos?.

La lista de evidencias comienza en 1963, cuando desde el observatorio de Monte Palomar en California, se midió el corrimiento al rojo de un objeto parecido a una estrella en dirección a una fuente de ondas de radio. Este corrimiento era muy grande, por lo que se pensó que se debía a la expansión del Universo y, por lo tanto, el objeto estaba muy lejos. Para ser visible, este objeto debería ser muy brillante y emitir una enorme cantidad de energía. A ellos se los llamó quasars (quasi-strange objects), y podrían proporcionar evidencia acerca de la existencia de los agujeros negros.

Otros candidatos para darnos información sobre los agujeros negros son los pulsares, que emiten ondas de radio en forma de pulso debido a la compleja interacción entre sus campos magnéticos y el material intergaláctico. También las estrellas de neutrones, objetos muy densos, podrían colapsar para convertirse en agujeros negros.

Detectar un agujero negro no es tarea fácil. La forma más utilizada está basada en el hecho de que estos objetos son fuentes emisoras de rayos X. Esto se relaciona con los sistemas binarios, formados por una estrella y un agujero negro. La explicación para este hecho es que de alguna forma se está perdiendo materia de la superficie de la estrella visible.

Como en una pareja de baile en una habitación pintada de negro donde la chica está vestida de blanco y el chico de negro, muchas veces se han observado sistemas en los que sólo hay una estrella visible girando alrededor de algún compañero invisible. Vemos girar a la chica, aunque no podamos distinguir a su pareja. Cuando la materia va cayendo en este compañero comienza a girar como una espiral y adquiere gran temperatura, emitiendo rayos X. Además, el agujero negro debe ser pequeño.

Actualmente se han identificado varios agujeros negros: uno de ellos es el caso de Cygnus X-l en nuestra galaxia, y otros en dos galaxias llamadas Nubes de Magallanes. Sin embargo, el número de agujeros negros se estima que es muy superior, pudiendo ser incluso mayor al de estrellas visibles y de mayores dimensiones que el Sol.

La Ciencia en el Siglo XX Los Adelantos Cientificos de la Historia

La Ciencia en el Siglo XX – Adelantos Científicos de la Historia

Stephen HAWKING, siglo XXEL BIG BANG: Durante casi todo el transcurso de la historia de la Física y de la Astronomía modernas no hubo fundamentos adecuados, de observación y teóricos, sobre los cuales construir una historia del Universo primitivo.

Desde mediados de la década del ‘60, todo esto ha cambiado. Se ha difundido la aceptación de una teoría sobre el Universo primitivo que los astrónomos suelen llamar “el modelo corriente”. Es muy similar a lo que a veces se denomina la teoría del Big Bang o “Gran explosión”, pero complementada con indicaciones mucho más específicas sobre el contenido del Universo.

Si escuchamos el silbato de un tren que se aleja rápidamente, su silbido nos parecerá más grave que si el tren estuviera quieto. El sonido parece tener una mayor longitud de onda cuando el tren se aleja.

Esta situación corresponde al fenómeno señalado primeramente por Johann Doppler en 1842. De la misma manera, la luz de una fuente que se aleja es percibida como si tuviese una longitud mayor: si el color original fuera naranja, la luz se percibiría más rojiza.

Grandes Científicos del Siglo XX Morgan Thomas Genética

Grandes Científicos del Siglo XX: Morgan Thomas – Genética

El Genoma Humano es el número total de cromosomas del cuerpo. Los cromosomas contienen aproximadamente 80.000 genes, los responsables de la herencia. La información contenida en los genes ha sido decodificada y permite a la ciencia conocer mediante tests genéticos, qué enfermedades podrá sufrir una persona en su vida.

Científicos y el Genoma, Morgan Thomas

También con ese conocimiento se podrán tratar enfermedades hasta ahora incurables. Pero el conocimiento del código de un genoma abre las puertas para nuevos conflictos ético-morales, por ejemplo, seleccionar que bebes van a nacer, o clonar seres por su perfección.

Esto atentaría contra la diversidad biológica y reinstalaría entre otras la cultura de una raza superior, dejando marginados a los demás. Quienes tengan desventaja genética quedarían excluidos de los trabajos, compañías de seguro, seguro social, etc. similar a la discriminación que existe en los trabajos con las mujeres respecto del embarazo y los hijos.

Un genoma es el número total de cromosomas, o sea todo el ADN. (ácido desoxirribonucleico) de un organismo, incluido sus genes, los cuales llevan la información para la elaboración de todas las proteínas requeridas por el organismo, y las que determinan el aspecto, el funcionamiento, el metabolismo, la resistencia a infecciones y otras enfermedades, y también algunos de sus procederes.

UN PIONERO DE LA GENÉTICA:

Poniendo a prueba las leyes de Mendel, el biólogo y genetista estadounidense Thomas Hunt Morgan reveló la lógica de la transmisión hereditaria. Lo hizo a partir de experimentaciones con la mosca de la fruta (Drosophila melanogaster), que le permitieron comprobar la teoría de la herencia ligada al sexo y la recombinación cromosómica.

Docente e investigador, trabajó también sobre embriología experimental y regeneración.

Pero su labor más célebre se desarrolló en el ámbito de la genética. Gracias a sus teorías reveladoras recibió el Premio Nobel de Medicina en 1933.

Thomas Morgan

Pruebas genéticas
Con espíritu cientificista, Thomas Hunt Morgan dudaba de las leyes de Mendel sobre la herencia Sentía que no tenía elementos para considerarlas válidas, por lo que decidió ponerlas a prueba en estudios sobre animales. Con ese objetivo comenzó su trabajo sobre la mosca de la fruta, que daría lugar a la teoría de la herencia ligada al sexo y convertirá al estadounidense en uno de los más importantes genetistas.

Morgan había observado que la mosca de la fruta presentaba ojos rojos, pera detectó un ejemplar con ojos blancos. Para comprender la lógica de la transmisión hereditaria, decidió estudiar el recorrido del gen responsable de tal mutación.

A partir de la cruza del insecto de ojos blancos -macho- y del estudio de su descendencia, observó que sólo los machos presentaban la mutación. Concluyó así que un gen preciso, con una determinada ubicación cromosómica, era el responsable del color blanco de los ojos. Esto implicaba que otros genes podían ubicarse en cromosomas específicos. La teoría de la herencia ligada al sexo estaba demostrada.

El médico Walter Sutton y el embriólogo Theodor Boveri ya habían planteado una teoría cromosómica de la herencia, pera su hipótesis no había sido suficientemente comprobada. Sólo tras las experimentaciones de Morgan este planteo sería umversalmente aceptado.

Un científico Nobel
El salón donde trabajó con múltiples ejemplares de la especie Drosophila metonogaster fue bautizado como «cuarto de las moscas». Fue en la Universidad de Columbia, donde Morgan fue profesor de Zoología Experimental entre 1904 y 1928. Pero su carrera profesional había comenzado mucho antes: realizó sus primeros trabajos de investigación en la Comisión de Peces de los Estados Unidos y en el Laboratorio de Biología Marina, en Woods Hole.

Luego formó parte de la Estación Zoológica de Napóles, donde conoció al naturalista y zoólogo alemán Hans Driesch, quien tendría gran influencia en el inicio de sus estudios sobre embriología.

En 1891 enseñó Biología en el Colegio de Mujeres Bryn Mawr y también fue docente y director del Laboratorio G. Kerckhoff, en el Instituto de Tecnología de California. Por sus descubrimientos en lo concerniente al rol jugado por los cromosomas en la herencia recibió el Premio Nobel en 1933.( Fuente Consultada: Gran Atlas de la Ciencia- Genética – National Geographic – Clarín)

Cientificos Genios del Siglo XX Historia de los Logros de la Ciencia

Científicos del Siglo XX: Historia de los Logros de la Ciencia

Rayo Láser, científicos siglo XXEl láser es un dispositivo electrónico que amplifica un haz de luz de extraordinaria intensidad. Se basa en la excitación de una onda estacionaria entre dos espejos, uno opaco y otro traslúcido, en un medio homogéneo. Como resultado de este proceso se origina una onda luminosa de múltiples idas y venidas entre los espejos, que sale por el traslúcido 

El fenómeno de emisión estimulada de radiación, enunciado por Einstein en 1916, constituye la base de la tecnología empleada en la fabricación de dispositivos láser. Los primeros experimentos que aprovecharon dicho fenómeno culminaron en el hallazgo, en 1953, del denominado máser, un sistema que empleaba un haz de moléculas separadas en dos grupos —excitadas y no excitadas—, utilizado para la emisión de microondas en una cámara de resonancia.

En una fase posterior, la investigación se encaminó al estudio de un método para producir este tipo de radiación estimulada en el caso de la luz visible.

Los Viajes Espaciales en el Siglo XX Caracteristicas y Problemas

Los Viajes Espaciales en el Siglo XX – Hechos Destacados –

astronauta, viajes espaciales nasaLa agencia espacial NASA, sigla que significa National Aeronautics and Space Administration, fue fundada en 1958 como una organización del gobierno de Estados Unidos.

La misión era planificar, dirigir y manejar todas las actividades aeronáuticas y espaciales de Norteamérica, exceptuando las que tuvieran fines militares.

El Presidente John F. Kennedy, el 25 de mayo de 1961, pronunció ante el Congreso de Estados Unidos las siguientes palabras:»Creo que esta nación debe proponerse la meta, antes de que esta década termine, de que el hombre pise la Luna y vuelva a salvo a la Tierra”.

El programa Apolo: Desde ese momento la NASA, tras el desafío impuesto por Kennedy, puso en marcha los programas espaciales Mercury y Gemini. En febrero de 1966, utilizando las investigaciones y experiencias arrojadas por ambas misiones, nace el ambicioso proyecto espacial Apolo.

El objetivo: llevar al hombre a la Luna.


En un inicio se barajaban algunas ideas que contemplaban construir una nave que fuese capaz de llevar a la Luna entre dos y cuatro tripulantes.

https://historiaybiografias.com/archivos_varios5/estrella1_bullet.png

UN MUNDO SIN FRONTERAS: Para lograrlo fue necesario mejorar el cohete lanzador. Los científicos fabricaron los Saturno, de los que se hicieron varios modelos, destacando el Saturno 5.

La historia de la vida del hombre sobre la Tierra es tan solo un suspiro comparada, por ejemplo, con la edad del Universo. Apenas medio millón de años, un lapso muy corto en la crónica de nuestro planeta, separan la conquista del fuego del descubrimiento de la superconductividad.

Sin embargo, el ser humano puso su sello en este mundo y lo moldeó a su medida. Nada en la Tierra sería igual sin su presencia. Pero hoy, los límites del globo le resultan demasiado estrechos y el hombre se ha lanzado a la conquista de nuevos mundos. Es el turno de la era espacial.

Las travesías por el espacio no son algo sencillo. En primer lugar, el medio de transporte debe cumplir con ciertos requisitos básicos. A diferencia de lo que sucede en la Tierra, donde podemos desplazarnos en automóviles, barcos, aviones o bicicletas, para abandonar el planeta hay que subirse a un vehículo que pueda alcanzar una velocidad lo suficientemente alta como para vencer la atracción gravitatoria terrestre.

Estos cohetes funcionan igual que los fuegos artificiales y obedecen al mismo principio: el de acción y reacción que enunciara el científico inglés Isaac Newton en 1687. Al igual que lo que sucede cuando se deja escapar el aire de un globo y éste se ve impulsado hacia adelante, los cohetes espaciales producen gas al quemar combustible.

Cuando el gas caliente escapa, la nave se impulsa hacia adelante, en una reacción igual pero en sentido contrario a la salida de los gases. El cohete necesita alcanzar una velocidad muy grande, de 40.000 km/hora, la denominada velocidad de escape, para vencer la atracción que el planeta ejerce sobre él y poder abandonar la atmósfera terrestre.

En el espacio exterior, lejos de un cuerpo de gran masa, la fuerza de gravedad es prácticamente nula. Esta situación totalmente atípica provoca una serie de desarreglos en el organismo de los astronautas, quienes deben ser cuidadosamente controlados.

Fuera de la Tierra, los astronautas enfrentan una variedad de trastornos: padecen de «anemia espacial», sus frecuencias cardíacas y respiratorias disminuyen, los músculos de sus extremidades se atrofian y sus huesos pierden calcio. Los efectos de la ingravidez se hacen sentir alrededor de una semana después de la partida, y deben pasar otros treinta días aproximadamente para que el cuerpo se acomode a la nueva situación.

De todos modos, la exposición prolongada a la ingravidez es potencialmente peligrosa. Por esta razón, los especialistas están ideando nuevas alternativas para los viajes de larga duración. La gravedad podría obtenerse en forma artificial haciendo rotar la nave.

De esta manera, las naves espaciales se podrían construir en forma de ruedas gigantescas que giran lentamente sobre su eje.

En los primeros días de viaje, la tripulación sufre del «mal del espacio», es decir, vómitos, dolor de cabeza y sudor. Esta es una consecuencia directa de la desorientación que produce la ingravidez sobre los órganos del equilibrio, ubicados en el oído interno.

Para dominar el Universo, el hombre necesita primero sobreponerse a los obstáculos que le genera este medio tan diferente de su ambiente natural. Para lograrlo, nada mejor que realizar una experiencia en ese medio.

En junio de 1997, el Laboratorio Espacial de Vida y Microgravedad se montó a bordo del transbordador «Columbia», y su tripulación llevó a cabo una serie de experimentos destinados a estudiar cómo se adaptan los animales, las plantas y los seres humanos a la falta de gravedad. Un año más tarde, la misma nave llevó una tripulación compuesta por 7 astronautas, 152 ratas, 18 ratones, 223 peces, 1.514 grillos y 135 caracoles, para analizar el funcionamiento del sistema nervioso de los seres vivos en el espacio.

Aún no se conoce cuál es el límite de la resistencia humana en el espacio. Enviar una misión tripulada a Marte, por ejemplo, llevaría alrededor de tres años.

Alimentar a toda una tripulación en un vuelo tan prolongado es un problema importante. Una solución sería producir los alimentos en invernaderos a bordo de la nave. Para ello, se podrían utilizar los cultivos hidropónicos, los cuales pueden crecer en ausencia de tierra.

En este método de cultivo, los nutrientes se aportan en soluciones líquidas y las plantas se sostienen sobre materiales porosos, como grava, arena o fibra de vidrio. Por otra parte, los científicos ya consiguieron hacer germinar semillas en el espacio, de modo que se muestran de lo más optimistas en lo que respecta a la «agricultura espacial».

Todos estos progresos nos llevan a pensar que, en un futuro no muy lejano, los viajes espaciales resultarán casi tan familiares como las vacaciones en la playa.

Fuente Consultada: Biologia y Ciencias de la Tierra «Un Mundo Sin Fronteras» – Editorial Santillana Polimodal Cuniglio, Barderi, Bilenca, Granieri y Otros

HIV Virus del SIDA Descubridor Enfermedades del Siglo XX Historia

HIV Virus del SIDA: Enfermedades del Siglo XX

Virus VIHRobert Charles Gallo:(Waterbury, Connecticut ,23 de marzo de 1937), es un investigador biomédico de origen estadounidense más conocido por su papel en la identificación del Virus de Inmunodeficiencia Humana (VIH) como agente responsable del Síndrome de Inmunodeficiencia Adquirida (SIDA), aunque su contribución en este descubrimiento permanece controvertida.

El HIV (Virus de la Inmunodeficiencia Humana) es un virus que se transmite por contacto sexual , transfusiones, o intercambio de jeringas infectadas, y tiene la particularidad de atacar a los linfocitos que son los directores de nuestro sistema de defensa. Inicialmente el HIV permanece en estado latente, es decir, «dormido» dentro de los linfocitos. En algunos casos, al cabo de un tiempo, a menudo años (hasta 10) y por causas aún no bien determinadas, el virus se activa, es decir, se «despierta» y comienza a destruir los linfocitos. De esta forma, el HIV debilita progresivamente el sistema inmune, logrando que nuestro organismo no pueda luchar adecuadamente contra diversos gérmenes.

En este caso se dice que el paciente sufre SIDA. El sida (acrónimo de síndrome de inmunodeficiencia adquirida) es entonces una enfermedad que afecta a los humanos infectados por el VIH. Se dice que una persona padece de sida cuando su organismo, debido a la inmunodeficiencia provocada por el VIH, no es capaz de ofrecer una respuesta inmune adecuada contra las infecciones.

Una persona infectada por el VIH es seropositiva y pasa a desarrollar un cuadro de sida cuando su nivel de linfocitos T CD4, células que ataca el virus, desciende por debajo de 200 células por mililitro de sangre.

El VIH se transmite a través de los siguientes fluidos corporales: sangre, semen, secreciones vaginales y leche materna El Día Mundial de la Lucha contra el Sida se celebra el 1 de diciembre.

La Comunicación en el Siglo XX Descubrimientos Mas Destacados Avances

La Comunicación en el Siglo XX-Descubrimientos Mas Destacados

En el mundo hay un hombre quBill Gatese demostró que un nerd puede llegar a ser popular. Sólo es necesario poseer una incalculable inteligencia y una enorme sed por lograr un objetivo.

Estamos hablando, por supuesto de Bill Gates, que gracias a su capacidad en el mundo de la informática, pero sobre todo gracias a su perspicacia y visión de futuro, hoy ostenta el título del segundo hombre más rico del mundo.

Durante años, la revista Forbes reservó el primer puesto de su ránking anual a Gates, quien recientemente fue reemplazado por el mexicano Carlos Slim. De todas formas, el rey del software puede disfrutar de una vida sin privaciones de ningún tipo, ya que actualmente posee una fortuna valuada en 53 mil millones de dólares.

Bill Gates es en realidad la demostración tangible del mito del «self-made man» estadounidense, pero además es el multimillonario norteamericano más joven que ha logrado alcanzar una fortuna partiendo de una inversión prácticamente de cero. Es que según la documentación oficial, Gates logró ganar su primer millón de dólares cuando sólo tenía 31 años.                        

Nacido el 28 de octubre de 1955 bajo el ostentoso nombre William Henry Gates III, el pequeño demostró una gran inteligencia desde muy temprana edad. Hijo del abogado William Henry Gates II y de la profesora Mary Gates, Bill pasó una infancia feliz y sin privaciones, junto a su hermana mayor, residiendo en la húmeda ciudad de Seattle.

Si bien la economía familiar era buena, lo cierto es que el pequeño Bill cursó parte de la escuela primaria en un colegio público, y recién en sexto grado fue trasladado a la escuela privada de elite de Lakeside, en Seattle. Fue precisamente allí donde descubrió su gran vocación.

En Lakeside había una computadora desde el año 1968, que en realidad fue la primera máquina de este tipo que estuvo bajo las delgadas manos de Gates. Pero además, esta institución educativa también le dio la oportunidad de conocer a su gran amigo, y posterior socio, Paul Allen.

Cuando llegó el momento de elegir universidad, el padre de Bill intentó por todos los medios de persuadir a su hijo para que estudiara abogacía, y de esta forma continuar con la tradición familiar.

Fue en aquella época que Bill comenzó a demostrar cierta rebeldía ante sus padres, ya que se rehusaba a estudiar, y pasaba largas horas, e incluso jornadas enteras, dentro del garaje de su casa, acompañado de Paul Allen, probando circuitos que le permitieran crear un ordenador pensado para la gente.

Por su aspecto físico y su forma de actuar, tanto Gates como Allen solían ser humillados por sus compañeros, ya que los consideraban los nerds más antisociales del instituto y del barrio. Sin embargo, ellos demostrarían que podían conquistar el mundo.

Ya a los 16 años, juntos fundaron la compañía Traf-O-Data, cuya función era monitorizar de manera automática la circulación en las calles de Seattle. Con aquel primer trabajo ganaron 100.000 dólares en un año.

Una vez que ambos comenzaron sus estudios en la Universidad de Harvard, en sociedad transformaron la Traf-O-Data en la empresa de software MicrO-SOft, mientras corría el año 1975.

Al año siguiente, Bill decidió abandonar la universidad para comenzar sus negocios, por lo que se trasladó a la zona de Albuquerque, ciudad en la que se encontraba la sede de la compañía Altair, con el objetivo de cerrar un contrato con la empresa en relación a la comercialización del lenguaje para computadoras Basic.

Fue en ese momento en que Gates y Allen decidieron transformar el nombre de su compañía y MicrO-SOft pasó a llamarse Microsoft, y al año siguiente lanzaron un nuevo lenguaje para computadoras.

Ante el éxito que estaba reportando la firma Apple a comienzos de la década de los ochenta, la compañía fabricante de equipos IBM decidió ponerse en contacto con Bill Gates para comprarle el sistema operativo MS-DOS.

Tengamos en cuenta que IBM necesitaba con urgencia dicho OS con el fin de poder competir con Apple.

El mito relata que en el momento de cerrar el trato con los directivos de IBM, Gates aún no tenía ningún sistema operativo listo para ofrecer en dicha operación, pero que lo consiguió pocos días después, ya que se lo compró a un joven programador por unos escasos billetes.

Obviamente, en el contrato, Bill Gates obligó a IBM a ceder los derechos de licencia, el mantenimiento e incluso la comercialización del DOS a Microsoft. Ante la realidad del mercado, IBM debió aceptar las condiciones.

De esta manera, el sistema operativo pasó a llamarse MS-DOS, es decir Microsoft DOS, por lo que cada vez que IBM vendía una PC fabricada por la compañía, que incluía el sistema operativo mencionado, debía pagarle a Microsoft un canon por cada copia del OS. A partir de aquel momento, gracias a IBM el MS-DOS se convirtió en el estándar de software mundial.

Para conocer más sobre la vida de Bill Gates, te invitamos a leer el artículo titulado «Bill Gates: La ventana del éxito».

Bill GatesCon sólo 25 años, Bill Gates había logrado una posición privilegiada en el naciente mundo del software, y su nombre podía escucharse en los pasillos de las compañías de hardware más importantes del mundo. Claro está, algunos hablaban bien de este joven, mientras que otros criticaban su aparente inmoral proceder.

El caso es que además del éxito comercial que representó para Microsoft el acuerdo con IBM, a comienzos del año 1982 llegaría otro triunfo para la compañía con el lanzamiento de la computadora personal Commodore 64, fabricada en Alemania y que incluía el sistema operativo Basic.

No obstante, por aquella época Gates aprovechando su gran talento y visión de futuro, comenzó a pensar en el desarrollo de un nuevo y realmente innovador sistema operativo, que dio como resultado el lanzamiento en 1985 de la primera versión de Microsoft Windows.

A partir de aquel momento, el sistema operativo Windows se convirtió en el competidor directo de Macintosh, introduciendo un software realmente novedoso, en el que se priorizó la interfaz gráfica que emula ventanas (de allí el nombre de Windows), la utilización de iconos de acceso y demás.

El éxito en ventas le permitió a la compañía Microsoft ingresar con sus acciones a la bolsa de Wall Street en 1986, que en aquel momento se vendieron al público a 21 dólares cada una. A los pocos meses, el valor original de las acciones había logrado cuadruplicarse, y al año siguiente Bill Gates se convirtió en el millonario más joven de todos los tiempos.

La llegada de la versión 3.0 del sistema operativo Windows, con una importante cantidad de mejoras y novedades, hizo que se convirtiera en el OS más utilizado en el mundo, lo que produjo un aumento notable en la acciones de la compañía Microsoft, y por ende Bill Gates pasó a ser el hombre más rico de Estados Unidos.

Prácticamente desde el nacimiento de la empresa, Microsoft se ha visto envuelta en diversos pleitos y controversias, tanto legales como éticas, con compañías fabricantes de software y de hardware. Incluso la firma dueña de Windows debió enfrentarse a un juicio de varios años, por ser acusada de monopolio y abuso de poder.

Muchos aseguran que los distintos contratiempos judiciales fueron la causa fundamental que llevaron a Bill Gates a dejar la dirección de Microsoft. Fue precisamente el 16 de junio de 2006 que anunció públicamente su decisión, y en el año 2008 abandonó sus tareas diarias al frente de Microsoft.

No obstante, continúa siendo el Presidente Honorario de la misma y dueño de la mayor cantidad de acciones de la compañía, lo que le reporta anualmente un monto aproximado de 100 millones de dólares. Mientras tanto, el control de Microsoft le fue otorgado a Steve Ballmer, que actualmente se desenvuelve como director ejecutivo de la empresa.

A partir de aquel momento, Gates ha comenzado a dedicar la mayor parte de su tiempo a la Fundación Bill y Melinda Gates, con sede en la ciudad de Seattle.

Desde dicha institución, el dueño del imperio del software y su mujer realizan distintas acciones de caridad, sobre todo en relación a campañas en la lucha contra el Sida y el cáncer, donando anualmente importantes sumas de dinero para crear programas de subvenciones en diversos países, como es el caso de la India.

Según las propias palabras de Gates, en declaraciones ofrecidas durante una entrevista para el diario español El Mundo, la Fundación apela a cubrir dos aspectos actuales fundamentales: «Hay dos cosas importantes. La primera es el software disponible para todo el mundo, centros de educación, bibliotecas, etc. Hemos hecho acuerdos con 80 países, sobre todo en África, en países que no cuentan con recursos para acceder por ellos mismos a las nuevas tecnologías. Por otro lado, tenemos también un plan B que trata sobre la investigación médica, biológica, etc.

Es decir, problemas que los países ricos tienen también. Hemos duplicado los fondos para combatir la malaria y enfermedades tan graves como el SIDA. Se grata de problemas que afectan al planeta entero, que tienen que ver con la superpoblación. Los gobiernos ayudan, pero nunca es suficiente. Estoy muy implicado en convencer a los gobiernos de ello, y también en convencer a otras grandes empresas».

Gracias a las labores desarrolladas por Gates y su esposa, la Fundación que lleva sus nombres obtuvo en el año 2006 el prestigioso Premio Príncipe de Asturias de Cooperación Internacional.
En la actualidad, Bill vive junto a su esposa y sus dos hijos en una mansión valuada en 53 millones de dólares, que desde hace años ha dado que hablar debido a la imponente tecnología incorporada a dicha vivienda.

Situada a orillas del lago Washington, la mansión fue construida en 1997, posee una superficie de 20 kilómetros cuadrados, y ha sido construida íntegramente en madera cuidadosamente seleccionada, con el fin de brindar una acústica perfecta.

Miles de sensores, cámaras ocultas, dispositivos electrónicos que permiten no sólo acceder al confort estándar de cualquier vivienda, sino que además la convierte en una verdadera casa inteligente, que incluso puede ser controlada a distancia.

Una particularidad llamativa, entre tantas excentricidades, de la casa de Bill Gates reside en que cada una de las personas que son invitadas a su residencia reciben un PIN electrónico, el cual está conectado a un servidor personal, que permite conocer con exactitud la localización dentro de la casa, además de almacenar información sobre sus movimientos.

Declarado amante de las artes plásticas, Bill Gates ostenta en su mansión una serie de pantallas gigantes que muestran diversas pinturas clásicas, las cuales pueden ajustarse de acuerdo al ánimo del magnate o bien a los gustos del invitado. Lujo y tecnología reunidos para dar el escenario adecuado al rey del software.

La Medicina en el Siglo XX El Primer Trasplante de Organos

La Medicina en el Siglo XX: El Primer Trasplante de Órganos

trasplante de órgano, Christiaan BarnardLa llamada telefónica que dejó huella en la historia de la medicina sonó cuando el doctor Christiaan Barnard (imagen izquierda) tomaba una siesta en su casa de El Cabo, Sudáfrica.

La persona que llamaba —una monja del hospital Groote Schuur de la ciudad— le informó que habían llevado a una joven atropellada que había resultado con daños cerebrales irreparables. Si moría, su corazón se podría usar en el primer trasplante de ese órgano en el mundo; era del grupo sanguíneo adecuado y su padre estaba dispuesto a dar su consentimiento.

Siempre rezo antes de cualquier operación”, escribiría posteriormente el doctor Barnard. «Suelo hacerlo al dirigirme hacia el hospital, porque voy solo en el auto en esos momentos. En esa ocasión sentí mas que nunca la necesidad de hacerlo, pero no pude,…. mis pensamientos se interponían».

Hasta entonces solo había realizado transplantes de esa índole con perros de laboratorio. Pero ese sábado 2 de diciembre de 1967, estaba a punto   de transplantar el corazón de un ser humano a otro.

La donadora era Denise Darvall, de 25 años , y el receptor Louis Washkansky, comerciante de la ciudad a quien le restaban pocas semanas de vida por su avanzada enfermedad cardiaca. Washkansky, ya había sobrevivido a varios infartos, pero antes de la operación presentaba la dificultad para respirar, insuficiencia renal, y hepática y tenia las piernas hinchadas.

Christiaan Barnard

Se suponía que no debía comer ni beber nada dulce debido a su diabetes, pero se las ingeniaba para que su esposa le llevara limonada y caramelos a escondidas.

Parecía más interesado en leer novélas de aventuras que en pensar en la ggravedad de su enfermedad. Pero demostró valor cuando Barnard le habló de la posibilidad de salvarle la vida. “Eso me han dicho», le confió, «‘Así que estoy dispuesto a jugármela».

Por extraña coincidencia, cuando la esposa de Washkansky, volvía ya tarde a casa en su auto, tras visitar a su marido en el hospital, vio una muchedumbre congregada donde había ocurrido el accidente de transito.

Denise DarvallMientras la policía le hacia señas de que siguiera su camino, se fijo en que una de las victimas del percance era una joven mujer que estaba tendida en el suelo. Más tarde se enteraría de que esa desafortunada chica era Denise Darvall. (imagen izquierda)

Hacia las 21 :00 horas de esa noche el doctor Barnard examinó el cuerpo de la señorita Darvall: desde el punto de vista clínico había muerto, pero su corazón seguía estando sano y firme.

Barnard no perdió tiempo. Un ordenanza empezó a afeitar el pecho de Washkansky mientras una enfermera preparaba la máquina cardiopulmonar del hospital, que el propio Barnard había importado de Estados Unidos al concluir su especialización en trasplantes en la Universidad de Minnesota.

Se bañó, se frotó las manos y los brazos con jabón antiséptico, se puso ungüento germicida en las fosas nasales y se enfundó una bata desinfectada, con un gorro y mascarilla, además de las botas de hule esterilizadas. Al entrar al quirófano vio a Washkansky sentado en la toesa de operaciones, sostenido por varios cojines.

Aunque apenas tenía aliento para hablar, Washkansky bromeó: Conque el viejo va para afuera y el nuevo adentro, ¿No?”

Poco después el paciente ya estaba anestesiado, y a la medianoche se inició la histórica operación. Bajo la hábil dirección de Barnard, su jefe de ayudantes, Rodney Hewitson, abrió el tórax de Washkansky.

“El corazón del enfermo quedó a plena vista”, escribió el doctor Barnard más tarde, agitándose como un mar embravecido, amarillo por medio siglo de tormentas, pero aún veteado por las azules corrientes de sus profundidades.”

Entretanto, en otro quirófano contiguo Denise Darvall se conservaba «viva» gracias a un respirador. Barnard entró corriendo y apagó la máquina; sus dedos ya mostraban señales de artritis, que pondríRodney Hewitson,Washkanskya prematuro fin a su carrera de cirujano, pero en breve tiempo abrió el tórax de Denise y extrajo el corazón.

Le colocó en un recipiente lleno de una solución salina helada y luego lo llevó al quirófano principal, donde lo conectaron a una bomba que hacia circular  la sangre de Washkansky, desde la máquina cardiopulomonar:

Barnard extrajo después el corazón hipertrofiado de Washkansky, y dejo un colgajo que se saturaría al órgano transplantado, este fue entonces acomodado en el tórax vacío del paciente. Por lo general un corazón femenino es un 20% menor que uno masculino, pero la cavidad de Washkansky tenia el doble del tamaño normal!

Usando hilo de seda y dos agujas Barnard inició entonces la delicada tarea de coser en su lugar el corazón transplantado. Se apagó la bomba que suministraba sangre al órgano y así al instante empezó a amoratarse. Mientras saturaba, Barnard echó un vistazo al reloj del quirófano: eran las 5 30 am. y el corazón ya había pasado 15 minutos sin sangre ni oxígeno.

Transcurrieron otros cuatro minutos y por fin Barnard  dio el último punto de sutura. ordenó que se volvieran a conectar la bomba y el corazón comenzó a llenarse de sangre.

Dr. Halmiton Naki Para hacerlo latir de nuevo, se le aplicó una potente descarga eléctrica a través de dos discos colocados como copas sobre él.

El cuerpo inconsciente de Washkansky se convulsionó y, mientras Barnard y sus 20 colaboradores lo observaban con ansiedad, el corazón empezó a palpitar una y otra vez, sin cesar.

Desconectaron la máquina cardiopulmonar y, más de echo horas después de haber iniciado la operación, llevaron al paciente a tina habitación esterilizada y lo colocaron debajo de una tienda de plástico, tenía el cuerpo erizado con 18 venoclísis y cables conectados a diversos instrumentos y aparatos clínicos.

Dr. Halmiton Naki ayudante clandestino de Barnard. Una historia de vida para conocer

Entonces dio principio la lucha contra las infecciones postoperatorias y contra el rechazo del órgano transplantado, que el organismo del paciente tendía a destruir. Se de administraron medicamentos antirrechazo, y una vez que paso el periodo de peligro Washkansky, disfruto cinco días maravillosos y de optimismo.

Pero el 15 de diciembre, 12 días después de la cirugía, una radiografía revelo que Washkansky, tenia una mancha oscura en un pulmón. Su esposa ya había notado que parecía tener catarro leve, pero en realidad era una pulmonía. Los fármacos que había estado tomando debilitaron demasiado el sistema inmunológico y lo dejaron indefenso contra gérmenes , que invadieron e inflamaron sus pulmones.

A pesar de los esfuerzos heroicos de Barnard y sus colegas, murió al amanecer del 21 de diciembre. Su nuevo corazón , implantado 18 días antes, funciono perfectamente hasta el momento final.