La Misión Apolo XI

Primer Acoplamiento en el Espacio Historia del Programa

HISTORIA DEL PROGRAMA SOYUZ-APOLLO-PRIMER ENCUENTRO ESPACIAL

En julio de 1975 se concretó un ambicioso proyecto conjunto entre los Estados Unidos y la Unión Soviética, consistente en el acoplamiento en órbita de una cosmonave Apolo con otra Soyuz. En esta misión se pusieron de manifiesto, en las técnicas utilizadas por ambas potencias para la conquista cósmica, diferencias que debieron en gran parte limarse con el objeto de hacer posible el éxito del programa.

Así, fue necesario emplear un módulo de anexión para que los tripulantes de una y otra cápsula pudieran aclimatarse lentamente a las diferencias de presión y de aire utilizado (oxígeno puro en la Apolo y oxígeno con nitrógeno en la Soyuz) y hasta ponerse de acuerdo acerca de la alimentación y los horarios de descanso.

mision soyuz apollo

Ambas naves acopladas

ANTES Y AHORA
La diferencia entre los vuelos orbitales iniciales y los actuales radica en que estos últimos cuestan mucho menos. ¿Por qué? Por la sencilla razón de que antes el cohete lanzador se usaba una soia vez y se perdía. Un cohete Saturno V, por ejemplo, que envió la nave Apolo a la Luna, costaba 300 millones de dólares y luego de terminar su combustible se perdía. Desde la construcción del “Space Shuttle” y otros naves similares se usa muchas veces un mismo equipo como un avión, lo que permite reducir notablemente los costos

Con “siete horas de diferencia partieron las cápsulas; de Baikonur, llevando a bordo a Alexei Leonov y Valeri Kubasov, y de Cabo Cañaveral, conduciendo a Thomas Stafford, Donald Slayton y Vanee Grand. Una vez en órbita hicieron las correcciones necesarias, descansaron y al día siguiente lograron sin dificultades el histórico acoplamiento.

En el aspecto político, significó el comienzo de una nueva era de cooperación; y en el técnico, un verdadero intercambio de conocimientos. Además, por primera vez desde el lanzamiento del primer Sputnik, la Unión Soviética abrió las puertas de su centro espacial de Baikonur no sólo a los científicos y cosmonautas sino también a los periodistas especializados de todo el mundo.

Se trata de un complejo levantado en medio de un desierto, que en nada se parece a la lujuriosa vegetación y los pantanos del Cabo Cañaveral, en Miami. Está situado cerca de la ribera este del Mar Caspio, en un sitio de difícil acceso y prácticamente sustraído a las posibilidades de espionaje desde la superficie o la atmósfera terrestres.

El desarrollo de la misión fue impecable y dejó las puertas abiertas a otro proyecto, ya en marcha, que se concretará cuando la astronáutica indique los nuevos rumbos a seguir.

Porque si bien esta misión significó la última de la serie Apolo, hay que esperar que Estados Unidos complete sus planes con el “transbordador espacial” (programa Shuttle) y que la Unión Soviética desarrolle los suyos con las series Soyuz o con las estaciones espaciales Salyut.

El descenso de la cápsula rusa se realizó tres días antes que el de la estadounidense, la que aprovechó ese tiempo en órbita para efectuar varios trabajos científicos. La Apolo regresó el 24 de julio de 1975 y a pesar de un inconveniente causado por el escape de gas letal que irritó los pulmones de los cosmonautas, el amerizaje en aguas del Pacífico se llevó a cabo con la precisión acostumbrada.

Para los Estados Unidos el programa Apolo-Soyuz representó la culminación de una larga serie de esfuerzos que se inició con las cápsulas Mercurio, de un solo tripulante; siguió con el proyecto Géminis, de dos ocupantes; y culminó con el plan Apolo, cápsula para tres astronautas.

A partir de aquí los programas ruso y norteamericano se bifurcaron; los soviéticos siguieron perfeccionado su navio Soyuz, acoplándolo con otras, cápsulas y dejándolo cada vez más tiempo en órbita: la NASA a su vez, tras un experimento de larga duración con el “Space Lab”, desechó los vuelos clásicos e hizo un paréntesis para reiniciar la actividad en 1980 con el “Space Shuttle” o Trasbordador Orbital.

tripulantes de la mision soyuz apollo

Los cinco tripulantes del programa conjunto pasaron a bordo 44 alegres horas en las que se alternaron los idiomas —inglés y ruso— con una facilidad que sorprendió a los mismos directores del programa. Parecía como si fuera una misión conjunta más que realizaran los cinco hombres del espacio. Alternando algunas bromas de tono político con informaciones sobre la marcha del vuelo y hasta discusiones acerca de cuál comida envasada o deshidratada era la más sabrosa, si la rusa o la estadounidense, se cumplió una misión que tuvo más importancia para la distensión entre Moscú y Washington que para los cosmonautas, quienes ya habían ensayado incontables veces en tierra esta misión, a tai punto que la esposa de Leonov manifestó a los periodistas: “Parece que para ellos es más fácil volar que esperar en tierra”.

Ampliar Este Tema En Este Sitio

Fuente Consultada:
Enciclopedia Ciencia Joven Tomo II Edit. Cuántica

Pioneros de los Viajes Espaciales Inventores de Cohetes

Pioneros de los Viajes Espaciales  – Inventores de Cohetes

Antes de que los hermanos Montgolfier hicieran su primera ascensión, nadie se había elevado nunca más que unos pocos centímetros sobre la superficie terrestre. Un siglo y medio después, miles de aviadores volaban a varios kilómetros por sobre la tierra. Luego, una vez conquistado el aire, los hombres empezaron a soñar en viajar a través del espacio hacia otros mundos.

Al principio parecía que los viajes espaciales no serían, por mucho tiempo, más que un sueño, ya que los problemas que se debían vencer eran dificilísimos. Uno consistía en que todos los motores hasta entonces conocidos tenían que quemar necesariamente algún tipo de combustible, y es bien sabido que ninguno de éstos puede arder en el espacio vacío donde no hay oxígeno con qué combinarse. Otro era el de que todos los aparatos de vuelo inventados hasta ese momento necesitaban aire para volar.

Pero hay una antigua forma de vuelo que no necesita aire. Si desatamos el cuello de un globo de juguete inflado, éste siempre se desplazará en la dirección opuesta a la del aire que escapa de él. Esto, no ocurre porque el aire mencionado empuje el del exterior: es que el de adentro del globo presiona fuertemente contra el frente, por donde no puede salir, pero no contra la parte posterior, o cuello, por donde sí puede escapar. Esta diferencia de presión es la que impulsa al globo hacia el frente.

Tsiolkovsky, hijo de un inspector forestal de Riazán, tras iniciar sus estudios en Moscú, se recibió de profesor de matemáticas, siendo asignado a la escuela de Borovo en 1882. Ya para aquel entonces el científico había llegado a profundizar sus estudios en tal forma que tenía casi terminada la teoría que años después lo hiciera célebre.

Tsiolkovski se dedicó a divulgar sus atrevidas ideas a través de obras de ficción, artículos periodísticos, muchos de los cuales fueron recibidos con luirlas por parte del gran público y con despectivas opiniones  por parte de  sus colegas moscovitas y de otaos países. En Borovo diseñó un dirigible enteramente metálico impulsado a motor de explosión -nítido precursor del Zeppelín germano-, un avión sumamente similar al que luego elevara pollos aires a los hermanos Wright y comenzó a afrontar las dificultades que había que vencer para iniciar los viajes interplanetarios.

Konstantín E. Tsiolkovski (1857-1935), científico e inventor ruso, pionero en la investigación de cohetes y espacial. A los nueve años se quedó casi totalmente sordo y siguió sus estudios en su domicilio; trabajó como profesor de matemáticas de la escuela secundaria hasta su retiro en 1920.

En 1903, una revista de Moscú publicó, con cinco años de arraso, su artículo “La exploración del espacio cósmico por medio de los aparatos a reacción“, en el que se sostenía que el único camino posible para abandonar  la Tierra  era  un cohete impulsado por propelentes líquidos como el oxígeno y el hidrógeno, fórmula utilizada años después por los misiles estadounidenses Centauro y Saturno-1.

En 1898 anticipó también la idea de la alimentación de los cohetes por medio de la presión, deflectores de lanzamiento, la cabina estanca conteniendo oxígeno para el piloto y un dispositivo para la absorción de anhídrido carbónico. De 1911 a 1915 perfeccionó su cohete y propuso un sistema para que el cosmonauta se halle en la cabina en posición horizontal para resistir la aceleración -idea que fue redescubierta 20 años después por el alemán Diringshofen.

Y en 1929 llegó a su momento cumbre, cuando concibió, con una precisión casi increíble, la construcción de un cohete de varias etapas pura escapar de la atmósfera; las escafandras de los astronautas; los satélites artificiales; las estaciones en órbita albergando invernaderos para la eliminación del gas de carbono -tal cual se hace hoy en día en las estaciones Skylab y Salyut-, e incluso la utilización de la energía solar como tuerza motriz de las astronaves, genial intuición hoy ya utilizada tras muchos fracasos de sus inventores.

Es recién en 1919 cuando comienzan a reconocerse los méritos de este pionero, que murió en 1935 convencido de que el destino del hombre está en las estrellas; idea que quedó grabada sobre su tumba, con una muy usada frase suya: “La humanidad no permanecerá siempre en la Tierra”.

El otro precursor, Goddard, había nacido en Massachusetts en 1882 y realizado sus estudios en la ciudad de Boston, al tiempo que su mente se dejaba llevar fantasiosamente por los trabajos de Verne; lentamente penetra en el mundo de los cohetes, representados en esa época únicamente por los de pólvora utilizados en la guerra o por aquel duramente criticado invento del misil a vapor, tipo ametralladora, del alemán Hermán Ganswindt en 1891.

Costeándose sus experimentos con sus escasos recursos, aquel joven llegó a demostrar la importancia de la cóhetería en la astronáutica e, incluso, en la guerra.

Goddard Cientifico

El ingeniero espacial estadounidense Robert Hutchings Goddard publica un libro titulado Método para alcanzar alturas extremas, en el que describe un tipo de cohete que podría alcanzar la Luna.

Tras perfeccionar un cohete con carga explosiva inventó en 1918 la célebre “bazooka”,arma que no se utilizaría hasta la segunda Guerra Mundial. Continuó luego sus experimentos y poco a poco comenzó a vislumbrar las posibilidades de construir un cohete impulsado por combustibles líquidos, y sin conocer las teorías de Tsiolkovski inició en 1920 sus primeros trabajos sobre el tema. Le llevó seis años concretar la idea, pero en 1926 logró algo fundamental en la historia de la astronáutica: el primer misil propulsado con carburante líquido.

A partir de entonces el pionero prosiguió su obra, ya con el apoyo del gobierno norteamericano, y fue obteniendo éxito tras éxito, hasta que la muerte lo sorprendió en 1946, cuando irrumpían en la carrera espacial otra serie de ideas y nombres que darían un fuerte impulso a la astronáutica.

Entre otros importantes avances debidos a la obra de Goddard podemos destacar los que significaron la bomba centrífuga de combustible; el cohete por etapas; las aletas desviadoras del chorro y la dirección giroscópica de loscohetes. Fue, además, el primero en lanzar un cuerpo a una velocidad mayor que la del sonido.

Alemania, creadora de las primeras bombas voladoras, las célebres V-1 y V-2, no surgió en la cohetería por obra de la casualidad. También allí existió un pionero: se llamó Hermán Oberth. Este,que trabajó casi exclusivamente en teoría, desarrolló las ideas del ruso en tal forma que llegó a proyectar íntegramente un cohete de 110 metros de altura, de características casi idénticas a las del Sarurno-5.

Oberth y sus alumnos Riedel, Nebel y Werner von Braun comenzaron a real izar sus proyectos y, en 1931, lanzaron el primer cohete europeo, que rápidamente fue perfeccionado hasta que el gobierno nazi vió -en 1933- la posibilidad bélica de esa arma y estableció una base experimental oficial en Kummersdorf, 28 kilómetros al sur de Berlín.

Allí, un año después la primera bomba V-1 alcanzó una altura de 2.200 metros. Después, a causa de los bombardeos aliados, la base fue trasladada a una isla del mar Báltico, Peeiiemünde, en la que se concretó la V-2, que asoló a Londres, Amberes, Lieja y Bruselas hasta el final de la contienda.

A partir de entonces, los científicos del Tercer Reich pasaron en su mayor parte a Estados Unidos y otros a la Unión Soviética, donde en base a los planos secretos que llevaban en la mente y a lo realizado por especialistas locales como Goddard, Tijoranov y Bajcjovangui, comenzó realmente la carrera espacial que culminaría asombrando al mundo, en 1957, con la puesta en órbita del primer satélite artificial: el Sputnik-1.

bomba V2 alemana

LA BOMBA V-2
Llevada a Estados Unidos por Von Braun y sus compañeros de Peenemunde, la bomba V-2 se convirtió en vital elemento para las naciones victoriosas de la segunda contienda mundial. En efecto, había llegado a producirse en serie y en número de 3.000, de las cuales solamente algunas decenas cayeron en manos de las tropas aliadas tras la “Operación Paperclip”, la que estuvo destinada a llevar a EE.UU. la mayor cantidad de científicos germanos y los documentos secretos sobre esa destructora arma, antes de que cayeran en manos soviéticas.

Y entre esos documentos se hallaban los de dos cohetes aún en experimentación, cuya finalidad, en tiempo no muy lejano, era bombardear la ciudad de Nueva York, además de los proyectos de Eugen Sanger, sobre un bombardero estratosférico, predecesor del X-15 norteamericano. He aquí algunas de las principales características de la V-2: Fuerza de impulsión: 24.401 kg. Impulso específico: 206 segundos. Peso vacío: 4.676 kg. Peso con combustible ycarga: 12.884kg.Tiempo de combustión: 70 segundos. Longitud total: 21 m. Diámetro: 1,65 m. Ancho entre alerones: 3,57 m.

ALGO MAS…

Durante la segunda guerra mundial inventores alemanes e ingleses produjeron aviones que usan un método similar de propulsión. Werner von Braun tuvo parte activa en la producción del arma alemana V-1. De su motor grandes masas de gas escapaban en rápida sucesión de cortos estallidos. A cada estallido la presión era mayor hacia el frente del motor que hacia atrás, dando a la bomba V-1 un impulso hacia adelante.

Von Braum cientifico alemanMientras tanto, en Inglaterra, el capitán Whittle inventó el motor de chorro, en el que un chorro continuo de gas da un impulso ininterrumpido hacia adelante. Motores de este tipo podrían funcionar en el espacio si no necesitaran combinar el oxígeno del aire con su combustible.

Afortunadamente, había todavía otra antigua forma de vuelo que usaba combustible pero no necesitaba oxígeno del aire exterior. Era el cohete, usado por primera vez en la China hace centenares de años.

En los primitivos cohetes el combustible era pólvora, y uno de los ingredientes de ésta —salitre— de por sí contiene bastante oxígeno como para permitir a los otros que ardan sin aire.

Cuando el combustible arde dentro de un cohete, la presión es mayor al frente, donde los gases no pueden escapar, que atrás, donde pueden hacerlo, del mismo modo que ocurría en el globo de juguete que tenía el cuello abierto. De este modo, el cohete da la solución a ambos problemas del vuelo espacial.

Durante la segunda guerra mundial, científicos alemanes, incluyendo a Werner von Braun, produjeron cohetes capaces de volar cientos de kilómetros, en los cuales el combustible líquido ardía con el oxígeno que se había comprimido y almacenado en forma líquida. Uno de ellos, el famoso V-2, está representado en la lámina (arriba, derecha, la figura más grande).

Sputnik satelite artificial rusoDesde entonces los vuelos de cohetes se han desarrollado enormemente, especialmente en Estados Unidos de América y en Rusia. Muchos cohetes modernos constan de tres partes, y cada una de ellas añade su propia tremenda velocidad a la ya aportada por su predecesora.

Con un cohete de este tipo los científicos rusos enviaron el primer satélite artificial de la Tierra, el Sputnik I, en octubre de 1957.

Tanto Rusia como los Estados Unidos han enviado luego muchos más, y hacia fines de 1960 más de 30 circulaban alrededor de la Tierra. Un cohete ya ha hecho impacto en la Luna. Otro ha dado la vuelta alrededor de ella, tomando fotografías del lado hasta entonces nunca visto. Todavía otro se ha transformado en un diminuto planeta que gira alrededor del Sol.

En abril de 1961 el astronauta ruso Yuri Gagarin surcó el espacio interplanetario dando un giro completo en 89 minutos alrededor de la Tierra, y en agosto del mismo año, otro cosmonauta ruso, Gherman Titov, dió 17 vueltas en torno a la Tierra en 25 horas 18 minutos. En febrero de 1962, el estadounidense John H. Glenn dio 3 vueltas alrededor de la Tierra en 4 horas 54 minutos.

Fuente Consultadas:
Enciclopedia Ciencia Joven La carrera espacial Edit. Cuántica Fasc. N°12
El Triunfo de la Técnica Tomo III Globerama Edit. CODEX

El Descubrimiento del Planeta Neptuno La Influencia de Urano

HISTORIA DEL DESCUBRIMIENTO DE NEPTUNO Y PLUTÓN

Mucha sorpresa causó la revelación de Federico Guillermo Herschel cuando descubrió, en 1781, con la ayuda de un telescopio de fabricación casera, un nuevo planeta, nunca visto antes. Este famoso astrónomo tuvo siempre para sus observaciones, la colaboración de su hermana Carolina; la lámina del ángulo inferior izquierdo los muestra a ambos trabajando.

Herchell Guillermo astronomo

Urano, que así fue llamado este nuevo planeta, está tan alejado del Sol —a unos 2.991.200.000 km. con un año 84 veces más largo que el nuestro— que las manchas de su superficie no pueden ser apreciadas con claridad. Tiene algunos cinturones paralelos a su ecuador, de color grisáceo, y parece que está constituido en su mayor parte por el gas metano.

El diámetro de Urano es de 49.700 Km.; está levemente aplanado en los polos y su tiempo de rotación es de unas 10% horas. Contrariamente a otros planetas, cuyos ejes están algo inclinados con relación a las órbitas, los puntos de su eje están dispuestos casi en la misma dirección que su trayectoria, de manera que muchas veces avanza con un polo adelante. Otras veces, también, sus polos apuntan hacia la Tierra, de tal forma que podemos ver la totalidad de un hemisferio; algunas veces lo vemos de costado y entonces el aplanamiento del polo es bien evidente.

Seis años después de descubrir a Urano, Herschel vio dos de sus satélites, llamados Titania y Oberón. Más recientemente se han identificado otros tres, Ariel, Umbriel y Miranda. Cuando éstos dan la vuelta alrededor del ecuador de Urano, podemos observarlos en la totalidad de su curso; esto no es posible para ningún otro satélite.

También difieren de todos los demás satélites en que giran de este a oeste, en lugar de hacerlo de oeste a este. Sus distancias a Urano están comprendidas entre 129.000 y 586.500 km. Están muy alejados para ser medidos, pero tienen probablemente unos pocos cientos de kilómetros de diámetro.

El color azul verdoso de Urano se debe al gas metano presente en su atmósfera fría y clara. Lo que en la imagen parece ser el extremo derecho del planeta es en realidad el límite entre el día y la noche. Por la forma de girar el planeta, la noche y el día duran 42 años cada uno. Los científicos se formaron esta visión de Urano por las imágenes enviadas por el Voyager 2 en 1986, en un momento en el que la sonda estaba a 9,1 millones de kilómetros del planeta.

Apenas fue descubierto Urano, los matemáticos comenzaron a dibujar su órbita; pero pronto se dieron cuenta de que sus movimientos no concordaban con los cálculos. Pensaron entonces que debia haber otro planeta, aún más distante del Sol, que lo alejaba de su curso. De una manera totalmente independiente, dos jóvenes matemáticos, Le Verrier y Adams, se pusieron a la tarea de descubrir este planeta, no por medio del telescopio, sino por puro cálculo.

Esto fue sumamente dificultoso, pero finalmente triunfaron y enviaron sus resultados a los astrónomos, para que los verificaran. Lamentablemente, la verificación del resultado obtenido por Adams no fue continuada; pero en 1846, Galle, del Observatorio de Berlín, trabajando sobre las cifras de Le Verrier, halló este desconocido planeta, de acuerdo con la posición calculada.

El nuevo planeta, llamado Neptuno, el nombre del dios del mar, emplea 164 años y 280 días en dar una vuelta completa alrededor del Sol y está a una distancia media de 4.467.200.000 km. de éste, demasiado lejos para poder conocerlo bien.

Es levemente más grande que Urano, pues tiene unos 53.000 km. de diámetro y tarda 17 horas en dar una vuelta alrededor de su eje. Muy poco puede apreciarse en su superficie, que está constituida, completamente o en su mayor parte, por gases, como los demás planetas grandes.

Tiene dos satélites: Tritón, grande, de por lo menos 4.900 km. de diámetro, más cercano a Neptuno que la Luna a la Tierra, y Nereida, de 321 km. de diámetro, que se traslada describiendo una órbita sumamente alargada, de manera que algunas veces se encuentra a 1.609.300 km. de Neptuno mientras que otras veces se halla a 9.660.000 km.

Neptuno:En 1989 la misión Voyager 2 produjo esta imagen de Neptuno en falso color, mostrando los diferentes componentes de la atmósfera del planeta. El rojo muestra la luz del Sol dispersada por una capa de neblina alrededor del planeta, el azul verdoso indica el metano y las manchas blancas son nubes en la parte alta de la atmósfera.

El descubrimiento de Neptuno provocó, naturalmente, una gran duda en los astrónomos, la de si habría o no otros planetas más alejados del Sol.

Finalmente, hallaron que pequeñas diferencias entre las trayectorias calculadas de Urano y Neptuno y sus actuales movimientos hacían posible esa suposición. Así, en 1905, Percivall Lowell, que era al mismo tiempo astrónomo y matemático, comenzó a probar, por medio de cálculos, la existencia del que llamó “planeta X”. Triunfó en teoría, pero murió antes de que sus resultados pudieran ser confirmados.

No fue sino en 1930 cuando Clyde Tombough, del Observatorio de Flagstaff, en Arizona, anunció que había descubierto el “planeta X”. Examinando fotografías del cielo, vio que lo que había parecido una pequeña estrella era realmente un planeta, que se movía lentamente entre los demás. Las copias de dos fotografías que llevaron al descubrimiento se muestran en el costado superior derecho de la ilustración; fueron tomadas con tres días de diferencia entre sí y se puede apreciar que la pequeña “estrella” señalada por las flechas de color está ubicada en distintos lugares.

Plutón, último planeta del sistema solar, últimamente cuestionado por su pequeño tamaño

Este planeta recientemente descubierto es llamado Plutón, nombre del antiguo dios del averno. La distancia media que lo separa del Sol es de alrededor de 5.920.000.000 de km. y tarda 249 años para recorrer toda su órbita. Tan alejado se halla Plutón, que desde su superficie, el Sol aparecería como una gran estrella, según se ve en la parte inferior de la ilustración; pero ese paisaje es imaginario, puesto que poco se conoce de este planeta y ni siquiera se sabe si tiene satélites o no. Su diámetro, según se cree, es de 4.900 km.

Ver: Sistema Solar Para Niños

Fuente Consultada:
GLOBERAMA Tomo: Cielo y Tierra Nuestro Mundo En El Tiempo y El Espacio
Enciclopedia Microsoft ENCARTA
Enciclopedia Ciencia Joven Fasc. N°38 Los Planetas del Sistema Solar

 

 

 

 

Historia del Telescopio – Inventor y Primeras Observaciones

HISTORIA DEL TELESCOPIO: SU INVENTOR Y LAS PRIMERAS OBSERVACIONES

ORIGEN DEL INVENTO: Despúes de la invención del microscopio no debía pasar mucho tiempo para que se hagan distintas combinaciones de lenetes y aumentaran los objetos distantes, o bien, hacerlos mas próximos.

El descubrimiento parece que se produho en 1608 por accidente. Hans Lippershey (1590-1619) un anteojero holandés, tenía un ayudante que jugaba con los lentes durante sus momento de ocio, y descubrió que si sostenía dos lentes, delante de sus ojos, a una cierta distancia de la otra, y miraba a través de ellas, veía el campanario de una iglesia situada a lo lejos como si estuviera considerablemente más cerca, y además invertida.

Hans Lippershey (1590-1619)

Asustado, se lo contó a su patrón, el cual de inmediato captó la importancia del descubrimiento. Lippershey montó las lentes en un tubo, colocándolas a la distancia adecuada entre sí, y logró el primer telescopio primitivo (de las palabras griegas que significan «ver lejos»).

Los Países Bajos aún se hallaban en rebelión contra España, y Lippershey se dio cuenta de que el telescopio constituiría una importante arma de guerra, al hacer posible la observación de la proximidad de navios o tropas enemigas, antes de poderlos descubrir a simple vista.

Así se lo explicó a Mauricio de Nassau, quien le comprendió y trató de mantener en secreto las características del dispositivo. Este propósito fracasó, sin embargo, pues los rumores se extendieron, y el aparato era demasiado sencillo para no ser reconstruido en seguida.

La astronomía óptica emplea, para captar la luz, dos tipos de instrumentos: el anteojo (o telescopio refractor) y el telescopio reflector, o telescopio propiamente dicho. Consisten básicamente en un tubo provisto en uno de sus extremos (el que apunta al cielo) de un objetivo y, en el otro (próximo al ojo del observador), de un ocular.

El objetivo recoge los rayos luminosos emitidos por los astros observados y los concentra teóricamente en un punto —una pequeña mancha en realidad—, que el ocular amplía.

La naturaleza del objetivo es lo que distingue el anteojo del telescopio: en el primero es una lente —o, más bien, una combinación de lentes— que refracta la luz, mientras que en el telescopio es un espejo en el que la luz se refleja.

Las dimensiones del objetivo determinan las posibilidades máximas del instrumento: la energía, o luz, recogida está en función de su superficie colectora, mientras que de su diámetro depende su aptitud para separar dos fuentes luminosas angularmente próximas (poder separador), o distancia angular mínima entre dos puntos objeto que permita obtener imágenes separadas.

UN POCO DE HISTORIA…
Los Descubrimientos de Galileo Galilei

El científico italiano Galileo Galilei , debido a su formación técnica, pudo entender mejor que Lippershey el principio de funcionamiento este tipo de lente, por lo que pudo construir uno de mayor aumento (30x) y que le permitió observar algunos satélites de Júpiter y los novedosos cráteres de la “perfecta” Luna. Entre otras observaciones futuras, Galileo pudo estudiar Saturnos y sus anillos y las fases del planeta Venus.

Telescopio de Galileo

El mayor de los telescopios de Galileo aumentaba en treinta veces la imagen, pero era muy imperfecto. Desde entonces la astronomía recibió un extraordinario impulso de notables científicos vinculados al desarrollo de lentes y telescopios, que son la base de los modernos instrumentos de nuestros días.

Con todo estos conocimiento publuca un pequeño libro, que se podía leer en un par de horas, de solo 24 hojas llamdo Sidereus nuncius, que significa “El Mensajero de las estrellas”, donde informa sobre los observado cn su nuevo telescopio.

Para ello usa una forma de expresarse sumamente distinta al utilizada hasta el momento, a los efectos que sea comprendida por todos los curiosos de su época, consiguiendo que este libro se convienta en una especie de best sellers del momento. La novedad de esta información, no fue por su originalidad, pues ya otros científicos de su época habían también enfocado el firmamento nocturno, sino que fue el primero en publicar sus observaciones

Un gran científico europeo, que vivía en Alemania, pudo leer esta edición porque Galilei el envía una copia, solicitandolé que diera su opinión al respecto, opinión que resultó positiva, aunque no pudo confirmar esas observaciones ya que no contaba con el moderno instrumento

En una carta muy amable y elogiosa contestó Kepler a Galileo, rogándole que le prestara un telescopio para repetir las observaciones y ofreciéndole ser su escudero. Galileo no sólo no le prestó el telescopio sino que ni siquiera le contestó su carta.

Galileo Galilei

En el año 1609, el físico y astrónomo italiano Galileo Galilei recibió, según dice él mismo, noticias del extraordinario invento holandés. Como no se sabía nada de su construcción, Galileo se puso a meditar sobre el acerca de su construccn tema y tuvo la satisfacción de construir un primer anteojo que aumentaba en tres veces el tamaño de los objetos. Inmediatamente construyó anteojos con los cuales descubrió cráteres en la Luna, las fases de Venus, las manchas del Sol y los s liles de Júpiter. También especie de “orejas” que luego serían identificadas como los anillos que orbitan a Saturno.

En 1611, Galileo muy entusiasmado con sus logros, decide avanzar, y dar un paso importante, mostrando su telescopio en Roma a las mayores autoridades eclesiásticas. Fue muy bien recibido, atendido con una importante cena en su honor y escuchado. Galileo apuntó su equipo hacia el cielo y los invitó a observar, tratando de explicar el nuevo fenómeno que veían por ese misterioso tubo.

Observaron a Júpiter con sus satélites. Más tarde desmanteló el telescopio para que todos pudieran ver las dos lentes que lo formaban. A este instrumento le habían dado el nombre en latín de perspicillum o instrumentum, pero se dice que el nombre de telescopio fue dado por un principe de la zona conocido como Cesi, quien creo el nuevo nobre de telescopio.

Mas tarde se entrevistó primero con el cardenal Barberini, que más tarde sería el papa Urbano VIII; también se entrevistó con el papa Paulo V, en una audiencia muy amistosa.

De vuelta a su Padua, en 1611 siguió estudiando los astros celeste. Decidió estudiar el Sol, pero debió ingeniarse una pantalla para evitar lastimarse la vista con la fuerte energía lumínica con que nos abraza. Pudo descubrir las manchas solares y también su periódo de rotación.

En 1615 un teólogo romano conservador expresó la opinión de que la concepción copernicana debía tratarse como una hipótesis, pues contradecía a la palabra de la Biblia. Galileo insistió en que era real. En el edicto de 1616 el Santo Oficio puso el De revolutionibus orbium coelestium de Copérnico en el índice de libros prohibidos y ordenó a Galileo que no siguiera defendiendo a Copérnico so pena de ser encarcelado.

Galileo se daba cuenta que tarde o temprano el papa se moriría. Pocos años después se cumplieron sus expectativas y su viejo amigo Maffeo Barberini, que tantas veces le había defendido, fue elegido papa. Pero el poder absoluto corrompió a Barberini tan absolutamente que cuando los pájaros del Vaticano interrumpieron sus pensamientos hizo envenenarlos. Barberini —ahora el papa Urbano VIII— confirmó el edicto de 1616.

Galileo se mantuvo en las suyas. Durante seis años, animado por su amistad con el papa, trabajó en un libro titulado Diálogos sobre los dos máximos sistemas del mundo. Allí siguió lo legislado al pie de la letra; presentaba sus ideas como una hipótesis que explicaba un personaje llamado Salviati. El punto de vista de la Iglesia estaba representado por un personaje llamado Simplicio.

El insulto era intencionado y se percibió. En 1632 se prohibía el libro. Al año siguiente Galileo fue procesado por la Inquisición. Negó que creyera en el sistema copernicano, se derrumbó en todos los sentidos y se le ofreció firmar una confesión donde afirmaba: «El Santo Oficio me ha considerado vehementemente sospechoso de herejía; es decir, de haber sostenido y creído que el Sol es el centro del mundo e inmóvil, y que la Tierra no es el centro y se mueve». Se puso de rodillas, leyó el texto en voz alta y lo firmó.

La leyenda dice que entonces susurró: «Eppur si muove» («Sin embargo, se mueve»). Esta historia no es cierta, escribe el físico George Gamow, «y sólo ha dado pie a una vieja anécdota según la cual Galileo estaba observando el rabo que meneaba el perro de un amigo que entró, por equivocación, en el Santo Oficio de la Iglesia». Sin embargo, si Galileo no reaccionó de este modo, hubiera debido hacerlo. Algunas leyendas merecen la pena ser perpetuadas.

Galileo fue condenado a prisión y a repetir siete salmos una vez a la semana durante tres años, pero el papa redujo el castigo del astrónomo setentón a arresto domiciliario.

Galileo pasó el resto de su vida confinado en su villa próxima a Florencia (donde lo visitó una vez John Miltón). Hasta su muerte, su hija la hermana María Celeste lo cuido. (Un accidente geográfico de Venus lleva el nombre ella).

Durante este periodo, Galileo se quedó ciego, probablemente a consecuencia de mirar el Sol. Pero no todos los placeres le fueron negados; hasta su muerte en 1642 tocó el laúd, habilidad que había aprendido de su padre.

ALGO MAS SOBRE LOS TELESCOPIOS ASTRONÓMICOS

REFLECTORES Y REFRACTORES
5e pueden distinguir dos tipos principales de telescopios: refractores (o de lentes) y reflectores (o de espejos). Estos dos tipos combinados constituyen los instrumentos más recientes, como el telescopio de Maksutov. Las imágenes producidas por los telescopios reflectores están libres del efeto de aberración cromática, lo cual, para ciertos tipos de trabajos, constituye una clara ventaja respecto de los refractores ; pero, por otra parte, es::s últimos no presentan los efectos de difracción producirdos en los soportes del segundo espejo de los telescopios reflectores, aunque estos efectos no constituyen necesariamente un obstáculo de importancia.

El telescopio refractor suele ser más conocido; su principio es análogo al que se aplica en la construcción de catalejos, binoculares y anteojos de teatro. La luz procedente del objeto que se observa entra en el aparato a través de la lente objetivo. El objetivo de los telescopios se construye casi siempre corregido, para evitar la aberración cromática (o sea el defecto que suelen presentar muchas lentes que producen la aparición de franjas con los colores del el arco iris).

Hay alguna excepción a este respecto, particularmente en campo de la astronomía solar, pero estos casos caen fue-
a de nuestra atención en este momento. La luz se refracta al atravesar el objetivo, es decir, se desvía; la magnitud de
a desviación depende de la curvatura de la lente objetivo.

Para una lente dada, la desviación proyecta la imagen del objeto en un punto invertida, del mismo modo que lo está la imagen formada sobre la película por la lente de una cámara fotográfica. Si colocamos una placa fotográfica hemos trasformado el telescopio en una cámara fotográfica, y así se lo usa para fotografiar los astros.

En esta época de reflectores gigantes quizá resulte sorprendente saber que tales instrumentos son, por así decirlo, unos recién llegados. El principio en el que se basan es conocido desde hace más de doscientos años, pero los trabajos para su adaptación práctica sufrieron durante largo tiempo toda una serie de reveses técnicos.

Hoy día, los telescopios más grandes son invariablemente del tipo reflector. No parece aventurado afirmar que será muy difícil mejorar el refractor, con un objetivo de más de un metro de diámetro, del observatorio Yerkes, en Williams Bay, Wisconsin. Las razones para esta afirmación son varias y bien fundadas. En primer lugar, el moldear un disco de vidrio de grandes dimensiones es una tarea que requiere pericia extraordinaria y que origina gastos cuantiosos, y, desde luego, es incomparablemente más difícil obtener un gran disco de vidrio ópticamente puro, adecuado para la elaboración de una lente, que el necesario para formar un espejo.

El grosor de una lente aumenta con su diámetro, lo que significa un aumento en la cantidad de luz que es absorbida por el vidrio —lo cual, se comprende fácilmente, es un inconveniente para el astrónomo—. Pero, además, es necesario que la lente, bien centrada, esté sostenida en el extremo del tubo telescópico; un disco de vidrio macizo, sostenido sólo por sus bordes, tiende a deformarse por la acción de su propio peso (la lente del observatorio Yerkes pesa más de 225 Kg.), y cualquier imperfección tiene consecuencias catastróficas sobre la calidad de la imagen formada por la lente.

Estos problemas no se presentan en el caso del telescopio reflector. Para construir un espejo no es esencial la purezaóptica del vidrio, con tal de que la superficie que va a ser trabajada ópticamente reúna ciertas condiciones. La diferencia fundamental entre los dos sistemas es ésta: en un refractor la luz pasa a través de la lente, lo que exige una gran pureza óptica; en un reflector la luz se refleja en la superficie de un espejo, sin que resulte afectada por la calidad del vidrio.

corte de un telescopio refractor

Telescopio “refractor”. La lente objetivo A forma una imagen real en B, la cual se observa mediante la lente de aumento u ocular C.

En el telescopio reflector de Newton. La luz que entra por el tubo del telescopio incide sobre la superficie del espejo, al que se ha dado, con gran precisión, una forma parabólica. Esta superficie está formada por una capa muy fina de plata, o de aluminio (actualmente se prefiere el aluminio, porque la plata se deteriora muy rápidamente por la acción de distintas impurezas presentes en la atmósfera).

Corte de un telescopio reflector

Forma de Newton del “telescopio reflector”. La imagen real formada por el espejo cóncavo se observa lateralmente en el telescopio.

El espejo parabólico formaría la imagen en su punto focal A, pero antes de que los rayos alcancen este punto son desviados lateralmente por un pequeño espejo plano B, que está colocado con una inclinación de 45° respecto del eje principal del espejo primario.

De este modo la imagen es examinada con el ocular C en una dirección perpendicular a la de la luz enfocada por el aparato. Este tipo de reflector tiene gran aceptación entre los aficionados, por su sencillez. Sin embargo, los grandes instrumentos modernos no se sujetan exactamente a este esquema; incorporando el sistema óptico de Cassegrain se consigue una mayor versatilidad.

En el sistema de Cassegrain se reemplaza por un espejo convexo el pequeño espejo secundario B, y se practica un orificio en el espejo primario para permitir la observación de la imagen. Así, imagen y ocular se sitúan detrás del espejo principal, lo que proporciona varias ventajas, siendo la más importante la posibilidad de replegar la distancia focal, lo que permite reducir las dimensiones del tubo telescópico, con lo que el instrumento resulta más manejable.

corte de un telescopio sistema cassagrain

Forma de Cassegrain del “telescopio reflector”. La imagen real formada por el espejo cóncavo se observa por el extremo del telescopio.

Fuente Consultada:
El Universo Para Curiosos Nancy Hathaway
Telescopios y Estrellas Daniel Malacara – Manuel Malacara
Enciclopedia Larousse Ilustrada Tomo I El Universo y La Tierra

Evolución de la Observacion del Espacio Historia

Cronología de las técnicas de observación
c. 2800 a. C: Stonehenge. La primitiva construcción incluye un foso, un montículo de tierra, 35 toneladas de restos pedregosos y cincuenta y seis pozos, llamados agujeros de Aubrey, que pueden haber sido utilizados para predecir eclipses. Entre 600 y 1000 años después se agregaría el famoso círculo de piedras.

c. 2600 a. C.: Se construye la Gran Pirámide de Gizeh, orientada hacia el Cinturón de Orion y Thuban de Draco el Dragón, la estrella del norte en aquel tiempo.

c. 440 a. C.: Se construye en Saskatchewan, Canadá, la Rueda de la Medicina de la Montaña del Ratón orientada hacia la posición del Sol en el solsticio de verano.

52 a. C. a 132 d. C: Los astrónomos chinos proyectan una esfera armilat para medir las posiciones de los objetos celestes. Empezando por un anillo metálico que representa el ecuador, incluye al final un ani lio que representa la trayectoria de los planetas, otro que reprc senta el meridiano y un reloj de agua.

150 d. C: Equipado con un plinto —un bloque de piedra con un arco calibrado que se utilizaba para medir la altura del Sol— y una regla triangular llamada triquetrum, Ptolomeo anota la posición de las estrellas.

927: Un fabricante árabe de instrumentos llamado Nastulo construye el astrolabio más antiguo que se conoce, un mapa metálico de los cielos que representa el movimiento aparente de las estrellas alrededor de la Polar y en relación con el horizonte.

1000: Los mayas erigen un observatorio en Chichén Itzá, en la península de Yucatán. Conocido como el Caracol, está alineado con el sol en los solsticios así como con las estrellas Castor, Pólux, Fomalhau y Canope.

1391: El Tratado sobre el astrolabio de Geoffrey Chaucer enseña a construir y utilizar el astrolabio para medir la posición de las estrellas.

1576: Tycho Brahe inicia la construcción de Uraniborg, su observatorio insular. Entre el equipamiento hay un cuadrante de pared, una gran esfera armilar y un sextante que abarca 30° de firmamento y va equipado con brazos fijos y móviles para medir las distancias entre las estrellas.

1608: El óptico holandés Hans Lippershey inventa el telescopio.

1609: Galileo Galilei se construye su propio telescopio. Un refractor con dos lentes de cristal (el objetivo convexo y el ocular cóncavo) que aumenta la imagen unas treinta veces.

1611: Johannes Kepler, retinando el telescopio, sustituye el ocular convexo por otro cóncavo, con lo que agranda el campo de visión pero invierte la imagen.

1636: El fraile y matemático francés Marín Mersenne propone la utilización de espejos para construir un telescopio reflector.

1668: Isaac Newton construye un telescopio reflector utilizando un espejo cóncavo en lugar de objetivo. Dado que los distintos colores se refractan de manera distinta, los telescopios refractores que se utilizan en osla época producen alrededor de las imágenes un cerco con los colores del arco iris. El reflector elimina esta aberración cromática porque los colores se reflejan de forma homogénea.

Otra ventaja es que el espejo, a diferencia de las lentes, puede sostenerse por detrás, con lo que produce menos distorsión. El físico francés N. Cassegrain diseña un telescopio en el que la luz se refleja desde un espejo secundario convexo a través de un agujero hecho en el primer espejo, una mejora del gran reflector new-toniano, en el que el ocular quedaba en la parte superior del telescopio, con lo que exigía al observador que trepara a una torre o escalera para mirar. Con el telescopio de Cassegrain el observador se mantiene a nivel del suelo. Según Newton, «La ventaja de este aparato es ninguna».

1733: Chester Moor Hall superpone dos clases de cristal para aumentar la lente del objetivo a la vez que suprime la aberración cromática.

1758: Utilizando el invento de Hall para hacer lentes de flint glass y de crown glass, John Dolland hace una lente acromática, que presenta en la Royal Society.

1789: William Herschel construye un telescopio con un espejo de 49 pulgadas.

1845: William Parsons, conde de Rosse, construye un telescopio reflector con un espejo de 72 pulgadas, el mayor del mundo hasta 1917. Se lo conoce como el Leviatán de Parsonstown.

1888: Se acaba el telescopio refractor de 36 pulgadas del Observatorio de Lick.

1897: Se construye el mayor telescopio refractor del mundo en el Observatorio de Yerkes, en Wisconsin. Tiene un objetivo con una lente de 40 pulgadas y un tubo de 64 pulgadas.

1908: Se acaba el telescopio reflector de 60 pulgadas de Monte Wilson.

1917: Se acaba el telescopio reflector de 100 pulgadas de Monte Wilson.

1930: Bernhard Schmidt inventa el Telescopio Schmidt, que utiliza lentes correctoras para eliminar la distorsión alrededor de los bordes de los espejos y para hacer fotografías claras del firmamento con gran angular.

1936: Después de diseñar el primer radiotelescopio del mundo, el ingeniero Grote Reber, de Illinois, erige un plato metálico de 9,15 metros en su patio trasero y empieza a hacer el mapa de la Vía Láctea, proyecto que completa al cabo de ocho años.

1948: Se acaba el telescopio reflector de 200 pulgadas de Monte Palomar.

1962: Un pequeño cohete detecta rayos X procedentes de más allá del sistema solar.

1970: Se lanza el primer satélite de rayos X.

1978: Se lanza la nave espacial Explorador Internacional de Ultravioletas (IUE), alimentada por energía solar.

Se lanza el Observatorio Einstein, que contiene un telescopio de rayos X de alta resolución.

1980: Una serie de veintisiete observatorios dispuestos en forma de Y, llamada la Gran Formación (Very Large Array), comienzan a operar en Nuevo México.

1981: El dispositivo de carga acoplada (CCD) deja obsoleta la fotografía. Mientras que las fotografías utilizan una fracción de la luz procedente de un objeto para producir un cambio químico en una película, el mucho más sensible CCD responde a casi toda la luz y envía corrientes eléctricas directamente al ordenador.

1983: Es puesto en órbita el Satélite de Astronomía Infrarroja (IRAS).

1989: Se lanza el satélite Explorador del Fondo Cósmico (COBE) de la NASA.

1990: Se pone en órbita desde la lanzadera espacial Discovery el Telescopio Espacial Hubble.

1991: Se pone en órbita desde una lanzadera espacial el Observatorio Compton de Rayos Gamma (GRO), con cuatro detectores de rayos gamma a bordo.

1992: El 14 de abril comienza sus observaciones el Telescopio Keck, con los treinta y seis espejos hexagonales colocados en su sitio. El 24 de agosto, su gemelo el Keck II recibe el primer segmento de sus treinta y seis espejos coordinados.

1993: Diciembre. Astronautas instalan durante un paseo espacial nuevos paneles solares, giróscopos, una nueva cámara y otros instrumentos para corregir la visión del Telescopio Espacial Hubble.

Entre los futuros instrumentos que se espera que estén funcionando el año 2000 se cuentan: el Telescopio Keck II; el Observatorio Estratosférico para Astronomía en el Infrarrojo Lejano (SOFÍA)en órbita; la Instalación Astrofísica de Rayos X Avanzada (AXAF); la Instalación Espacial para Telescopio de Infrarrojos (SIRTF); el Telescopio Sloan de la Universidad de Princeton, diseñado para hacer un mapa del desplazamiento hacia el rojo de un millón de galaxias; y el telescopio de múltiples espejos controlado por ordenador del Observatorio Europeo Austral en Chile, conocido como el VIT (Gran Telescopio).

El Gran Telecsopio que será construído en Chile

Fuente Consultada:
El Universo Para Curiosos Nancy Hathaway

Los Telescopios Mas Importantes del Mundo Medidas y Ubicación

TELESCOPIOS REFRACTORES Y REFLECTORES: Los primitos astrónomos utilizaban sus ojos y algunos sencillos instrumentos como el cuadrante para medir ángulos, pero hace unos 350 años, en 1609, Galileo inventó su “tubo óptico” o telescopio de construcción casera, y al dirigirlo al cielo la astronomía inició una nueva era.

Desde aquel entonces el astrofísico ha aprendido a aplicar la fotografía y la electricidad para resolver sus problemas, a separar y analizar la luz solar y de las estrellas, y a utilizar de muy diversos modos otros tipos de radiaciones que nos llegan de las profundidades del espacio.

Las radiaciones procedentes del espacio son, en verdad, las únicas fuentes de información de que disponen los astrónomos para bosquejar su esquema del universo. Dichas radiaciones nos llegan en tres formas distintas: luz, calor y ondas radioeléctricas. Observamos y medimos la luz y el calor con los telescopios ópticos, y las ondas radioeléctricas mediante los radiotelescopios.

Los dos principales telescopios ópticos son el telescopio refractor y el reflector. Ambos recogen la luz proveniente de objetos distantes y la concentran para formar una pequeña imagen. En los dos instrumentos la imagen es aumentada luego mediante un ocular.

Telescopio refractor:
El tipo de telescopio que nos es más familiar es el refractor, con una gran lente en su parte anterior. Esta lente frontal, llamada objetivo por encontrarse más cercana del objeto a observar, recoge la luz y la desvia o refracta hacia el foco. Este principio parece bastante sencillo, pero el llevarlo a la práctica no lo es tanto. La razón de ello estriba en que nadie ha diseñado aún una lente que desvíe todos los colores por igual. La luz violeta y la azul son más desviadas que la luz roja. Por lo tanto si utilizamos una sola lente como objetivo de un telescopio refractor, dicha lente lleva los rayos luminosos de los distintos colores a diferentes focos y vemos una imagen rebordeada por una coloración borrosa.

En los primeros años del telescopio, los astrónomos encontraron en este Icnómeno un gran inconveniente cuando intentaron efectuar observaciones y mediciones de precisión. Sin embargo, en 1733, un inglés, Chester Moor Hall, que se había dedicado al estudio óptico del ojo humano como pasatiempo, encontró la forma de eliminar dicho inconveniente y mejoró notablemente la calidad de la observación.

Ejemplo de funcionamiento de un telescopio refractor

Una gran lente (el objetivo) recoge la luz procedente de una estrella y la desvía hacia el foco produciendo en él una pequeña imagen. Esta se aumenta mediante otra lente (el ocular).

Telescopio Reflector: Otra forma de resolver este problema de la colora ción de los bordes. Si concentramos la luz mediante un espejo cóncavo, en vez de utilizar un objetivo de cristal, podemos dar por resueltos todos los problemas que se plantean al emplear lentes.

El espejo cóncavo nos enviará todos los colores hacia el mismo foco, y aunque todavía debemos recurrir a un ocular construido con lentes, es posible diseñarlo de tal forma que no se produzca ningún efecto de coloración. En este aspecto, por lo menos, el telescopio reflector con su gran espejo cóncavo es preferible al telescopio refractor con sus grandes lentes.

Un telescopio refelctor internamente

En tiempos de Isaac Newton no había lentes acromáticas. Para soslayar el problema que representaba el contorno coloreado, construyó un telescopio que tenía un espejo cóncavo en lugar de una lente. El espejo cóncavo enfocaba la luz de una estrella y la dirigía hacia un espejo plano inclinado, el cual a su vez reflejaba la imagen de la estrella hacia un ocular situado al lado.

TABLA CON LOS PRINCIPALES TELESCOPIOS DEL MUNDO

UBICACIÓN Y NOMBRE ALTITUD DIÁMETRO PROPIETARIO INICIO NOMBRE
Mauna Kea; Hawai, EE UU (W.M. Keck Observatory) 4150 10 Universidad de California y Caltech 1992 Keck Teiescope
Zelenchúkskaia; monte Pastujov, Cáucaso, Rusia 2 070 6,00 1976 Bolshoi Teleskop Azimutalnii(BTA)
Monte Palomar; California, EE UU 1706 5,08 EEUU 1948 Hale
Monte Hopkins; Arizona, EE UU (Fred Lawrence Whipple Observatory) 2 600 4,60 (6 x 1,8) Smithsonian Institution 1979 Múltiple Mirror Teiescope (MMT)
La Palma; Canarias, España (Observatorio Roque de los Muchachos) 2 300 4,20 RU 1988 William Herschel
Cerro Tololo; Chile (Cerro Tololo Interamerican Observatory, CTIO) 2 400 4,00 EEUU 1976
Siding Spring; Nueva Gales del Sur, Australia (Anglo-Australian Observatory) 1 164 3,89 RU-Australia 1975 Anglo-Australian Teiescope
Kitt Peak; Arizona, EE UU (Kitt Peak National Observatory, KPNO) 2 064 3,81 EEUU 1973 Mayall
Mauna Kea; Hawai, EE UU (W.M. Keck Observatory) 4 194 3,80 RU 1979 UK Infrared Teiescope (UKIRT)
Mauna Kea; Hawai, EE UU 4 200 3,60 Canadá-Francia 1979 C.F.H. (Canadá-Francia-Hawai)
La Silla; Chile 2 400 3,57 ESO* 1976
Calar Alto; Sierra Nevada, España 2 160 3,50 RFA 1983
La Silla; Chile 2 400 3.50 ESO* 1988 New Technology, Teiescope (NTT)
Monte Hamilton; California, EE UU (Observatorio Lick) 1277 3,05 EEUU 1959 Shane
Mauna Kea; Hawai, EE UU 4 208 3,00 EEUU (NASA) 1979 IRTF (Infra Red Teiescope Facility)
Monte Locke; Texas, EE UU (Observatorio MacDonald) 2 070 2,72 Universidad de Texas (EE UU) 1969
Crimea; Ucrania (Observatorio de Crimea) 2,60 1961 Shajn
Monte Aragats; Armenia (Observatorio de Biurakan) 1500 2,60 1971

Historia y Construcción del Gran Telescopio en Monte Palomar

ESTÁ EN CONTRUCCIÓN UN NUEVO Y GRAN TELESCOPIO EN CHILE

Comenzó a cosntruirse el telescopio mas grande del mundo, llamado el “telescopio de treinta metros”, que se llama así por los 30 metros de diámetro que tiene su espejo principal, es el resultado de la colaboración entre universidades e instituciones de Estados Unidos, Canadá, China, India y Japón y cuenta con una inversión de 1.400 millones de dólares. En total, tendrá 100 metros de ancho y 492 espejos hexagonales que le darán una resolución diez veces mayor a la que actualmente ofrece el Hubble, de la NASA, lo que sin duda lo convertirá en una de las herramientas más poderosas para explorar el universo. Se espera esté listo para el año 2022.

Ampliación:
Principales telescopios en uso en el mundo

Se inicia por describir los telescopios refractores, que son los más antiguos, y terminaremos por describir los reflectores, más modernos.

El telescopio refractor más grande que se construyó fue el de un metro de abertura, del observatorio de Yerkes, a finales del siglo pasado, con fondos proporcionados a la Universidad de Chicago por el magnate C. T. Yerkes, a petición de George Ellery Hale.

Observatorio de Yerkes

La montura para este telescopio fue construida en el año de 1890 por la compañía Warner and Swasey. Algunas experiencias recientes muy desagradables con las bajas temperaturas en las montañas hicieron que se tomara la decisión de colocar el observatorio a 129 kilómetros al noroeste de Chicago, en un lugar con una altura de tan sólo 75 metros sobre el nivel del mar.

El objetivo de este telescopio fue construido por Alvan Clark en 1985. Las lentes solas pesaban 225 kilogramos sin su montadura, a pesar de haberse construido con un grueso excepcionalmente pequeño, a fin de hacerlas tan ligeras como fuera posible. El 21 de mayo de 1897 hicieron la primera observación tres astrónomos, entre los que se encontraba Hale. Según palabras del mismo Hale, con este telescopio fue posible ver detalles lunares y planetarios que nunca antes habían sido observados.

Otro telescopio refractor históricamente muy importante, construido antes que el de Yerkes, es el del observatorio de Lick, construido también por Clark en 1888 y apoyado económicamente por James Lick, quien murió en 1879, antes de que fuera terminado el proyecto. El observatorio de Lick se instaló en el Monte Hamilton, en Santa Clara, California. Este telescopio tenía un objetivo de 90 centímetros de diámetro.

Ahora haremos una síntesis de los telescopios reflectores más grandes que existen, comenzando por el mayor de todos ellos, que es el de 6 metros de abertura, que se encuentra instalado en la Unión Soviética.

El telescopio reflector de 6 metros de abertura de la Academia de Ciencias de la URSS se comenzó a construir en el año de 1960. Después de muchos estudios para encontrar un buen lugar de observación, se instaló en el monte Semirodniki, a una altura de 2 070 metros al norte de la cordillera caucásica.

El trabajo en la construcción se inició en 1966 y comenzó a funcionar aproximadamente 10 años después. Este inmenso telescopio es hasta la fecha el mayor del mundo y quizá lo sea por mucho tiempo más, pues los problemas prácticos que tiene un telescopio de este tamaño son formidables. El espejo primario de este telescopio es de vidrio borosilicato (equivalente al Pyrex). La parte posterior del espejo es de forma convexa, a fin de que el espejo tenga un grueso aproximadamente constante y con ello minimizar las distorsiones térmicas.

La montura de este telescopio es de tipo altazimut, ya que una ecuatorial de estas dimensiones sería imposible de construir sin que tuviera muy serios problemas de flexiones mecánicas. La montura altazimut tiene menos problemas de flexiones, pero a cambio de ello la compensación por el movimiento diurno de las estrellas tiene que hacerse moviendo en forma alineal muy complicada los dos ejes, al mismo tiempo que se gira también el portaplacas fotográfico. Todo esto se hace simultáneamente con motores independientes, controlados por medio de una computadora.

El telescopio de 5 metros de abertura de monte Palomar fue el más grande del mundo durante casi tres décadas. Cuando se concibió la idea se pensó que era un gran proyecto que requería mucha planeación y esfuerzo.

Quien concibió la idea de construir este telescopio fue George Ellery Hale, quien además se tomó el trabajo de reunir los fondos necesarios.

Uno de los detalles técnicos más importantes era la selección del material para el espejo. Se sugirieron muchos materiales, pero finalmente se decidió utilizar cuarzo fundido, con vidrio Pyrex como alternativa. Varios fracasos en los intentos para fundir el bloque de cuarzo del diámetro requerido hizo que la selección final fuera Pyrex. El coeficiente de expansión del Pyrex es casi cinco veces mayor que el del cuarzo fundido, pero una tercera parte que el del vidrio común. Aumentando el contenido de cuarzo en el Pyrex se logró que el coeficiente de expansión fuera sólo tres veces superior al del cuarzo.

Se fundieron en la compañía Corning Glass, en el estado de Nueva York, dos bloques de Pyrex de 5 metros de diámetro, el primero de marzo de 1934, con la presencia de un gran número de observadores. El tanque donde se estaba fundiendo el vidrio se colocó dentro de un gran horno.

Las 65 toneladas de vidrio se vaciaron durante 15 días en forma continua. Después, tomó otros 16 días llegar a la temperatura de fusión de 1 575 °C. Luego se comenzó a pasar el vidrio fundido del tanque al molde final en crisoles de 300 kilogramos a la vez. El enfriado hasta 800 °C se hizo en cuatro semanas, 10 veces más rápido de lo previsto.
Al examinar la pieza final se detectaron tensiones y pequeñas fracturas internas, por lo que se intentó fundir un segundo bloque. Se pensó que el enfriado debía hacerse en 10 meses.

Cuando ya habían transcurrido siete meses se desbordó el río Chemung, pero se logró con gran esfuerzo que el agua no llegara al horno. Un mes después hubo un gran temblor, que por fortuna no causó ningún daño.
Finalmente, en 1935 se trasladó en un tren especialmente acondicionado el gran bloque de vidrio, de Corning, Nueva York a Pasadena, Cal., adonde llegó en perfectas condiciones.

Mientras tanto, en el California Institute of Technology se había instalado un gran taller óptico con una máquina pulidora que pesaba 160 toneladas, a cargo de J. A. Anderson y Marcus Brown.

El proceso de generar la curvatura deseada significaba profundizar en el centro casi 10 centímetros, desbastando casi cinco toneladas de vidrio. El segundo paso fue afinar la superficie hasta darle forma esférica, por medio de un proceso de esmerilado con granos de esmeril cada vez más finos.

Después, antes de pulir, se emplearon tres meses en lograr una buena limpieza sin granos de esmeril, tanto del espejo como de la máquina. En el proceso final de pulido y parabolizado se utilizaron 31 toneladas de abrasivos y casi 10 años. Se consideró listo para ser probado en noviembre de 1947.

El 3 de junio de 1948 tuvo lugar la ceremonia oficial de inauguración, donde estuvo presente la viuda de Hale y se develó un busto de bronce de su esposo, con una placa bautizando el telescopio con su nombre.

Al principio de los años 60, la Associated Universities for Research in Astronomy, comenzó el proyecto de construir dos telescopios reflectores de cuatro metros de abertura, para ser instalados uno en el observatorio de Kitt Peak en Arizona, y otro idéntico un poco más tarde en el cerro Tololo, en Chile.

Uno de los espejos era de Cervit y el otro de cuarzo fundido, ambos materiales con un coeficiente de expansión térmica despreciable. La inaguración del observatorio de Kitt Peak fue en junio de 1963.

Los principales telescopios refractores


Diámetro en m.
Constructor
Inició operaciones
Nombre oficial
Observatorio

1,01
Alvan Clark & Sons
1897
Yerkes, Univ. de Chicago
,89
Alvan Clark & Sons
1888
Refractor de 83 cm
Lick, en california, EUA
,83
Paul & Prosper Henry
1889
Observatorio de Niza, en Francia
,80
C. A. Stenheil
1899
Instituto Central de Astrofísica en Alemania Oriental
,76
John A. Brashear
1914
Refractor Thaw
Allegheny, en Pennsylvania
,74
Paul & Prosper Henry
1886
Lunette Bischoffsheim
Obs. de Niza en Francia
,71
Sir Howard Grubb
1894
Refractor visual de 64 cm
Old Royal Greenwich, en Inglaterra
,68
C. A. Stenheil
1896
Refractor Grosser
Archenhold Sternware, en RDA
,67
Sir Howard Grubb
1880
Refractor Grosser
Instituto de Astronomía de la Universidad de Viena
,67
Sir Howard Grubb
1925
El telesc. Innes
Estación del Observatorio Astronómico Sudafricano en Johannesburgo, Sudáfrica
,66
Alvan Clark & Sons
1883
Leander Mc Cormick en Virginia, EUA
,66
Alvan Clark & Sons
1873
Ecuatorial de 60 cm
Observatorio Naval de EUA en Washington
,66
Sir Howard Gribb
1899
El refract. Thompson
Observatorio Real de Greenwich, en Inglaterra
,66
J.B. Mc Dowell
1925
Refractor Yale-Columbia
Monte Stromlo, ACT, Australia

Los principales telescopios reflectores


Diámetro en m.
Constructor
Inició operación
Nombre oficial
Observatorio

6,00
Equipo de trabajo óptico de Leningrado
1976
Telescopio Altazimutal Bolshoi
Observatorio astrofísico Especial de la Unión Soviética.
5,08
J. A. Anderson Marcus Brown
1948
George Elery Hale
Monte Palomar, California
4,50
Centro de Ciencias Ópt. U. de Arizona
1979
Telescopio de espejos Múltiples
Kitt Peak, Arizona
4,20
1985
Islas Canarias, España
4,00
Taller Óptico de Kitt Peak
1976
Intermericano de cerro Tololo, Chile
4,00
Taller Óptico de Kitt Peak
1973
Nicholas U. Mayall
Kitt Peak, Arizona
389
Grubb-Parsons
1975
Anglo-Austral
Observatorio Angloaustriaco en Austria
3,80
Grubb-Parsons
1979
Infrarrojo del Reino Unido
Unidad del Observatorio Real de Edimburgo, Hawaii
3,60
Dominion
1979
Canadiense francés, hawaiano
3,57
Recherches et Études Optiques et de Sciences Connexes
1976
ESO 3.6 metros
Europeo del sur, Chile
3,05
Don O. Hendrix
1959
C. Donald Shane
Lick, California
300
Taller Óptico de Kitt Peak
1979
Infrarrojo de la NASA
Mauna-Kea, Hawaii

Fuente Consultada:
Telescopios y Estrellas Daniel Malacara – Manuel Malacara
Enciclopedia Larousse Ilustrada Tomo I El Universo y La Tierra

Hitos de la Carrera Espacial Primera Mujer en el Espacio Perra Laika

carrera espacial

sputnik

SPUTNIK: PRIMER SATÉLITE (URSS) EN ORBITA

¿Cuándo se lanzó el Sputnik?
El 4 de octubre de 1957, fue lanzado el Sputnik 1 en la entonces Unión Soviética, en Kazakhstan, cerca de la ciudad de Leningrado.

Esto representó el primer lanzamiento exitoso al espacio. El Sputnik 1 no era mucho más que un transmisor de radio, pero su órbita de 90 minutos alrededor de la Tierra condujo a la era espacial.

EXPLORER: PRIMER SATÉLITE (EE.UU.) EN ORBITA

¿Cuándo lanzaron los Estados Unidos su primer satélite?
El lanzamiento soviético del Sputnik incitó a los Estados Unidos a poner en órbita su primer satélite: el Explorer 1.  El Comité Nacional Asesor en Aeronáutica (NASA), predecesor de la Administración Nacional de la Aeronáutica y el Espacio (NASA), adoptó un plan de la Marina estadounidense llamado Vanguardia para lanzar el primer satélite del país. No obstante, la recorrida de prueba del satélite, en diciembre de 1957, terminó en un incendio.  El Explorer fue lanzado con éxito hacia su órbita espacial alrededor de la Tierra el 31 de enero de 1958.

PRIMER SER VIVO ENVIADO AL ESPACIO (URSS)

El Sputnik 2, transportó en su viaje orbital a una perra, llamada Laika. Fue el primer ser vivo en viajar al espacio. Laika no mostró signos de sufrimiento por el lanzamiento o la falta de gravedad durante el viaje. Sin embargo, la Unión Soviética no había creado un método para traerla sana y; salva de regreso a la Tierra.

Una semana después del lanzamiento, Laika murió debido a la falta de aire. Unos 5 meses más tarde, el Sputnik 2 regresó a la Tierra y Laika quedó inmortalizada en la historia de vuelos espaciales.

PRIMER SER VIVO ENVIADO AL ESPACIO (EEUU)

¿Cómo se probó la cápsula Mercury?
En enero de 1961, la primera Mercury fue probada con un chimpancé llamado Ham que cumplió exitosamente el primer vuelo suborbital. Ham sobrevivió.

Unos cuatro meses más tarde, el astronauta Alan B. Shepard también sobrevivió a un exitoso vuelo suborbital.

PRIMER HOMBRE EN EL ESPACIO (URSS)

¿Quién fue el primer hombre en ir al espacio?
Este honor lo tuvo el cosmonauta soviético Yuri Gagarin, el 21 de abril de 1961. casi un año antes que Glenn. La Unión Soviética informó sobre un vuelo orbital totalmente exitoso de 1 hora y 48 minutos de la cápsula Vostok 1 tripulada por un astronauta. 

Más tarde se supo que hubo problemas en el reingreso debido a que la carcaza antitérmica protectora de la cápsula se había calentado hasta ponerse incandescente por las elevadas temperaturas. 

Gagarin tuvo que eyectarse y abrir su paracaídas hasta que finalmente aterrizó a salvo.
Esta información, incluyendo el grado de heridas de Gagarin, no fue revelada hasta unos treinta años más tarde.

PRIMER HOMBRE EN EL ESPACIO (EEUU)

¿Quién fue el primer astronauta estadounidense en dar una órbita alrededor de la Tierra?
El astronauta John Glenn Jr. Fue el primer estadounidense en dar una órbita a la Tierra. Su cápsula Mercury, llamada Friendsbip 7, fue lanzada el 20 de febrero de 1962 y lo mantuvo en órbita durante 5 horas.  En el reingreso a la atmósfera, la NASA

PRIMERA MUJER EN EL ESPACIO (URSS)

El 16 de  junio de 1963, se lanzaron la Vostok 5 y la Vostok 6. Su plan también era encontrarse y establecer contacto radial en el espacio.

Lo que la mayoría de la gente no sabía en esa época era que la Vostok 6 iba comandada por una cosmonauta mujer, Valentina Tereshkova, de 26 años de edad. (La primera estadounidense astronauta fue Sally Ride, a bordo del transbordador espacial Challenger unos 20 años después.) Los vuelos de las Vostok 5 y 6 transcurrieron tranquilamente; la Vostok estableció el récord de permanencia de una persona en el espacio: 5 días.

PRIMERA MUJER EN EL ESPACIO (EEUU)

Sally Ride nació en Los Ángeles en 1951, y fue una de las cinco mujeres seleccionadas en 1978 (entre 9000 pedidos), para volar en el nuevo sistema de la lanzadera espacial  que se puso en marcha 18 de junio 1983.  Ella tiene un doctorado en Física por la Uni

PRIMER PASEO ESPACIAL (URSS)

El 18 de marzo de 1965, Alexei Leonov salió al espacio abandonando su nave Vokshod 2, mientras su compañero Pavel Belyayev quedaba a los comandos. Leonov llevaba un traje espacial y estaba conectado a la Vokshod 2 por una cuerda y comunicación radial. Su caminata transcurrió con éxito, pero el traje espacial de Leonov se había expandido y el astronauta debió reducir la presión del aire adentro de éste para poder volver a entrar en la nave. El regreso fue un poco traumático, y tuvieron que descender a mas de 1000 Km. de distancia del objetivo, pasando la noche en un bosque frente a un fuego improvisado.

PRIMER PASEO EN EL ESPACIO (EEUU)

Edward Higgins White II (1930 – 1967) fue un famoso astronauta norteamericano. Nació en San Antonio, Texas, Estados Unidos y fue formado en ingeniería aeronáutica en 1959 por la

CRONOLOGÍA DE LOS HITOS ESPACIALES

———4 OCT. 1957———
Empieza la Era Espacial con el lanzamiento del primer satélite soviético, el Sputnik 1. Fue puesto en órbita
alrededor de la Tierra.

———3 NOV. 1957———
Los soviéticos envían el Sputnik 2, tripulado por la perra Laika.

———1958———
Estados Unidos envía su primer vehículo espacial, d Explorer 1.

———1959 ———
Los soviéticos envían la sonda lunar Luna 2, que se estrella en la superficie lunar. La Luna 3 tiene éxito y envía las primeras fotografías de la Tierra vista desde el espacio.

———12 ABR. 1961 ———
El cosmonauta Yuri Gagarin realiza el primer vuelo tripulado.

——— MAYO 1961 ———
El presidente de Estados Unidos,John Kennedy, propone al estado la tarea de poner un hombre en la Luna antes del final de la década.

——— 20 FEB. 1962 ———
John Glenn, a bordo del Friendsbip 7, se convierte en el primer estadounidense que órbita la Tierra.

———10 JUL. 1962 ———
Se lanza el Telstar, primer satélite de telecomunicaciones comerciales. Transmite la primera película a través del Atlántico.

———1963 ———
La cosmonauta soviética Valentina Tereshkova se convierte en la primera mujer que sale al espacio.

———1965———
La sonda espacial estadounidense Maríner 4 proporciona las primeras fotografías de Marte. El soviético Alexei Leonov realiza el primer paseo espacial; tres meses después le sigue el estadounidense Edward H. White.

———1966———
La sonda espacial soviética Luna 9 alcaliza la superficie lunar y envía fotografías de ella.

———1967———
Los soviéticos instalan la estación espacial (nave espacial que puede mantenerse años en órbita) Soyuz, primera en la
historia. La misión acaba en desastre: la nave se estrella al regresar a la Tierra. Tres astronautas estadounidenses mueren calcinados durante una prueba de lanzamiento.

———1968———
Lanzamiento de la nave tripulada Apollo 8.

———2O JUL. 1969———
Los estadounidenses Neil Armstrong y Edwin Aldrin, de la misión Apollo 11, son los primeros hombres que caminan
sobre la superficie lunar.

———1970 ———
La nave soviética no tripulada Luna 16 recoge muestras de la superficie lunar.

———1971 ———
Una sonda soviética envía fotografías de Marte.

———1972 ———
Estados Unidos realiza su último vuelo tripulado del proyecto Apollo. Los astronautas son Eugene Ceñían
y Harrison Schmitt.

———1973———
Se instala el Skylab, la primera estación espacial estadounidense.

———1975———
Primeras operaciones conjuntas de Estados Unidos y la Unión Soviética con la misiones Apollo y Soyuz.

———1976———
Se lanza el Viking estadounidense para explorar la vida en Marte. Toma muestras de la superficie del planeta.

———1977———
Los Estados Unidos lanzan las sondas Voyager 1 y 2 para tomar fotografías de los planetas más remotos.

———1981———
Se pone en órbita el primer transbordador espacial.

———1983———
El presidente estadounidense Ronald Reagan da su conformidad a la Iniciativa de defensa estratégica,
que consiste en la instalación de defensas anti-misiles en el espacio.

——— 28 ENE. 1986———
Explosión del Challenger. Mueren sus siete tripulantes.

———1986———
La Unión Soviética instala la Estación espacial 3-

Nacimiento, vida y muerte del Sol Evolucion de una estrella comun

LA VIDA DEL SOL: NACIMIENTO Y EVOLUCIÓN ESTELAR

Las estrellas como el Sol permanecen en fase de protoestrella (durante la cual su temperatura no es todavía suficiente para encender las reacciones nucleares en el centro) por algunos millones de años, hasta que comienzan las reacciones nucleares. Luego alcanzan la secuencia principal donde comienzan a quemar hidrógeno. Los cálculos indican que en el Sol esta fase comenzó hace 4,5 mil millones de años y durará otros 5 mil millones.

Una vez que agote el suplemento de hidrógeno, el núcleo solar contendrá sólo helio. La fusión del H continuará en la capa que rodea al núcleo, el cual va creciendo. Su propio peso provoca su contracción, la temperatura central aumenta y comienza la fusión del He. Los núcleos de He se combinan entre sí para formar elementos más pesados: C, N y O, son las llamadas reacciones CNO. (H: Hidrógeno, O: Oxigeno, C: Carbono, He: Helio)

En este proceso se entrega calor a la estrella, el cual se suma al producido por la fusión de H en He, que todavía continúa realizándose en las capas exteriores. Este calor provoca la expansión de la superficie, mucho más allá que en las estrellas normales (de secuencia principal). El Sol abandonará aquí la secuencia principal y entra en la fase de gigante roja, durante la cual su radio aumentará hasta la órbita de Marte y perderá mucha masa. Por entonces la Tierra ya habrá desaparecido pues a medida que la estrella se expande, se enfría.

Cuando el Sol alcance el final de la fase de gigante roja habrán pasado uno o dos millones de años desde que dejó la secuencia principal. La fusión del He proporciona menos energía que la del H, es decir que la reserva de He se agota mucho más rápido que la de H. Por eso esta fase es corta respecto de toda la vida de la estrella y se observan pocas gigantes rojas: sólo 1% de las estrellas de nuestra galaxia están en esta etapa, es decir unos 2.500 millones de estrellas. La figura 30 muestra la evolución del Sol en el diagrama H-R desde su nacimiento sobre la ZAMS hasta la fase de gigante roja.

A medida que continúa la contracción del núcleo, hacia el final de su vida como gigante roja, su temperatura central será mayor de 100 millones de grados y por lo tanto la presión central será enorme. Esta presión será tan grande que la materia en el centro adquirirá propiedades cuánticas especiales, debido a la gran concentración de electrones. Este tipo de materia se denomina degenerada.

La densidad actual del Sol es semejante a la del agua. La materia degenerada tiene una densidad 100.000 veces mayor.

¿Qué sucederá cuando siga creciendo la temperatura central? La evolución post-secuencia principal del Sol es mucho más incierta que la presente y, por lo tanto, sólo se puede hacer una rápida estimación de su agonía luego del llamado “flash de helio”: una explosión gigante en su centro. Codiagramamo resultado de este flash el núcleo se expande rápidamente y comienza a oscilar.

Este movimiento es frenado por la envoltura que en la gigante roja aparece muy extendida. El centro, donde el He se transforma en C y el C en O está rodeado por una capa de H que se quema. Luego del flash de He la estrella se mueve sobre la rama horizontal, zigzaguea horizontalmente a través del diagrama H-R, aumentando su luminosidad. Esta fase dura solo unos cientos de millones de años.

Evolución del Sol en el diagrama H-R, desde su nacimiento sobre la ZAMS ra sólo unos cientos de hasta la fase de gigante roja. 

Lo que sigue es muy difícil de predecir. Las etapas que transitará el Sol en su agonía se describen en detalle más adelante. Se supone que eyectará una envoltura de gas para transformarse en nebulosa planetaria. El núcleo remanente de las estrellas está formado principalmente por materia degenerada de electrones. En consecuencia no se puede contraer más y las estrella se enfrían lentamente transformándose en enanas blancas. Se estima que el Sol se transformará en una enana blanca con lo la mitad de su masa actual. El resto se habrá perdido en forma de vientos violentos y la eyección de sus capas superficiales durante la evolución post-secuencia principal. Las estrellas enfrían rápidamente al principio y luego lentamente , durante miles de millones de años. Las enanas blancas dejan de brillar y se transforman  en enanas negras: una masa fría de materia degenerada. Este es el ultimo suspiro del SOL.

diagram estelar de rousell

EL COLOR Y LA MATERIA
A la luz de los nuevos datos de la ciencia referentes a la masa, el brillo y ol color, se ha clasificado a las estrellas según un diagrama llamado, en honor a sus autores, de Hertzsprung*Russell, De acuerdo con el mismo, la mayoría de las estrellas se disponen en una diagonal, llamada “serie principal”. Las más brillantes y grandes están arriba y las más pequeñas y opacas, abajo. El color pasa, de izquierda a derecha, del azul hasta el rojo oscuro, teniendo como intermedios al blanco, ni amarillo y el anaranjado. La serie principal comienza con los brillantes azules y se traslada hasta las débiles rojas. El Sol, por ejemplo, está en el centro del diagrama. Un caso atípico, es decir, fuera de la serie principal, es el de las gigantes y supergigan-tes rojas, que se ubican a la derecho y arriba del diagrama. La otra familia especial es la de las enanas blancas, que se encuentran abajo y a la izquierda: En esta nota se explicaja incidencia que tienen todas estas características en el material interno de las estrellas

AMPLIACIÓN DEL TEMA…

Cuando transcurran unos 5.000 o 6000 millones de años, el proceso de fusión en el interior del sol se apagará. Sabemos que adentro del Sol hay una especie de central nuclear, quemando millones de toneladas de hidrógeno cada segundo y tiene una capacidad de funcionamiento de unos diez mil millones de años, de los cuales ya han transcurrido la mitad.

Agotado el hidrógeno, podrá iniciarse un nuevo ciclo de combustión, gracias a las cenizas del anterior, que habrá producido abundante cantidad de helio. La fusión del helio generará a su vez cenizas de carbono y nitrógeno que también servirán de combustible nuclear para que el Sol siga brillando durante un tiempo adicional, aunque ya tendrá sus milenios contados.

Las estrellas se parecen un poco al Ave Fénix de la mitología: pueden renacer varias veces de sus propias cenizas antes de apagarse definitivamente.

En todo caso, cuando alrededor de la octava parte del núcleo central del Sol se haya convertido en helio, por el proceso de fusión nuclear, el astro comenzará a experimentar transformaciones irreversibles. En primer lugar se hinchará y, al disminuir en unos dos mil grados la temperatura de su superficie, adquirirá un tono rojizo, crepuscular.

El proceso de expansión continuará y al celebrar su cumpleaños número diez mil millones, el astro rey tendrá cerca del doble del diámetro actual. De ahí en adelante la evolución hacia el gigantismo rojo y hacia la muerte se irán acelerando. En los mil millones de años siguiente el Sol habrá duplicado su tamaño nuevamente. Después, en sólo cien millones de años se hará cincuenta veces más grande y su potencia se multiplicaría por quinientos.

Este proceso de inflación solar terminará por calcinar y engullir a todos los planetas interiores del sistema. La mitología azteca predice que un día la Tierra se habrá cansado y entonces el Sol caerá del firmamento. La leyenda griega de Cronos que devora a sus hijos, terminará así por cumplirse. El Sol, deidad mitológica superior y paterna, de la que derivan los planetas, los devorará finalmente, o los bañará con el aliento de su radiación letal.

Así, llegará para la Tierra un último día perfecto, en que la naturaleza lucirá todo su esplendor y las múltiples criaturas vivas retozarán en los continentes y los océanos del planeta. Luego la biosfera comenzará a destruirse a medida que el Sol vaya hinchándose en el firmamento.

Los casquetes de hielo de los polos se fundirán inundando las costas. Después, el aumento de la temperatura producirá gran evaporación de agua y al engrosar la atmósfera protegerá aun la vida terrestre del exceso de radiación, retrasando un poco el final inexorable.

Pero llegará el día en que los océanos hervirán y nuestro hermoso planeta azul quedará convertido en un desierto, asolado por la radiación e incapaz ya de albergar a ningún tipo de vida.

Todo esto ocurrirá siempre y cuando el hombre no decida, cualquiera de estos días, adelantar el proceso en varios miles de millones de años, detonando sus arsenales nucleares. En ese caso el Sol, al expandirse encontrará a una Tierra tan desnuda y muerta como Mercurio, Marte y Venus.

Si la especie humana sobrevive para ver la muerte del Sol, es posible que adquiera la capacidad tecnológica suficiente como para controlar o al menos modular el proceso de evolución estelar, de manera de no perecer en esta catástrofe. Una solución más viable sería tal vez la de emigrar hacia otros mundos como Titán, el gigantesco satélite de Saturno, o incluso a otros sistemas planetarios.

Esta masiva emigración a las estrellas podría hacerse en naves espaciales que en algún tipo de supercomputadoras llevaran la información genética necesarias como para reproducir en otros soportes planetarios todas las formas de vida originadas en la Tierra. Serían verdaderas Arcas de Noé que salvarían la vida del diluvio de radiación que cundirá por el sistema solar.

Entretanto el Sol, una vez agotado el helio que mantenía encendidos sus motores nucleares, entrará en una agonía de milenios, reciclando las últimas cenizas utilizables como combustible. En esta etapa terminal se contraerá y expandirá alternativamente como un gigantesco corazón, y con cada pulso irá inundando el espacio de radiaciones ultravioletas.

Una hermosa luminosidad roja y azulada se extenderá hasta más allá de la órbita de Plutón. Ese será el ocaso de los planetas o, si se quiere llamarlo de otra forma, el crepúsculo de los dioses.

Más de la mitad de la masa solar se disipará en el espacio. El resto, comprimido en un pequeño núcleo, formará una de esas estrellas superdensas a las que se conoce como “enanas blancas”. Estas son verdaderos cadáveres estelares que aun cuando tienen sus hornos termonucleares apagados, siguen emitiendo, durante un tiempo, la radiación remanente.

Si es que la atmósfera terrestre no se evapora en el espacio, durante las fase de gigantismo solar, las vacías cuencas oceánicas de nuestro planeta volverán a llenarse de agua. Después, una nevazón de dióxido de carbono cubrirá los continentes. El frío se hará cada vez más intenso, los océanos se congelarán y una edad glacial permanente y definitiva se iniciará en nuestro planeta oscuro, ya sin Sol.

Fuente Consultada:
Notas Celestes de Carmen Nuñez

Hechos, Sucesos que estremecen el siglo XX El Universo en Explosión Tomo N°18

Ecuación de Drake Posibilidades de Vida Extraterrestre

La detección de vida en otro punto del universo sería el mayor descubrimiento de todos los tiempos. El profesor de física Enrico Fermi se preguntó por qué, teniendo en cuenta la y la vastedad del universo, así como la presencia de miles  millones de estrellas y planetas que han existido durante de millones de años, ninguna civilización alienígena se ha puesto en contacto con nosotros. Esta era su paradoja.

Mientras charlaba con sus colegas a la hora del almuerzo en 1950. Fermi, al parecer, se preguntó: «¿Dónde están?». Nuestra galaxia contiene miles de millones de estrellas y hay miles de millones de galaxias en el universo, así que hay billones de estrellas. Si sólo una pequeña fracción de ellas tuviera planetas, eso suponía un gran número de ellos. Si una parte de esos planetas albergaba vida, debería haber millones de civilizaciones ahí afuera. Así que, ¿por qué no las hemos visto? ¿Por qué no se han puesto en contacto con nosotros?

Así pensaba Carl Sagan, respecto a la vida extraterrestre: ¿hay alguien ahí fuera con quien hablar? ¿Es posible, habiendo una tercera parte o una mitad de un billón de estrellas en nuestra galaxia Vía Láctea, que la nuestra sea la única acompañada por un planeta habitado?.

Es mucho más probable que las civilizaciones técnicas sean una trivialidad, que la galaxia esté pulsando y vibrando con sociedades avanzadas, y por lo tanto que no esté muy lejos la cultura de este tipo más próxima: quizás esté transmitiendo con antenas instaladas en un planeta de una estrella visible a simple vista, en la casa de al lado.

Quizás cuando miramos el cielo nocturno, cerca de uno de esos débiles puntos de luz hay un mundo en el cual alguien muy distinto de nosotros esté contemplando distraídamente una estrella que nosotros llamamos Sol y acariciando, sólo por un momento, una insultante especulación.

Es muy difícil estar seguros. Puede haber impedimentos graves en la evolución de una civilización técnica. Los planetas pueden ser más raros de lo que pensamos. Quizás el origen de la vida no es tan fácil como sugieren nuestros experimentos de laboratorio. Quizás la evolución de formas avanzadas de vida sea improbable. 0 quizás las formas de vida compleja evolucionan fácilmente pero la inteligencia y las sociedades técnicas requieren un conjunto improbable de coincidencias: del mismo modo que la evolución de la especie humana dependió del fallecimiento de los dinosaurios y de la recesión de los bosques en la era glacial; de aquellos árboles sobre los cuales nuestros antepasados se rascaban y se sorprendían vagamente de algo. 0 quizás las civilizaciones nacen de modo repetido e inexorable, en innumerables planetas de la Vía Láctea, pero son en general inestables; de modo que sólo una pequeña fracción consigue sobrevivir a su tecnología y la mayoría sucumben a la codicia y a la ignorancia, a la contaminación y a la guerra nuclear.

Ecuación de Drake: En 1961, Frank Drake trasladó a una ecuación la probabilidad de que una civilización alienígena con la que pudiéramos contactar viva en otro planeta de la Vía Láctea. Se conoce como la ecuación de Drake. Nos dice que existe la posibilidad de que coexistamos con otras civilizaciones, pero la probabilidad es bastante incierta. Carl Sagan sugirió una vez que hasta un millón de civilizaciones alienígenas podrían vivir en la Vía Láctea, pero más adelante rechazó su propia afirmación, y desde entonces otros científicos han considerado que esa cifra se reducía a una civilización, concretamente, la humana.

 número de estrellas en la galaxia Vía Láctea;  fracción de estrellas que tienen sistemas planetarios número de planetas en un sistema dado que son ecológicamente adecuados para la vida, fracción de planetas adecuados de por sí en los que la vida nace realmente, fracción de planetas habitados en los que una forma inteligente de vida evoluciona, fracción de planetas habitados por seres inteligentes en los que se desarrolla una civilización técnica comunicativa; fracción de una vida planetaria agraciada con una civilización técnica. =N

FORMULA DE DRAKE: Es posible continuar explorando este gran tema y hacer una estimación basta de N, el número de civilizaciones técnicas avanzadas en la Galaxia. Definimos una civilización avanzada como una civilización capaz de tener radioastronomía. Se trata desde luego de una definición de campanario, aunque esencial. Puede haber innumerables mundos en los que los habitantes sean perfectos lingüistas o magníficos poetas pero radioastrónomos indiferentes. No oiremos nada de ellos. N puede escribirse como el producto o multiplicación de unos cuantos factores, cada uno de los cuales es un filtro y, por otro lado, cada uno ha de tener un cierto tamaño para que haya un número grande de civilizaciones:


Nt, número de estrellas en la galaxia Vía Láctea;
fp, fracción de estrellas que tienen sistemas planetarios,
ne, número de planetas en un sistema dado que son ecológicamente adecuados para la vida,
fj, fracción de planetas adecuados de por sí en los que la vida nace realmente,
f¡, fracción de planetas habitados en los que una forma inteligente de vida evoluciona,
fc, fracción de planetas habitados por seres inteligentes en los que se desarrolla una civilización técnica comunicativa; y
fL, fracción de una vida planetaria agraciada con una civilización técnic
a.

Esta ecuación escrita se lee N = N*. fp . ne . f1 . fi . fc . fL Todas las efes son fracciones que tienen valores entre 0 y 1; e irán reduciendo el valor elevado de N0.

Para derivar N hemos de estimar cada una de estas cantidades. Conocemos bastantes cosas sobre los primeros factores de la ecuación, el número de estrellas y de sistemas planetarios. Sabemos muy poco sobre los factores posteriores relativos a la evolución de la inteligencia o a la duración de la vida de las sociedades técnicas. En estos casos nuestras estimaciones serán poco más que suposiciones. Os invito, si estáis en desacuerdo con las estimaciones que doy, a proponer vuestras propias cifras y ver cómo afectan al número de civilizaciones avanzadas de la Galaxia. Una de las grandes virtudes de esta ecuación, debida originalmente a Frank Drake, de Cornell, es que incluye temas que van desde la astronomía estelar y planetario hasta la química orgánica, la biología evolutiva, la historia, la política y la psicología anormal. La ecuación de Drake abarca por sí sola gran parte del Cosmos.

Conocemos N*, el número de estrellas en la galaxia Vía Láctea, bastante bien, por recuentos cuidadosos de estrellas en regiones del cielo, pequeñas pero representativas. Es de unos cuantos centenares de miles de millones; algunas estimaciones recientes lo sitúan en 4 x 1011. Muy pocas de estas estrellas son del tipo de gran masa y corta vida que despilfarran sus reservas de combustible nuclear. La gran mayoría tienen vidas de miles de millones de años o más durante los cuales brillan de modo estable proporcionando una fuente de energía adecuada para el origen y evolución de la vida de planetas cercanos.

Hay pruebas de que los planetas son un acompañamiento frecuente de la formación de estrellas. Tenemos los sistemas de satélites de Júpiter, Saturno y Urano, que son como sistemas solares en miniatura; las teorías del origen de los planetas; los estudios de estrellas dobles; las observaciones de los discos de acreción alrededor de estrellas, y algunas investigaciones preliminares de las perturbaciones gravitatorias de estrellas cercanas. Muchas estrellas, quizás la mayoría, pueden tener planetas.

Consideramos que la fracción de estrellas que tienen planetas, es aproximadamente de 1/3. Entonces el número total de sistemas planetarios en la galaxia sería N. fp = 1,3 x 1011 (el símbolo = significa aproximadamente igual a ). Si cada sistema tuviera diez planetas, como el nuestro, el número total de mundos en la Galaxia sería de más de un billón, un vasto escenario para el drama cósmico.

En nuestro propio sistema solar hay varios cuerpos que pueden ser adecuados para algún tipo de vida: la Tierra seguro, y quizás Marte, Titán y Júpiter. Una vez la vida nace, tiende a ser muy adaptable y tenaz. Tiene que haber muchos ambientes diferentes adecuados para la vida en un sistema planetario dado. Pero escojamos de modo conservador ne = 2. Entonces el número de planetas en la Galaxia adecuados para la vida resulta
N. fp
ne = 3 x 1011.

Los experimentos demuestran que la base molecular de la vida, los bloques constructivos de moléculas capaces de hacer copias de sí mismas, se constituye de modo fácil en las condiciones cósmicas más corrientes. Ahora pisamos un terreno menos seguro; puede haber por ejemplo impedimentos en la evolución del código genético, aunque yo creo que esto es improbable después de miles de millones de años de química primigenio.

Escogemos f1=1/3, implicando con esto que el número total de planetas en la Vía Láctea en los cuales la vida ha hecho su aparición por lo menos una vez es N* fp ne f1 = 1 x 1011, un centenar de miles de millones de mundos habitados. Esta conclusión es de por sí notable. Pero todavía no hemos acabado.

La elección de fi y de fc es más difícil. Por una parte tuvieron que darse muchos pasos individualmente improbables en la evolución biológica y en la historia humana para que se desarrollara nuestra inteligencia y tecnología actuales. Por otra parte tiene que haber muchos caminos muy diferentes que desemboquen en una civilización avanzada de capacidades específicas.

Tengamos en cuenta la dificultad aparente que para la evolución de grandes organismos supone la explosión del cámbrico, y escojamosfi x fc = 1/100; es decir que sólo un uno por ciento de los planetas en los cuales nace la vida llegan a producir una civilización técnica.

Esta estimación representa un punto medio entre opiniones científicas opuestas. Algunos piensan que el proceso equivalente al que va de la emergencia de los trilobites a la domesticación del fuego se da de modo fulminante en todos los sistemas planetarios; otros piensan que aunque se disponga de diez o de quince mil millones de años, la evolución de civilizaciones técnicas es improbable.

Se trata de un tema que no permite muchos experimentos mientras nuestras investigaciones estén limitadas a un único planeta. Multiplicando todos estos factores obtenemos: N* fp ne f1 fi fc = 1 X 109, mil millones de planetas donde han aparecido por lo menos una vez civilizaciones técnicas. Pero esto es muy distinto a afirmar que hay mil millones de planetas en los que ahora existe una civilización técnica. Para ello tenemos que estimar también fL.

¿Qué porcentaje de la vida de un planeta está marcado por una civilización técnica? La Tierra ha albergado una civilización técnica caracterizada por la radioastronomía desde hace sólo unas décadas, y su vida total es de unos cuantos miles de millones de años. Por lo tanto, si nos limitamos a nuestro planeta fL es por ahora inferior a 1/108, una millonésima de uno por ciento. No está excluido en absoluto que nos destruyamos mañana mismo. Supongamos que éste fuera un caso típico, y la destrucción tan completa que ninguna civilización técnica más o de la especie humana o de otra especie cualquiera fuera capaz de emerger en los cinco mil millones de años más o menos que quedan antes de que el Sol muera.

Entonces N = N* fp ne f1 fi fc fL = 10 y en cualquier momento dado sólo habría una reducida cantidad, un puñado, una miseria de civilizaciones técnicas en la Galaxia, y su número se mantendría continuamente a medida que las sociedades emergentes sustituirían a las que acababan de autoinmolarse. El número N podría incluso ser de sólo 1.

Si las civilizaciones tienden a destruirse poco después de alcanzar la fase tecnológica, quizás no haya nadie con quien podamos hablar aparte de nosotros mismos, y esto no lo hacemos de modo muy brillante. Las civilizaciones tardarían en nacer miles de millones de años de tortuosa evolución, y luego se volatilizarían en un instante de imperdonable negligencia.

Pero consideremos la alternativa, la perspectiva de que por lo menos algunas civilizaciones aprendan a vivir con una alta tecnología; que las contradicciones planteadas por los caprichos de la pasada evolución cerebral se resuelvan de modo consciente y no conduzcan a la autodestrucción; o que, aunque se produzcan perturbaciones importantes, queden invertidas en los miles de millones de años siguientes de evolución biológica. Estas sociedades podrían vivir hasta alcanzar una próspera vejez, con unas vidas que se medirían quizás en escalas temporales evolutivas de tipo geológico o estelar.

Si el uno por ciento de las civilizaciones pueden sobrevivir a su adolescencia tecnológica, escoger la ramificación adecuada en este punto histórico crítico y conseguir la madurez, entonces fL = 1 / 100, N= 107, y el número de civilizaciones existentes en la Galaxia es de millones. Por lo tanto, si bien nos preocupa la posible falta de confianza en la estimación de los primeros factores de la ecuación de Drake, que dependen de la astronomía, la química orgánica y la biología evolutiva, la principal incertidumbre afecta a la economía y la política y lo que en la Tierra denominamos naturaleza humana. Parece bastante claro que si la autodestrucción no es el destino predominante de las civilizaciones galácticas, el cielo está vibrando suavemente con mensajes de las estrellas.

Estas estimaciones son excitantes. Sugieren que la recepción de un mensaje del espacio es, incluso sin descifrarlo, un signo profundamente esperanzador. Significa que alguien ha aprendido a vivir con la alta tecnología; que es posible sobrevivir a la adolescencia tecnológica. Esta razón, con toda independencia del contenido del mensaje, proporciona por sí sólo una poderosa justificación para la búsqueda de otras civilizaciones.


Si hay millones de civilizaciones distribuidas de modo más o menos casual a través de la Galaxia, la distancia a la más próxima es de unos doscientos años luz. Incluso a la velocidad de la luz un mensaje de radio tardaría dos siglos en llegar desde allí. Si hubiésemos iniciado nosotros el diálogo, sería como si Johannes Kepler hubiese preguntado algo y nosotros recibiéramos ahora la respuesta.

Es más lógico que escuchemos en lugar de enviar mensajes, sobre todo porque, al ser novicios en radioastronomía, tenemos que estar relativamente atrasados y la civilización transmisora avanzada. Como es lógico, si una civilización estuviera más avanzada, las posiciones se invertirían.

Más de medio siglo después de que Fermi planteara su pregunta, todavía no hemos oído nada. A pesar de nuestros sistemas de comunicación, nadie ha llamado. Cuanto más exploramos nuestro vecindario local, más solitario parece. Ni en la Luna, ni en Marte, ni en asteroides ni en los planetas del sistema solar exterior se ha encontrado rastro alguno de signos concretos de vida, ni siquiera de la bacteria más simple. Tampoco hay signos de interferencia en la luz de las estrellas que pudieran indicar máquinas gigantes orbitando a su alrededor y cosechando energía de ellas. Y no es porque no haya mirado nadie. Dado lo que está en juego, se presta mucha atención a la búsqueda de inteligencia extraterrestre.

Búsqueda de vida ¿Cómo saldríamos a buscar signos de vida? La primera manera es buscar microbios en nuestro sistema solar. Los científicos han escudriñado las rocas de la Luna, pero son basalto inanimado. Se ha sugerido que los meteoritos de Marte podrían contener vestigios de bacterias, pero todavía no se ha probado que las burbujas ovoides de esas rocas hayan albergado vida alienígena o no se hubieran contaminado después de haber caído a la Tierra, o bien que se hayan producido por procesos naturales.

Las cámaras de naves y sondas han recorrido las superficies de Marte, de asteroides y ahora incluso de una luna del sistema solar exterior (Titán, que órbita Saturno). Pero la superficie de Marte está seca, y la de Titán está empapada de metano líquido y, por ahora, desprovista de vida. Europa, una luna de Júpiter, puede albergar mares de agua líquida debajo de su superficie congelada. Por tanto, el agua líquida tal vez no sea un artículo extraño en el sistema solar exterior, lo que aviva las esperanzas de que pueda encontrarse vida algún día.

Sin embargo, los microbios no van a venir a llamar a nuestra puerta. ¿Y qué hay de los animales o plantas más sofisticados? Ahora que se están detectando planetas alrededor de estrellas lejanas, los astrónomos planean diseccionar la luz que proviene de ellos en busca de algún vestigio de vida.

Fuente Consultada: COSMOS Carl Sagan

Medida de La Via Lactea Cantidad de Estrellas en la Galaxia Descripcion

Medida de La Via Láctea
Cantidad de Estrellas en la Galaxia

LA VÍA LÁCTEA: Los astrónomos saben ahora que el conjunto de estrellas que vemos durante la noche es parte de un gigantesco sistema. La forma de este sistema estelar se parece bastante a la de dos platos encarados con sus bordes en contacto y una especie de abultamiento en su parte central.

El sistema solar no está ni mucho menos cerca del centro de este sistema estelar, sino a unos dos tercios de él. Las estrellas aparecen concentradas con mayor densidad en la parte central y en la porción plana situada entre los dos bordes de los “platos”, esto es, en el plano central. Podemos darnos cuenta de esto al observar el cielo en una noche clara: una tenue banda luminosa atraviesa el cielo de un extremo al otro.

Los hombres primitivos ya se dieron cuenta de la presencia de esta banda luminosa muchas leyendas tuvieron su origen en ella, conociéndose con el nombre de Vía Láctea. Tras la invención del telescopio, los astrónomos observaron que está constituida por gran número de estrellas individuales, y ahora sabemos que tal conjunto de estrellas representa el plano central de nuestra Galaxia. Aunque el sistema solar esté situado cerca del borde de este. sistema estelar, la Vía Láctea se ve atravesando todo el, cielo eh forma de una batida rectilínea, tanto al norte como al sin del ecuador, lo cual indica que el sistema solar se encuentra el el plano central de la Galaxia, de modo que de cualquier lado que nos volvamos podemos observar esta densa reunión. de estrellas.

Cuando miramos hacia el cielo en una dirección distinta a la de la Vía Láctea, vemos que las estrellas no están ya tan agrupadas; por el contrario, aparecen muy repartidas por el firmamento. Esto es debido a que entonces miramos hacia fuera del plano central y a través de la parte menos densa de la Galaxia. En efecto, la Vía Láctea nos señala en el espacio la dirección del plano central del sistema de estrellas del cual el Sol es un miembro más.

Nuestra Galaxia es inmensa en comparación con la magnitud de las distancias estelares antes mencionadas. Desde la “parte superior a la inferior” —esto es, a lo largo del diámetro menor de su abultamiento central— tiene un espesor de 20.000 años-luz. Y desde un borde al otro la distancia es de 100.000 años-luz.

DESCRIPCIÓN DE LA VÍA LÁCTEA: DIMENSIONES, CANTIDAD DE ESTRELLAS Y CARACTERÍSTICAS

La mitología griega dice que la diosa Hera, esposa de Zeus, se negaba a amamantar al pequeño Hércules pues había sido fruto de una aventura. En una ocasión lo acercaron a su pecho mientras dormía, pero Hera despertó, lo retiró suavemente de su pezón y la leche se derramó por los cielos, dando forma a las brillantes constelaciones que admiramos en la noche.

Estos valores no incluyen, sin embargo, la distancia a ciertas estrellas que se encuentran por encima y por debajo de ‘la propia Galaxia. Algunas de estas estrellas están solas, pero la mayoría de ellas constituyen grandes cúmulos estelares. Estos cúmulos (denominados cúmulos globulares) forman una especie de halo alrededor de la Galaxia. Cada cúmulo lo forman millares y, a veces, decenas de millares de estrellas agrupadas en forma de esfera o de globo. El más cercano de ellos se encuentra a unos 20.000 años-luz del sistema solar.

Nuestra Galaxia, por lo tanto, está constituida por un conjunto de estrellas, la mayor parte de las cuales se encuentra en el plano o en el abultamiento centrales, junto con mi halo de estrellas individuales y de cúmulos globulares. En nuestro siglo los astrónomos han demostrado que la Galaxia contiene además una considerable cantidad de gas y de polvo.

Observado a través del telescopio, parte de este gas y polvo presenta el aspecto de grandes nubes luminosas nebulosas, de la palabra latina que significa nube. La más famosa de das estas nebulosas es la gran nube gaseosa de la constelación de Orión. A simple vista aparece como un puntito luminoso en medio de las tres estrellas que representan la espada de Orión. Pero aun a través de un pequeño telescopio se convierte en un objeto interesante para la observación.

Las estrellas del cúmulo abierto, denominado las Pléyades, están rodeadas de polvo iluminado por las mismas. Si barremos el cielo con un telescopio, descubriremos muchas más nebulosas que las que se aprecian a simple vista.

La propia Vía Láctea contiene gran número de ellas. Por ejemplo, nebulosas del tipo de las que presenta la Vía Láctea al cruzar Sagitario cubren regiones que miden centenares de años-luz, y muchas contienen brillantes estrellas sumergidas en su seno.

“La Vía Láctea es parte de un barrio cósmico más grande –un grupo de más de 35 galaxias conocido como el Grupo Local. Estas galaxias se mueven por el espacio como una sola unidad, unidas por su mutua atracción gravitatoria. El número de galaxias que pertenecen al Grupo Local es incierto, debido a que los astrónomos siguen encontrando nuevos residentes de este barrio galáctico. Por ejemplo, una de las galaxias del Grupo Local fue descubierta en 1997, a unos tres millones de años luz de la Tierra. Esta nueva galaxia es diminuta: sólo contiene un millón de estrellas aproximadamente, comparado con los cientos de miles de millones de la Vía Láctea.”

En muchas nebulosas gaseosas aparecen surcos y regiones oscuras. La Vía Láctea también presenta surcos entre las estrellas, como si existieran huecos en el fondo estrellado. Las regiones oscuras en la Vía Láctea, así como en las nebulosas gaseosas brillantes, son debidas a gas no luminoso y a polvo. Como veremos más adelante, los astrónomos pueden distinguir el gas carente de luz del polvo cósmico, pero aquí consideramos sólo el hecho de que ambos oscurecen la luz procedente de las estrellas y nebulosas brillantes situadas más allá de los mismos. Este efecto de cobertura en la Vía Láctea nos impide observar lo que debe ser una visión grandiosa.

Debido al gran número de nebulosas situadas entre nosotros y el centro de la Galaxia, no podemos ver el brillante y compacto conjunto estelar que constituye el núcleo de la Galaxia. Nuestros telescopios registran únicamente aquellas estrellas que están situadas de este lado de la densa parte central.

A pesar del problema inherente a la presencia del polvo y del gas oscuro, se ha descubierto que la totalidad de nuestra Galaxia experimenta un movimiento de rotación. El Sol  que es una estrella bastante común, toma parte en esta rotación cósmica, arrastrando consigo a la Tierra a los demás planetas. Como otras estrellas cercanas, el Sol se mueve a través del espacio a razón de 240 Km./seg, velocidad que permitiría dar la vuelta a la Tierra en poco más de dos minutos y medio. Aun así, la Galaxia es tan enorme, que el Sol tarda tarda 225  millones de años en completar una revolución. Este inmenso período de tiempo, denominado ano cósmico, cae fuera de nuestro significado al considerar que hace dos años cósmicos la vida en la Tierra estaba en sus albores, y hace menos de media centésima de año cósmico que apareció el hombre.

Todas las estrellas de la Galaxia intervienen en la rotación cósmica, aunque sus velocidades varían. Las situadas más hacia el centro de la Galaxia generalmente se mueven con mayor rapidez que las que se encuentran cerca del borde, Este movimiento alrededor de la Galaxia constituye el principal desplazamiento de las estrellas, pero cada una precedía a su vez pequeños movimientos locales. Dicho de otro-modo, las estrellas no se mueven alrededor del centro de la Galaxia como si se tratara de una masa sólida. Es más bien como si un grupo de personas se dirigiera a tomar el Metro durante las horas punta; aunque todas van en la misma dirección general, la trayectoria de cada individuo está constituida por muchos movimientos distintos, hacia la izquierda y hacia la derecha, a medida que evita el tráfico o a los demás peatones. Lo mismo sucede con las estrellas de nuestra Galaxia: la dirección general es la de giro alrededor del denso núcleo central.

Fuente Consultada:  Secretos del Cosmos Tomo 2 (Salvat)

EL Tamaño del Universo Distancias del Sistema Solar Planetas

Si se pudiera reducir el globo terráqueo al tamaño de una manzana, el hombre mediría en proporción una cienmilésima parte de milímetro. Ante él cualquier ínfimo bacilo o bacteria alcanzaría dimensiones verdaderamente monstruosas. Por otra parte, como el Sol es una esfera de materia incandescente, que supera en ciento nueve veces el diámetro de la Tierra, si mantuviéramos las proporciones anteriores este Sol estaría representado por un globo de nueve metros de diámetro, situado a casi 1 Km. del planeta que, con el tamaño de una manzana, significaría la Tierra. Pero en los límites de la familia solar, Plutón, el último y más distante de los planetas, figuraría como una bola de billar a 40 kilómetros del citado Sol de! ejemplo.

Ahora bien; sobre la bóveda infinita del espacio brillan las estrellas, enormes masas globulares de gases ardientes. La más próxima, denominada Alfa del Centauro, es otro sol similar al que nos ilumina, con casi su mismo peso y dimensiones. Al igual que todas las estrellas. Alfa del Centauro no permanece inmóvil. Surca el firmamento a una velocidad de 22 kilómetros por segundo, y debido a la enorme distancia que nos encontramos de ella, solamente a lo largo de siglos se apreciaría un movimiento casi imperceptible, puesto que dista de nosotros ¡42 billones de kilómetros!

Si se aplicara a esta distancia la misma proporcionalidad que se empleó al equiparar la Tierra con una manzana y se viera dónde habría que situar la estrella vecina, como se hizo con la distancia del Sol y Plutón, saltaría a la vista la imposibilidad de concretar el objetivo, ya que se necesitaría para esta escala un mapa de unos 260.000 kilómetros de amplitud, es decir, casi las dos terceras partes de nuestra distancia al satélite de la Tierra. Se puede comprobar, de este modo, que la proporción entre la estatura de un ser humano y su distancia a la estrella más cercana es igual a la que existe entre un organismo ultramicroscópico y 260.000 kilómetros.

Un poco más distante, otra brillante estrella de azul tonalidad atrae nuestra atención. Se trata de Sirio, notable por su magnitud en el espacio y por una estrellita que la acompaña y que constituyen con aquélla un sistema físico similar al que forman los planetas del sistema solar El diámetro de Sirio es 1,8 veces el del astro mayor, lo que no significa mucho; sin embargo, situado en el lugar de éste proporcionaría 40 veces más luz y calor del que actualmente suministra.

El misterio revelado
Con respecto a la diminuta estrella que gira en torno de Sirio corresponde aclarar someramente su singular historia. Poco luminosa y lejana, fue ignorada durante siglos por los estudiosos, quienes por razones de tipo especulativo intuían su existencia. Intentaremos explicarlo: la altura del Sol sobre ei horizonte varía con la hora del día; del mismo modo, respecto del movimiento de las estrellas se puede establecer exactamente la hora correspondiente a un momento determinado.

Debido a su gran luminosidad Sirio era utilizada por los astrónomos como estrella horaria. Pero en el firmamento ésta resultaba un astro poco puntual, que se retrasaba o adelantaba temporalmente. Observaciones posteriores permitieron constatar que la estrella describía en el firmamento una levísima órbita elíptica. Sin duda alguna, un astro perturbador, aún invisible, era el causante, con la atracción de su masa, del titubeante comportamiento de Sirio. Apelando a la ley de la gravitación universal se admitió la existencia de un nuevo astro, cuya órbita y posición fueron determinadas en 1850 por el astrónomo alemán Frederick Peters.

En 1862, mediante el uso de un anteojo, a la sazón recién fabricado, se lo descubrió inesperadamente y comenzó a plantearse un nuevo interrogante referido a la especial naturaleza de la materia que lo compone.

La incógnita fue revelada en 1924, cuando el astrónomo estadounidense Walter Adams, empleando el interferómetro de Michelson, logró la doble comprobación del efecto Einstein, y la confirmación de la extraordinaria densidad (23.000 veces más que la del platino) de la diminuta estrella. El “misterio” de la substancia radicaba en lo siguiente: en tamaño, el satélite de Sirio es sólo tres veces más grande que la Tierra, pero su masa es casi igual a la del Sol.

A fin de que toda esta materia pueda caber en tan escaso volumen hay que someterla a una intensa presión, comprimirla enormemente. Los átomos, elementos que componen toda materia, tienen un límite de resistencia mecánica, tras lo cual son deshechos en un confuso montón de núcleos y electrones que invaden y desbordan los espacios interatómicos. Roto el equilibrio interno del átomo, los espacios vacíos son cubiertos por los componentes de otros átomos triturados.

Así, el espacio ocupado disminuye y por lo tanto la densidad media (relación entre volumen y masa) se acrecienta. Era éste, pues, el íntimo secreto que guardaba en su seno la estrella más brillante del cielo.

La “fuga” del universo
Se se miden las velocidades de esos universos-islas se llega a la conclusión de que parecen alejarse entre sí, acrecentando su velocidad a medida que se van distanciando. Esta fuga desordenada no afecta las dimensiones propias de las galaxias, que, alejándose, siguen conservando su tamaño.

Habida cuenta de esto, y calculando el tiempo necesario para que todas esas islas estelares volvieran a juntarse marchando a idéntica velocidad, pero inversamente, se necesitarían unos 13.000 millones de años para volver a reunirse en un conjunto de estrellas distribuidas en un solo universo de manera uniforme.

Si a partir de este conjunto único de densidad estelar se han condensado en grupos de estrellas de modo similar a como suponemos que el gas primitivo se fue condensando en estrellas, sigue aún en pie uno de los tantos interrogantes que se plantea la astronomía, para cuya respuesta el hombre acude con su ciencia al más allá.

Con el misterio de la creación ha quedado atrás en el tiempo y sumida en las sombras del espacio, a 1.500millones de años de luz, una imperceptible manchita nebulosa: es nuestro universo. Confundido entre corpúsculos titilantes hay un sol que nos es familiar, y como un punto minúsculo, donde el hombre lucha por penetrar en el misterio de lo infinito, está la Tierra, nuestro planeta.

La mediciones indicadas mas abajo van variando según se logran técnicas
e instrumentos mas precisos para su medición

Magnitud
Visual
Distancia
Años-Luz
Diámetro
Años-Luz
Vía Láctea 97.800
Nube de Magallanes (mayor) 0,9 156.480 32.600
Nube de Magallanes (menor) 2,5 182.560 26.080
Sistema de la Osa Menor 228.200 3.260
Sistema del Escultor 8,0 270.580 7.170
Sistema del Dragón 326.000 4.560
Fornax 8,3 619.400  21.520
Sistema del León II 12,04 749.800 5.220
Sistema del León I 12,0 912.800 4.890
NGC 6822 8,9 1.500.000 8.800
NGC 147 9,73 1.858.000 8.780
NGC 185 9,43 1.858.000 7.500
NGC 205 8,17 2.217.000 16.300
NGC 221 (M 32) 8,16 2.217.000 7.820
IC 1613 9,61 2.217.000 15.300
Andrómeda (M 31) 3,47 2.217.000 130.400
NGC 538 (M 33) 5,79 2.347.200 55.420
Maffei I 11,0

3.260.000

 

Estrella Constelaciones Magnitud
Aparente
Distancia
Año-Luz
Sirio +
Canope +
Rigil Kent
Arturo
Vega
Rigel +
La Cabra +
Proción
Achernar
Hadar +
Altair.
Aldebarán +
Acrux +
Betelgeuse + + +
Antares +
La Espiga +
Pólux
Fomalhaut
Deneb
Mimosa
Régulo +
Adhara +
Bellátrix
Shaula
Alnath
Alfa del Can Mayor
Alfa de Argos (Carina) .
Alfa del Centauro
Alfa del Boyero
Alfa de la Lira
Beta de Orión
Alfa del Cochero (Auriga)
Alfa del Can Menor
Alfa de Erídano
Beta del Centauro
Alfa del Águila
Alfa del Toro
Alfa de la Cruz del Sur
Alfa de Orión
Alfa del Escorpión
Alfa de la Virgen
Beta de los Gemelos
Alfa del Pez Austral
Alfa del Cisne
Beta de la Cruz del Sur
Alfa del León
Epsilón del Can Mayor
Gamma de Orion
Lamda del Escorpión
Beta del Toro
-1,47
-0,71
-0,27
-0,06
0,03
0,08
0,09
0,34
0,49
0,61
0,75
0,78
0,80
0,85
0,92
0,98
1.15
1.16
1,26
1,28
1,33
1,42
1,61
1,61
1,64
8.7
300
4
36
26
850
45
11
75
300
16
65
270
650
400
220
35
23
.500
370
85
620
450
300
270
(+):Estrella Doble  (+++): Estrella Variable

Fuente Consultada: Mundorama Geografía General Tomo I

El Vuelo de Gordon Cooper Faith 7 Viajes de la Exploración Espacial

Historia de la Exploración Espacial El Vuelo de Gordon Cooper Faith 7

El vuelo espacial de la “Faith 7”, además de ser el primero de importancia (en relación con los efectuados por los soviéticos), resultó de suma trascendencia ya que dio respuesta a distintos interrogantes.

Asimismo, su tripulante, Gordon Cooper, fue él primer astronauta que debió prescindir para el reingreso a la atmósfera y descenso en la Tierra del sistema automático maniobrado desde el centro espacial, resolviendo un problema estimado en ese entonces de la mayor gravedad.

Cooper estaba llamado a realizar luego proezas relevantes en el programa Géminis (junto a Conrad completó 120 órbitas), .pero fue, sin duda, en aquellos días de mayo de 1963. cuando resultó de una utilidad mayor para los técnicos y científicos de la NASA. Por otra parte, develó un enigma que se mantenía desde el vuelo de Johh Glenn: la presencia de partículas luminosas que, a manera de luciérnagas, seguían o aparecían cerca de las cápsulas espaciales.

Cooper demostró que no se trataba de partículas congeladas que se desprendían del vehículo —como se supuso en un primer momento— Sino que provenían de los pequeños motores de reacción de la cabina

Por todas estas circunstancias, trataremos de revivir los momentos vividos a bordo de la “Faith 7”, cuyas 22 orbitas indicaron que las diferencias se estaban acortando en relación con la URSS, no obstante que en ese mismo año, 1963, la astronáutica soviética seguiría sorprendiendo al mundo  con nuevos éxitos.

UN INSTANTE DRAMÁTICO: El lanzamiento se cumplió sin inconvenientes el 15 de mayo, en las condiciones Casi cosmonauta dentro de la cápsulade rutina en el centro espacial norteamericano. Lo que distó de ser “rutina” fueron las cosas que le ocurrieron al cosmonauta dentro de la cápsula. (imagen )

El primer problema se produjo en las instalaciones de eliminación de vapor de agua que se condensaba en el interior de su pesado traje de vuelo. Tuvo que accionar durante más tiempo que el previsto una bomba especial pero, aún así, el agua se acumuló en la escafandra, molestándolo bastante. A pesar de este inconveniente, realizó otro de los objetivos previstos lanzando un satélite: una pequeña esfera luminosa que tomó una órbita muy cercana a la de la astronave.

En la cuarta órbita, preocupado en la atención de otros aspectos de su misión, Cooper observó de pronto un resplandor atravesando la noche, Esto le causó un breve sobresalto hasta que comprobó que, simplemente, se trataba de dicho satélite.

Por un momento, supuso que se trataba de un cohete que pudiera haber sido disparado desde Tierra y no precisamente desde territorio norteamericano. Posteriormente estudió el misterio de las “luciérnagas” logrando establecer su procedencia.

Luego se dedicó a dormir. Sus periodos de sueño no superaron una hora, aunque posteriormente declaró que no recordaba nada de sus “siestas” en el espacio. Al despertaste se sintió un poco confuso, y por un momento no supo si se hallaba en un vuelo simulado; en la punta del cohete Atlas aguardando el momento de la partida o en su propia casa. Esta confusión fue la causa de que en tierra se le registrase una aceleración del pulso y una mayor presión sanguínea.

Durante las 34 horas 20 minutos que estuvo volando a alturas oscilantes entre los 161 (perigeo) y 272 kilómetros (apogeo) tuvo perfecta visibilidad y reconoció sin mayor esfuerzo los distintos accidentes geográficos que abarcaba su campo visual.

LA FALSA SEÑAL:

En la órbita 18, a 28 horas 59 minutos desde el momento del lanzamiento, una falla eléctrica dejó a oscuras la cabina. Cooper debió apelar a todas sus reservas para mantener la serenidad y solucionar el desperfecto. Cuando volvió la luz, advirtió que se habla encendido espontáneamente la “05G”. Esta solo debía encenderse cuando la nave espacial registrara el primer indicio de gravitación, o sea una vigésima parte de la gravedad terrestre. En consecuencia, de ser cierto lo que estaba viendo el astronauta, su nave habla comenzado a descender (lo cual era falso).

El mismo Cooper relatara la tremenda experiencia: “Al principio pensé que simplemente no le haria caso, pero luego decidí que eso no me convenía, pues el problema no se resolverla solo.” Al confirmársele que no estaba reingresando a la atmósfera terrestre, demostración de que el sistema, automático no funcionaba bien, realizó algunas pruebas. Así llegó a la conclusión de que dicho sistema, más que dañado, en realidad había dejado de funcionar. Asimismo, al fallas  del dispositivo eléctrico que dejó a oscuras la cabina, todos los controles automáticos quedaron eliminados (“Entonces decidí que reingresaría prescindiendo de todo lo que no fuera el instrumental manual”).

Tomar este tipo de decisiones “allá abajo”, en nuestro mundo, puede revelar un mayor o menor  grado de rapidez mental. Pero hacerlo a más de 200 kilómetros de altura sin saber si el vehiculo en el que se viaja está  o no cayendo o puede precipitase, convertido en una tea, en cualquier momento resulta sin duda una experiencia estremecedora.”

Y quien la pasa, revela un temple mucho más allá de lo común, casi sobrehumano. Lo importante es que la decisión confirmó algo que estaba previsto, pero no demostrado:hasta que punto el entrenamiento puede convertir a un hombre en un ser capacitado para las anís fantásticas empresas.

Cooper se mantuvo sereno. En Tierra no se registró una sola pulsación que demostrara temor frente al riesgo. Tranquilamente cumplió la órbita 22 estipulada y, de inmediato, anunció que descendería. Manualmente disparó los retrocohetes. La cana del cono apuntó hacia la superficie del planeta. Y allá fue.. (“La multiplicación de la fuerza de la gravedad al reingresar no presentó ningún problema. La oscilación no fue objetable. La maniobra resultó lo más fácil del mundo. … en verdad, más fácil de lo que  esperaba. Al soltar el paracaídas de estabilización, este se abrió con un traqueteo, un rugido y un golpe sordo…”)-

UN BARCO TRASTORNADO

Descendió muy cerca del portaaviones “Kearsarge”. En las partes altas de la nave, la marinería le saludaba agitando sus gorras “(Yo suponía, mejor aún, estaba seguro de que el barco se trastornaría”). Se sintió muy bien al comienzo, pero mientras le tomaban la presión sanguínea experimentó un ligero vahido.  Le tomaron de los brazos para que no cayese, y enseguida volvió a sentirse bien, Luego bebió varios litros de liquido (“Estaba completamente deshidratado y con una sed increíble”).

Más tarde fueron los agasajos, los honores, la familia, El astronauta que había estado más cerca de la muerte; el que abrió los caminos para la gloria de otros de sus camaradas, volvió a vivir. Una trampa del destino quedó atrás.

En la dimensión fantástica de la “era espacial”, una coincidencia sellé los avances prodigiosos de poco más de una década. Cooper cumplió su vuelo casi exactamente a 36 años del día en que Charles Lindbergh, en su “Sprit of Saint Louis” saltaba sobre el océano en vuelo sin etapas para unir Nueva York con Paris. ‘El Águila Solitaria”, en 33 horas 29 minutos, volando a lo largo de 5800 kilómetros, abrió un camino en una fecha en la que Cooper tenía dos meses de edad. El intrépido de la “Faith 7”, en sus 22 órbitas, habla cubierto 960.000 kilómetros, los suficientes, para ir y volver a la Luna, Y todo ello en una hora más que el asombroso piloto de aviones correo que estremeció al mundo con su hazaña.

John Glenn Primer Americano en Orbitar Terrestre Carrera Espacial

John Glenn Primer Americano en Orbitar Terrestre Carrera EspacialEL VUELO DEL CORONEL GLENN:
El 20 de febrero de 1962 los norteamericanos, después de haberlo aplazado varias veces y anunciado sin reserva a todo el mundo, pusieron en órbita el cohete Friendship VII que llevaba una cápsula dentro de la cual se encontraba el astronauta piloto John H. Glenn de 40 años de edad.

A la hora prevista la cápsula se desprendió de los cuerpos del cohete Atlas y entró en órbita. Después de dar tres vueltas a la Tierra, el astronauta pulsó los mandos que le llevaron a descender en aguas del Atlántico donde fue recogido por el destructor “Noah”. El vuelo había durado 4 horas, 55 minutos.

Durante el mismo, millones de espectadores habían podido seguir, gracias a la televisión, todos los detalles del lanzamiento. Glenn había comunicado constantemente sus impresiones y repitiendo muchas veces que se sentía bien. Este vuelo, que causó gran impresión por su preparación, anuncio y exhibición, demostró que el astronauta puede dirigir las fases de marcha y controlar los mecanismos para su propia recuperación y la de la cápsula.
Hasta aquí la historia, con sus datos, sus hechos concretos y sus cifras irrebatibles. Al iniciarse 1962, las dos grandes potencias espaciales, Estados Unidos y la URSS, se preparaban para emprender otras proezas. El presupuesto para investigación espacial y tecnológica para dicho año en los Estados Unidos se elevó a 2.400 millones de dólares.
A partir de este año se suceden en forma ininterrumpida los vuelos espaciales tripulados.

Salida del cohete Atlas-Mercury MA6

Salida del cohete Atlas-Mercury MA6 llevando a bordo al primer astronauta americano John Glenn

1962John Glenn fue el primero en orbitar la Tierra 1998
Aunque fue el tercer norteamericano en el espacio,John Glenn fue el primero en orbitar la Tierra. Aquí algunas cifras sobre su vuelo El año pasado, el senador Glenn regresó a la órbita como miembro de un viaje espacial. Como lo demuestra este informe algunas cosas —no todas— han cambiado.
El astronauta
Altura: 1,80 metro
Color de pelo: colorado

Edad: 40 años

Salario: 12.000 dólares.
Entrenamiento diario:
3,2 kilómetros trote
El astronauta
Altura: 1,80 metro
Color de pelo: blanco

Edad: 77 años

Salario: 136.672 dólares.
Entrenamiento diario:
3,2 kilómetros de caminata rápida
La nave
Nombre:  Friendship 7 (Amistad 7)
Tripulación:         1
Ventanas:   1
Computadoras: 0
Peso:    1,930 kilos
La nave
Nombre:  Discovery
Tripulación:         7
Ventanas:   10
Computadoras: 5
Peso:    69,770 kilos
La misión
Nombre:  Mercury 6

Despegue:  20 de Febrero de 1962.
a las 9h 47, 39″
La misión
Nombre:  STS-95

Despegue:  29 de octubre de 1998
a las 14 h.

 

Duración:
4
h. 55’ 23”.
Velocidad orbital:
28.234 kilómetros por hora
Tiempo por órbita:
1 h.28’29”.
Distancia recorrida:
121 .794 kilómetros
Lugar de aterrizaje:
Océano Atlántico, 800 kilómetros al sudeste de Bermudas
Rescate:
Un barco de la Armada recuperó la nave luego de caer al océano.

  Duración:
Aproximadamente 8 días y 20 h.

Velocidad orbital:
8.164 kilómetros por hora

Tiempo por órbita:
90 minutos

Distancia recorrida:
5.800.000 kilómetros

Lugar de aterrizaje:
Centro espacial Kennedy, Florida

Rescate:
No fue necesario

 

Cronología de las
Misiones Espaciales
 Hitos de la
Carrera Espacial

Modulo Lunar Apolo 11 Caracteristicas Capsula Lunar Descenso Luna

Modulo Lunar Apolo 11 – Sus Características 

La conquista de la Luna fue confiada a una pequeña «araña de acero» destinada a aterrizar en el suelo de nuestro satélite. De ella saldrían dos astronautas, después de lo cual se convertiría en una base de lanzamiento para el regreso de los astronautas a la Tierra.

Cuando se planificó la conquista de la Luna, se idearon distintos sistemas para desembarcar a los hombres en nuestro satélite natural y hacerlos regresar a la Tierra.

El que resultó elegido estaba destinado a desembarcar a dos hombres con un «módulo lunar» (LEM), cuya parte inferior fue proyectada para hacer de rampa de lanzamiento en el momento de la partida.

Cuando se tomó en consideración el método de acoplamiento en órbita lunar, los ingenieros del Centro de Investigación Langley estudiaron tres modelos fundamentales de módulo lunar.

Los tres modelos, que pronto tomaron forma, fueron llamados «simple», «económico» y «de lujo».
La versión «simple» preveía poco más que un mero vehículo, abierto en su parte superior, capaz de contener a un hombre en traje espacial durante unas cuantas horas. Habría pesado un máximo de dos toneladas.

Modulo Lunar Apolo Caracteristicas Capsula Lunar Descenso LunaEl modelo “económico», previsto para acoger a dos hombres, habría pesado dos o tres veces más que el anterior, según el tipo de propulsantes utilizado.

A la postre, el método considerado más seguro fue el «de lujo», que fue preelegido para la misión.

En el estadio de propuesta, los técnicos de laGrumman, la sociedad que ganó el concurso de construcción, pensaban en el LEM como en un objeto provisto de doce toneladas de propulsante rodeadas por cuatro toneladas de «estructuras de relojería», como decían ellos, encerradas en una pared de aluminio del espesor de una cáscara de huevo.

Debía tener una altura de 7 m, y, con las patas extendidas, su diámetro debía ser de 9,45 m. Estaba formado por un millón de partes, sobre todo minúsculos transistores, 64 Km. de cables eléctricos, dos radios, dos aparatos de radar, seis motores, un ordenador y un equipo de aparatos para realizar experimentos científicos en la Luna.

Todo ello debía estar distribuido en dos unidades principales, llamadas de ascenso y de descenso, provista cada una de ellas de su propio cohete.

UNIDAD DE DESCENSO
Estaba formada por la parte inferior del módulo lunar. Fabricada con una aleación de aluminio, de forma octagonal, con cuatro patas para la amortiguación, contenía las baterías, las reservas de oxígeno y el equipo científico para el descenso y la permanencia en la superficie lunar.

Medía 3,22 m de altura, incluidas las patas, y su diámetro era de 4,29 m, sin contar las patas.

Unas prolongaciones en los extremos de los dos largueros principales suministraban el apoyo del tren de aterrizaje. Una vez que el módulo lunar se encontraba libre en el espacio, las patas eran extensibles. Cada pata constaba de un montante principal, dos montantes de refuerzo, el mecanismo de bloqueo y un patín de apoyo. Todos los montantes llevaban amortiguadores formados por elementos deformables en nido de abeja para absorber los choques del aterrizaje. El tren de aterrizaje anterior, que se extendía bajo la escotilla frontal, llevaba fijada una escalerilla por la cual los astronautas podían acceder a la superficie lunar y volver a subir.

La mayor parte del peso y del espacie de la etapa de descenso estaban destinados a los cuatro depósitos de propúlsame y al cohete de descenso, capaz de ejercer un empuje de 4.500 Kg.

El motor, construido por TRW Inc. era de un tipo inhabitual en misilística, ya que manualmente y mediante un calculador electrónico, podía regularse desde un mínimo del 10% hasta un máximo del 94% de su potencia.

El motor quemaba un combustible líquido de hidracina y dimetiíhidracina. disimétrica, llamada aerocina 50 con tetróxido de nitrógeno como oxidante. El combustible y el oxidante producían la combustión al entrar en contacto, sin necesidad de chispa.

En la misión de aproximación, el motor de descenso debía encenderse para iniciar la caída del módulo lunar desde la órbita de 110 Km. de altura.  A unos 15.000 m del suelo debía volver a encenderse en otra maniobra de frenado para que el módulo lunar pudiera descender continuamente v reducir su velocidad hasta tocar la superficie con suavidad.

Como el vehículo podía descender verticalmente y permanecer en vuelo estacionario sobre la superficie, los astronautas pilotos de aviones de reacción debían adquirir también las competencias de pilotos de helicóptero.

En el último tramo estaba previsto que los astronautas redujeran la potencia del motor para dejar caer el módulo lunar a una velocidad de unos 90 cm/s. Cinco muelles situados en los extremos inferiores de las patas debían dispararse automáticamente hacia abajo para señalar el primer contacto con el suelo, tras lo cual  los astronautas debían apagar el motor.

Concluido el período de permanencia en la Luna, la etapa de descenso debía servir de plataforma de lanzamiento para el encendido del motor de ascenso, destinado a levantar de la superficie la mitad superior del módulo lunar. El accionamiento de los dispositivos de explosión separaría las dos etapas. La etapa de descenso permanecería en la Luna como recuerdo del primer desembarco humano.

LA ETAPA DE ASCENSO
Estaba formada por la mitad superior del módulo lunar, en la que figuraba la central de mando y la cabina de la tripulación, además del cohete destinado a hacer despegar el vehículo de la superficie lunar.

Su altura era de 3,75 m y estaba dividida en tres secciones: el compartimiento de la tripulación, la sección intermedia y la zona de equipos.

El compartimiento de la tripulación, de sólo 234 cm de diámetro, ocupaba la parte anterior de la etapa de ascenso, desde la cual los astronautas podían mirar al exterior a través de dos ventanas triangulares. Para ahorrar peso, no había asientos; los astronautas debían permanecer de pie, sujetos por correas no demasiado estrechas.

Delante y lateralmente se encontraban los paneles de mando para la conducción, las comunicaciones, la regulación del ambiente y los equipos de propulsión. El comandante podía mirar por una ventana situada arriba a la izquierda mientras conducía el módulo lunar durante las maniobras de aproximación y de acoplamiento en órbita con el módulo de mando. A los pies de los astronautas se encontraba la escotilla anterior, de forma cuadrada y con 106 cm de lado, a través de la cual deberían bajar a la superficie de la Luna.

Tanto el compartimiento de la tripulación como la sección intermedia estaban construidos y aislados de tal modo que pudieran ser presurizados al ciento por ciento con oxígeno.

La sección intermedia llevaba muchos de los equipos para las comunicaciones y la conducción. Había incluso un espacio reservado para los contenedores de las rocas lunares que los astronautas habrían llevado consigo de regreso.

En la parte superior de la sección intermedia estaba la escotilla, que tenía 84 cm de diámetro; a través de ella los astronautas debían trasladarse al módulo de mando o realizar la maniobra inversa en el momento en que los dos vehículos se encontraran unidos.

La escotilla superior del módulo lunar se abría a un pequeño conducto que conectaba con la parte anterior del módulo de mando.

Bajo el pavimento de la sección intermedia se encontraba el cohete de ascenso, diseñado para desarrollar un empuje de unos 1.600 Kg. y para poder encenderse y reencenderse, pero no para suministrar una potencia variable.

Bastaba un cohete tan pequeño porque la mayor parte del peso original del módulo lunar, de 14,5 toneladas, se había reducido va a 4.500 Kg. debido al abandono del cohete de descenso sobre la superficie lunar.

Además, la débil gravedad lunar -un sexto de la terrestre- no requería una fuerte producción de energía propulsante para levantar la etapa de ascenso.

El motor de ascenso, lo mismo que los 16 pequeños cohetes de maniobra, estaba diseñado para quemar el mismo tipo de combustible líquido utilizado durante el descenso.

Los propulsantes para el ascenso estaban almacenados en dos depósitos esféricos de titanio, dos protuberancias visibles en los flancos de la etapa de ascenso.

La zona de equipos estaba formada por un área no presurizada situada en la parte posterior. Contenía instrumentos para enfriar los aparatos electrónicos del vehículo, el oxígeno para la respiración durante el ascenso y un cierto número de otros componentes que no requerían ningún tipo de presurización.

Fuente Consultada:
El Universo – Enciclopedia de la Astronomía y el Espacio  – Tomo II

La Belle Epoque, Los años locos y el estilo de vida americano

Belle Epoque, El Estilo de Vida Americano

Se denominó Belle Epoque al período que abarca desde fines del siglo XIX hasta la Primera Guerra Mundial (1914), caracterizado por un transitorio bienestar económico, una gran euforia y optimismo, en las clases altas y medias de los países industrializados de Europa y algo en los EE.UU.. Esto fue producto de los avances tecnológicos y científicos de la época. El crecimiento de las ciudades fue cambiando los hábitos de la gente, abarcando todas las clases sociales. El descanso dominical, la reducción de la jornada laboral y la posterior incorporación del Sábado Inglés (media jornada), crearon un tiempo libre difícil de ocupar.

Antecedentes:  Francia, desde 1814, después de la derrota final de Napoleón, encuentra su estabilidad gobernada por Luis Felipe, un monarca constitucional. Dependiendo de la estabilidad de Francia, Europa también entró en una era de paz, el desarrollo en todos los sectores. El mundo está fascinado con el avance tecnológico europeo impulsando la expansión del capitalismo mundial.

En 1855, un nuevo proceso de fabricación de acero, permite su uso en la investigación a escala industrial sobre el electromagnetismo condujo a la posibilidad de uso de la electricidad, en sustitución del vapor de agua, la energía potencial de otros como el petróleo, también comenzó a ser empleado.

Daimler creó el motor de combustión, diseñado por neumáticos Dunlop apareció. En 1886, Daimler puso en marcha el primer coche y con él llegaron los primeros vehículos propulsados por motor de combustión interna. En 1893, lanzó la “Victoria”, el primero de cuatro ruedas Benz. En 1895 se presentó el primer coche con un motor de gasolina. En 1913, Henry Ford abrió la planta en la primera serie de la industria automotriz.

También en el siglo XIX, concibió la telegrafía sin hilos de Marconi, que abarca el principio, a una distancia de dos kilómetros. En 1889, hubo una comunicación a través del Canal Inglés y en 1901, a través del Atlántico.

Todos estos cambios dieron lugar a mejoras en la producción y la consolidación del capitalismo, dando lugar a un crecimiento explosivo de la riqueza, era conocido por la formación de la “Belle Epoque”, llena de refinamiento artístico y cultural, especialmente en Francia.

estilo de vida americanoMiles de personas, gracias al ferrocarril, se trasladaban los fines de semana en excursión a otras ciudades, al campo o al mar. En los sectores populares, el tiempo libre era todo un problema: no tenían dinero pata consumir o para gastar en paseos. El alcohol, el juego y las peleas eran los entretenimientos más difundidos.

Frente a esto, tos grupos religiosos, los colegios y otras instituciones fomentaron la práctica de juegos en los que se realizaran esfuerzos físicos y fueran vistosos para el público: surgieron así los espectáculos deportivos, el fútbol y el rugby en Inglaterra; el básquet, el béisbol y el fútbol americano en los Estados Unidos. También fueron populares el box, las carreras de caballos y el ciclismo. Todos estos deportes fueron rápidamente aceptados en todo el mundo.

Mientras tanto, los sectores medios y altos disfrutaban del teatro, la música, las grandes exposiciones o simplemente salían de compras para estar a la última moda. Otro cambio importante fue la valoración de la educación: ahora no sólo era más accesible estudiar, sino que constituía una forma de ascenso social.

Esta época de esplendor y optimismo se pudo ver simbolizada en el barco mas grande, lujoso y rápido del mundo: el Titanic, cuyo hundimiento, dos años antes de la guerra (1912), anticipó el fin de esta época de esplendor.

 La “Belle Epoque” se inició en el siglo XIX (1871) y se prolongó hasta el estallido de la Primera Guerra Mundial en 1914. Este período de poco más de treinta años no es, por supuesto, una definición matemática. De hecho, “Belle Epoque” es un estado de ánimo, que se manifiesta en algún momento en la vida de un país.

En “Belle Epoque” en París, que involucró a todo el mundo, floreciente filósofos Nietzsche y Freud abordó y debatió la sexualidad. El progreso de la ciencia médica y química condujo a un aumento en la esperanza de vida. El desarrollo económico ha cambiado realmente la forma de vida de los parisinos. La gente, gracias a la gramola, que podían escuchar la música en su propia casa y andar en bicicleta en la calle.

Barco Titanic, hundido en 1912

El 28 de diciembre de 1895, la película fue mostrada por primera vez por los hermanos Lumière en París, que marcó el comienzo del éxito de la película. La fotografía de cine, la radio, el arte, la música y la pintura, hizo lugar a un clima propicio para el desarrollo del arte y la belleza.

París como la capital del mundo civilizado y del progreso. El francés era un signo de refinamiento. La elegancia siguió el “dernier cri-” de París. Con sus cafés-conciertos, ballets, operetas, librerías, teatros, bulevares que la alta costura, la Ciudad de la Luz fue el productor y exportador del centro de la cultura mundial. La cultura bohemia inmortalizada en las páginas de la novela de Henri Murger – Escenas de la vie de Bohème (1848) – era una referencia a la vida intelectual, los lectores ávidos de Baudelaire, Rimbaud, Verlaine, Zola, Balzac y Anatole France.

En “Belle Epoque” hubo varios cambios en el mundo del arte en Europa, permitiendo a los teatros, cines y exposiciones de pinturas, entrar en la vida cotidiana de las personas, dando lugar a la aparición de la cultura de la diversión. Esta cultura de la burguesía obtuvo estatus social a través de los cabarets, donde era posible encontrar la fusión de elementos de la alta cultura con elementos de las clases bajas.

La industria del entretenimiento (parques de atracciones y el cine) se hizo posible gracias al desarrollo de la electricidad y la reducción de la carga de trabajo, permitiendo a los trabajadores tiempo libre para el ocio. Los parques y los cines se convirtieron en entretenimiento de masas, porque la entrada era barata y estas diversiones causó una momentánea separación de la realidad cotidiana de las personas. Los parisinos comenzaron a disfrutar de la noche, ir a espectáculos, music hall y el circo.

Desde entonces, las clases sociales se mezclaban en los mismos lugares de entretenimiento, tales como los cafés-conciertos de la colina de Montmartre, por ejemplo. Montmartre era en realidad la principal zona de ocio en París. Los cabarets como “Folies Bergere“, el “Chat Noir” y “Moulin Rouge” estaban en su pico más alto durante la “Belle Epoque”. Más de un centenar de salas de cine se abrieron entre 1900 y 1913.

Pintores y músicos han grabado su nombre en la “Belle Epoque”. La capital francesa era el centro de una verdadera efervescencia cultural. Muchos artistas e intelectuales vivían en París, sobre todo en el “Montmartre“. Este distrito, entre otros, contó con la presencia de Modigliani, Picasso, Renoir, Toulouse-Lautrec.

La sala de música era un género musical popular en Europa durante el siglo 19. Por lo general, un solo de piano en el estilo romántico y, a menudo realizada por el compositor en el evento conocido como “Salas”.  Cuando se habla de “Belle Epoque”, recuerda de inmediato el can-can, su música y bailarines. Lo que realmente representa esta danza de origen francés, una mezcla de polka y la pandilla.

Desde 1850, Celeste Mogador, estrella del baile de Bal Mabille, París – que más tarde se uniría a la orquesta del cabaret Moulin Rouge – inventó la banda: ocho minutos de impresionantes armonías perfectas y Offenbach como maestro indiscutible de la música. El nuevo baile se consideró un ritmo demoníaco, equilibrio, flexibilidad en los pasos de la sensualidad y acrobacias extremas, en la que los bailarines, fascinantes en su traje, perdió la mente de todo París. El can-can se caracteriza principalmente por pasos firmes y saltando, pateando la pierna alta y con firmeza.

Normalmente, el traje de esta danza se compone de botas de la mitad de los ingresos,tacones altos, corsés, plumas en la cabeza y las faldas con volantes. Desde hace algunos años, fue declarada ilegal porque se consideraba inmoral e indecente, y por lo tanto prohibida por la policía.

Algunas de las grandes damas de la can-can francés era Louise Weber (La Goulue), Jane Avril y Guilbert Yvette. El can-can fue objeto de inspiración para muchos pintores impresionistas como Toulouse-Lautrec, el artista de cabaret, que pintó imágenes de famosas bailarinas de cancán.

Prostitutas, cabarets y bares están inevitablemente asociados con el nombre de Henri de Toulouse-Lautrec.  Además de Jane Avril, inmortalizando los aspirantes a estrellas de la época como La Goulue, Valentin-le-Bone, Aristide Bruant, Yvette Guilbert.

Algunos de cabaret, inmortalizados por la paleta de Lautrec se hizo internacionalmente famoso por cancan como Moulin Rouge y el Chat Noir. La música más conocida de cancán fueron compuestas por Jacques Offenbach, el violonchelista eminente desde la infancia. Considerado por la crítica como el “Liszt del violonchelo,” no sólo se dedicó a componer varias obras para este instrumento como parte de una serie de conciertos en las principales capitales europeas.

La fama y popularidad se disparó a las alturas de Offenbach. Dentro de los diez años siguientes escribió  noventas operetas, el éxito más grande, como La Belle Hélène, La Vie Parisienne, La Grande-Duchesse de Gerolstein y La princesa de Trebizonde. Según Carpeaux, el can-can de Offenbach dictaminó que bailar al público, siendo un participante y espectador, orgía borracha de cínico.

Después de una gira de éxito de los Estados Unidos , derrochó su fortuna, Offenbach llegó a demostrar un amargo arrepentimiento por haber desperdiciado su talento, la composición de canciones populares y de mal gusto. Atraído por los relatos fantásticos del compositor y escritor alemán Ernst Theodor Amadeus Hoffmann, Wilhelm, se lanzó febrilmente en la tarea de componer una ópera seria para permanecer para la posteridad. 60 años de edad y muy enfermo, trabajó duro para terminar cuentos de Hoffmann.

El creador de la opereta, no se dio cuenta el gran sueño de ver un montaje de su primer éxito gran ópera. Murió en París, cinco meses antes del estreno de su joya musical. La operación fue considerada el mayor evento de la temporada, alcanzando un récord de 101 actuaciones.

Expresión pura de la época en que surgieron, las manifestaciones artísticas floreció en la “belle époque”. El arte tomó nuevas formas con el impresionismo y el modernismo. El estilo llamado “art nouveau“, caracterizó a la Belle Epoque. Este movimiento artístico surgido a finales del siglo. XIX, en respuesta al empleo abusivo en la técnica de razones clásicas o tradicionales.

El “art nouveau”, adornos valiosos, los colores brillantes y curvas sinuosas sobre la base de las elegantes formas de animales y plantas de las mujeres. Estilo extravagante mezcla de barroco, rococó y el clasicismo, utilizando materiales como el vidrio y el hierro. Principalmente decorativo, de pie en las fachadas de los edificios en forma de vidrieras y mosaicos, apareció en objetos decorativos como muebles, puertas, y los vasos, así como la innovación en la forma de joyería.

Uno de los mejores pintores más conocidos del “art nouveau”, fue Alfonse Mucha. En la literatura, se considera uno de los principales precursores del estilo “art nouveau”, fue el renacimiento celta, especialmente en Inglaterra, Escocia, Irlanda y Escandinavia, dirigiéndose a los “tiempos” aureas de cada país. A pesar de la caballería medieval, utilizado por razones de esta tendencia literaria, lo que contribuye a la “art nouveau” en otros géneros artísticos, esta escuela tenía un deseo de liberación de la vieja y la nueva parte de la demanda, tal como se refleja en movimientos como el nuevo paganismo o el nuevo hedonismo.

En la segunda mitad del siglo 19, cinco grandes exposiciones internacionales celebradas en París se indica, a los pintores y escultores de todo el mundo, la tendencia estética de moda. La primera de estas exposiciones, 1855, fue el enfrentamiento decisivo entre los seguidores del estilo neoclásico Dominique Ingres y Eugène Delacroix, romántico, con la victoria final de este último – y por lo tanto del Romanticismo. Gustave Courbet, cuyas obras había sido denegada, levantado a poca distancia de la sede de la feria, su propio “Pabellón del Realismo”.

Doce años más tarde, se negó en 1855 se convirtió en el héroe de la jornada: la Exposición de 1867 representó la victoria de Courbet y el realismo, y para mostrar a Europa el Inglés prerrafaelitas. Esta vez, la junta corte que Manet, infeliz, también están expuestos a una bandera improvisada. La Exposición de 1878 marcó el inicio de la consagración del impresionismo.

El 1889 representó el triunfo de los simbolistas y, por último, en el año 1900 marcó la consagración del “art nouveau”. Enormes pantallas de la industria francesa y el comercio, estas exposiciones pretendía atraer a nuevos mercados en países lejanos.

La moda se inspira en gran medida por el “Art Nouveau” durante la “Belle Epoque”, un compromiso entre el deseo por el lujo abundante y simplicidad. Las mujeres ricas usaban corsés y sombreros de fantasía que se distinguen de los demás. Los accesorios también fueron muy importantes: guantes de cuero, botines y sombrillas. Las mujeres más ricas llevaban perfumes, las joyas y el maquillaje. Había nuevos equipos destinados a ser utilizados en el deporte para las mujeres, como la natación y el ciclismo.

 Los hombres más ricos llevaban trajes oscuros, relojes de oro de bolsillo, bastones y guantes de cuero. El pelo corto y el bigote se convirtió en moda.

La Belle Epoque fue un período de alegría por vivir, disfrutando del ocio y el progreso. Experimentado algunos problemas: una vida significativa el déficit demográfico, los conflictos y social, porque, a pesar de la nueva legislación social, se hizo difícil sobrevivir para la clase trabajadora y la población rural.

Al terminar la Primera Guerra Mundial en 1914, la “belle epoque” se había detenido en el tiempo, convirtiéndose en el pasado.

Tercera Revolución Industrial El Mundo Contemporaneo Avances Tecnicos

Tercera Revolución Industrial

La sociedad de la información: Una tendencia en el desarrollo de la civilización industrial ha sido la aplicación creciente de la ciencia y la tecnología al proceso productivo.

Las transformaciones económicas y organizativas que caracterizan la nueva fase de la economía mundial están estrechamente asociadas a un profundo cambio científico y tecnológico. Este cambio tiene su núcleo en las tecnologías de la información —microelectrónica, informática, telecomunicaciones—.

Tercera Revolución Industrial Estas nuevas tecnologías tienen un doble efecto. Por una parte, abren nuevos sectores industriales, como la industria de la computación. Pero, además, desencadenan grandes transformaciones en un conjunto muy amplio de actividades económicas.

Estos cambios son acompañados en las sociedades capitalistas avanzadas por una importancia creciente de las actividades de procesamiento de información, tanto en el producto bruto como en la estructura ocupacional. La organización de la producción y el trabajo también se ha visto profundamente modificada.

Así como el fordismo —la aplicación sistemática de los principios de la organización científica del trabajo en un sector industrial específico que sirve como modelo para otros sectores— caracterizó la organización productiva desde los primeros años del siglo XX, desde el último tercio del siglo creció en importancia un nuevo modelo de organización del trabajo y de la producción.

Este modelo suele denominarse toyotismo —porque fue desarrollado en la fábrica japonesa de automóviles Toyota— u ohnismo —porque su concepción y diseño fueron realizadas por Taiichi Ohno, ingeniero jefe de Toyota—. Las nuevas formas organizativas se caracterizan por la flexibilidad de la producción y de la gestión empresaria, no sólo en la estructura interna de las empresas sino también en relación con sus sistemas de proveedores y su demanda.

 La economía global : La economía contemporánea es cada vez más una economía global, en la que, como señala Manuel Castells, “el capital, la producción, la gestión, los mercados, la fuerza de trabajo, la información y la tecnología se organizan en flujos que atraviesan las fronteras nacionales”. No se trata simplemente de que “la economía tenga una dimensión mundial (lo cual es cierto desde el siglo XVII, sino que el sistema económico funciona cotidianamente como una unidad en el ámbito mundial”.

La primera fase de la Revolución Industrial estuvo estrechamente identificada con el ascenso de Inglaterra; la segunda, con el avance de los Estados Unidos y Alemania. La tercera fase muestra el ascenso de Japón, que durante las décadas de 1970 y 1980 supo sacar el mayor provecho de las posibilidades productivas de las tecnologías de la información. Esto no significa que los Estados Unidos y los países de Europa occidental hayan quedado marginados de este proceso, sino más bien que hay nuevos y poderosos actores en el escenario económico internacional.

Cuadro Diferencias entre las Distintas Revoluciones Industriales

Japon Nueva Potencia Economica La economia mundial Historia Economia

Japón Nueva Potencia Económica

Los años de la recuperación

La guerra dejó a Japón en un estado de devastación total: millones de desocupados, viviendas e industrias destruidas y una inflación galopante. Las pérdidas materiales rondaron la cuarta parte de su riqueza nacional. Sin embargo, Japón contaba también con algunas condiciones favorables para su reconstrucción.

La enorme desocupación indicaba la disponibilidad de una gran cantidad de mano de obra, y la industria bélica había elevado el nivel tecnológico y la capacidad productiva de la nación. Finalmente, el Japón de la posguerra contó con la ayuda norteamericana. Como consecuencia de la Guerra Fría y de la Guerra de Corea, los Estados Unidos decidieron favorecer el crecimiento de Japón con el fin de contar con un aliado fuerte en Asia.

Potencia Mundial Economica Japon

En este contexto, los japoneses otorgaron prioridad a la reconstrucción de la industria. En 1946 se crearon el Consejo de Estabilización Económica, con el fin de coordinar la producción, y el Banco de Reconstrucción, que debía canalizar las inversiones hacia determinados sectores industriales (alimentos, fertilizantes, carbón, hierro y acero).

A partir de 1951, el Banco de Desarrollo otorgó créditos a bajas tasas de interés. El Ministerio de Industria y Comercio Exterior, creado en 1949, impulsó la formación de grupos empresariales en torno de los bancos: los keiretsu. La mayor parte del capital necesario para la inversión industrial provino del sector privado.

El aporte del gobierno consistió en la concesión de préstamos a los bancos privados y en la provisión de infraestructura (construcción de carreteras y ferrocarriles). De este modo, hacia mediados de la década del ‘50 ya estaban echadas las bases para el crecimiento industrial japonés.

Sobre la base de estos estímulos, la industria japonesa comenzó su expansión. En 1948, el índice de producción industrial (tomando como base el de los años 1934-1936=100) estaba sólo en 55. En 1955 había trepado a 181; y en 1960 se disparó a 410.

Los años del crecimiento

En 1961, el primer ministro japonés, Ikeda Hayato, presentó un programa que se fijaba el objetivo de duplicar la renta nacional en un plazo de diez años. El plan se basaba en una expansión de las exportaciones a un ritmo cercano al 10% anual. Los principales rubros exportados eran maquinaria y químicos; los principales compradores, los Estados Unidos, Europa occidental y los países del Sudeste Asiático. Los índices del comercio exterior japonés (1965= 100) revelan que de 1960 a 1970 hubo un crecimiento de 43,9 a 200,8.

En la década del ‘60, la economía japonesa se caracterizaba por el predominio de un número relativamente pequeño de fabricantes a gran escala, algunos de los cuales se hallaban dentro de keiretsu como Mitsubishi, Mitsui y Fuji. Estos fabricantes se destacaban en sectores básicos como el siderúrgico, el naviero y el minero, aunque también eran fuertes en las finanzas y el comercio.

En forma paralela fueron surgiendo empresas con líneas de producción relativamente nuevas, como artículos eléctricos, electrónicos y automóviles: entre ellas figuraban, por ejemplo, Hitachi, Toyota y Nissan.

Durante esta fase también recibieron un gran impulso los productos que requerían una tecnología avanzada y fuertes inversiones de capital: acero, petroquímica, artículos de consumo como cámaras fotográficas, televisores, motocicletas y automóviles.

Entre 1973 y 1975, la crisis del petróleo —Japón importaba casi todo el petróleo que consumía— produjo un período de recesión de la economía japonesa. Sin embargo, Japón siguió siendo el país con el mayor crecimiento económico del mundo.

Japón, potencia económica mundial: En la actualidad, el poder económico de Japón se basa en tres pilares: su capacidad industrial, su importancia comercial y el dominio sobre los mercados financieros.

Japón es la tercera potencia industrial del mundo. Junto a los Estados Unidos, es el líder de la producción de alta tecnología —electrónica e informática, industria aeroespacial, biotecnología, óptica, mecánica de precisión—. A la vez, mantiene el primer lugar en la producción automovilística y naviera.

En el aspecto comercial, Japón exporta manufacturas e importa energía, materias primas y alimentos. Su éxito comercial se basa fundamentalmente en el bajo precio, la alta calidad de sus productos y en la protección del mercado japonés. Además, Japón es la primera potencia financiera: es el segundo inversor en el mundo y las empresas japonesas se extienden por todo el planeta. La bolsa de Tokio es la primera por el volumen negociado y los bancos japoneses ocupan los primeros puestos mundiales.

PARA SABER MAS…
Japón, el iniciador
Japón es actualmente uno de los tres polos del poder económico mundial.
Luego de un primer proceso de industrialización en la segunda mitad del siglo XIX, experimentó un aumento de su poderío económico y político que le permitió expandir su poder imperial sobre los países vecinos. Empobrecido por la destrucción causada por la Segunda Guerra Mundial, logró en pocos años ponerse a la cabeza del desarro-
llo económico y tecnológico mundial.
El progreso alcanzado por el Japón es totalmente extraordinario, ha cambiado el mundo y nuestra percepción del mismo. Ha sido capaz de combinar crecimiento económico y redistribución de la riqueza, así como reducir la desigualdad del ingreso. A pesar de la gran transformación de su territorio y de su sociedad, la identidad cultural fue cuidadosamente preservada, demostrando que es factible la modernización sin occidentalización.

Estos logros requirieron un extenuante esfuerzo de la sociedad japonesa, con trabajadores cumpliendo horarios de trabajo más extensos, consumiendo mucho menos y ahorrando e invirtiendo mucho más que los trabajadores de los Estados Unidos y Europa.

Paradójicamente, el Japón fue ayudado por las reformas impuestas por la ocupación norteamericana al fin de la Segunda Guerra. La prohibición de toda actividad bélica lo liberó del peso que significan los gastos mil/tares y le permitió centrar su atención en el desarrollo económico.

Este desarrollo solo puede ser explicado por la dinámica interna de la sociedad japonesa, en cuya base estaba el proyecto de afirmación de la identidad nacional.

Un país empobrecido por la guerra, dependiente de la importación de materias primas y energía, se movilizó colectivamente, primero para sobrevivir, luego para competir y finalmente para afirmarse a sí mismo por medio de la producción industrial y la innovación tecnológica. Después de 1945 el nacionalismo japonés reemergió en la forma de un proyecto de desarrollo económico guiado por el Estado y orientado a competir pacíficamente en la economía internarnacional.

La Crisis del Petroleo:Caida Mundial del Crecimiento Economico

La Crisis del Petróleo
La Caída del Crecimiento Económico

RESUMEN HISTÓRICO:
El impacto y la salida de la crisis:

Una combinación de factores marcó el final de un período de notable crecimiento. La declaración de inconvertibilidad del dólar en 1971 y las devaluaciones del dólar entre 1971 y 1973 pusieron fin al sistema monetario de Bretton Woods. La decisión de la Organización de Países Exportadores de Petróleo (OPEP) de aumentar el precio del crudo en 1973 —y nuevamente en 1979— terminó con el petróleo barato que había lubricado el crecimiento de posguerra.

Como consecuencia de estos cambios se frenó el ritmo del crecimiento económico. Creció la inflación, se redujeron las tasas de crecimiento y aumentó el desempleo. Importantes industrias —incluso sectores industriales enteros— se vieron obligados a reconvetirse: debieron introducir innovaciones tecnológicas, ahorrar energía, reducir sus plantas de personal, etc. Muchas de estas reconversiones contaron con el apoyo de los estados nacionales, que tendieron a privilegiar la mejora de las estructuras productivas por sobre los gastos sociales.

En términos sociales y políticos, la salida de la crisis de la década del ‘70 no fue neutral. En el terreno político, su rasgo principal fue el cuestionamiento teórico y práctico del estado de bienestar. Para sus críticos, enrolados en posiciones que suelen denominarse genéricamente neoliberales o neoconservadoras, el propio funcionamiento del estado de bienestar creaba las condiciones para el estancamiento económico, al limitar los beneficios empresariales y reducir en consecuencia las posibilidades de inversión. A partir de ese momento, la intervención del estado se caracterizó por una menor preocupación por las reivindicaciones sociales. La ofensiva conservadora tuvo dos líderes principales:

Ronald Reagan, presidente de los Estados Unidos entre 1980 y 1988, y Margaret Thatcher, primera ministra británica entre 1979 y 1990. En el terreno social, el precio pagado por la contención de la inflación y por la reconversión de las industrias obsoletas fue un importante aumento en la tasa de desempleo, particularmente notable en Europa occidental.

Los límites del crecimiento y la cuestión ambiental

En 1972 el Club de Roma publicó un informe titulado “Los límites al crecimiento”. En dicho informe, un conjunto de expertos realizó una evaluación acerca de las posibilidades de continuidad del crecimiento económico en el planeta.

El problema central que planteaba el estudio era, como señala Víctor Urquidi, “el de la capacidad del planeta en que convivimos para hacer frente, más allá del año 2000 y bien entrado el siglo XXI, a las necesidades y modos de vida de una población siempre creciente, que utiliza a tasa acelerada los recursos naturales disponibles, causa daños con frecuencia irreparables al medio ambiente y pone en peligro el equilibrio ecológico global —todo ello en aras de la meta del crecimiento económico, que suele identificarse con bienestar”—. Las conclusiones del informe eran pesimistas. Más allá de la certeza en sus previsiones, el informe ejemplifica bien una preocupación y un abordaje global que tuvieron creciente difusión desde la década del ‘70 en adelante.

La preocupación por armonizar el crecimiento económico, el mantenimiento de condiciones ambientales adecuadas y la vigencia de una mayor equidad social tuvo un hito en la realización de la Conferencia de las Naciones Unidas para el Medio Ambiente y el Desarrollo, realizada en Río de Janeiro en 1992. La necesidad de la cooperación mundial para conseguir un desarrollo sustentable —o sostenible— fue el eje de las discusiones de la conferencia.

Arabia Saudí, que no creía que su economía pudiese desarrollarse exclusivamente sobre la base de las exportaciones de petróleo, se embarcó en un programa de desarrollo masivo que pretendía no sólo construir refinerías de petróleo, sino también otras «industrias más alejadas de la fuente»: las que se basaban en el petróleo o la energía barata. La zona industrial de Al Juba! constituye un ejemplo de esta estrategia. Petromin, un organismo gubernamental Saudí. y Shell trabajaron conjuntamente en la operación.

PARA SABER MAS….
La respuesta a la OPEP

Sin embargo, incluso esa solidaridad no fue suficiente para mantener los altos precios del petróleo. La recesión en Occidente redujo la demanda de petróleo; entonces empezaron a realizarse esfuerzos por ahorrar el consumo de petróleo, ya fuera substituyéndolo por otros combustibles o utilizando técnicas más eficientes en el consumo de energía.

El carbón y la energía nuclear proporcionaban una fuente alternativa de energía que generó una creciente proporción de electricidad durante la década de los 70. Se exigían y producían coches con motores más pequeños y más económicos, lo que favoreció las importaciones japonesas a Estados Unidos.

Se introdujeron límites de velocidad para ahorrar petróleo, e incidentalmente, salvar vidas. Las fuentes de petróleo que no pertenecían a la OPEP empezaron a ampliarse. El desarrollo más espectacular se produjo en el mar del Norte, donde los altos precios del petróleo y la nueva tecnología hicieron posible la extracción de tal cantidad de petróleo que, a principios de la década de los 80, Gran Bretaña era autosu-ficiente en cuanto al petróleo.

En un intento de evitar la repetición de los sucesos de 1973-1974, 16 Estados formaron el Organismo Internacional de Energía (IEA) a finales de 1974. La organización tenía como objetivo supervisar un sistema para compartir petróleo en futuras emergencias y reducir la posibilidad de tales emergencias estimulando una mayor autosuficiencia en la producción de petróleo. A cambio de compartir el petróleo de los países miembros productores de petróleo —Estados Unidos, Canadá y el Reino Unido— durante las emergencias, los países no productores de petróleo aceptaron en 1976 un precio mínimo de venta de 7 dólares por barril a fin de proteger su inversión en las fuentes petrolíferas. Ninguna de estas respuestas convenció al mundo de que se había solucionado el problema del petróleo.

En 1978, Paul Erdman publicó su novela The Crash of ’79 en la que predecía una gran guerra originada en Oriente Medio, precipitada por el sha de Persia y la lucha por el petróleo. La ficción demostró ser más exacta que muchas previsiones menos entretenidas, dado que 1979 señaló el comienzo de la segunda crisis del petróleo, iniciada por el derrocamiento del sha de Persia y la interrupción de los suministros de petróleo de Irán.

El precio del petróleo se dobló, pese a que la escasez de petróleo mundial nunca excedió el 4 por ciento y la producción de la OPEP para aquel año llegó de nuevo a un punto cumbre. Durante la primera crisis, las compañías petroleras habían racionado los suministros de petróleo y limitado así las consecuencias que la carrera por el petróleo podía tener. En la segunda crisis controlaban sólo la mitad del petróleo en el comercio internacional y no podían ser tan eficaces. Estados Unidos tan sólo cesó de acumular petróleo en marzo de 1979 y a continuación no pudo tener acceso a las reservas puesto que no se habían instalado las bombas.

El sistema de reparto de emergencia del IEA no fue activado, pese a la solicitud de Suecia, por la dudosa razón de que la activación podría aumentar el pánico. Una segunda oportunidad para que el IEA demostrara su valía surgió en septiembre de 1980, cuando se declaró la guerra entre Irán e Irak. Hacia principios de noviembre, cesaron las exportaciones de petróleo de ambos países, reduciendo las reservas mundiales algo más que en la crisis de 1979. Sin embargo, el precio del petróleo aumentó de 31 a 40 dólares, volviendo a descender a 35,5 dólares a final de año. Los mercados estaban más calmados porque Arabia Saudí aumentó la producción y el IEA alentó a sus miembros a disminuir sus reservas.

La utilización de los ingresos procedentes del petróleo: Los ingresos de la OPEP aumentaron hasta un máximo de 287.000 millones de dólares en 1980, pero la nueva ronda de aumentos de precios estimuló nuevas reducciones en la demanda. Los países de la OCDE redujeron su demanda de petróleo de la OPEP en un 20 por ciento entre 1979 y 1985. En esta última fecha, la OPEP suministraba sólo e! 40 por ciento de la demanda de petróleo en el mundo no comunista, lo cual suponía ganancias de 132.000 millones de dólares. Al año siguiente, el precio del petróleo descendió en casi un 70 por ciento en seis meses. Hacia 1988, los ingresos eran de cerca de 90.000 millones de dólares.

Deseosa de reducir la dependencia de su economía del petróleo, Arabia Saudí se embarcó en una inversión masiva en nuevas industrias, como las industrias químicas, mientras en algunas de ellas ya existía un exceso de capacidad mundial. Al ser un país geográficamente grande con una pequeña población y un monarca tradicional, que limitaba con Estados muy poblados con gobiernos radicales, Arabia Saudí también se sintió obligada a adquirir el equipo de defensa más moderno posible. Mientras el precio del petróleo seguía aumentando, los ingresos procedentes del petróleo permitían al gobiernos saudí financiar estos planes. Cuando el precio del petróleo volvió a caer en 1986, la estrategia económica nacional saudí se hizo insostenible.

El deseo de Arabia Saudí de ajustar su suministro de petróleo a fin de mantener los precios acordados, se evaporó gradualmente cuando aumentaron las dificultades presupuestarias. Con el hundimiento de este pilar de la OPEP, la perspectiva del cártel con un poder de mercado casi desapareció.

La Unión Soviética se podría haber beneficiado de este aumento en los precios, pero la delicada relación con sus mercados petroleros en Europa del Este lo hacía problemático. La Unión Soviética subsidiaba a sus Estados tapón suministrando petróleo por debajo de los precios mundiales. Pero los malos resultados de la economía soviética y de las economías satélite convirtieron este subsidio en una carga cada vez mayor.

Los efectos de la crisis
Las naciones industrializadas de Occidente reaccionaron al boicot y al alza de precios (de 2,59 a 11,65 dólares por barril) con consternación, pero inmediatamente adoptaron sus medidas. Holanda fue la primera en promover el ahorro de energía mediante la prohibición de la circulación automovilística en domingo. Bélgica y Alemania Federal siguieron su ejemplo poco después e impusieron también —como otros países— limitaciones de velocidad. Estas y otras medidas de ahorro demostraron su eficacia.

Aunque al boicot petrolífero había seguido una conmoción en cierto modo beneficiosa, los altos precios de los crudos podían conllevar peligros más graves. Se iba a acelerar la inflación, y en consecuencia el paro y las tensiones sociales. El sistema monetario se vería afectado a nivel internacional cuando los países productores de petróleo invirtieran en el mercado internacional las elevadísimas ganancias obtenidas de la noche a la mañana con igual celeridad.

Finalmente, se desequilibraron las balanzas de pagos de muchos países, puesto que tuvieron que emplear volúmenes de divisas mucho más elevados para hacer frente a las importaciones de petróleo. En 1973 los países del Mercado Común destinaron 16.000 millones de dólares para hacer frente a dichas importaciones, y un año después se elevaban ya a 40.000 millones de dólares.

Especialmente afectados resultaron los países en vías de desarrollo que no poseían petróleo. En conjunto se aceleró la recesión de la economía mundial, independientemente de las demás causas que la habían determinado. Los países industriales no iban a poder seguir aumentando su prosperidad tan rápidamente y a tan bajo precio, a expensas de otras naciones.

Las compañías petrolíferas multinacionales obtuvieron buenos beneficios del embargo y del alza de precios impuestos por los árabes. Habían demostrado ser imprescindibles a la hora de abastecer a los países industriales, y habían invertido ingentes sumas de dinero en nuevas prospecciones, pero el explosivo incremento de sus ganancias suscitó la indignación general.

La tierra oculta todavía más de 90.000 millones de toneladas de petróleo (y los expertos calculan otros 200.000 millones más), pero un consumo anual medio de 3.000 millones de toneladas permite calcular fácilmente que estas reservas se agotarán a principios del siglo XXI, aunque sin duda antes se producirán situaciones de difícil superación.

Aunque los países más dependientes del petróleo tratan de aprovechar otras fuentes de energía, no resulta fácil sustituirlo a medio plazo. En tal caso, es muy probable que la crisis de 1973 no haya sido más que el preludio de otra crisis energética futura, mucho más grave y de alcance mundial.

SÍNTESIS DE LA ÉPOCA

ORIENTE MEDIO se convirtió en un área crucial de la política mundial a partir de la década de 1950. Ello se debió a que los países de Europa occidental, Japón y Estados Unidos se hicieron cada vez nías dependientes de los grandes yacimientos petrolíferos de Oriente Medio. Los mayores depósitos se hallan en las inmediaciones del golfo Pérsico —Arabia Saudí, Kuwait, Irak e Irán— y en Libia (norte de África).

PETRÓLEO Y OPEP
En un principio, estos depósitos de petróleo eran explotados por compañías occidentales. Más tarde, los gobiernos de Oriente Medio se hicieron con el control de sus propias riquezas, ya que estaban en condiciones económicas para hacerlo. En 1960 muchos países productores de petróleo se unieron para fundar la OPEP (Organización de países exportadores de petróleo). Los precios empezaron a ser más altos.

LA CRISIS DEL PETRÓLEO En 1973, los países occidentales apoyaron a Israel en la guerra del Yom Kippur contra Egipto y Siria. Los productores árabes de petróleo, unidos en la OPEP, intentaron terminar con ese apoyo cortando los suministros de petróleo. Los precios del crudo se dispararon. Ello causó una grave crisis energética y una inflación (alza general de los precios) que dañó seriamente las economías occidentales, aunque multiplicó la riqueza de muchos productores de petróleo.

NACIONES RICAS Y NACIONES POBRES
Los países árabes productores de petróleo han tenido gobiernos muy diferentes. Algunos, como Kuwait, Arabia Saudí o Libia, tienen poblaciones pequeñas, de modo que la riqueza proveniente del petróleo puede emplearse en educación, sanidad y bienestar social. Otros, como Irak e Irán, están superpoblados. Muchos de sus habitantes son pobres, entre otras cosas porque gran parte de las riquezas generadas por el petróleo se invierten en gastos de guerra.

GOBERNANTES ÁRABES
Algunos de los mayores productores de petróleo, como Arabia Saudí y Kuwait, cuyos gobiernos son conservadores, están dirigidos por jeques (los jefes hereditarios de los árabes) prooccidentales. Otros, como Libia, Irak e Irán, están regidos por gobiernos que se autoproclaman revolucionarios. Como rasgo común, atacan el imperialismo estadounidense y la ingerencia de Estados Unidos en los asuntos extranjeros.

RELIGIÓN ISLÁMICA
En el mundo islámico se ha extendido un malestar general por la consideración que el Islam ha tenido en Occidente. Muchos pueblos de Oriente Medio exigen una modernización a la occidental, con el Islam en un segundo término. Éste fue el camino de Turquía y de su líder Kemal Atatürk (1881-1938) y la de Irán antes de 1979. Otros quieren preservar la religión y las costumbres islámicas, como Arabia Saudí, donde, por ejemplo, el alcohol está prohibido.

FUNDAMENTALÍSIMO ISLÁMICO
Una tercera opción es dinamizar el Islam haciendo de él una religión revolucionaria y opuesta a cualquier influencia extranjera. En 1979 el sha de Persia (1919-80) fue derrocado por los fundamentalistas shiís en Irán, quienes tomaron rellenes estadounidenses, desafiaron a Occidente y establecieron la estricta observancia islámica. En 1981, los fundamentalistas asesinaron al presidente egipcio Anwar el-Sadat (1918-81).

Fuente Consultada: Los Cambios Económicos del Siglo XX Sidney Pollard

La Unificación o Comunidad Europea Distintos bloques economicos

Bloques En La Unificación o Comunidad Europea

Después de la guerra, algunos dirigentes europeos consideraron que era conveniente ensayar alguna forma de unificación de los países de Europa occidental. Después del fracaso de algunas tentativas demasiado ambiciosas, el proceso de unificación se inició en 1952 con un acuerdo entre seis países —Francia, Alemania Occidental, Bélgica, Holanda, Luxemburgo e Italia— que constituyeron la Comunidad Europea del Carbón y del Acero (CECA).

El hecho importante de esta unión fue la convergencia entre Francia y Alemania, los enemigos irreconciliables de las dos grandes guerras. El éxito de la CECA facilitó la ampliación de los acuerdos entre las seis naciones, que en 1957 constituyeron la Comunidad Económica Europea (CEE) —también conocida como Mercado Común Europeo—. Posteriormente se fueron incorporando otras naciones europeas y se fue ampliando la esfera de atribuciones de los organismos comunitarios.

En 1987, el Acta Unica estableció una ampliación del mercado común, con libre circulación de personas, mercancías y servicios. El Tratado de Maastricht firmado en 1992 dispuso la creación de la Unión Europea. Esta unión incluye dimensiones inéditas en la historia europea: la unión económica y la unión política. La primera se manifiesta en la decisión de crear una moneda única y de armonizar las políticas económicas de todos los países miembros de la unión. La segunda supone la creación de una ciudadanía europea y la coordinación de las políticas exteriores y de seguridad de los distintos países. El tratado establece asimismo mecanismos de compensación social y regional para cerrar los desequilibrios entre regiones y grupos.

GLOBAL, REGIONAL, NACIONAL Y LOCAL

Uno de los problemas que aparece con mayor nitidez y recurrencia en el mundo actual es el de las relaciones entre lo global, lo regional y lo nacional. Las razones de la preocupación por este problema son bastante claras. Por una parte, la enorme expansión de los medios y posibilidades de comunicación vinculan cada vez más estrechamente a miles de millones de personas a lo largo y a lo ancho del planeta.

Existe una economía global, caracterizada por un creciente intercambio comercial, por el desarrollo de un mercado financiero global y por nuevas formas de organización de la producción a escala mundial. Existen también problemas globales, como por ejemplo la destrucción de la capa de ozono, que tienen efectos sobre todo el planeta y que requieren soluciones que escapan al radio de acción de cualquier estado nacional.

Para algunas interpretaciones, las tendencias a la globalización suponen una creciente homogeneización de valores, costumbres y estilos de vida en todo el mundo, impuesta por la convergencia entre las nuevas tecnologías de la información y la lógica del capitalismo. Estas tendencias efectivamente existen, pero no agotan la cuestión. La globalización coexiste con la desigualdad y con la exclusión, en una nueva división internacional del trabajo. El proceso de exclusión comprende grandes regiones, como el África subsahariana, pero no se limita a áreas del mundo subdesarrollado. Afecta también a las grandes aglomeraciones urbanas del mundo desarrollado, con sus enormes bolsones de miseria y marginación.

Las tendencias a la globalización ponen en cuestión los márgenes de acción autónoma de los estados nacionales. La expansión de las empresas multinacionales ha sido enorme. En 1989, las ventas de las 50 empresas multinacionales más importantes equivalían al 37% del producto bruto de los Estados Unidos, lo que puede dar una idea del poder económico y de la capacidad de negociación de las grandes empresas frente a la mayoría de los países.

 Otro ejemplo de restricción a la capacidad de intervención estatal autónoma es el de la política monetaria: las posibilidades de los gobiernos de fijar sus políticas monetarias están muy fuertemente condicionadas por lo que hacen otros países y por las decisiones de los grandes inversores y especuladores internacionales.

La creación en 1994 de la Organización Mundial de Comercio (OMC) constituye un cambio significativo en el funcionamiento del comercio internacional. La incorporación de un país a la OMC supone la aceptación de un conjunto muy amplio y detallado de disposiciones que limitan los márgenes de decisión nacional. Frente a estos fenómenos, de creciente relevancia en el contexto internacional, se postulan diferentes alternativas políticas que van desde el aislamiento hasta la defensa a ultranza del comercio libre.

Una de las reacciones de los gobiernos ha sido la constitución de acuerdos regionales, que suponen diferentes grados de integración comercial, económica y política, como la Unión Europea, el NAFTA o el MERCOSUR.

LA UNIÓN EUROPEA: En 1987, la firma del Acta Única estableció una ampliación del mercado común. El Acta preveía “la creación de un mercado interno único, integrado, sin restricciones para el movimiento de mercaderías, la eliminación de los obstáculos para la libre circulación de las personas, de los servicios y de los capitales, la creación de un régimen destinado a garantizar que la competencia no se vea falseada por políticas proteccionistas, el acercamiento de las legislaciones nacionales necesarias para el funcionamiento del Mercado Común y la armonización de los impuestos directos en interés del mercado.”

En 1992, un tratado firmado en la ciudad holandesa de Maastricht dispuso la creación de la Unión Europea. Esta unión incluye dimensiones inéditas en la historia de este continente: la unión económica y la unión política. La primera se manifiesta en la decisión de crear una moneda única y de armonizar las políticas económicas de todos los países miembros de la unión. La segunda supone la creación de una ciudadanía europea y la coordinación de políticas exteriores y de seguridad de los distintos países. Asimismo, el tratado establece mecanismos de compensación social y regional para zanjar los desequilibrios entre regiones y grupos.

La integración europea ha permitido a los diferentes estados alcanzar importantes logros. Sin embargo, esta unión enfrenta ciertos problemas, como los diversos grados de desarrollo de los diferentes países, la pérdida de mercados frente a la competencia norteamericana y japonesa, y las altas tasas de desempleo, entre otros.

jefes de estado europeo

Jefes de gobierno de países europeos en la Cumbre de la Unión Económica y Monetaria, Madrid, 1989.

Historia y Justificación del Estado de Bienestar en Occidente

Historia y Justificación del Estado de Bienestar

EL ESTADO DE BIENESTAR: Analizaremos primero, en este punto, cómo se constituye el llamado “estado de bienestar” desde lo global. El mismo, surge como respuesta del propio sistema capitalista mundial a la crisis del ´29 cuyo máximo teórico es John M. Keynes .

 “El ´29 barre también con la nostalgia residual de aquellos valores que el ´17 había destruido. En el jueves negro de Wall Street, con la catastrófica caída del índice de la Bolsa, son arrasadas las mitologías estatales y políticas de un siglo de renovado dominio burgués sobre la clase obrera…(…) es el entierro final del mito liberal clásico de la separación del Estado y el mercado. Es el fin del “laissez faire”.

Pero aquí no se trata simplemente de la modificación de la relación clásica entre el estado y la sociedad civil y del arribo de un Estado “intervencionista” (…) eso ya había sido presenciado en los años posteriores a 1870. Aquí el inicio de una nueva época en la historia del Estado contemporáneo es señalado por el hecho de que en ese mundo debe reconocerse la emergencia de la clase obrera y la imposibilidad de eliminar el antagonismo que ella representa como un elemento necesario del sistema…(…) la característica central que distingue a la nueva forma histórica del Estado capitalista es: la reconstrucción capitalista del Estado sobre la base del descubrimiento del antagonismo obrero radical.(…) La revolución obrera política puede ser evitada sólo reconociendo las nuevas relaciones de fuerza y haciendo funcionar a la clase obrera dentro de un mecanismo que sublime la continua lucha por el poder en un elemento dinámico del sistema, controlándola, funcionalizándola en una serie de equilibrios…(…) El Estado está ahora preparado para penetrar en la sociedad, para recrear continuamente la fuente de su legitimidad en un proceso de permanente reajuste de las condiciones de equilibrio. La nueva “base material de la constitución” devino en el “Estado planificador” o, mejor aún, el Estado como “plan”.(…)” (Negri, Toni, “La crisis de la política. Escritos sobre Marx, Keynes, las crisis capitalistas y las nuevas subjetividades”, Ediciones El cielo por asalto, Argentina, 2002, pág. 15 y 16.)

Negri, se pregunta más adelante por las implicancias de la crisis del ´29 y sobre los nexos entre 1917 y 1929 y dice: “… el ´17 se presenta al mismo tiempo bajo dos aspectos: como problema internacional y como problema interno de los diversos países capitalistas, como el problema de la contrarrevolución, así como el aislamiento de la Unión Soviética, y como el problema de la represión del potente movimiento de la clase obrera –sindical y obrero- que extiende la experiencia revolucionaria a todo el mundo capitalista”.

Y Negri, contesta diciendo lo que proponía Keynes en 1919, como la única vía a seguir por el capitalismo: “…consolidar la economía de Europa central como una barrera contra los soviets rusos y como una forma de control de los movimientos revolucionarios internos, reunificar, en suma, los dos frentes de defensa del sistema capitalista”. (Negri, Ob. Cit, pág. 18).

Además, marca como característica específica de la nueva forma del Estado que emergió de 1929 que: “era más bien el tipo de dinámica de clase que entrará en acción en el marco del intervencionismo estatal, sobre la cual se fundaba la intervención. Únicamente la experiencia de la gran crisis del 1929 podía permitir a la ciencia capitalista dar este ulterior paso adelante hacia una nueva redefinición del Estado.(..) Asumir que el ´17 no tiene incidencia inmediata sobre el ´29 parece cosa obvia. Sin embargo, detrás de la obviedad de esta afirmación se encuentra una red de relaciones históricas cuya identificación, si no explicará, ciertamente dará un sentido político complejo de interpretación de la gran crisis. Porque, si bien es cierto que la crisis del ´29 surge directamente de la estructura económica norteamericana, también es al mismo tiempo fruto de la acumulación de las contradicciones del sistema…(…) La excepcionalidad de la crisis del ´29 no se entiende sino teniendo presentes las condiciones del desarrollo económico de los años veinte, cuando el alargamiento de la base de la oferta (…) no se acompañó de un cambio en la relación en la que se encontraba con la demanda (…) y cuando se dice “demanda” se dice “clase obrera”, se dice posibilidad de insurrección y de subversión del sistema” (…) tenemos finalmente a este Estado capitalista que audazmente supera y recupera (Aufhebung) la noción de “revolución permanente” a su interior para su propia conservación” ( Negri, Ob. Cit., págs. 25, 26 y 34 ).

“John Maynard Keynes fue quizás el teórico más perpicaz de la reconstrucción capitalista, de aquella nueva forma de Estado capitalista que emergió como reacción al impacto revolucionario de 1917.(…) y el rol jugado por Keynes fue hacerla funcionar (a la revolución del 17) dentro del análisis de la crisis, convertirla en elemento científico (…) el punto decisivo en la “Teoría General” es: El redescubrimiento de la ley de la caída tendencial de la tasa de la ganancia” (…) y la necesidad del sistema de una previsión. Y la previsión, consecuentemente es el predominio de la demanda sobre la oferta.” (Negri, Ob. Cit., págs. 17 y 35.)

 Estado de Bienestar

Fue Keynes, quien aportó líneas de acción superadoras de la crisis e hizo alusión al rol del estado en esta coyuntura. Ya la Primera Guerra había provocado, en mucho países, situaciones de riesgo a las economías nacionales, lo que había obligado a abandonar la idea de un Estado abstencionista en materia económica.

La crisis del ´29, que es vista como una crisis de todo el sistema en su conjunto, pero del sistema capitalista. Dice el historiador Hobsbawm: “(…) Ahora bien, una vez que el capitalismo liberal había conseguido sobrevivir –a duras penas- el triple reto de la Depresión, el fascismo y la guerra, parecía tener que hacer frente todavía al avance global de la revolución, cuyas fuerzas podían agruparse en torno a la URSS, que había emergido de la segunda guerra mundial como una superpotencia. (…) El principal interrogante al que deben dar respuesta los historiadores del siglo XX es cómo y por qué tras la segunda guerra mundial el capitalismo inició – para sorpresa de todos- la edad de oro, sin precedentes, y tal vez anómala, de 1947-1973. No existe todavía una respuesta que tenga el consenso general…(…)” (Hobsbawn, Eric, “Historia del siglo XX”, Ed. Crítica, 1997, pág. 18).

La crisis del sistema capitalista, que no afectó a la ex Unión Soviética, obliga a el Estado, a realizar medidas dirigistas, corporativistas, intervencionistas (aunque volvamos a aclarar: ¡el Estado siempre interviene!). ¿Cuál va a ser el rol que se le va asignar al Estado en este periodo? El Estado va a ser pensado como activo agente de la economía, desde la regulación e incentivación de la producción; desde el control de los mercados, del consumo, de la producción, del comercio exterior; desde la elaboración de nuevas leyes que reglamenten el funcionamiento económico; desde la planificación de las medidas a adoptar; desde la nacionalización de empresas, etc.

Es que, siguiendo a Keynes, la idea era, incentivar el consumo, la demanda de bienes en oposición a la teoría del pensamiento clásico en la que el mercado es una espontánea fuerza reguladora de la economía, donde la oferta y la demanda (tanto de bienes y de mano de obra) se crean mutuamente, se generan mutuamente. A partir de las teorías keynesianas, surge también la idea de la plena ocupación y del pleno empleo como generador de más demanda de productos y más consumo.

El Estado pasa así, a intervenir para garantizar cierto nivel de ocupación y de consumo, incentivando la economía por medio de políticas que aseguren su funcionamiento. El Estado, asume el rol de protector tanto de los consumidores como de empresarios a fin de impedir los abusos de los sectores monopolistas.

En resumen, el “Estado de Bienestar” (“Welfare state”) pretende, frente a los avances de la economía, regular el funcionamiento de la sociedad. Surgió desde lo global (desde los países centrales e industrializados) como necesidad del subsistencia del propio sistema, pero también fue modelo en los países periféricos. Si bien, este tipo de Estado, no trata de transformar la estructura del sistema económico, intenta remediar las deficiencias adoptando medidas que mejoren los servicios de salud, educación, cultura, seguridad y defensa del ambiente. El “Estado de Bienestar” interviene subsidiando actividades correctivas de las desigualdades sociales, trata de resolver los problemas graves dentro de la estructura del Estado Liberal. La idea para el “Estado de Bienestar” es que es necesario intervenir, porque si se deja a la sociedad librada a su suerte, se cae en una irracionalidad donde los que más tienen tienden a incentivar aún más las diferencias sociales y económicas. El Estado, entonces, no debe limitarse a garantizar el funcionamiento del sistema sino que debe ser regulador de las relaciones sociales y fundamentalmente debe hacerse cargo de la “justicia distributiva” de los recursos, o sea ser un Estado “incluyente”.

Pasando a las implicancias de todo lo dicho anteriormente, al nivel de lo Local, a lo que pasaba en esta etapa en Argentina y en América Latina en general, el rol del Estado en el periodo de Industrialización tiene un cambio cualitativo con respecto al que había tenido en el periodo anterior (“modelo agroexportador” en el que representaba exclusivamente los intereses de las clases dominantes).

En la etapa de la economía primaria exportadora, sobre todo a partir de la segunda mitad del siglo XIX, el Estado toma una posición decidida en el proceso, a través de la organización y la promoción de la inversiones en ferrocarriles e infraestructura y en el poblamiento de la zona pampeana. En ese periodo (1860-1930) el Estado integró al país en el sistema de división internacional del trabajo, organizó el sistema monetario en torno al patrón oro y una política arancelaria abierta a la importación de manufacturas. Se organizó el Estado de derecho liberal liderado por los sectores vinculados a la producción agropecuaria y a los intereses internacionales asociados a los grupos locales dominantes en ese sector dinámico.

Como dijimos, la complejidad creciente del proceso económico, plantearon al Estado un conjunto de problemas, a partir de 1930.

Uno de esos problemas, se refiere a la política de desarrollo industrial. En la etapa Agroexportadora (política librecambista), las responsabilidades del Estado se limitaban al manejo de la política arancelaria. En la nueva etapa, al asumir la Industria, el papel protagónico del proceso de desarrollo, y la protección arancelaria y otras medidas de fomento, un rol central en la evolución de la economía, el Estado asumió responsabilidades mucho más complejas: “Entre ellas se incluye no sólo el nivel y la estructura de la protección arancelaria sino, también, la política de financiamiento de promoción del cambio tecnológico, de precios relativos agro-industriales y otras cuestiones importantes.” (Peralta Ramos, Mónica, “Etapas de acumulación y alianzas de clases en la Argentina (1930-1970)” ).

En el nivel global, los países capitalistas obtuvieron durante este periodo inmejorables ganancias y una notable mejoría económica. Por primera vez apareció un sistema de consumo masivo basado en el pleno empleo y en el aumento constante del poder adquisitivo con la cobertura social financiada por el incremento de los ingresos del Estado.

Finalmente, el “estado de bienestar” entró en crisis a fines de los ´60 y comienzo de los ´70. El equilibro vital de su funcionamiento se vio alterado por el aumento de la producción y la capacidad del mercado de absorberlo. Es decir, mucha oferta y poca demanda. A todo esto se le sumó la denominada “crisis del petróleo” de 1973, que generó una importante disminución de las ganancias de las empresas y paralelamente una disminución en el poder adquisitivo de los trabajadores. Las empresas privadas culparon al “estado de bienestar” por esto y comenzaron una nueva etapa, una nueva fase capitalista: “Tecnológica Financiera” con el neoliberalismo comandando política e ideológicamente el proceso.

Profesor: Pablo Salvador Fontana

BIBLIOGRAFÍA UTILIZADA EN: “EL ESTADO DE BIENESTAR”:
– Hobsbawn, Eric, “Historia del siglo XX”, Ed. Crítica, 1997.
– Negri, Toni, “La crisis de la política. Escritos sobre Marx, Keynes, las crisis capitalistas y las nuevas subjetividades”, Ediciones El cielo por asalto, Argentina, 2002.
– Peralta Ramos, Mónica, “Etapas de acumulación y alianzas de clases en la Argentina (1930-1970)”.