El efecto fotoeléctrico

Cientificos Mas Importantes de la Historia y Sus Descubrimientos

Científicos Mas Importantes de la Historia y Sus Descubrimientos

Los primeros intentos de estudiar el mundo desde un punto de vista científico datan del antiguo Egipto y Babilonia.

Sin embargo es a los griegos a quienes debemos las bases de muchos de nuestros pensamientos científicos; la geometría, la astronomía y la química fueron estudiadas frecuentemente de una manera amplia aunque, a veces, las conclusiones a que llegaron fueron desacertadas.

Aristóteles creía (erróneamente) que la Tierra era el centro del Universo y que toda la materia estaba formada de cuatro elementos:  tierra, aire, fuego y agua.

Durante la edad media la química se hizo importante aunque no se la conocía por tal nombre.

Los alquimistas, dedicados a cosas tales como producir oro de otros metales, realizaron individualmente muchos descubrimientos importantes, aunque poco contribuyeron a nuestro conocimiento de la naturaleza de la materia.

La visión del Universo fue alterada radicalmente por las ideas de Copérnico (quien demostró que el centro del sistema solar era el Sol).

El siglo XVII vio un gran florecimiento de la investigación científica. Newton formuló sus leyes del movimiento y de la gravitación universal; en 1662 se fundó en Londres la Royal Society y se crearon en Europa muchos otros cuerpos de científicos organizados, los cuales allanaron el camino para el acercamiento a la ciencia moderna.

Ésta ha evolucionado rápidamente a través de los siglos XVIII y XIX, hasta llegar al profesionalismo especializado de hoy.

A continuación figuran muchos de los más grandes científicos.

juego conocer cientificos

LOS CIENTÍFICOS FAMOSOS (Orden Alfabético)

Adrián,  Edgardo   (1889-       )   Inglés,  fisiólogo.  Renombrado por sus trabajos sobre el cerebro, el sistema nervioso y la función de los nervios.

Agassiz, Juan Luis Rodolfo  (1807-1873)   Suizo, naturalista. Una autoridad en peces, para los cuales, propuso  una  nueva  clasificación.  También  estudió  los glaciares.

Ampére, Andrés María (1775-1836) Francés, matemático. Estudió la electricidad y el magnetismo. Dio su nombre a la unidad de corriente eléctrica.

Appleton, Eduardo Víctor (1892-       ) Inglés, físico, investigó el comportamiento de las ondas de radio de largo alcance, especialmente su reflexión en la atmósfera superior.

Aristóteles (384-322 a. C.) Griego, filósofo. Hizo una clasificación del conocimiento y muchos estudios en. el campo de la metereología, biología y geología.

Arquímedes (287-212 a. C.)  Griego, matemático. Estableció  el principio  de Arquímedes,  dedujo la ley de las palancas e inventó el tornillo de Arquímedes y la polea compuesta o polipasto.

Baekeland, León  Hendrik   (1863-1944)   Belga,  químico. Descubrió  el primer  plástico  termo-endurecido de uso práctico. Esto llevó a la producción de la baquelita.

CIENTIFICOS

Baeyer, Adolfo de (1835-1917) Alemán, químico. Realizó investigaciones acerca de los compuestos del cacodilo; descubrió la eosina, la galeína y la ceruleína. Es también conocido por su teoría de la asimilación del ácido carbónico por las plantas. Premio Nobel de química en 1905.

Becquerel,  Antonio Enrique   (1852-1908).  Francés; descubrió la radiactividad mientras usaba sales de uranio.   También estudió la fosforescencia, la luz y el magnetismo.

Berzelius, Juan Jaoobo (1779-1848). Sueco, químico. Descubrió varios elementos, sugirió el uso de la primera letra de los nombres de los elementos como símbolos químicos y creó la primera tabla segura de pesos atómicos.

Black, José (1728-1799). Inglés, químico. Redescubrió el anhídrido carbónico, al que llamó «aire fijado». Es también conocido por sus teorías sobre el calor latente y sobre el calor específico.

Blackett, Patricio Maynard Stuart (1897-       ). Inglés, físico.   Con la cámara de Wilson fotografió la división de un núcleo del nitrógeno) por una partícula alfa, en un protón y un núcleo de oxígeno.

Bohr Níels (1885- ). Dinamarqués, físico. Extendió grandemente la teoría de la estructura atómica al inventar un método explicativo del espectro de los elementos y su posición en la tabla periódica. Ayudó al desarrollo de la teoría cuántica.

Boussingault, Juan Bautista (1807-1887). Francés, biólogo. Explicó las diferencias básicas entre la nutrición animal y vegetal y demostró que las plantas obtienen nitrógeno de los nitratos del suelo y no de la atmósfera.

Boyle, Roberto (1627-1691). Inglés, químico. Figura destacada en la química del siglo XVII. Sus investigaciones cubrieron un campo muy amplio, incluso la neumática; es mejor recordado por la ley que lleva su nombre.

Bragg, Guillermo Enrique (1862-1942). Inglés, físico. Famoso por su trabajo sobre la estructura de los cristales y los átomos; aplicó el espectrógrafo de rayos X, que desarrollaron juntos él y su nijo G. L. Bragg.

grandes cientificos

Bragg,  Guillermo Lorenzo   (1890-       ).  Inglés,  físico. Trabajó con su padre  Sir G. E. Bragg en la estructura de los cristales.

Brahe, Tycho  (1546-1601). Dinamarqués, astrónomo. Hizo  muchas  observaciones  exactas  de los  planetas y  del  Sol.   Éstas  dieron  la  base  para las  leyes  de Kepler.

Brown, Roberto  (1773-1858). Inglés, botánico.   Fue el primero en observar los movimientos de las partículas suspendidas en un líquido.   En su honor, se llamó a este fenómeno «movimiento browniano».

Buffon, Jorge Luis (1707-1788). Francés, naturalista. Dedicó su vida a describir y clasificar plantas. Notorio por su trabajo monumental, Historia Natural.

Bunsen, Roberto Guillermo Eberardo (1811-1899). Alemán, químico. Con Kirchhoff descubrió el análisis espectral. Es recordado por su invento del mechero de Bunsen, aunque hizo inventos y descubrimientos más importantes.

Cannizzaro, Estanislao (1826-1910). Italiano, químico. Aplicó la hipótesis de Avogadro para la determinación de los pesos atómicos; experimentó en química orgánica y descubrió la reacción que luego llevó su nombre.

Cavendish, Enrique (1731-1810). Inglés, físico y químico. Descubrió el hidrógeno y demostró que cuando éste se quema se produce agua. Realizó la primera’ determinación exacta del peso de la Tierra.

Chadwick, Jaime  (1891-       ). Inglés, físico. Trabajó en la  desintegración  nuclear y   en la  dispersión  de partículas alfa.   El bombardeo de berilo con éstas lo llevó al descubrimiento del neutrón.

Cockcrobt, Juan Douglas (1897- ). Inglés, físico. Trabajó en la transmutación del núcleo atómico mediante el uso de partículas atómicas aceleradas. Consiguió desintegrar el núcleo de litio, con protones de alta velocidad.

Copérnico, Nicolás (1473-1543). Polaco, astrónomo. Descubrió que el Sol es el centro del sistema solar. Comprendió que las estrellas están a una enorme distancia de la Tierra pero pensó que estaban fijadas en una esfera.

Crookes, Guillermo  (1832-1919). Inglés,  químico y físico. Inventó el tubo de Crookes y sugirió la verdadera naturaleza de los rayos catódicos.   Descubrió el talio y estudió la radiactividad.

Curie, María Sklodowska (1867-1934). Nació en Polonia y se radicó en Francia, química. Con su esposo separó el polonio de los minerales uraníferos; luego descubrieron  el radio.

Curie, Pedro (1859-1906). Francés, físico y químico. Trabajó en cristalografía, magnetismo y piezoelectricidad.    Ayudó   al   descubrimiento   del   radio   y   del polonio.

Cuvier, Jorge Leopoldo (1769-1832). Francés, naturalista. Trabajó en anatomía comparativa y propuso una clasificación completa del reino animal. Estableció la paleontología como una ciencia separada.

grandes cientificos

Darwin, Carlos Roberto (1809-1882). Inglés, naturalista. Como resultado de sus observaciones, mientras viajaba alrededor del mundo, propuso la teoría de la evolución. Ésta fue publicada en su libro El origen de las especies.

Davy, Hunfredo (1778-1829). Inglés, químico. Famoso por su invento de la lámpara de seguridad.  Experimentó con el gas hilarante,  aisló el sodio y otros metales reactivos y dio nombre al cloro.

Dewar, Jaime (1842-1923). Inglés, químico. Importante por sus investigaciones sobre el comportamiento de la materia a bajas temperaturas; fue el primero en licuar hidrógeno; inventó el vaso Dewar de vacío.

Eddington, Arturo Stanley (1882-1944). Inglés, químico.   Hizo notables contribuciones a la astrofísica, especialmente  sobre la  estructura  de las   estrellas, y calculó la edad del Sol.

Ehrlich, Pablo (1854-1915). Alemán, bacteriólogo. Descubrió que los microbios absorben colorantes en forma selectiva. Mediante la combinación de colorantes con productos químicos venenosos trató de matar los microbios patógenos.

grandes cientificos del mundo

Einstein, Albert (1879-1955). Nació en Alemania, físico matemático. Escribió la Teoría general de la relatividad para rectificar ideas fundamentales sobre la gravitación, relacionando masa con energía; demostró que el espacio y el tiempo eran conceptos inseparables. Ha realizado trabajos apreciables en la teoría  cuántica.

Faraday,  Miguel   (1791-1867).  Inglés,  físico  y  químico. Descubrió el principio de la inducción electromagnética usado en la dínamo.  También licuó cloro y formuló las leyes de la electrólisis.

Fermi, Enrique    (1901-1954).   Italiano,   físico.   Hizo notables contribuciones a la física nuclear por su investigación sobre substancias radiactivas artificiales y energía  atómica.

Fischer, Emilio Armando (1852-1919). Alemán, químico. Trabajó durante muchos años en la estructura de los hidratos de carbono y proteínas. Fabricó artificialmente algunas substancias naturales como la fructosa y la cafeína.

Flamsteed, Juan (1646-1719). Inglés, astrónomo. Primero en obtener el título de Astrónomo Real en Gran Bretaña, es famoso por haber inventado la proyección cónica de los mapas; realizó muchos adelantos en la mejora de los métodos de observación de las estrellas.

Fleming,   Alejandro    (1881-1955).   Inglés,   bacteriólogo. Renombrado por su descubrimiento  de la  penicilina.

Florey, Howard Gualterio (1889- ). Inglés, patólogo. Con Chain aisló una forma pura y estable de penicilina, adaptable al uso medicinal.

Franklin,   Benjamín   (1706-1790).   Norteamericano, hombre de estado y físico. Fue el primero en probar la  naturaleza   eléctrica   de  los   relámpagos   e   inventó el pararrayos.

Fraunhofer, José de (1787-1826). Alemán, físico. Fue suyo el primer estudio preciso de las líneas oscuras en el espectro del Sol, llamadas líneas Fraunhofer.

Galeno, Claudio (aproximadamente de 130-200). Griego, médico; autor fecundo de obras sobre anatomía y fisiología. Sus trabajos permanecieron en uso durante muchos años.

Galilei, Galileo (1564-1642). Italiano, matemático y astrónomo. Construyó el primer telescopio astronómico práctico, con el cual estudió la superficie de la Luna, la Vía Láctea, el Sol, y muchos de los planetas.

Galvani, Luis (1737-1798). Italiano, físico. Renombrado por su descubrimiento de la electricidad animal (galvanismo). Demostró que tocando el nervio que conduce a un músculo de la pata de la rana, éste se contrae.

Gauss, Carlos Federico   (1777-1855). Alemán, matemático. Ganó gran reputación por su trabajo en las teorías del magnetismo y de los números.

Gay-Lussac, José Luis  (1778-1850). Francés, químico y físico. Notorio por su ley de las proporciones definidas y por sus otros adelantos en química.

Gilbert, Guillermo (1544-1603). Inglés, físico. El padre del magnetismo, descubrió su ley básica, es decir, que polos iguales se repelen. Concibió que la Tierra en sí, actúa como un imán.

Golgi, Camilo (1843-1926). Italiano, histólogo. Descubrió el aparato Golgi, una red nerviosa en la mayor parte de las células; desarrolló muchas técnicas de coloración para el estudio de la estructura del sistema nervioso.

Graham,   Tomás   (1805-1869).   Inglés,   químico.   Famoso por su trabajo en la difusión de los gases. Formuló la Ley de Graham.

grandes cientificos

Guericke, Otón de (1602-1686). Alemán, físico. Inventó la bomba neumática; alcanzó la obtención de vacío y creó también un aparato para la producción de electricidad mediante la fricción de una esfera de sulfuro.

Haeckel, Ernesto Enrique (1834-1919). Alemán, biólogo. Sostuvo la teoría de Darwin y realizó importantes estudios sobre las medusas, corales y esponjas. Realizó las primeras tentativas para hacer el árbol genealógico del reino animal.

Halley, Edmundo (1656-1742). Inglés, astrónomo. Mejor conocido por sus observaciones del cometa que lleva su nombre. También trabajó sobre el magnetismo terrestre los vientos y el movimiento de las estrellas.

Harvey, Guillermo (1578-1657). inglés, médico. Llegó  a  la  fama   por   su   descubrimiento   de  la   circulación de la sangre.

Heisenberg, Werner Carlos (1901- ). Alemán, físico. Notorio por su trabajo sobre estructura atómica, fundó la mecánica cuántica. También formuló el principio de incertidumbre.

Herschel,  Federico  Guillermo   (1738-1822).  Nació en  Alemania,  astrónomo. Desarrolló  un  nuevo   tipo de telescopio reflector. Descubrió  Urano y  dos  de sus satélites.

Hertz, Enrique  (1857-1894). Alemán, físico.  Probó experimentalmente la existencia de las ondas de radio  y  demostró  su   semejanza  con  la  radiación  luminosa.

Hooke, Roberto  (1635-1703). Inglés, físico. Trabajó en  matemáticas,  presión  atmosférica y  magnetismo; también estudió el microscopio y telescopio.

grandes cientificos

Hooker, José Dalton   (1817-1911). Inglés, botánico. Notable por su libro Genera Plantarium que escribió con Bentham y que contiene un nuevo e importante sistema de clasificación de las plantas.

Hopkins, Federico Gowland (1861-1947). Inglés, bioquímico.  Sus investigaciones sobre las proteínas y vitaminas fueron de gran importancia. Su trabajo llevó al descubrimiento de los aminoácidos esenciales.

Humboldt,  Federico  de   (1769-1859).   Alemán,  geógrafo. Exploró América del Sur y Asia Central; hizo muchas observaciones de los fenómenos naturales.

Hunter, Juan (1728-1793). Inglés, cirujano y anatomista. El principal cirujano de su época. Hunter fundó la cirugía científica, donde introdujo muchas técnicas quirúrgicas.

Huxley, Tomás Enrique (1825-1895). Inglés, biólogo. Sostenedor de la teoría de Darwin, Huxley trabajó sobre los vertebrados (especialmente el hombre) y métodos de enseñanza científica.

Huygens, Cristian (1629-1695). Holandés, astrónomo y físico. Descubrió la naturaleza de los anillos de Saturno y uno de sus satélites. Formuló su teoría ondulatoria de la luz e inventó el reloj de péndulo.

Jenner, Eduardo (1749-1823). Inglés, médico. Descubrió   un  método   para   prevenir  la  viruela   por  inoculación.

Joliot,  Juan  Federico   (1900-1958).  Francés,   físico. Con  su  esposa Irene Joliot Curie bombardeó  boro con partículas alfa y produjo la primera substancia radiactiva artificial.

Joule, Jaime Prescott (1818-1889). Inglés, físico. Famoso por su determinación de la equivalencia mecánica del calor y sus investigaciones en electricidad y magnetismo. La unidad de energía tomó su nombre.

Kelvin, Guillermo Thompson (1824-1907). Inglés, matemático y físico. Inventó el galvanómetro de espejo, la balanza Kelvin y el electrómetro de cuadrante. Introdujo la escala Kelvin de temperatura absoluta.

grandes cientificos

Kepler, Juan (1571-1630). Alemán, astrónomo. Sus tres leyes del movimiento de los astros son de gran importancia para la astronomía, y proveyeron las bases de la investigación de Newton sobre la gravitación.

Koch, Roberto (1843-1910). Alemán, bacteriólogo. Descubrió los organismos que causan el ántrax, la tuberculosis y el cólera. Desarrolló también nuevas técnicas de coloración y nuevos métodos de cultivo de bacterias.

Lamarck, Juan Bautista (1744-1829). Francés, naturalista. Muy famoso por su teoría de la evolución (lamarquismo) en la cual la herencia de los caracteres adquiridos —se sostenía— explicaba el origen de las especies.

Laplace, Pedro Simón, de (1749-1827). Francés, matemático. Resolvió  muchos  de los problemas matemáticos del sistema solar.  Dedujo la ley que gobierna el campo magnético que rodea a una corriente.

Lavoisier, Antonio Lorenzo (1743-1794). Francés, químico. Descubrió la naturaleza de la combustión y, finalmente, refutó la teoría del flogisto. También descubrió que los animales necesitan oxígeno para vivir.

grandes cientificos

grandes cientificos

Leeuwenhoek, Antonio de (1632-1723). Holandés, óptico. Con lentes simples hizo muchos descubrimientos importantes, observaciones de microbios, corpúsculos de sangre y tejidos animales.

Liebig, Justo de (1803-1873). Alemán, químico. Mejor conocido por su invento del condensador ds Liebig. Es importante por sus trabajos en agricultura, nutrición de las plantas y química orgánica.

Linneo, Carlos (1707-1778). Sueco, botánico. Muy conocido por su trabajo sobre clasificación de animales y plantas. Escribió el Systema Naturae.

Lister, José (1827-1912). Inglés, cirujano. Introdujo los antisépticos en la ciencia médica y más tarde la cirugía aséptica.

Lovell, Alfredo Carlos Bernardo (1913- ). Inglés, astrónomo. Profesor de astronomía de la Universidad de Manchester, trabajó en varios problemas, especialmente en la exploración de las ondas de radio provenientes del espacio.

grandes cientificos

Lyell, Carlos (1797-1895). Inglés, geólogo. Autor de muchos trabajos de geología, Lyell sostuvo la teoría de que los cambios ocurridos en la corteza de la Tierra en el pasado, se debieron a las mismas causas que los cambios que están teniendo lugar ahora.

Malpighi,  Marcelo   (1628-1694).  Italiano,  médico  y anatomista.   Descubrió los capilares entre las arterias y venas y estudió la embriología de los animales y plantas, anatomía de las plantas  e  histología de los animales.

Manson, Patricio (1844-1922). Inglés, médico. Famoso por sus investigaciones de la medicina tropical, fue el primero en demostrar que los insectos son portadores de algunos de los organismos causantes de enfermedades.

Maxwell, Jaime Clerk (1831-1879). Inglés, físico. Famoso por sus investigaciones matemáticas que condujeron al descubrimiento de las trasmisiones radiales.

Mendel,  Gregorio Juan  (1822-1884). Austríaco, naturalista.  Famoso  por su  trabajo   sobre  la  herencia, pionero del estudio  de sus leyes fundamentales.   Su trabajo forma la base  del mendelismo.

Mendeleiev, Demetrio Ivanovich  (1834-1907). Ruso, químico.  Es   famoso   por   su  formulación   de   la  ley periódica basada en los pesos atómicos.

Michelson, Alberto Abraham (1852-1931). Norteamericano, físico. Determinó la velocidad de la luz y realizó estudios prácticos de las corrientes del éter. Inventó también un interferómetro para el estudio de las líneas del espectro.

Millikan, Roberto Andrews (1868-1935). Norteamericano,  físico.  Determinó   el  valor   de  la   carga   del electrón por medio de un famoso experimento en el que usó gotas de aceite.

Newton, Isaac (1642-1727). Inglés, matemático. Notorio por su trabajo sobre la gravedad. Descubrió las tres leyes básicas del movimiento y la relación entre los colores y la luz. Sus trabajos sobre óptica, problemas matemáticos y astronomía han sido de inmensa importancia.

Oersted, Juan Cristian (1777-1851). Dinamarqués, físico. Precursor de la investigación del electromagnetismo, descubrió el principio básico de que un alambre que lleva una corriente eléctrica es rodeado por un campo magnético.

Ohm, Jorge Simón (1787-1854). Alemán, físico. Se dio su nombre a la unidad de resistencia eléctrica y su ley es de fundamental importancia en electricidad.

Pasteur, Luis (1822-1895). Francés, bacteriólogo.  Sus experimentos sobre fermentación destruyeron el mito de la generación espontánea.  Fundó la ciencia de la bacteriología y descubrió la inmunidad artificial.

Pavlov, Juan Petsovich (1849-1936). Ruso, patólogo. Es notorio por su trabajo sobre la fisiología de la digestión, y los reflejos condicionados.

Planck Max Carlos Ernesto Luis (1858-1947). Alemán, físico. Desarrolló la teoría de los cuantos y también trabajó en termodinámica y óptica.

Priestley, José (1733-1804). Inglés, químico. Descubridor .del oxígeno, no llegó a concebir la verdadera I unción de éste en la combustión y le dio el nombre de «aire desflogistado». También descubrió el amoníaco, el óxido de nitrógeno, el monóxido de carbono y el anhídrido sulfuroso.

Ramón y Cajal, Santiago (1852-1934). Español, histólogo. Es sobresaliente su trabajo sobre el sistema nervioso. Hizo importantes descubrimientos acerca de la estructura y forma de las células nerviosas, especialmente en el cerebro y la espina dorsal.

Ray, Juan (1627-1705). Inglés, naturalista. El más grande entre los primeros naturalistas ingleses, fue principalmente un botánico y señaló la diferencia entre las monocotiledóneas y las dicotiledóneas.

Roentgen, Guillermo Conrado (1845-1923). Alemán, físico. Su  descubrimiento de los rayos X revolucionó ciertos aspectos de la física y la medicina.

Ross,  Ronaldo   (1857-1932).   Inglés,  médico.   Probó que la hembra del mosquito Anopheles transporta el parásito causante de la malaria.

Rutherford, Ernesto (1871-1937). Inglés, físico. Descubridor de los rayos alfa, beta y gamma emitidos por sus substancias radiactivas. Famoso por su teoría sobre la estructura del átomo, fue el primero en realizar la trasmutación de un elemento.

grandes cientificos

Scheele, Carlos Guillermo (1742-1786). Sueco, químico. Descubridor del oxígeno, el cloro y la glicerina, y sintetizó algunos compuestos orgánicos.

Schleiden, Matías Santiago (1804-1881). Alemán, botánico. Con Schwann desarrolló la «teoría celular».

Schrodinger, Erwin (1887). Austííaco, físico. Especialmente notorio por su trabajo en la mecánica ondulatoria.

Schwann, Teodoro  (1810-1882). Alemán, anatomista. Desarrolló,  con Schleiden, la «teoría celular» trabajando en tejidos animales. Descubrió la enzima pepsina.

Simpson, Jaime Young (1811-1870). Inglés, médico. Famoso por su descubrimiento de las propiedades anestésicas del cloroformo; fue el primero en usar anestésicos en cirugía.                                        ,

Smith, Guillermo (1769-1839). Inglés, geólogo. Demostró que es posible determinar la edad de las rocas mediante el estudio de los fósiles contenidos en ellas.

Soddy, Federico (1877-1956). Inglés, físico y químico. Célebre por su descubrimiento de los isótopos y por el  trabajo  realizado  ulteriormente  sobre  éstos.  Con Rutherford   presentó  la   teoría   de  la  desintegración espontánea.

Stores, Jorce Gabriel (1819-1903). Inglés, matemático y físico. Descubrió cómo determinar la composición química del Sol y las estrellas por sus espectros. Formuló también la ley de Stokes de la viscosidad.

Thomson, J. J. (1856-1940). Inglés, físico. Conocido por su determinación del e/m (carga del electrón dividido su masa), y su descubrimiento de que los rayos, catódicos consisten en electrones, o sea, partículas cargadas negativamente.

Torricelli, Evangelista (1608-1647). Italiano, físico. Inventó el barómetro de mercurio y construyó un microscopio simple.

Urey, Haroldo Clayton  (1893-       ). Norteamericano, químico. Fue el primero en aislar agua pesada y de tal manera, en descubrir el deuterío. Es una autoridad en isótopos.

Van’t Hoff, Santiago Enrique  (1852-1911). Holandés, físico.   Su nombre se asocia a una ley relativa al equilibrio  de las reacciones  químicas.  Notable también por sus investigaciones en presión osmótica.

Vesalio, Andrés (1514-1564). Belga, anatomista. Visto como el padre de la anatomía moderna, hizo írmenos descubrimientos mediante concienzudas disecciones. Mucho de su trabajo está contenido en su libro De Corporis Humani Fabrica.

Volta, Alejandro (1745-1827). Italiano, físico. Desarrolló la teoría de las corrientes eléctricas e inventó la primera batería. La unidad de presión eléctrica es conocida como «voltio» en recuerdo de su nombre.

Wallace, Alfredo Kussel (1823-1913). Inglés, naturalista. Con Darwin, publicó un ensayo sobre la teoría de la evolución. La línea Wallace, línea imaginaria, separa las áreas de la fauna asiática de la australiana.

Wegener,   Alfredo   Lotario    (1880-1930).   Alemán, geólogo. Famoso por su tesis sobre el desplazamiento de los continentes.

Wilson, Carlos Thomson Rees (1869-1959). Inglés, físico. Famoso por su invento de la cámara de niebla, la cual ha probado ser de un valor inestimable en los estudios atómicos.

Fuente Consultada:Enciclopedia Juvenil Técnico-Cientifica Editorial Codex Volumen II – Entrada Cientificos

Enlace Externo: Grandes Cientificos

juego conocer cientificos

Historia de la Evolución del Uso De Energía Desde el Fuego

HISTORIA DEL DESCUBRIMIENTO Y  EVOLUCIÓN DEL USO DE LA ENERGÍA DESDE EL FUEGO A LA ENERGÍA ATÓMICA

LAS ENERGIA PRIMARIAS:

Una fuente de energía primaria es toda forma de energía disponible en la naturaleza antes de ser convertida o transformada, y ellas son: el petróleo, gas natural, el carbón, la madera o leña, caída de agua, la del sol o solar, la eólica, mareomotriz y nuclear.

Observa el siguiente cuadro, donde se indica la clasificación de las fuentes de energía:

cuadro clasificacion de las fuentes  de energía

PRIMEROS USOS DEL FUEGO:

Una fuente de energía —el combustible al arder—- tiene un lugar muy especial en la historia del hombre.

Efectivamente, muchos antiguos pueblos consideraron que el fuego era sagrado, y algunos, como los griegos, tenían leyendas que contaban cómo los hombres habían arrancado a los dioses el secreto del fuego. Según la leyenda griega, Prometeo robó fuego de la forja del dios Hefestos (Vulcano) y lo escondió en un tallo hueco de heno.

uso del fuego por el hombre

Si nos detenemos a pensar por un momento acerca de las otras fuentes de energía que usaron los hombres primitivos, podremos comprender por qué se consideró el fuego de este modo.

Los hombres de la Edad de Piedra podían advertir la energía muscular de los animales en acción cada vez que iban de caza; no podían menos de observar la energía del viento, que lo mismo meneaba las hojas de los árboles que desgajaba sus ramas, y ellos deben haberse dado cuenta muchas veces de la energía del agua en movimiento al arremolinar pesados troncos corriente abajo.

Pero la energía dejada en libertad cuando el fuego arde es mucho más difícil de notar.

Los primeros hombres que vieron en un bosque un incendio causado por el rayo, probablemente pensaron en el fuego sólo como un elemento destructor y deben haber pasado muchas generaciones hasta que el hombre se diera cuenta de que el fuego podía usarse para realizar trabajo útil.

Además, la energía del viento y la del agua estaban allí a disposición del hombre para que las usara. Pero antes de que él pudiera usar el fuego tuvo que aprender a producirlo.

Durante miles de años la única manera de hacer fuego era golpeando dos piedras o pedernales para producir una chispa.

Ése es el método que aún emplean ciertas tribus primitivas de Australia y de Sudamérica, y es muy parecido al que usaba la gente cuando se valía de cajas de yesca, hasta que se inventaron los fósforos, hace poco más de un siglo.

Efectivamente, aún utilizamos pedernales para encender cigarrillos o picos de gas.

Con el tiempo la gente aprendió a producir fuego haciendo girar dos palitos juntos encima de algún combustible seco, en polvo, hasta hacer saltar una chispa.

Una vez que el hombre tuvo el fuego, pronto descubrió que le podía prestar dos servicios para los que era insustituible.

Sobre todo, le suministró calor y luz, y aún hoy el fuego es nuestra mayor fuente de calor y de iluminación.

Aun teniendo casas donde todo está electrificado, casi seguramente la electricidad que nos proporciona luz y calor proviene de generadores movidos por el vapor que produce la combustión del carbón.

También el fuego podía realizar cosas que el viento, la energía muscular y el agua no eran capaces de hacer.

Podía producir cambios físicos y químicos en muchas clases de substancias. Aunque el hombre primitivo no se diese cuenta, el fuego en el cual él cocía su pan contribuía a transformar varias substancias químicas en la masa del almidón y a producir el anhídrido carbónico que hacía fermentar el pan.

El fuego con que cocía sus vasijas cambiaba las propiedades físicas de la arcilla y la hacía dura y frágil, en vez de blanda y moldeable.

Aún hoy usamos el fuego para cambiar las propiedades físicas de las materias primas: al extraer el metal de sus minerales, en la fabricación del vidrio y del ladrillo y en otras muchas.

También lo usamos para provocar cambios químicos: en la cocina, en la destilería, en el horneado y en infinito número de procesos industriales.

También hemos aprendido a hacer uso del poder devastador del fuego. Empleamos su tremendo calor destructivo, concentrado en un rayo del grosor de un lápiz, para perforar duros metales.

Usamos la fuerza de poderosos explosivos, encendidos por una pequeña chispa, para despejar montañas de escombros, que de otro modo llevaría semanas de trabajo el acarrear, y frecuentemente utilizamos el fuego para destruir residuos que deben ser eliminados si queremos mantener sanos nuestros pueblos y ciudades.

HISTORIA DEL CALOR COMO ENERGÍA:

El hombre dejó, al fin, de considerar el fuego como objeto sagrado, mas durante cientos de años siguió mirándolo como a cosa muy misteriosa.

La mayoría creía que el fuego quitaba algo de toda materia que quemaba.

Veían que las llamas reducían sólidos troncos a un puñado de blandas cenizas y unas volutas de humo.

Llenaban una lámpara de aceite, la encendían y descubrían que el aceite también se consumía.

Encendían una larga vela y en pocas horas apenas quedaba un cabo.

Solamente hace 200 años un gran francés, Lavoisier, demostró que el fuego, en realidad, agrega algo a aquello que quema.

Hay un experimento muy simple para demostrar que esto es así. Tomamos una balanza sensible y colocamos una vela en un platillo, con un tubo de vidrio repleto de lana de vidrio, puesto justamente encima de aquélla para recoger el humo.

En el otro platillo colocamos suficiente peso para equilibrar exactamente la vela, el tubo y la lana de vidrio.

Biografia de Lavoisier Antoine Descubrimientos en la Quimica Trabajos

Si ahora prendemos la vela y la dejamos arder, descubrimos que el platillo de la balanza sobre la cual se apoya desciende gradualmente.

Esto significa que lo que queda de vela y los gases que ha producido durante su combustión pesan más que la vela íntegra.

Lavoisier pudo ir más allá y demostrar qué es lo que se añade a las substancias cuando arden.

Descubrió que es oxígeno del aire. Efectivamente, si colocamos un recipiente boca abajo sobre una vela prendida, la llama se apaga tan pronto como el oxígeno del recipiente ha sido consumido.

Del mismo modo, el carbón no puede arder en una estufa, ni el petróleo dentro de un cilindro del motor de un auto, sin una provisión de oxígeno del aire.

calor como energia

Al calentar agua, el vapor puede generar trabajo, es decir movimiento

Pero muchas substancias se combinan muy lentamente con el oxígeno y sin producir ninguna llama.

Una es el hierro.

Si se expone el hierro al aire húmedo, aunque sólo sea por un día o dos, una fina capa de óxido se forma sobre su superficie, y es que el hierro se ha combinado con el oxígeno.

En algunas partes del mundo, también los compuestos de hierro se combinan con el oxígeno, bajo el suelo, produciendo depósitos de color castaño rojizo.

Cuando las substancias se combinan con el oxígeno no siempre producen fuego, pero casi siempre originan calor.

Y es el calor producido de este modo el que da a los hombres y animales toda su energía física, toda su fuerza muscular.

En nuestros pulmones el oxígeno del aire pasa al torrente sanguíneo y es llevado por la sangre a las células de todas las partes del cuerpo, donde se combina con las partículas alimenticias para originar calor y energía.

También produce anhídrido carbónico que expelemos al aire.

El peso del alimento que tomamos en un día no es muy grande ciertamente, y, por lo tanto, la cantidad de calor que producimos en un día tampoco lo es.

Y no todo este calor lo convertimos en energía para el trabajo, porque parte de él lo consumimos en el propio cuerpo, para mantener nuestra temperatura y en otros procesos fisiológicos.

Cuando pensamos cuánto trabajo puede realizar un hombre en un día, pronto nos damos cuenta de que una pequeña cantidad de calor puede transformarse en una gran cantidad de trabajo.

Así podríamos elevar un peso de 1 tonelada a 30 metros de altura, si transformáramos en trabajo todo el calor necesario para poner en ebullición 1 litro de agua.

A grandes alturas, los aviadores no pueden obtener suficiente oxígeno del aire que los rodea, para que sus cuerpos produzcan el calor y la energía que necesitan.

Entonces se colocan una máscara de oxígeno y el ritmo de producción de calor y energía se acelera inmediatamente.

De manera similar, en la soldadura, que requiere intenso calor, a menudo se mezcla oxígeno puro con el combustible, en lugar de utilizar el aire común.

► LA ENERGIA EÓLICA: 

Energía eólica, energía producida por el viento. La primera utilización de la capacidad energética del viento la constituye la navegación a vela . En ella, la fuerza del viento se utiliza para impulsar un barco.

La utilización de la energía eólica no es una tecnología nueva, se basa en el redescubrimiento de una larga tradición de sistemas eólicos empíricos.

No es posible establecer con toda claridad el desarrollo histórico de los «sistemas de conversión de energía eólica», sólo es posible identificar los importantes papeles que desempeña la energía eólica en el pasado.

La utilización de la energía del viento resulta muy antigua.

La historia se remonta al año 3 500 a.C, cuando los sumerios armaron las primeras embarcaciones de vela, los egipcios construyeron barcos hace al menos cinco mil años para navegar por el Nilo y más tarde por el Mediterráneo.

Después, los griegos construyeron máquinas que funcionaban con el viento.

Así, desde la antigüedad éste ha sido el motor de las embarcaciones.

Algunos historiadores sugieren que hace más de 3,000 años la fuerza del viento se empleaba en Egipto cerca de Alejandría para la molienda de granos.

Sin embargo, la información más fehaciente de la utilización de la energía eólica en la molienda apunta a Persia en la frontera Afgana en el año 640 D.C.

balsa a vela energia eolica

Barcos con velas aparecían ya en los grabados egipcios más antiguos (3000 a.C.). Los egipcios, los fenicios y más tarde los romanos tenían que utilizar también los remos para contrarrestar una característica esencial de la energía eólica, su discontinuidad.

molino de viento

Uno de los grandes inventos a finale de la Edad Media, el molino de viento, muy usado en el campo argentino para extraer agua de la napa freática y darle de beber  a los animales.

parque eolico

Actualidad: Parque Eólico: Los generadores de turbina de los parques eólicos aprovechan la fuerza del viento para producir electricidad. Estos generadores dañan menos el medio ambiente que otras fuentes, aunque no siempre son prácticos, porque requieren al menos 21 km/h de velocidad media del viento.

► ENERGÍA GAS NATURAL:

Como gas natural se define la mezcla de hidrocarburos livianos en estado gaseoso, donde la mayor proporción corresponde al metano (CH4) en un valor que oscila entre el 80 al 95 %.

El porcentaje restante está constituido por etano (C2H6), propano, butano y superiores, pudiendo contener asimismo en proporciones mínimas, vapor de agua, anhídrido carbónico, nitrógeno, hidrógeno sulfurado, etc.

El gas natural proviene de yacimientos subterráneos que pueden ser de gas propiamente dicho o de petróleo y gas, según que en su origen se encuentre o no asociado al petróleo.

El gas natural procede generalmente de las perforaciones que se realizan en los yacimientos petrolíferos, de la descomposición de la materia orgánica con el tiempo.

En dichos yacimientos, el petróleo más liviano que el agua, suele flotar sobre lagos subterráneos de agua salada. En la parte superior se encuentra el gas, que ejerce enormes presiones, con lo cual hace fluir el petróleo hacia la superficie.

Ampliar: Gas Natural

► LA ENERGÍA ELÉCTRICA:

El fuego fue muy importante para el hombre primitivo, porque le capacitó para hacer cosas que con la energía del viento, del agua o del músculo no podía realizar.

La humanidad no logró descubrir otra forma de energía capaz de realizar cosas completamente nuevas hasta hace 200 años, cuando comenzó a dominar la electricidad, la fuerza poderosa escondida en el rayo.

energia electrica

Hoy, con la radio, podemos oír a una persona que habla desde comarcas remotas; con la televisión podemos ver sucesos que ocurren a muchas millas de distancia; con cerebros electrónicos o computadoras podemos encontrar en pocos segundos las respuestas a complicadísimos problemas matemáticos.

El viento, los músculos, el agua y el fuego no nos podrían ayudar a hacer ninguna de estas cosas; sólo la electricidad.

Varios siglos antes de Cristo, los griegos sabían que el ámbar, al cual llamaban elektron, atraía el polvo y trocitos de plumas después de frotarlo con lana seca, piel o paño.

En tiempos de Shakespeare, muchos hombres de ciencia europeos sé interesaron en ésta extraña fuerza de atracción, y un inglés, Guillermo Gilbert, la llamó electricidad.

Alrededor de un siglo más tarde, otro investigador, llamado Guericke, descubrió que la electricidad originada rotando una bola de azufre contra la palma de su mano hacía saltar una chispita con un ruido marcado de chisporroteo.

En realidad él había producido un relámpago y un trueno en miniatura.

La electricidad que parece estar contenida, en reposo, en una substancia y es súbitamente liberada, por contacto con otra substancia, se llama electricidad estática.

Antes de que los hombres pudieran hacer uso de la electricidad, necesitaban que ésta fluyera de un modo constante y que se lograse controlar, es decir, obtener lo que hoy llamamos una corriente eléctrica.

El primer paso para descubrirla se dio por casualidad.

Más o menos a mediados del siglo xvin, un anatomista italiano, Luis Galvani, dejó las patas de unas ranas recién muertas en contacto con dos alambres, uno de bronce y otro de hierro.

Notó que las patas de las ranas comenzaban a estremecerse y pensó que cierta energía animal quedaba en ellas todavía.

Pero otro científico italiano, Volta, demostró que el estremecimiento se debía a que estos dos diferentes metales tomaban parte en la producción de electricidad.

volta cientifico creador de la pila

Volta, inventor de la pila eléctrica

Pronto Volta hizo la primera batería, apilando planchas de cobre y de cinc alternadamente una sobre la otra, y separadas sólo por paños empapados en una mezcla débil de ácido y agua.

Dos alambres, uno conectado a la plancha de cobre de un extremo y el otro a la plancha de cinc del otro extremo, daban paso a una continua corriente de electricidad.

Las baterías generan electricidad por medio de cambios químicos y aun las más poderosas no producen corrientes lo bastante grandes para muchas necesidades actuales.

Los modernos generadores en gran escala producen electricidad por medio de imanes que rotan rápidamente.

Oersted, un danés, y Ampére, un francés, hicieron la mayor parte del trabajo que llevó a descubrir las relaciones entre la electricidad y el magnetismo; pero fue un inglés, Miguel Faraday, quien primero usó un imán en movimiento para producir una corriente eléctrica. Esto ocurrió hace más de un siglo.

Pronto nuevos inventos dé un físico belga, llamado Gramme, y un hombre de ciencia nacido en Alemania, sir Guillermo Siemens, abrieron la nueva era de la energía eléctrica en abundancia. Tomás Edison, un inventor norteamericano, fabricó las primeras bombillas eléctricas y así dio difusión a los beneficios de la electricidad en la vida diaria.

Medimos la fuerza de un generador —la fuerza que pone a una corriente en movimiento— en unidades llamadas voltios, en honor de Volta.

Medimos la intensidad de la corriente en amperios, en honor de Ampére.

Los voltios, multiplicados por los amperios, nos indican cuánto trabajo puede realizar una corriente, y medimos éste en vatios, en honor de Jacobo Watt, famoso por su invento de la máquina de vapor.

Ampliar Sobre el Descubrimiento de la Electricidad

LA ENERGÍA ATÓMICA: Miles de años transcurrieron desde que se dominó el fuego hasta que se empezó a utilizar la electricidad. Sin embargo, solamente se necesitaron tres generaciones para que surgiese el uso de la energía atómica. Los más grandes hombres de ciencia tardaron más de un siglo en descubrir los secretos del átomo, y no podemos pretender abarcar esa historia completa en una página. Pero podemos dar una rápida ojeada y ver cómo algunos de ellos se lanzaron a esa labor.

Ya en la antigua Grecia había ciertos filósofos que creían que toda la materia está constituida por partículas tan pequeñas que no se pueden dividir. Dieron a estas partículas el nombre de átomos, de dos palabras griegas que significan «no susceptible de ser dividido». Pero hasta hace poco más de 150 años había pocas pruebas, o ninguna, que apoyasen esta creencia.

Antes de 1800 los químicos conocían pocas substancias simples y puras, de la clase que ahora se llaman elementos, y no sabían mucho acerca de cómo combinar los elementos para formar compuestos. Pero en ese año, dos químicos ingleses, Carlisle y Nicholson, usaron una corriente eléctrica para descomponer el agua en dos elementos: hidrógeno y oxígeno. Con la electricidad pronto consiguieron los químicos una cantidad de otros elementos y pronto aprendieron que los elementos se combinan invariablemente en proporciones fijas según el peso.

centrales atomicas

Esto hizo que un químico inglés, Dalton, reviviera la teoría de los átomos. Él creía que cada elemento diferente está constituido por átomos distintos, y que cada uno de éstos tiene un peso especial. Pero poco después de que la gente comenzara a creer en la existencia de los átomos, o partículas indivisibles de materia, los hechos demostraron que los átomos pueden en realidad dividirse en partículas aún más pequeñas.

Primero Róntgen, un científico alemán, advirtió que ciertas substancias químicas pueden obscurecer una placa fotográfica aun cuando esté bien protegida. Había descubierto los rayos X, rayos hechos de partículas que no son átomos enteros. Más tarde, Madame Curie analizó un mineral llamado pechblenda, que emite rayos similares, y descubrió el elemento altamente radiactivo llamado radio. Las sales de radio emiten rayos sin desintegrarse aparentemente.

Marie Curie

Varios científicos, incluyendo a Rutherford y Soddy, estudiaron estos rayos y lograron descomponerlos en tres partes: rayos alfa, que poseen carga eléctrica positiva; rayos beta, o rayos de electrones, que conducen una carga negativa, y rayos gamma, o rayos X.

Más tarde, Rutherford bombardeó una lámina de oro con partículas alfa. Casi todas ellas atravesaron el oro, pero algunas rebotaron.

Esto le hizo suponer que los átomos de la lámina de oro no estaban contiguos, sino muy espaciados, como las estrellas en el cielo. También advirtió que hay gran espacio vacío dentro de cada átomo.

Madame Curie en el Laboratorio

Un danés llamado Niels Bohr encontró que en el centro de cada átomo hay partículas cargadas positivamente (protones) y partículas no cargadas (neutrones), apretadas para formar el centro o núcleo. A distancia del núcleo hay partículas mucho más pequeñas todavía, llamadas electrones, que poseen una carga de electricidad negativa. Estos electrones giran alrededor del núcleo, como los planetas alrededor del Sol.

Otón Hahn, un físico alemán, fue uno de los primeros en descubrir cómo liberar energía de los átomos por reacción en cadena, en la cual los neutrones de un átomo chocan con el núcleo de otro átomo y lo destruyen, liberando así más neutrones, que golpean a su vez los núcleos de otros átomos. Otro alemán, Max Planck, ya había descubierto cómo calcular la cantidad de energía liberada cuando se fisiona un átomo.

Planck y Borh

Los Físicos Planck y Ruthenford

Actualmente obtenemos energía no sólo dividiendo átomos pesados (fisión nuclear), sino también combinando átomos livianos (fusión nuclear).

CUADRO EVOLUCIÓN DEL CONSUMO A LO LARGO DE LA HISTORIA:

cuadro consumo de energia en la historia

Se observa que el consumo de energía va vinculado directamente con el desarrollo de las sociedades, y se pueden diferenciar dos fases: 1) preindustrial donde la energía utilizada era la propia muscular, mas la generada por el carbón, desechos orgánicos. hidraúlica y eólica y 2) la actual a partir de la energía del vapor de agua, la electricidad y el petróleo.

Ampliar: La Energía Atómica

Ampliar: Energía Mareomotriz

Ampliar: Energía Geotérmica

Fuente Consultada:
La Técnica en el Mundo Tomo I CODEX – Globerama – Editorial Cuántica

Enlace Externo: Historia de la Electricidad

Conceptos Básicos de Electrostática Cargas Eléctricas

Conceptos Básicos de Electrostática

EXPERIMENTO CON CARGAS ELÉCTRICAS EN LA ELECTROSTÁTICA

La palabra electricidad, empleada para designar la causa desconocida que daba a los cuerpos frotados la propiedad de atraer a otros, deriva, justamente, de elektron, nombre que en griego significa ámbar.

Pero la voz electricidad, no usada por los griegos, fue introducida por Guillermo Gilbert (1540-1603), médico de cámara de la reina Isabel de Inglaterra. La soberana le acordó una pensión permanente para que se dedicara a la investigación científica sin preocupaciones económicas.

Gilbert Guillermo

Gilbert Guillermo, Médico

William Gilbert (1544-1603), físico y médico inglés conocido sobre todo por sus experimentos originales sobre la naturaleza de la electricidad y el magnetismo. Nació en Colchester, Essex, y estudió en el Saint John’s College de la Universidad de Cambridge. Comenzó a practicar la medicina en Londres en 1573 y en 1601 fue nombrado médico de Isabel I.

Primeros Experimentos

El doctor Gilbert, que fue el primero en estudiar sistemáticamente los fenómenos eléctricos, descubrió que otras substancias, entre ellas el vidrio, también adquirían por frotamiento la propiedad de atraer trocitos de cuerpos muy livianos.

Esto puede comprobarse acercando pedacitos de papel a los dientes de un peine de material resinoso, seco, después de peinarse con él repetidas veces.

Si a una esferita de corcho, de médula de saúco o de girasol, suspendida de un hilo de seda, se acerca una barra de vidrio frotada, la esferita, por ebfenómeno de inducción electrostática, es atraída por la barra y repelida después del contacto.

Lo mismo ocurre si se hace el experimento con una barra de ebonita.

Si se carga la esferita de un péndulo eléctrico o electrostático, así se llama el aparatito descripto más arriba, tocándolo con una barra de vidrio electrizada, y otro con una de ebonita en las mismas condiciones, se comnrobará. al acercarlas, aue se atraen; pero si ambas se tocan únicamente con la barra de vidrio, o con la de ebonita, en lugar de atraerse, al acercarlas se repelen.

Pendulo Electrostático

pendulo electrostático

De estos hechos y otros análogos se sacaron las siguientes conclusiones:

a) Existen dos estados eléctricos opuestos, o como se dice ordinariamente, dos clases de electricidad, que se ha convenido en denominar vitrea o positiva y resinosa o negativa;

b) Electricidades de distinto nombre, o de signo contrario, se atraen; y del mismo nombre, o de igual signo, se rechazan y

c) Un cuerpo que no manifiesta acciones eléctricas se dice que está en estado neutro.

La electrización de un cuerpo por frotamiento, vidrio por ejemplo, y los dos estados eléctricos o las dos clases de electricidad se explican así: el vidrio se electriza positivamente cuando se frota con una franela porque pierde electrones que los gana ésta, que se carga por ello negativamente.

Como los electrones que pierde un cuerpo los gana el otro, se comprende por qué la carga eléctrica que aparece en ambos es igual; pero de nombre contrario.

Los cuerpos que como el vidrio, la ebonita, el lacre, la porcelana, etc., se electrizan por frotamiento y conservan durante bastante tiempo su estado eléctrico, son malos conductores de la electricidad; los que no se electrizan por frotamiento como, por ejemplo, los metales y el carbono, son buenos conductores de la electricidad.

A los malos conductores se les denomina también aisladores.

Cargas electricas

cargas electricas

Cuadro Sobre Electoestática

cuadro electoestática

En realidad, todos los cuerpos se electrizan por frotamiento, como se comprueba frotando un cuerpo conductor que se sostiene con un mango aislador.

Lo que ocurre en ambos casos es lo siguiente: en un cuerpo mal conductor o aislador, el vidrio por ejemplo, las cargas eléctricas quedan localizadas en el lugar frotado; en un buen conductor no, pues deja pasar el estado eléctrico o la electricidad de un modo instantáneo a través del mismo y a otros conductores o lugares vecinos que estén en comunicación con él.

Conviene tener presente que la primera condición que se requiere para que un cuerpo sea mal conductor de la electricidad aislador de la misma, es que esté muy seco.

Los electricistas no tienen miedo de tocar los cables que conducen la electricidad si están situados sobre madera bien seca, que es un aislador; en cambio no los tocan si están colocados sobre metales otro material conductor; inclusive la madera húmeda, pues b electricidad pasaría a tierra a rravés del cuerpo humano, que es un buen conductor, produciendo trastornos que pueden ocasionar la muerte.

Existen máquinas eléctricas que producen electricidad por frotamiento, que actualmente sólo tienen interés histórico y didáctico.

Ellas se fundan en el hecho, ya explicado, según el cual cuando dos cuerpos se frotan entre sí, uno de ellos se electriza positivamente y el otro negativamente.

La primera máquina electrostática de frotamiento fue inventada por Otto de Guericke.

Consistía en una esfera de azufre que giraba alrededor de uno de sus diámetros y se electrizaba frotándola con la mano.

En la obscuridad despedía cierta luz acompañada de ruido.

El término electrostática se emplea para designar la parte de la física que estudia la electricidad estática, es decir, la que está en estado de equilibrio sobre los cuerpos —que se ha tratado en este artículo— para diferenciarla de la electricidad en movimiento, es decir, de la corriente eléctrica.

Científicos Premio Nobel de Física Mas Influyentes

GRANDES FÍSICOS CONTEMPORÁNEOS

Como una extraña ironía, estado normal en el ánimo de la historia, lo que fuera la preocupación principal de los especulativos filósofos griegos de la antigüedad, siguió siendo la preocupación fundamental de los experimentados y altamente tecnificados hombres de ciencia del siglo XX: el elemento constitutivo de la materia, llamado átomo desde hace 25 siglos.

Fue prácticamente hasta los inicios de la presente centuria que la ciencia empezó a penetrar experimentalmente en las realidades atómicas, y a descubrir, de nuevo la ironía, que el átomo, llamado así por su supuesta indivisibilidad, era divisible. Mas aún, ya empezando la presente década, el abultado número de partículas subatómicas elementales descubiertas, hace necesario sospechar que están constituidas por alguna forma de realidad aún menor.

Y a pesar de que en nuestra escala de dimensiones cotidianas la distancia que separa al electrón más externo del centro del átomo es absolutamente insignificante, en la escala de la física contemporánea es inmensa, tanto que recorrerla ha tomado lo que llevamos de siglo, la participación de varias de las más agudas inteligencias de la humanidad y cientos de millones de dólares en tecnología, equipos y demás infraestructura.

En su camino, no obstante, muchos han sido los beneficios obtenidos por el hombre con el desarrollo de diversas formas de tecnología, aunque también se han dado malos usos a las inmensas fuerzas desatadas por las investigaciones. Pero por encima de todo ello, ha prevalecido un común estado del intelecto- el afán por conocer.

El Premio Nobel de Física ha seguido de cerca este desarrollo, y por lo tanto hacer un repaso suyo es recorrer la aventura de la inteligencia, con las emociones y asombros que nunca dejará de producirnos el conocimiento científico.

Por Nelson Arias Avila
Físico PhD, Instituto de Física de la Universidad de Kiev

Albert Einstein cientifico fisico nobel
1. Albert Einsten (1879-1955)
Considerado el padre de la física moderna y el científico más célebre del siglo XX.
Año: 1921 «Por sus servicios a la física teórica, y en especial por el descubrimiento de la
ley del efecto fotoeléctrico».

Realizó sus estudios superiores en la Escuela Politécnica Federal Suiza en Zurich y terminó su doctorado, en 1905, en la Universidad de Zurich. Trabajó, entre 1902 y 1909, en la Oficina de Patentes de Berna; de allí pasó a ocupar el cargo de profesor adjunto en el Politécnico de Zurich. Más tarde ejerció también la docencia en la Universidad de Berlín y en la de Princeton; dictaría, además, innumerables conferencias en universidades de Europa, Estados Unidos y Oriente. Ocupó los cargos de director del Instituto de Física de Berlín y miembro vitalicio del Instituto de Estudios Avanzados de Princeton. En 1905 formuló la «teoría de la relatividad», la cual amplió en 1916 («teoría general de la relatividad»). En 1912 formuló la «ley de los efectos fotoeléctricos». A partir de 1933 se dedicó al estudio de los problemas cosmológicos y a la formulación de la teoría del campo unificado, la cual no pudo culminar exitosamente. Además de su indiscutible aporte a la ciencia, Einstein realizó una labor prominente a favor de la paz y el humanitarismo.

Max Planck cientifico fisico nobel

2. Max Planck (1858-1947)
Recibió el Nobel en 1918 por su descubrimiento de la energía cuántica. Fundador de la física cuántica.
Año: 1918 «Como reconocimiento a los servicios que prestó al progreso de la física con
el descubrimiento
de la cuantificación de la energía».
El principio de la termodinámica fue el tema de la tesis doctoral de Max Planck, en 1879. Había estudiado matemáticas y física en la Universidad de Munich y en la de Berlín, con científicos afamados de la época. Fue profesor e investigador de la Universidad de Kiel y profesor de física teórica en la Universidad de Berlín; así mismo, se desempeñó como «secretario perpetuo» de la Academia de Ciencias. Sus investigaciones más importantes están relacionadas con la termondinámica y las leyes de la radiación térmica; formuló la «teoría de los cuantos», la cual se constituyó en la base de la física cuántica. Fue uno de los primeros en entender y aceptar la teoría de la relatividad y contribuyó a su desarrollo. Trabajó con bastante éxito también en las áreas de la mecánica y la electricidad.

Bardeen cientifico fisico nobel

3. John Bardeen (1908-1991)
Año: 1956 Único físico en ser premiado dos veces con el Nobel (1956 y 1972).
Destaca su desarrollo del transmisor.

Marie Curie cientifico fisico nobel
4. Marie Curie (1867-1934)
Física, química y Nobel de ambas disciplinas. Estudió junto con su marido el fenómeno de la radiactividad.
Año: 1903 «Como reconocimiento al extraordinario servicio que prestaron por sus investigaciones conjuntas sobre los fenómenos de radiación descubiertos por el profesor Henri Becquerel»

Madame Curie estudió física y matemáticas en París. Sus aportes a la física y a la química (cuyo Nobel también obtuvo en 1911) se inician con los estudios que desarrolló -en compañía de su marido Pierre- sobre los trabajos y observaciones de Henri Becquerel respecto de la radiactividad: Marie descubrió que la radiactividad es una propiedad del átomo; además descubrió y aisló dos elementos radiactivos: el polonio y el radio, en 1898 y 1902 respectivamente. En 1906 se constituyó en la primera mujer catedrática en La Sorbona, al ocupar la vacante tras la muerte de Pierre. Tres años más tarde publicó su «Tratado sobre la radiactividad» y en 1944 comenzó a dirigir el Instituto de Radio en París. Murió de leucemia, contraída probablemente en sus experimentos, al exponerse a la radiación.

Rontgen cientifico fisico nobel
5. Wilhelm Conrad Róntgen (1845-1923)
Primer galardonado con el Nobel de Física, en 1901, por su descubrimiento de los rayos X.
Año: 1901: «Como reconocimiento a los extraordinarios servicios que prestó a través del descubrimiento de los rayos X, que posteriormente recibieron su nombre».
Sus aportes al campo de la física abarcan campos diversos desde investigaciones relacionadas con el calor específico, hasta los fenómenos de la capilaridad y la comprensibilidad; se interesó igualmente por el área de la radiación y la polarización eléctrica y magnética. El mayor reconocimiento de la comunidad científica internacional lo obtuvo cuando trabajaba en los laboratorios de la Universidad de Wurzburgo: allí, el 8 de noviembre de 1895, descubrió los que él mismo llamó «rayos X», porque desconocía su naturaleza (también conocidos en la época como «rayos Róntgen»).

Marconi cientifico fisico nobel
6. Guglielmo Marconi (1874-1937)
Nobel en 1909, junto con Ferdinad Braun, por su contribución al desarrollo de la telegrafía inalámbrica.
Año: 1909: «Como reconocimiento a sus contribuciones para el desarrollo de la telegrafía inalámbrica».
Aunque Marconi estudió en Liverno y Bolonia, su formación en el campo de la física y la ingeniería -en las cuales se destacó- fue poco académica. El conocimiento acerca de la producción y recepción de las ondas electromagnéticas –descritas por Hertz– causaron en Marconi una fascinación especial, sobre todo por su convencimiento de que las ondas en cuestión podían utilizarse en las comunicaciones: sus experimentos desembocaron en el nacimiento de la telegrafía sin hilos; inventó, además, la sintonía, el detector magnético, la antena directriz, el oscilador giratorio, las redes directivas y colaboró con sus trabajos a perfeccionar los instrumentos de microondas.

Enrico Fermi cientifico fisico nobel
7. Enrico Fermi (1901-1954)
Año: 1938: Galardonado en 1938. Sus investigaciones en radiactividad lo llevaron a
descubrir las reacciones nucleares.

Millikan cientifico fisico nobel
8. Robert A. Millikan (1868-1953)
Año: 1923: Determinó el valor de carga del electrón y trabajó en los efectos fotoeléctricos.
Recibió el Premio en 1923.

dirca cientifico fisico nobel
9. Paul A. M. Dirac (1902-1984)
Año: 1933: Uno de los fundadores de la mecánica y electrodinámica cuántica. Recibió el Nobel en 1933
junto a Erwin Schródinger.

cientifico fisico nobel Ernst Ruska
10. Ernst Ruska (1906-1988)
Año: 1986: Premio Nobel en 1986 por su investigación en óptica electrónica.
Diseñó el primer microscopio electrónico.

Fuente Consultada:
Revista TIME Historia del Siglo XX El Siglo de la Ciencia

Espectro de la Luz Concepto Básico Espectro de Emisión

CONCEPTO DE ESPECTRO DE LA LUZ Y SU APLICACION EN ASTRONOMIA

Cuando se impregna un hilo muy fino de platino con determinadas sales y se pone sobre la llama del mechero, dicha llama adquiere unas coloraciones que sor características del elemento metálico que forma parte de la sal. Así, todas las sales de sodio dan coloración amarillenta, mientras que las sales de cobre proporcionan a la llama un color azul-verdoso. También cuando hacemos pasar un rayo de luz por un prisma de vidrio podesmo descomponer a dicho rayo en varios colores, que dependerán de que material emite ese rayo de luz.

Llamamos espectro visible de emisión de un elemento, al conjunto de colores característicos que emite dicho elemento cuando se altera por el calor o por una descarga eléctrica.

Espectro de Luz Visible

La luz solar, o la emitida por un arco eléctrico, parecen blancas, pero un examen más detenido de esta luz blanca revelará que, en realidad, se compone de una mezcla de rayos de diferentes colores. A veces, en días de sol radiante, es posible ver un espectro de luces de diferentes colores sobre la pared opuesta a una ventana.

Con cuidado, será posible ubicar la fuente de estas luces de colores y con toda seguridad se encontrará que se debe a que un rayo de luz blanca ha sido descompuesto, por refracción en algún borde de vidrio o cristal —el borde de un espejo, tal vez el de un ornamento  de  cristal.

Un efecto similar puede ser observado en una habitación a oscuras si se dirige un delgado haz de luz blanca hacia un prisma triangular. Si se interpone una pantalla blanca en el camino del haz emergente, se advertirá una serie de bandas de colores. Con un dispositivo tan rudimentario las imágenes de color se superponen.

Se puede obtener un espectro más satisfactorio de la luz blanca dirigiendo hacia el prisma un haz de rayos paralelos y enfocando los haces emergentes sobre la pantalla. Para esto se requieren, por lo menos, dos lentes convexas.

Esquema Básico de Espectrógrafo

El primer químico que hizo uso este fenómeno con fines analíticos fue el alemán. Bunsen, quien, en colaboración con Kirchhoff, ideó un dispositivo para analiza: los colores emitidos por las sales de los elementos. Este aparato recibe el nombre de espectroscopio y consiste básicamente en un prisma en el que la luz, procedente de la llama, se dispersa.

La fuente luminosa se ubica en el foco de la primera lente, de modo  que   el   haz   de   luz   blanca   quede compuesto de rayos paralelos. La pantalla se ubica en el foco de la segunda lente. Mediante este dispositivo perfeccionado, las bandas de luz de color se separan y es posible distinguir los componentes de la luz blanca: violeta, índigo, azul, verde, amarillo, anaranjado y rojo.

El prisma puede separar los componentes de la luz blanca debido a que éstos poseen distintas longitudes de onda. De las formas visibles de movimiento ondulatorio, la luz violeta es la de menor longitud de onda y es la más desviada al pasar por el prisma. La luz roja posee la longitud de onda mayor de todo el espectro visible y es la menos refractada (desviada).

El fenómeno de descomposición de la luz en los siete colores del arco iris recibe el nombre de dispersión de la luz , y el conjunto de colores se denomina espectro visible de la luz blanca. Cada una de las luces que componen la luz blanca recibe el nombre de luz monocromática, pues es luz que no se descompone en otras.

Bien sigamos,a hora calentando una sustancia suficientemente, lo que se pondrá en estado de incandescencia. El color de la luz emitida es siempre característico para cada elemento presente, una especie de huella digital. Ésta es la base del ensayo a la llama que se emplea en química analítica para identificar los constituyentes de una mezcla.

El sodio emite una luz intensamente amarilla (el color de las luces que a veces se utilizan para iluminación urbana), el potasio da un color lila y el calcio, luz color anaranjado. También los gases dan luces de colores característicos si se los encierra en un tubo sellado a muy baja presión y se los conecta a una fuente de alta tensión.

Es conocida la luz roja emitida por el neón, que se utiliza en letreros luminosos y faros. Las luces de color emitidas por sólidos o gases a alta temperatura pueden ser estudiadas más detenidamente por medio de un espectroscopio .

En este aparato la luz es descompuesta en sus componentes y se ve que los diferentes elementos dan espectros constituidos por series de lineas de longitud de onda característica para cada elemento. Tan bien definidas están estas líneas espectrales que sirven para identificar elementos presentes (análisis espectral) en muestras minúsculas o para detectar impurezas infinitesimales.

En todos los casos observados, la luz procedente de la llama está formada po: un conjunto de rayas luminosas cuyo color y disposición son característicos del elemento químico de la sal que se está analizando. Así, por ejemplo, toda.; las sales de sodio, ya sean cloruros, sulfatos, carbonatos, etc., producen dos líneas amarillas muy intensas.

Este tipo de análisis o identificación tambié» puede realizarse con elementos gaseosos encerrados en tubos de descarga eléctrica en los que se ha practicado el vacío. Llamamos espectro visible de emisión de un elemento, al conjunto de colores característicos que emite dicho elemento cuando se altera por el calor o por una descarga eléctrica.

Ejemplo de Algunos espectros de emisión.

(Arriba) Espectro del hidrógeno. (Centro) Espectro del mercurio. (Abajo) Espectro de la luz blanca de la lámpara de arco de carbón.

En general, el espectro emitido por sustancias sólidas o líquidas en estadc incandescente produce un espectro continuo. Por el contrario, el espectro emitido por sustancias gaseosas es un espectro de rayas o discontinuo.

De igual forma que se analiza la luz o energía emitida por una sustancia, también puede analizarse la luz o energía que dicha sustancia absorbe. Al iluminar una sustancia con un conjunto de radiaciones aparecerán en el espectroscopio todas las radiaciones, excepto las absorbidas por la sustancia en cuestión.

El espectro resultante se denomina espectro de absorción. En el espectro de absorción aparecen rayas oscuras en las mismas zonas en que aparecían las rayas luminosas en el espectro de emisión. Esto significa que las sustancias emiten las mismas radiaciones que absorben.

APLICACIONES DE ESTE FENÓMENO EN LA ASTRONOMIA:

La luz procedente de cada estrella es originada por incontable número de átomos; unos producen una determinada .ongitud de onda, y otros otra distinta. Por consiguiente, el istrofísico necesita un instrumento capaz de descomponer la luz con exactitud en sus diferentes longitudes de onda, o sea en colores. Una forma de conseguirlo es haciendo pasar la luz procedente de una estrella a través de un prisma de cristal. Pero, un solo prisma separa muy poco los colores, no siendo en realidad suficiente para suministrarnos todos los resultados que necesitamos.

Debemos descomponer la luz en miles de colores o de longitudes de onda diferentes, y para conseguirlo se precisan instrumentos especiales. Algunos de ellos, incluyendo el espectroscopio y el espectrógrafo, se describen más adelante.
Cuando la luz de una estrella incide en el ocular de un telescopio, pasa a través de una delgada rendija antes de llegar al instrumento que la descompone en los distintos colores. Cada, color aparece como una estrecha raya, pues cada uno de ellos ha sido enmarcado por la delgada rendija. Desde el punto de vista del astrofísico, una de las cuestiones más importantes es que para cada color en particular la raya se proyecta en un lugar determinado y no en otro cualquiera.

El conjunto completo de rayas —denominado espectro de la estrella— puede ser fotografiado y medida la posición exacta de las rayas. De esta manera el astrofísico conoce la clase de átomos que precisamente’contiene una estrella. Por este método ha sabido que el Sol y todas las demás estrellas que vemos brillar en el firmamento están constituidos precisamente por la misma clase de átomos que encontramos en la Tierra.

Pero el astrofísico no se conforma con saber cuáles son las diversas clases de átomos presentes en una estrella; también quiere   conocer  las  proporciones  relativas   de   cada  sustancia.

Por ejemplo, si las rayas espectrales indican que una estrella contiene simultáneamente hidrógeno  y oxígeno, quiere saber cuál es más abundante y en qué proporción. Puede conocerlo midiendo la intensidad de las distintas rayas. Supongamos que hay I o veces más de hidrógeno que de oxígeno en una estrella; deberíamos esperar, por lo tanto, que llegasen más radiaciones de los átomos de hidrógeno que de los de oxígeno, lo cual se traduce en que el hidrógeno debería producir rayas más intensas que el oxigeno.

Y esto es lo que sucede en la realidad. Así, al medir la intensidad de las rayas, el astrofísico puede deducir que el hidrógeno es 10 veces más abundante que el oxígeno, pero no puede asegurar cuántas toneladas de cada gas contiene la estrella en cuestión.

La medición de la> intensidad de las rayas espectrales indica al astrónomo la composición de las capas superficiales del Sol y de otras estrellas. Así se sabe que el Sol contiene 10 veces más hidrógeno que helio. Los científicos saben también que estas dos sustancias son conjuntamente unas mil veces más abundantes que la totalidad de los restantes elementos.

Las capas superficiales de las estrellas varían considerablemente de unas a otras, pero en un gran número de ellas el hidrógeno y el helio son los principales constituyentes.

Fuente Consultada:
Revista N°32 TECNIRAMA Enciclopedia de la Ciencia y La Tecnologia – Los Espectros –
Secretos del Cosmos Colin A. Roman Colecciones Salvat N°2
Físico-Química Secundaria Santillana Escudero-Lauzurica-Pascual-Pastor

Historia del Progreso Tecnológico En El Uso de la Energía

Historia del Progreso Tecnológico En El Uso de la Energía

El dominio del hombre sobre la materia creció en proporción directa con el control que adquirió sobre la energía.

El proceso fue larguísimo.

Durante siglos y siglos la humanidad sólo dispuso de la energía muscular, primero la suya propia y luego la de los animales domésticos.

Llegó a depender en tal forma de su ganado que cuando éste era muy especializado y el clima lo obligaba a emigrar, el hombre iba tras él; al final de la edad glacial, cuando el reno siguió los hielos en su retroceso, el hombre marchó a su zaga.

Lo mismo ocurrió con el camello.

Cuando la actividad era medianamente inteligente, la ejecutaban casi exclusivamente los hombres: la pirámide de Keops se edificó en base a la técnica de las multitudes y costó, probablemente, cien mil vidas.

Desde hace casi dos siglos, el hombre aprendió a disponer de cantidades abundantes de energía, e inició una era industrial muy diferente a las otras épocas históricas.

He aquí la lista de los pasos más importantes hacia el dominio de la energía:

CRONOLOGÍA DE LOS AVANCES TECNOLÓGICOS

domesticacion del caballo

4000 a. C. (aprox.): El hombre domestica al caballo.

la rueda

3500 a.  C.  (aprox.) Primeros   vehículos   con   ruedas,   en   Mesopotamia.

3000  a.  C.   (aprox.):   Arado   liviano   para   trabajo   continuo.

27  a.  C.  (aprox.):  Vitrubio   describe   molinos   de   agua,   ruedas a   vapor y  algunas  máquinas. 900  (aprox.):   Los persas utilizan molinos de viento.

1638:   Galileo   publica   sus  estudios  sobre  el   péndulo  y  loe   proyectiles.

1686:   Newton publica   sus  «Principia»,   en   los  que   formula   las leyes  de   la   mecánica   celeste. 1693:   Leibniz  establece  la   ley  de  conservación  y transformación de  la   energía   cinética   en   energía   potencial  y  viceversa.

maquina a vapor

1775:   Máquina de vapor de Watt.

lavoisier

1777: Lavoisier atribuye la energía animal a procesos químicos y compara   la   respiración  con   una   combustión   lenta,

1824:   Carnot  funda   la  termodinámica.

1831:  Faraday descubre  la  inducción  electromagnética.

1843/50: Joule determina   el  equivalente   mecánico  del   calor.

1847: Helmholtz incluye el calor en la ley de conservación de la energía.

1850 a 1854: Kelvin y Clausius formulan la primera y segunda ley de la  termodinámica y descubren  la  entropía.

maxwell electromagnetismo

1860/61: Maxwell y Boltzmann calculan la distribución estadística   de  la  energía  en  los  conjuntos  de  moléculas.

1866:   Primer   cable   eléctrico   submarino   a   través   del   Atlántico.

1876: Otto construye el primer motor de combustión interna a base  de  petróleo.

1879/80: Lámpara eléctrica de filamento carbónico de Edison y  Swan.

1884:  Turbina de vapor de Parsons.

becquerel radioactividad

1896:   Becquerel descubre  la  radiactividad.

albert einstein

1905: Einstein asimila la masa a la energía en una célebre ecuación   que  luego   permitirá   la   transmutación   de   una   en   otra.

1932: Chadwick descubre el neutrón, la partícula más eficaz para el  bombardeo  de  núcleos atómicos.

fision nuclear

1945: Primera reacción de fisión nuclear, con uranio (punto de partida de las centrales electroatómicas y de la propulsión atómica).

1951: Primera reacción de fusión nuclear, con hidrógeno pesado (reacciones termonucleares).

1956:   Primera   turbina   atómica,   en   Calder   Hall   (Gran   Bretaña!.

Temas Relacionados

• Historia de la Energia Nuclear
• Funcionamiento De Una Central Nuclear
• Naturaleza de la Materia
• Las Particulas Subatomicas del Universo
• El Polvo Cosmico y Sus Componentes

Efectos de la Radiación Ultravioleta Sobre la Piel Fluorecencia

Efectos de la Radiación Ultravioleta Sobre la Piel

A unos 19 Km. de la superficie de la Tierra, empieza una capa de gas ozono (O3) cuya densidad máxima se encuentra a unos 43 Km. de altura de la Tierra. Esta capa de ozono cumple una función muy importante. Tiene la propiedad de atrapar los rayos ultravioleta perjudiciales que emite el Sol, y, por tanto, evita que alcancen la Tierra.

Los rayos ultravioleta son radiaciones cuyas longitudes de onda varían desde 120 °A a 3.900 °A (una unidad ángstrom es la diez millonésima de milímetro). En el espectro electromagnético, los rayos ultravioleta se encuentran entre la luz visible, cuya longitud de onda es mayor, y los penetrantes rayos X, de longitud de onda más corta.

El  Sol   es  un   cuerpo extremadamente caliente.   Está incandescente porque la temperatura de su superficie es de unos 6.000 grados centígrados, y emite una gran cantidad de radiaciones electromagnéticas, la mayoría de las cuales son luz visible. Emite también rayos infrarrojos y luz ultravioleta. La luz visible afecta a la parte sensible de la retina del ojo y produce la sensación de luz.

La frontera entre la luz visible y la ultravioleta coincide con la frontera entre lo visible y lo invisible. La luz visible es inocua, pero la ultravioleta es perjudicial para los tejidos vivos. El efecto depende de la longitud de onda.

La región ultravioleta comprendida entre 3.000 °A y 1.850 °A es particularmente mortífera, y los rayos correspondientes se utilizan, de hecho, para destruir bacterias patógenas en hospitales y almacenes de alimentos, en donde las bacterias se eliminan antes de que lleven a cabo su acción destructora.

Los rayos ultravioleta de mayores longitudes de onda (3.900 °A a 3.000 °A) pueden tener efectos beneficiosos, en dosis moderadas. Cuando broncean la piel (bronceado solar), los rayos ultravioletas trasforman algunas sustancias orgánicas complejas de las células epiteliales humanas, tales como el ergosterol, en vitamina D.

A continuación, esta importante vitamina se incorpora al torrente circulatorio sanguíneo, y queda a punto para ser utilizada por el organismo. Se sabe muy poco acerca de los efectos de los rayos ultravioleta más cortos, sobre la materia viva.

Tales rayos son muy difíciles de controlar experimentalmente, ya que no se puede conseguir que atraviesen el vidrio ni el cuarzo (un mineral trasparente que trasmite algunos rayos ultravioleta). Esto significa que no se pueden enfocar con instrumentos ópticos como el microscopio ultravioleta. De todos los rayos ultravioleta, sólo pueden atravesar la barrera del ozono, los relativamente beneficiosos a la vida humana.

La luz ultravioleta altera los tejidos vivos porque lleva la suficiente energía para provocar un cambio químico. Tanto el bronceado de la piel como la muerte de las bacterias, resultan de cambios en la estructura química de los materiales que hay en el interior de las células vivas.

Normalmente, se requiere una cierta cantidad de energía para el cambio, y la célula es especialmente sensible a la luz ultravioleta de la longitud de onda correspondiente a esta energía (la cantidad de energía trasportada por cualquier radiación electromagnética depende de su longitud de onda).

penetracion de los rayos ultravioletas

espectro de la luz

penetracion de los rayos ultravioleta

La luz ultravioleta se utiliza para destruir bacterias. Se usa la luz de una lámpara de descarga de vapor de mercurio para mantener el ambiente libre bacterias,  en   un   laboratorio   de  fabricación   de   penicilina.

https://historiaybiografias.com/archivos_varios5/estrella1_bullet.png

¿Son tan nocivos los rayos ultravioleta?: Cuando nos exponemos al sol, la piel reacciona de inmediato co menzando un proceso de defensa que nosotros damos en llamen bronceado. El «ponerse moreno» no es más que un contraataque de nuestra epidermis a la acción de los rayos ultravioleta, contraataque pensado para concentraciones de ozono bastante superiores a las que existen en la actualidad.

Quien más o quien menos de ustedes, apreciados lectores, habrá sufrido en los últimos años las consecuencias de esta disminución de la capa de ozono en forma de enrojecimientos o quemaduras (espero que no en nada más grave).

Si mi propia experiencia pudiera servirles de ilustración, les contaría cómo allá por la década de los ochenta y contando yo unos veinte años de edad, decidí un buen día no volver a pisar una playa si no era con gorra, camiseta y una buena crema solar, cuando tras un breve adormecimiento de domingo y de no más de 30 o 40 minutos sobre la arena (permítanme una recomendación: si se divierten los sábados hasta bien entrada la noche, no madruguen y se tumben al sol a la mañana siguiente), volvía casa y me miré al espejo: mi cara era lo más parecido a un volcán en erupción de lava que hubiera visto jamás.

Algunos geles y after sun pudieron recomponerme en unos días, pero recuerdo mi sorpresa y mi comentario con todo el mundo respecto a «qué demonios había pasado con el sol». La misma exposición que años atrás, siendo una niña, sólo me hubiera causado un leve enrojecimiento, esta vez me había provocado una quemadura tan incómoda como sorprendente. Pocos años después comencé a oír hablar seriamente del adelgazamiento de la capa de ozono.

Efectivamente, nuestra atmósfera ya no nos ofrece la misma protección que hace unos años frente a los rayos ultravioleta. La melanina que se forma en la hipodermis al recibir estos rayos tarda al menos tres días en transferirse a las capas exteriores de la epidermis, y son éstos los días en que somos más propicios a los eritemas y quemaduras solares.

Otra defensa natural de la piel es la formación de células epiteliales queratinosas para crear un manto de mayor grosor sobre la piel; sin embargo, esta piel no es más que una acumulación de células muertas en su superficie, es decir, se trata de una protección lograda a cambio de aniquilar miles de células y apilarlas en la capa más externa de la piel.

La exposición prolongada al sol constituye una agresión, grave en ocasiones, y los causantes de ella son fundamentalmente los rayos ultravioleta del grupo B.

Los rayos UV-B: Este tipo de radiaciones solares son.captadas en buena parte por el ozono en las capas más bajas de la estratosfera, es decir, el ozono tiene un papel clave con respecto a la cantidad de UV-B que atraviesa nuestra biosfera y llega hasta nosotros. Cuando la capa de ozono tenía el espesor correcto, solamente incidía sobre nuestro suelo una fracción de ellos, y éstos eran (y son) los únicos capaces de desarrollar la melanina en la piel. En la actualidad nos alcanza una proporción desmesuradamente alta de UV-B, y aquíes donde comienzan los verdaderos problemas.

Los rayos UV-B penetran en nuestra piel hasta atravesar la epidermis. Cuando la cantidad de UV-B es excesiva, nuestro ADN puede dañarse con facilidad. Estas espirales portadoras del código genético y responsables de que sus células se reproduzcan con idéntica estructura unas a otras, son muy sensibles a las radiaciones y las UV-B parecen «volverlas locas» del mismo modo que lo hace la radiación de tipo nuclear, los rayos X o las emisiones electromagnéticas de gran potencia.

Pensemos que un daño en las hélices en una de sus células orgánicas de ADN puede multiplicarse por mil en cuestión de días, meses o años (otro de los terrores de este peligro es que las lesiones son acumulativas y pueden surgir años después de sufrir el daño). Esto es lo mismo que decir que la exposición excesiva a los rayos UV-B puede provocar, y de hecho provoca, cáncer de piel y lesiones en las partes más débiles expuestas al sol (ojos, labios, etc.).

La Academia Norteamericana de Dermatología afirma que los rayos UV-B son los responsables de un millón de casos de cáncer de piel, entre ellos el melanoma, el más fatal. Lamentablemente, los mismos rayos que antaño nos hacían lucir un espléndido color dorado en la piel, son hoy en día fuente de importantes enfermedades.

Pero no sólo la piel sufre daños cuando las radiaciones UV-B la alcanzan en exceso: las cataratas aumentan año a año su iná dencia en nuestra población por el efecto de los rayos ultraviole ta. Aunque no está muy claro el proceso por el cual el cristalino degenera, se comienza a investigar sobre la fotooxidación de las proteínas de la lente ocular bajo el efecto de los radicales libres generados por los UV-B.

En ocasiones, la córnea llega a «que marse» a causa de las radiaciones y esto es especialmente peligroso para las personas que realizan actividades diarias en superficies altamente reflectantes (pescadores, monitores de esquí, alpinistas, etc.) si no toman la precaución de colocarse unas gafas de sol suficientemente oscuras como para neutralizar la reverberación de estos rayos solares.

Lamentablemente, miles de animales que pastan o desarrollan sus actividades en lugares muy soleados y/o en montañas de altura considerable se ven obligados a sufrir todos los años cataratas y graves problemas oculares por culpa de la insensatez humana.

rayos ultravioletas

Los rayos UV-A y UV-C: Los rayos UV-A penetran más profundamente en la piel, de modo que alcanzan con facilidad la dermis o capa media. Sin embargo, no por ello son más nocivos que los UV-B ya que no provocan mutaciones en nuestro código genético. Sí, en cambio, agotan el caudal del colágeno cutáneo y son por tanto los responsables del envejecimiento prematuro de la piel. Todos conocemos a esos labradores o pescadores que, por la acción de tantas y tantas horas al sol, presentan unas marcadas arrugas en su rostro curtido y tostado. Pese a su antiesteticismo, estas personas no desarrollaban ningún tipo de cáncer epitelial.

Sin embargo, una nueva polémica surgió sobre estos rayos a partir del mes de junio de 1997, fecha en la que un equipo de investigadores franceses anunció que los UV-A podían ser igual o más peligrosos que los UV-B.

Sus razonamientos eran que los rayos UV-A conforman el 90% de las radiaciones ultravioleta que nos alcanzan, a la vez que afirman que dichos rayos son igualmente dañinos que los UV-B, con la única diferencia de que, según estos investigadores, precisan de un mayor tiempo de exposición para causar lesiones. El argumento de mayor peso que esgrimen es que los UV-A incrementan el daño producido por los UV-B.

Curiosamente, una semana después de este descubrimiento, los famosos laboratorios de cosmética L’Oréal hicieron pública una nueva molécula (OR-10154) capaz de filtrar a la vez los rayos UV-B y los UV-A con gran eficacia. Actualmente se encuentra en fase de comprobación ante el comité científico de cosmeto-logía de Bruselas. No hace falta ser muy avispado para percatarse de que, de ser aprobada su comercialización como es de prever, aportará a la casa francesa L’Oréal pingües beneficios, calculables en miles de millones de francos.

Sin discutir los trabajos de estos investigadores, ni siquiera la que será famosa molécula OR-10154, convendría preguntarse por qué son ahora más peligrosos los rayos UV-A que hace cincuenta años si la capa de ozono jamás ha interferido en su paso hasta la superficie de la Tierra.

En el caso de este espectro, el deterioro de la capa de ozono no influye en absoluto, ni influirá en el futuro, de modo que si bien es cierto que los UV-A son responsables de las arrugas prematuras en personas que se exponen diariamente a varias horas de sol, también lo es que no tienen por qué participar en el desarrollo de tumores ni lesiones cutáneas y/o oculares.

O, al menos, tendrían la misma intervención en estos graves problemas que a principios de siglo o hace quinientos años (épocas en las que todos sabemos que el cáncer era un mal prácticamente desconocido).

Argumentar, por otra parte, que los UV-A multiplican los efectos perniciosos de los UV-B es seguir afirmando, de una manera o de otra, que los rayos dañinos siguen siendo únicamente los UV-B, ya que sin su presencia los UV-A no tendrían oportunidad de multiplicar nada. Respecto a los melanomas y las cataratas, los UV-B siguen siendo los únicos culpables, y un simple filtro solar «de los de siempre» ofrecería idénticas garantías al respecto.

Otra cosa muy distinta es la prevención del envejecimiento de la piel, en cuyo caso una crema anti-UV-A sería muy beneficiosa y yo se la recomiendo a todo aquel que tenga por costumbre exponer su piel al sol, pero siempre anunciándola como tal y no lanzando al aire amenazantes conclusiones cuyo fin parece ser el de asustar a la población para, tal vez, lograr en un futuro cercano más ventas.

Respecto a los rayos UV-C, recordemos que son captados por el ozono atmosférico en su totalidad. Gracias a su debilidad, un pequeño tanto por ciento de ozono sería suficiente para no dejarlos pasar, por lo que, de momento, no debemos preocuparnos por ellos. Si el manto de ozono desapareciera en su totalidad, lo de menos serían los UV-C porque en ese caso todos estaríamos pronto muertos.

Cómo protegernos eficazmente: Las dos únicas maneras de protegerse frente a los rayos ultravioleta de un modo efectivo son el uso de una crema con buena protección solar y el administrar prudentemente el tiempo de exposición al sol.

Cremas con filtro solar: Es un error pensar que sólo se deben usar cremas de protección solar cuando nos tumbamos en la arena dispuestos a tomar una buena ración de sol. Efectivamente, ésa es la actividad más peligrosa y en la que será imprescindible tomar todo tipo de precauciones. Sin embargo, un paseo con los brazos y las piernas descubiertos al sol, o una mañana en las terrazas de verano, pueden acarrearnos del mismo modo desagradables sorpresas en forma de enrojecimientos y quemaduras.

Tengamos en cuenta también que las superficies reflectantes (arena, rocas, baldosas, etc.) hacen las veces de espejo y reverberan los rayos invisibles del espectro solar, pudiendo de este modo llegar a quemarnos sin haber sentido ningún tipo de calor sobre la piel.

Siempre que el día sea soleado (máxime en verano) y usted vaya a salir a la calle con parte de su cuerpo desprovisto de ropa, será conveniente que utilice una crema con protección solar. Por supuesto, el rostro debe estar también protegido.

Fuente: Como Sobrevivir Al Siglo XXI – Ana P. Fernandez Magdalena – Editorial Robin Book

CÓMO SE GENERA LA LUZ ULTRAVIOLETA: La Tierra recibe muy poca luz ultravioleta natural, ya que la capa de ozono de la atmósfera bloquea eficazmente su camino. Sin embargo, la luz ultravioleta se puede producir con facilidad en los tubos de descarga de gas. Una fuente muy considerable de luz ultravioleta es el tubo de descarga de vapor de mercurio.

Si el vapor de mercurio se excita haciendo pasar a su través una corriente eléctrica, emite luz ultravioleta. Las radiaciones se producen de forma totalmente semejante a la fluorescencia.

En este caso, en vez de recibir energía luminosa, los átomos de gas reciben la energía de una corriente eléctrica (una corriente de menudas partículas cargadas negativamente: electrones). Cuando se deja de excitar el átomo de mercurio, gran parte de su exceso de energía se libera en forma de luz ultravioleta.

Los tubos de descarga se utilizan, principalmente, para generar luz visible. Si se cubre la parte interior de un tubo de vapor de mercurio con un material fluorescente, prácticamente toda la luz ultravioleta que se produce en la descarga se convierte en luz visible por fluorescencia.

Estos tubos de descarga se encuentran en la moderna iluminación por tubos, y se escogen los materiales radiactivos de tal forma que proporcionen una excelente luz blanca. Cualquier radiación ultravioleta no absorbida es detenida por el cristal del tubo. La mayoría de los cristales son opacos a la luz ultravioleta.

Un tubo de descarga se puede adaptar para que emita luz ultravioleta pura, ennegreciendo la parte exterior del tubo, con lo que se detienen las radiaciones visibles. El tubo de esta lámpara «negra» debe fabricarse, no de vidrio, sino de cuarzo, que transmite con facilidad luz ultravioleta de una serie de longitudes de onda.

Por otra parte, los tubos de descarga no son el único medio de producir luz ultravioleta. Se puede generar también, como en el Sol, produciendo el suficiente calor, y, entonces, parte de la radiación emitida es luz ultravioleta.

Sin embargo, este método de producción es extraordinariamente ineficaz, puesto que, incluso en cuerpos tan calientes como el Sol, sólo una fracción de la radiación total es luz ultravioleta. Cuanto más caliente está el cuerpo, mayor es la proporción de luz ultravioleta en la radiación que emite.

https://historiaybiografias.com/archivos_varios5/estrella1_bullet.png

FLUORESCENCIA: Algunas sustancias, incluso muchas de las que no pueden reaccionar químicamente, cuando se exponen a la luz ultravioleta, absorben una gran cantidad de radiación. Son, con frecuencia, sustancias fluorescentes. Tales sustancias absorben la luz ultravioleta e inmediatamente transforman la energía en luz visible.

Los dientes y las uñas son fluorescentes y relucen suavemente (es decir, emiten luz visible), cuando se los ilumina con una lámpara de luz ultravioleta. Cuando fluorescen diversas clases de materiales emiten luz de diferentes colores. Ello permite preparar un método para comprobar la autenticidad de obras pictóricas.

Cuando, por ejemplo, fluoresce una pintura que contiene blanco de plomo, emite luz blanca. Sin embargo, una pintura con blanco de cinc, da una luz fluorescente de color amarillo limón.

Los diversos pigmentos amarillos que se utilizan en las pinturas amarillas dan colores fluorescentes que se diferencian ligeramente; por tanto, cuando se examina cuidadosamente un cuadro con luz ultravioleta, los expertos pueden encontrar información sobre quién lo pintó y cuándo fue pintado.

La fluorescencia tiene lugar cuando los átomos de una sustancia son excitados por la luz ultravioleta. Los átomos tienden a volver cuanto antes a su posición estable, estado no excitado.

Ellos pueden radiar luz exactamente de la misma longitud de onda que la que han absorbido. Sin embargo, normalmente, en vez de emitir luz ultravioleta de una sola longitud de onda de alta energía, radian dos longitudes de onda de menor energía, que se encuentran, probablemente, en la región visible.

La   luz  ultravioleta   se   produce  en   un  tubo  de descarga   bombardeando  átomos de   mercurio   con   un corriente eléctrica.  La  fluorescencia trasforma  la  luz ultravioleta en luz visible.

Ver: Descubrimiento de los Rayos X

Ver:  Usos de los Rayos Infrarrojos

Fuente Consultada
TECNIRAMA N°57 La Enciclopedia de la Ciencia y la Tecnología (CODEX)

Uso de Energia Atómica o Explosivos en Obras Civiles

Uso de Energía Atómica o Explosivos en Obras Civiles

EL PODER EXPLOSIVO Y ATÓMICO PARA MOVIMIENTO DE TIERRA

Muchas personas creen que la dinamita tiene «mayor poder» que la gasolina y se equivocan: la fuerza de ruptura de la dinamita proviene de que su combustión o conversión en gases es súbita, mientras que la de la gasolina es lenta.

Asi si arrojamos contra un vidrio una pelota de algodón y un trozo de hierro de igual peso, es probable que el segundo lo quiebre, y no el primero, debido a la instantaneidad del impacto.

En otras palabras, la primera diferencia entre un explosivo y un combustible es que en el primero el proceso es violento y en el segundo es pacífico y controlado.

Si echamos un reguero de pólvora por el suelo y encendemos uno de sus extremos, ésta arderá sin explotar.

Para que la pólvora desarrolle su poder explosivo tiene que estar encerrada.

Por eso se habla de la «explosión» de la gasolina cuando se convierte en gases dentro de los cilindros del motor. Pero no todo lo que es capaz de arder es capaz de explotar.

En muchos explosivos la detonación es súbita porque ya contienen en su molécula el oxigeno necesario para la combustión y no necesitan esperar que les llegue de afuera. «Explosión» no implica necesariamente «combustión»; lo único que se requiere es un aumento casi instantáneo del volumen, en general la conversión de un sólido o líquido en gases.

Supongamos por ejemplo que tenemos un litro de explosivo, y que pesa un kilogramo.

Transformado en gases ocuparía unos 1.000 litros a la misma temperatura; pero si arde o de cualquier manera se calienta, como el volumen de un gas se duplica a cada 273°, basta que llegue a unos 1.200° para que un kilo de explosivos genere más de 4.000 litros de gases.

Este volumen, miles de veces mayor que el origina!, ejerce una presión tan violenta si el explosivo está encerrado que el conjunto estalla.

Al aire libre, en cambio, puede observarse sólo  una  combustión  rápida,   es  decir una deflagración.

• ►QUÍMICA DE LOS  EXPLOSIVOS

Se comprende que un explosivo tiene que ser un compuesto bastante inestable para poder descomponerse súbitamente.

Por esta razón muchos de ellos contienen nitrógeno, cuyos átomos tienden a unirse entre sí en moléculas estables de gas y a liberar los otros elementos del compuesto.

El TNT o trinitrotolueno es un ejemplo característico.

El tolueno se obtiene del carbón, (destilación de la hulla) , y se lo combina con ácido nítrico, cuya fórmula es HNO3 y le suministra el oxígeno necesario.

Para llevar a cabo la reacción se añade ácido sulfúrico concentrado que absorbe el agua que se desprende e interrumpiría el ataque del ácido nítrico.

Los esquemas que acompañan esta nota son suficientemente claros para comprender la estructura del trinitrotolueno.

Aunque muchos explosivos son compuestos cíclicos, es decir derivados de anillos bencénicos de seis carbonos, existen explosivos como la nitroglicerina cuya estructura es lineal.

Lo que un explosivo requiere es la posibilidad de descomponerse instantáneamente, a menudo por combustión, y que los productos de la reacción sean gases con el fin de que la presión aumente muchísimo.

Cuando la molécula contiene oxígeno «encerrado» como es el caso del TNT se quema por sí misma y no necesita el aporte del aire

En los cohetes se ensayan actualmente sustancias muy similares a los explosivos sólidos, llamadas «propergoles»; en efecto, el cohete atraviesa una atmósfera enrarecida y necesita llevar su propia carga de oxígeno, sea en un tanque separado o bien formando parte de la molécula del propergol.

La mayor dificultad es obtener una superficie uniforme de combustión. Los propergoles suelen tener forma de cilindros huecos para que dicha superficie de  deflagración  no   varíe  apreciablemente.

INTENTOS DEL USO DE LA EXPLOSIÓN ATÓMICA

Para la utilización pacífica se pensó exclusivamente en las bombas termonucleares, que casi carecen de residuos radiactivos: una bomba de hidrógeno de 100 kilotones (equivalente a 100.000 toneladas de TNT) que explote a 100 metros de profundidad abre un agujero de 350 metros de diámetro, despedaza 500.000 toneladas de roca, y su radiactividad transitoria ocupa sólo una capa de 10 centímetros de espesor. Los técnicos trabajaron para reducir dicha radiactividad al 1 % de esos valores.

explosion nuclear

Los proyectos de utilización pacífica de la energía de fusión atómica forman una lista bastante larga, porque prometen realizar en forma rápida y económica una serie de proyectos actualmente lentos y costosos.

Se habló primero de abrir, mediante explosiones, un puerto artificial en Alaska, al norte del círculo polar para poder explotar valiosos yacimientos de hulla; el trabajo total sólo llevaría un año. Pero quedó momentáneamente postergado.

En cuanto al canal de Panamá, aunque es económicamente beneficioso resulta insuficiente para el intenso tránsito y se realizan grandes trabajos para ampliarlo en su parte más angosta.

Existen dos proyectos para excavar —mediante explosiones termonucleares— otro canal más al sur, esta vez a nivel del mar, es decir, sin esclusas; el más interesante es el trazado en la provincia de Darién, más cerca de Colombia.

La utilización de energía atómica reduciría su costo a la mitad.

Mapa de Centro América

Otro aspecto importante es el de la explotación del petróleo, a veces inaccesible a través de capas de rocas que lo mantienen encerrado, o porque está mezclado con arena y los métodos de bombeo actuales resultan improductivos.

Se calcula que bajo las arenas del lago de Atabasca en el Canadá hay más petróleo que en todo el Medio Oriente y que encerrados entre los estratos de titila de los Estados Unidos se encuentran cantidades fantásticas de petróleo.

Explosiones atómicas adecuadas que generaran calor o que desmenuzaran las rocas liberarían esa riqueza potencial.

Algo similar ocurre con las aguas subterráneas.

A veces se alternan zonas áridas y zonas fértiles simplemente porque el agua no puede llegar a las primeras debido a que una barrera de rocas subterráneas le impide aflorar; se buscaría entonces fragmentar dichas capas rocosas.

Por último se habla de la instalación de centrales eléctricas térmicas. Estas se conocen ya en su forma natural en Nueva Zelandia, donde se explota el agua caliente de los geysers.

Pero se ha proyectado crear núcleos artificiales de calor mediante explosiones atómicas y luego bombear agua para extraer vapor.

Este último proyecto es muy discutido entre los especialistas.

Usos pacíficos de los explosivos nucleares

Al finalizar la segunda guerra mundial, comenzó a pensarse en la gran utilidad que se podría obtener de los explosivos nucleares, aplicados a la ingeniería civil.

La fácil remoción, con dichos medios, de grandes masas de tierra ponía al alcance del hombre la realización de proyectos gigantescos: canales navegables, mares artificiales, nuevas cursos para ríos, etc.

Sin embargo, estas metas, teóricamente accesibles, constituían una quimera irrealizable, por la radiactividad que se desprendería.

Los diversos países que poseían explosivos nucleares, especialmente, Estados Unidos y la U.R.S.S., organizaron comisiones especiales para que estudiasen el problema, tanto desde el punto de vista técnico, para obtener los máximos rendimientos, como el de seguridad de la población (bombas nucleares  «esterilizadas»).

La utilización de explosivos a gran escala para el movimiento de tierras se efectúa desde hace bastante tiempo en la U.R.S.S.; se trata, naturalmente, de explosivos químicos convencionales; pero la experiencia que se obtiene de su manejo es totalmente trasladable a procesos de mayor envergadura, como pueden ser los nucleares.

En la década del 60, los técnicos soviéticos han utilizado tales explosivos químicos en la región de Samarkanda, para modificar ligeramente el curso del río Zeravshan.

En los países occidentales, los primeros anteproyectos con explosivos nucleares datan de 1956, cuando Egipto nacionalizó el canal de Suez.

El peligro que podía correr el comercio inglés hizo pensar al gobierno de Gran Bretaña en abrir un nuevo canal que comunicase el mar Mediterráneo con el mar Rojo, a través de Israel; dicho canal partiría de un punto cercano a la zona de Gaza y desembocaría en el golfo de Aqaba.

En   1957,   la Comisión  Nacional  de   Energía  Atómica  de los   Estados   Unidos   aprobó   un   programa   de   trabajo   con explosivos nucleares, que recibió el significativo nombre de Reja de arado.

En la actualidad, dicho programa ha invertido ya 25 millones de dólares en el estudio de proyectos de ingeniería civil, entre los que se destacan un nuevo tendido de vía férrea a través de las montañas de California, y un nuevo canal para unir los océanos Atlántico y Pacífico, que sustituya al de Panamá, de características antiguas e insuficiente para el tráfico actual.

Dicho canal tendría una anchura de 330 metros, en vez de los 200 actuales; todavía no está decidida su ubicación, pues se citan dos rutas posibles; una de ellas, a través de Panamá, por el Sasardi y el Morti, y la otra, por Colombia, partiendo del golfo de Urabá, en el Atlántico, por el río Atrato y su afluente Truandó.

El movimiento de tierras con medios nucleares resultaba mucho más económico que el realizado con los medios mecánicos clásicos.

Así, una bomba de dos megatones de potencia costaba unos 600.000 dólares; utilizando explosivos químicos se necesitaban 2.000.000 de toneladas, que importan unos 200 millones de dólares.

Hay que señalar que el costo de una bomba nuclear es bastante independiente de la potencia que libera, es decir, una bomba de 20 kilotones no vale el doble que otra de 10 kilotones; el costo de esta última era en su momento de unos 350.000 dólares, y ya se ha dicho lo que vale una de 2 megatones !no llega al doble!), cuya potencia es 200 veces mayor.

De lo anterior, se desprende que un proyecto nuclear es tanto más económico cuanto mayor sea la  obra  a   realizar.

Para dar idea de la potencia de los explosivos nucleares basta saber que una bomba de 100 kilotones libera, al explotar, un billón de calorías, hace subir la temperatura de la zona en 10 millones de grados y da lugar a una onda expansiva de 1.000 megabares de presión.

Como se ha dicho al principio, el único factor que limitó, hasta ahora, el uso de estos potentes medios es la radiactividad desprendida en las explosiones. Pero, también en este aspecto, se ha progresado sensiblemente.

La Comisión Internacional de Protección contra las Radiaciones dá como límite máximo de radiactividad permisible 0,5 Roentgen, que es la dosis recibida normalmente por un paciente al que se le hace una radiografía dental.

Pues bien, este valor de radiactividad se encontraba ya a 100 kilómetros del centro de explosión de las bombas de 100 kilotones utilizadas en el año 1962.

Mediante explosiones controladas la zona  de  radiactividad  peligrosa  se  ha  reducido,  y  los  0,5 Roentgen aparecen a unos 45 kilómetros del lugar de la explosión.

Pero la nube radiactiva (que no abarca un círculo con centro en la explosión, sino que tiene forme de lengua a partir de dicho centro), no sólo se ha reducido en longitud, sino también en anchura, de manera que se logró que el peligro de la radiactividad se reduzca unas 1.000 veces.

En un futuro próximo, se espere conseguir bombas nucleares «esterilizadas», cuya red actividad peligrosa no supere los 4 kilómetros, a contal desde el centro de la explosión.

Minería: Los explosivos nucleares utilizan la energía nuclear para fragmentar la roca.

Dadas las características propias de los elementos nucleares que se emplean como fuente de energía y los riesgos asociados a la implementación de este tipo de tecnología, tanto para las personas como para el medio ambiente, actualmente no se usan en la minería.

Enlace Externo: Preguntas Frecuentes Sobre Los Explosivos

Conceptos Básicos de Electromagnetismo-Historia y Aplicaciones

Conceptos Básicos de Electromagnetismo
Historia y Aplicaciones

Antetodo se aclara que la explicación sobre este fenómeno físico es sólo descriptivo y tiene como objetivo describir las características mas imporatantes del mismo.

Es una especie de descripción tecnico-histórica para darle al interesado una somera idea de como funciona la naturaleza en lo que respecta a la interacción de campos magnéticos y eléctricos.

De todas maneras es una interesante descripción  orientada a todos los curiosos de la física o para quellos estudiantes principiantes que desean adentrarse en el mundo del electromagnetismo.

Leer con detenimiento estos conceptos básicos, ayudarán de sobremanera a enteder luego las explicaciones matemáticas o conclusiones finales de las experiencias de laboratorio.

Si el lector desea un estudio mas técnico, con las correspondientes deducciones matemáticas que implican un analisis profundo del fenómeno, debería hacer nuevas búsquedas, ya que existen muchos y excelentes sitios que explican muy didacticamente al electromagnetismo.

INTRODUCCIÓN HISTÓRICA: Los fenómenos conocidos de la electricidad estática y del magnetismo permanente han sido observados durante unos 2500 años. William Gilbert, en Inglaterra, realizó muchas investigaciones ingeniosas en electricidad y magnetismo.

En 1600, publicó De Magnefe, el primer libro concluyente sobre este tema, donde explica muchas de las  semejanzas entre la electricidad y el magnetismo.

Una y otro poseen opuestos (positivo y negativo en electricidad, polo norte y polo sur en electromagnetismo). En ambos casos, los opuestos se atraen y los semejantes se repelen, y también en ambos casos la fuerza de la atracción o repulsión declina con el cuadrado de la distancia.

Nosotros, igual que los primeros observadores, hemos notado semejanzas entre los fenómenos relativos a la electricidad y los relacionados con el magnetismo.

Por ejemplo:
1.   Existen dos clases de concentración eléctrica —más y menos— y dos clases de concentración magnética  —norte y sur.
2.   Tanto en electricidad como en magnetismo, concentraciones del mismo nombre se repelen entre sí; mientras que concentraciones de nombre diferente se atraen mutuamente.
3.   Los efectos eléctricos y los magnéticos se describen  en función  de campos.
4.   En electricidad y en magnetismo, las fuerzas de atracción y repulsión están de acuerdo con la ley inversa  de  los cuadrados.
5.   Cuerpos apropiados pueden electrizarse frotándolos (como cuando se frota un objeto de plástico con una piel); análogamente, cuerpos apropiados pueden ser imantados por frotamiento (como cuando se frota una aguja de acero con un imán).
6.   Ni las cargas eléctricas, ni los polos magnéticos son visibles, ni tampoco los campos asociados, eléctrico o magnético. Tanto en electricidad como en magnetismo, las concentraciones y sus campos se conocen sólo por sus efectos.

Quizás podamos encontrar otras semejanzas. Se puede ver de qué modo ellas llevaron a los primeros científicos a sospechar que la electricidad y el magnetismo estaban íntimamente relacionados, siendo, posiblemente, manifestaciones distintas del mismo fenómeno fundamental.

Cuando en 1800, el físico italiano Alessandro Volta descubrió la primera pila electroquímica útil, los hombres de ciencia tuvieron la primera fuente segura de energía para hacer funcionar circuitos eléctricos.

Todavía no se encontraban pruebas de alguna conexión entre los fenómenos eléctricos y magnéticos.

Por consiguiente, en la primera mitad del siglo XIX los sabios opinaban que «a pesar de las semejanzas aparentes entre la electricidad y el magnetismo, estos dos fenómenos no están relacionados entre sí».

Esta era la situación de 1819 cuando un profesor de ciencias danés, llamado Hans Christian Oersted, hizo una observación de gran importancia en este campo de la Física.

Oersted, al parecer, había considerado y buscado un enlace entre la electricidad y el magnetismo.

Fisico Oerster

Hans Christian Oersted

De acuerdo con uno de sus alumnos, Oersted estaba utilizando una batería de las pilas voltaicas primitivas durante una de sus clases.

En aquellos días, las baterías eran caras, difíciles de manejar y no duraban mucho tiempo.

Oersted deseaba usarla mientras fuera posible, así que colocó un alambre paralelo arriba de una brújula y cerró el circuito.

Posiblemente, Oersted trataba de demostrar a sus alumnos que la corriente eléctrica y el comportamiento de la brújula no estaban relacionados.

Para su sorpresa, cuando cerró el circuito, la aguja de la brújula se movió y osciló a una posición que ya no era paralela al alambre.

Oersted había tropezado con el fenómeno de que una corriente eléctrica está rodeada de un campo magnético.

Además, tenía su mente alerta y con el pensamiento abierto para reconocer un fenómeno inesperado   y   atribuirle   la   importancia   que   merecía.

Oersted efectuó muchos experimentos con estos nuevos fenómenos y, al principio del año siguiente, publicó una pequeña comunicación describiendo sus observaciones.

Las noticias científicas viajan, en general, con rapidez y no pasó mucho tiempo cuando un gran número de investigadores capaces realizaban experiencias sobre electromagnetismo.

Entre ellos estaban Michael Faraday en Inglaterra, André Ampere en Francia y William Sturgeon, quien fabricó el primer electroimán con núcleo de hierro en 1823.

Con toda seguridad el descubrimiento de Oersted, en su aula, fue un paso importante en el desarrollo de  los conceptos del electromagnetismo.

Una de las razones de que los efectos magnéticos de una corriente eléctrica fueran tan importantes es que introdujeron una nueva clase de fuerza.

Todas las observaciones previas con cualquier tipo de fuerzas estaban relacionadas con acciones sobre la recta entre los cuerpos que producían la fuerza. Así, las fuerzas gravitacionales están siempre en la línea recta que une las dos masas; de este modo se comportan también las fuerzas atractivas y repulsivas entre cargas eléctricas y entre imanes.

Pero aquí, existía una fuerza donde la acción era perpendicular a la recta que une el alambre y la aguja de la brújula.

Cuando Oersted colocó una corriente arriba y paralela a la brújula, la aguja giró alejándose de su posición paralela al alambre.

PARTE I: IMANES , MAGNETISMO Y CORRIENTES INDUCIDAS
En la Naturaleza existe un mineral, llamado magnetita por haber sido descubierto en la ciudad griega de Magnesia, que tiene la propiedad de atraer las limaduras de hierro.

Este fenómeno se denomina magnetismo y los cuerpos que lo manifiestan se llaman imanes. Un imán tiene dos polos, uno en cada extremo, que llamanos Norte y Sur

Si tomamos un imán, que puede girar horizontalmente alrededor de su punto medio, y le acercamos un polo de otro imán se observa que los polos del mismo nombre se repelen y los de nombre distinto se atraen.

Al dividir un imán en varios trozos, cada uno de ellos, por pequeño que sea, posee los dos polos.

Este comportamiento se explica suponiendo que los imanes están formados por una gran cantidad de minúsculos imanes ordenadamente dispuestos.

Así, al frotar un trozo de hierro con con imán se ordenan los pequeños imanes que contiene el trozo de hierro, de tal modo que la acción magnética no se neutraliza entre ellos.

El trozo de hierro así tratado manifiesta sus propiedades magnéticas y constituye un imán artificial.

Hoy se sabe que los imanes están formados por minúsculos imanes moleculares originados por el giro de electrones que dan lugar a corrientes eléctricas planas, y según el sentido de giro presentan una cara norte o una cara sur.

La región del espacio sensible a las acciones magnéticas se llama campo magnético.

Para visualizar el campo magnético, Michael Faraday (1791-1867), de quien hablaremos mas abajo, esparció limaduras de hierro sobre un papel colocado encima de un imán.

Observó que las limaduras se situaban en líneas cerradas; es decir, líneas que parten de un polo del imán y que llegan al otro polo.

limaduras de hierro en un imán

Además, las líneas no se cortan. Estas líneas se llaman líneas de campo o de fuerza  y, por convenio, se dice que salen del polo norte y entran en el polo sur.

No existe una expresión matemática sencilla que sirva para determinar el campo magnético en las inmediaciones de un imán, pero podemos decir que:

•  El campo magnético se reduce a medida que nos alejamos del imán.
•  El campo magnético depende del medio en el que situemos al imán.

Observemos el comportamiento de la brújula, frente al campo mágnetico que produce nuestro planeta.

El núcleo de la Tierra está compuesto  por una aleación de hierro y níquel. Este material es muy buen conductor de la electricidad y se mueve con facilidad por encontrarse en estado líquido.

La Tierra actúa como un imán: Campo magnético terrestre. Si tomamos una aguja imantada y la dejamos girar libremente, se orientará siempre en una misma dirección norte-sur.

De ahí que al polo de un imán que se orienta hacia el norte geográfico le denominemos polo norte, y al otro polo del imán, polo sur.

Esto quiere decir que la Tierra se comporta como un enorme imán.

Y es debido a que a medida que la Tierra gira, también lo hace el hierro fundido que forma su núcleo.

El planeta Tierra es como un gran imán con dos polos.

 Los polos geográficos y los polos magnéticos de la Tierra no coinciden, es decir, que el eje  N-Sgeográfico no es el mismo que el eje N-S magnético.

EXPLICACIÓN DE LAS EXPERIENCIAS:

Como parte de una demostración en clase, colocó la aguja de una brújula cerca de un alambre a través del cual pasaba corriente.

experimento de Oerster

Experimento de Oerster

La aguja dio una sacudida y no apuntó ni a la corriente ni en sentido contrario a ella, sino en una dirección perpendicular. 0rsted no ahondó en su descubrimiento, pero otros sí se basaron en él, y concluyeron:

1a-Antes de conectar la corriente eléctrica la aguja imantada se orienta al eje N-S geográfico.

1b-Al conectar el circuito eléctrico, la aguja tiende a orientarse perpendicularmente al hilo.

2a– Cambiamos el sentido de la corriente eléctrica invirtiendo las conexiones en los bornes de la pila.

Igual que en el primer experimento, antes de conectar la corriente eléctrica la aguja imantada se orienta al N-S geográfico.

Pero al conectar ahora el circuito eléctrico, la aguja se orienta también perpendicularmente al hilo, aunque girando en dirección contraria a la efectuada anteriormente.

Las experiencias de Oersted demuestran que las cargas eléctricas en movimiento (corriente) crean un campo magnético, que es el causante de la desviación de la brújula; es decir, una corriente eléctrica crea a su alrededor un campo magnético.

•  La dirección del campo magnético depende del sentido de la corriente.
•  La intensidad del campo magnético depende de la intensidad de la corriente.
•  La intensidad del campo magnético disminuye con la distancia al conductor.

Llamamos campo magnético a la región del espacio en donde se puede apreciar los efectos del magnetismo, por ejemplo mientras la aguja se la brújula se desplaze hacia un costado, significa que estamos dentro de ese campo magnético.

A medida que alejamos la brújula del conductor observaremos que el efecto se pierde pues el campo magnético creado desaparece. Para graficar un campo magnético utilizamos líneas circulares con flechas que muestran el sentido del campo y las denominamos: líneas de fuerza.

El físico francés André-Marie Ampére (1775-1836) quien continuó con el estudio de este fenómeno, dispuso dos alambres paralelos, uno de los cuales podía moverse libremente atrás y adelante.

Cuando ambos alambres transportaban corriente en la misma dirección, se atraían de forma clara.

Ampere Fisico

André-Marie Ampére (1775-1836)

Si la corriente fluía en direcciones opuestas, se repelían. Si un alambre quedaba libre para girar, cuando las corrientes discurrían en direcciones opuestas, el alambre móvil describía un semicírculo, y cesaba de moverse cuando las corrientes tenían el mismo sentido en ambos alambres. Resultaba manifiesto que los alambres que transportaban una corriente eléctrica mostraban propiedades magnéticas.

Campo magnético creado por un conductor rectilíneo
Las líneas de fuerza del campo magnético creado por un conductor rectilíreo son circunferencias concéntricas y perpendiculares al conductor eléctrico.

Para saber la dirección que llevan dichas líneas de fuerza nos ayudaremos con la regla de la mano derecha.

regla mano derecha

Regla de la mano derecha

Para aplicar dicha regla, realizaremos el siguiente proceso. Tomamos el hilo conductor con la mano derecha colocando el dedo pulgar extendido a lo largo del hilo en el sentido de la corriente. Los otros dedos de la mano indican el sentido de las líneas de fuerza del campo magnético creado.

Campo magnético creado por una espira
Una espira es un hilo conductor en forma de línea cerrada, pudiendo ser circular, rectangular, cuadrada, etc.

Si por la espira hacemos circular una corriente eléctrica, el campo magnético creado se hace más Intenso en el Interior de ella.

El sentido de las líneas de fuerza es el del avance de un sacacorchos que girase en el sentido de la corriente.

Campo magnético creado por un solenoide o bobina
Si en lugar de disponer de una sola espira, colocamos el hilo conductor en forma enrollada, obtendremos un solenoide o bobina.

En este caso, el campo magnético creado por la corriente al pasar a través de la bobina será mucho mayor, puesto que el campo magnético final será la suma de campos creados por cada una de las espiras.

Así pues, en una bobina, el campo magnético será más intense cuanto mayor sea la intensidad de corriente que circule por el ella y el número de espiras que contenga la bobina.

De esta forma, una bobina, por la que circule una corriente eléctrica equivaldría a un imán de barra. El sentido de las líneas de fuerza se determina a partir de cualquiera de sus espiras.

Solenoide

SOLENOIDE. Consiste en un conductor arrollado en hélice de modo que forme un cierto número de espiras circulares regularmente distribuidas unas a continuación de otras.

Cuando una corriente eléctrica recorre el conductor, el solenoide adquiere las propiedades de un imán, con sus polos norte y sur correspondientes. Llegamos, pues, a la conclusión de que la corriente eléctrica crea un campo magnético.

Las líneas de fuerza que en él se originan, por convenio, van del polo norte al polo sur en el exterior, y en sentido contrario por el interior.

Para determinar el nombre de los polos de un solenoide se emplea una aguja imantada, hallándose que el extremo del solenoide por el que la corriente, visto desde fuera, circula por las espiras en el sentido de las agujas del reloj, es el polo sur, y el extremo opuesto es el polo norte.

ELECTROIMANES:

Como vimos anteriormente se puede obtener un campo magnético mayor a partir de corriente eléctrica si se acoplan muchas espiras, unas al lado de otras (por ejemplo, arrollando un hilo conductor), construyendo lo que se conoce como solenoide.

Para crear campos magnéticos aún más intensos, se construyen los electroimanes, que son solenoides en cuyo interior se aloja una barra de hierro dulce, es decir, un hierro libre de impurezas que tiene facilidad para imantarse temporalmente.

Cuando se hace circular corriente eléctrica por el solenoide, con centenares o miles de vueltas (es decir, centenares o miles de espiras), el campo magnético se refuerza extraordinariamente en su interior, y el solenoide se convierte en un poderoso imán con múltiples aplicaciones.

electroimán casero

Si arrollamos un conductor alrededor de una barra de hierro dulce (clavo) y hacemos pasar por él la corriente eléctrica, tendremos un electroimán.

Al objeto de aumentar la intensidad del campo magnético creado por el electroimán, éstos se construyen en forma de herradura, pues así el espacio de aire que tienen que atravesar las líneas de fuerza para pasar de un polo a otro es menor.

Los electroimanes se emplean para obtener intensos campos magnéticos en motores y generadores.

También se utilizan en timbres eléctricos, telégrafos y teléfonos, y actualmente se construyen gigantescos electroimanes para utilizarlos como grúas y para producir campos magnéticos intensos y uniformes, necesarios en trabajos de física nuclear.

Demos ahora un paso mas…

A partir de los descubrimientos de Oersted, algunos científicos de su época se plantearon si el efecto contrario podría ocurrir es decir, si un campo magnético sería o no capaz de generar una corriente eléctrica, algo que tendría unas interesantes consecuencias prácticas.

En 1831 Faraday observó que cuando se mueve un circuito cerrado a través de un campo magnético se origina una corriente eléctrica que recorre aquel circuito, y que se conoce con el nombre de corriente inducida.

Dicha corriente cesa en el momento en que se interrumpe el movimiento.

induccion electromagnetica

Las experiencias de Faraday fueron las siguientes: tomó un  imán y lo colocó cerca de una bobina, la que tenía un conectado un medidor de corriente, llamado amperímetro o galvanómetro.

Pudo observar que cuando ambos elementos (imán-bobina) están en reposo, la corriente es nula, es decir, la aguja el amperimetro no se mueve.

Luego movió el iman hacia dentro de la bobina y notó que la aguja se movía, lo que determinó un pasaje de corriente por la misma. También notó que cuanto más rápido se desplazaba el imán mayor era la corriente medida.

Cuando el imán está en reposo, dentro o fuera de la bobina, no hay corriente y a aguja del galvanómetro permanece con medición nula.

También probó en sentido inverso, es decir, dejó inmovil el imán y desplazó la bobina y el efecto fue el mismo al antes explicado.

Conclusiones de Faraday: Inducción electromagnética
En todos los experimentos de Faraday, en los que se acerca un imán a un circuito cerrado o bobina, los efectos son los mismos si el imán permanece en reposo y es la bobina del circuito la que se mueve.

Faraday concluyó que para que se genere una corriente eléctrica en la bobina, es necesario que exista un movimiento relativo entre la bobina y el imán.

Si se mueve la bobina hacia el imán, hay una variación en el campo magnético en el circuito, pues el campo magnético es más intenso cerca del imán; si se mueve el imán hacia la bobina, el campo magnético también varía.

A la corriente generada se le llama corriente inducida y, al fenómeno, se le denomina inducción electromagnética.

Por lo tanto se obtiene energía eléctrica como consecuencia del movimiento del imán con respecto a la bobina o de la bobina con respecto al imán.

La inducción electromagnética es el fundamento de los generadores de corriente eléctrica, como son la dinamo y el alternador.

PARTE II: EFECTO MOTOR Y EFECTO GENERADOR

EFECTO MOTOR: Hasta ahora vimos ejemplos con circuitos cerrados pero sin que circule una corriente por ellos, simplemente el fenómeno aparece cuando movíamos el iman o la bobina respecto uno del otro.

Ahora estudiaremos cuando ademas del movimiento relativo, también circula una corriente por esa bobina.

Para ello observemos la imagen de abajo, donde se coloca una alambre conectado a una batería dentro de un campo magnético de un imán.

concepto electromagnetismo

Efecto Motor

Un alambre se coloca horizontalmente a través de un campo magnético. Al fluir los electrones hacia la derecha de la mano, el alambre recibe la acción de una fuerza hacia arriba.

La fem (voltaje) de la batería y la resistencia del circuito son adecuados para que la corriente valga unos pocos amperios. Al llevar cabo este experimento, se encuentra:

Se observa que:

a.   Cuando el alambre tiene corriente y se coloca a través del campo magnético, el alambre recibe la acción de una fuerza. (si hay fuerza hay un movimiento)

b.   Cuando el alambre con corriente se coloca bastante lejos del imán no experimenta ninguna fuerza.

c.   Cuando el alambre no lleva corriente y se coloca a través del campo magnético, no experimenta ninguna fuerza.

d.   Cuando el alambre no lleva corriente y se coloca bastante lejos del imán, no experimenta  ninguna  fuerza.

e.   Cuando el alambre con corriente se coloca paralelo al campo magnético, no experimenta ninguna fuerza.

De estas observaciones se puede deducir:
(1) que debe tener corriente y
(2) que su dirección debe cruzar el campo magnético, para que el alambre reciba la acción de una fuerza.

f.   Cuando el alambre conduce electrones que se alejan  del observador,  recibe la  acción de una fuerza vertical.

g.   Cuando el alambre conduce electrones hacia el observador, recibe la acción de una fuerza vertical opuesta a la del caso (f ).

De esto se puede concluir que el sentido de la fuerza sobre el alambre forma ángulos rectos con el sentido de la corriente y con el del campo magnético.

Se deduce, que el sentido de la corriente influye sobre el sentido de la fuerza, h.

Si  se invierten los polos magnéticos, también se invierta el sentido de la fuerza que actúa sobre el alambre.

De esta observación puede verse que el sentido del campo magnético, influye sobre el sentido de la fuerza. i.   Si se varía la intensidad de la corriente en el alambre, la magnitud de la fuerza resultante varía en la misma proporción.

Esto indica que la fuerza que recibe el alambre depende directamente de la intensidad de la corriente. j.

Si se substituye el imán por uno más débil o más  potente,   la  magnitud  de  la  fuerza resultante varía en la misma proporción. Por tanto, la fuerza sobre el alambre es directamente proporcional a la densidad de flujo del campo magnético.

Debido a que los principios fundamentales de este experimento son básicos para el trabajo de motores eléctricos, la existencia de una fuerza que  actúa  sobre  una  corriente  que  cruza  un campo magnético, se llama efecto motor

El efecto motor no debe ser ni sorprendente ni misterioso. Después de todo, una corriente eléctrica es un flujo de electrones que experimentan una fuerza deflectora cuando atraviesan un campo magnético.

Puesto que no pueden escapar del alambre, lo arrastran con ellos.

regla de los 3 dedos de la mano izquierda

La regla de los tres dedos también se aplica a la desviación de un alambre con corriente a través de un campo magnético. Use la mano izquierda, con el mayor apunte en el sentido del flujo electrónico, de negativo a positivo.

EFECTO GENERADOR:

concepto electromagnetismo

Efecto Generador

El alambre se empuja alejándolo del lector. Cuando esto se hace en condiciones apropiadas, los electrones libres del alambre son imrjulsados hacia arriba.

De nuevo se tiene un campo magnético debido a un potente imán permanente . Sin embargo, esta vez se mantiene el alambre vertical y lo mueve acercándolo y alejándolo, hacia adelante y atrás, atravesando el campo.

El alambre en movimiento se conecta con un medidor eléctrico sensible —un galvanómetro— que indica la existencia de una corriente eléctrica débil y, por tanto, de una fuerza electromotriz o voltaje (fem) que produce dicha corriente.

En este experimento el estudiante observará y deducirá lo siguiente:

a.   Cuando el alambre se mueve a través del campo magnético se produce una fem.
b.   Cuando el alambre se mueve en una región lejos del imán, no hay fem.
c.   Cuando el alambre se mueve paralelo al campo magnético, no hay fem.
d.   Cuando el alambre se mantiene fijo, en una posición lejos del imán, no hay fem.
e.   Cuando el alambre se mantiene fijo en una posición, dentro del campo magnético, no hay fem.
De estas observaciones se puede concluir que el alambre debe moverse a través del campo magnético para que se genere una fem. Es evidente, que la parte superior del alambre, es positiva o negativa con respecto a la parte inferior. De esto se puede deducir que la fem generada forma ángulos rectos con el movimiento y también con el campo magnético.
f.    Cuando el alambre se mueve a través del campo, alejándose del observador, se produce una fem.
g.  Cuando el alambre se mueve a través del campo acercándose al observador, se produce una fem cuya polaridad es opuesta a la del inciso anterior (f).
De estos hechos se puede ver que el sentido del movimiento  determina el  sentido  de la fem generada.
h. Si se invierten los polos magnéticos el sentido
de la fem generada se invierte. Esto indica que el sentido de la fem generada está determinado por el sentido del campo magnético.
i.   Si se varía la velocidad de movimiento del alambre, la magnitud de la fem generada varía también de acuerdo con ella. Este dato indica que la fem generada es directamente dependiente de la velocidad del alambre en movimiento.
j. Si se colocan imanes más débiles o más potentes, la magnitud de la fem generada disminuye o aumenta proporcionalmente. Por tanto, la fem generada es directamente dependiente de la densidad de flujo del campo magnético.

Si se realizan estos experimentos, puede ser difícil ver el movimiento de la aguja del galvanómetro, porque la fem es muy pequeña.

Sin embargo, se puede fácilmente repetir un experimento de la imagen.

Se enrolla una bobina de alambre con varias vueltas, se conectan sus extremos al galvanómetro y se mueve dicha bobina rápidamente hacia el polo N de una barra imantada.

El gavanómetro se desviará, demostrando que se ha producido una fem en la bobina. La fem cambia de sentido cuando se aleja la bobina del imán o cuando se usa el polo S en lugar del polo N.

En este caso el alambre en la bobina que se mueve en un campo magnético se desplaza, principalmente, de modo perpendicular al campo.

De acuerdo con esto, debe generarse una fem.

Se puede preferir pensar en la bobina de este modo: a través del área de la bobina pasa una cierta cantidad de flujo magnético, al mover la bobina hacia el imán, la cantidad de flujo a través de ella aumenta.

Siempre que cambia el flujo por una bobina, se genera una fem.

Debido a que los principios en que se basan estos experimentos también son básicos para el funcionamiento de los generadores eléctricos, constituyen el llamado efecto generador: una fem se genera en un conductor, cuando éste se mueve a través de un campo magnético o cuando el campo magnético varía dentro de una bobina.

Fuente Consultada:
Enciclopedia TECNIRAMA De La Ciencia y la Tecnología
Enciclopedia Temática CONSULTORA Tomo 10 Física
FISICA Fundamentos y Fronetras Stollberg – Hill

El Espacio Curvo Teoría de Relatividad Curvatura Espacial

El Espacio Curvo Teoría de Relatividad

La teoría general de la relatividad constituye la culminación de los logros de Einstein. Fue el resultado exitoso de un denodado esfuerzo de cuatro años para extender su teoría especial de la relatividad. Esta teoría demuestra que la luz puede quedar atrapada en un hueco negro. Se describen aquí esos extraños objetos y lo que sería un viaje a su interior.

A propósito de objetos extraños, se discute la posible existencia de túneles o huecos de gusano que conducen hacia otro universo. ¿Pueden tales huecos de gusano emplearse para viajar en el tiempo? Se dice lo que las teorías de Einstein afirman al respecto.

Einstein comprendió desde el comienzo que la teoría especial de la relatividad quedaba restringida a una clase particular de movimiento: el movimiento uniforme, es decir, el movimiento sin aceleración. Buscó entonces durante más de una década una teoría más general de la relatividad y finalmente logró su objetivo, en 1917.

Luego de cuatro años de muy intenso trabajo, en los que hubo muchas salidas en falso y callejones sin salida, finalmente salió airoso y desarrolló la Teoría General de la Relatividad. La teoría es muy matemática y sus detalles son difíciles de entender, aún hoy sus implicaciones son revolucionarias.

Publicó su versión final de la teoría a comienzos de 1916, en los Annalen der Physik, la misma prestigiosa revista donde había publicado su teoría especial de la relatividad, su formula E = mc² y sus demás artículos importantes.

El artículo de la relatividad general fue titulado «Formulación de la teoría general de la relatividad».

El artículo comienza con el enunciado de que todas las leyes de la física deben ser válidas en cualquier marco de referencia animado de cualquier tipo de movimiento. La relatividad no está ya restringida al movimiento uniforme: el movimiento acelerado está incluido.

Con esta proposición, Einstein creó una teoría de la gravedad, un sistema del mundo, con un conjunto de ecuaciones básicas que, cuando se resuelven, proporcionan las leyes que cumple el universo.

En esta teoría los objetos producen una deformación del espacio-tiempo que los rodea, lo cual afecta el movimiento de cualquier cuerpo que entra en esta región del espacio-tiempo. Einstein había pensado ya en esta posibilidad desde 1907, cuando desarrolló su principio de equivalencia. Pero necesitaba las complejas matemáticas de Marcel Grossmann para construir una teoría completa de la gravedad.

Aunque esta distorsión del espacio-tiempo ocurre en cuatro dimensiones, veamos lo que ocurre en dos. Imaginemos una lámina de plástico flexible estirada por los cuatro extremos y sujeta con algunas tachuelas, como la que se muestra en la figura de abajo.

espacio curvo teoria general de la relatividad

Éste es nuestro espacio-tiempo de cuatro dimensiones en dos dimensiones. Ahora ponemos de alguna manera una bola de billar en medio de la lámina. El peso de la bola estira el plástico y produce una hondonada. Si colocamos ahora una canica sobre la lámina de plástico, ésta rueda hacia la bola de billar. Si empujamos la canica hacia los lados, ésta describe una curva alrededor de la hondonada y comienza a moverse en una espiral descendente hasta chocar con la bola de billar.

La bola de billar no atrae a la canica. Ésta rueda hacia la bola de billar a causa de la hondonada que se formó en la lámina de plástico, la distorsión del espacio. De manera similar, el Sol crea una depresión en la estructura del espacio-tiempo. La Tierra, los planetas y cometas se mueven en este espacio-tiempo distorsionado.

El Sol no atrae a la Tierra. La depresión que el Sol crea en el espacio-tiempo hace que la Tierra se mueva a su alrededor. El Sol modifica la geometría del espacio-tiempo. En relatividad general no existe la fuerza gravitacional. La gravedad es producto de la geometría.

Bien entonces en base a lo antedicho,…¿Cual  es la forma del Universo? ¿Es cúbico, esférico o completamente ilimitado, extendiéndose hasta el infinito? Toda la información que poseemos acerca de los confines del Universo proviene de la luz (y ondas de radio) que recibimos de las galaxias distantes. Parece que la luz alcanza la Tierra desde todas las direcciones, lo que hace pensar en la simetría del Universo, sea esférico o infinito.

Pero el Universo no es nada de eso, y no se puede representar totalmente por una figura simétrica de tres dimensiones. Sus fronteras exteriores no se pueden visualizar, debido a que la luz no nos proporciona su información propagándose en líneas rectas. Todo el espacio comprendido entre sus límites es curvo.

El espacio no es tridimensional, como un edificio o una esfera, sino tetradimensíonal, y la cuarta dimensión es el tiempo. El tiempo aparece en las ecuaciones que expresan las propiedades del espacio, pero no se puede representar.

La idea básica del espacio-tiempo de cuatro dimensiones es fácil de visualizar. De hecho, se usa a todas horas. Supongamos que hemos aceptado la invitación a cenar de una amiga, el 29 de julio, viernes, a las 7 p.m., en un restaurante del centro de la ciudad. El restaurante queda en el piso 44 del edificio del Banco Central, situado en la esquina de la Avenida 9 de Julio con Sarmiento.

Para encontrarnos con la amiga en el restaurante, el viernes, necesitamos ponernos de acuerdo sobre cuatro números: tres que describen la ubicación específica del restaurante (Avenida 9 de Julio, Sarmiento, piso 44) y otro que describe el tiempo (7 p.m. del viernes). Si vamos a las 8 p.m. del miércoles al restaurante no nos encontraremos.

El   espacio   es  curvo   y   está   distorsionado, porque contiene materia —todos los billones y billones de estrellas y galaxias del Universo—. La luz sufre los efectos de las fuerzas gravitatorias, ejercidas por la materia del espacio, y, en distancias largas, se propaga según líneas curvas y no rectas.

Aun nuestro propio Sol, que es una estrella sin mucha masa, curva apreciablemente un rayo de luz que, dirigiéndose de una estrella lejana a» la Tierra, pasa a pocos grados de él. La dirección de la curvatura observada iparece sugerir que la luz se dobla hacia dentro. Un rayo de luz que parte de cualquier punto es, en conjunto, atraído siempre Hacia el centro del Universo. Dicho rayo, después de sufrir la acción de toda la materia del Universo, que lo atrae hacia dentro, vuelve, finalmente, al mismo punto de partida.

Es como partir de un punto cualquiera de la Tierra y viajar continuamente en línea recta. La «línea recta» se vá doblando en un camino curvo alrededor de la superficie del planeta. Cada 40.000 kilómetros (circunferencia de la Tierra), el camino termina en su punto de partida, for mando un gran círculo.

La curvatura del espació se puede visualizar por la extraña conducta de la luz; en particular, de la velocidad de la luz: La velocidad es la distancia recorrida dividida por el tiempo. Cualquier  ilustración respecto al comportamiento de la velocidad de la luz incluye también la dimensión del tiempo (que no se puede incluir en un diagrama puramente espacial).

curva espacio

Si la luz no fuera afectada por la materia, y siempre se propagara en línea recta (es.decir, a la misma velocidad), el espacio nó estaría distorsionado ni curvado. Entonces podría representarse como una superficie plana de dos dimensiones (con lo que nos ahorraríamos la tercera dimensión, a pesar de que ella es realmente necesaria).

Si la luz describe un gran círculo alrededor del Universo y vuelve al punto de partida, el diagrama de dos dimensiones se tras-forma en una esfera de tres dimensiones, y los caminos de la luz son círculos alrededor de la esfera. La luz cambia de dirección; luego, su velocidad varía.

curva espacio hacia afuera

Las teorías de la relatividad de Albert Einstein están todas ligadas al comportamiento de la velocidad de la luz. En su teoría general de la relatividad, Einstein (1916)  demostró lo que debía suceder si la luz interaccionaba con la materia. En sus ecuaciones se presentaban tres posibilidades: la luz no era afectada, en cuyo caso el Universo debía ser plano; la luz se doblaba, bien hacia dentro o hacia fuera. Las dos últimas posibilidades conducen a un espacio curvo de cuatro dimensiones.

Pero si la luz se curva hacia fuera en lugar de hacia dentro, el diagrama toma la forma de una silla de montar y las curvas son hipérbolas en lugar dé círculos. Los rayos de luz se saldrían continuamente y nunca retornarían a su punto de partida. La evidencia experimental que se posee parece  indicar una curvatura hacía el interior del espacio.

Fuente Consultada:
Einstein Para Dummie s Carlo I. Calle
Revista Tecnirama Fascículo N°120 Enciclopedia de la Ciencia y la Tecnología
50 Cosas que debe saber sobre el Universo Joanne Bajer
Einstein y su Teoría de la Relatividad Byron Preiss (ANAYA)

El Principio de Equivalencia Teoría de la Relatividad General

EXPLICACIÓN SIMPLE DEL PRINCIPIO DE EQUIVALENCIA EN LA TEORÍA GENERAL DE LA RELATIVIDAD

La teoría general de la relatividad constituye la culminación de los logros de Einstein. Fue el resultado exitoso de un denodado esfuerzo de cuatro años para extender su teoría especial de la relatividad. En esta parte se explica el significado de la teoría y se discute su influencia sobre nuestra concepción del universo. La teoría general demuestra que la luz puede quedar atrapada en un hueco negro. Se describen aquí esos extraños objetos y lo que sería un viaje a su interior.

Cuando estudiamos física, observamos que existen varios tipos de movimientos, normalmente usamos los rectilineos, como por ejemplo cuando viajamos de una ciudad a otra, o cuando caminamos de nuestra casa a la escuela. También están los circulares, es decir que el objeto sigui una trayectoria curva, como cuando «revoleamos» una piedra atada a un hilo. También dentro de estos tipos de trayectorias, tenemos aquellos en donde la velocidad es constante, es decir no varia, por ejemplo cuando viajamos en un tren a 70 Km./h y  siempre esa velocidad es la misma al paso del tiempo, son movimiento de velocidad uniforme.

Y también hay otro movimiento llamado acelerados que es cuando nuestra velocidad va cambiando a traves del tiempo y podríamos decir que es el caso mas normal de nuestra vida. Cuando salimos en nuestro auto, la velocidad pasa de  0 Km/h , cuando está denido a otra velocidad mas alta. Luego cuando llegamos a destino apretamos el freno y la velocidad llega a cero (cuando nos detenomos) en algunos segundos.

Cuánto mas grande sea esa aceleración mas rápido vamos a avanzar o a detenernos, y viceversa, si la aceleración es nula o ceo, la velocidad será siempre uniforme y no aumentará ni disminuirá, podemos decir que el movimiento uniforme es una caso especial del movimiento acelerado, cuando la aceleración es cero.

Albert Einstein comprendió desde el comienzo que la teoría especial de la relatividad quedaba restringida a una clase particular de movimiento: el movimiento uniforme, es decir, el movimiento sin aceleración. Buscó entonces durante más de una década una teoría más general de la relatividad y finalmente logró su objetivo, en 1917.

Einstein  en su principio de relatividad afirma que las leyes de la física son las mismas para todos los observadores que se mueven con movimiento uniforme Como todas las cosas se comportan de la misma manera para un observador en reposo y para otro que se mueve con movimiento uniforme con respecto al primero, es imposible detectar el movimiento uniforme.

Siguiendo con su espíritu investigativo, Einstein comenzó a reflexionar sobre las limitaciones de la relatividad especial, porque la velocidad constante o uniforme es un caso de un movimiento mas general, que como vimos antes, del movimiento acelerado.

Einstein pensaba, y estaba en lo ciento que la aceleración es fácil de detectar. Nunca dudamos cuando viajamos en un automovil, y este acelera, pues no sentimos apretados o «empujados» contra nuestro asiento. Lo mismo cuando frena bruscamente , nos vamos hacia adelnate y sentimos el efecto de la aceleración y del movimiento.

Albert, estuvo con este problema (que parece tan simple para nosotros) mucho tiempo en su cabeza sin lograr un modelo que le permita seguir avanzando con su novedosa teoría.

En una conferencia dictada en Kyoto en diciembre de 1922, relató al auditorio que un día, estando sentado en su silla de la oficina de patentes de Berna, se le ocurrió de súbito una idea: si alguien se cayera del techo de la casa, no sentiría su propio peso. No sentiría la gravedad. Ésa fue «la idea más feliz de mi vida«, dijo.

La mencionada idea puso a Einstein en la vía que conducía a la teoría general de la relatividad, extensión de su teoría especial, que debería incluir toda clase de movimientos, no sólo el movimiento uniforme. Al desarrollarla, inventó una nueva teoría de la gravedad que reemplazó a la ley de gravitación universal de Isaac Newton.

EXPLICACIÓN DE SU IDEA: .
La respuesta a los problemas de Einstein era, literalmente, tan simple como caer de un tejado. La idea de Einstein surgió al darse cuenta de que alguien que cayera hacia la tierra no sentiría el efecto de la gravedad. Como es difícil imaginar una caída libre desde un tejado, imaginemos un hombre que cae desde un avión. Según cae, todo lo que lleva consigo cae a la misma velocidad (la ley de la gravitación universal de Newton, que dice que la fuerza gravitatoria es proporcional a la masa de los objetos).

Si se da la vuelta, las monedas no se le saldrán del bolsillo, ya que están aceleradas hacia la tierra al igual que él. Si se mete la mano en el bolsillo, saca unas cuantas monedas y las deja caer (si las arrojara con fuerza sería distinto), seguirían cayendo con él. Todo esto demuestra una cosa: la caída libre ha cancelado la gravitación. En otras palabras, aceleración es equivalente a gravitación.

Para ilustrarlo, imaginemos un ascensor en el último piso de un rascacielos muy alto. Dentro, duerme plácidamente un físico, junto a su despertador. Un segundo antes de que suene el despertador, cortamos los cables que sostienen el ascensor. El ascensor empieza a caer con un movimiento acelerado hacia el suelo, suena el despertador, y el físico se despierta. Al despertar, se siente ligero, sin peso. El despertador flota a su lado. Saca las llaves del bolsillo, las deja caer y también flotan.

El físico se divierte, no está asustado,porque cree que alguien le ha colocado en una nave y se encuentra en el espacio. Incapaz de pensar que alguien le haya colocado en el ascensor, no imagina que lo que está experimentando es una caída libre, y se vuelve a dormir.

Ahora, imaginemos el mismo ascensor enganchado a una nave que le traslada al espacio y ascelera hacia arriba. Dentro del ascensor hemos vuelto a colocar a nuestro físico y su despertador. Justo antes de que suene el despertador, ponemos en marcha la nave y el ascensor se desplaza a 9,8 m por segundo cada segundo (9,8 m/s2, la aceleración que sentimos debido a la fuerza de gravedad de la Tierra).

El físico ve el reloj en el suelo, y siente su propio peso sobre el suelo del ascensor. Saca las llaves de su bolsillo, las tira y caen al suelo, cerca de él, describiendo una perfecta parábola en su caída. El físico está cada vez más divertido, porque piensa que quien fuera que le había puesto en el espacio, le ha llevado ahora de regreso a la Tierra. Incapaz de pensar que alguien se lo está llevando del planeta, no se da cuenta de que lo que está experimentando no es la gravedad, sino una aceleración. Así que se vuelve a dormir.

Einstein demostró por lo tanto que el movimiento no-uniforme, de la misma forma que el uniforme, es relativo. Sin un sistema de referencia, es imposible saber diferenciar entre la fuerza de una aceleración y la fuerza de gravedad.

ingravidez, astronautas en sus practicas

Su equivalencia permite a la NASA entrenar a sus astronautas en condiciones de ingravidez, en un avión en caída acelerada que iguala la aceleración gravitacional de la tierra. Durante unos minutos, los que van dentro del avión están en la misma situación que nuestro físico en el ascensor que caía desde lo alto del rascacielos. Los astronautas en sus entrenamientos recrean las condiciones de gravedad cero del espacio de este modo, volando en un avión a reacción (adecuadamente apodado el Vomit Comet —o Cometa del Vómito—) en una trayectoria propia de una montaña rusa. Cuando el avión vuela hacia arriba, los pasajeros se quedan pegados a sus asientos porque experimentan fuerzas mayores que la gravedad. Cuando después se inclina hacia delante y cae en picado hacia abajo, son liberados del tirón de la gravedad y pueden flotar dentro del aparato.

EQUIVALENCIA ENTRE  GRAVEDAD Y ACELERACIÓN:

En su artículo del Annual Review, Einstein explicó mediante su experimento mental que es imposible distinguir una aceleración constante de los efectos de la gravedad. Llamó a esta idea principio de equivalencia, porque mostraba la equivalencia entre aceleración y gravedad.

Según Einstein, la gravedad es relativa. Existe sólo cuando hay aceleración. Cuando los científicos dejan caer la bola en la nave espacial acelerada, la bola es libre y no está acelerada. La bola está en movimiento uniforme y la nave acelera hacia ella.

Los científicos sienten la aceleración de la nave. Si uno de los astronautas salta fuera de la nave, quedará liberado de la aceleración del vehículo y no sentirá ninguna aceleración. No sentirá ningún movimiento, porque el movimiento sin aceleración (movimiento uniforme) no puede identificarse.

principi de equivalencia

Newton había explicado la gravitación por la fuerza de atracción universal;  Einstein la explicó en 1916 por la geometría del espacio-tiempo… Transcurridos casi ochenta años, la audacia de aquel salto conceptual sigue suscitando la admiración de los físicos. Einstein construyó la relatividad general intuitivamente, a partir de «las sensaciones que experimentaría un hombre al caerse de un tejado», en un intento de explicar los fenómenos gravitacionales sin la intervención de fuerza alguna. El personaje en estado de ingravidez imaginado por Einstein no tiene motivo para pensar que está cayendo, puesto que los objetos que lo acompañan caen a la misma velocidad que él, sin estar sometidos aparentemente a ninguna fuerza. Debe seguir, pues, una trayectoria «natural», una línea de máxima pendiente en el espacio-tiempo. Esto implica que los cuerpos responsables de la gravitación (la Tierra, en este caso) crean una curvatura del espacio-tiempo, tanto más pronunciada cuanto mayor es su masa. Los planetas, por ejemplo, caen con trayectorias prácticamente circulares en la depresión (de cuatro dimensiones…) creada por la masa del Sol.

El mismo principio es válido cuando la nave está de vuelta en la Tierra. Cuando el astronauta deja caer la bola, ésta no siente ninguna aceleración. Como la aceleración de la bola se debe a la atracción gravitacional de la Tierra, la bola no siente ninguna gravedad. La bola que el astronauta deja caer flota ahora en el espacio, como los astronautas de la lanzadera espacial. Es el suelo, la Tierra, que sube para encontrar la bola y chocar con ella.

¿Cómo puede ser esto? La Tierra está en completa sincronía con los demás planetas, moviéndose con la Luna alrededor del Sol en una órbita precisa. La Tierra no puede moverse hacia arriba para chocar con la bola; tendría que arrastrar consigo a todo el sistema solar.

Esto es realmente lo que ocurre, según Einstein. Al saltar de un trampolín quedamos sin peso, flotando en el espacio, mientras la Tierra con todo el sistema solar aceleran en nuestra dirección. No estamos acelerados. Es la Tierra la que lo está. No sentimos la gravedad porque para nosotros no existe.

De acuerdo con Einstein, gravedad es equivalente a movimiento acelerado. Los astronautas de la nave espacial acelerada, lejos del sistema solar, sienten una gravedad real, no una mera simulación de gravedad. Y el astronauta que salta de la nave y la ve acelerar alejándose de él está en la misma situación que nosotros cuando saltamos del trampolín y vemos que la Tierra acelera hacia nosotros.

El principio de equivalencia de Einstein dice: «La gravedad es equivalente al movimiento acelerado. Es imposible distinguir los efectos de una aceleración constante de los efectos de la gravedad».

Fuente Consultada:
Revista Tecnirama Fascículo N°120 Enciclopedia de la Ciencia y la Tecnología
50 Cosas que debe saber sobre el Universo Joanne Bajer
Einstein Para Dummie s Carlo I. Calle
Einstein y su Teoría de la Relatividad Byron Preiss (ANAYA)

Historia de Ciencia Tecnica Tecnologia y Sus Avances

Historia de la Ciencia ,Técnica y Tecnología: Curiosidades y Avances Científicos

INTROUDUCCIÓN: Si consideramos la ciencia como la investigación sistemática de la realidad a través de la observación, la experimentación y la inducción (conocido como método científico)

Sin duda, se realizaron descubrimientos, pero de forma fragmentaria. La mitología y la religión dominaron como formas de explicar el mundo.

Esto empezó a cambiar con las especulaciones de los primeros filósofos griegos, que excluían las causas sobrenaturales de sus explicaciones sobre la realidad.

Al llegar el s. III a.C. la ciencia griega era muy elaborada y producía modelos teóricos que han dado forma desde entonces al desarrollo de la ciencia.

Con la caída de Grecia ante el imperio Romano, la ciencia perdió su estado de gracia. Se lograron pocos avances importantes, salvo en medicina, y el trabajo realizado estaba firmemente enraizado en las tradiciones y los marcos conceptuales griegos.

Durante varios siglos, desde la caída del imperio Romano en el s. V d.C, la ciencia fue prácticamente desconocida en Europa occidental. Sólo la civilización islámica conservó los conocimientos griegos , y los transmitió más tarde de nuevo a Occidente.

Entre los s. XIII y XV se lograron algunos avances en el campo de la mecánica y la óptica, mientras que algunos hombres como Roger Bacon insistieron en la importancia de la experiencia y de la observación personal.

El s. XVI señaló la llegada de la llamada «revolución científica», un período de progreso científico que empezó con Copérnico y culminó con Isaac Newton.

La ciencia no sólo logró descubrimientos conceptuales sino que consiguió también un enorme prestigio.

La ciencia y todo lo que la rodeaba llegaron a estar muy de moda a finales del s. XVII, y atrajeron una gran cantidad de patrocinios reales y gubernamentales.

Dos hitos de esta nueva moda fueron la fundación de la Académie de Sciences por Luis XIV en Francia y de la Royal Society por Carlos II en Inglaterra.

En el curso del s. XIX la ciencia se profesionalizó y se estructuró en carreras y jerarquías emergentes, centradas en universidades, departamentos de gobierno y organizaciones comerciales.

Esta tendencia no se interrumpió con la llegada del s. XX, que ha visto cómo la ciencia dependía cada vez más de los avances tecnológicos, avances que no han escaseado.

La ciencia moderna es inmensa y extremadamente compleja. Es virtualmente imposible llegar a tener una visión global consistente de lo que ocurre en la ciencia.

Por este motivo, mucha gente la ve con algo de suspicacia. Sin embargo, la civilización occidental está completamente sometida a la creencia de que el progreso científico es un valor positivo y una fuerza que contribuye al bien de la humanidad.

Aunque algunos de los mayores peligros y horrores del mundo tienen sus raíces en el esfuerzo científico, también existe la esperanza de que, con el tiempo, la ciencia proporcionará soluciones viables para ellos.

Marie Curie (1867-1934) cientifica

Ejemplo de científico abnegado y apasionado por el descubrimiento y estudio de la naturaleza. Marie Curie (1867-1934). La científica polaca que, con su marido francés Pierre (1859-1906) y Henri Becquerel (1852-1908), recibió el premio Nobel de física de 1903 por el descubrimiento de la radioactividad. También recibió el de química de 1911 por el descubrimiento de dos elementos, el radio y el polonio.

MENU DE LOS PRINCIPALES TEMAS CIENTÍFICOS TRATADOS EN EL SITIO

bullet-historia1 Teoría Especial de la Relatividad
bullet-historia1Concepto de Palanca y Máquinas Simples
bullet-historia1 Concepto de Cantidad de Calor-Caloría-Equilibrio Termico
bullet-historia1 Anécdotas Matemáticas
bullet-historia1Las Radiaciones de un Núcleo Atómico
bullet-historia1 Tres Grandes Matemáticos
bullet-historia1 Ideas Geniales De Las Ciencias
bullet-historia1 Inventos Geniales
bullet-historia1 Medición Radio Terrestre En La Antigüedad
bullet-historia1 El Número Pi
bullet-historia1 El Átomo
bullet-historia1 La Partículas Elementales del la Materia
bullet-historia1 El Sistema Solar
bullet-historia1 Astronomía Para Principiantes
bullet-historia1 Conceptos Informáticos
bullet-historia1 La Vida de las Estrellas
bullet-historia1 El Genoma Humano
bullet-historia1 Estudio del Cuerpo Humano
bullet-historia1 Seres Humanos en el Espacio
bullet-historia1 Humanos en el Fondo del Mar
bullet-historia1 Los Tres Problemas Griegos
bullet-historia1 La Misión Apolo XI
bullet-historia1 El Big Bang
bullet-historia1 SQL Para Bases de Datos
bullet-historia1 Los Efectos de Una Explosión Nuclear
bullet-historia1 El Agua Potable
bullet-historia1 Hidrógeno: El Combustible del Futuro
bullet-historia1 El Planeta Sedna o Planetoide Sedna?
bullet-historia1La Energía Nuclear y Sus Usos
bullet-historia1El Petróleo:Una Noble Sustancia
bullet-historia1El Movimiento De Los Satélites Artificiales
bullet-historia1Porque hay rozamiento entre dos superficies?
bullet-historia1Consultas En Un Diccionario Medico Etimológico
bullet-historia1 Internet y la WEB
bullet-historia1La Inteligencia Humana (Con Un Test)
bullet-historia1Dos Bellos Teoremas (La Raíz de 2 y Los 5 Sólidos Pitagóricos)
bullet-historia1Tres Conceptos Físicos Modernos
Efecto Fotoeléctrico-Radiación Cuerpo Negro-El Cuanto de Energía
bullet-historia1Conceptos Básicos de Cohetería Moderna
bullet-historia1 Curiosas Cuestiones Físicas Explicadas Por Yakov Perelman
bullet-historia1 Tres Principios Físicos Básicos
Pascal-Arquímedes-Bernoulli
bullet-historia1 Hormigones y Morteros-Cálculo de Materiales por m3
bullet-historia1 Centrales Generadoras de Energía
bullet-historia1 Los Combustibles Fósiles
bullet-historia1 La Célula y La Clonación
bullet-historia1 Experimento De Las Esferas de Maldemburgo
bullet-historia1 Teoría del Campo Unificado
bullet-historia1 La Presión Atmosférica y La Experiencia de Torricelli
bullet-historia1 La Teoría Cinética de los Gases
bullet-historia1Fórmula Matemática de la belleza Universal
bullet-historia1Método Gráfico (árabe) Para Resolver Una Ecuación de 2° Grado
bullet-historia1 La Inteligencia Artificial
bullet-historia1 La Inmunidad Humana
bullet-historia1Motores de Combustión Interna y Eléctricos
bullet-historia1 Pilas y Baterías – Principio Físico de Funcionamiento
bullet-historia1Bell o Meucci Quien inventó el teléfono?
bullet-historia1 Las Vacunas
bullet-historia1Las Vitaminas
bullet-historia1 La Poliomielitis
bullet-historia1La Leyes de Kepler
bullet-historia1 Eclipses de Sol y de Luna
bullet-historia1 La Medición del la velocidad de la Luz
bullet-historia1 Nuestra Querida Estrella: El Sol
bullet-historia1 Las Leyes de la Mecánica Clásica de Newton
bullet-historia1 Las Leyes del Péndulo Físico
bullet-historia1 La Matemática en el Siglo XX – Desafíos Sin Resolver
bullet-historia1 Aprende a Resolver Una Ecuación de 2do. Grado
bullet-historia1 A que llamamos el pensamiento lateral? Problemas
bullet-historia1 Desalinizar El Agua de Mar
bullet-historia1 La Economía Como Ciencia
bullet-historia1 Conceptos Básicos Sobre La Ciencia
bullet-historia1 Teoría de la Deriva de los Continentes
bullet-historia1 La Lucha contra las infecciones: los antibióticos
bullet-historia1 Últimos avances científicos en medicina (2007)
bullet-historia1 La Era Espacial: Las Misiones Espaciales
bullet-historia1 Teorías Físicas Que Fracasaron
bullet-historia1 Descubriendo Nuevos Metales en el Siglo XVII
bullet-historia1 El Experimento del Siglo XXI: «La Máquina de Dios»
bullet-historia1 Enanas Blancas, Neutrones y Agujeros Negros

Usos del Transbordador Espacial-Mision y Características

Usos del Transbordador Espacial: Misión, Características y Misiones de la NASA

El Transbordador Espacial, Una Nave de ida y vuelta: Uno de los principales problemas de la exploración espacial es el alto coste de las misiones.

Hay que tener en cuenta que, hasta hace poco tiempo, los cohetes no eran reutilizables.

Para cada lanzamiento se empleaba un cohete que se iba destruyendo por etapas, a medida que se quemaba el combustible.

Las piezas desechadas eran abandonadas durante el viaje.

Por ello, se consideró importante desarrollar un vehículo espacial que fuera reutilizable, y no se destruyese en cada misión.

Este vehículo fue la lanzadera espacial de la NASA.

En el momento del lanzamiento, la lanzadera tiene acoplados unos cohetes propulsores que se desprenden durante las primeras etapas del vuelo y caen al mar, de donde se recuperan para utilizarse de nuevo en vuelos futuros.

Una vez desprendidos los cohetes propulsores, la lanzadera se impulsa por sus propios medios hasta entrar en órbita alrededor de la Tierra.

Después de orbitar alrededor de nuestro planeta, la lanzadera vuelve a aterrizar como un avión normal, a una velocidad de unos 300 km/h.

Imagen Abajo: El Transbordador Espacial, u orbitador, es el único vehículo espacial en el mundo que se puede volver a usar. Se eleva en el espacio montado sobre un gigantesco cohete y luego es capaz de volver a aterrizar como un avión. Puede estar listo para volver a usarse en sólo seis días y medio.

Carga pesada: Del mismo modo que los astronautas, el Trasbordador Espacial lleva equipaje. Satélites, sondas espaciales o laboratorios espaciales son llevados dentro del compartimiento de cargas.

Super aterrizaje: Frenos de carbón, un timón dividido en dos y alerones especiales reducen su velocidad. Al tocar la pista de aterrizaje se abre un paracaídas.

Protectores térmicos: Un escudo hecho de siliconas cubre al Trasbordador Espacial, protegiéndolo de una temperatura superior a 1.260 °C durante su entrada en la atmósfera.

Arranque: El despegue del Trasbordador Espacial está controlado automáticamente por computadoras a bordo de la nave por un centro de control desde la base en Tierra. La fuerza que desplegan los cohetes durante el despegue es tres veces mayor que la fuerza de gravedad de nuestro planeta.

Los gases calientes que emanan del cohete impulsan la nave espacial hacia arriba.

Toma sólo 50 minutos alcanzar la órbita terrestre.

Ver el Trasbordador Discovery Por Dentro

La flota de transbordadores. Con una flotilla de seis transbordadores, la NASA ha llevado a cabo apasionantes misiones en el espacio. Ésta es la historia resumida de cada uno de ellos.

• Columbia:

Su primer vuelo fue en 1981. Fue bautizado así en honor al buque que circunnavegó el globo por primera vez con una tripulación de estadounidenses.

En 1998, puso en órbita la misión Neurolab para estudiar los efectos de la microgravedad en el sistema nervioso.

Neurolab fue un esfuerzo colectivo entre seis agencias espaciales, incluyendo la Agencia Espacial Europea. Se desintegró durante su reentrada a la Tierra en febrero de 2003. Columbia voló 28 veces.

• Challenger.

Realizó su ‘primera misión en 1982. Recibió el nombre del buque inglés que exploró los mares en el siglo XIX.

En 1984, el astronauta Bruce McCandless se convirtió en la primera persona en realizar una salida espacial autónoma en una unidad de maniobra individual. El Challenger voló 10 veces.

• Discovery.

Entró en acción en 1984. Bautizado en honor a uno de los barcos del explorador británico James Cook que lo condujeron a las islas del Pacífico Sur.

En 1998 llevó a Pedro Duque por primera vez al espacio en una misión histórica en la que participó también el ex astronauta estadounidense John Glenn, el primer hombre de EE. UU. en orbitar la Tierra. Discovery llevó a cabo 30 misiones.

• Atlantis.

Su primer vuelo fue en 1985.Lleva el nombre del velero del Instituto Oceanográfico de Woods Hole, que fue el primer barco en ser usado para investigaciones marinas en Estados Unidos. En 1995 llevó al espacio la primera de nueve misiones para atracar en la Estación Espacial Mir. Atlantis viajó 26 veces.

• Endeavour.

Es el más joven de la flotilla y fue operativo en 1992. Está bautizado en honor al primer .buque del explorador británico lames Cook en las islas del Radico Sur. En 2001 timo lamiswndeñstalarel brazo robot de la Estación Espacial Internacional. Votó oí 19 ocasiones.

Enterprise.

Fue el primer modelo y se usó en pruebas tripuladas durante los noventa para estudiar cómo planeaba en el ale al ser soltado desde un anón. Sin embargo, nunca voló al espacio. Fue bautizado con el nombre de la nave espacial de la serie Star Trek.

https://historiaybiografias.com/bullet7.jpg

Los últimos cinco cambios claves para volver al espacio

Calentadores: Colocar calentadores eléctricos cerca de los puntos de fijación del depósito externo para prevenir la formación de cristales de hielo. Además, diseñar espuma aislante que no se separe de las paredes del depósito en el despegue.

Paneles de Carbono: Realizar análisis -rayos X, ultrasonido, corriente electromagnética y termografía- de los 44 paneles de carbono-carbono reforzado que recubren los bordes de ataque de las alas, el morro y las compuertas del tren de aterrizaje delantero antes de cada vuelo. Además, detectar brechas en estos paneles durante el vuelo e inventar formas de repararlas en órbita.

Videos y fotos:Evaluar la condición del transbordador durante el despegue, usando cámaras de vídeo y fotografía de la más alta resolución.

Aislante Térmico: El material aislante térmico que recubre los propulsores de aceleración es una mezcla de corcho con una pintura protectora colocada con tecnología puntera, que evita que el aislante se despegue en grandes fragmentos.

Capsula de Seguridad: Diseñar una cápsula de seguridad expulsable para los astronautas.

Paracaídas y vehículo de escape en emergencias:

La NASA trabaja también en un sistema de escape por si algo va mal durante el despegue.

En el Centro Espacial Marshall se están llevando a cabo ensayos con motores de cohetes en una serie de Demostraciones de Aborto en Plataforma que incluyen paracaídas y una cápsula similar al vehículo de escape.

«El accidente del Columbia fue ocasionado por una serie de errores colectivos. Nuestro regreso al espacio debe ser un esfuerzo colectivo», dice el director de la agencia, Sean O’Keefe.

A medida que el personal de la NASA se repone de la tragedia y se prepara a volar nuevamente, es importante recordar que explorar el cosmos es una actividad sin duda peligrosa y lo seguirá siendo durante mucho tiempo. Por eso, cualquier medida de seguridad es poca.

https://historiaybiografias.com/bullet7.jpg

Hasta el momento, las únicas lanzaderas que están en funcionamiento son las de EE.UU. La agencia espacial soviética construyó, en los años ochenta del pasado siglo, una lanzadera espacial denominada Buran (en ruso, tormenta de nieve).

El prototipo llegó a realizar tres viajes de prueba, sin tripulación, con notable éxito, en 1988.

No obstante, no eran buenos tiempos para la exploración espacial en aquel país.

La Unión Soviética se desmoronó y, antes de que la agencia espacial rusa actual tomara las riendas, muchos proyectos quedaron en el aire por falta de financiación.

Entre ellos, la lanzadera Buran.

Casi al mismo tiempo, la agencia espacial europea (ESA) desarrolló su propia lanzadera, la Hermes.

Nuevamente fueron los problemas de financiación los que causaron el abandono del proyecto, a mediados de la década de 1990.

Actualmente, la última lanzadera en desarrollo es la X-38, de la NASA, una pequeña nave que servirá como vehículo de rescate y emergencia para la estación espacial internacional.

lanzadera espacial columbia

COLUMBIA es una lanzadera espacial recuperable fabricada en la NASA.

Esta lanzadera espacial tiene un aspecto similar a un avión DC-9 pero con el ala en delta, y es el fruto de un programa de investigación aprovado en tiempos del presidente Kennedy y puesto en marcha por el presidente Nixon.

Para su despegue y puesta en órbita cuenta con dos cohetes que, una vez cumplido su cometido, se desprenden y caen hacia el océano frenados por dos grandes paracaídas, lo que posibilita su recuperación y posterior empleo en otros vuelos, después de una revisión y puesta a punto.

Finalizada su misión en el espacio, la lanzadera efectúa su reentrada en la atmósfera, soportando las altas temperaturas provocadas por la fricción merced a un recubrimiento antitérmico, y aterriza en una pista convencional, pero un poco más larga que las utilizadas por los aviones Jumbo.

Estas lanzaderas, que por sus características de recuperabilidad se denominan también transbordadores espaciales, pueden llevar cómodamente hasta cinco satélites de tamaño medio y una vez en órbita terrestre desprenderse de su carga, ahorrando así los enormes gastos de lanzamiento de cada satélite.

También pueden acercarse hasta un satélite averiado en órbita y recuperarlo para devolverlo a la Tierra o proceder a su reparación in situ.

Su primer vuelo despegó de cabo Kennedy el 12 de abril de 1981 y tomó tierra 54 horas más tarde en el desierto de California. J. Young y R. Crippen fueron sus tripulantes y su misión principal fue comprobar el funcionamiento general de la aeronave.

El segundo lanzamiento se llevó a cabo el 18 de noviembre de 1981 y en él se realizaron diversos experimentos científicos y tecnológicos, entre los que cabe destacar las pruebas de funcionamiento de un brazo robot, de construcción canadiense, cuya finalidad es depositar y retirar satélites artificiales de su órbita.

El tercer lanzamiento se realizó el 22 de marzo de 1982 y en el trancurso del vuelo se comprobó el comportamiento térmico de la aeronave, dirigiendo alternativamente sus distintas partes hacia el sol y manteniendo cada orientación durante largo tiempo.

También se realizaron comprobaciones, que se repiten en cada vuelo, del comportamiento de las distintas partes de la nave en los momentos más comprometidos, despegue y reentrada en la atmósfera, junto con comprobaciones de compatibilidad de los distintos elementos que componen el ingenio espacial.

Se probó nuevamente el brazo telemanipulador, para lo cual se colocó en su extremo un conjunto de instrumentos destinados a estudiar las modificaciones producidas en el entorno espacial por el gas y el polvo que se escapan de la areonave, conjunto que pesaba 160 kg.

Se realizaron también experiencias de producción de un enzima, uroquinasa, que puede constituir un medicamento contra la formación de coágulos sanguíneos, y cuyo aislamiento en condiciones de ingravidez es mucho más fácil que en los laboratorios terrestres.

Por último se realizaron experiencias de fabricación de microsferas de polestireno en condiciones de ingravidez, las cuales son muy útiles tanto en el campo médico como en el industrial.

Finalmente, el 22 de junio de 1982 se realizó un cuarto lanzamiento del Columbia, en el cual se repitieron las mismas experiencias que en el vuelo anterior y se añadieron otras dos.

Una de ellas consistió en la separación por elec-troforesis de materiales de interés biológico, para observar las características del proceso en condiciones de ingravidez.

La segunda fue una experiencia de interés militar, y por tanto sometida a restricciones informativas.

Con todo, se sabe que se trataba de probar un telescopio de rayos infrarrojos enfriado por helio líquido, con el que se pretendía detectar la radiación calórica emitida por un misil en vuelo, y además distinguir entre las emitidas por cada tipo de misil.

Con la puesta a punto de este telescopio los Estados Unidos tendrían la base para el establecimiento de una red de satélites de alerta.

Este cuarto vuelo ha sido la última prueba del programa norteamericano del transbordador espacial, el cual entra ahora en su fase de utilización práctica, durante la cual el Columbia alternará sus vuelos con las nuevas aeronaves Challenger, Discovery y Atlantics.

Fuente Consultadas:
La Enciclopedia del Estudiante Tomo 05 Santillana
Actualizador Básico de Conocimientos Universales Océano

Enlace Externo: Homenaje al Transbordador Espacial

El Mar Muerto, Donde Nadie Se Ahoga:Caracteristicas del Agua

El Mar Muerto, Donde Nadie Se Ahoga:Caracteristicas del Agua

El Agua Salada del Mar Impide Sumergirse y  No Es Posible Ahogarse

Este mar existe y se encuentra en un país que conoce la humanidad desde los tiempos más remotos.

Se trata del célebre Mar Muerto de Palestina. Sus aguas son extraordinariamente saladas, hasta tal punto que en él no puede existir ningún ser vivo.

El clima caluroso y seco de Israel hace que se produzca una evaporación muy intensa en la superficie del mar. Pero se evapora agua pura, mientras que la sal se queda en el mar y va aumentando la salinidad de sus aguas.

vida en condicones extremas

Ver: Descarga de los Libros de Física y Matemática Curiosa de Perelman

Esta es la razón de que las aguas del Mar Muerto contengan no un 2 ó 3 por ciento (en peso) de sal, como la mayoría de los mares y océanos, sino un 27 o más por ciento.

Esta salinidad aumenta con la profundidad.

Por lo tanto, una cuarta parte del contenido del Mar Muerto está formada por la sal que hay disuelta en el agua.

La cantidad total de sal que hay en este mar se calcula en 40 millones de toneladas.

La gran salinidad del Mar Muerto determina una de sus peculiaridades, que consiste en que sus aguas son mucho más pesadas que el agua de mar ordinaria. Hundirse en estas aguas es imposible.

El cuerpo humano es más liviano que ellas.

El peso de nuestro cuerpo es sensiblemente menor que el de un volumen igual de agua muy salada y, por consiguiente, de acuerdo con la ley de la flotación, el hombre no se puede hundir en el Mar Muerto, al contrario, flota en su superficie lo mismo que un huevo en agua salada (aunque en el agua dulce se hunde).

Mark Twain estuvo en este lago-mar y después escribió humorísticamente las extrañas sensaciones que él y sus compañeros experimentaron bañándose en sus aguas:

«Fue un baño muy divertido.

No nos podíamos hundir.

Se podía uno tumbar a lo largo sobre la espalda y cruzar los brazos sobre el pecho y la mayor parte del cuerpo seguía sobre el agua.

En estas condiciones se podía levantar la cabeza por completo.

Se puede estar tumbado cómodamente sobre la espalda, levantar las rodillas hasta el mentón y abrazarlas con las manos.

Pero en este caso se da la vuelta, porque la cabeza resulta más pesada.

Si se pone uno con la cabeza hundida y los pies para arriba, desde la mitad del pecho hasta la punta de los pies sobresale del agua; claro que en esta posición no se puede estar mucho tiempo.

Si se intenta nadar de espaldas no se avanza casi nada, ya que las piernas no se hunden en el agua y sólo los talones encuentran apoyo en ella. Si se nada boca abajo no se va hacia adelante, sino hacia atrás.

En el Mar Muerto el equilibrio del caballo es muy inestable, no puede ni nadar ni estar derecho, inmediatamente se tumba de costado».

En la figura de abajo se puede ver un bañista que descansa comodísimamente sobre las aguas del Mar Muerto.

El gran peso específico del agua le permite estar en esta posición, leer el libro y protegerse con la sombrilla de los ardientes rayos del Sol.

El agua de Kara-Bogas-Gol (golfo del Mar Caspio) tiene estas mismas propiedades y las del lago Eltón no son menos saladas, puesto que contienen un 27% de sal.

Un bañista en el Mar Muerto.  Mar Muerto, lago salino situado entre Israel, Cisjordania y Jordania. Con una profundidad oficial que alcanza los 408 m bajo el nivel del mar (según unas mediciones realizadas en 2006, alcanzaría los 418 m), se considera el lugar más bajo de la tierra emergida, sin tener en cuenta la sima antártica Bentley, cubierta hoy día por hielo.

Algo parecido sienten los enfermos que toman baños salinos.

Cuando la salinidad del agua es muy grande, como ocurre, por ejemplo, con las aguas minerales de Staraia Russa, los enfermos tienen que hacer no pocos esfuerzos para mantenerse en el fondo del baño.

Yo he oído como una señora que tomó los baños de Staraia Russa se quejaba de que el agua «la echaba materialmente fuera del baño». Según ella la culpa de esto la tenía … la administración del balneario.

El grado de salinidad de las aguas de los distintos mares oscila un poco y a esto se debe que los barcos no se sumerjan en ellas hasta un mismo sitio.

Algunos de nuestros lectores habrán visto el signo que llevan los barcos cerca de la línea de flotación, llamado «marca de Lloyd», que sirve para indicar el nivel límite de la línea de flotación en aguas de distinta densidad.

en agua dulce (Fresh Water)

FW

en el Océano Indico (India Summer)

IS

en agua salada en verano (Summer)

S

en agua salada en invierno (Winter)

W

en el Atlántico del norte en invierno (Winter North Atlantik)

WNA

 

 

Antes de terminar este artículo quiero advertir que existe una variedad de agua que aún estando pura, es decir, sin contener otros cuerpos, es sensiblemente más pesada que la ordinaria.

Este agua tiene un peso específico de 1,1, es decir, es un 10% más pesada que la común, por consiguiente, en una piscina con agua de este tipo lo más probable es que no se ahogue nadie, aunque los que se bañen no sepan nadar.

Este agua se llama agua «pesada» y su fórmula química es D 2 0 (el hidrógeno que entra en su composición está formado por átomos dos veces más pesados que los del hidrógeno ordinario.

Este hidrógeno se designa con la letra D.

El agua «pesada» se encuentra disuelta en el agua común en cantidades muy pequeñas.

Un cubo de agua potable contiene cerca de 8 g de agua «pesada».  

Disco de carga máxima en el costado de un buque. Las marcas se hacen al nivel de la línea de flotación. Para que se vean mejor se muestran aparte aumentadas. El significado de las letras se explica en el texto.

El agua pesada de fórmula D2O (hay 17 tipos de agua pesada, cuyas composiciones son distintas) se obtiene actualmente casi pura, puesto que la cantidad de agua ordinaria que hay en ella constituye aproximadamente un 0,05%.

Este agua se emplea mucho en la técnica atómica, especialmente en los reactores atómicos.

Se obtiene en grandes cantidades del agua ordinaria por procedimientos industriales

Fuente: Yakov Perelman – Física Recreativa

Temas Relacionados:

Cuestion 1: Volar Barato Con Solo Elevarse

Cuestion 2: En El Mar Muerto Nadie Se Ahoga ¿Porque?

Cuestion 3: La Presión Atmoferica en el Interior de una Mina

Cuestión 4: La Presión Atmosferica En El Espacio

Cuestión 5: La Fuerza de la Gravedad ¿Es Grande?

Cuestión 6: La Importancia del Rozamiento

Enlace Externo:• Cosas reales que desafían las leyes de la física

Elevarse Verticalmente en Globo Mientras la Tierra Gira:Curiosa Fisica

Curiosa Situacion Física:Elevarse Vericalmente en Globo Mientras Gira La Tierra

vida en condicones extremas

Un procedimiento mas barato de viajar:

El ingenioso escritor francés del siglo XVII, Cyrano de Bergerac cuenta en su «Historia Cómica de los Estados e Imperios de la Luna» (1652), entre otras cosas, un caso sorprendente que, según dice, le ocurrió a él mismo.

Un día, cuando estaba haciendo experimentos de Física, fue elevado por el aire de una forma incomprensible con sus frascos y todo.

Cuando al cabo de varias horas consiguió volver a tierra quedó sorprendido al ver que no estaba ni en Francia, ni en Europa, sino en América del Norte, ¡en el Canadá!

¿Se puede ver desde un aeróstato cómo gira la Tierra? (El dibujo no se atiene a escala)

No obstante, el escritor francés consideró que este vuelo transatlántico era completamente natural.

Para explicarlo dice que mientras el «viajero a la fuerza» estuvo separado de la superficie terrestre, nuestro planeta siguió girando, como siempre, hacia oriente, y que por eso al descender sentó sus pies no en Francia, sino en América.

¡Que medio de viajar más fácil y económico!.

No hay más que elevarse sobre la superficie de la Tierra y mantenerse en el aire unos cuantos minutos para que al descender nos encontremos en otro lugar, lejos hacia occidente.

¿Para qué emprender pesados viajes por tierra o por mar, cuando podemos esperar colgando en el aire hasta que la misma Tierra nos ponga debajo el sitio a donde queremos ir?.

Desgraciadamente este magnífico procedimiento es pura fantasía.

En primer lugar, porque al elevarnos en el aire seguimos sin separarnos de la esfera terrestre; continuamos ligados a su capa gaseosa, es decir, estaremos como colgados en la atmósfera, la cual también toma parte en el movimiento de rotación de la Tierra alrededor de su eje.

El aire (o mejor dicho, su capa inferior y más densa) gira junto con la Tierra y arrastra consigo todo lo que en él se encuentra: las nubes, los aeroplanos, los pájaros en vuelo, los insectos, etc., etc.

Si el aire no tomara parte en el movimiento de rotación de la Tierra sentiríamos siempre un viento tan fuerte, que los huracanes más terribles parecerían ligeras brisas comparadas con él (La velocidad del huracán es de 40 m por segundo o 144 km por hora).

Pero la Tierra, en una latitud como la de Leningrado, por ejemplo, nos arrastraría a través del aire con una velocidad de 240 m por segundo, es decir, de 828 km por hora, y en la región ecuatorial, por ejemplo, en Ecuador, esta velocidad sería de 465 m por segundo, o de 1.674 km por hora).

Porque lo mismo da que estemos nosotros fijos en un sitio y que el aire pase junto a nosotros o que, por el contrario, sea el aire el que está quieto y nosotros los que nos movemos dentro de él; en ambos casos el viento será igual de fuerte.

Por ejemplo, un motociclista que avance a una velocidad de 100 km por hora sentirá un viento fuerte de frente aunque el aire esté en calma.

En segundo lugar, aunque pudiéramos remontarnos hasta las capas superiores de la atmósfera o la Tierra no estuviera rodeada de aire, el procedimiento de viajar económicamente ideado por el satírico francés sería también irrealizable.

Efectivamente, al separarnos de la superficie de la Tierra en rotación continua seguiríamos, por inercia, moviéndonos con la misma velocidad que antes, es decir, con la misma velocidad a que se movería la Tierra debajo de nosotros.

En estas condiciones, al volver a la Tierra nos encontraríamos en el mismo sitio de donde partimos, de igual manera que cuando damos saltos dentro de un vagón de ferrocarril en marcha caemos en el mismo sitio.

Es verdad que por inercia nos moveremos en línea recta (tangencialmente a la superficie terrestre), mientras que la Tierra seguiría un arco debajo de nosotros, pero tratándose de lapsos de tiempo pequeños esta diferencia no se nota.

Fuente: Yakov Perelman Física Recreativa

Ir al Menú de Cuestiones Físicas

Ver: Descarga de los Libros de Física y Matemática Curiosa de Perelman

Temas Relacionados:

Cuestion 1: Volar Barato Con Solo Elevarse

Cuestion 2: En El Mar Muerto Nadie Se Ahoga ¿Porque?

Cuestion 3: La Presión Atmoferica en el Interior de una Mina

Cuestión 4: La Presión Atmosferica En El Espacio

Cuestión 5: La Fuerza de la Gravedad ¿Es Grande?

Cuestión 6: La Importancia del Rozamiento

Enlace Externo:• Cosas reales que desafían las leyes de la física

Biografía de TESLA Nikola Vida e Inventos – Resumen

Resumen de la Biografía de TESLA NIKOLA – Vida y Sus Inventos

VIDA E INVENTOS DE TESLA NIKOLA –
CIENTÍFICO YUGOSLAVO
: Nikola Tesla (1856-1943).

En la pequeña ciudad de Smiljan en la provincia servia de Lika, llamada entonces Croacia (Yugoslavia), tuvo lugar un hecho aparentemente sin importancia —la muerte de un caniche francés—, pero éste fue un hecho que desencadenaría una serie de acontecimientos relacionados con el futuro del Mundo.

Veamos antes iniciar la biografia , algunos de sus inventos y aportes mas destacado de Nikola Tesla.

Inventos clave de Nikola

1-Tesla Desarrollo en el electromagnetismo.
2-Trabajo teórico sobre corriente alterna (CA)
3-Tesla Bobina – transmisor de aumento
4-Sistema polifásico de distribución eléctrica.
5-Patente para una forma temprana de radio
6-Transferencia eléctrica inalámbrica
7-Dispositivos para la protección contra rayos.
8-Conceptos para vehículos eléctricos.

Importantes aportes en:

1-Primeros modelos de radar
2-Control remoto
3-Robótica Balística
4-Física nuclear

Nikola Tesla tenía cinco años de edad cuando encontró el pequeño caniche negro de su hermano Dane muerto bajo un matorral al lado de la carretera. Su hermano acusó a Nikki de la muerte del perro.

biografia de nikola tesla

Biografia de Nikola Tesla:Tesla fue en muchos sentidos un excéntrico y genio. Sus descubrimientos e invenciones no tenían precedentes. Sin embargo, a menudo fue excluido por su comportamiento errático (durante sus últimos años, desarrolló una forma de comportamiento obsesivo-compulsivo).

No le asustaba sugerir ideas poco ortodoxas, como las ondas de radio de seres extraterrestres. Sus ideas, falta de finanzas personales y comportamiento poco ortodoxo lo ubicaron fuera del establecimiento científico y, debido a esto, sus ideas a veces tardaron en ser aceptadas o utilizadas.Nikola Tesla también mostró lámparas fluorescentes y bombillas de un solo nodo.

Poco después encontraron a Dane inconsciente al pie de la escalera de piedra del sótano.Dane murió a consecuencia de sus heridas.

Al cabo de poco tiempo, Nikki oyó que su madre, cansada de batir huevos, se quejaba de dolor de muñeca.

Deseoso de congraciarse, Nikki se puso inmediatamente en acción con la idea de aprovechar la fuerza de un cercano riachuelo de montaña para hacer girar el batidor. «Voy a capturar la fuerza del agua» anunció Nikki confidencialmente.

Cuando su padre dijo inadvertidamente que Dane era diferente de Nikki, porque «Dane era un genio», Nikki se propuso demostrar que él también lo era. Decidió en aquel momento que inventaría algo que asombraría al mundo.

Nikki emprendió experimentos para aprovechar la fuerza del agua, pero a los nueve años abandonó de momento su trabajo para dedicarse al estudio de la fuerza del viento.

Deseaba desesperadamente inventar algo que impresionara a los mayores, especialmente a sus padres.

Cuando tenía 10 años, Nikki ingresó en el Gimnasio real de Gospic, una institución con cursos de cuatro años equivalente a la escuela secundaria.

Le gustaban especialmente las matemáticas y cuando demostró por primera vez sus dotes en la utilización de fórmulas y la solución de ecuaciones, incluso sus profesores se asombraron.

Fue acusado de «copiar» y tuvo que pasar un «juicio» escolar ante sus padres y profesores. A pesar de la atmósfera de desconfianza y hostilidad pasó el examen fácilmente, pero con una sensación de desgracia y confusión.

La infancia de Tesla estuvo llena de ideas excéntricas y experimentos con aparatos; continuó su formación en el Instituto politécnico de Graz, donde se especializó en física y matemáticas.

Finalizó sus estudios en la Universidad de Praga, en 1880. Un año después, inventó un amplificador para teléfono que ampliaba el sonido de la voz reduciendo al mismo tiempo los ruidos molestos, es decir, la estática.

El aparato completo, su primer invento, que no patentó nunca, fue llamado «repetidor telefónico». Hoy en día lo llamaríais altavoz.

En un año, Tesla empezó a desarrollar la teoría de la corriente alterna. Tesla explicó a su ayudante: «Voy a producir un campo de fuerza que gire a gran velocidad. Rodeará y abrazará una armadura que no precisará conexiones eléctricas.

El campo rotatorio transferirá su energía, sin cables, a través del espacio dando energía a través de sus líneas de fuerza a las bobinas cortocircuitadas de la armadura que formará su propio campo magnético siguiendo el remolino magnético rotatorio producido por las bobinas del campo. No habrá necesidad de cables, ni de conexiones defectuosas, ni de conmutador».

Tesla fue a Budapest y luego a París para encontrar un patrocinador de su sistema de energía de corriente alterna.

Trabajó una temporada con la compañía Continental Edison, de París.

Le aconsejaron que buscara un empleo en la Compañía Edison de Nueva York, y Tesla, cuatro años después de haber obtenido su título en la Universidad de Praga, partió de París para América.

Tesla dijo a Thomas Edison que había perfeccionado —por lo menos en teoría— un sistema de energía de corriente alterna. Edison trató con desdén las ideas de Tesla y le dijo que «jugar con corrientes alternas era perder el tiempo. Nadie va a utilizarlas jamás, es demasiado peligroso.

Un cable de corriente alterna a alto voltaje puede matar a una persona con la misma rapidez que un rayo.

La corriente continua es segura». Pero Edison contrató a Tesla y el joven europeo hizo exactamente lo mismo que hacía en la Continental Edison de París: presentó un plan que permitiría ahorrar muchos miles de dólares, tanto en la construcción como en el uso de las dínamos y motores de Edison.

Trabajaba desde las diez de la mañana hasta las cinco de la mañana siguiente, siete días a la semana.

Pero Tesla dejó pronto a Edison y tras unos cuantos empleos misceláneos, encontró a gente dispuesta a invertir en su persona; de este modo se formó la Compañía Eléctrica Tesla.

Tesla Nikola

En 1891, Tesla se convirtió en un ciudadano estadounidense. Fue también un período de grandes avances en el conocimiento eléctrico. Tesla demostró el potencial de transferencia de energía inalámbrica y la capacidad de generación de energía de CA. La promoción de Tesla de la corriente alterna lo colocó en oposición a Edison, quien buscaba promover su corriente continua DC para energía eléctrica. Poco antes de su muerte, Edison dijo que su mayor error era pasar tanto tiempo en la corriente continua en vez de la corriente alterna que Tesla había promovido.

La labor de Tesla para desarrollar la corriente alterna en sus aplicaciones prácticas empezó en serio, y logró su objetivo.

Todos los elementos complicados y de difícil ejecución de la Feria Mundial de Chicago de 1893, iban alimentados con la corriente alterna de los motores y dínamos Westinghouse, inventados por Tesla.

Sus equipos se utilizaron después en las instalaciones generadoras de las cataratas  del Niágara. Tesla, instalado ahora en un laboratorio de Nueva York, dedicó todo su tiempo a investigar.

En 1900, Tesla comenzó a planificar las instalaciones de la Torre Wardenclyffe. Este fue un proyecto ambicioso que costó $ 150,000, una fortuna en ese momento.(foto abajo)

En 1904, la oficina de patentes de EE. UU. Revocó su patente anterior para la radio y se la entregó a G. Marconi.

Tesla nikola Torre

Esto enfureció a Tesla que sintió que él era el inventor legítimo. Comenzó un largo, costoso y finalmente fallido intento de luchar contra la decisión. Marconi ganó el Premio Nobel de física en 1909. Este parecía ser un tema repetitivo en la vida de Tesla: un gran invento del cual él no se benefició personalmente.

El gran científico fue haciéndose más paranoico con la edad, una evolución que podía seguirse desde los traumas de su infancia.

Al informársele, en 1917, que seria invitado de honor en una cena ofrecida por el Instituto americano de Ingenieros eléctricos, donde recibiría la medalla Edison del Mérito, Tesla rechazó la invitación diciendo: «Cada vez que el Instituto concede una medalla Edison, la gloria va más a Edison que al homenajeado. Si tuviese dinero para gastar para estas tonterías, me lo gastaría gustosamente para que se concediera una medalla Tesla al señor Edison».

Le convencieron para que aceptara el honor, pero no se presentó en la cena. Sus amigos lo encontraron dando de comer a las palomas detrás de la Biblioteca pública de Nueva York.

Tesla pasó los últimos años de su vida como un egoísta solitario e incomunicativo, absorbido en pensamientos y sentimientos que le separaban tanto del mundo como de las demás personas.

No quería dar la mano por miedo a los microbios de los demás; las superficies redondas como las bolas de billar o los collares de perlas le asustaban; siguió teniendo celos de Edison y sólo quería a las palomas, que alimentaba diariamente.

Su gran talento se esfumaba intentando inventar rayos de la muerte y aparatos para fotografiar pensamientos en la retina del ojo. Tesla falleció en 1943 de un ataque al corazón.

Las instituciones científicas del mundo conmemoraron el centenario de su nacimiento en 1956. Como un tributo final se dio el nombre de tesla a la unidad electromagnética de densidad de flujo en el sistema MKS.

Tesla Nikola Biografia

Tesla era famoso por trabajar duro y lanzarse a su trabajo. Comía solo y rara vez dormía, durmiendo tan poco como dos horas al día. Permaneció soltero y afirmó que su castidad era útil para sus habilidades científicas.

En los últimos años, se convirtió en vegetariano, viviendo solo de leche, pan, miel y jugos de vegetales.Tesla falleció el 7 de enero de 1943, en una habitación de hotel de Nueva York.

Tenía 86 años.Después de su muerte, en 1960, la Conferencia General sobre Pesos y Medidas nombró a la unidad SI del campo magnético de fuerza Tesla en su honor.

Inventos clave de Nikola Tesla

1-Desarrollo en el electromagnetismo.

2-Trabajo teórico sobre corriente alterna (CA)

3-Tesla Bobina – transmisor de aumento

4-Sistema polifásico de distribución eléctrica.

5-Patente para una forma temprana de radio

6-Transferencia eléctrica inalámbrica

7-Dispositivos para la protección contra rayos.

8-Conceptos para vehículos eléctricos.

Ver: Nikola Tesla Para Niños

Entrada:Biografia de Nikola Tesla

El Cuanto de Energia:Fisica Cuantica, La Constante de Planck

El Cuanto de Energía – Fisica Cuántica Constante de Planck

► EXPLICACIÓN CIENTÍFICA DEL CONCEPTO DEL CUANTO DE ENERGÍA:

Durante más de dos siglos la física newtoniana resultó válida para describir todos los fenómenos concernientes a materia y energía.

Después, en el siglo XIX, la teoría electromagnética reveló que la energía podía existir con cierta independencia de la materia, en forma de radiaciones de muy diferentes longitudes de onda y frecuencias.

Al mismo tiempo, el estudio de la termodinámica abordó problemas suscitados por la energía calorífica y su distribución en sistemas como los gases, cuyas partículas resultaban demasiado pequeñas para ser medidas u observadas.

Era imposible —y afortunadamente innecesario— predecir el comportamiento de cada molécula o de cada átomo, pero las leyes estadísticas de la probabilidad podían aplicarse a grandes conjuntos de partículas, dentro de una reducida muestra o sistema.

En un gas, a determinada temperatura, unas moléculas se mueven muy lentamente y otras con gran celeridad: sin embargo, la energía media de todas las moléculas en movimiento depende exclusivamente de la temperatura y de la presión a que dicho gas esté sometido si el volumen es constante.

Max Planck fue uno de los muchos científicos que trataron de aplicar los principios de la termodinámica a las radiaciones.

Planck Recibió el Premio Nobel Fisica Por El Efecto Fotoeléctrico –  BIOGRAFÍAS e HISTORIA UNIVERSAL,ARGENTINA y de la CIENCIA

Todo comenzó con una investigación en un campo más bien marginal.

El Instituto alemán de pesas y medidas deseaba crear un patrón de referencia para las nuevas lámparas eléctricas, y pidió al físico Wilhelm Wien (1864-1928) que estableciera una relación entre la temperatura de un horno (un «cuerpo negro») y la radiación que emitía.

De la misma manera que un pedazo de hierro al calentarse pasa del «rojo» al «blanco» antes de emitir radiación ultravioleta si su temperatura aumenta, Wien observó experimentalmente que el máximo de radiación emitida por el cuerpo negro se desplazaba también hacia el violeta.

Y cuando el profesor Max Planck, de la universidad de Berlín, trató de elaborar una teoría explicativa de la curva de Wien, se encontró con la desagradable sorpresa de que la única forma de hacerlo era imaginar que el horno no emitía esa radiación de manera continua, sino en cantidades discretas, esto es, en cuantos de energía.

Planck avanzó esta hipótesis con reticencia, precisando que se trataba sólo de un artificio de cálculo.

Fue Einstein quien, cinco años después, demostró la realidad física de los cuantos.

1905: Año Maravilloso Trabajos y Descubrimientos de Einstein – BIOGRAFÍAS e  HISTORIA UNIVERSAL,ARGENTINA y de la CIENCIA

► EXPLICACIÓN:

Para fines del siglo XIX, se sabía que la radiación de cuerpo negro se debía a las oscilaciones de las partículas cargadas de la superficie de estos cuerpos.

Sin embargo, a partir del electromagnetismo clásico era imposible deducir los espectros y las leyes experimentales de Stefan-Boltzmann y de Wien.

La Física clásica había llegado a un límite que no podría superar.

MAX PLANCKUn científico alemán llamado Max Planck (1858-1947) fue el responsable de introducir una innovación que cambiaría para siempre el rumbo de la Física.

Probando distintas funciones y haciendo infinidad de cálculos, Planck había encontrado (sin deducirla de principios de la Física) una fórmula que describía muy bien los espectros experimentales de los

EL CUANTO DE ENERGIA - FISICA CUANTICA
Comportamiento encontrado por Planck para la emisión de un cuerpo negro P(µ,T) es la potenciaemitida y µ  es la longitud de onda

cuerpos negros. Pero encontrar la forma funcional de una relación no significa explicar por qué resulta así.

Esta fórmula se resistía a ser deducida de los principios clásicos.

Entonces Planck, sin demasiado convencimiento, se vio obligado a introducir un postulado que no tenía, en principio, ninguna justificación, pero que le permitía predecir perfectamente los espectros de radiación que la naturaleza mostraba.

Era el siguiente:

Los osciladores microscópicos responsables de la emisión electromagnética no pueden emitir o absorber cualquier valor de energía. Si el oscilador tiene frecuencia y, sólo emitirá o absorberá múltiplos enteros del cuanto de energía E = h . v (donde h es la constante de Planck).

(Nota: la letra v es griega y se la pronuncia nu)

El valor de h es muy pequeño, 6,63. 1O34 J . s, y resultó ser una constante universal, fundamental dentro de la teoría cuántica.

Que la energía estuviera cuantízada, que no fuera continua sino discreta, era tan absurdo como suponer que cuando una piedra cae libremente no puede pasar por todas las alturas posibles, sino que va saltando, de una posición a otra mas distante sin pasar por las intermedias.

En un principio este resultado no causó gran conmoción en la comunidad científica, pues se lo consideró como un artilugio con poco asidero real.

Según la teoría clásica de las ondas electromagnéticas, éstas transportan energía en forma continua y no en paquetes discretos o cuantos.

Vemos que la luz de una vela llena una habitación con un flujo constante de energía.

Sin embargo, la cuantización implicaría una emisión espasmódica de la luz, como si la vela parpadeara, encendiéndose y apagándose intermitentemente (que es en realidad lo que ocurre en el nivel microscópico!).

El mismo Planck no podía creer que esto fuera así.

Pasarían algunos años hasta que el cuanto de energía fuera aceptado como una realidad.

Calculemos el valor del cuanto de energía para una onda electromagnética de la región visible de frecuencia 5. 1O14 Hz (amarillo):

E = h . v 6,63. 1O34 J. s . 5. 1014 Hz = 3,3. 1019 J.

Este valor de energía es diminuto.

La energía que libera una pequeña luciérnaga, por ejemplo, contiene miles de millones de cuantos.

Esto hace que la cuantización de la energía de las ondas electromagnéticas no tenga efectos macroscópicos, pero sí tiene peso cuando se estudian fenómenos a escala atómica.

► HACIA LA MECÁNICA CUÁNTICA

Estas ideas de Planck y Bohr se van a difundir, a ampliar y después a revolucionar con la llegada de una nueva Mecánica, la Mecánica Cuántica, que deriva directamente de ellas.

Gracias a esta revolución conceptual se va a tener que renunciar a cualquier descripción determinista de la realidad para acogerse a una descripción en términos de probabilidad.

Así es como se llegó a la conclusión de que no se puede conocer al mismo tiempo la posición y la velocidad de una partícula.

Se va a demostrar también que cualquier medida perturba el fenómeno que quiere estudiar.

Es el famoso principio de incertidumbre de Heisenberg.

En resumidas cuentas, con la Mecánica cuántica se entra en un nuevo mundo palpitante, misterioso y extraño que se ha explorado sobre bases matemáticas sólidas entre los años 1925-1930, bajo el impulso de sabios cuyos nombres son ya legendarios, como el austríaco Erwin Schródinger, el alemán Werner Heisenberg, el suizoalemán Wolfgang Pauli, el inglés de Cambridge Paul Dirac, todo bajo el impulso constante de Niels Bohr, y a pesar del escepticismo de Albert Einstein. Pero ésa es otra historia, casi una epopeya.

Einstein había visto antes que nadie todas las implicaciones de la Mecánica cuántica. Pero por razones filosóficas, y casi teológicas, no podía aceptarla. Es el famoso ¡«Dios no juega a los dados»!

Sobre lo que nosotros queremos insistir aquí es que muchos fenómenos pueden quedar sencillamente explicados —o al menos claramente expuestos— partiendo del átomo de Bohr ligeramente modificado.

No cabe duda de que se trata de una primera aproximación, que no corresponde a la realidad tal como la concebimos hoy en día, pero tiene la ventaja de evitar el despliegue matemático y la complejidad intelectual inherentes a la Mecánica cuántica (que, si se quiere captar su espíritu, necesita larguísimos cálculos, ya que el mundo de lo infinitamente pequeño obedece a reglas específicas muy diferentes de las que gobiernan nuestra experiencia cotidiana).

► LOS NIVELES DE ENERGÍA

En cada átomo, en cada molécula, existen niveles de energía en los que pueden «situarse» los electrones.

Esos niveles se corresponden con los cuanta y por lo tanto están, como hemos dicho, separados por intervalos vacíos, lo mismo que los peldaños de una escalera.

Los electrones no pueden hallarse más que en esos niveles, lo mismo que nuestros pies no se pueden colocar más que en los peldaños de la escalera.

Naturalmente, esto es la representación del átomo bajo el punto de vista de la energía.

Bajo el punto de vista del espacio, el electrón se mueve sin cesar, gira en torno al núcleo, pero en una órbita impuesta por los niveles de energía autorizados.

Esos niveles de energía no pueden «contener» más que un número finito de electrones.

Por ejemplo, el primer nivel de energía de un átomo, el primer peldaño, no puede llevar más que dos electrones, el segundo es un peldaño doble que, en total, no puede contener más que 8 electrones (2 + 6), etcétera.

¿Cómo puede situarse un electrón en esta escalera?

Se llenan los peldaños comenzando por abajo, según el principio de energía mínima, pasando poco a poco de uno a otro.

Así es como, en cada átomo estable, hay niveles de energía llenos.

El último nivel lo está más o menos completamente.

Pero por encima del último nivel lleno hay otros niveles (otros peldaños de la escalera) totalmente vacíos.

A estos niveles se les llama niveles «excitados».

¿Puede un electrón abandonar un nivel de energía que ocupa normalmente (y que se llama el nivel estable) para pasar a un nivel de energía excitado?.

Pues sí, pero para eso hay que proporcionarle la energía suficiente para que logre saltar de un nivel a otro.

Pero cuidado, es menester que la energía que se le comunica sea exactamente la que corresponde a la diferencia de energía que existe entre los dos peldaños, lo que se llama el «cuantum» justo de energía.

¿Y esos electrones excitados situados en órbitas libres van a permanecer allí?

Respuesta: sí, pero no por mucho tiempo.

Los niveles de excitación no son los niveles de equilibrio para los electrones.

Así pues, éstos van a tener tendencia a caer los niveles de energía habituales (hogar, dulce hogar) y, por lo tanto, a volver a ellos.

Cuando lo hacen, la energía tiene que conservarse.

La caída de un electrón de un nivel elevado hacia uno más bajo va a ir acompañada de una liberación de energía, por ejemplo mediante la emisión de una luz cuya longitud de onda (el color) será exactamente igual a la de la luz que ha excitado el átomo.

Fuente Consultada: Un Poco de Ciencia Para Todos Claude Allégre

Radiacion Cuerpo Negro, Explicación del Fenómeno Físico:Simple y Sencillo

La Radiación Cuerpo Negro
Explicación Sencilla del Fenómeno

RADIACIÓN DE UN CUERPO NEGRO: A medida que se iba develando la compleja estructura del átomo, los investigadores veían que estaba más cerca

Sin embargo, al intentar explicar la radiación térmica emitida por un cuerpo caliente, los físicos se encontraron con un problema que se resistía a encuadrarse dentro de los conocimientos de la Física clásica (la Mecánica de Newton y el electromagnetismo de Maxwell).

Fue el comienzo del fin de una forma de ver el mundo.


Espectro de una lámpara incandescente del Helio

En las cercanías de un objeto muy caliente, como una estufa o un leño encendido nuestra piel percibe el calor que nos llega en forma de ondas infrarrojas.

Pero no sólo los cuerpos muy calientes emiten ondas electromagnéticas: en realidad, todo cuerpo cuya temperatura sea superior al cero absoluto lo hace.

Para las temperaturas que percibimos cotidianamente, la mayor parte de la energía se emite en el rango infrarrojo y un poco en el visible.

En general, un cuerpo sólido emite todo un espectro de ondas.

 

Tengamos en cuenta que lo que se quiere investigar es la radiación que emite un cuerpo y no la que refleja al ser iluminado.

El espectro de dos cuerpos cualesquiera, a la misma temperatura, difiere dependiendo del material y de la forma que tengan.

Para estudiar el problema de la radiación se eligió un cuerpo patrón ideal, que emitía y absorbía energía con eficiencia máxima, llamado cuerpo negro.

Consistía en una cavidad con un pequeño orificio por donde salía la radiación a analizar, cuando las paredes se calentaban hasta una temperatura determinada.

Independientemente del material con que estén fabricados, los espectros de los cuerpos negros a la misma temperatura son idénticos.

Experimentalmente se habían hallado los espectros de emisión de cuerpos negros a diversas temperaturas.

Y se observaron dos características importantes:

E aumenta proporcionalmente con  T4

1. A medida que la temperatura aumenta, la cantidad de energía emitida es mayor. En particular, la energía aumenta proporcionalmente a la cuarta potencia de la temperatura absoluta (ley de Stefan-Boltzmann):

2. Un cuerpo emite mayor cantidad de energía en una longitud de onda determinada. A medida que la temperatura aumenta esta longitud de onda se hace más pequeña, cumpliéndose la ley de Wien:

µmáxima T = constante

Ley de Wein: Energía radiante por un objeto caliente a distintas longitudes de onda

Temas Relacionados

Historia de la Fisica Moderna Los Descubrimientos y Evolución

Fisica Cuantica:Teoria del Cuanto de Energia

Teoría del Campo Unificado

Resumen de la Teoria Atomica Historia y Fundamentos

El Conocimiento Científico La Fisica y de la Naturaleza

Biografia de Max Planck:

Teoría Cinética de los Gases Ideales: Modelo Molecular, Resúmen

Teoría Cinética de los Gases Ideales: El Modelo Molecular

El comportamiento análogo de todos los gases sugiere que su estructura debe ser la misma.

Como que los gases son muy compresibles, sus moléculas deben estar muy separadas y como que los gases tienden a expandirse hasta ocupar el máximo volumen posible, sus moléculas deben hallarse en un movimiento incesante.

• ►DESCRIPCIÓN BÁSICA:

La teoría cinética de los gases supone que éstos están constituidos por diminutas partículas (moléculas) en constante movimiento.

A igualdad de condiciones, la velocidad promedio con que se mueven las moléculas varía de gas a gas, siendo la regla que cuanto mayor sean las partículas, tanto menor será su velocidad, pero para un gas determinado, la velocidad promedio con que se mueven sus moléculas depende de su temperatura.

Si el gas es calentado, sus moléculas reciben energía para acelerar su movimiento.

La temperatura no es sino una medida de la energía promedio de las moléculas. Además, estas moléculas son consideradas perfectamente elásticas.

Como están en continuo movimiento, chocan continuamente entre sí y rebotan. Ahora bien, si dejamos caer al suelo una pelota de goma, rebotará más de una vez, pero con cada rebote se elevará menos del suelo.

En otras palabras, la pelota pierde energía cada vez que da un bote, Pero las moléculas no pierden ninguna energía cuando chocan entre sí y rebotan.

El movimiento molecular explica el comportamiento de los gases en relación al aumento de temperatura y cambios de presión.

A una cierta temperatura y presión el mismo número de moléculas de cualquier gas ocupa el mismo volumen. Pero si aumenta la temperatura del gas sus moléculas habrán adquirido la energía necesaria para moverse más rápido.

Chocan más rápido y rebotan más lejos, en otras palabras, ocupan más espacio, pero si no se les permite ocupar mayor espacio, es decir, si el recipiente es rígido, la presión del gas aumentará.

Esto es comprensible, porque la presión del gas sobre las paredes es simplemente la fuerza ejercida por las moléculas que chocan contra ellas.

Si las moléculas aceleran, golpearán las paredes del recipiente con mayor fuerza.

• ►EXPLICACIÓN FÍSICA CONCEPTUAL

Uno de los fenómenos referentes al comportamiento de los gases que indica el camino más acertado para investigar su naturaleza es el movimiento browniano, observado en 1827 por el escocés Robert Brown y que consiste en una agitación desordenada, en zigzag, ejecutada por las partículas que se hallan en suspensión en los líquidos o en los gases.

Cuanto menor es la partícula observada, más claramente se pone de manifiesto su estado de movimiento desordenado permanente y cuanto mayor es la temperatura tanto mayor es la violencia de dicho movimiento.

El movimiento browniano sugiere un estado de continua agitación de las moléculas que constituyen los cuerpos materiales.

Todo parece indicar que la materia está formada por partículas muy pequeñas en movimiento incesante.

Esta teoría de las moléculas en constante agitación se denomina teoría cinética de la materia y sus dos postulados fundamentales son:

a) Las moléculas están en constante movimiento.

b) El calor es una manifestación del movimiento de las moléculas.

APLICANDO ESTOS POSTULADOS A LOS GASES:

Cuando Boyle descubrió en 1661 su sencilla ley experimental sobre el comportamiento de los gases, trató de idear un modelo que interpretara coherentemente la naturaleza del gas.

Ése fue el comienzo de la teoría cinética, desarrollada por Daniel Bernoulli, James Joule, Rudolph Clausius, Ludwig Boltzmann y Albert Einstein, entre otros científicos. Esta teoría se propone dar una explicación microscópica de las leyes macroscópicas experimentales.

Las hipótesis de las que parte son simples:

1) Un gas consiste en un conglomerado de partículas

(átomos o moléculas) que responden a las leyes de la Mecánica newtoniana. En un gas perfecto pueden despreciarse las fuerzas atractivas entre las moléculas. Así pues, las moléculas pueden considerarse independientes unas de otras.

2) La enorme cantidad de partículas se mueven caóticamente

y están tan separadas entre sí que su propio volumen es despreciable frente al que ocupa todo el gas.

3) No existen fuerzas apreciables sobre las partículas

salvo las que operan durante los choques elásticos entre sí y contra las paredes.

4) En un conjunto de moléculas dado, en un instante determinado,

las moléculas poseen distintas velocidades y, por tanto, sus energías cinéticas también son distintas. Se admite, sin embargo, que la energía cinética media de todas las moléculas es directamente proporcional a la temperatura absoluta del gas.

RESPECTO A LAS MAGNITUDES FÍSICA ES:

• La presión de un gas: lo que llamamos la presión de un gas no es más que el resultado de todo el conjunto de choques que las moléculas efectúan sobre las paredes de un recipiente.

•  La temperatura, es según lo dijo Boltzmann: «La temperatura es la medida de la agitación de los átomos». A alta temperatura los átomos se hallan muy agitados y a baja temperatura están más calmados.

EXPLICACIÓN DE LA TEORÍA:

Es razonable que, dado que las partículas están tan separadas, las fuerzas intermoleculares sean solamente las de los choques.

Como los choques son elásticos, entonces se conserva la cantidad de movimiento y también la energía cinética.

Entre choque y choque, las moléculas viajan con movimiento rectilíneo y uniforme, de acuerdo con las leyes de Newton.

Las colisiones son de muy corta duración.

Es decir que la energía cinética se conserva constante, ya que el breve tiempo en que ésta se transforma en energía potencial (durante el choque) se puede despreciar.

A partir de estos supuestos, la teoría explica el comportamiento conocido de los gases y hace predicciones que luego son constatadas experimentalmente, lo que le confiere validez científica.

Para describir el comportamiento del gas no es imprescindible la historia individual de cada partícula, sino que se recurre a la estadística para interpretar las variables macroscópicas como cierto promedio de propiedades microscópicas.

Por ejemplo, la presión se interpreta microscópicamente como el efecto resultante de millones de partículas chocando azarosamente y ejerciendo pequeñas fuerzas irregulares contra las paredes del recipiente.

¿Por qué la fuerza que un gas encerrado ejerce sobre la pared del recipiente es perpendicular a su superficie?.

Como todas las posiciones y velocidades son igualmente probables, el bombardeo sobre la pared proviene de todas las direcciones y sentidos.

Las fuerzas ejercidas en dirección paralela a la pared en uno y otro sentido tienden en promedio a anularse.

Pero las fuerzas ejercidas en dirección perpendicular, por el contrario, se sumarán, ya que ninguna partícula colisiona desde el lado exterior de la pared.

La temperatura se interpreta como una medida de la energía cinética media por molécula.

Al calentar un gas, aumentamos la agitación molecular, elevando la velocidad media de las partículas.

Si disminuye la temperatura del gas, se puede licuar.

Es coherente que la energía cinética media de una partícula líquida sea menor que la correspondiente a una partícula gaseosa.

En 1827, el botánico inglés Robert Brown (1773-1858) constató, por primera vez, que partículas pequeñas de materia inerte, suspendidas en un líquido y observadas con un microscopio presentan una agitación azarosa y permanente dependiente de la temperatura.

La explicación de este fenómeno se logró ochenta años después.

El descubrimiento del movimiento browniano permitió un desarrollo posterior más profundo de la teoría cinética.

El movimiento de los gránulos observados a través del microscopio se interpretó como la ampliación del movimiento de las pequeñísimas moléculas invisibles a la lente.

Basándose en un estudio cuantitativo del movimiento browniano, la teoría cinética permite calcular, entre otros múltiples resultados, el número de moléculas contenidas en un volumen dado, a cierta temperatura y presión, para todos y cualquier gas.

DEMOSTRACIÓN DE LA ECUACIÓN DE ESTADO A PARTIR DE LA TEORÍA CINÉTICA DE LOS GASES:

La ecuación de estado de los gases, PV = nRT, puede deducirse de la teoría cinética estudiando el aumento de presión que se produce en un gas a consecuencia de los impactos de las moléculas.

En efecto, consideremos un gas encerrado en una caja.

Su presión es proporcional al número de choques moleculares por segundo sobre cada cm2 de la pared de la caja y proporcional también al impulso mecánico o variación de la cantidad de movimiento de cada impacto.

La presión total será, pues, igual al producto del número de impactos por el impulso mecánico.

El movimiento de cualquier molécula puede ser descompuesto en tres componentes dirigidas según cada una de las tres aristas de la caja, de donde se deduce que el efecto sobre cada una de las paredes es el mismo que si cada tercera parte de las moléculas se moviese perpendicularmente a cada par de caras opuestas.

Así, N/3 moléculas chocarán con una cara determinada de la caja cúbica, siendo N el número total de moléculas contenidas en la caja.

Entre cada dos impactos sucesivos la molécula deberá recorrer en los sentidos de ida y vuelta la longitud de la arista de la caja cúbica, l.

Es decir, la distancia entre dos impactos consecutivos recorrida por la molécula es 2.l.

Como que la velocidad media de las moléculas es V cm/s, el tiempo transcurrido en segundos entre dos choques consecutivos será t = 2.l/V y, por tanto, el número de choques por segundo con la pared del recipiente será V/2.l.

Así pues, podemos concluir que el número de impactos que se producirán sobre una cara de la caja por segundo será de:

 Pero como el área de la cara es l2, el número de impactos por cm2 y por segundo que se producirán será :

Ahora bien, como el volumen V de la caja es l3, tendremos que el número total de impactos por cm2 y por segundo será:

Para obtener el impulso total de cada impacto hay que tener en cuenta que el impulso mecánico es igual a la variación de la cantidad de movimientos.

En toda colisión en la que una molécula de masa m y velocidad v rebote de la pared con igual velocidad absoluta pero en sentido contrario, la cantidad de movimiento variará de un valor inicial mv a un valor final – mv.

Es decir, la variación de la cantidad de movimiento es de 2mv.

Pero tal como se indicó anteriormente, Presión=Fuerza/Área= N° de Impactos/Área . s

Impulso de cada impacto:

Ahora bien, la energía cinética media de las moléculas y la temperatura absoluta del sistema están relacionadas por la expresión:

Donde k=1,3805 . 1016 erg./K. molécula es la constante de Boltzmann. Sustituyendo el valor de:

En la ecuación precedente se obtiene:

Pero como el número N de moléculas es igual a: 6,023 . 1023  . n , siendo n el número de moles , resulta

que es la ecuación de estado de los gases ideales,

Puede comprobarse sin dificultad que la constante universal de los gases, R, es el producto de la constante k de Boltzmann por el número de Avogadro.

Es decir, R = 6,023 • 1023- k.

RESÚMEN DE LOS POSTULADOS DE LA TEORÍA CINÉTICA DE LOS GASES:

UN POCO DE HISTORIA…

Demócrito había dicho que los átomos se hallan en continuo movimiento, agitados de manera desordenada en todos los sentidos.

Unas veces, decía, colisionan unos con otros y se pegan como dos bólidos que se dan de frente y se meten uno en otro; otras veces el encuentro termina en una unión que da origen a «sustancias» líquidas o sólidas.

Hacia finales del siglo XIX se descubrió lo esencial de las leyes sobre el comportamiento de los gases, la manera en que se combinan, se mezclan, qué presión ejercen sobre las paredes del recipiente donde se contienen, etc.

Así pues, es natural que en esta época se haya tratado de conocer todas estas propiedades partiendo de la idea de los átomos y de las moléculas que por aquel entonces salía a la luz, es decir, de profundizar en las ideas de Demócrito, pero de una manera un poco más precisa y un poco más cuantitativa.

Si la materia, en este caso el gas, está formada por miles de millones de partículas o de átomos, ¿cómo se pueden explicar, partiendo de sus supuestas propiedades las observaciones de los químicos?.

Dicho de otro modo, ¿cómo a partir de la descripción microscópica de la materia, de las estructuras elementales de las moléculas, se puede construir una teoría que permita explicar propiedades macroscópicas, que son las propiedades con las que trabajan los químicos, desde Gay-Lussac hasta Avogadro pasando por Dalton, hasta llegar a los químicos actuales?.

¿Cómo se puede pasar de las fórmulas químicas al campo del químico que sintetiza nuevos productos? Era menester volver a las fuentes.

Daniel Bernouilli, un genovés miembro de una prestigiosa dinastía científica, abrió el camino a finales del siglo XVIII.

Especialista de esa nueva rama de las Matemáticas llamada cálculo de las probabilidades, Bernouilli comprendió muy pronto que, para estudiar una población de átomos en número muy elevado, la mejor manera de lograrlo era hacer un modelo de su comportamiento de manera estadística y definir de ese modo el comportamiento de un átomo medio.

Pero si es cierto que se le deben a él las primeras ideas en la materia, también es cierto que su trabajo no llegó a un resultado definitivo.

Hacia finales del siglo XIX es cuando se desarrollará realmente la Física estadística, en medio de debates tumultuosos y bastante violentos desde el punto de vista intelectual.

Y ello es así porque esta Física estadística topaba de lleno con dos prejuicios sólidamente enraizados en los espíritus.

Agarrándose al primero, algunos, como ya hemos dicho, se oponían a la idea de átomos y de moléculas so pretexto de que nadie los había visto.

Y otros, apoyados en el segundo, rechazaban la utilización del cálculo de probabilidades.

¿Cómo la naturaleza, decían, cuyas leyes son perfectamente claras y están perfectamente determinadas, podría obedecer al cálculo de probabilidades, al azar, «esa máscara de nuestra ignorancia», como diría más tarde con humor Emile Borel, gran probabilista francés?

Tres hombres, tan distintos como excepcionales, son los que van a construir esta Física estadística.

James Clark Maxwell

Ludwig Boltzmann

Josiah Willard Gibbs

James Clark Maxwell, el autor de la grandiosa teoría de la unificación electromagnética, el gentleman escocés de Cambridge, una de las leyendas de la Física.

El es quien dará la señal de partida calculando la distribución de las velocidades de las partículas de un gas. Maxwell será un gran matemático, pero un atomista desapasionado.

Desgraciadamente morirá en plena batalla en 1918.

Ludwig Boltzmann es un austríaco más joven que Maxwell, a quien admira y venera.

Es un hombre caprichoso, matemático brillante, intelectual-mente ambicioso, con imaginación y con técnica a la vez, pero también es exageradamente impresionable, con frecuencia indeciso (por tres veces aceptará y rechazará después el puesto de profesor en Berlín, donde enseña el gran físico alemán Helmholtz, todo ello en el plazo de dos años), directo —según algunos, demasiado directo— en sus relaciones sociales.

Sin embargo, él será quien pondrá los cimientos.

Josiah Willard Gibbs. Este es un norteamericano.

Fue profesor en la Universidad de Yale. Aunque era reservado y solitario —se cuenta de él que un día, hablando con un colega, se enteró de que los profesores de Yale estaban remunerados, ¡cosa que él ignoraba!— será él quien instalará la Física estadística y hará la síntesis con la Termodinámica.

Es una verdadera pena que Gibbs y Boltzmann no se encontraran jamás, que por dos veces fallara su encuentro.

Porque parece ser que Gibbs fue uno de los pocos contemporáneos que entendía los artículos de Boltzmann, lo que suponía en él una gran experiencia matemática, además de una lucidez introspectiva considerable, dado lo abigarrados y difíciles que eran los artículos de Boltzmann.

Fuente Consultada:
Un Poco de Ciencia Para Todo el Mundo Claude Allégre
Elementos de Física y Qumica Maiztegui-Sabato
Guía de Apoyo Para El Estudiante Tomo: Física.

Ver: Dilatación de los Gases

Tecnologia y Sociedad:Los Nuevos Inventos Que Se Vienen

Tecnologia y Sociedad:Los Nuevos Inventos Que Se Vienen

La vida será sofisticada y eficiente. ¿Cuáles serán los chiches de la nueva era? Valerie, el androide doméstico dotado de inteligencia artificial —y buenas piernas—, será uno.

Nos dará una mano con la limpieza y llamará a la policía ante urgencias.

Otra aliada de las tareas será Scooba, la aspiradora de iRobot, que con sólo apretar un botón fregará los pisos hasta los rincones más recónditos.

Asimismo, la Polara de Whirlpool nos facilitará las cosas.

Combina las cualidades de una cocina convencional y una heladera: será posible dejar un pollo en el horno para que se ase en el horario programado.

El gatito Cat de Philips habitará el hogar del mañana. Genera expresiones faciales —felicidad, sorpresa, enojo, tristeza— y será compinche de los chicos.

¿Qué habrá de nuevo a la hora de comer? “Se elegirán alimentos que hagan bien a la piel y al organismo.

De todas formas, no faltará quien ingiera por elección o comodidad, comida chatarra mientras lea una revista de salud y se prometa: «mañana empiezo el régimen”, opina la cocinera Alicia Berger. “Además, la gente se preocupará por el origen y calidad de los alimentos, y se revalorizará lo casero”, revela.

Ciencia y tecnologia en la Sociedad Su influencia en la vida diariaY al irse a la cama, será posible introducirse en una que soporta ataques terroristas o desastres naturales —de Quantum Sleeper— o portar un reloj pulsera Sleeptracker (foto izquierda) que vía sensores, detecta

nuestro sueño superficial y justo ahí hace sonar la alarma para que el despertar sea lo menos fastidioso posible.

¿Y el sexo para cuándo?.

Mal que nos pese, cada vez tendremos menos ganas, tiempo y pasión.

“Vamos hacia el sexo virtual por sobre el real al menos en las grandes ciudades del mundo”, confirma el doctor Juan Carlos Kusnetzoff, director del programa de Sexología Clínica del Hospital de Clínicas, quien adelanta que para levantar el ánimo —y algo más— se desarrollarán nuevas píldoras.

“La industria farmacéutica desea lograrlo a toda costa”, agrega.

Ocio y tiempo libre para todos los gustos

En el campo de las nuevas tecnologías, la convergencia de la telefonía móvil y el hogar será un hecho.

“El móvil podría permitir el acceso a los diferentes elementos que se quieran controlar, como un control remoto universal. Además se crearían nuevos sensores para avisarnos de situaciones que requieran nuestra atención y cámaras de seguridad para ver desde el teléfono lo que sucede en otro lugar”, cuenta Axel Meyer, argentino que desde el 2000 trabaja en el centro de diseño de Nokia Desing, en Finlandia.

Y agrega “Los teléfonos con doble cámara ya permiten hacer videollamadas.

Y también podremos ver la emoción del otro mientras miramos la misma película o un gol de nuestro equipo”, explica.

Ciencia y tecnologia en la Sociedad Su influencia en la vida diariaEn robótica, los avances irán a gran velocidad.

Ya se está desarrollando en la Universidad de Tokio la piel de robot que permitirá a estas criaturas adquirir el sentido del tacto. Y eso no es todo.

Se podrá bailar con ellos. El Dance Partner Robot es la compañera de baile ideal.

Predice los movimientos de su coequipper y no le pisa los pies!

Para momentos de ocio, el turismo estará preparado para el disfrute.

Pero, ¿se podría pensar en la pérdida de vigencia del agente de viajes tradicional? “Internet agiliza muchos aspectos de la gestión.

Hay un antes y un después en la forma de hacer turismo, pero, ¿quién se atreve a viajar con su familia a destinos exóticos o países desconocidos sin un asesoramiento de confianza?”, se pregunta Ricardo Sánchez Sañudo, director de la revista Tiempo de Aventura, quien sostiene que ante la coyuntura mundial —terrorismo, inseguridad y desastres climáticos, entre otros—, la Argentina crecerá como destino.

“Cuanto, más expuesto a estas amenazas esté el resto del mundo, tendremos ventajas comparativas que podremos aprovechar al máximo si conseguimos mantener esas amenazas fuera de nuestras fronteras, o al menos, razonablemente controladas”, manifiesta.

Por otra parte, la vida al aire libre será la estrella. “Vida sana, naturaleza viva y desarrollo sustentable son principios insoslayables cuando se mira hacia adelante, y tanto deporte como turismo aventura son dos de sus mejores herramientas”, analiza.

Ciencia y tecnologia en la Sociedad Su influencia en la vida diariaLos amantes del deporte encontrarán aliados perfectos para seguir ganando.

El de los tenistas es la raqueta Magnetic Speed de Fischer, que permite mejores movimientos y mayor velocidad en los tiros.

Los que prefieren la música se sorprenderán con instrumentos como el Hand Roll Piano de Yama-no Music, con teclado de silicona flexible.

Trasladarnos será más simple, cómodo y ecológico. Y ya hay algunos adelantos. Tweel de Michelin es una llanta sin aire.

Así es que… la despedirse de las gomas pinchadas!

Ciencia y tecnologia en la Sociedad Su influencia en la vida diaria

Por otro lado, acaso debido al tránsito en las ciudades, los transportes individuales serán protagonistas.

Como la bicicleta Shift, ideal para los chicos.

Les permite adquirir estabilidad gradual sin necesidad de las dos rueditas.

Ciencia y tecnologia en la Sociedad Su influencia en la vida diaria

Futuro saludable:

Que la salud avanza a pasos agigantados, no es una novedad.

La noticia es que estará al alcance de todos en los próximos años.

Las cirugías estéticas, se popularizarán y masificarán. La lipoescultura será la más pedida, según el doctor Raúl Banegas, cirujano plástico, miembro titular de la Sociedad de Cirugía Plástica de Buenos Aires, debido a que “La demanda social de ser cada vez más lindos, delgados y jóvenes, se acrecienta”.

Por otro lado, serán comunes las inyecciones de líquidos —fosfatidil colina— tendientes a disolver la grasa corporal, sin cirugía.

En cuanto a rellenos, la toxina botulínica es irremplazable aunque sí se espera que se sintetice de manera tal que dure más tiempo —hoy, de 3 a 6 meses—.

“En cuanto a rellenos definitivos habrá infinidad de sintéticos. Lo que sí parece ser prometedor, aún en fase de investigación, es el cultivo del propio colágeno. En sólo unos meses se podrían obtener en laboratorio, varias jeringas, lo que descartaría toda posibilidad de reacción”, adelanta.

En Neurociencias, será posible el neuromarketing a partir de tomografías PET —por emisión de positrones—, aunque “en lo inmediato son técnicas caras y requieren de un sofisticado análisis de los datos”, anticipa el doctor Facundo Manes, director del Instituto de Neurología Cognitiva —INECO—.

En lo que a neuroplastieidad se refiere, ya no diremos más aquello de que “neurona que se muere, se pierde”, viejo postulado que paralizó casi completamente durante décadas la investigación en esta área, según el especialista.

Y el conocer acerca de qué pasa en la cabeza de un adicto u obeso permitirá complementar con medicamentos aquello que químicamente requiera cada cerebro.

“Conocer las bases cerebrales de un trastorno neuropsiquiátrico ayuda a localizar los neurotransmisores —mensajeros entre las neuronas— involucrados en una enfermedad; de esta manera se podría investigar una posible solución farmacológica a esa determinada condición médica”, comenta.

En el campo de la reproducción asistida, las novedades son infinitas.

“Cada vez se podrán hacer más y mejores cosas en pos de mejorar las chances de tener un chico en brazos y no un embarazo que no pudo ser”, adelanta la doctora Ester Polak de Fried, presidente de CER Instituto Médico, directora del departamento de medicina reproductiva de la institución.

“Los estudios genéticos, tanto de gametas como de óvulos fertilizados —preembriones—, que permiten transferir al útero materno únicamente los sanos, se convertirán en técnicas habituales para aquellas mujeres que sufren abortos a repetición, por ejemplo.

En el área de la biología molecular, será posible encontrar marcadores génicos —detectan chances de reproducción—, tanto en los óvulos como en los espermatozoides para poder elegir los que tienen capacidades evolutivas, y así disminuir la cantidad de óvulos a poner a fertilizar y la problemática de tener gran cantidad de embriones criopreservados”, especifica quien es officer de la International Federation of Fertility Societies —IFFS—, que nuclea a 54 países.

Construcción, arte y moda

Uno de los cambios en lo que respecta a la construcción, al menos en Argentina, será la creciente conciencia ecológica y de cuidado del medio ambiente.

“El futuro de la arquitectura está definido en su responsabilidad ecológica tanto con eL medio ambiente como con el medio social.

No hay que explicar de qué manera el proyecto arquitectónico influye en el medio ambiente.

La decisión de su tecnología y su consecuencia en el futuro mantenimiento conforman una huella ecológica que deberá ser cada vez más analizada y respetada”, analiza el arquitecto Flavio Janches.

En cuanto a los materiales, “al menos en nuestro país, el ladrillo y la piedra, el hormigón y el revoque son materiales que no creo que se dejen de utilizar”, opina.

La moda tendrá sus cambios, aunque más bien tendrán que ver con el cosechar la siembra, al menos para los diseñadores argentinos.

“La gente va a reivindicar el diseño y pagarlo por lo que vale. Hoy por hoy, no existe esa conciencia, como en Estados Unidos, Europa o Japón”, asegura la diseñadora Jessica Trosman.

En cuanto al arte, en el futuro abandonará un poco los museos y las galerías para darse una vuelta por las calles.

Uno de los referentes de este movimiento es Julian Beever, artista inglés conocido por su trabajo en 3D, en veredas y pavimentos de Inglaterra, Francia, Alemania, Australia, Estados Unidos y Bélgica.

Y mientras se espera el futuro que se viene, a brindar por este 2006 que sí es inminente!

Fuente Consultada: Revista NUEVA Por Laura Zavoyovski (31-12-2005)
Ir a su sitio web

Temas Relacionados

Influencia de los Mitos en la Sociedad

El Poder de la Publicidad Sobre la Sociedad

La Psicologia Social Su Influencia de la Sociedad

Competencia de la Mujer Frente al Hombre

La Sociedad Japonesa: Vida, Costumbres y Tradiciones

Enlace Externo:

Revista TECNOLOGIA HUMANIZADA sobre el uso responsable de la tecnología.