El movimiento browniano

Historia del Barometro y Principio de Funcionamiento

Historia del Barometro y Principio de Funcionamiento

Fundamentalmente, el barómetro se basa en la utilización de la presión atmosférica con el fin de contrarrestar el peso de la columna de mercurio de un tubo en cuyo interior se ha practicado el vacío.

En otras palabras, la altura de esa columna permite deducir el valor de la presión atmosférica. Sin embargo, la existencia de esta presión no se conoce desde siempre, ni tampoco el vacío.

Aristóteles pensaba que, tanto desde el punto de vista lógico como del físico, el vacío era imposible, aunque admitía que el aire, es decir, la atmósfera que envuelve a la Tierra, tenía peso.

Historia del Barometro y Principio de Funcionamiento
El barómetro es un instrumento para medir la presión atmosférica, es decir, la fuerza por unidad de superficie ejercida por el peso de la atmósfera. Como en cualquier fluido esta fuerza se transmite por igual en todas las direcciones. La forma más fácil de medir la presión atmosférica es observar la altura de una columna de líquido cuyo peso compense exactamente el peso de la atmósfera.

Dos mil años más tarde, los científicos del Renacimiento aún participaban de dicha opinión, pero con el agravante de que estaban plenamente convencidos de que el aire era ingrávido.

Como se desprende de lo antedicho, la historia del barómetro está estrechamente vinculada a las investigaciones acerca del vacío.

En 1638, el famoso científico Italiano Galileo Galilei publicó su última obra, titulada Discursos y demostraciones matemáticas en torno a dos nuevas ciencias relativas a la mecánica y a los movimientos locales.

En ella mantenía que el aire carecía de peso y que, por lo tanto, era incapaz de ejercer presión alguna; no obstante, ese científico creía en el vacío.

Sus comentarios sobre el particular sirvieron de estímulo a otros autores, entre ellos Otto von Guericke, para investigar las propiedades de dicho vacío.

Una primera experiencia hacia el año 1640, el físico Gasparo Berti montó en la pared de su casa un tubo de plomo dispuesto verticalmente y provisto de un grifo en la parte inferior, que se prolongaba hasta el seno del agua contenida en una vasija.

En el extremo superior del tubo puso un recipiente de cristal, herméticamente unido a aquél, y ambos lenos de agua.

A continuadon abrió el grifo y pudo observar que salía sólo una parte del agua. Es decir, en e interior del tubo quedaba una columna líquida de unos 10,5 m de altura, mientras que la parte alta del mismo estaba vacía.

Hoy sabemos que se trataba realmente del vacío y que el peso de la columna de agua era contrarrestado por la presión que ejercía el aire en el recipiente situado en la parte Inferior de tubo.

De hecho, Berti había construido un barómetro de agua; sin embargo, no fue capaz de comprender con exactitud los resultados de su experiencia.

Pocos años despúes en un escrito remitido en 1644 desde Florencia, Evangelista Torricelli describió un experimento semejante.

Pero antes de continuar con la historia explicaremos algo sobre la presión atmosferica en el planeta y luego veremos la primer experiencia del cientifico Torricelli:

Presión atmosférica: Nuestra atmósfera es un enorme cuerpo gaseoso que se extiende en dirección vertical hasta unos 500 km.

Su peso específico varía desde el nivel del mar hasta dicha altura entre 0,00123 gr/cm3 (aproximadamente) y un valor prácticamente nulo.

La presión ejercida por esa masa de aire sobre la superficie de todos los cuerpos que se hallan en su propio seno, a niveles no muy lejanos del nivel del mar, es de aproximadamente 1,033 kgr/cm2.

Se trata de un valor arbitrariamente elegido como valor medio, ya que es variable con las condiciones climáticas. Se denomina presión atmosférica a la presión ejercida por la atmósfera sobre las superficies de los cuerpos que se hallan en su seno.

La presión que hemos consignado como igual a 1 atm se denomina también presión atmosférica normal. Resulta ser igual a la presión ejercida en el fondo por una columna de mercurio que tiene 760 mm de altura a 0°C (temperatura del hielo en fusión).

En efecto, si tenemos en cuenta que el peso específico del mercurio es de 13,456 gr/cm3 a 0°C, la diferencia de altura de 76,0 cm corresponde a una diferencia de presión de 1,033 kgr/cm2.

La experiencia de Torricelli pone de manifiesto la existencia de la presión atmosférica y permite, al mismo tiempo, medirla.

Esta experiencia se describe a continuación.

Pasos de Experiencia: Se toma un tubo de vidrio de paredes gruesas de aproximadamente 1,0 cm de diámetro interior, de unos 85 cm de longitud, cerrado en un extremo y abierto en el otro.

Debe observarse que el tubo se halle completamente limpio y seco en su interior; se lo llena con mercurio y, tapándolo en su extremo abierto con el pulgar, se lo invierte e introduce dicho extremo abierto, tapado como se ha dicho, debajo de la superficie del mercurio contenido en una cubeta, tal como se ve en la parte b de la ilustración de abajo.

Con el extremo abierto del tubo debajo del mercurio de la cubeta, se retira el dedo que lo tapaba y se observara que el mercurio en el interior del tubo desciende hasta un cierto nivel como se ve en la parte c de la ilustración.

Coloqúese una regla milimetrada de manera de poder leer la altura del nivel del mercurio dentro del tubo respecto de la superficie (horizontal) del mismo en la cubeta.

historia del barometro experimento de torricelli

Hágase esta lectura, y dejando el tubo en la misma posición durante varios días, háganse otras anotando las fechas y las horas a las que se hicieron.

Léase con la aproximación de 1 mm. Se observaran diferencias entre las lecturas en días sucesivos.

Las precauciones que deben tenerse para que las lecturas sean correctas son: leer con el ojo colocado en la posición que se ve en la parte c de la ilustración y evitar que penetre aire al invertir el tubo.

Al descender el mercurio dentro del tubo, la cámara que se forma: B queda vacía, es decir, sin aire ni ningún otro gas; por lo tanto, se puede considerar que la presión en un punto de la superficie superior del mercurio dentro del tubo es igual a cero.

Las presiones en A (atmosférica) y en A’ (ver c) son iguales y su diferencia con cero (la que hay en B) es, de acuerdo con lo que sabemos: pHg. h, siendo pHg el peso específico del mercurio y h la altura que se señala en c.

Como se ve, la altura h es una medida del mercurio y A la altura que se señala en c.

Su valor normal, por convención, es de 760 mm como ya sabemos. Recordemos que la baria es la unidad de presión del sistema c. g. s. (igual a 1 dina/cm2) y que la presión atmosférica normal es de 1,033 kgr/cm2.

Si con estos datos calculamos la presión atmosférica normal, en barias, resulta: 1.013.200 dina/cm2.

En meteorología se suele utilizar una unidad igual, mil barias, a la que se denomina milibar.

Con esta unidad la presión atmosférica normal es de 1013,2 milibar. Con ella se suelen expresar en los boletines meteorológicos las presiones atmosféricas que se dan a conocer al público.

Si la columna, en lugar de ser mercurio es de agua, a la cual suponemos de un peso especifico aproximadamente igual a 1 gr/cm3, su altura en una experiencia como la Torricelli es de 10,33 m (esto es 13.456 veces más alta que la correspondiente de mercurio).

La experiencia realizada por el propio Torricelli fue hecha con agua como líquido, que llenaba el tubo.

Probablemente, el verdadero autor del experimento y el que tuvo la ¡dea de utilizar un líquido tan denso como el mercurio para reducir las dimensiones del aparato fue Vincenzo Viviana, discípulo de Torricelli.

En 1647, Blaise Pascal, tras un sinúmero de experiencias, proporcionó □ ruebas evidentes acerca de la veracidad de las ideas de Torricelli.

En 1648 :onvenció a su cuñado para que subiera con un barómetro al Puy de Dome, la montaña más alta de la región francesa de Auvergne, y observara si, a medida que iba progresando en su ascenso, la altura de la columna de mercurio disminuía.

Realmente, ocurrió tal como Pascal suponía; con ello, la ¡dea de Aristóteles sobre el aborrecimiento de la naturaleza por el vacío quedaba superada.

En 1660, Robert Boyle repitió en el aboratorio de Oxford la experiencia de Torricelli, para lo cual situó el barómetro en el interior de un recipiente conectado a una bomba neumática; de este modo oudo comprobar que, a medida que él extraía aire, la altura de la columna de mercurio descendía.

Por otra parte, fue el propio Boyle quien introdujo la palabra barómetro, que apareció impresa por primera vez en 1665.

Durante el siglo XVII, cuando empezó la difusión del barómetro, los científicos comenzaron a investigar la posible relación entre las fluctuaciones de la altura de la columna de mercurio y los cambios
meteorológicos.

Esto condujo inmediatamente a la idea de lograr un instrumento portátil y que, al mismo tiempo, ampliara la variación de altura producida por los cambios de presión que, normalmente, en Europa es sólo de unos 50 ó 70 mm.

Tanto Pascal como Boyle, trabajando independientemente, sugirieron que la condición de portátil se podía conseguir fácilmente si el depósito de mercurio era sustituido por otro colocado en uno de los extremos de un tubo doblado en forma de U, es decir, sentaron los principios del barómetro de sifón.

En 1664, Robert Hooke ideó otro barómetro, en el cual la variación de altura del mercurio se hacía más fácilmente visible acoplándole un dispositivo mecánico que la aumentaba considerablemente.

Más tarde, hacia 1680, Moreland propuso un barómetro a base de un tubo doblado a unos 680 mm por encima del depósito, con la parte superior dispuesta verticalmente y mucho más delgada.

Durante el siglo pasado, los progresos de la meteorología condujeron a la mejora de diversas partes del barómetro, hasta convertirlo en un instrumento científico de gran exactitud y absoluta garantía.

Otros Barómetros: El dispositivo utilizado para realizar la experiencia de Torricelli es, en verdad, un barómetro, esto es, un aparato que permite medir la presión atmosférica. Pero su uso resulta muy incómodo.

Una solución al problema de la incomodidad de un «tubo de Torricelli» es el barómetro que se ve representado en la figura de abajo.

barometro
Barómetro a mercurio de construcción sencilla.
La regla de medición se desplaza verticalmente de modo que su cero coincida con el nivel A. La altura h mide la presión atmosférica.

Se trata de un barómetro muy sencillo; pero que no es preciso.

Para obtener un barómetro de Fortín, que es el barómetro de precisión, es necesario introducir en el sencillo tubo que hemos descrito una serie de accesorios que lo perfeccionan.

Una forma corriente de un dispositivo para registrar continuamente la presión atmosférica es el barómetro registrador o barógrafo que se representa en la figura.

baroemetro historia

Consta de una serie de «cajas» metálicas chatas (de paredes muy delgadas) superpuestas.

Dentro de ellas se ha hecho el vacío. La altura del conjunto varía al variar la presión atmosférica.

Esas variaciones se transmiten por medio de un mecanismo conveniente a una aguja provista de una pluma con tinta que inscribe sus movimientos sobre un papel que se halla arrollado sobre un tambor giratorio movido por una «máquina» de relojería que lo hace dar una vuelta completa en 24 horas ( o en una fracción sencilla de ese tiempo»).

Se tiene de ese modo una línea como la que se ve en la figura, que registra las variaciones y los valores de la presión en el intervalo de tiempo que transcurre durante un giro del tambor.

De este mismo tipo de construcción son los «barómetros de cuadrante».

En este caso los movimientos de la aguja (un mecanismo apropiado amplía en ella los movimientos de una «caja metálica») se realizan delante de un cuadrante graduado.

Son éstos los barómetros «indicadores del tiempo» (en verdad no indican nada con seguridad) que se ven en casas de óptica, farmacias, etc.

Fuente Consultada:
Elementos de Física y Química de Carlos Prelat Editorial Estrada
Historia de los Inventos de Editorial Salvat – Entrada El Barómetro

Biografía de Eddington Arthur Trabajos Cientificos

Biografía de Eddington Arthur  y Su Trabajo Científico

BIOGRAFÍA DE EDDINGTON, Sir ARTHUR STANLEY (1882-1944): Astrónomo y físico británico, que realizó un importante trabajo en el campo de la relatividad y de la astronomía. Eddington nació en Kendal, por entonces en Westmorland (actualmente Cumbria) y estudió en el Owens College (actualmente Universidad de Manchester) y en el Trinity College de la Universidad de Cambridge. Fue ayudante jefe en el Real observatorio de Greenwich desde 1906 a 1913, año en que fue catedrático de astronomía en Cambridge.

En la década de los años veinte, este astrofísico inglés demostró que el interior del Sol era mucho más caliente de lo que se había pensado hasta entonces. Supuso al astro como una enorme y extremadamente caliente esfera de gas, con características similares a las de los gases estudiados en la Tierra.

Eddigton Arthur Stanley

Arthur Eddihton: famoso físico del siglo XX, cuyo trabajo mas destacado fue sobre la evolución y la constitución de las estrellas. Su trabajo en astronomía quedó reflejado en su clásico libro La constitución interna de las estrellas, que se publicó en 1926.

Sometido a la acción de la gravedad, su materia tendría que estar atraída hacia el centro y, por tratarse solamente de gas, no tardaría en colapsarse en un cuerpo mucho más pequeño. Ya que el Sol no entra en colapso e inclusive conserva medidas superiores a las establecidas para esa gravedad, debería existir alguna fuerza que impulse la expansión de la sustancia solar y resista a la tendencia de contracción.

El único fenómeno que podría explicar esta situación, según Eddington, sería el calor, ya que si se aumenta la temperatura, los gases se expanden y aumentan de volumen. Por lo tanto, el Sol permanece en un estado de equilibrio, con un calor interior tal que tiende a expandirlo, pero con una fuerza gravitatoria que lo induce a contraerse.

Concluyó que cuanto mayor es la masa de una estrella, mayor es la cantidad de calor que debe producir para no entrar en colapso, y que la cantidad de calor debe crecer con mayor rapidez que la masa.

Eddington se opuso a las teorías de su discípulo, Chandrasekhar, sobre la posibilidad de que existiera una estrella cuya masa alcanzara cierto límite y dejara de contraerse hasta llegar a un estado final como las estrellas enanas blancas.

Sus principales obras son: Espacio, Tiempo y Gravitación; Estrellas y Átomos; La Naturaleza del Mundo Físico; El Universo en Expansión y Nuevos Senderos de la Ciencia.

Fuente Consultada:
Historia Universal de la Civilización  Editorial Ramón Sopena Tomo II del Renacimiento a la Era Atómica

Biografía de Doppler Christian Resumen Descripcion del Efecto

Biografía de Doppler Christian
Breve Explicación del Efecto Doppler

Christian Doppler (1803-1853), físico y matemático austriaco, nacido en Salzburgo. Estudió en dicha ciudad y posteriormente en Viena. Fue profesor en el Instituto técnico de Praga (Checoslovaquia) y en el Instituto politécnico de Viena, y ocupó el cargo de director del Instituto de Física de la Universidad de Viena en 1850. Describió el fenómeno físico que se conoce hoy como efecto Doppler en su artículo monográfico sobre los colores de la luz de las estrellas dobles, Acerca de la luz coloreada de las estrellas dobles (1842).

Doppler cientifico

Recibió su primera educación en Salzburgo y Viena, en donde llegó a ser profesor de física experimental. En 1850, fue nombrado director del Instituto de Física.

Doppler se preguntó por qué razón el sonido se percibía  de modo distinto, según la fuente se alejara o se acercara al receptor; en su época ya se sabía que el sonido está compuesto por una serie de ondas que se desplazaban en un medio determinado, y el físico encontró que, por ejemplo, cuando una locomotora se acercaba al punto donde estaba situado un observador, cada onda sónica sucesiva se captaba casi superpuesta a la anterior (un sonido agudo), de modo que el oído la captaba con frecuencia creciente; al alejarse, por el contrario, la frecuencia se espaciaba cada vez más (un sonido grave).

Doppler había relacionado matemáticamente la velocidad y la tonalidad del sonido y, para probar su teoría, consiguió que una locomotora arrastrase un vagón cargado con trompetistas hacia el punto de observación y luego se alejara de él, a velocidades diferentes.

En el punto de observación ubicó un grupo de músicos de fino oído, encargados de registrar los cambios que se producían en el diapasón a medida que el tren iba o venía. La medición de dichos cambios en la tonalidad, en realidad en la intensidad aparente del ruido (la relación entre frecuencia y velocidad), es lo que hoy se conoce como efecto Doppler, divulgado por primera vez en 1842.

Doppler también dejó planteada la analogía entre el sonido que emite una fuente móvil y la luz que proviene de una estrella en movimiento, ya que la luz también se transmite por medio de ondas, si bien mucho más finas que las sónicas. El físico francés Armand Fizeau (1819-1896), hizo notar que el llamado efecto Doppler tendría que funcionar en el desplazamiento de todo tipo de ondas en movimiento, incluyendo las de la luz.

Gracias a los experimentos de Doppler sabemos que si una estrella se mantuviera estática con respecto a la Tierra, las líneas oscuras de su espectro luminoso deberían permanecer en un mismo sitio, pero que si se está alejando de nosotros, la luz que emite va alargando su longitud de onda (algo equivalente al sonido grave en el experimento del tren) y las líneas oscuras se desplazarían hacia el extremo rojo del espectro.

Entre más grande sea ese desplazamiento, mayor es la rapidez con que la estrella se aleja. Por el contrario, si se estuviera acercando, la luz emitiría ondas cada vez más cortas (el tono agudo) y las líneas del espectro estarían acercándose al violeta.

DESCRIPCIÓN DEL EFECTO DOPPLER:

El efecto Doppler es el cambio en la frecuencia percibida de cualquier movimiento ondulatorio cuando el emisor, o foco de ondas, y el receptor, u observador, se desplazan uno respecto a otro.

efecto doppler

El móvil (auto) de la imagen superior se desplaza hacia la derecha. Cuando se acerca al niño se observa que la onda del sonido se «comprime», la longitud de onda se corta y la frecuencia es alta, es decir un sonido agudo. A su vez para el caso del niño de la izquierda la situación es inversa, es decir la frecuencia del sonido será mas baja y el sonido que reciba sera grave.

//historiaybiografias.com/archivos_varios5/efecto_dopler1.jpg

Explicación del Foco en reposo y observador en movimiento: La separación entre dos frentes de onda permanece constante en todo momento. Aunque la velocidad de las ondas en el medio v también es constante, la velocidad relativa vrel. percibida por el observador que viaja a una velocidad vR depende de si este se aleja o se acerca al foco. Cuando el foco se mueve y el observador está detenido el caso es el mismo. La velocidad del sonido en el aire es de 340 m/s.

Fuente Consultada:
Historia Universal de la Civilización  Editorial Ramón Sopena Tomo II del Renacimiento a la Era Atómica

Cientificos Mas Importantes de la Historia y Sus Descubrimientos

Científicos Mas Importantes de la Historia y Sus Descubrimientos

Los primeros intentos de estudiar el mundo desde un punto de vista científico datan del antiguo Egipto y Babilonia. Sin embargo es a los griegos a quienes debemos las bases de muchos de nuestros pensamientos científicos; la geometría, la astronomía y la química fueron estudiadas frecuentemente de una manera amplia aunque, a veces, las conclusiones a que llegaron fueron desacertadas. Aristóteles creía (erróneamente) que la Tierra era el centro del Universo y que toda la materia estaba formada de cuatro elementos:  tierra, aire, fuego y agua.

Durante la edad media la química se hizo importante aunque no se la conocía por tal nombre. Los alquimistas, dedicados a cosas tales como producir oro de otros metales, realizaron individualmente muchos descubrimientos importantes, aunque poco contribuyeron a nuestro conocimiento de la naturaleza de la materia. La visión del Universo fue alterada radicalmente por las ideas de Copérnico (quien demostró que el centro del sistema solar era el Sol).

El siglo XVII vio un gran florecimiento de la investigación científica. Newton formuló sus leyes del movimiento y de la gravitación universal; en 1662 se fundó en Londres la Royal Society y se crearon en Europa muchos otros cuerpos de científicos organizados, los cuales allanaron el camino para el acercamiento a la ciencia moderna.

Ésta ha evolucionado rápidamente a través de los siglos XVIII y XIX, hasta llegar al profesionalismo especializado de hoy. A continuación figuran muchos de los más grandes científicos.

juego conocer cientificos

LOS CIENTÍFICOS FAMOSOS (Orden Alfabético)

Adrián,  Edgardo   (1889-       )   Inglés,  fisiólogo.  Renombrado por sus trabajos sobre el cerebro, el sistema nervioso y la función de los nervios.

Agassiz, Juan Luis Rodolfo  (1807-1873)   Suizo, naturalista. Una autoridad en peces, para los cuales, propuso  una  nueva  clasificación.  También  estudió  los glaciares.

Ampére, Andrés María (1775-1836) Francés, matemático. Estudió la electricidad y el magnetismo. Dio su nombre a la unidad de corriente eléctrica.

Appleton, Eduardo Víctor (1892-       ) Inglés, físico, investigó el comportamiento de las ondas de radio de largo alcance, especialmente su reflexión en la atmósfera superior.

Aristóteles (384-322 a. C.) Griego, filósofo. Hizo una clasificación del conocimiento y muchos estudios en. el campo de la metereología, biología y geología.

Arquímedes (287-212 a. C.)  Griego, matemático. Estableció  el principio  de Arquímedes,  dedujo la ley de las palancas e inventó el tornillo de Arquímedes y la polea compuesta o polipasto.

Baekeland, León  Hendrik   (1863-1944)   Belga,  químico. Descubrió  el primer  plástico  termo-endurecido de uso práctico. Esto llevó a la producción de la baquelita.

CIENTIFICOS

Baeyer, Adolfo de (1835-1917) Alemán, químico. Realizó investigaciones acerca de los compuestos del cacodilo; descubrió la eosina, la galeína y la ceruleína. Es también conocido por su teoría de la asimilación del ácido carbónico por las plantas. Premio Nobel de química en 1905.

Becquerel,  Antonio Enrique   (1852-1908).  Francés; descubrió la radiactividad mientras usaba sales de uranio.   También estudió la fosforescencia, la luz y el magnetismo.

Berzelius, Juan Jaoobo (1779-1848). Sueco, químico. Descubrió varios elementos, sugirió el uso de la primera letra de los nombres de los elementos como símbolos químicos y creó la primera tabla segura de pesos atómicos.

Black, José (1728-1799). Inglés, químico. Redescubrió el anhídrido carbónico, al que llamó «aire fijado». Es también conocido por sus teorías sobre el calor latente y sobre el calor específico.

Blackett, Patricio Maynard Stuart (1897-       ). Inglés, físico.   Con la cámara de Wilson fotografió la división de un núcleo del nitrógeno) por una partícula alfa, en un protón y un núcleo de oxígeno.

Bohr Níels (1885- ). Dinamarqués, físico. Extendió grandemente la teoría de la estructura atómica al inventar un método explicativo del espectro de los elementos y su posición en la tabla periódica. Ayudó al desarrollo de la teoría cuántica.

Boussingault, Juan Bautista (1807-1887). Francés, biólogo. Explicó las diferencias básicas entre la nutrición animal y vegetal y demostró que las plantas obtienen nitrógeno de los nitratos del suelo y no de la atmósfera.

Boyle, Roberto (1627-1691). Inglés, químico. Figura destacada en la química del siglo XVII. Sus investigaciones cubrieron un campo muy amplio, incluso la neumática; es mejor recordado por la ley que lleva su nombre.

Bragg, Guillermo Enrique (1862-1942). Inglés, físico. Famoso por su trabajo sobre la estructura de los cristales y los átomos; aplicó el espectrógrafo de rayos X, que desarrollaron juntos él y su nijo G. L. Bragg.

grandes cientificos

Bragg,  Guillermo Lorenzo   (1890-       ).  Inglés,  físico. Trabajó con su padre  Sir G. E. Bragg en la estructura de los cristales.

Brahe, Tycho  (1546-1601). Dinamarqués, astrónomo. Hizo  muchas  observaciones  exactas  de los  planetas y  del  Sol.   Éstas  dieron  la  base  para las  leyes  de Kepler.

Brown, Roberto  (1773-1858). Inglés, botánico.   Fue el primero en observar los movimientos de las partículas suspendidas en un líquido.   En su honor, se llamó a este fenómeno «movimiento browniano».

Buffon, Jorge Luis (1707-1788). Francés, naturalista. Dedicó su vida a describir y clasificar plantas. Notorio por su trabajo monumental, Historia Natural.

Bunsen, Roberto Guillermo Eberardo (1811-1899). Alemán, químico. Con Kirchhoff descubrió el análisis espectral. Es recordado por su invento del mechero de Bunsen, aunque hizo inventos y descubrimientos más importantes.

Cannizzaro, Estanislao (1826-1910). Italiano, químico. Aplicó la hipótesis de Avogadro para la determinación de los pesos atómicos; experimentó en química orgánica y descubrió la reacción que luego llevó su nombre.

Cavendish, Enrique (1731-1810). Inglés, físico y químico. Descubrió el hidrógeno y demostró que cuando éste se quema se produce agua. Realizó la primera’ determinación exacta del peso de la Tierra.

Chadwick, Jaime  (1891-       ). Inglés, físico. Trabajó en la  desintegración  nuclear y   en la  dispersión  de partículas alfa.   El bombardeo de berilo con éstas lo llevó al descubrimiento del neutrón.

Cockcrobt, Juan Douglas (1897- ). Inglés, físico. Trabajó en la transmutación del núcleo atómico mediante el uso de partículas atómicas aceleradas. Consiguió desintegrar el núcleo de litio, con protones de alta velocidad.

Copérnico, Nicolás (1473-1543). Polaco, astrónomo. Descubrió que el Sol es el centro del sistema solar. Comprendió que las estrellas están a una enorme distancia de la Tierra pero pensó que estaban fijadas en una esfera.

Crookes, Guillermo  (1832-1919). Inglés,  químico y físico. Inventó el tubo de Crookes y sugirió la verdadera naturaleza de los rayos catódicos.   Descubrió el talio y estudió la radiactividad.

Curie, María Sklodowska (1867-1934). Nació en Polonia y se radicó en Francia, química. Con su esposo separó el polonio de los minerales uraníferos; luego descubrieron  el radio.

Curie, Pedro (1859-1906). Francés, físico y químico. Trabajó en cristalografía, magnetismo y piezoelectricidad.    Ayudó   al   descubrimiento   del   radio   y   del polonio.

Cuvier, Jorge Leopoldo (1769-1832). Francés, naturalista. Trabajó en anatomía comparativa y propuso una clasificación completa del reino animal. Estableció la paleontología como una ciencia separada.

grandes cientificos

Darwin, Carlos Roberto (1809-1882). Inglés, naturalista. Como resultado de sus observaciones, mientras viajaba alrededor del mundo, propuso la teoría de la evolución. Ésta fue publicada en su libro El origen de las especies.

Davy, Hunfredo (1778-1829). Inglés, químico. Famoso por su invento de la lámpara de seguridad.  Experimentó con el gas hilarante,  aisló el sodio y otros metales reactivos y dio nombre al cloro.

Dewar, Jaime (1842-1923). Inglés, químico. Importante por sus investigaciones sobre el comportamiento de la materia a bajas temperaturas; fue el primero en licuar hidrógeno; inventó el vaso Dewar de vacío.

Eddington, Arturo Stanley (1882-1944). Inglés, químico.   Hizo notables contribuciones a la astrofísica, especialmente  sobre la  estructura  de las   estrellas, y calculó la edad del Sol.

Ehrlich, Pablo (1854-1915). Alemán, bacteriólogo. Descubrió que los microbios absorben colorantes en forma selectiva. Mediante la combinación de colorantes con productos químicos venenosos trató de matar los microbios patógenos.

grandes cientificos del mundo

Einstein, Albert (1879-1955). Nació en Alemania, físico matemático. Escribió la Teoría general de la relatividad para rectificar ideas fundamentales sobre la gravitación, relacionando masa con energía; demostró que el espacio y el tiempo eran conceptos inseparables. Ha realizado trabajos apreciables en la teoría  cuántica.

Faraday,  Miguel   (1791-1867).  Inglés,  físico  y  químico. Descubrió el principio de la inducción electromagnética usado en la dínamo.  También licuó cloro y formuló las leyes de la electrólisis.

Fermi, Enrique    (1901-1954).   Italiano,   físico.   Hizo notables contribuciones a la física nuclear por su investigación sobre substancias radiactivas artificiales y energía  atómica.

Fischer, Emilio Armando (1852-1919). Alemán, químico. Trabajó durante muchos años en la estructura de los hidratos de carbono y proteínas. Fabricó artificialmente algunas substancias naturales como la fructosa y la cafeína.

Flamsteed, Juan (1646-1719). Inglés, astrónomo. Primero en obtener el título de Astrónomo Real en Gran Bretaña, es famoso por haber inventado la proyección cónica de los mapas; realizó muchos adelantos en la mejora de los métodos de observación de las estrellas.

Fleming,   Alejandro    (1881-1955).   Inglés,   bacteriólogo. Renombrado por su descubrimiento  de la  penicilina.

Florey, Howard Gualterio (1889- ). Inglés, patólogo. Con Chain aisló una forma pura y estable de penicilina, adaptable al uso medicinal.

Franklin,   Benjamín   (1706-1790).   Norteamericano, hombre de estado y físico. Fue el primero en probar la  naturaleza   eléctrica   de  los   relámpagos   e   inventó el pararrayos.

Fraunhofer, José de (1787-1826). Alemán, físico. Fue suyo el primer estudio preciso de las líneas oscuras en el espectro del Sol, llamadas líneas Fraunhofer.

Galeno, Claudio (aproximadamente de 130-200). Griego, médico; autor fecundo de obras sobre anatomía y fisiología. Sus trabajos permanecieron en uso durante muchos años.

Galilei, Galileo (1564-1642). Italiano, matemático y astrónomo. Construyó el primer telescopio astronómico práctico, con el cual estudió la superficie de la Luna, la Vía Láctea, el Sol, y muchos de los planetas.

Galvani, Luis (1737-1798). Italiano, físico. Renombrado por su descubrimiento de la electricidad animal (galvanismo). Demostró que tocando el nervio que conduce a un músculo de la pata de la rana, éste se contrae.

Gauss, Carlos Federico   (1777-1855). Alemán, matemático. Ganó gran reputación por su trabajo en las teorías del magnetismo y de los números.

Gay-Lussac, José Luis  (1778-1850). Francés, químico y físico. Notorio por su ley de las proporciones definidas y por sus otros adelantos en química.

Gilbert, Guillermo (1544-1603). Inglés, físico. El padre del magnetismo, descubrió su ley básica, es decir, que polos iguales se repelen. Concibió que la Tierra en sí, actúa como un imán.

Golgi, Camilo (1843-1926). Italiano, histólogo. Descubrió el aparato Golgi, una red nerviosa en la mayor parte de las células; desarrolló muchas técnicas de coloración para el estudio de la estructura del sistema nervioso.

Graham,   Tomás   (1805-1869).   Inglés,   químico.   Famoso por su trabajo en la difusión de los gases. Formuló la Ley de Graham.

grandes cientificos

Guericke, Otón de (1602-1686). Alemán, físico. Inventó la bomba neumática; alcanzó la obtención de vacío y creó también un aparato para la producción de electricidad mediante la fricción de una esfera de sulfuro.

Haeckel, Ernesto Enrique (1834-1919). Alemán, biólogo. Sostuvo la teoría de Darwin y realizó importantes estudios sobre las medusas, corales y esponjas. Realizó las primeras tentativas para hacer el árbol genealógico del reino animal.

Halley, Edmundo (1656-1742). Inglés, astrónomo. Mejor conocido por sus observaciones del cometa que lleva su nombre. También trabajó sobre el magnetismo terrestre los vientos y el movimiento de las estrellas.

Harvey, Guillermo (1578-1657). inglés, médico. Llegó  a  la  fama   por   su   descubrimiento   de  la   circulación de la sangre.

Heisenberg, Werner Carlos (1901- ). Alemán, físico. Notorio por su trabajo sobre estructura atómica, fundó la mecánica cuántica. También formuló el principio de incertidumbre.

Herschel,  Federico  Guillermo   (1738-1822).  Nació en  Alemania,  astrónomo. Desarrolló  un  nuevo   tipo de telescopio reflector. Descubrió  Urano y  dos  de sus satélites.

Hertz, Enrique  (1857-1894). Alemán, físico.  Probó experimentalmente la existencia de las ondas de radio  y  demostró  su   semejanza  con  la  radiación  luminosa.

Hooke, Roberto  (1635-1703). Inglés, físico. Trabajó en  matemáticas,  presión  atmosférica y  magnetismo; también estudió el microscopio y telescopio.

grandes cientificos

Hooker, José Dalton   (1817-1911). Inglés, botánico. Notable por su libro Genera Plantarium que escribió con Bentham y que contiene un nuevo e importante sistema de clasificación de las plantas.

Hopkins, Federico Gowland (1861-1947). Inglés, bioquímico.  Sus investigaciones sobre las proteínas y vitaminas fueron de gran importancia. Su trabajo llevó al descubrimiento de los aminoácidos esenciales.

Humboldt,  Federico  de   (1769-1859).   Alemán,  geógrafo. Exploró América del Sur y Asia Central; hizo muchas observaciones de los fenómenos naturales.

Hunter, Juan (1728-1793). Inglés, cirujano y anatomista. El principal cirujano de su época. Hunter fundó la cirugía científica, donde introdujo muchas técnicas quirúrgicas.

Huxley, Tomás Enrique (1825-1895). Inglés, biólogo. Sostenedor de la teoría de Darwin, Huxley trabajó sobre los vertebrados (especialmente el hombre) y métodos de enseñanza científica.

Huygens, Cristian (1629-1695). Holandés, astrónomo y físico. Descubrió la naturaleza de los anillos de Saturno y uno de sus satélites. Formuló su teoría ondulatoria de la luz e inventó el reloj de péndulo.

Jenner, Eduardo (1749-1823). Inglés, médico. Descubrió   un  método   para   prevenir  la  viruela   por  inoculación.

Joliot,  Juan  Federico   (1900-1958).  Francés,   físico. Con  su  esposa Irene Joliot Curie bombardeó  boro con partículas alfa y produjo la primera substancia radiactiva artificial.

Joule, Jaime Prescott (1818-1889). Inglés, físico. Famoso por su determinación de la equivalencia mecánica del calor y sus investigaciones en electricidad y magnetismo. La unidad de energía tomó su nombre.

Kelvin, Guillermo Thompson (1824-1907). Inglés, matemático y físico. Inventó el galvanómetro de espejo, la balanza Kelvin y el electrómetro de cuadrante. Introdujo la escala Kelvin de temperatura absoluta.

grandes cientificos

Kepler, Juan (1571-1630). Alemán, astrónomo. Sus tres leyes del movimiento de los astros son de gran importancia para la astronomía, y proveyeron las bases de la investigación de Newton sobre la gravitación.

Koch, Roberto (1843-1910). Alemán, bacteriólogo. Descubrió los organismos que causan el ántrax, la tuberculosis y el cólera. Desarrolló también nuevas técnicas de coloración y nuevos métodos de cultivo de bacterias.

Lamarck, Juan Bautista (1744-1829). Francés, naturalista. Muy famoso por su teoría de la evolución (lamarquismo) en la cual la herencia de los caracteres adquiridos —se sostenía— explicaba el origen de las especies.

Laplace, Pedro Simón, de (1749-1827). Francés, matemático. Resolvió  muchos  de los problemas matemáticos del sistema solar.  Dedujo la ley que gobierna el campo magnético que rodea a una corriente.

Lavoisier, Antonio Lorenzo (1743-1794). Francés, químico. Descubrió la naturaleza de la combustión y, finalmente, refutó la teoría del flogisto. También descubrió que los animales necesitan oxígeno para vivir.

grandes cientificos

grandes cientificos

Leeuwenhoek, Antonio de (1632-1723). Holandés, óptico. Con lentes simples hizo muchos descubrimientos importantes, observaciones de microbios, corpúsculos de sangre y tejidos animales.

Liebig, Justo de (1803-1873). Alemán, químico. Mejor conocido por su invento del condensador ds Liebig. Es importante por sus trabajos en agricultura, nutrición de las plantas y química orgánica.

Linneo, Carlos (1707-1778). Sueco, botánico. Muy conocido por su trabajo sobre clasificación de animales y plantas. Escribió el Systema Naturae.

Lister, José (1827-1912). Inglés, cirujano. Introdujo los antisépticos en la ciencia médica y más tarde la cirugía aséptica.

Lovell, Alfredo Carlos Bernardo (1913- ). Inglés, astrónomo. Profesor de astronomía de la Universidad de Manchester, trabajó en varios problemas, especialmente en la exploración de las ondas de radio provenientes del espacio.

grandes cientificos

Lyell, Carlos (1797-1895). Inglés, geólogo. Autor de muchos trabajos de geología, Lyell sostuvo la teoría de que los cambios ocurridos en la corteza de la Tierra en el pasado, se debieron a las mismas causas que los cambios que están teniendo lugar ahora.

Malpighi,  Marcelo   (1628-1694).  Italiano,  médico  y anatomista.   Descubrió los capilares entre las arterias y venas y estudió la embriología de los animales y plantas, anatomía de las plantas  e  histología de los animales.

Manson, Patricio (1844-1922). Inglés, médico. Famoso por sus investigaciones de la medicina tropical, fue el primero en demostrar que los insectos son portadores de algunos de los organismos causantes de enfermedades.

Maxwell, Jaime Clerk (1831-1879). Inglés, físico. Famoso por sus investigaciones matemáticas que condujeron al descubrimiento de las trasmisiones radiales.

Mendel,  Gregorio Juan  (1822-1884). Austríaco, naturalista.  Famoso  por su  trabajo   sobre  la  herencia, pionero del estudio  de sus leyes fundamentales.   Su trabajo forma la base  del mendelismo.

Mendeleiev, Demetrio Ivanovich  (1834-1907). Ruso, químico.  Es   famoso   por   su  formulación   de   la  ley periódica basada en los pesos atómicos.

Michelson, Alberto Abraham (1852-1931). Norteamericano, físico. Determinó la velocidad de la luz y realizó estudios prácticos de las corrientes del éter. Inventó también un interferómetro para el estudio de las líneas del espectro.

Millikan, Roberto Andrews (1868-1935). Norteamericano,  físico.  Determinó   el  valor   de  la   carga   del electrón por medio de un famoso experimento en el que usó gotas de aceite.

Newton, Isaac (1642-1727). Inglés, matemático. Notorio por su trabajo sobre la gravedad. Descubrió las tres leyes básicas del movimiento y la relación entre los colores y la luz. Sus trabajos sobre óptica, problemas matemáticos y astronomía han sido de inmensa importancia.

Oersted, Juan Cristian (1777-1851). Dinamarqués, físico. Precursor de la investigación del electromagnetismo, descubrió el principio básico de que un alambre que lleva una corriente eléctrica es rodeado por un campo magnético.

Ohm, Jorge Simón (1787-1854). Alemán, físico. Se dio su nombre a la unidad de resistencia eléctrica y su ley es de fundamental importancia en electricidad.

Pasteur, Luis (1822-1895). Francés, bacteriólogo.  Sus experimentos sobre fermentación destruyeron el mito de la generación espontánea.  Fundó la ciencia de la bacteriología y descubrió la inmunidad artificial.

Pavlov, Juan Petsovich (1849-1936). Ruso, patólogo. Es notorio por su trabajo sobre la fisiología de la digestión, y los reflejos condicionados.

Planck Max Carlos Ernesto Luis (1858-1947). Alemán, físico. Desarrolló la teoría de los cuantos y también trabajó en termodinámica y óptica.

Priestley, José (1733-1804). Inglés, químico. Descubridor .del oxígeno, no llegó a concebir la verdadera I unción de éste en la combustión y le dio el nombre de «aire desflogistado». También descubrió el amoníaco, el óxido de nitrógeno, el monóxido de carbono y el anhídrido sulfuroso.

Ramón y Cajal, Santiago (1852-1934). Español, histólogo. Es sobresaliente su trabajo sobre el sistema nervioso. Hizo importantes descubrimientos acerca de la estructura y forma de las células nerviosas, especialmente en el cerebro y la espina dorsal.

Ray, Juan (1627-1705). Inglés, naturalista. El más grande entre los primeros naturalistas ingleses, fue principalmente un botánico y señaló la diferencia entre las monocotiledóneas y las dicotiledóneas.

Roentgen, Guillermo Conrado (1845-1923). Alemán, físico. Su descubrimiento de los rayos X revolucionó ciertos aspectos de la física y la medicina.

Ross,  Ronaldo   (1857-1932).   Inglés,  médico.   Probó que la hembra del mosquito Anopheles transporta el parásito causante de la malaria.

Rutherford, Ernesto (1871-1937). Inglés, físico. Descubridor de los rayos alfa, beta y gamma emitidos por sus substancias radiactivas. Famoso por su teoría sobre la estructura del átomo, fue el primero en realizar la trasmutación de un elemento.

grandes cientificos

Scheele, Carlos Guillermo (1742-1786). Sueco, químico. Descubridor del oxígeno, el cloro y la glicerina, y sintetizó algunos compuestos orgánicos.

Schleiden, Matías Santiago (1804-1881). Alemán, botánico. Con Schwann desarrolló la «teoría celular».

Schrodinger, Erwin (1887). Austííaco, físico. Especialmente notorio por su trabajo en la mecánica ondulatoria.

Schwann, Teodoro  (1810-1882). Alemán, anatomista. Desarrolló,  con Schleiden, la «teoría celular» trabajando en tejidos animales. Descubrió la enzima pepsina.

Simpson, Jaime Young (1811-1870). Inglés, médico. Famoso por su descubrimiento de las propiedades anestésicas del cloroformo; fue el primero en usar anestésicos en cirugía.                                        ,

Smith, Guillermo (1769-1839). Inglés, geólogo. Demostró que es posible determinar la edad de las rocas mediante el estudio de los fósiles contenidos en ellas.

Soddy, Federico (1877-1956). Inglés, físico y químico. Célebre por su descubrimiento de los isótopos y por el  trabajo  realizado  ulteriormente  sobre  éstos.  Con Rutherford   presentó  la   teoría   de  la  desintegración espontánea.

Stores, Jorce Gabriel (1819-1903). Inglés, matemático y físico. Descubrió cómo determinar la composición química del Sol y las estrellas por sus espectros. Formuló también la ley de Stokes de la viscosidad.

Thomson, J. J. (1856-1940). Inglés, físico. Conocido por su determinación del e/m (carga del electrón dividido su masa), y su descubrimiento de que los rayos, catódicos consisten en electrones, o sea, partículas cargadas negativamente.

Torricelli, Evangelista (1608-1647). Italiano, físico. Inventó el barómetro de mercurio y construyó un microscopio simple.

Urey, Haroldo Clayton  (1893-       ). Norteamericano, químico. Fue el primero en aislar agua pesada y de tal manera, en descubrir el deuterío. Es una autoridad en isótopos.

Van’t Hoff, Santiago Enrique  (1852-1911). Holandés, físico.   Su nombre se asocia a una ley relativa al equilibrio  de las reacciones  químicas.  Notable también por sus investigaciones en presión osmótica.

Vesalio, Andrés (1514-1564). Belga, anatomista. Visto como el padre de la anatomía moderna, hizo írmenos descubrimientos mediante concienzudas disecciones. Mucho de su trabajo está contenido en su libro De Corporis Humani Fabrica.

Volta, Alejandro (1745-1827). Italiano, físico. Desarrolló la teoría de las corrientes eléctricas e inventó la primera batería. La unidad de presión eléctrica es conocida como «voltio» en recuerdo de su nombre.

Wallace, Alfredo Kussel (1823-1913). Inglés, naturalista. Con Darwin, publicó un ensayo sobre la teoría de la evolución. La línea Wallace, línea imaginaria, separa las áreas de la fauna asiática de la australiana.

Wegener,   Alfredo   Lotario    (1880-1930).   Alemán, geólogo. Famoso por su tesis sobre el desplazamiento de los continentes.

Wilson, Carlos Thomson Rees (1869-1959). Inglés, físico. Famoso por su invento de la cámara de niebla, la cual ha probado ser de un valor inestimable en los estudios atómicos.

Fuente Consultada:Enciclopedia Juvenil Técnico-Cientifica Editorial Codex Volumen II – Entrada Cientificos

juego conocer cientificos

Científicos Premio Nobel de Física Mas Influyentes

GRANDES FÍSICOS CONTEMPORÁNEOS

Como una extraña ironía, estado normal en el ánimo de la historia, lo que fuera la preocupación principal de los especulativos filósofos griegos de la antigüedad, siguió siendo la preocupación fundamental de los experimentados y altamente tecnificados hombres de ciencia del siglo XX: el elemento constitutivo de la materia, llamado átomo desde hace 25 siglos.

Fue prácticamente hasta los inicios de la presente centuria que la ciencia empezó a penetrar experimentalmente en las realidades atómicas, y a descubrir, de nuevo la ironía, que el átomo, llamado así por su supuesta indivisibilidad, era divisible. Mas aún, ya empezando la presente década, el abultado número de partículas subatómicas elementales descubiertas, hace necesario sospechar que están constituidas por alguna forma de realidad aún menor.

Y a pesar de que en nuestra escala de dimensiones cotidianas la distancia que separa al electrón más externo del centro del átomo es absolutamente insignificante, en la escala de la física contemporánea es inmensa, tanto que recorrerla ha tomado lo que llevamos de siglo, la participación de varias de las más agudas inteligencias de la humanidad y cientos de millones de dólares en tecnología, equipos y demás infraestructura.

En su camino, no obstante, muchos han sido los beneficios obtenidos por el hombre con el desarrollo de diversas formas de tecnología, aunque también se han dado malos usos a las inmensas fuerzas desatadas por las investigaciones. Pero por encima de todo ello, ha prevalecido un común estado del intelecto- el afán por conocer.

El Premio Nobel de Física ha seguido de cerca este desarrollo, y por lo tanto hacer un repaso suyo es recorrer la aventura de la inteligencia, con las emociones y asombros que nunca dejará de producirnos el conocimiento científico.

Por Nelson Arias Avila
Físico PhD, Instituto de Física de la Universidad de Kiev

Albert Einstein cientifico fisico nobel
1. Albert Einsten (1879-1955)
Considerado el padre de la física moderna y el científico más célebre del siglo XX.
Año: 1921 «Por sus servicios a la física teórica, y en especial por el descubrimiento de la
ley del efecto fotoeléctrico».

Realizó sus estudios superiores en la Escuela Politécnica Federal Suiza en Zurich y terminó su doctorado, en 1905, en la Universidad de Zurich. Trabajó, entre 1902 y 1909, en la Oficina de Patentes de Berna; de allí pasó a ocupar el cargo de profesor adjunto en el Politécnico de Zurich. Más tarde ejerció también la docencia en la Universidad de Berlín y en la de Princeton; dictaría, además, innumerables conferencias en universidades de Europa, Estados Unidos y Oriente. Ocupó los cargos de director del Instituto de Física de Berlín y miembro vitalicio del Instituto de Estudios Avanzados de Princeton. En 1905 formuló la «teoría de la relatividad», la cual amplió en 1916 («teoría general de la relatividad»). En 1912 formuló la «ley de los efectos fotoeléctricos». A partir de 1933 se dedicó al estudio de los problemas cosmológicos y a la formulación de la teoría del campo unificado, la cual no pudo culminar exitosamente. Además de su indiscutible aporte a la ciencia, Einstein realizó una labor prominente a favor de la paz y el humanitarismo.

Max Planck cientifico fisico nobel

2. Max Planck (1858-1947)
Recibió el Nobel en 1918 por su descubrimiento de la energía cuántica. Fundador de la física cuántica.
Año: 1918 «Como reconocimiento a los servicios que prestó al progreso de la física con
el descubrimiento
de la cuantificación de la energía».
El principio de la termodinámica fue el tema de la tesis doctoral de Max Planck, en 1879. Había estudiado matemáticas y física en la Universidad de Munich y en la de Berlín, con científicos afamados de la época. Fue profesor e investigador de la Universidad de Kiel y profesor de física teórica en la Universidad de Berlín; así mismo, se desempeñó como «secretario perpetuo» de la Academia de Ciencias. Sus investigaciones más importantes están relacionadas con la termondinámica y las leyes de la radiación térmica; formuló la «teoría de los cuantos», la cual se constituyó en la base de la física cuántica. Fue uno de los primeros en entender y aceptar la teoría de la relatividad y contribuyó a su desarrollo. Trabajó con bastante éxito también en las áreas de la mecánica y la electricidad.

Bardeen cientifico fisico nobel

3. John Bardeen (1908-1991)
Año: 1956 Único físico en ser premiado dos veces con el Nobel (1956 y 1972).
Destaca su desarrollo del transmisor.

Marie Curie cientifico fisico nobel
4. Marie Curie (1867-1934)
Física, química y Nobel de ambas disciplinas. Estudió junto con su marido el fenómeno de la radiactividad.
Año: 1903 «Como reconocimiento al extraordinario servicio que prestaron por sus investigaciones conjuntas sobre los fenómenos de radiación descubiertos por el profesor Henri Becquerel»

Madame Curie estudió física y matemáticas en París. Sus aportes a la física y a la química (cuyo Nobel también obtuvo en 1911) se inician con los estudios que desarrolló -en compañía de su marido Pierre- sobre los trabajos y observaciones de Henri Becquerel respecto de la radiactividad: Marie descubrió que la radiactividad es una propiedad del átomo; además descubrió y aisló dos elementos radiactivos: el polonio y el radio, en 1898 y 1902 respectivamente. En 1906 se constituyó en la primera mujer catedrática en La Sorbona, al ocupar la vacante tras la muerte de Pierre. Tres años más tarde publicó su «Tratado sobre la radiactividad» y en 1944 comenzó a dirigir el Instituto de Radio en París. Murió de leucemia, contraída probablemente en sus experimentos, al exponerse a la radiación.

Rontgen cientifico fisico nobel
5. Wilhelm Conrad Róntgen (1845-1923)
Primer galardonado con el Nobel de Física, en 1901, por su descubrimiento de los rayos X.
Año: 1901: «Como reconocimiento a los extraordinarios servicios que prestó a través del descubrimiento de los rayos X, que posteriormente recibieron su nombre».
Sus aportes al campo de la física abarcan campos diversos desde investigaciones relacionadas con el calor específico, hasta los fenómenos de la capilaridad y la comprensibilidad; se interesó igualmente por el área de la radiación y la polarización eléctrica y magnética. El mayor reconocimiento de la comunidad científica internacional lo obtuvo cuando trabajaba en los laboratorios de la Universidad de Wurzburgo: allí, el 8 de noviembre de 1895, descubrió los que él mismo llamó «rayos X», porque desconocía su naturaleza (también conocidos en la época como «rayos Róntgen»).

Marconi cientifico fisico nobel
6. Guglielmo Marconi (1874-1937)
Nobel en 1909, junto con Ferdinad Braun, por su contribución al desarrollo de la telegrafía inalámbrica.
Año: 1909: «Como reconocimiento a sus contribuciones para el desarrollo de la telegrafía inalámbrica».
Aunque Marconi estudió en Liverno y Bolonia, su formación en el campo de la física y la ingeniería -en las cuales se destacó- fue poco académica. El conocimiento acerca de la producción y recepción de las ondas electromagnéticas –descritas por Hertz– causaron en Marconi una fascinación especial, sobre todo por su convencimiento de que las ondas en cuestión podían utilizarse en las comunicaciones: sus experimentos desembocaron en el nacimiento de la telegrafía sin hilos; inventó, además, la sintonía, el detector magnético, la antena directriz, el oscilador giratorio, las redes directivas y colaboró con sus trabajos a perfeccionar los instrumentos de microondas.

Enrico Fermi cientifico fisico nobel
7. Enrico Fermi (1901-1954)
Año: 1938: Galardonado en 1938. Sus investigaciones en radiactividad lo llevaron a
descubrir las reacciones nucleares.

Millikan cientifico fisico nobel
8. Robert A. Millikan (1868-1953)
Año: 1923: Determinó el valor de carga del electrón y trabajó en los efectos fotoeléctricos.
Recibió el Premio en 1923.

dirca cientifico fisico nobel
9. Paul A. M. Dirac (1902-1984)
Año: 1933: Uno de los fundadores de la mecánica y electrodinámica cuántica. Recibió el Nobel en 1933
junto a Erwin Schródinger.

cientifico fisico nobel Ernst Ruska
10. Ernst Ruska (1906-1988)
Año: 1986: Premio Nobel en 1986 por su investigación en óptica electrónica.
Diseñó el primer microscopio electrónico.

Fuente Consultada:
Revista TIME Historia del Siglo XX El Siglo de la Ciencia

Historia del Progreso Tecnológico En El Uso de la Energía

Historia del Progreso Tecnológico En El Uso de la Energía

El dominio del hombre sobre la materia creció en proporción directa con el control que adquirió sobre la energía. El proceso fue larguísimo. Durante siglos y siglos la humanidad sólo dispuso de la energía muscular, primero la suya propia y luego la de los animales domésticos.

Llegó a depender en tal forma de su ganado que cuando éste era muy especializado y el clima lo obligaba a emigrar, el hombre iba tras él; al final de la edad glacial, cuando el reno siguió los hielos en su retroceso, el hombre marchó a su zaga. Lo mismo ocurrió con el camello.

Cuando la actividad era medianamente inteligente, la ejecutaban casi exclusivamente los hombres: la pirámide de Keops se edificó en base a la técnica de las multitudes y costó, probablemente, cien mil vidas. Desde hace casi dos siglos, el hombre aprendió a disponer de cantidades abundantes de energía, e inició una era industrial muy diferente a las otras épocas históricas.

He aquí la lista de los pasos más importantes hacia el dominio de la energía:

CRONOLOGÍA DE LOS AVANCES TECNOLÓGICOS

domesticacion del caballo

4000 a. C. (aprox.): El hombre domestica al caballo.

la rueda

3500 a.  C.  (aprox.) Primeros   vehículos   con   ruedas,   en   Mesopotamia. 3000  a.  C.   (aprox.):   Arado   liviano   para   trabajo   continuo.

27  a.  C.  (aprox.):  Vitrubio   describe   molinos   de   agua,   ruedas a   vapor y  algunas  máquinas. 900  (aprox.):   Los persas utilizan molinos de viento. 1638:   Galileo   publica   sus  estudios  sobre  el   péndulo  y  loe   proyectiles.

1686:   Newton publica   sus  «Principia»,   en   los  que   formula   las leyes  de   la   mecánica   celeste. 1693:   Leibniz  establece  la   ley  de  conservación  y transformación de  la   energía   cinética   en   energía   potencial  y  viceversa.

maquina a vapor

1775:   Máquina de vapor de Watt.

lavoisier

1777: Lavoisier atribuye la energía animal a procesos químicos y compara   la   respiración  con   una   combustión   lenta,

1824:   Carnot  funda   la  termodinámica.

1831:  Faraday descubre  la  inducción  electromagnética.

1843/50: Joule determina   el  equivalente   mecánico  del   calor.

1847: Helmholtz incluye el calor en la ley de conservación de la energía.

1850 a 1854: Kelvin y Clausius formulan la primera y segunda ley de la  termodinámica y descubren  la  entropía.

maxwell electromagnetismo

1860/61: Maxwell y Boltzmann calculan la distribución estadística   de  la  energía  en  los  conjuntos  de  moléculas.

1866:   Primer   cable   eléctrico   submarino   a   través   del   Atlántico.

1876: Otto construye el primer motor de combustión interna a base  de  petróleo.

1879/80: Lámpara eléctrica de filamento carbónico de Edison y  Swan.

1884:  Turbina de vapor de Parsons.

becquerel radioactividad

1896:   Becquerel descubre  la  radiactividad.

albert einstein

1905: Einstein asimila la masa a la energía en una célebre ecuación   que  luego   permitirá   la   transmutación   de   una   en   otra.

1932: Chadwick descubre el neutrón, la partícula más eficaz para el  bombardeo  de  núcleos atómicos.

fision nuclear

1945: Primera reacción de fisión nuclear, con uranio (punto de partida de las centrales electroatómicas y de la propulsión atómica).

1951: Primera reacción de fusión nuclear, con hidrógeno pesado (reacciones termonucleares).

1956:   Primera   turbina   atómica,   en   Calder   Hall   (Gran   Bretaña!.

Naturaleza Ondulatoria de la Materia Resumen Descriptivo

Naturaleza Ondulatoria de la Materia

RESUMEN DESCRIPTIVO DE LA FÍSICA CUÁNTICA APLICADA A LA MATERIA: Durante los últimos 300 años, los científicos han invertido mucho tiempo en discutir e investigar la naturaleza de la luz. En el siglo XVII, Isaac Newton sostenía que los rayos luminosos consistían en flujos de partículas muy pequeñas. Esta teoría corpuscular prevaleció durante muchos años, aunque Christian Huygens, contemporáneo de Newton, tenía el convencimiento de que la luz era trasmitida mediante vibraciones (es decir, ondas) en el éter.

Isaac Newton

HUYGENS Christian (1629-1695

En los primeros años del siglo XIX, Thomas Young realizó sus famosos experimentos sobre las interferencias luminosas. Estos fenómenos podían explicarse muy bien con sólo suponer que la luz es un conjunto de ondas y no un flujo de partículas.

Por consiguiente, la teoría ondulatoria parecía explicar satisfactoriamente todas las observaciones experimentales hechas hasta la época, por lo que se pensaba que remplazaría para siempre a la teoría corpuscular. Después, a fines del siglo XIX, se descubrió que, en ciertas condiciones, se liberaban electrones cuando incidía un rayo luminoso sobre una superficie.

Al incidir un haz de luz sobre ciertos materiales se desprenden electrones, creando una corriente electrica, medida por el galvanómetro.

La teoría ondulatoria no podía explicar este fenómeno, que conocemos con el nombre de efecto fotoeléctrico. Este nuevo descubrimiento planteó a los físicos un serio dilema. El efecto fotoeléctrico era más fácilmente explicable acudiendo a la teoría corpuscular, aunque casi todos los otros fenómenos luminosos se explicaban mejor a partir de la teoría ondulatoria.

Éstos eran algunos de los problemas teóricos que tenían planteados los físicos cuando apareció en escena el joven aristócrata francés Luis de Broglie. En una tesis publicada en 1922, cuando sólo tenía 30 años, sugirió que la luz presentaba un comportamiento a veces ondulatorio y a veces corpuscular, aunque no ambos al mismo tiempo.

Científico Luis De Broglie

LOUIS DE BROGLIE (1892-1960): Físico nacido en Francia el año 1892. Sus trabajos de investigación le permitieron descubrir la naturaleza ondulatoria de los electrones. Fue galardonado con el Premio Nobel de Física en 1929.

De Broglie supuso que, así como la luz, normalmente de naturaleza ondulatoria, podía, en ciertos fenómenos, comportarse corpuscularmente, las partículas pequeñas, tales como los electrones, podían presentar características ondulatorias. Pero tuvo que esperar 5 años para que se descubriera la evidencia de este fenómeno.

Fue en 1927 cuando los estadounidenses Clinton G. Davisson y L. H. Germer, trabajando en los laboratorios de la Bell Telephone, consiguieron producir fenómenos de  difracción  con un flujo de electrones, usando un cristal como red de difracción.

La teoría dualista de De Broglie puede aplicarse a todas las partículas en movimiento, cualquiera que sea su naturaleza.

La longitud de onda de esta onda De Broglie (la onda asociada con la partícula) se averigua dividiendo la constante de Planck por la cantidad de movimiento de la partícula. Luis Víctor de Broglie nació en Dieppe (Francia), en 1892. Su hermano mayor, Maurice, el sexto duque De Broglie, fue también un físico de cierta importancia.

Luis se interesó, primero, por la historia y la literatura, pero después, sirviendo en el ejército francés durante la primera guerra mundial, se dedicó a la física. En reconocimiento a su contribución al avance de la física teórica, Luis de Broglie fue galardonado, en 1929, con el premio Nobel. Desde 1928 fue profesor de física teórica en la Universidad de París, donde había cursado sus estudios.

PARA SABER MAS…

La teoría cuántica puso una bomba bajo la visión de física clásica y, al final, la derrocó. Uno de los pasos críticos de esta rebelión se dio cuando Erwin Schrodinger formuló su teoría de la mecánica de ondas, en la que sugería que un electrón, en un átomo, se comporta como una onda. Se guiaba por la belleza, por su principio básico de que si una solución no era matemáticamente hermosa, casi seguro era incorrecta. El trabajo de Schrodinger recibió un estímulo vital cuando leyó la tesis doctoral en Filosofía de Louis de Broglie, y fue oficialmente reconocido cuando, en 1933, Schrodinger compartió el Premio Nobel de Física con Paul Dirac.

El saludo de la onda de electrones
En 1900, Max Planck había sugerido por primera vez que la energía venía en conglomerados. Esto llevó a pensar que la luz — que es una forma de energía— también estaba compuesta de partículas. Al principio no parecía probable, pero Einstein había desarrollado el concepto hasta el punto de tener una credibilidad considerable, y las partículas de la luz se conocieron como fotones.

A pesar de que la luz era claramente una partícula, :ambién tenía propiedades de onda. El trabajo de Planck había demostrado que distintas luces se transformaban en diferentes colores porque los fotones tenían distintas cantidades de energía. Sin embargo, si se divide la energía por la frecuencia a la que ese color oscila, siempre resulta el mismo valor, la llamada constante de Planck.

Eso para la luz. ¿Pero qué hay de las partículas de materia? la pregunta empezó a tener respuesta cuando Louis de 3roglie, un aristocrático físico francés del siglo XX, sugirió c¡ue las partículas de los materiales parecían ser :onglomerados localizados porque no éramos capaces de verlas más de cerca. Una mejor observación, creía, revelaría que ellas también tienen propiedades de onda.

Buscando soporte para sus ideas sobre la teoría de la relatividad de Einstein, de Broglie demostró que, con las ecuaciones Je Einstein, podía representar el movimiento de la materia :omo ondas. Presentó sus descubrimientos en 1924, en su :esis doctoral Recherches sur la Théorie des Quanta (Investigación sobre la Teoría Cuántica).

Se demostró experimentalmente gracias al trabajo con electrones llevado a cabo por los físicos americanos Clinton Joseph Davisson y Lester Hallbert Germer en 1927, quienes demostraron que los electrones, aun siendo partículas, se comportan como ondas. Planck había cambiado nuestra visión de la luz, Broglie cambió la de la materia.

La aportación de Schrodinger en esta revelación, fue tomar .as observaciones de Broglie y desarrollar una ecuación que describía el comportamiento de los electrones. Usó la ecuación para definir los modos de movimiento de los electrones en los átomos, y descubrió que las ecuaciones sólo funcionaban cuando su componente de energía era múltiplo de la constante de Planck.

En 1933, Schrodinger recogió el Premio Nobel de Física, aero, al hacerlo, pagó tributo a Fritz Hasenhórl, el profesor de Esica que había estimulado su imaginación cuando era estudiante en la Universidad de Viena. Hasenhórl había sido asesinado en la Primera Guerra Mundial, pero durante su aiscurso de recepción, Schrodinger remarcó que de no haber ;:do por la guerra, habría sido Hasenhórl, y no él, quien recibiera el honor.

Fuente Consultada:
Las Grandes Ideas que Formaron Nuestro Mundo Pete Moore
TECNIRAMA Enciclopedia de la Ciencia y la Tecnología

Funcionamiento de Olla a Presión Historia de Papin Denis

Funcionamiento de Olla a Presión
Historia de Papin Denis

FUNCIONAMIENTO: Las ollas a presión suponen un enorme ahorro de tiempo en la cocina, ya que, permiten cocer los alimentos en un plazo mucho menor del requerido normalmente. El tiempo necesario para la cocción depende mucho de la temperatura del alimento y del ambiente que lo rodea. Por ejemplo, un trozo de carne tarda mucho más en asarse en un horno a fuego lento que si se aumenta la temperatura. Sin embargo, si ésta se aumenta demasiado, la carne se quema, en vez de cocerse como es debido.

Lo mismo ocurre cuando los alimentos se cuecen en agua. Por ejemplo, un huevo metido en agua a 80°C, tarda mucho más en cocerse que si el agua está hirviendo. Así, pues, el tiempo de cocción depende de la temperatura. Si se mide la temperatura a intervalos durante la cocción del huevo, se ve que aquélla aumenta, hasta que el agua comienza a hervir, y entonces permanece constante a 100°C

El proporcionarle mas calor no altera la temperatura: lo único que ocurre es que el agua hierve más vigorosamente. Bajo condiciones atmosféricas normales, el agua pura hierve a 100°C. Sin embargo, el punto de ebuffieión del agua varía con la presión. En la cumbre de una montaña elevada, donde el aire está enrarecido y la presión es inferior a la normal, el agua hierve a una temperatura más baja. Si por algún procedimiento se aumenta la presión del gas sobre el agua, su punto de ebullición sube.

Esto es exactamente lo que ocurre en las ollas a presión. Aumenta la presión del gas dentro de ellas y, por lo tanto, el punto de ebullición del agua que contienen, con lo cual los alimentos se cuecen más rápidamente a temperaturas más altas.

El agua hierve a 100 °C, a la presión atmosférica normal (1,03 kg. por centímetro cuadrado) . Si se aumenta la presión a 1,4 kg./cm2., hierve a 108 °C; si se incrementa a 1,75 kg./cm., lo hará a 115°C., y así sucesivamente. De hecho, algunas ollas trabajan a una presiones dos veces mayor que la atmosférica.

Las ollas a presión tienen que ser lo bastante sólidas para soportar las fuertes presiones, y la tapa ha de cerrar herméticamente, para que la presión interior se mantenga sin que se produzcan fugas.

La tapa lleva un punto débil, colocado deliberadamente para que actúe como dispositivo de seguridad, ya que, en caso de que se obstruyera la válvula de seguridad a través de la cual escapa normalmente el vapor, la olla podría convertirse en una bomba, de no existir dicho dispositivo, pues a medida que se siguiera aplicando calor la presión iría aumentando, hasta que, finalmente, explotaría.

Pero la olla no es tal arma mortífera y no ocurre eso, ya que, cuando la presión aumenta demasiado, la válvula de seguridad se abre y escapa el exceso de gas. En el centro de la tapa, hay un orificio en el que se asienta un manómetro de aguja, que lleva un peso. Se comienza la cocción sin colocar la válvula.

corte de una olla a presión

Corte de una olla a presión

El agua hierve a la presión atmosférica y la olla va llenándose de vapor, hasta que, por fin, brota un chorro de éste por el orificio. Entonces, se coloca el manómetro y el orificio queda bloqueado.

Esto impide que escape el vapor y, con ello, aumenta la presión. A medida que esto ocurre, el vapor acciona sobre el dispositivo, hasta que brota una nube que indica que la presión deseada se ha alcanzado. En este momento, debe regularse el gas o la electricidad, para mantener la presión.

Cuando se ha acabado la cocción, hay que enfriar la olla bajo la canilla de agua. El agua fría elimina calor de aquélla, y una parte del vapor interior se condensa en forma de gotitas acuosas. Con lo cual, al reducirse la cantidad de vapor, la presión disminuye. Entonces se puede abrir la olla.

Fuente Consultada: Enciclopedia de la Ciencia y la Tecnología TECNIRAMA N°126

SOBRE LA VIDA Y OBRA DE DENIS PAPIN: Uno de los trece hijos de un burgués protestante de Blois, llamado Denis Papin se orienta primero hacia la medicina, mostrando en la facultad de Angers un interés precoz por la mecánica y la cuestión de la conservación de los cadáveres. Su habilidad manual hace que repare en él un abate muy conocido, que lo recomienda a Christiaan Huygens, «inventor del reloj de péndulo», como se lo presentaba entonces.

Retrato de Denis Papin (1647-1714). Trabajó con Robert Boyle en la investigación sobre el aire. Es recordado por sus inventos y es considerado uno de los grandes pioneros de la máquina de vapor moderna. La máquina de vapor de Papin se compone de un cilindro con un pistón que es levantado por la presión del vapor, y es descendente produciendo el trabajo.

Pilar de la Academia Real de Ciencias, dotado por el Rey de 1.200 libras de renta, el sabio holandés se instaló en la Biblioteca real, donde procedió a realizar múltiples experiencias. Es allí donde el joven Papin, brillante posdoctorado estilo siglo XVII, se inicia en la tecnología de la «bomba al vacío», al tiempo que lleva a cabo investigaciones inéditas sobre la conservación de los alimentos. Para el gran asombro de Huygens, logra mantener una manzana en condiciones, bajo vacío, ¡durante cinco meses!.

Como los laboratorios de física no eran muy numerosos en 1675, no es nada sorprendente encontrar al joven oriundo de Blois en Londres, en casa de Robert Boyle, aristócrata de fortuna apasionado por la mecánica.

Provisto de un contrato bastante ventajoso pero que estipula el secreto, Papin construye para su amo bombas de un nuevo género (dos cilindros hermanados conducidos por una palanca común que permite una aspiración continua), con las cuales termina por efectuar las experiencias él mismo. Boyle nunca ocultará lo que le debe a su técnico francés, a quien cita con abundancia en sus publicaciones pero cuyos textos, aclara, reescribe sistemáticamente.

Es en ese laboratorio donde la gloria viene a coronar la doble obsesión, mecánica y culinaria, de Papin. Al adaptar una sopapa de seguridad, que inventa para la ocasión, sobre un recipiente metálico herméticamente cerrado con dos tornillos, crea el «digestor», o «baño maría de rosca», que se convertirá en la olla a presión, cuyo vapor pronto silba en las cocinas del Rey de Inglaterra y en la sala de sesiones de la Academia real de París.

Dice Denis: «Por medio de esta máquina , la vaca más vieja y más dura puede volverse tan tierna y de tan buen gusto como la carne mejor escogida», y en la actualidad no se concibe adecuadamente el impacto que podía tener una declaración semejante: en 1680, a los treinta y tres años, Papin es elegido miembro de la Royal Society, como igual de sus famosos empleadores, incluso si su nivel de vida sigue siendo el de un técnico.

Aunque en 1617 se haya instalado en Inglaterra un sistema de patentes, a Papin no le parece de ninguna utilidad interesarse en eso. Mientras los artesanos ingleses hacen fortuna fabricando su marmita, él solicita a Colbert una renta vitalicia… que le es negada.

De todos modos, ahí lo tenemos, lanzado en el jet set intelectual de la época. Lo vemos disertando sobre la circulación de la sangre en casa de Ambrose Sarotti, en Venecia, experimentando con Huygens en París sobre la bomba balística (un pesado pistón puesto en movimiento por una carga de pólvora) y lanzando en Londres su candidatura al secretariado de la Royal Society.Por desgracia, el elegido será Halley.

Fatigado, sin dinero, Papin agobia a la Royal Society con candidos pedidos, antes de desaparecer definitivamente en 1712.

Fuente Consultada: Una Historia Sentimental de las Ciencias Nicolas Witkowski

Concepto de Calor Latente Investigación de Black Joseph

CONCEPTO DE CALOR LATENTE

CALOR LATENTE:  Cuando calentamos una substancia esperamos que su temperatura ascienda. Un termómetro colocado en una olla con agua sobre un calentador registrará un aumento gradual de la temperatura hasta llegar a los 100°C, en que el agua entra en ebullición. No hay más cambios de temperatura hasta que toda el agua se evapora, aunque el calentador siga suministrando calor. Este calor, que no se pone en evidencia por el aumento de temperatura, se denomina calor latente de vaporización del agua. Latente quiere decir «oculto».

Todo el calor que pasa al agua hirviendo se emplea en proveerla de la energía necesaria para transformarse en vapor. Las moléculas de vapor están mucho más alejadas entre sí que las del agua, y para separarlas es necesaria una cantidad de energía, que venza las fuerzas de atracción molecular.

Del mismo modo, todo el calor entregado al hielo se consume en transformarlo en agua, de modo que no queda calor disponible para elevar su temperatura.

Cada sustancia requiere calor «latente» para permitirle cambiar de estado sólido a estado líquido, o de líquido a gas.

Si el cambio de estado es de gas a líquido o de líquido a sólido, el calor «latente» es liberado.

Hablando en forma estricta, el calor latente se refiere a un gramo de substancia. Así el calor latente de vaporización del agua (calor latente del vapor) es la cantidad de calor necesaria para convertir un gramo de agua en vapor, sin cambio de temperatura.

Su valor es de casi 540 calorías. El calor latente de fusión del hielo es la cantidad de calor necesaria para convertir un gramo de hielo en agua, sin cambio de temperatura, y vale 80 calorías.

La nevera o heladera se basa en el calor latente de algún gas fácilmente licuable, como el amoníaco. Se comprime el gas y se lo convierte en un líquido. En este proceso el gas entrega su calor latente. El líquido se envía por tubos al gabinete.

Como en estos tubos la presión es menor, el líquido se gasifica nuevamente, tomando el calor necesario para este cambio de estado del gabinete y su contenido, y así hace bajar la temperatura del mismo.

La nafta volcada, sobre la piel da sensación de frío, porque se evapora rápidamente y absorbe calor latente.

Del mismo modo, la evaporación del sudor en los climas cálidos es el procedimiento que emplea la naturaleza para que mantengamos frescos nuestros cuerpos. Por otra parte, el calor latente liberado cuando se forma hielo en los grandes lagos de Estados Unidos es de gran utilidad para los fruticultores de la zona, porque evita las heladas.

//historiaybiografias.com/linea_divisoria2.jpg

PRIMERAS INVESTIGACIONES EN CALORIMETRÍA

Una de las formas de energía más familiar para nosotros es el calor. Diariamente hacemos uso de él para calentar nuestra casa, para preparar la comida, etc. La energía calorífica es debida al movimiento de las moléculas y de los átomos. La experiencia nos enseña que la energía de un cuerpo puede transformarse en calor, siendo también posible que la energía térmica se convierta en trabajo, como sucede en los motores de explosión o en las máquinas térmicas. Por todo ello decimos que el calor es una forma de energía.

DIFERENCIA ENTRE CALOR Y TEMPERATURA: Actualmente, está muy bien determinada la diferencia entre calor y temperatura, a pesar de que algunos estudiantes puedan confundir estos dos conceptos. Calor es la energia necesaria para calentar un cuerpo y temperatura es una medida de su grado de calor. Cuanto mas energía entreguemos mas temperatura tendrá el cuerpo.

Para pensar este tema, imaginemos que debemos calentar 1 litro de agua de 10°C a 20°C, es decir , elevarla 10°C mas. Para lograrlo debemos entregar energía a esa masa de agua, por ejemplo colocarla sobre la hornalla de una cocina. Observaremos que a medida que pasa el tiempo el agua se pone mas caliente, por lo que podemos concluir que a medida que entregamos energía el agua aumenta su temperatura. Vemos que hay dos conceptos definidos por un lado la cantidad de energía o calor entregado y por otro la medida de su temperatura.

Si por ejemplo ahora tenemos que calentar 2 litros de agua de 10°C a 20°C, entonces necesitaremos el doble de energia entregada, para lograr la misma temperatura.

Para medir la energia entregada en forma de calor, se define la caloría que es la cantidad de calor necesaria para calentar de 14°C a 15 °C un gramo de agua. La unidad así definida corresponde a una cantidad de calor muy pequeña, por lo que, generalmente, en la práctica se utiliza la kilocaloría, que corresponde a 1.000 calorías.

Se usa por definción de  14 a 15°C solo como una medida de referencia, en realidad lo que
objetivamente se quiere indicar, es que el aumento sea de 1°C.

Para medir temperaturas utilizamos un termómetro con diversas escalas, pero la mas popular es grados centígrados o Celsius, creador de esta escala, que comienza a O° cuando el hielo se congela y finaliza en 100°C cuando el agua entra en ebullición.

La temperatura (la intensidad de calor) puede medirse fácilmente usando un termómetro.  Por el contrario, para la medida del calor (cantidad de energía entregada para calentar la materia) se usa la caloría.

HISTORIA: Hace unos 200 años, Joseph Black llevó a cabo una serie de experimentos muy importantes sobre la medida del calor y las relaciones entre el calor y la temperatura.

Joseph Black fisico

Demostró que el hielo en fusión y el agua hirviendo, que produce vapor, absorben grandes cantidades de calor, a pesar de que no hay cambios de temperatura. Introdujo el concepto de calor latente, con el que designó el calor necesario para producir esos cambios de estado.

grafica calor latente

Observe por ejemplo que cuando la temperatura llega a B, por mas que se sigua agregando calor, la temperatura
permanece constante hasta que no haya mas sustancia sólida. Lo mismo ocurre para que la sustancia
cambie de líquida a gaseosa.

La energía necesaria para que una sustancia cambie de estado es: Q = m. L
Donde m es la masa de la sustancia considerada y L es una propiedad característica de cada sustancia, llamada calor latente. El calor latente se mide en Joule/kg en unidades del SI.

Black también descubrió que se necesitan distintas cantidades de calor para producir las mismas elevaciones de temperatura en masas iguales de sustancias diferentes. Por ejemplo, para aumentar la temperatura del agua de 15° a 25° hace falta aplicar 1,7 veces más calor que para producir el mismo cambio de temperatura en una masa igual de alcohol.

Para explicar esta variación entre las diferentes sustancias, Black introdujo la idea de calor específico. Al realizar este trabajo, sentó las bases de la medida del calor —la calorimetría—, que sigue teniendo vigencia aún. Durante los 100 años anteriores, o más, los avances de la química habían estado obstaculizados por la teoría del flogisto. Sin embargo, como Black no aceptaba las teorías que no estuviesen apoyadas por pruebas experimentales, hizo varias aportaciones valiosas a la ciencia química.

calor latente

Black definió el «calor latente» como la cantidad de calor para cambiar de estado una sustancia

Hasta mediados del siglo XVIII, se sabía muy poco acerca de los gases y, de hecho, muchas personas aseguraban que sólo existía un gas (el aire). Un siglo antes (en 1640, para precisar más), van Helmont había descubierto el gas que hoy llamamos anhídrido carbónico; pero, a causa del incremento de la teoría del flogisto, no se llegó a comprender la importancia de este hallazgo.

Black redescubrió el anhídrido carbónico en 1754, haciendo experimentos con dos álcalis débiles: los carbonatas de magnesio y de calcio. Comprobó que cuando estas sustancias se calientan, cada una de ellas produce un álcali más fuerte, liberando, al mismo tiempo, aire fijo (o sea, el anhídrido carbónico). El peso del álcali fuerte es menor que el del álcali débil del que procede.

Joseph Black nació en 1728, en Burdeos (Francia), de padres que descendían de escoceses. Después de pasar seis años en la escuela en Belfast, en 1746, ingresó a la Universidad de Glasgow, para estudiar química y medicina. En 1756, llegó a ser profesor de anatomía y de química en Glasgow.

Al cabo de 10 años pasó a la cátedra de medicina y química de la Universidad de Edimburgo. Black era muy popular entre los estudiantes porque preparaba concienzudamente los cursos y sus clases estaban ilustradas con muchos experimentos.

Al mismo tiempo que hacía notables aportaciones a la química y a la física, encontró tiempo suficiente para ejercer la medicina. Murió apaciblemente, todavía ocupando su cátedra, a la edad de 71 años.

Calor especifico

También definió el calor especifico, para tener en cuenta las diferentes cantidades de calor necesarias para producir un mismo aumento de temperatura en masas iguales de distintas sustancias.

No todos los materiales cambian su temperatura con la misma facilidad, ya que las partículas que los forman y las uniones entre ellas son diferentes. El calor específico Informa sobre la mayor o menor facilidad de las sustancias para aumentar su temperatura. El calor específico de una sustancia, ce, es la cantidad de calor necesaria para elevar un grado la temperatura de un kilogramo de dicha sustancia.

Algunos valores de calor específico expresado en: (Joule/Kg. °K)

Agua    4.180
Alcohol etílico    2.400
Hielo    2.090
Vapor de agua    1.920
Aire    1.000
Aceite    1.670
Aluminio    878
Vidrio    812
Arena    800
Hierro    460
Cobre    375
Mercurio    140
Plomo    125

Fuente Consultada:
Enciclopedia TECNIRAMA de la Ciencia y la Tecnología Fasc. N°112 Sabio Ilustre Joseph Black
Enciclopedia del Estudiante Tomo N°7 Física y Química

Conceptos Básicos de Electromagnetismo Historia y Aplicaciones

Conceptos Básicos de Electromagnetismo
Historia y Aplicaciones

Antetodo se aclara que la explicación sobre este fenómeno físico es sólo descriptivo y tiene como objetivo describir las características mas imporatantes del mismo. Es una especie de descripción tecnico-histórica para darle al interesado una somera idea de como funciona la naturaleza en lo que respecta a la interacción de campos magnéticos y eléctricos.

De todas maneras es una interesante descripción  orientada a todos los curiosos de la física o para quellos estudiantes principiantes que desean adentrarse en el mundo del electromagnetismo. Leer con detenimiento estos conceptos básicos, ayudarán de sobremanera a enteder luego las explicaciones matemáticas o conclusiones finales de las experiencias de laboratorio.

Si el lector desea un estudio mas técnico, con las correspondientes deducciones matemáticas que implican un analisis profundo del fenómeno, debería hacer nuevas búsquedas, ya que existen muchos y excelentes sitios que explican muy didacticamente al electromagnetismo.

INTRODUCCIÓN HISTÓRICA: Los fenómenos conocidos de la electricidad estática y del magnetismo permanente han sido observados durante unos 2500 años. William Gilbert, en Inglaterra, realizó muchas investigaciones ingeniosas en electricidad y magnetismo. En 1600, publicó De Magnefe, el primer libro concluyente sobre este tema, donde explica muchas de las  semejanzas entre la electricidad y el magnetismo.

Una y otro poseen opuestos (positivo y negativo en electricidad, polo norte y polo sur en electromagnetismo). En ambos casos, los opuestos se atraen y los semejantes se repelen, y también en ambos casos la fuerza de la atracción o repulsión declina con el cuadrado de la distancia.

Nosotros, igual que los primeros observadores, hemos notado semejanzas entre los fenómenos relativos a la electricidad y los relacionados con el magnetismo.

Por ejemplo:
1.   Existen dos clases de concentración eléctrica —más y menos— y dos clases de concentración magnética  —norte y sur.
2.   Tanto en electricidad como en magnetismo, concentraciones del mismo nombre se repelen entre sí; mientras que concentraciones de nombre diferente se atraen mutuamente.
3.   Los efectos eléctricos y los magnéticos se describen  en función  de campos.
4.   En electricidad y en magnetismo, las fuerzas de atracción y repulsión están de acuerdo con la ley inversa  de  los cuadrados.
5.   Cuerpos apropiados pueden electrizarse frotándolos (como cuando se frota un objeto de plástico con una piel); análogamente, cuerpos apropiados pueden ser imantados por frotamiento (como cuando se frota una aguja de acero con un imán).
6.   Ni las cargas eléctricas, ni los polos magnéticos son visibles, ni tampoco los campos asociados, eléctrico o magnético. Tanto en electricidad como en magnetismo, las concentraciones y sus campos se conocen sólo por sus efectos.

Quizás podamos encontrar otras semejanzas. Se puede ver de qué modo ellas llevaron a los primeros científicos a sospechar que la electricidad y el magnetismo estaban íntimamente relacionados, siendo, posiblemente, manifestaciones distintas del mismo fenómeno fundamental.

Cuando en 1800, el físico italiano Alessandro Volta descubrió la primera pila electroquímica útil, los hombres de ciencia tuvieron la primera fuente segura de energía para hacer funcionar circuitos eléctricos. Todavía no se encontraban pruebas de alguna conexión entre los fenómenos eléctricos y magnéticos. Por consiguiente, en la primera mitad del siglo XIX los sabios opinaban que «a pesar de las semejanzas aparentes entre la electricidad y el magnetismo, estos dos fenómenos no están relacionados entre sí».

Esta era la situación de 1819 cuando un profesor de ciencias danés, llamado Hans Christian Oersted, hizo una observación de gran importancia en este campo de la Física. Oersted, al parecer, había considerado y buscado un enlace entre la electricidad y el magnetismo.

Fisico Oerster

Hans Christian Oersted

De acuerdo con uno de sus alumnos, Oersted estaba utilizando una batería de las pilas voltaicas primitivas durante una de sus clases. En aquellos días, las baterías eran caras, difíciles de manejar y no duraban mucho tiempo.

Oersted deseaba usarla mientras fuera posible, así que colocó un alambre paralelo arriba de una brújula y cerró el circuito.

Posiblemente, Oersted trataba de demostrar a sus alumnos que la corriente eléctrica y el comportamiento de la brújula no estaban relacionados. Para su sorpresa, cuando cerró el circuito, la aguja de la brújula se movió y osciló a una posición que ya no era paralela al alambre. Oersted había tropezado con el fenómeno de que una corriente eléctrica está rodeada de un campo magnético.

Además, tenía su mente alerta y con el pensamiento abierto para reconocer un fenómeno inesperado   y   atribuirle   la   importancia   que   merecía.

Oersted efectuó muchos experimentos con estos nuevos fenómenos y, al principio del año siguiente, publicó una pequeña comunicación describiendo sus observaciones. Las noticias científicas viajan, en general, con rapidez y no pasó mucho tiempo cuando un gran número de investigadores capaces realizaban experiencias sobre electromagnetismo.

Entre ellos estaban Michael Faraday en Inglaterra, André Ampére en Francia y William Sturgeon, quien fabricó el primer electroimán con núcleo de hierro en 1823. Con toda seguridad el descubrimiento de Oersted, en su aula, fue un paso importante en el desarrollo de  los conceptos del electromagnetismo.

Una de las razones de que los efectos magnéticos de una corriente eléctrica fueran tan importantes es que introdujeron una nueva clase de fuerza. Todas las observaciones previas con cualquier tipo de fuerzas estaban relacionadas con acciones sobre la recta entre los cuerpos que producían la fuerza. Así, las fuerzas gravitacionales están siempre en la línea recta que une las dos masas; de este modo se comportan también las fuerzas atractivas y repulsivas entre cargas eléctricas y entre imanes.

Pero aquí, existía una fuerza donde la acción era perpendicular a la recta que une el alambre y la aguja de la brújula. Cuando Oersted colocó una corriente arriba y paralela a la brújula, la aguja giró alejándose de su posición paralela al alambre.

PARTE I: IMANES , MAGNETISMO Y CORRIENTES INDUCIDAS
En la Naturaleza existe un mineral, llamado magnetita por haber sido descubierto en la ciudad griega de Magnesia, que tiene la propiedad de atraer las limaduras de hierro. Este fenómeno se denomina magnetismo y los cuerpos que lo manifiestan se llaman imanes. Un imán tiene dos polos, uno en cada extremo, que llamanos Norte y Sur

Si tomamos un imán, que puede girar horizontalmente alrededor de su punto medio, y le acercamos un polo de otro imán se observa que los polos del mismo nombre se repelen y los de nombre distinto se atraen.

Al dividir un imán en varios trozos, cada uno de ellos, por pequeño que sea, posee los dos polos. Este comportamiento se explica suponiendo que los imanes están formados por una gran cantidad de minúsculos imanes ordenadamente dispuestos. Así, al frotar un trozo de hierro con con imán se ordenan los pequeños imanes que contiene el trozo de hierro, de tal modo que la acción magnética no se neutraliza entre ellos. El trozo de hierro así tratado manifiesta sus propiedades magnéticas y constituye un imán artificial.

Hoy se sabe que los imanes están formados por minúsculos imanes moleculares originados por el giro de electrones que dan lugar a corrientes eléctricas planas, y según el sentido de giro presentan una cara norte o una cara sur.

La región del espacio sensible a las acciones magnéticas se llama campo magnético.

Para visualizar el campo magnético, Michael Faraday (1791-1867), de quien hablaremos mas abajo, esparció limaduras de hierro sobre un papel colocado encima de un imán. Observó que las limaduras se situaban en líneas cerradas; es decir, líneas que parten de un polo del imán y que llegan al otro polo.

limaduras de hierro en un imán

Además, las líneas no se cortan. Estas líneas se llaman líneas de campo o de fuerza  y, por convenio, se dice que salen del polo norte y entran en el polo sur. No existe una expresión matemática sencilla que sirva para determinar el campo magnético en las inmediaciones de un imán, pero podemos decir que:

•  El campo magnético se reduce a medida que nos alejamos del imán.
•  El campo magnético depende del medio en el que situemos al imán.

Observemos el comportamiento de la brújula, frente al campo mágnetico que produce nuestro planeta.

El núcleo de la Tierra está compuesto  por una aleación de hierro y níquel. Este material es muy buen conductor de la electricidad y se mueve con facilidad por encontrarse en estado líquido.

La Tierra actúa como un imán: Campo magnético terrestre. Si tomamos una aguja imantada y la dejamos girar libremente, se orientará siempre en una misma dirección norte-sur. De ahí que al polo de un imán que se orienta hacia el norte geográfico le denominemos polo norte, y al otro polo del imán, polo sur. Esto quiere decir que la Tierra se comporta como un enorme imán. Y es debido a que a medida que la Tierra gira, también lo hace el hierro fundido que forma su núcleo.

El planeta Tierra es como un gran imán con dos polos.

 Los polos geográficos y los polos magnéticos de la Tierra no coinciden, es decir, que el eje  N-S
geográfico no es el mismo que el eje N-S magnético.

EXPLICACIÓN DE LAS EXPERIENCIAS:

Como parte de una demostración en clase, colocó la aguja de una brújula cerca de un alambre a través del cual pasaba corriente.

experimento de Oerster

Experimento de Oerster

La aguja dio una sacudida y no apuntó ni a la corriente ni en sentido contrario a ella, sino en una dirección perpendicular. 0rsted no ahondó en su descubrimiento, pero otros sí se basaron en él, y concluyeron:

1a-Antes de conectar la corriente eléctrica la aguja imantada se orienta al eje N-S geográfico.

1b-Al conectar el circuito eléctrico, la aguja tiende a orientarse perpendicularmente al hilo.

2a– Cambiamos el sentido de la corriente eléctrica invirtiendo las conexiones en los bornes de la pila.

Igual que en el primer experimento, antes de conectar la corriente eléctrica la aguja imantada se orienta al N-S geográfico. Pero al conectar ahora el circuito eléctrico, la aguja se orienta también perpendicularmente al hilo, aunque girando en dirección contraria a la efectuada anteriormente.

Las experiencias de Oersted demuestran que las cargas eléctricas en movimiento (corriente) crean un campo magnético, que es el causante de la desviación de la brújula; es decir, una corriente eléctrica crea a su alrededor un campo magnético.

•  La dirección del campo magnético depende del sentido de la corriente.
•  La intensidad del campo magnético depende de la intensidad de la corriente.
•  La intensidad del campo magnético disminuye con la distancia al conductor.

Llamamos campo magnético a la región del espacio en donde se puede apreciar los efectos del magnetismo, por ejemplo mientras la aguja se la brújula se desplaze hacia un costado, significa que estamos dentro de ese campo magnético. A medida que alejamos la brújula del conductor observaremos que el efecto se pierde pues el campo magnético creado desaparece. Para graficar un campo magnético utilizamos líneas circulares con flechas que muestran el sentido del campo y las denominamos: líneas de fuerza.

El físico francés André-Marie Ampére (1775-1836) quien continuó con el estudio de este fenómeno, dispuso dos alambres paralelos, uno de los cuales podía moverse libremente atrás y adelante. Cuando ambos alambres transportaban corriente en la misma dirección, se atraían de forma clara.

Ampere Fisico

André-Marie Ampére (1775-1836)

Si la corriente fluía en direcciones opuestas, se repelían. Si un alambre quedaba libre para girar, cuando las corrientes discurrían en direcciones opuestas, el alambre móvil describía un semicírculo, y cesaba de moverse cuando las corrientes tenían el mismo sentido en ambos alambres. Resultaba manifiesto que los alambres que transportaban una corriente eléctrica mostraban propiedades magnéticas.

Campo magnético creado por un conductor rectilíneo
Las líneas de fuerza del campo magnético creado por un conductor rectilíreo son circunferencias concéntricas y perpendiculares al conductor eléctrico. Para saber la dirección que llevan dichas líneas de fuerza nos ayudaremos con la regla de la mano derecha.

regla mano derecha

Regla de la mano derecha

Para aplicar dicha regla, realizaremos el siguiente proceso. Tomamos el hilo conductor con la mano derecha colocando el dedo pulgar extendido a lo largo del hilo en el sentido de la corriente. Los otros dedos de la mano indican el sentido de las líneas de fuerza del campo magnético creado.

Campo magnético creado por una espira
Una espira es un hilo conductor en forma de línea cerrada, pudiendo ser circular, rectangular, cuadrada, etc. Si por la espira hacemos circular una corriente eléctrica, el campo magnético creado se hace más Intenso en el Interior de ella. El sentido de las líneas de fuerza es el del avance de un sacacorchos que girase en el sentido de la corriente.

Campo magnético creado por un solenoide o bobina
Si en lugar de disponer de una sola espira, colocamos el hilo conductor en forma enrollada, obtendremos un solenoide o bobina. En este caso, el campo magnético creado por la corriente al pasar a través de la bobina será mucho mayor, puesto que el campo magnético final será la suma de campos creados por cada una de las espiras.

Así pues, en una bobina, el campo magnético será más intense cuanto mayor sea la intensidad de corriente que circule por el ella y el número de espiras que contenga la bobina. De esta forma, una bobina, por la que circule una corriente eléctrica equivaldría a un imán de barra. El sentido de las líneas de fuerza se determina a partir de cualquiera de sus espiras.

Solenoide

SOLENOIDE. Consiste en un conductor arrollado en hélice de modo que forme un cierto número de espiras circulares regularmente distribuidas unas a continuación de otras. Cuando una corriente eléctrica recorre el conductor, el solenoide adquiere las propiedades de un imán, con sus polos norte y sur correspondientes. Llegamos, pues, a la conclusión de que la corriente eléctrica crea un campo magnético. Las líneas de fuerza que en él se originan, por convenio, van del polo norte al polo sur en el exterior, y en sentido contrario por el interior. Para determinar el nombre de los polos de un solenoide se emplea una aguja imantada, hallándose que el extremo del solenoide por el que la corriente, visto desde fuera, circula por las espiras en el sentido de las agujas del reloj, es el polo sur, y el extremo opuesto es el polo norte.

ELECTROIMANES:

Como vimos anteriormente se puede obtener un campo magnético mayor a partir de corriente eléctrica si se acoplan muchas espiras, unas al lado de otras (por ejemplo, arrollando un hilo conductor), construyendo lo que se conoce como solenoide.

Para crear campos magnéticos aún más intensos, se construyen los electroimanes, que son solenoides en cuyo interior se aloja una barra de hierro dulce, es decir, un hierro libre de impurezas que tiene facilidad para imantarse temporalmente.

Cuando se hace circular corriente eléctrica por el solenoide, con centenares o miles de vueltas (es decir, centenares o miles de espiras), el campo magnético se refuerza extraordinariamente en su interior, y el solenoide se convierte en un poderoso imán con múltiples aplicaciones.

electroimán casero

Si arrollamos un conductor alrededor de una barra de hierro dulce (clavo) y hacemos pasar por
él la corriente eléctrica, tendremos un electroimán.

Al objeto de aumentar la intensidad del campo magnético creado por el electroimán, éstos se construyen en forma de herradura, pues así el espacio de aire que tienen que atravesar las líneas de fuerza para pasar de un polo a otro es menor.

Los electroimanes se emplean para obtener intensos campos magnéticos en motores y generadores. También se utilizan en timbres eléctricos, telégrafos y teléfonos, y actualmente se construyen gigantescos electroimanes para utilizarlos como grúas y para producir campos magnéticos intensos y uniformes, necesarios en trabajos de física nuclear.

Demos ahora un paso mas…

A partir de los descubrimientos de Oersted, algunos científicos de su época se plantearon si el efecto contrario podría ocurrir es decir, si un campo magnético sería o no capaz de generar una corriente eléctrica, algo que tendría unas interesantes consecuencias prácticas.

En 1831 Faraday observó que cuando se mueve un circuito cerrado a través de un campo magnético se origina una corriente eléctrica que recorre aquel circuito, y que se conoce con el nombre de corriente inducida. Dicha corriente cesa en el momento en que se interrumpe el movimiento.

induccion electromagnetica

Las experiencias de Faraday fueron las siguientes: tomó un  imán y lo colocó cerca de una bobina, la que tenía un conectado un medidor de corriente, llamado amperímetro o galvanómetro.

Pudo observar que cuando ambos elementos (imán-bobina) están en reposo, la corriente es nula, es decir, la aguja el amperimetro no se mueve.

Luego movió el iman hacia dentro de la bobina y notó que la aguja se movía, lo que determinó un pasaje de corriente por la misma. También notó que cuanto más rápido se desplazaba el imán mayor era la corriente medida.

Cuando el imán está en reposo, dentro o fuera de la bobina, no hay corriente y a aguja del galvanómetro permanece con medición nula.

También probó en sentido inverso, es decir, dejó inmovil el imán y desplazó la bobina y el efecto fue el mismo al antes explicado.

Conclusiones de Faraday: Inducción electromagnética
En todos los experimentos de Faraday, en los que se acerca un imán a un circuito cerrado o bobina, los efectos son los mismos si el imán permanece en reposo y es la bobina del circuito la que se mueve.

Faraday concluyó que para que se genere una corriente eléctrica en la bobina, es necesario que exista un movimiento relativo entre la bobina y el imán.

Si se mueve la bobina hacia el imán, hay una variación en el campo magnético en el circuito, pues el campo magnético es más intenso cerca del imán; si se mueve el imán hacia la bobina, el campo magnético también varía.

A la corriente generada se le llama corriente inducida y, al fenómeno, se le denomina inducción electromagnética.

Por lo tanto se obtiene energía eléctrica como consecuencia del movimiento del imán con respecto a la bobina o de la bobina con respecto al imán.

La inducción electromagnética es el fundamento de los generadores de corriente eléctrica, como son la dinamo y el alternador.

PARTE II: EFECTO MOTOR Y EFECTO GENERADOR

EFECTO MOTOR: Hasta ahora vimos ejemplos con circuitos cerrados pero sin que circule una corriente por ellos, simplemente el fenómeno aparece cuando movíamos el iman o la bobina respecto uno del otro.

Ahora estudiaremos cuando ademas del movimiento relativo, también circula una corriente por esa bobina. Para ello observemos la imagen de abajo, donde se coloca una alambre conectado a una batería dentro de un campo magnético de un imán.

concepto electromagnetismo

Efecto Motor

Un alambre se coloca horizontalmente a través de un campo magnético. Al fluir los electrones hacia la derecha de la mano, el alambre recibe la acción de una fuerza hacia arriba.

La fem (voltaje) de la batería y la resistencia del circuito son adecuados para que la corriente valga unos pocos amperios. Al llevar cabo este experimento, se encuentra:

Se observa que:

a.   Cuando el alambre tiene corriente y se coloca a través del campo magnético, el alambre recibe la acción de una fuerza. (si hay fuerza hay un movimiento)

b.   Cuando el alambre con corriente se coloca bastante lejos del imán no experimenta ninguna fuerza.

c.   Cuando el alambre no lleva corriente y se coloca a través del campo magnético, no experimenta ninguna fuerza.

d.   Cuando el alambre no lleva corriente y se coloca bastante lejos del imán, no experimenta  ninguna  fuerza.

e.   Cuando el alambre con corriente se coloca paralelo al campo magnético, no experimenta ninguna fuerza.

De estas observaciones se puede deducir:
(1) que debe tener corriente y
(2) que su dirección debe cruzar el campo magnético, para que el alambre reciba la acción de una fuerza.

f.   Cuando el alambre conduce electrones que se alejan  del observador,  recibe la  acción de una fuerza vertical.

g.   Cuando el alambre conduce electrones hacia el observador, recibe la acción de una fuerza vertical opuesta a la del caso (f ).

De esto se puede concluir que el sentido de la fuerza sobre el alambre forma ángulos rectos con el sentido de la corriente y con el del campo magnético. Se deduce, que el sentido de la corriente influye sobre el sentido de la fuerza, h.   Si  se invierten los polos magnéticos, también se invierta el sentido de la fuerza que actúa sobre el alambre.

De esta observación puede verse que el sentido del campo magnético, influye sobre el sentido de la fuerza. i.   Si se varía la intensidad de la corriente en el alambre, la magnitud de la fuerza resultante varía en la misma proporción.
Esto indica que la fuerza que recibe el alambre depende directamente de la intensidad de la corriente. j.

Si se substituye el imán por uno más débil o más  potente,   la  magnitud  de  la  fuerza resultante varía en la misma proporción. Por tanto, la fuerza sobre el alambre es directamente proporcional a la densidad de flujo del campo magnético. Debido a que los principios fundamentales de este experimento son básicos para el trabajo de motores eléctricos, la existencia de una fuerza que  actúa  sobre  una  corriente  que  cruza  un campo magnético, se llama efecto motor

El efecto motor no debe ser ni sorprendente ni misterioso. Después de todo, una corriente eléctrica es un flujo de electrones que experimentan una fuerza deflectora cuando atraviesan un campo magnético. Puesto que no pueden escapar del alambre, lo arrastran con ellos.

regla de los 3 dedos de la mano izquierda

La regla de los tres dedos también se aplica a la desviación de un alambre con corriente a través de un campo magnético. Use la mano izquierda, con el mayor apunte en el sentido del flujo electrónico, de negativo a positivo.

EFECTO GENERADOR:

concepto electromagnetismo

Efecto Generador

El alambre se empuja alejándolo del lector. Cuando esto se hace en condiciones apropiadas, los electrones libres del alambre son imrjulsados hacia arriba.

De nuevo se tiene un campo magnético debido a un potente imán permanente . Sin embargo, esta vez se mantiene el alambre vertical y lo mueve acercándolo y alejándolo, hacia adelante y atrás, atravesando el campo. El alambre en movimiento se conecta con un medidor eléctrico sensible —un galvanómetro— que indica la existencia de una corriente eléctrica débil y, por tanto, de una fuerza electromotriz o voltaje (fem) que produce dicha corriente. En este experimento el estudiante observará y deducirá lo siguiente:

a.   Cuando el alambre se mueve a través del campo magnético se produce una fem.
b.   Cuando el alambre se mueve en una región lejos del imán, no hay fem.
c.   Cuando el alambre se mueve paralelo al campo magnético, no hay fem.
d.   Cuando el alambre se mantiene fijo, en una posición lejos del imán, no hay fem.
e.   Cuando el alambre se mantiene fijo en una posición, dentro del campo magnético, no hay fem.
De estas observaciones se puede concluir que el alambre debe moverse a través del campo magnético para que se genere una fem. Es evidente, que la parte superior del alambre, es positiva o negativa con respecto a la parte inferior. De esto se puede deducir que la fem generada forma ángulos rectos con el movimiento y también con el campo magnético.
f.    Cuando el alambre se mueve a través del campo, alejándose del observador, se produce una fem.
g.  Cuando el alambre se mueve a través del campo acercándose al observador, se produce una fem cuya polaridad es opuesta a la del inciso anterior (f).
De estos hechos se puede ver que el sentido del movimiento  determina el  sentido  de la fem generada.
h. Si se invierten los polos magnéticos el sentido
de la fem generada se invierte. Esto indica que el sentido de la fem generada está determinado por el sentido del campo magnético.
i.   Si se varía la velocidad de movimiento del alambre, la magnitud de la fem generada varía también de acuerdo con ella. Este dato indica que la fem generada es directamente dependiente de la velocidad del alambre en movimiento.
j. Si se colocan imanes más débiles o más potentes, la magnitud de la fem generada disminuye o aumenta proporcionalmente. Por tanto, la fem generada es directamente dependiente de la densidad de flujo del campo magnético.

Si se realizan estos experimentos, puede ser difícil ver el movimiento de la aguja del galvanómetro, porque la fem es muy pequeña. Sin embargo, se puede fácilmente repetir un experimento de la imagen. Se enrolla una bobina de alambre con varias vueltas, se conectan sus extremos al galvanómetro y se mueve dicha bobina rápidamente hacia el polo N de una barra imantada.

El gavanómetro se desviará, demostrando que se ha producido una fem en la bobina. La fem cambia de sentido cuando se aleja la bobina del imán o cuando se usa el polo S en lugar del polo N.

En este caso el alambre en la bobina que se mueve en un campo magnético se desplaza, principalmente, de modo perpendicular al campo. De acuerdo con esto, debe generarse una fem. Se puede preferir pensar en la bobina de este modo: a través del área de la bobina pasa una cierta cantidad de flujo magnético, al mover la bobina hacia el imán, la cantidad de flujo a través de ella aumenta. Siempre que cambia el flujo por una bobina, se genera una fem.

Debido a que los principios en que se basan estos experimentos también son básicos para el funcionamiento de los generadores eléctricos, constituyen el llamado efecto generador: una fem se genera en un conductor, cuando éste se mueve a través de un campo magnético o cuando el campo magnético varía dentro de una bobina.

Fuente Consultada:
Enciclopedia TECNIRAMA De La Ciencia y la Tecnología
Enciclopedia Temática CONSULTORA Tomo 10 Física
FISICA Fundamentos y Fronetras Stollberg – Hill

Ciencia y tecnologia en la Sociedad Su influencia en la vida diaria

Ciencia y Tecnología en la Sociedad
Su influencia en la vida diaria

La vida será sofisticada y eficiente. ¿Cuáles serán los chiches de la nueva era? Valerie, el androide doméstico dotado de inteligencia artificial —y buenas piernas—, será uno. Nos dará una mano con la limpieza y llamará a la policía ante urgencias.

Otra aliada de las tareas será Scooba, la aspiradora de iRobot, que con sólo apretar un botón fregará los pisos hasta los rincones más recónditos. Asimismo, la Polara de Whirlpool nos facilitará las cosas.

Combina las cualidades de una cocina convencional y una heladera: será posible dejar un pollo en el horno para que se ase en el horario programado.

El gatito Cat de Philips habitará el hogar del mañana. Genera expresiones faciales— felicidad, sorpresa, enojo, tristeza— y será compinche de los chicos.

¿Qué habrá de nuevo a la hora de comer? “Se elegirán alimentos que hagan bien a la piel y al organismo. De todas formas, no faltará quien ingiera por elección o comodidad, comida chatarra mientras lea una revista de salud y se prometa: «mañana empiezo el régimen”, opina la cocinera Alicia Berger. “Además, la gente se preocupará por el origen y calidad de los alimentos, y se revalorizará lo casero”, revela.

Ciencia y tecnologia en la Sociedad Su influencia en la vida diariaY al irse a la cama, será posible introducirse en una que soporta ataques terroristas o desastres naturales —de Quantum Sleeper— o portar un reloj pulsera Sleeptracker (foto izquierda) que vía sensores, detecta

nuestro sueño superficial y justo ahí hace sonar la alarma para que el despertar sea lo menos fastidioso posible.

¿Y el sexo para cuándo? Mal que nos pese, cada vez tendremos menos ganas, tiempo y pasión. “Vamos hacia el sexo virtual por sobre el real al menos en las grandes ciudades del mundo”, confirma el doctor Juan Carlos Kusnetzoff, director del programa de Sexología Clínica del Hospital de Clínicas, quien adelanta que para levantar el ánimo —y algo más— se desarrollarán nuevas píldoras. “La industria farmacéutica desea lograrlo a toda costa”, agrega.

Ocio y tiempo libre para todos los gustos

En el campo de las nuevas tecnologías, la convergencia de la telefonía móvil y el hogar será un hecho. “El móvil podría permitir el acceso a los diferentes elementos que se quieran controlar, como un control remoto universal. Además se crearían nuevos sensores para avisarnos de situaciones que requieran nuestra atención y cámaras de seguridad para ver desde el teléfono lo que sucede en otro lugar”, cuenta Axel Meyer, argentino que desde el 2000 trabaja en el centro de diseño de Nokia Desing, en Finlandia.

Y agrega “Los teléfonos con doble cámara ya permiten hacer videollamadas. Y también podremos ver la emoción del otro mientras miramos la misma película o un gol de nuestro equipo”, explica.

Ciencia y tecnologia en la Sociedad Su influencia en la vida diariaEn robótica, los avances irán a gran velocidad. Ya se está desarrollando en la Universidad de Tokio la piel de robot que permitirá a estas criaturas adquirir el sentido del tacto. Y eso no es todo.

Se podrá bailar con ellos. El Dance Partner Robot es la compañera de baile ideal. Predice los movimientos de su coequipper y no le pisa los pies!

Para momentos de ocio, el turismo estará preparado para el disfrute. Pero, ¿se podría pensar en la pérdida de vigencia del agente de viajes tradicional? “Internet agiliza muchos aspectos de la gestión.

Hay un antes y un después en la forma de hacer turismo, pero, ¿quién se atreve a viajar con su familia a destinos exóticos o países desconocidos sin un asesoramiento de confianza?”, se pregunta Ricardo Sánchez Sañudo, director de la revista Tiempo de Aventura, quien sostiene que ante la coyuntura mundial —terrorismo, inseguridad y desastres climáticos, entre otros—, la Argentina crecerá como destino.

“Cuanto, más expuesto a estas amenazas esté el resto del mundo, tendremos ventajas comparativas que podremos aprovechar al máximo si conseguimos mantener esas amenazas fuera de nuestras fronteras, o al menos, razonablemente controladas”, manifiesta.

Por otra parte, la vida al aire libre será la estrella. “Vida sana, naturaleza viva y desarrollo sustentable son principios insoslayables cuando se mira hacia adelante, y tanto deporte como turismo aventura son dos de sus mejores herramientas”, analiza.

Ciencia y tecnologia en la Sociedad Su influencia en la vida diariaLos amantes del deporte encontrarán aliados perfectos para seguir ganando. El de los tenistas es la raqueta Magnetic Speed de Fischer, que permite mejores movimientos y mayor velocidad en los tiros.

Los que prefieren la música se sorprenderán con instrumentos como el Hand Roll Piano de Yama-no Music, con teclado de silicona flexible.

Trasladarnos será más simple, cómodo y ecológico. Y ya hay algunos adelantos. Tweel de Michelin es una llanta sin aire. Así es que… la despedirse de las gomas pinchadas!

Ciencia y tecnologia en la Sociedad Su influencia en la vida diaria

Por otro lado, acaso debido al tránsito en las ciudades, los transportes individuales serán protagonistas. Como la bicicleta Shift, ideal para los chicos. Les permite adquirir estabilidad gradual sin necesidad de las dos rueditas.

Ciencia y tecnologia en la Sociedad Su influencia en la vida diaria

Futuro saludable:

Que la salud avanza a pasos agigantados, no es una novedad. La noticia es que estará al alcance de todos en los próximos años.

Las cirugías estéticas, se popularizarán y masificarán. La lipoescultura será la más pedida, según el doctor Raúl Banegas, cirujano plástico, miembro titular de la Sociedad de Cirugía Plástica de Buenos Aires, debido a que “La demanda social de ser cada vez más lindos, delgados y jóvenes, se acrecienta”. Por otro lado, serán comunes las inyecciones de líquidos —fosfatidil colina— tendientes a disolver la grasa corporal, sin cirugía. En cuanto a rellenos, la toxina botulínica es irremplazable aunque sí se espera que se sintetice de manera tal que dure más tiempo —hoy, de 3 a 6 meses—.

“En cuanto a rellenos definitivos habrá infinidad de sintéticos. Lo que sí parece ser prometedor, aún en fase de investigación, es el cultivo del propio colágeno. En sólo unos meses se podrían obtener en laboratorio, varias jeringas, lo que descartaría toda posibilidad de reacción”, adelanta.

En Neurociencias, será posible el neuromarketing a partir de tomografías PET —por emisión de positrones—, aunque “en lo inmediato son técnicas caras y requieren de un sofisticado análisis de los datos”, anticipa el doctor Facundo Manes, director del Instituto de Neurología Cognitiva —INECO—. En lo que a neuroplastieidad se refiere, ya no diremos más aquello de que “neurona que se muere, se pierde”, viejo postulado que paralizó casi completamente durante décadas la investigación en esta área, según el especialista. Y el conocer acerca de qué pasa en la cabeza de un adicto u obeso permitirá complementar con medicamentos aquello que químicamente requiera cada cerebro.

“Conocer las bases cerebrales de un trastorno neuropsiquiátrico ayuda a localizar los neurotransmisores —mensajeros entre las neuronas— involucrados en una enfermedad; de esta manera se podría investigar una posible solución farmacológica a esa determinada condición médica”, comenta. En el campo de la reproducción asistida, las novedades son infinitas. “Cada vez se podrán hacer más y mejores cosas en pos de mejorar las chances de tener un chico en brazos y no un embarazo que no pudo ser”, adelanta la doctora Ester Polak de Fried, presidente de CER Instituto Médico, directora del departamento de medicina reproductiva de la institución.

“Los estudios genéticos, tanto de gametas como de óvulos fertilizados —preembriones—, que permiten transferir al útero materno únicamente los sanos, se convertirán en técnicas habituales para aquellas mujeres que sufren abortos a repetición, por ejemplo. En el área de la biología molecular, será posible encontrar marcadores génicos —detectan chances de reproducción—, tanto en los óvulos como en los espermatozoides para poder elegir los que tienen capacidades evolutivas, y así disminuir la cantidad de óvulos a poner a fertilizar y la problemática de tener gran cantidad de embriones criopreservados”, especifica quien es officer de la International Federation of Fertility Societies —IFFS—, que nuclea a 54 países.

Construcción, arte y moda

Uno de los cambios en lo que respecta a la construcción, al menos en Argentina, será la creciente conciencia ecológica y de cuidado del medio ambiente. “El futuro de La arquitectura está definido en su responsabilidad ecológica tanto con eL medio ambiente como con el medio social. No hay que explicar de qué manera el proyecto arquitectónico influye en el medio ambiente. La decisión de su tecnología y su consecuencia en el futuro mantenimiento conforman una huella ecológica que deberá ser cada vez más analizada y respetada”, analiza el arquitecto Flavio Janches.

En cuanto a los materiales, “al menos en nuestro país, el ladrillo y la piedra, el hormigón y el revoque son materiales que no creo que se dejen de utilizar”, opina. La moda tendrá sus cambios, aunque más bien tendrán que ver con el cosechar la siembra, al menos para los diseñadores argentinos. “La gente va a reivindicar el diseño y pagarlo por lo que vale. Hoy por hoy, no existe esa conciencia, como en Estados Unidos, Europa o Japón”, asegura la diseñadora Jessica Trosman.

En cuanto al arte, en el futuro abandonará un poco los museos y las galerías para darse una vuelta por las calles. Uno de los referentes de este movimiento es Julian Beever, artista inglés conocido por su trabajo en 3D, en veredas y pavimentos de Inglaterra, Francia, Alemania, Australia, Estados Unidos y Bélgica.

Y mientras se espera el futuro que se viene, a brindar por este 2006 que sí es inminente!

Fuente Consultada: Revista NUEVA Por Laura Zavoyovski (31-12-2005)
Ir a su sitio web

Pilas y Baterias Acumuladores de Energía Electrica Funcionamiento

Pilas y Baterias Acumuladores de Energía Eléctrica
Química de su Funcionamiento

Alessandro Giuseppe Antonio Anastasio Volta, físico italiano, hijo de una madre procedente de la nobleza y de un padre de la alta burguesía, recibió una educación básica y media de características humanista, pero al llegar a la enseñanza superior optó por una formación científica. En el año 1774, es nombrado profesor de física de la Escuela Real de Como. Justamente, un año después Volta realiza su primer invento de un aparato relacionado con la electricidad.

Con dos discos metálicos, separados por un conductor húmedo, pero unidos con un circuito exterior logra, por primera vez, producir corriente eléctrica continua, se inventa el electróforo perpetuo, un dispositivo que una vez que se encuentra cargado puede transferir electricidad a otros objetos.

Entre los años 1776 y 1778 se dedica a la química y descubre y aísla el gas de metano. Un año más tarde, en 1779, es nombrado profesor titular de la cátedra de física experimental en la Universidad de Pavia. Voltio, la unidad de potencia eléctrica, se denomina así en honor a este portentoso –en el buen sentido- de las ciencias. Sus trabajos fueron publicados en cinco volúmenes en el año 1816, en Florencia. Sus últimos años de vida los pasó en su hacienda en Camnago cerca de Como, donde fallece el 5 de marzo de 1827.

El fundamento de las pilas y acumuladores es la transformación de la energía química en eléctrica, mediante reacciones de oxidación-reducción producidas en los electrodos, que generan una corriente de electrones.

Cuando se unen mediante un hilo metálico dos cuerpos entre los cuales existe una diferencia de potencial, se produce un paso de corriente que provoca la disminución gradual de dicha diferencia. Al final, cuando el potencial se iguala, el paso de corriente eléctrica cesa. Para que la corriente siga circulando debe mantenerse constante la diferencia de potencial.

En 1800, Alejandro Volta inventó un aparato generador de corriente. La pila de Volta (que él llamó «aparato electromotor de columna»> estaba constituida por un conjunto de pares de discos, unos de cobre y otros de cinc, con un disco de tela impregnada en agua salada —o en cualquier otro líquido conductor— intercalado entre dos pares sucesivos. Se trataba de un dispositivo muy cómodo y manejable, que funcionaba de modo continuo, y que posibilitó la aparición de nuevos descubrimientos sobre electricidad.

esquema pila de volta

Funcionamiento de una pila electroquímica

El funcionamiento de una pila es sencillo, consiste básicamente en introducir electrones en uno de los extremos de un alambre y extraerlos por el otro. La circulación de los electrones a lo largo del alambre constituye la corriente eléctrica. Para que se produzca, hay que conectar cada extremo del alambre a una placa o varilla metálica sumergida en un electrolito que suele ser una solución química de algún compuesto iónico.

Cuando ese compuesto se disuelve, las moléculas se dividen en iones positivos y negativos, que se mantienen separados entre sí por efecto de las moléculas del líquido. El electrolito que utilizó Volta era ácido sulfúrico; cada una de sus moléculas, al disolverse en agua, se descompone en dos protones H+ (iones positivos) y un ion sulfatoSO4– (ion negativo).

Las varillas metálicas de cobre y cinc constituyen los electrodos, que deben ser sumergidos en el electrolito sin que lleguen a entrar en contacto. La placa de cobre es el electrodo positivo o ánodo y la placa de cinc el electrodo negativo o cátodo.

Al reaccionar el electrolito con las varillas se produce una transmisión de electrones, que han sido extraídos de la placa de cinc, hacia la placa de cobre, con lo que los átomos de cinc son oxidados e incorporados a la disolución, según la reacción:

Zn —> Zn2++ 2e

Esto ocurre así y no al revés, del cobre al cinc, porque los átomos de cinc tienen más tendencia que los de cobre a ceder electrones.

En la varilla de cobre se produce una reducción de los iones hidrógeno H+ de la disolución, ya que los electrones liberados por los átomos de cinc recorren el hilo conductor hacia la placa de cobre y son captados por los H+, que se convierten en átomos de hidrógeno y escapan en forma de gas. Estos electrones en movimiento son los que originan la corriente eléctrica.

Por su parte, los iones SO4 reaccionan con los cationes Zn2+ y se convierten en moléculas de sulfato de cinc.

2 H~+2e —> H2

Zn2+ + SO42– —> ZnSO4

Cuando se corta la conexión exterior entre las placas, los electrones no pueden desplazarse a lo largo del hilo de una placa a la otra, con lo que se interrumpe la reacción.

El dispositivo funciona mientras existan átomos de cinc para formar el sulfato correspondiente. Cuando la placa de cinc se ha desintegrado por completo ya no puede producirse la reacción, por lo que la pila ya no tiene uso. Por este motivo, las pilas de este tipo reciben el nombre de pilas primarias.

Baterías

Las pilas secundarias o acumuladores son aquellas que pueden recargarse, es decir pueden reiniciar el proceso mediante el aporte de energía de una fuente exterior normal mente un generador, que hace que los compuestos químicos se transformen en los compuestos de partida, al hacer pasar corriente a través de ellos en sentido opuesto

Un acumulador es, por tanto, un aparato capaz de retener cierta cantidad de energía en su interior, suministrada externamente, para emplearla cuando la necesite.

Así, una batería está formada por varios acumuladores, y puede ser ácida o calina en función’de la naturaleza del electrolito. Por ejemplo, las baterías de los coches son ácidas, porque contienen un electrolito de ácido sulfúrico en el que se sumergen una placa de plomo metálico y otra de dióxido de plomo. Las reacciones en este caso son las siguientes:

H2SO4 —> 2H+ + SQ42-

Cátodo:……………   Pb + S042 —->  PbSO4 + 2e

Ánodo: …….. PbO2 + S042- +4 H30+ +  2 e- —>  PbSO4 + 6 H20

Cuando se agota el plomo o el dióxido de plomo la batería está gastada y para recargarla se hace pasar una corriente eléctrica de la placa positiva a la negativa mediante un alternador o dinamo, de manera que el sulfato de plomo se vuelve a des componer en plomo en la placa negativa, y en la positiva en dióxido de plomo

En las baterías alcalinas el electrolito suele ser hidróxido potásico, y las placas son habitualmente, de níquel y de hierro.

Pilas de combustible

Para solucionar el problema del agotamiento definitivo de las baterías y acumuladores, Francis Bacon inventó en 1959 la llamada pila de combustible, en la que las sustancias que generan la corriente eléctrica no están contenidas en la propia pila, sino que se van aportando a medida que se necesitan.

La primera pila de combustible, también llamada pila Bacon, era alimentada por hidrógeno y oxígeno gaseosos. Contiene un electrolito de hidróxido potásico disuelto en agua, entre dos placas metálicas porosas que no permiten el paso del electrolito a través de ellas, pero sí su penetración parcial.

Uno de los electrodos es alimentado con el gas hidrógeno y el otro con el oxígeno, a presiones determinadas para que sólo pueda penetrar una parte de la placa. Es a través de los poros de los metales de las placas por donde entran en contacto los gases con el electrolito. En la placa negativa se produce una combinación de las moléculas de hidrógeno con los iones hidroxilo del electrolito, suministrando electrones. En la placa positiva los átomos de oxígeno capturan los electrones y se combinan con moléculas de agua para formar iones hidroxilo, que se disuelven en el electrolito.

Las reacciones continúan y la corriente eléctrica se mantiene mientras los electrodos estén conectados exteriormente y se produzca el aporte de oxígeno e hidrógeno. A veces es necesario utilizar un metal que actúe como catalizador de la reacción. El idóneo es el platino, pero debido a su elevado coste suele emplearse níquel.

Este tipo de pilas son ideales para el suministro de energía en estaciones espaciales o submarinas, por ejemplo, donde no es fácil el montaje de equipos generadores de tipo convencional. Sin embargo, no son válidas para sustituir a la batería de los automóviles, ya que se necesita un equipo auxiliar que caliente la pila y elimine el exceso de agua —en el caso de la pila Bacon— o de dióxido de carbono —en otros tipos similares que emplean carbonatos como electrolitos.

ALGO MAS..

LA CORRIENTE ELÉCTRICA NO ES ALMACENABLE
La electricidad usual nos llega por cables desde la central eléctrica. Pero la corriente no puede almacenarse en «tanques» del mismo modo que el agua, pues no es más que el movimiento de los electrones bajo la influencia de una «presión» o diferencia de tensión, o «voltaje», o «fuerza electromotriz». Por eso, cuando necesitamos accionar pequeños aparatos, como linternas o radiorreceptores no conectados con la central eléctrica, empleamos pilas secas y acumuladores. En éstos la electricidad se produce químicamente.

LA PILA DE VOLTA
Si colocamos dos placas de metales diferentes en un recipiente con agua acidulada (puede ser una placa metálica y otra de carbono), el ácido ataca al metal y se produce una serie de complicadas reacciones químicas. El ácido toma átomos de una de las placas metálicas y en cambio libera ios átomos de hidrógeno que ¡o constituían., pero los electrones del hidrógeno quedan en la placa, que por eso se sobrecarga negativamente.

Los átomos de hidrógeno sin electrón (iones hidrógeno) recuperan sus electrones a costa de la segunda placa, que entonces queda cargada positivamente. En conjunto sucede como si los electrones de la segunda placa pasaran a !a primera. Si están unidas a un circuito exterior, circulará una corriente eléctrica de la primera a la segunda.

Hay un inconveniente en este fenómeno. Los átomos de hidrógeno (ya completos) se adhieren a la segunda placa formando una capa aislante y en cuestión de segundos impiden el acercamiento de nuevos iones, deteniéndose completamente la reacción. Para evitarlo, en la práctica se agrega una sustancia química que se combina fácilmente con el hidrógeno y lo elimina dé la placa. También se suele reemplazar el ácido sulfúrico por cloruro de amonio, sustancia de manipulación mucho menos peligrosa.

Existen otras pilas húmedas: la de Weston, de cadmio y mercurio, muy constante y estable a temperatura fija: suele ser de vidrio y se la emplea para comparar voltajes. La pila de Lalande no usa ácido, sino sosa cáustica, zinc y óxido de cobre.   Trabaja bien en frío.   Su densidad es baja.

LA PILA SECA
La pila seca consiste en un receptáculo de zinc («placa» negativa de la pila) en cuyo interior hay una varilla de carbón rodeada de una mezcla de polvo de carbón, bióxido de manganeso (MnOa), cloruro de amonio y cloruro de zinc en agua. La reacción química entre el cloruro de amonio (CINHJ y el zinc deja a éste con un exceso de electrones mientras la varilla de carbón, que actúa como segunda «placa», queda con escasez de electrones, es decir, cargada positivamente.

El bióxido de manganeso actúa como despolarizador: elimina el hidrógeno adherido al carbón. La diferencia entre la pila seca y la húmeda consiste en que en la primera el electrólito, absorbido por un medio poroso, no fluye, no se escurre. El uso ha reservado este nombre a las pilas Leclanché, pero existen otras. La varilla de carbón no suele ser de grafito, sino de negro de humo proveniente de la combustión de acetileno. La pasta gelatinosa que contiene el electrólito puede ser de almidón y harina, o una bobina de papel: las pilas modernas usan metilcelulosa  con  mejores resultados.    El  voltaje  obtenido es 1,6; por cada amperio se consume  1,2 gramos de zinc.

ACUMULADORES
La pila voltaica y la pila seca se llaman primarias o irreversibles porque las reacciones químicas no pueden invertirse, ni volver a emplearse los materiales gastados. Una pila secundaria o reversible (por ejemplo, una batería de automóvil) puede cargarse nuevamente y emplearse otra vez haciendo pasar en sentido opuesto una corriente continua. Así se invierten las reacciones químicas que tuvieron lugar durante la generación de electricidad y los materiales vuelven a su estado original.

El acumulador de plomo es un ejemplo de pila secundaria. En lugar de placas se compone de rejillas para aumentar la superficie de contacto con la solución de ácido sulfúrico en agua destilada. Los huecos de una placa están llenas de plomo esponjoso y ios de la otra de bióxido de plomo (PbCW. La placa de plomo metálico (negativa) corresponde al  zinc y  la  de  bióxido de plomo equivale  ai carbón de la pila seca (positiva).

Ambas placas reaccionan con el ácido sulfúrico y se forma sulfato de plomo. El acumulador se agota cuando ambas placas quedan recubiertas con un depósito blanco de sulfato de plomo y paralelamente disminuye la concentración del ácido sulfúrico.

La corriente eléctrica de recarga regenera en una placa el plomo esponjoso, en la otra el bióxido de plomo, y restituye el ácido sulfúrico al agua. La «batería» completa consta de varios acumuladores conectados  entre  sí  para  aumentar  la  tensión  eléctrica   o voltaje del conjunto.

Los acumuladores convienen para descargas breves de alto nivel (estaciones telefónicas, locomotoras, automóviles). Los nuevos plásticos les confieren menor peso. En autos y aviones las placas delgadas permiten reducir peso y espacio y proporcionar mejor rendimiento a bajas temperaturas. Pero las placas gruesas son sinónimo de larga vida, más o menos 1.000.000 de ciclos cortos.

Pasos del Metodo Cientifico Etapas Metodo Experimental Caracteristicas

Pasos del Método Científico o Experimental

El método científico o experimental es una secuencia lógica de pasos que se siguen para que el trabajo del químico tenga validez. Luego de una observación exhaustiva y reiterada del fenómeno, surge el planteo del problema a investigar. El científico enuncia, según el análisis «a priori» del problema, cuál sería, a su criterio, la hipótesis, es decir, la respuesta más probable a la cuestión.

Antes efectúa una recopilación de datos, por ejemplo de trabajos de otros investigadores relacionados con el tema. A partir de allí, comienza a diseñar y comprobar la veracidad de la hipótesis. Si la hipótesis se cumple, el científico puede arribar a conclusiones de valor predictivo. Es decir que frente al mismo planteo puede anticipar cuál será la respuesta.

Muchas veces ocurre que la hipótesis no se cumple y debe reformularse. La validez de una o varias hipótesis permite, en muchos casos, enunciar leyes o teorías universales.

En la actualidad, el planteo de un problema científico surge a veces del análisis de trabajos anteriores referidos al tema. Éstos dejan casi siempre algún punto sin resolver, que es observado y tomado como punto de partida de una nueva investigación.

La ciencia sólo es posible cuando existe la libertad de cuestionar y de dudar de lo que siempre se ha considerado verdadero, y cuando ella misma es capaz de abandonar viejas creencias si contrarían los nuevos descubrimientos.

A modo de sintesis antes de entrar a explicar el método, vamos a indicar la secuencia ordenada de pasos para lograr el estudio científico de un fenómeno determinado. Podemos decir que hay 10 pasos fundamentales, y que mas abajo se explicarán, a saber:

PASO 1. LA OBSERVACIÓN DEL FENÓMENO,

PASO 2. LA BÚSQUEDA DE INFORMACIÓN,

PASO 3. LA FORMULACIÓN DE HIPÓTESIS,

PASO 4. LA COMPROBACIÓN EXPERIMENTAL,

PASO 5. EL TRABAJO EN EL LABORATORIO,

PASO 6. EL TRATAMIENTO DE LOS DATOS,

PASO 7. EL ANÁLISIS DE LOS FACTORES,

PASO 8. LA CONSTRUCCIÓN DE TABLAS Y DE GRÁFICOS,

PASO 9. LAS CONCLUSIONES Y LA COMUNICACIÓN DE RESULTADOS,

PASO 10. LA ELABORACIÓN DE LEYES Y TEORÍAS

INTRODUCCIÓN: OBSERVACIÓN Y EXPERIMENTACIÓN

La ciencia comienza por observar, observación realizada con la máxima exactitud y la mayor frecuencia posible. Sólo así pueden discernirse claramente las características del problema que se estudia y ponerse en evidencia las incógnitas que plantea.

Luego de hacer las observaciones adecuadas, el paso siguiente es desarrollar alguna explicación de lo que se ha visto. Cada explicación recibe el nombre de hipótesis y por tanta es normal que haya varias hipótesis aparentemente encuadradas en los hechos observados. Todas ellas surgen por un proceso mental de deducción que, en cierto sentido no sería más que un ejercicio de imaginación.

En la vida diaria la gente muy a menudo se conforma con suposiciones ¡sólo porque las hace ella! En la ciencia es necesario suponer todas las explicaciones aceptables de los hechos, para luego seleccionar las mejor orientadas hacia la investigación propuesta.

Esta selección se efectúa de acuerdo con otro proceso mental estudiado por la Lógica, conocido por deducción. Cada hipótesis se examina por turno para ver qué consecuencias implicaría en caso de ser cierta, qué ocurriría si fuera correcta. Es como obligar a la hipótesis a que se pronuncie.

metodo experimetal

Luego, una etapa crítica del método científico: la verificación, o sea la comprobación de las diversas hipótesis mediante nuevas observaciones. Éste es un proceso real y concreto, manual y sensorio.

Siempre que sea posible, las comprobaciones se hacen en forma de experimentos, es decir, siempre por control del investigador. Si la hipótesis que se intenta probar no nos anticipa los acontecimientos registrados por la experimentación se la considera inútil y se la descarta. Si, en cambio, resultara correcta, sólo provisionalmente se la consideraría verdadera, esto es, mientras no aparezca algún hecho nuevo que obligue a modificarla.

Cuando las hipótesis no pueden ser comprobadas en las estrictas condiciones de un experimento habrá que esperar el resultado de nuevas experiencias cuando la evolución de los fenómenos naturales lo permita. En astronomía, por ejemplo, no es posible obligar a los cuerpos celestes a moverse y a ubicarse en situación de demostrar alguna hipótesis particular. pero, cuando se dan esas exposiciones, es posible controlar la efectividad de las hipótesis que se habían formulado.

A medida que se acumulan observaciones, sea durante experimentos o no, pueden aparecer casos que muestren la debilidad de la hipótesis anteriormente aceptada. Entonces resulta necesaria la formulación de otra hipótesis y se repite todo el procedimiento de nuestro método científico como si se tratara de un círculo, quizás una espiral, pues este nuevo ciclo se desarrolla en un nivel de mayor conocimiento.

Esto nos introduce en la idea de que la «verdad» científica es sólo relativa; es una aproximación y será abandonada y reemplazada por otra «verdad» nueva y mejor, cada vez que resulte necesario. Esto explica lo que para algunos es el obstáculo más grande referente a la ciencia: que sus conclusiones ¡no son definitivas! Los científicos están siempre dispuestos y aun entusiastas para aceptar nuevas explicaciones si éstas se acercan más a los hechos conocidos.

La verdad científica, entonces, no es definitiva. Representa las etapas alcanzadas en cada oportunidad en la búsqueda del conocimiento. El nivel de éxito obtenido en esta búsqueda se medirá siempre por el grado de correlación que exista entre teoría y realidad. La verdad científica representa lo mejor que pudo hacerse en un momento determinado. No tiene autoridad para juzgar futuras investigaciones en el campo en que se aplica.

La aceptación de una hipótesis científica como cierta no surge de su elegancia ni de la sinceridad o entusiasmo con que ha sido presentada; tampoco reposa en factor personal alguno, como podría ser respecto de nuestra propia hipótesis o de la de alguien a quien respetamos.

La única razón válida para aceptar una hipótesis como cierta es que apoyada en hechos conocidos, pueda anticipar otros. Esto es bastante distinto de la idea de verdad que se aplica en otros órdenes de la vida, y es una de las características distintivas de la actitud científica.

https://historiaybiografias.com/linea_divisoria5.jpg

LOS PASOS DEL MÉTODO CIENTÍFICO-EXPERIMENTAL:

PASO 1. LA OBSERVACIÓN DEL FENÓMENO
Una vez planteado el fenómeno que se quiere estudiar, lo primero que hay que hacer es observar su aparición, las circunstancias en las que se produce y sus características. Esta observación ha de ser reiterada (se debe realizar varias veces), minuciosa (se debe intentar apreciar el mayor número posible de detalles), rigurosa (se debe realizar con la mayor precisión posible) y sistemática (se debe efectuar de forma ordenada).

PASO 2. LA BÚSQUEDA DE INFORMACIÓN
Como paso siguiente, y con objeto de reafirmar las observaciones efectuadas, deben consultarse libros, enciclopedias o revistas científicas en los que se describa el fenómeno que se está estudiando, ya que en los libros se encuentra e conocimiento científico acumulado a través de la historia. Por este motivo, la búsqueda de información } la utilización de los conocimientos existentes son imprescindibles en todo trabajo científico.

PASO 3. LA FORMULACIÓN DE HIPÓTESIS
Después de haber observado el fenómeno y de haberse documentado suficientemente sobre el mismo, el científico debe buscar una explicación que permita explicar todas y cada una de las características de dicho fenómeno.

Como primer paso de esta fase, el científico suele efectuar varias conjeturas o suposiciones, de las que posteriormente, mediante una serie de comprobaciones experimentales, elegirá como explicación del fenómeno la más completa y sencilla, y la que mejor se ajuste a los conocimientos generales de la ciencia en ese momento. Esta explicación razonable y suficiente se denomina hipótesis científica.

PASO 4. LA COMPROBACIÓN EXPERIMENTAL
Una vez formulada la hipótesis, el científico ha de comprobar que ésta es válida en todos los casos, para lo cual debe realizar experiencias en las que se reproduzcan lo más fielmente posible las condiciones naturales en las que se produce el fenómeno estudiado. Si bajo dichas condiciones el fenómeno tiene lugar, la hipótesis tendrá validez.

instrumentos de presley cientifico

Lámina de «Observations on differents kinds of air» del gran científico Joseph Priestley, mostrando uno de sus experimentos para demostrar los efectos de la combustión, putrefacción y respiración en una planta de menta  y en ratones.

PASO 5. EL TRABAJO EN EL LABORATORIO

Una de las principales actividades del trabajo científico es la de realizar medidas sobre las diversas variables que intervienen en el fenómeno que se estudia y que son susceptibles de poder medirse. Si te fijas, en el experimento anterior no se ha podido tomar ninguna medida, por lo cual es conveniente repetir la experiencia en un lugar donde pueda tomarse, es decir, en el laboratorio.

Estas experiencias realizadas en los laboratorios se denominan experiencias científicas, y deben cumplir estos requisitos:

a) Deben permitir realizar una observación en la que puedan tomarse datos.

b) Deben permitir que los distintos factores que intervienen en el fenómeno (luminosidad, temperatura, etc.) puedan ser controlados.

c) Deben permitir que se puedan realizar tantas veces como se quiera y por distintos operadores.Habitualmente, en ciencias experimentales, los trabajos de laboratorio permiten establecer modelos, que son situaciones o supuestos teóricos mediante los que se efectúa una analogía entre el fenómeno que ocurre en la Naturaleza y el experimento que realizamos.

PASO 6. EL TRATAMIENTO DE LOS DATOS
Las medidas que se efectúan sobre los factores que intervienen en un determinado fenómeno deben permitirnos encontrar algún tipo de relación matemática entre las magnitudes físicas que caracterizan el fenómeno que se estudia. Para llegar a esa relación matemática, los científicos suelen seguir dos pasos previos: el análisis de los factores y la construcción de tablas y de gráficos.

PASO 7. EL ANÁLISIS DE LOS FACTORES
El estudio en profundidad de un fenómeno requiere en primer lugar la determinación de todos los factores que intervienen en él. Para que ese estudio se realice en la forma más sencilla, se fija una serie de magnitudes que no varían (variables controladas) y se estudia la forma en que varía una magnitud (variable dependiente) cuando se produce una variación de otra magnitud (variable independiente).

Así, por ejemplo, si lo que queremos es estudiar el alargamiento que experimenta un resorte cuando colgamos diversas pesas de uno de sus extremos, hay un conjunto de magnitudes que podemos considerar invariables (la temperatura del recinto donde hacemos el experimento, la presión atmosférica dentro del mismo, la humedad relativa del aire, etc.), que corresponden a las variables controladas. En este caso, la longitud del alargamiento del resorte será la variable dependiente, y el peso que colgamos de su extremo será la variable independiente.

PASO 8. LA CONSTRUCCIÓN DE TABLAS Y DE GRÁFICOS
La construcción de tablas consiste en ordenar los datos numéricos obtenidos sobre las variables independiente y dependiente. Siempre se han de especificar las unidades en las que se miden dichas variables, para lo cual se utilizan los paréntesis a continuación de sus nombres.

En el caso del resorte, la tabla podría ser así:
La representación gráfica consiste en representar los datos de las medidas en un sistema de ejes cartesianos, donde normalmente la variable independiente se hace corresponder con el eje X, mientras que la variable dependiente se hace corresponder con el eje Y.

Se llama ajuste de la gráfica al procedimiento mediante el cual se determina la línea que pasa por los puntos que se han representado o la más cercana a ellos.

En la mayoría de los casos, las gráficas que se obtienen son líneas rectas, lo que indica que la relación entre las magnitudes físicas representadas es de la forma y = k • x. donde k es una constante. En otros casos, la relación entre ambas magnitudes es de tipo parabólico, lo que matemáticamente representa que y = k • x2; o de tipo hiperbólico, cuya formulación es de la forma x • y = k.

PASO 9. LAS CONCLUSIONES Y LA COMUNICACIÓN DE RESULTADOS
El análisis de los datos y la comprobación de las hipótesis lleva a los científicos a emitir sus conclusiones, que pueden ser empíricas, es decir, basadas en la experiencia, o deductivas, es decir, obtenidas tras un proceso de razonamiento en el que se parte de una verdad conocida hasta llegar a la explicación del fenómeno.
Una vez obtenidas dichas conclusiones, éstas deben ser comunicadas y divulgadas al resto de la comunidad científica para que así sirvan como punto de arranque de otros descubrimientos, o como fundamento de una aplicación tecnológica práctica .

PASO 10. LA ELABORACIÓN DE LEYES Y TEORÍAS
El estudio científico de todos los aspectos de un fenómeno  natural lleva a la elaboración de leyes y teorías.

Una ley científica es una hipótesis que se ha comprobado que se verifica.

Una teoría científica es un conjunto de leyes que explican un determinado fenómeno.

Así, por ejemplo, la hipótesis comprobada de que el are iris se forma debido a la refracción que experimenta la li al atravesar las gotas de agua de la lluvia, es una ley que s enmarca dentro de un conjunto de leyes que rigen otros fenómenos luminosos (reflexión, dispersión, etc.). Este con junto se conoce como teoría sobre la luz.

Tanto las leyes como las teorías deben cumplir los siguientes requisitos:

1. Deben ser generales, es decir, no sólo deben explica casos particulares de un fenómeno.
2. Deben estar comprobadas, es decir, deben estar avaladas por la experiencia.
3. Deben estar matematizadas, es decir, deben pode expresarse mediante funciones matemáticas.

Las teorías científicas tienen validez hasta que son incapaces de explicar determinados hechos o fenómenos, o hasta que algún descubrimiento nuevo se contradice con ellas, a partir de ese momento, los científicos empiezan a plantearse la elaboración de otra teoría que pueda explicar eso; nuevos descubrimientos.

Rene Descartes

René Descartes creó la geometría analítica, también denominada «geometría cartesiana», en la que los problemas geométricos pueden traducirse a forma algebraica. Se trataba de un método extremadamente poderoso para resolver problemas geométricos y, a la postre, también dinámicos (el problema del movimiento de cuerpos), un método que conservamos más de tres siglos después.En más de un sentido la contribución de Descartes preparó el camino para el gran descubrimiento de Newton y Leibniz: el del cálculo diferencial (o infinitesimal) e integral, el universo de las derivadas y las integrales; un instrumento  incomparable para la indagación matemática y física.

Instrumentos de Boyle
Lámina donde se muestran los instrumentos del laboratorio de Boyle

La divulgación científica: Al científico no le basta con ver, debe convencer. Un descubrimiento científico sólo adquiere importancia si es comunicado en fomia inteligible. Las primeras publicaciones que se registran referidas a la Química provienen de los alquimistas.

Estos químicos de la Edad Media, que procuraban transmutar (convertir) cualquier metal en oro, escribieron dos tipos de manuscritos: míos, puramente prácticos, y otros, donde intentaban aplicar las teorías de la naturaleza de la materia a los problemas alquímicos. Aunque en ambos casos apelaron a una mezcla de magia y ciencia como metodología para sus investigaciones, muchas técnicas allí descriptas siguen utilizándose en la actualidad.

En 1597 un alquimista alemán, Andreas Libau (1540-1616), conocido como Libavius, escribió el que se considera el primer libro de Química, Alchemia, que resumía los hallazgos medievales en esta materia sin caer en el misticismo.

Recién a partir del siglo XVIII las publicaciones de libros y revistas se convirtieron en el vehículo usual para la transmisión científica.

La primera revista del mundo dedicada exclusivamente a la Química fue Annales de Chimie, de 1789. La versión española se publicó dos años después, en Segovia, y fue dirigida por Joseph Proust.

Entre los libros de la época cabe destacar el famoso Traite Élementaire, escrito por Lavoisier en 1789, en el que puede advertirse hasta qué punto Lavoisier se había adelantado a la ley de los volúmenes de combinación, enunciada veinte años después por Gay-Lussac.

En sus páginas se puede leer con claridad que la reacción para la formación de agua requiere exactamente dos volúmenes de hidrógeno para reaccionar por completo con un volumen de oxígeno. Sólo después de veinte años Gay-Lussac retoma estas ideas y, mediante el estudio de la reacción entre el cloro y el hidrógeno, deduce su ley. ¿Pero por qué Lavoisier no llegó a enunciar la ley de los volúmenes de combinación?.

Las respuestas probables a esta pregunta son dos. Primero, Lavoisier fue guillotinado apenas cinco años después de la publicación de su libro; segúndo, hasta el momento de su muerte el cloro no había sido identificado como tal.

En la actualidad, las publicaciones científicas son muy numerosas y se renuevan constantemente. Y, además, resulta fundamental el aporte de los medios informáticos. Gracias a ellos se ha logrado integrar textos, imágenes, sonidos y movimientos, y también es posible el intercambio de trabajos y opiniones científicas de grupos procedentes de todas partes del mundo.

https://historiaybiografias.com/linea_divisoria5.jpg

CONOCIMIENTO CIENTÍFICO: La ciencia puede extender enormemente el alcance de los sentidos humanos, como podemos ver en las páginas de este libro, que se ocupan de algunos de los extraordinarios instrumentos científicos disponibles hoy.

También puede aumentar su capacidad de prever los acontecimientos. Esto es de gran utilidad para el hombre porque le evita eventuales dificultades y porque le permite obtener los resultados previstos. De este modo la ciencia aumenta enormemente los medios a disposición del hombre para la consecución de sus fines, sean éstos constructivos o destructivos.

La ciencia, empero, no puede ocuparse de lo inobservable. Puede ocuparse de los electrones, que no son visibles directamente, porque éstos dejan huellas observables en la cámara de Wilson.

Pero aunque la ciencia se interese por los electrones no puede ocuparse de proposiciones sobre ángeles aunque se diera el caso de que fueran ángeles guardianes quienes orientaran nuestra conducta individual. Como por definición los ángeles no pertenecen al mundo natural, es evidente que no pueden ser estudiados por el método científico.

Tampoco reemplaza la ciencia a la sabiduría. No puede juzgar entre los distintos fines que nos fijamos individual o colectivamente, aunque puede darnos los medios para llegar a ellos con mayor facilidad. Por lo menos hasta el presente la ciencia no está en condiciones de decirle al hombre qué es lo mejor para ver, lo mejor para gustar. Algunos piensan que jamás podrá hacerlo aunque el conocimiento científico a menudo nos predispone a las consecuencias de nuestras elecciones.

La ciencia no es una mera acumulación de conocimientos enciclopédicos. Tampoco es exactamente sentido común —por lo menos en lo que se refiere a algunas de sus conclusiones— como nos habremos percatado luego de leer los artículos sobre la naturaleza física del mundo en que vivimos.

Es, sin embargo, completa y totalmente «sensata» en su dependencia del método de ensayo y error. No es un cuerpo de doctrina que se apoye en la autoridad de personas. No es la mera búsqueda de ingeniosos aparatos aunque éstos resulten una consecuencia del avance del conocimiento científico.

La ciencia es una manera de preguntar. Es un método para avanzar en el conocimiento de fenómenos que pueden ser observados y medidos. Es una aventura en lo desconocido, en pos de la comprensión buscada, comprensión a la que llegaremos mediante ensayos y errores, operando siempre que sea posible en las condiciones controladas de un experimento.

https://historiaybiografias.com/linea_divisoria5.jpg

PARA SABER MAS…
EXPERIMENTO CIENTÍFICO

Un buen ejemplo de investigación científica mediante experiencias sensatas  es el modo en que Galileo estudió la fuerza de gravedad, llegando a descubrir la ley del movimiento uniformemente acelerado de los graves: un mentís clamoroso a la teoría de Aristóteles, que consideraba la velocidad de la caída proporcional al peso.

El plano inclinado que construyó para el estudio del movimiento gravitacional es relativamente simple desde el punto de vista tecnológico: consiste en una viga de seis metros de largo, de buena madera (para impedir que se combe) y que puede inclinarse a voluntad, dotada de una acanaladura cuidadosamente alisada para reducir al mínimo la fricción de las bolas.

Este aparato tan sencillo tiene ya las características de un moderno instrumento científico, porque permite modular a voluntad cualquier parámetro notable de la experiencia. La inclinación, por ejemplo, puede reducirse haciendo más lentos los tiempos de caída, o bien aumentarse hasta rozar la verticalidad (de este modo, la caída libre se convierte en un simple caso límite).

metodo cientifico

El primer plano inclinado de Galileo estaba provisto de campanillas
para señalar los tiempos de caída de la bola.

Al principio, el científico afrontó el problema central (es decir, la comprobación exacta de los tiempos de caída) situando en el plano inclinado a intervalos regulares unas campanillas, de modo que sonasen al paso de la bola. Galileo, además de haber estudiado música, era también un avezado intérprete y contaba con la sensibilidad de su oído, muy entrenado para percibir ritmos e intervalos sonoros. Pero se trataba evidentemente de una solución aún primitiva, insuficiente para llegar a una cuantificación precisa de los tiempos.

El ingenio de Galileo resolvió brillantemente el problema con la construcción de un reloj de agua. Hacía coincidir el comienzo de la caída del grávido con la apertura de un grifo colocado bajo un tanque (mantenido a presión constante en todas las mediciones).

Al final de la caída, bastaba con cerrar el grifo y ocuparse de pesar el líquido almacenado; de este modo transformaba las cantidades de tiempo en cantidades de peso, mensurables y cotejables con gran precisión. Galileo descubrió así que, aunque una mayor inclinación del plano hacía aumentar la velocidad de caída, la relación entre espacios recorridos y tiempos empleados se mantenía constante para cualquier inclinación (por lo tanto, también en el caso límite de la caída libre).

Descubrió sobre todo que esta aceleración no depende del peso, en contra de lo que afirmaba Aristóteles.

Revolucion cientifica Trabajo de Galvani

Grabado mostrando diferentes experimentos de Luigi Galvani (Viribus Electricitatis in Motu Musculari Commentarius [Comentarios relativos a los efectos de la electricidad sobre el movimiento muscular] 1791) acerca de los efectos de la electricidad en ranas y pollos.

La observación, la experimentación y la construcción de teorías y modelos

La recolección de datos es una empresa importante para sostener cualquier trabajo científico. Estos datos pueden ser obtenidos por la observación sistemática de situaciones espontáneas o por la experimentación, que consiste en provocar el fenómeno que se quiere estudiar. Lo importante es ver cómo estos datos se utilizan para formular teorías o modelos.

En la actualidad, casi todos los filósofos de la ciencia están de acuerdo en que los datos por sí solos no explican nada, e incluso hay muchos que ponen en duda que existan datos puros, ya que la observación, sea espontánea o provocada, está siempre condicionada por el conocimiento del observador.

Así, por ejemplo, si un químico se encuentra cerca de una industria que produce acero, olerá dióxido de azufre y podrá inferir qué le puede ocurrir a su cuerpo o al ambiente ante la presencia de esta sustancia. En cambio, un niño que pase por el mismo lugar solo percibirá olor a huevo podrido. Como se puede notar, tanto uno como otro participan de la misma situación, pero la interpretación varía enormemente en función de los conocimientos que cada uno posee acerca del fenómeno que observan.

Además del papel decisivo que tienen los conocimientos del observador, no se debe olvidar que muchas de las observaciones que se realizan se hacen en forma indirecta, es decir, a través de la utilización de instrumentos, indicadores, etcétera, que, en muchos casos, distorsionan el fenómeno.

En la experimentación, el fenómeno es preparado por el mismo investigador, quien fija las condiciones, el sitio y el momento de su realización y, además, puede repetirlo numerosas veces.

Dentro de las ciencias de la vida, la mejor manera de poner a prueba las teorías que se relacionan con el funcionamiento de los organismos es con la ayuda de experimentos. Pero hay ciencias en las que los experimentos no son posibles, como es el caso de las ciencias que estudian la historia de los seres vivos (evolución, Paleontología), en las cuales es preciso hacer observaciones adicionales para corroborar una hipótesis.

Otra forma de comprobar una teoría en Biología consiste en utilizar datos provenientes de fuentes distintas; por ejemplo: si para establecer relaciones filogenéticas en distintos grupos de organismos se utilizan evidencias morfológicas, se pueden buscar pruebas adicionales para validar esa hipótesis recurriendo a evidencias bioquímicas, biogeográficas, etcétera.

Hay que destacar que, si bien el surgimiento del método experimental fue fundamental para el avance de la ciencia moderna, este no es el único método utilizado por los científicos. Las metodologías que se utilizan en las investigaciones son variadas, con lo que se descarta la existencia de un único método científico universal.

Laboratorio de Lavoisier

Lavoisier en su laboratorio, experimentando sobre la respiración de un hombre en reposo (dibujo de Marie Anne Lavoisier).

RESPECTO A LA HIPÓTESIS DE INVESTIGACIÓN

El paso que sigue a la formulación del problema de investigación es enunciar las hipótesis que guiarán la investigación. Sin embargo, antes de dar este paso, será necesario fijar algunos criterios que permitan enunciar hipótesis adecuadas.

Como ya saben, una hipótesis es una respuesta posible aun interrogante planteado, que aún no ha sido puesta a prueba. Sin embargo, no todas las respuestas posibles para un problema de investigación son hipótesis.

Requisitos de una hipótesis
Para ser una hipótesis, la respuesta al problema debe reunir determinadas condiciones. Éstas son algunas de ellas. * Ser formulada en un lenguaje preciso y claro. Supongamos, por ejemplo, que alguien enuncia la siguiente hipótesis: «Los científicos que violan el código de ética profesional de la ciencia tienden a mostrar comportamientos amorales en otros ámbitos sociales». Así formulada, la hipótesis tiene dos problemas: por un lado, no es evidente a qué se llama comportamientos amorales, ya que la expresión no está definida y puede tener más de una interpretación; por otro lado, no es muy claro el sentido de la expresión tienden a (¿cuántos comportamientos amorales tendría que manifestar un científico para que se configure una tendencia?).

* Ser coherente con el conjunto de los conocimientos disponibles sobre el problema de investigación. Por ejemplo, no seria muy interesante formular la hipótesis de que «La ciencia no se enfrenta con ningún problema ético» cuando son conocidos los debates que se plantean continuamente en torno de cuestiones éticas en el ámbito científico. i Hacer avanzar el conocimiento existente. Una hipótesis que reprodujera una afirmación unánimemente aceptada y comprobada en la comunidad científica no sería muy útil para saber más sobre el tema.
Por ejemplo, hoy no tendría sentido indagar la hipótesis de que «La Tierra gira alrededor del Sol».

* Ser coherente con los objetivos del proyecto de investigación y, por lo tanto, con el tipo de proyecto de que se trate. Por ejemplo, si el proyecto es de naturaleza exploratoria -es decir que sus objetivos también lo son-, no se puede construir una hipótesis explicativa para ese proyecto y esos objetivos.

* Poder ser corroborada o refutada por los datos que se reúnen durante el proceso de investigación. Éste es un requisito muy importante, que los filósofos de la ciencia han debatido y fundamentado extensamente. En el apartado que sigue, se analiza con mayor profundidad.

DIFUSIÓN: Cuando el científico ha comunicado un resultado, su conocimiento permite a los tecnólogos imaginar aplicaciones a distintos sectores de la técnica. Otras veces marcha adelante el tecnólogo y descubre una propiedad desconocida; y es trabajo del científico explicar esa propiedad elaborando una teoría. En espectroscopia hay ejemplos de situaciones como ésas: primero se observaron las líneas espectrales y más tarde se desarrolló la teoría que las explica.

En el campo de la Metalurgia hay innumerables ejemplos: desde hace siglos se conoce y se usa la operación de templar un acero; pero la teoría del fenómeno sólo se conoce desde apenas unas décadas.

Otras veces el tecnólogo presenta sus requerimientos al científico, y éste investiga hasta determinar las condiciones que deben cumplirse para satisfacer aquellos requerimientos.

Esto ha ocurrido con frecuencia en los últimos tiempos, por ejemplo en la resolución del problema de la reentrada en la atmósfera de una cápsula espacial: la alta temperatura desarrollada por la fricción con el aire funde cualquier material ordinario, y fue necesario desarrollar nuevos materiales con las propiedades adecuadas. Algunas veces los científicos responden satisfactoriamente a las demandas de los tecnólogos; otras, no. Los problemas y dificultades se renuevan continuamente: nunca estará todo resuelto, pues cada solución abre nuevos caminos, y recorrerlos crea a su vez nuevos problemas.

Experimento con plantas

Grabado reproduciendo un experimento sobre la respiración de plantas y animales, incluido en
Legons sur les phénoménes de la vie communs aux animaux et aux végétaux de Claude Bernard (1878).

¿Qué es cultura científica?
Cada persona que quiere ser útil a su país y a sus semejantes tiene, entre otras cosas, la responsabilidad de adquirir una educación en ciencia (en nuestro caso, a través de la Física y de la Química) que la transforma en una persona capaz de:

• conocer los principios, las leyes y las teorías más generales y sus aplicaciones prácticas más difundidas;

• interpretar fenómenos naturales frecuentes;

• advertir y comprender la incidencia del desarrollo científico y tecnológico sobre las estructuras económicas y sociales en todo el mundo;

• reconocer la universalidad de la ciencia, que por una parte no reconoce fronteras nacionales, y por otra constituye el medio necesario para que la comunidad que forma la nación atienda y resuelva problemas propios;

• detectar, en su región o en su país, problemas susceptibles de ser tratados científicamente, y reconocer la propia responsabilidad en su planteamiento y en la búsqueda de soluciones;

• distinguir entre una simple creencia o una opinión, o una superstición, y una verdad científica;

• comprender que una verdad científica no es una verdad inmutable sino modificable por avances científicos que elaboren una nueva verdad científica más general, que puede abarcar a la anterior;

• gustar del placer intelectual de advertir un fenómeno natural, hacer coherentes partes aparentemente inconexas, plantear una hipótesis plausible y verificarla experimental o teóricamente;

• gustar del placer intelectual de difundir conocimientos y actitudes científicas entre las personas que lo rodean;

• adquirir el amor por la verdad que caracteriza al auténtico pensamiento científico;

• relacionar las explicaciones científicas con otras manifestaciones de la cultura, tales como la filosofía o el arte.

El desarrollo científico y técnico de los últimos tiempos ha ampliado el concepto y las exigencias de «persona culta», que ya no se limitan al campo de la literatura, las artes o las humanidades exclusivamente.

Fuente Consultada:
Atlas Universal de la Filosofía – Manual Didáctico de Autores, Textos y Escuelas
Biología y Ciencias de la Tierra Estructura – Ecología – Evolución Polimodal
Formación Ética y Ciudadana Ética, Ley y Derechos Humanos 3° EGB
Elementos de Física y Química Maiztegui-Sabato

Ideas Geniales de la Ciencia Grandes Ideas Cientificas Gay Lusac

Científicos Creadores de Grandes Ideas

Tales de Mileto  –   Pitágoras   –   Arquímedes  –   Demócrito  –   Galileo Galilei

Lavoisier –   Newton  –   Faraday   –   Joule  –  Linneo

OTROS CIENTÍFICOS GENIALES

JOSÉ LUIS GAY-LUSSAC (1778-1850): José Luis Gay-Lussac nació el 6 de diciembre de 1778 en Saint Léonard, Francia. Físico y químico, descubrió la ley de dilatación de los gases. En colaboración con Thénard demostró que el cloro, hasta entonces considerado como un ácido, no contenía oxígeno, pero supieron que era un compuesto. Davy demostró que era un elemento.

Una aportación de Gay-Lussac fue el descubrimiento de que si se enfría un volumen definido de gas bajo presión constante a una temperatura de O grados C., el gas se contrae un 1/273 por cada grado centígrado que la temperatura descienda. Ello querría decir que, en teoría, el gas dejaría de existir al llegar a los 273 grados bajo 0. En la realidad el gas primero se licúa y luego se solidifica.

Simultáneamente, otro científico francés, Charles, descubría él mismo fenómeno, que se conoce como ley de Charles o de Gay-Lussac, la que expresa que, si la presión de un gas es constante, su volumen será directamente proporcional a su temperatura absoluta. Este concepto fue el que originó una nueva escala de temperaturas, la de Lord Kelvin, que se emplea mucho en los laboratorios químicos. La temperatura de 173 grados C. bajo O se denomina O absoluto, punto en que cesa todo movimiento molecular.

Estudiando la relación entre la temperatura y la presión, propuso la teoría que cuando un gas se calienta, sus moléculas tienden a apartarse, ejerciendo mayor presión sobre las paredes del recipiente que lo contiene. Es decir, cuanto más aumente la temperatura mayor será la presión ejercida por el gas contra las paredes del recipiente. Esto se conoce como ley de Gay-Lussac.

En su colaboración con Thénard, Gay-Lussac mejoró los métodos del análisis orgánico, determinando la composición de numerosos elementos orgánicos. Su última investigación química se refirió al ácido prúsico, cuyo nombre químico es ácido cianhídrico, uno de los más potentes venenos conocidos. La fórmula de este ácido es HCN.

La determinación de la fórmula donde no aparece el oxígeno pero sí el hidrógeno, confirmó la teoría de que todos los ácidos contienen hidrógenos, pero no oxígeno como sostenía Lavoisier (oxígeno quiere decir generador de ácidos). Hay ácidos que pueden contener oxígeno, pero la acidez la determina el hidrógeno. Gay- Lussac murió en París el 9 de mayo de 1850, a la edad de setenta y dos años.

 HUMPHRY DAVY (1778-1829): Davy nació en Pensanse (Cornualles) sudoeste de Inglaterra, el 17 de diciembre de 1778. Hijo de un tallador de madera de bajos medios económicos, Davy entró el año 1795 de aprendiz de un cirujano. Como el muchacho tenía muchas inquietudes, decidió , simultáneamente instruirse a si mismo. Fue así como estudió idiomas, filosofía y, por supuesto, 

ciencias. En 1798 ingresó al Beddoes’s Pneumatic Insitute de Bristol en calidad de supervisor de experimentos.

En Beddoes conoció al gran poeta Samuel Coleridge de quien llegó a ser muy amigo. Coleridge fue una fuerte influencia sobre Davy y le inició en la filosofía de la ciencia de Kant. En 1800 Davy publicó un libro sobre el óxido nitroso (gas de la risa) que tuvo gran éxito, creándole una reputación.

Fue hacia 1806 que emprendió estudios sistemáticos de electroquímica. Ideó y desarrolló métodos de análisis fundados en el uso de corrientes eléctricas. Davy tenía el convencimiento de que la afinidad química tenía un fundamento eléctrico. Aplicando su procedimiento aisló el sodio, el potasio, el magnesio, calcio, bario, estroncio, boro, y silicio. Por aquellas fechas reinaba la teoría de Lavoisier de que el oxígeno era la base de los ácidos (oxígeno significa generador de ácidos). Davy refutó tal teoría y descubrió que los óxidos de los nuevos metales eran álcalis.

Davy se interesó siempre en las aplicaciones de la química y la física en la realidad de la industria. Fue un precursor de las aplicaciones de la química en la agricultura, dictando los primeros cursos sobre la materia en el mundo. Una obra suya, la lámpara de seguridad, alcanzó fama universal y salvó las vidas de miles de mineros.

A raíz de un horrible desastre minero en 1812, donde perecieron noventa y dos hombres y niños a raíz de una explosión a ciento ochenta metros bajo la superficie, los dueños de las minas plantearon a Davy el problema. Las velas y lámparas usadas por los mineros en ese tiempo producían con suma frecuencia el estallido del gas subterráneo, llamado «metano».

Davy descubrió que ese gas no estallaba de modo violento en un tubo pequeño. Diseñó una lámpara en que el metano penetraba y salía por tubos muy pequeños. La lámpara tenía una malla de alambre que rodeaba la llama. La malla tenía 127 orificios por centímetros cuadrado, absorbía el calor del combustible que la hacía arder y lo conducía sin que el calor inflamara el gas que estaba fuera de la lámpara. La malla protectora se montaba sobre un bastidor de alambres verticales y se atornillaba en anillos de bronce, en el superior tenía un asa y el inferior estaba atornillado al cuello del depósito del combustible. La luz salía por una ventanilla de vidrio protegido.

Davy gozó en vida de una enorme celebridad y para la inmortalidad en su tumba está escrito el siguiente epitafio: «Summus arcanorum naturae indagator» (Sumo investigador de los arcanos de la naturaleza). Murió en Ginebra, Suiza, en 1829.

Biografia de Grandes Iconoclastas Personajes que cambiaron la historia

Biografia de Grandes Iconoclastasde la Historia

Biografia de Grandes Iconoclastasde la Historia

Isaac Newton  –  Louis Pasteur   – Charles Darwin  – Sigmund Freud  – Albert Einstein

Cuando Einstein enunció que E=mc2 el mundo no cambió. No se había inventado nada. El modo en que se comportaban las partículas no se alteró. Por ese motivo, el universo permaneció exactamente como estaba. Pero nosotros cambiamos. Cuando la complejidad de la física cuántica se reveló a las mentes inquisitivas, la visión humana del universo se alteró para siempre. Átomos, electrones, y partículas subatómicas no eran distintos de como habían sido durante miles de millones de años —la única diferencia real fue que supimos de ellos.

La intención es revelar los logros principales de cada persona, pero reconociendo que éstos están soportados por muchos otros descubrimientos. En conjunto, estos pensadores tenían dos ambiciones principales. Aquellos como Edwin Hubble y su amigo, simplemente querían descubrir lo que existe y cómo encaja todo. Por otro lado, los inventores científicos como James Watt Thomas Edison se lanzaron a manipular los procesos fundamentales del universo para crear herramientas y técnicas que hicieran la vida un poco mejor.

 Isaac Newton fue descrito por su maestra como vago y distraído. Thomas Edison hacía novillos. El psiquiatra John Watson era violento a veces. En restropectiva podemos ver que, probablemente, sólo eran demasiado listos para interesarse por una enseñanza común, y demasiado creativos para aceptar información sin sin cuestionarla. Aunque otros, como el explorador de gases Robert Boyle, eran niños  enfermizos y tenían muy poca educación formal. Son ejemplos que deberían alentar cualquier  padre que ve a su hijo batallando en el colegio. Es  interesante notar cómo muchos de los grandes logros ocurrieron con un telón de fondo de guerra, conflictos, e inestabilidad política. Los antiguos filósofos griegos, como Sócrates fueron en parte impulsados por la necesidad de dar sentido a un mundo de peleas, y los videntes de física de partículas del siglo XX, como Heisenberg y Niels Bohr, vieron su ciencia utilizada como armamento. Debido a su inteligencia o a su específica especialización, otros como Platón y Henry Ford se encontraron involuntariamente en la línea de fuego de las autoridades. Aunque otros, como Edwin  Schrodinger, experimentaron la vida, literalmente, en la línea de fuego.

 Mucha gente conoce el nombre de Charles Darwin, pero muy pocos reconocen a Alfred Wallace. Ambos alcanzaron la misma conclusión sobre la evolución casi simultáneamente, pero Darwin tenía dinero y amigos políticos, y viviendo en Inglaterra, ganó la carrera para publicar sus ideas. Algunos, como el padre de la píldora anticonceptiva Carl Djerassi ganaron fama debido a que su descubrimiento encajó en una marea de cambio socio-político. Otros incontables científicos y exploradores de la mente y el cuerpo  probablemente tuvieron grandes ideas, pero no llegaron a  ningún lado porque estaban demasiado por delante de su tiempo.

Los Descubrimientos de Albert Einstein 1905 Revolucion de la Fisica(301)

Los Descubrimientos de Albert Einstein 1905

INTRODUCCIÓN:
ALBERT EINSTEIN, EL CIENTÍFICO

Albert EisnteinLos primeros trabajos científicos de Einstein aparecieron en 1901, 1902 y 1903. El primero se refería a la atracción capilar; los otros dos se relacionaban con un trabajo desarrollado anteriormente por el físico matemático norteamericano, Willard Gibbs, pero Einstein no lo sabía.

Se trataba de los Fundamentos estadísticos de la termodinámica. En último término resultó que la aproximación hecha por Einstein era mucho menos abstracta que la de Gibbs, pero el joven genio no se conformó con esto, sino que avanzó hasta darle una aplicación práctica de la mayor importancia.

Por aquella fecha, todavía se hallaba en discusión la realidad de las moléculas y la teoría cinética de la materia. De acuerdo con estas ideas, la temperatura de un cuerpo se debe a la agitación térmica de las moléculas que lo componen. Einstein descubrió que los temas en discusión podían ser vistos por el ojo humano; descubrió que esa «agitación térmica» podía producir un efecto visible y mensurable cuando se trataba de partículas suspendidas en una solución.

En verdad, este efecto había sido descubierto en 1827 por el botánico escosés Robert Brown. Brown observó que los granos de polen suspendidos en agua se dispersaban en un gran número de partículas menores que se hallaban en constante movimiento, moviéndose en zigzags irregulares inclusive cuando no existían corrientes ni otras perturbaciones dentro del agua.

El trabajo (paper)  fundamental de Einstein en el cual demostró que el movimiento browniano podía emplearse como evidencia directa de la existencia de las moléculas, así como para demostrar que era correcta la teoría cinética del calor, fue publicado en 1905, año que ha sido considerado de manera unánime por el mundo científico como el annus mirabilis de Albert Einstein.

En efecto, el Volumen 17 de la revista Annalen der Physik, aparecido en 1905, es considerado uno de los ejemplares más notables de la literatura científica que se haya editado jamás (20). Dicho volumen contiene tres trabajos de Einstein, cada uno aborda un tema diferente y cada uno es una obra maestra en su género.

El trabajo sobre el movimiento browniano era el segundo de ellos; iba precedido por la primera contribución del sabio a la física cuántica, y lo mismo que el tercero, dedicado a la relatividad, se refería al comportamiento de la luz.

Isaac Asimov, científico dedicado mayormente a la divulgación de las ciencias, dice:

«En su Teoría especial de la relatividad -presentada en el año 1905 y desarrollada en sus ratos libres mientras trabajaba como perito técnico de la oficina suiza de patentes-, Einstein expuso una opinión fundamental e inédita del Universo basándose en una aplicación de la teoría de los cuantas.

Sostuvo que la luz se traslada por el espacio en forma «cuántica» y de este modo resucitó el concepto de la luz integrada por partículas. Pero ésta era una nueva especie de partícula, que reúne en sí las propiedades de las ondas y de las partículas, mostrando indistintamente unas u otras propiedades, según fuese el caso.

«Esto podría parecer una paradoja e inclusive una especie de misticismo, como si la verdadera naturaleza de la luz desbordara todo conocimiento imaginable. Sin embargo, no es así. Para ilustrarlo con una analogía, digamos que el hombre puede mostrar diversos aspectos: el de marido, padre, amigo o comerciante. Todo depende de su ambiente momentáneo, y según sea éste se comportará como marido, padre, amigo o comerciante. Sería improcedente que exhibiera su comportamiento conyugal con una cliente o el comportamiento comercial con su esposa, pero de cualquier forma que sea, ello no implicaría un caso paradójico ni un desdoblamiento de la personalidad».

El pensamiento einsteiniano, cuando apenas contaba 26 años de edad, parece una gran falta de respeto no sólo para con Newton, cuya mecánica de los cielos nos estaba gobernando desde el siglo XVIII, sino también para Euclides, cuya geometría quedó establecida en el Siglo IV a C. y que parecía sostenerse sobre un pedestal inconmovible. En su Autobiografía citada ya anteriormente, escrita, según confiesa, a los 67 años de edad, dice en un tono juguetón al referirse a la física:

«… A pesar de toda su fecundidad en cuestiones particulares, en lo tocante a principios reinaba una rigidez dogmática inexplicable: en el comienzo, si es que hubo semejante cosa, Dios creó las leyes del movimiento de Newton, con sus correspondientes masas y fuerzas.

Eso es todo;… Ahora bien lo que más impresionaba al estudiante no era tanto la estructura técnica que se otorgaba a la mecánica, ni la solución de complicadísimos problemas, sino los logros y alcance de la mecánica en ciertos campos que, aparentemente, no guardaban ninguna relación con ella, como la teoría de la mecánica de la luz, que la interpretaba como un movimiento ondulatorio de un éter que era a la vez elástico y cuasirígido, pero sobre todo la teoría cinética de los gases…

Estos resultados le proporcionaban fundamento a la mecánica para sustentar la física y, a la vez, la hipótesis atómica, que ya estaba firmemente anclada en la química. Sin embargo, en la química sólo jugaban un rol las razones existentes entre la masa de los átomos y no sus magnitudes absolutas, de manera que la teoría atómica estaba allí para la contemplación, como antología esclarecedora más que conocimiento de la estructura factual de la materia.

No debe, en consecuencia, extrañarnos que prácticamente todos los físicos del siglo pasado vieran en la mecánica clásica (de Newton) una base tan sólida como definitiva para toda la física, y que incluyeran también a toda la ciencia de la naturaleza…:

La manera que Einstein expone su razonamiento nos parece tan claro y tan obvio, que no en balde sus exposiciones teóricas provocaban rechazo y, cuando menos, grandes dudas, cada vez que se las exponía a sus colegas científicos, todos los cuales estaban inmensamente influenciados por los grandes avances de la física del siglo XIX, y he aquí un joven estudiante que se atreve a desafiar leyes teóricas tan firmemente consagradas… ¡aunque no se congraciaran con la experiencia, como comenzó a quedar en evidencia luego que Einstein expusiera sus teorías!.

Este tipo de fenómenos, que ocurren muy de tarde en tarde en el terreno de las ciencias exactas y que, cuando se presentan, revolucionan el pensamiento científico, por lo general permanecen en la oscuridad, permanecen guardados en el cerebro de sus geniales creadores.

En el caso de Albert Einstein, sin embargo, existe un testimonio de un valor incalificable. Ocurre que se dispone de evidencias pormenorizadas del progreso gradual del pensamiento einsteiniano en torno a la gestación de su teoría de la relatividad.

Ocurre que en 1916, cuando el sabio Albert Einstein ya había presentado su Teoría general de la relatividad, sostuvo una serie de largas conversaciones con el famoso sicólogo Max Wertheimer relacionadas con el tema de la relatividad, que era el tema obligado de la comunidad científica mundial. Años más tarde, el profesor Wertheimer entregó un recuento fascinante de esas conversaciones en un capítulo de su libro Productive Thinking Pensamiento productivo»).

Nos cuenta el profesor Wertheimer que a los 16 años de edad, cuando aún no ingresaba al Politécnico de Zurich, Einstein se encontraba sumido en grandes honduras. Existía una paradoja científica que le tenía perplejo y confundido. De acuerdo con las ideas aceptadas y establecidas, un haz de luz viaja a través del espacio vacío a la velocidad conocida y finita de 300 mil kilómetros por segundo.

El joven Einstein trataba de imaginarse qué vería si pudiera viajar a través del espacio con la misma velocidad que ese haz de luz. De conformidad con la idea general del movimiento relativo, le parecería que el haz de luz en tal caso asumiría la apariencia de un campo electromagnético oscilante en el espacio que estuviera en reposo. Pero semejante concepto era desconocido para los físicos y era una variable de la teoría de Maxwell. Einstein entonces comenzó a sospechar que las leyes de la física, incluyendo las que conciernen a la propagación de Ja luz, deben ser las mismas para todos los observadores, no importa con cuánta rapidez se desplacen unos respecto a otros.

Cuando Wertheimer le peguntó a Einstein si ya en ese tiempo él tenía alguna idea respecto a la invariabilidad de la velocidad de la luz para todos los observadores en movimiento relativo uniforme, éste le había respondido: «No; era una simple curiosidad. Que la velocidad de la luz pudiera cambiar en relación con el movimiento del observador estaba, en cierta forma, caracterizado por la duda. Desarrollos posteriores contribuyeron a aumentar esa duda».

Sin embargo, como le contó a Wertheimer, sólo después de años de pensar en esa paradoja se sintió compelido a considerar la velocidad de la luz como una invariable fundamental, independiente del movimiento del observador, porque esa idea estaba en conflicto con los puntos de vista tradicionales concernientes a la medición del movimiento. Luego, ¿cómo es que debe medirse el movimiento? Einstein comprendió que ello dependía de la medición del tiempo. «Es que estoy viendo con claridad -se preguntó a sí mismo- la relación, la conexión interna entre la medición del tiempo y la del movimiento»?

Entonces se le ocurrió pensar que la medición del tiempo depende de la idea de simultaneidad. Repentinamente se encontró ante el hecho de que, aunque esta idea es perfectamente clara cuando dos acontecimientos se producen en el mismo lugar, no era igualmente clara cuando los acontecimientos se producen en diferentes lugares.

Ese fue el momento crucial de su pensamiento. Einstein se dio cuenta que habla descubierto una gran brecha en el tratamiento clásico del tiempo. Le costó alrededor de diez años llegar a este punto, pero desde el momento en que se dispuso a cuestionar la idea tradicional de tiempo, sólo necesitó cinco semanas para escribir su trabajo^ a pesar de que entonces se hallaba trabajando a jornada completa en la Oficina de Patentes de Berna.

El pensamiento crítico que condujo a Einstein a abandonar el concepto clásico de simultaneidad universal, fue estimulado por su interés en la filosofía. Poco después de haberse trasladado a Berna en 1902, conoció a un estudiante rumano llamado Maurice Solovine, que se dedicaba al estudio de ambas disciplinas, la física y la filosofía, y a un estudiante suizo llamado Conrad Habicht. Con frecuencia los tres se reunían por las tardes a leer juntos y a discutir a los clásicos de la filosofía, como Platón, Kant, Stuart Mills, Poincaré y otros.

La vida en Berna le fue atractiva y estimulante en muchos aspectos, además de proporcionarle su trabajo una buena remuneración y la posibilidad de conocer y estudiar los muchos inventos que se presentaban a la Oficina, en los que siempre manifestó una grande y generosa curiosidad, especialmente por la disparidad de caracteres libres que eran los inventores.

Pero mientras Einstein se sentía gradualmente conducido a cuestionar el concepto clásico de tiempo, también se estaba convirtiendo de manera creciente en un escéptico de la idea mecanicista de que las ondas electromagnéticas en el espacio vacío debían ser consideradas como oscilaciones en un medio universal sumamente peculiar llamado «éter». De hecho, las propiedades de este medio le parecían que desafiaban una explicación mecánica.