La Química Moderna

Biografia de Agassiz Jean Louis:Teoría y Obra Cientifica

Biografia de Agassiz Jean Louis-Teoría y Obra Cientifica

Louis Rodolphe Agassiz (Motier, 1807-Cambridge, Massachusetts, 1873.) , fue un destacado naturalista y geólogo estadounidense nacido en Suiza, uno de los especialistas más preparados y competentes de su tiempo, tenía gran habilidad para despertar el interés del público por las ciencias naturales.

A partir de sus observaciones en los Alpes suizos, planteó la teoría de que en un tiempo la mayor parte de la Tierra estuvo cubierta por glaciares.

Estudió en Zurich, Heidelberg, Erlangen y Munich. Trabajó en París y Neu-chatel.

Louis Agassiz destacó inicialmente por sus estudios sobre la fauna europea de agua dulce y los animales fósiles, especialmente peces, equinodermos y moluscos. Pero su fama se debe, sobre todo, a sus estudios sobre los glaciares.

En 1840 demostró que Suiza estuvo, durante el Pleistoceno, totalmente cubierta por glaciares, y propuso que las rocas erráticas, esparcidas por el norte de Europa y de América, indican que todas esas regiones estuvieron bajo una capa de hielo semejante a la de Groenlandia, iniciando así los estudios de las eras glaciales.

En 1846 fue a los Estados Unidos para dar un ciclo de conferencias, se quedó y se naturalizó en el país.

En 1848 fue nombrado profesor en Harvard, donde fundó el Museo Zoológico.

Siendo profesor en Harvard, organizó varios viajes por América del Norte, los arrecifes coralinos de Florida y Brasil, y luego visitó California rodeando el Cabo de Hornos.

Naturalista, paleontólogo y geólogo suizo, su nombre también pasó a la historia porque fue uno de los grandes zoólogos que se opusieron a la teoría de la evolución de Charles Darwin

Estudioso de los glaciares

Expedicionario incansable, agudo observador y un apasionado científico, Agassiz no le temía a nada y gustaba de observar la naturaleza en contacto directo. Durante ocho veranos recorrió las cumbres de Europa: incluso llegó a construir una cabana en el glaciar de Aar con el fin de analizar la estructura y los movimientos del hielo.

Como fruto de sus investigaciones, llegó a la conclusión de que en otro tiempo las masas de hielo de los glaciares habían cubierto las montañas suizas e invadido las regiones del norte de Europa, América y Asia.

En ese momento, Agassiz, que había estudiado medicina y anatomía comparadas, tenía 35 años y ya era un reconocido naturalista que se había formado bajo la tutela de Alexander von Humboldt y Georges Cuvier, cuando publicó sus descubrimientos geológicos en su famoso libro Estudio de los glaciares.

RECONOCIMIENTO: Jean Louis Agassiz es considerado uno de los fundadores de la moderna tradición científica estadounidense. En 1861 recibió la Medalla Copley, la más alta distinción de la Sociedad Real de Londres, en reconocimiento a su trabajo científico.

Rechazo científico:

En un principio, sus teorías fueron desestimadas por los científicos de la época.

Tuvieron que pasar muchos años de evidencias fósiles, de descubrimientos geológicos, así como la teoría de la evolución de Darwin, para que empezaran a tomarse en serio sus ideas acerca de las
edades glaciales.

Sin embargo, cuando esto ocurrió, contrariamente a lo que se esperaba, Jean Louis empezó a combatir las ideas evolucionistas que sus propios descubrimientos habían ayudado a desarrollar.

¿Por qué Agassiz no pudo reconocer que las especies habían evolucionado a partir de formas diferentes más antiguas?.

Es posible que su visión creacionista de la historia de la Tierra (pese a sus profundos conocimientos paleontológicos y anatómicos) se debiera a sus profundas convicciones religiosas, nutridas por seis generaciones de antepasados que fueron clérigos.

Legado

El mundo le debe varias cosas a este naturalista, que fue el primero en proponer científicamente la existencia de una era glacial en el pasado.

Hoy sabemos que en el último millón de años las variaciones de temperatura han dado lugar a cuatro períodos glaciales, en los que los hielos llegaron a cubrir un tercio de la superficie terrestre, y que un ciclo similar posiblemente se repetirá en el futuro.

Entre sus obras más importantes hay que destacar los 5 volúmenes de Investigaciones sobre los peces fósiles, Historia natural de los Estados Unidos y un catálogo de Zoología y geología.

En su honor, se ha dado su nombre a un gran lago que cubrió parte de los EE. UU. y el Canadá durante la época pleistocena (lago Agassiz). Agassiz realizó numerosos viajes científicos y escribió, entre otras obras: Historia natural de los peces de agua dulce de la Europa central, Investigaciones sobre los peces fósiles, Descripción de los equinodermos fósiles de Suiza y Estudios sobre los glaciares.

CRONOLOGÍA:

1807-NACIMIENTO: Nació en Motier (Suiza), el 28 de mayo. Era hijo de un pastor protestante. Desde joven, junto con su hermano, buscó toda clase de animales vivos y plantas. Asistió a lá escuela secundaria de Bienne y completó sus estudios elementale: en la Academia de Lausana.

1829- ESTUDIOS: A los 22 años se graduó como doctor en filosofía y, en 1830, en medicina. Posteriormente viajó a Viena, donde conoció a Alexander von Humboldt (1769-1859). Un año después trabajó en París junto a Georges Ctivier (1769-1832).

1832- FÓSILES: En 1832 fue nombrado profesor de Historia natural en la Universidad de Neuchatel (Suiza). Sus primeros trabajos científicos se refieren al estudio de los peces fósiles, que había iniciado con el gran maestro de la época, Georges Cuvier.

1840-ALPES: Después de varios viajes a los Alpes, propuso la existencia de una era glacial en el pasado de la Tierra. En 1840, junto con William Buckland (foto), visitó las montañas de Escocia y encontró en diversos lugares señales de una antigua actividad glaciar.

1873- MUERTE: El 14 de diciembre murió en Cambridge, Massachusetts. Desde entonces se lo recuerda por haber sjdo el primero en estudiar los movimientos de los glaciares y su influencia en el desplazamiento y la erosión de las rocas.

Fuentes Consultadas:
Grandes Cientificos de la Humanidad Editorial ESPASA Manuel Alfonseca-Tomo I-
Cuadernillo Semanal de National Gegraphic – Atlas de la Ciencia -Clima-

Historia de la Quimica y sus Etapas Cientificos Precursores

Historia de la Química
Las Etapas Evolutiva y Científicos Precursores

Aunque podemos situar el nacimiento de la química, como un área del conocimiento de intenciones y resultados nítidamente científicos, en los albores de la época decimonónica, la historia de los esfuerzos humanos por la comprensión de los secretos de las transformaciones de las sustancias naturales se remonta a lejanos períodos de la antigüedad.

Las técnicas de la cerámica y el vidrio de las sociedades prehistóricas se sitúan entre los primeros precedentes conocidos de la aplicación de conocimientos químicos.

Procesos de superior sofisticación tecnológica, como el tratamiento metalúrgico del oro, el hierro y otros metales, las técnicas de embalsamamiento practicadas por los egipcios, o la invención de la pólvora y el empleo de la tinta en la antigua civilización china constituyen una muestra de los avances de la química en las sociedades del pasado.

La química moderna, cuyo nacimiento se sitúa tradicionalmente hacia los inicios del siglo XIX, consiguió desembarasarse del lastre seudocientífico que la había acompañado durante milenios e integrarse en el ámbito de la racionalidad sistemática característica de las ciencias contemporánea.

Entendida como la disciplina encargada del estudio de las tansformaciones ocurridas entre los cuerpos, debidas a cambios en su naturaleza o su estructura interna, la química comprende un conjunto de especialidades de las ciencias naturales que tienden un puente entre las cualidades de la materia inanimada y las propiedades más esenciales de los organismos vivos.

Etapa 1-El Fuego y sus aplicaciones:

Prehistoria: Se presenta a partir del manejo y dominio del fuego por las diferentes tribus, lo cual utilizaban no solo para obtener el calor en las noches de frio, sinotambién para protegerse de los animales salvajes del momento, para laelaboración de los alimentos, lo cual sucedió en la época del Homo Erectus, hacemás de 500.000 años. Nacen las técnicas de la cerámica , el vidrio y metales de las sociedades prehistóricas se sitúan entre los primeros precedentes conocidos de la aplicación de conocimientos químicos.

Procesos de superior sofisticación tecnológica, como el tratamiento metalúrgico del oro, el hierro y otros metales, las técnicas de embalsamamiento practicadas por los egipcios, o la invención de la pólvora y el empleo de la tinta en la antigua civilización china constituyen una muestra de los avances de la química en las sociedades del pasado.

https://historiaybiografias.com/archivos_varios5/estrella1_bullet.png

Etapa 2-Grecia el Estudio de la Materia:

Los griegos: con el desarrollo del ser humano en forma integral fueron surgiendo pensamientos acerca de la materia y su  conformación,concretamente en Grecia surgió en el siglo IV a.c. con Empédocles de Agripentoquien esbozo la tesis de que los elementos fundamentales eran la tierra, el aire, el agua y el fuego, considerando que los objetos son precisamente el producto de la combinación de las diferentes proporciones de ellos.

Las hipótesis sobre la constitución de la materia y la causa de sus modificaciones químicas se basaban en normas de inspiración cosmológica sobre la existencia de estos cuatro elementos básicos citados por la mayoría de las escuelas filosóficas helénicas.

De esta forma, acertadas exposiciones sobre la estructura de la materia como las defendidas por la escuela ato-mista de Leucipo y Demócrito no pasaban de ser reflexiones abstractas sin ninguna constatación experimental.

Profundizar en el conocimiento de cómo está constituida la materia ha sido siempre uno de los grandes objetivos del pensamiento humano. La idea de que toda la materia que forma el mundo físico está formada por partículas muy pequeñas, separadas por espacios vacíos data ya de los filósofos griegos, especialmente de Demócrito, que vivieron en el siglo V a. C. Los pensadores helenos se plantearon la siguiente pregunta: si tomamos un trozo de hierro, por ejemplo, y lo cortamos en partes más pequeñas, ¿se podrá seguir cortando indefinidamente o bien llegará un momento en que encontremos una partícula de hierro que sea indivisible y no pueda cortarse más? El filósofo Demócrito opinó que debía existir una última partícula que ya no podía ser dividida en otras más pequeñas y la denominó átomo (en griego átomo quiere decir indivisible).Desgraciadamente, las ideas de Demócrito fueron combatidas por Aristóteles y por este motivo fueron rechazadas durante largo tiempo a causa del prestigio universal del gran filósofo griego.

https://historiaybiografias.com/archivos_varios5/estrella1_bullet.png

Etapa 3-La Química Moderna:

Surge en el siglo XIII, cuando surge lanecesidad de explicar los cambios de cualidad y de sustancia, en las sustancias inanimadas. La tradición alquimista árabe y oriental se perpetuó en el continente europeo con renovada fuerza.

Pese a su notable carga de esoterismo y sus connotaciones místicas, que ligaban las reacciones químicas con las fuerzas ocultas del cosmos, la alquimia medieval fue responsable de un importante empuje en el conocimiento de los compuestos químicos y los mecanismos de su transformación en otros de diferente naturaleza. A través de la alquimia buscaban la piedra filosofal, método hipotético capaz de transformar todos los metales en oro, poniendo en practica su objetivo es que desarrollan nuevos productos y técnicas químicas, lo que a la postre es labase de la química experimental.

Comienza  a desarrollarse la química como ciencia en los siglos XVI y XVII, cuandose empieza analizar el comportamiento y propiedades de los gases, se instaura latécnica de medición, se desarrolla el concepto de elemento, considerando queeste es una sustancia que tiende a descomponerse en otro, se desarrollo la teoría del flogisto.

Podemos asegurar que los primeros síntomas de evolución hacia actitudes más consonantes con las pujantes doctrinas científicas del momento se apreciaron durante la época renacentista.

Los químicos de los siglos XVI y XVII se imbuyeron del espíritu de las nuevas concepciones de las matemáticas, la física y la astronomía y se decantaron gradualmente hacia la adopción de criterios de análisis eminentemente experimentales. Fruto de esta postura, se produjo una ingente sucesión de descubrimientos de sustancias y elementos desconocidos utilizando técnicas de investigación cada vez más perfeccionadas.

El siglo XVIII recogió el espíritu sembrado por sus inmediatos predecesores y emprendió la tarea de enunciar teorías universales sobre la metamorfosis de la naturaleza.

Así, al nacimiento de la química de los gases que había permitido el estudio científico del aire, el aislamiento del hidrógeno y la determinación de la importancia de la combustión en las reacciones metálicas, sucedió la hipótesis del flogisto.

Este supuesto ente, inmanente de toda sustancia natural, se transmitiría de unos cuerpos a otros en el curso de las combinaciones químicas y forzaría los fenómenos de la combustión.

El descubrimiento del oxígeno en los óxidos y sales, unido a la exposición de leyes sobre el comportamiento de los gases, fue recogido en las postrimerías del siglo por Antoine-Laurent de Lavoisier para elaborar su hipótesis sobre la composición del aire y el agua.

El empleo de un instrumental químico perfeccionado le permitió establecer un compendio de las leyes fundamentales de la química. A ellas se unió un estudio pormenorizado de los sistemas de nomenclatura y la adopción de la metodología general de las ciencias naturales, de forma que esta disciplina del saber se alejó de las posturas históricas del pasado y proyectó su actividad hacia el esfuerzo común de la ciencia moderna.

https://historiaybiografias.com/archivos_varios5/estrella1_bullet.png

Etapa 4:-La Química Atómica:

Se inicia con la organización del sistema de clasificaciónde los elementos, agrupándolos Johann Dobereiner en grupos de 3 elementos conocidos como triadas, teniendo en cuenta las propiedades físicas que modificaban de manera ordenada, con su masa atómica. Durante el siglo XIX el número de elementos químicos conocidos fue haciéndose cada vez mayor, y simultáneamente fueron estudiándose sus propiedades tanto físicas como químicas.

Por este motivo se apreció la conveniencia de clasificar los elementos de modo sistemático, atendiendo a las propiedades que tuvieran en común. Ahora bien, la clasificación no resultaba sencilla ya que cada elemento poseía propiedades características que lo diferenciaban de los demás elementos.

Atendiendo a las propiedades de los elementos, el primer intento de clasificación de los elementos se basó en separarlos en dos grupos: los elementos que tenían características metálicas y los que no las tenían, es decir, se separaron los metales de los no metales.

Sin embargo, este primer intento de clasificación no resultó satisfactorio ya que quedaban agrupados elementos muy diferentes y además no podía establecerse una separación clara entre ambos grupos ya que algunos elementos presentaban a la vez características metálicas y no metálicas.

En 1869, trabajando independientemente. Dimitri Mendeleiev y Lothar Meyer clasificaron los elementos atendiendo a sus propiedades químicas y físicas, respectivamente, llegando a una ordenación similar, al clasificar los elementos por masas atómicas crecientes atendiendo a los criterios anteriores.(Ver: Tabla de Mendeleiev)

ESTRUCTURA ATÓMICA DE LA MATERIA: A partir del siglo XIX empezaron a aparecer las primeras teorías científicas sobre la constitución de la materia, que retomaron el concepto de átomo y que posteriormente han ido imponiéndose hasta la actualidad. Así, en 1805, John Dalton expuso sus ideas sobre la constitución atómica de la materia, que pueden resumirse del modo siguiente:

a) La materia está constituida por partículas muy pequeñas e indivisibles, denominadas átomos.

b) Los átomos de un mismo elemento son iguales entre sí.

c) Los compuestos están formados por átomos distintos.

d) Los átomos de distintos elementos tienen distinta masa y distintas propiedades.

e) La masa total de las sustancias que intervienen en las reacciones químicas no varía, ya que los átomos son invariables.

Así pues, de las ideas de Dalton se deduce que un átomo es la parte más pequeña de un elemento que puede intervenir en una reacción química mientras que una molécula es la parte más pequeña de un compuesto que conserva todas las propeidades del mismo. (Ver: La Materia)

https://historiaybiografias.com/linea_divisoria3.jpg

¿QUE ES LA QUÍMICA?: El nombre de la química moderna viene de la alquimia, que probablemente nació en la región de Khimi, «el país de la tierra negra», en el delta del Nilo. Aquí se descubrió por primera vez, hace más de 4000 años, que la acción del calor sobre los minerales puede aislar metales y cristales con propiedades útiles, que por lo tanto se podían vender con un beneficio.

La práctica de la alquimia se extendió por todo el mundo árabe, hasta Asia, donde se enriqueció con el secreto de la producción de la pólvora, guardado por los chinos.

Uno de los objetivos de la alquimia era la transmutación del metal: los alquimistas buscaban una «piedra filosofal» que pudiera convertir metales como el hierro, el cobre y el plomo en el metal «noble» oro, que ni perdía su brillo ni su valor comercial. También pensaban que la piedra filosofal era el «elixir de la inmortalidad» y que los que lo poseían gozarían de salud eterna.

A continuación se hicieron muchos experimentos que, aunque no dieron los resultados deseados, sí que llevaron al desarrollo de las técnicas que forman la base de la química moderna.

La alquimia llegó a asociarse con ideas y prácticas místicas, pero, con el acceso a los escritos árabes sobre alquimia, a partir del s. XII se introducían poco a poco técnicas e ideas más racionales en el estudio de los procesos químicos, aunque se mantenían muchos de los objetivos originales.

De hecho, incluso sir Isaac Newton experimentó con la transmutación del oro; una actividad muy oportuna, pues era jefe de la Ceca Real.

Los objetivos de la química moderna: En la química moderna, la piedra filosofal ha sido sustituida por una fe fundamental en la importancia del entendimiento de las leyes físicas que gobiernan el movimiento de los átomos y las moléculas.

Esta creencia ha fomentado el desarrollo de métodos para convertir minerales, gases y aceites naturales de bajo coste en sustancias de gran valor comercial o social.

Durante los últimos 150 años este enfoque ha transformado nuestro mundo por completo. El descubrimiento de procedimientos químicos para convertir hierro en acero , ha desempeñado un papel importante en la revolución Industrial.

En el s. XX se ha logrado un aumento espectacular en el rendimiento de cereales por hectárea de tierra de cultivo, gracias al descubrimiento hecho en Alemania en 1908, de que se puede convertir nitrógeno del aire en abono nitrogenado.

De la misma manera la profundización del conocimiento de las estructuras y de las reacciones de los compuestos (orgánicos) del carbono ha hecho posible la producción de medicamentos y fibras sintéticas que afectan la vida de todos.

La evolución de la química, desde la producción de sustancias nuevas en cantidades muy pequeñas en laboratorios también pequeños, a los procesos industriales modernos, que producen millones de toneladas de productos químicos, es problemática.

En un laboratorio de química escolar, el olor a huevo podrido del ácido sulfhídrico puede ser bastante inofensivo, pero el escape de un gas nocivo, a una escala proporcional, en una planta química grande, puede perjudicar seriamente la salud.

Por lo tanto, la industria química moderna tiene una doble responsabilidad: no sólo la de producir los productos químicos que la sociedad del bienestar consume en cantidades cada vez mayores, sino además la de hacerlo sin que esto repercuta demasiado en el entorno local o global.

Todo lo investigado y descubierto hasta nuestro último dias en las distintas área cientficas, como por ejemplo el Teorema de Thales, de Pitágoras, las ecuaciones de Einstein o el modelo atómico de Borh ha sido logrado con el esfuerzo de grandes cientificos que han dedicado miles de horas a la observación, la experimentación y el estudio de los fenómenos naturales que ellos consideraban analizar.

Probablemente nunca se hayan detenido a pensar es que, para llegar a una conclusión, estos hombres y mujeres de ciencia han dedicado muchas horas de trabajo. Y más aún: la gran mayoría permanece en el anonimato. Hipótesis y experimentos, aciertos y errores, observación y estudio son matices de la vida del científico.

La Química es una disciplina que no escapa a estas reglas. A lo largo de la historia, numerosas cuestiones que parecían mágicas se fueron vislumbrando gracias al trabajo de los científicos.

A pesar de realizar notables e inspirados descubrimientos en diversas técnicas de transformación, las nociones químicas de las culturas precristianas de la cuenca mediterránea y las desarrolladas en el medio y extremo oriente eran escasas, y los trabajos desarrollados en este campo tenían un fundamento teórico muy endeble.

Las hipótesis sobre la constitución de la materia y la causa de sus modificaciones químicas se basaban en normas de inspiración cosmológica sobre la existencia de elementos básicos, como el fuego, agua, tierra y aire citados por la mayoría de las escuelas filosóficas helénicas.

De esta forma, acertadas exposiciones sobre la estructura de la materia como las defendidas por la escuela atomista de Leucipo y Demócrito no pasaban de ser reflexiones abstractas sin ninguna constatación experimental.

Los precursores de los modernos químicos aparecieron en el curso de la edad media en la figura de los alquimistas, seguidores de las doctrinas filosóficas del período helenístico griego y del pensamiento órfico y pitagórico del próximo oriente.

Este término, de etimología árabe, designa en la historia de la química a los estudiosos islámicos y cristianos que desde aproximadamente el siglo IX se dedicaron a la obtención de sustancias por procedimientos de transformación química, en busca de los cuerpos nobles cuyo tratamiento les revelara el secreto de los cambios y fluctuaciones del Universo.

A través de procesos como la amalgamación de metales, la sublimación, la destilación y la disolución, aprendieron las técnicas de alteración de los compuestos e idearon métodos para la obtención de numerosas sustancias conocidas y nuevas.

La tradición alquimista árabe y oriental se perpetuó en el continente europeo con renovada fuerza. Pese a su notable carga de esoterismo y sus connotaciones místicas, que ligaban las reacciones químicas con las fuerzas ocultas del cosmos, la alquimia medieval fue responsable de un importante empuje en el conocimiento de los compuestos químicos y los mecanismos de su transformación en otros de diferente naturaleza.

Los primeros síntomas de evolución hacia actitudes más consonantes con las pujantes doctrinas científicas del momento se apreciaron durante la época renacentista. Los químicos de los siglos XVI y XVII se imbuyeron del espíritu de las nuevas concepciones de las matemáticas, la física y la astronomía y se decantaron gradualmente hacia la adopción de criterios de análisis eminentemente experimentales.

Fruto de esta postura, se produjo una ingente sucesión de descubrimientos de sustancias y elementos desconocidos utilizando técnicas de investigación cada vez más perfeccionadas.

El siglo XVIII recogió el espíritu sembrado por sus inmediatos predecesores y emprendió la tarea de enunciar teorías universales sobre la metamorfosis de la naturaleza. Así, al nacimiento de la química de los gases que había permitido el estudio científico del aire, el aislamiento del hidrógeno y la determinación de la importancia de la combustión en las reacciones metálicas, sucedió la hipótesis del flogisto.

Este supuesto ente, inmanente de toda sustancia natural, se transmitiría de unos cuerpos a otros en el curso de las combinaciones químicas y forzaría los fenómenos de la combustión.

https://historiaybiografias.com/archivos_varios5/estrella1_bullet.png

CIENTIFICOS PRECURSORES DE LA CIENCIA QUIMICA:

En el siguiente recorrido, mecionaremos  una sintesis de los los principales acontecimientos o etapas que marcaron este camino.

Las primeras actividades relacionadas con la Química tienen que ver con la forja de metales, con la preparación de barnices y la fabricación de vidrio.

Hacia los años 600 a 400 a. C, Demócrito (460-370 a. C.) postula, por primera vez, la existencia de átomos (con una estructura muy distinta de la conocida actualmente).

En el año 323 a. C. Aristóteles (384-322 a. C.) anuncia la existencia de cuatro elementos: aire, fuego, tierra y agua, cada uno con características particulares. Ya en la era cristiana, en el año 100 d. C, se registran los comienzos de la alquimia, práctica que persigue como objetivo transmutar (convertir) los metales en oro y encontrar el elixir de la larga vida.

Las prácticas alquimistas etan una extraña mezcla de magia y realidad, pero de ellas pueden extraerse muchos procedimientos aún vigentes. Por ejemplo, en el siglo XI aparecen manuscritos de alquimistas que describen técnicas utilizadas en la actualidad como la destilación. Entre los productos obtenidos se mencionan el alcohol y los ácidos minerales.

Un siglo después, en Oriente, los chinos sorprenden con un descubrimiento asombroso: la pólvora.

En el siglo XVI se desarrollan los métodos cuantitativos y surge, de la mano del médico suizo Theophrastus von Hohenheim (1493- 1541), conocido como Paracelso, la iatroquímica (ciencia que utiliza los compuestos químicos en medicina) y, hacia fines del siglo XVI, aparece Alchemia, considerado el primer libro de Química, escrito por Andreas Livabius.

Resultado de imagen para historiaybiografias.com Paracelso

Paracelso

A medida que transcurre el tiempo, la magia deja su lugar a la ciencia, y los «nuevos científicos» intentan explicar la naturaleza de la materia y de las transformaciones.

En el siglo XVII, George Ernst Stahl (1659-1734) postula su teoría del flogisto, Jan Baptista van Helmont (1577-1644) establece las bases de la ley de conservación de la masa y revela la existencia de los gases; finalmente, Robert Boyle (1627-1691) comienza a desarrollar la teoría cinético-molecular de los gases: encuentra cómo se relacionan el volumen y la presión.

En el siglo XVIII se revelan más secretos: Henry Cavendish (1731-1810) aisla el «aire inflamable», hoy conocido como hidrógeno, y realiza varias experiencias con este gas; Joseph Priestley (1733-1804) estudia una docena de nuevos gases, entre ellos el oxígeno, y comprueba que este gas es necesario para la respiración animal y para la combustión.

Resultado de imagen para historiaybiografias.com Joseph Priestley

Joseph Priestley

Con los descubrimientos de Priestley y varios experimentos brillantes. Antoine Lavoisier  (1743-1794) descarta la teoría del flogisto y explica el lavoisier quimica proceso de combustión.

Además, perfecciona los métodos cuantitativos, y es considerado por algunos el padre de la Química moderna.

Hacia fines del siglo comienza a manejarse la nomenclatura química que conocemos hoy: Jons Jakob (1779-1848), barón de 3erzelius, representa los elementos químicos con sus símbolos.

Durante el siglo XIX, la mirada se centra en dilucidar la naturaleza de la materia: Joseph Gay-Lussac (1778-1850) enuncia la ley de proporciones múltiples para los gases, lo que implica la interacción de partículas discontinuas o átomos, hecho que es explicado cor un químico brillante: John Dalton (1766-1844) postula su teoría atómica.

Sin embargo su genialidad no termina allí: Dalton asigna a los distintos átomos un valor de masa atómica relativo.

 John Dalton

John Dalton

Las leyes de la Química Moderna se suceden y Amedeo Avogadro (1776-1856) introduce la distinción entre átomos y moléculas. También establece que a presión y temperatura determinadas, dos volúmenes iguales de gases diferentes tienen el mismo número de partículas.

Por otra parte, se avanza en el área de la Química del carbono y se originan las primeras industrias químicas: en la química inorgánica. Svante Arrhenius (1859-1927) estudia la disociación de sales por métodos electroquímicos.

La necesidad de ordenar los elementos químicos conocidos culmina con una obra genial: Dmitri Mendeleiev (1834-1907) y Lothar Meyer (1830-1895) elaboran en forma independiente la tabla periódica de clasificación.

 Dmitri Mendeleiev

Dmitri Mendeleiev

Restan muchos interrogantes en el camino, pero existe uno que inquieta más que otros, ¿cómo están formados los átomos?.

Varios acontecimientos se suceden en torno de esta pregunta.

Por un lado, Antoine-Henri Becquerel (1852-1908) descubrió que algunos compuestos de uranio emitían una radiación más potente que los rayos X.

 Antoine-Henri Becquerel

Antoine H. Becquerel

Marie Curie (1867-1934) y su esposo Pierre (1859-1906) determinaron que el átomo de uranio era el que producía radiactividad. Por otro lado, mediante el empleo de rayos catódicos, Joseph John Thomson (1856-1940) descubre el electrón.

 Marie Curie

Marie Curie

 Niels BohrYa en el siglo XX. numerosos físico-químicos, entre ellos. Ernest Rutherford (1871-1937). Niels Bohr (1885-1962), James Chadwick (1891-1974) y Linus Pauling (1901-1994)consiguen dilucidar la estructura real del átomo, que permite explicar la afinidad y las uniones de los distintos elementos químicos.

En la Química aplicada surge la bioquímica.

Primero persigue el estudio de los fluidos corporales, pero pronto se desarrollan métodos para determinar la naturaleza y función de los componentes celulares.

Además, se desarrolla de manera sorprendente la industria química, que permite la síntesis artificial de numerosos compuestos.

La disciplina se interrelaciona con otras áreas, como la biotecnología, la ingeniería, el estudio de materiales, etc.

https://historiaybiografias.com/archivos_varios5/estrella1_bullet.png

ETAPAS DE LA EVOLUCIÓN DE LA QUÍMICA

Milenio cuarto a.C. a siglo V a.C.

https://historiaybiografias.com/archivos_varios5/quimica-1.jpg

Relieve egipcio que muestra herreros usando sopletes para avivar el fuego y así fundir el metal.

Resultado de imagen para historiaybiografias.com aristoteles

Aristóteles postula su teoría de los cuatro elementos.

SIGLOS XVI y XVII

historia quimica

Grabado que aparece en el libro Alchemia.

Resultado de imagen para historiaybiografias.com stahl

George Ernst Stahl enuncia su teoría del flogisto.

SIGLO XVIII

Resultado de imagen para historiaybiografias.com Joseph Priestley

Joseph Priestley experimenta con gases, entre ellos oxígeno.

lavoisier quimica

Antoine Lavoisier enuncia ley de conservación de la teoria.

SIGLO XIX

Resultado de imagen para historiaybiografias.com gay lusaac

Joseph Gay-Lussac enuncia dos importantes leyes sobre los gases.
 John Dalton

John Dalton se destaca por enunciar su célebre teoría atómica.

historia de la quimica

Svante Arrhemius obtiene el premio Nobel por sus trabajos sonre ionización

historia de la quimica

Justus von Liebig (1803-1873) aplicó sus conocimientos de Química inorgánica a la agricultura.

SIGLO XX

historia de la quimica borh

Neil Borh presente un modelo atómico donde los electrones giran alrededor de un nucleo, que contiene protones y neutrones

historia de la quimica watson

James Watson (1928-), junto con Francis Crick, descubre la estructura del ADN.

https://historiaybiografias.com/linea_divisoria4.jpg

APLICACIONES DE LA QUIMICA

En la industria alimentaria, los químicos supervisan los procesos de producción y la calidad de las materias primas y de los productos obtenidos. Los especialistas en alimentos se llaman bromatólogos. Los resultados de su trabajo pueden comprobarse, por ejemplo, leyendo las etiquetas de los alimentos, que incluyen un detalle porcentual de los compuestos químicos.

https://historiaybiografias.com/bullet_tildado.gif

La petroquímica, o química del petróleo y sus derivados, cuenta con químicos dedicados a investigar, desarrollar y aplicar nuevos productos. Se desarrollan aquí combustibles, plásticos y otros materiales novedosos capaces de reemplazar a los tradicionales, mejorando sus propiedades y ampliando el campo de aplicación.

https://historiaybiografias.com/bullet_tildado.gif

El control de calidad se realiza, de manera exhaustiva, en la industria farmacéutica, donde muchos químicos trabajan, también, para desarrollar nuevos medicamentos. Día a día se sintetizan analgésicos, antibióticos y otras drogas.

https://historiaybiografias.com/bullet_tildado.gif

La tarea del químico forense resulta importante para aclarar situaciones legales frente a un hecho concreto. Por ejemplo, la presencia de una droga en un tejido cadavérico, o de alguna sustancia tóxica en aguas o alimentos. Los toxicólogos analizan estos aspectos.

https://historiaybiografias.com/bullet_tildado.gif

-Os agroquímicos trabajan asesorando a agricultores y ganaderos en el mejoramiento de tierras de cultivo y pastoreo; en el uso de fertilizantes, de pestici-:as, de suplementos alimentarios para el ganado, etc.

https://historiaybiografias.com/bullet_tildado.gif

El estudio de las propiedades fisicoquímicas de los materiales usados en la construcción, así como el diseño de plantas industriales, es tarea de los ingenieros químicos.

https://historiaybiografias.com/bullet_tildado.gif

Los químicos industriales se dedican al análisis e investigación de las propiedades de numerosas sustancias, que se utilizan en la fabricación de diversos productos, y al desarrollo de nuevos compuestos.

https://historiaybiografias.com/bullet_tildado.gif

Fuente Consultada:
Enciclopedia Tematica Ilustrada CONSULTORA Tomo IV  – La Química –
QUIMICA I Sistemas Materiales, Estructura de la Materia, Transformaciones Químicas de Alegria, Bosack, Del Fávaero y Otros – Santillana
Enciclopedia Hispanica – Temapedia – Historia de la Quimica

Origen de los Elementos Quimicos en la Tierra ¿Como se Formaron?

Origen de los Elementos Químicos en la Tierra
¿Como se Formaron?

Explica Isaac Asimov en su libro Breve Historia de la Química, que el hombre primitivo utilizaba instrumentos naturales tal como los encontraba. Una rama podía ser un excelente garrote y una piedra, un inmejorable proyectil. Con el tiempo, descubrió nuevos materiales y aprendió a tallarlos y a pulirlos. Sin embargo, las piedras y maderas no modificaban su composición.

Hacia el año 8000 a.C. se produjeron otros cambios: el hombre aprendió a criar animales y a cultivar las plantas, dejó de ser nómade y se hizo sedentario, considerándose este hecho el comienzo de la civilización.

Mas tarde el hombre descubrió los primeros metales… las ventajas de estos materiales fueron aprovechadas con rapidez: el cobre, que fue el primer metal explotado, resultaba un material maleable y resistente. El hombre advirtió que podía obtenerlo a partir de unas piedras azuladas. Mayor aún fue su asombro cuando, al calentarlo con otro metal, el estaño, obtuvo una mezcla sorprendente: el bronce, que le dio nombre a la etapa siguiente: Edad del Bronce.

Pero la historia no quedó allí: fue descubierto un nuevo metal, el hierro, que aunque escaso resultaba más duro que el cobre. Se inicia así la Edad del Hierro: en esta etapa el desafío fue el perfeccionamiento de las técnicas de fundición, a través de las cuales se pudo extraer hierro de las «piedras» que lo contenían.

Pero bien, la inquietud que nos nace a partir de lo antedicho,…todo ese material usado por el hombre desde su descubrimiento hasta nuestros días, donde incluisve todavía hoy se les encuentran nuevas propiedades y nuevos usos tanto industriales como hogareños, ¿como han llegado a la corteza de nuestro planeta?…¿como se formaron?,…¿en que momento de la historia geológica?,…¿bajo que condiciones aparecieron?.

Una respuesta puede aparecer con solo mirar hacia arriba, hacia el cielo profundo, y pensar que el Universo está constituido por miles de millones de galaxias, sistemas que a su vez contienen miles de millones de estrellas, polvo cósmico y nubes de gases.

Pero, ¿como se formo el Universo? …¿Cuáles son los elementos químicos que lo componen?…. ¿Podemos contestar estas preguntas?

Esta inmensidad hace que no resulte fácil conocer la cantidad y naturaleza de la materia que lo conforma. Todo permite suponer que la materia que forma los cuerpos celestes, y de la cual se tienen datos, constituye sólo un 10% del total de materia existente.

El 90% restante se denomina materia oscura; su estudio se hace muy difícil, pues tiene la característica de que no emite ni absorbe luz y escapa a los métodos de detección.Una de las pocas manifestaciones de esta materia invisible es la interacción gravitatoria que tiene con las estrellas y galaxias.

Estudiando la composición química del 10% de la materia conocida se concluye que el elemento más abundante del Universo es el hidrógeno (H); los restantes se formaron a partir de sucesivas fusiones de núcleos de aquél.

Los de mayor interés para la evolución química y el origen de la vida son: el carbono (C), el nitrógeno (N), el oxígeno (O), el fósforo (P), el azufre (S) y algunos metales como el hierro (Fe), el magnesio (Mg), el sodio (Na), el potasio (K) y el calcio (Ca), que junto con el hidrógeno constituyen los elementos biogénicos.

Llamamos elemento, y mas precisamente elemento quimico a la materia formada por un solo tipo de atomos, por ejemplo si tomamos una muestra de potasio (K) y dividimos por la mitad sucesivamente, cada porción analizada tendra siempre atomos de potasio, hasta que la misma tenga el tamaño mínimo atómico.

La materia se creó durante una violenta explosión (Big Bang) hace unos quince mil millones de años. En una pequeñísima fracción de segundo, los quarks, recién constituidos, se aglomeraron en protones, y éstos, a su vez, se fusionaron para formar núcleos de átomos de helio y de hidrógeno.

Las fuerzas gravitatorias acentuaron las irregularidades existentes en esta primigenia sopa y aglutinaron las regiones más densas hasta dibujar un inmenso tapiz cósmico de galaxias y vacíos (polvo interestelar).

A partir de las densas nubes de gas presentes en el seno de las galaxias nacieron las estrellas.

Pero, ¿cómo surgieron los restantes elementos químicos? ¿Y las moléculas?

En el interior del Sol, al igual que en las restantes estrellas, se producen reacciones de fusión nuclear, en que los núcleos de hidrógeno (es decir, protones) se fusionan y dan núcleos de helio (constituidos por dos protones y dos neutrones), emitiéndose dos positrones, dos neutrinos y energía.

interior de una estrellaPero si la síntesis estelar hubiera culminado con la producción de helio (que también generó la gran explosión inicial), y éste hubiese permanecido confinado en el interior de las estrellas, no habría historia interesante que contar, ni nosotros estaríamos aquí.

Tras una etapa muy dilatada de fusión del hidrógeno, en la que el helio se va acumulando en la zona central, la estrella experimenta un cambio drástico.

La zona central de la estrella se contrae y se calienta, a medida que van encerrándose los nucleones (conjuntos de núcleos de helio) de cuatro en cuatro en los núcleos de helio sintetizados.

La temperatura y la densidad del núcleo aumentan para que se mantenga el equilibrio de presiones. Considerada globalmente, la estrella se hace menos homogénea.

Las reacciones nucleares hasta entonces imposibles se convierten en fuente principal de energía. Y la energía que producen las reacciones nucleares es enorme, del orden de un millón de veces la de una reacción química ordinaria.

Esto se refleja también en las unidades utilizadas: la unidad de energía nuclear es el megatón, que equivale a un millón de toneladas de explosivo químico.

Esta reserva de energía permite que la estrella mantenga su actividad durante unos 10.000 millones de años.

El Sol, por ejemplo, ya tiene cerca de 5.000 millones de años, es decir, ha recorrido menos de la mitad de su vida.

A medida que el gas se va acumulando para formar una estrella, lo primero en constituirse es un disco giratorio de gas y de polvo.

Mientras la estrella se condensa, e polvo se aglutina y crea planetas rocosos, como la Tierra El gas remanente se acumula y origina grandes planetas gaseosos como Júpiter.

Pero lo más interesante es que las cenizas de la combustión nuclear, más allá de la energía producida, no son otra cosa que los elementos de la tabla periódica, que son los materiales que constituyen a los seres vivos.

Con la contracción del núcleo estelar de una estrella producida a medida que ésta envejece (estrella gigante roja), el horno central gana en densidad y calor. Y este aumento de temperatura de la zona central hace que se produzcan fusiones con contactos breves entre núcleos de helio.

La colisión de dos núcleos de helio origina iniciamente una forma de berilio muy inestable, constituida por cuatro protones y cuatro neutrones.

Otro núcleo de helio choca con este blanco efímero y crea un átomo de carbono. La síntesis de carbono es el resultado de una delicada coincidencia entre las energías del helio, del berilio inestable y del carbono resultante. El oxígeno se origina, a su vez, por la fusión de carbono con un núcleo de helio.

evolucion estelar desde la nube de gas hasta agujero negro

En algunas estrellas gigantes rojas, la materia del núcleo, enriquecida con carbono, se desplaza convectivamente hacia las zonas exteriores, pudiendo escapar de la estrella para formar una especie de capullo de grafito.

El combustible acaba por agotarse el corazón o núcleo experimenta una suerte de congelación, convirtiéndose en una enana blanca. Y una enana blanca no cae en el colapso gravitatorio debido a la presión cinética de los gases (el oxígeno y el carbono se hallan en estado cristalino), sino que la presión gravitatoria se equilibra con la repulsión cuántica de sus electrones libres.

La elevada temperatura de la zona central de la enana blanca hace que ocurra una mayor diversidad de reacciones nucleares. La fusión del oxígeno origina azufre y silicio, y la del silicio fabrica hierro.

Una vez que la estrella que ha fabricado un núcleo central de hierro, no hay forma de generar energía mediante la fusión.

La estrella radiando energía a una velocidad asombrosa, se comporta como un adolescente con tarjeta de crédito, consume sus recursos a gran velocidad y se pone al borde del desastre. ¿Qué sucede entonces?

La explosión de una supernova: el núcleo estelar se colapsa en un segundo y se convierte en una estrella de neutrones o un agujero negro.

La materia de dicha zona central alcanza la densidad de los núcleos atómicos y no se puede comprimir más. Se produce una onda de choque que, al llegar a la superficie, produce la explosión de la estrella. La energía total desprendida viene a ser la que se podría emitir durante toda la vida del Sol.

Estas explosiones de supernovas desempeñan un papel especial en el enriquecimiento químico del Universo.

En su avance a través de las estrellas, la onda de choque de la supernova va provocando la síntesis de nuevos elementos.

Así van apareciendo todos los restantes, como el uranio, que son sintetizados gracias a estas ondas.

Violentas explosiones esparcen entonces los elementos, una vez formados, por el espacio interestelar. Y la atracción gravitatoria, por su parte, los moldea en nuevas estrellas y planetas, y el electromagnetismo construye con ellos las moléculas de la vida.

¿Cómo?. En una galaxia espiral, como la Vía Láctea, el gas interestelar se aloja preferentemente en los brazos. La presencia de polvo en el gas dificulta las observaciones ópticas, pues absorbe buena parte de la luz que atraviesa.

ero el polvo, al proteger de la luz ultravioleta los átomos de hidrógeno favorece su combinación en moléculas de hidrógeno, H2. En estos recóndictos remansos de las galaxias se acumulan también otras molécuas como el agua, el monóxido de carbono y el amoníaco. La variedad química de estas moléculas nos sorprendería.

Entonces, podemos afirmar que la composición química de la Tierra es un producto natural secundario de la generación de energía en las estrellas y de los sucesivos ciclos de nacimiento y muerte de estrellas en nuestra galaxia.

El estudio de los elementos químicos presentes en el Universo se realiza principalmente aplicando métodos a distancia». El análisis espectroscópico es uno de los más utilizados. Su origen se remonta a 1666 cuando Isaac Newton separó la luz blanca proveniente del Sol en  los colores que la componen, haciéndola pasar a través de un prisma.

Esta dispersión de la luz blanca da origen al espectro visible, pequeña sección del espectro total de radiaciones electromagnéticas.

Hoy en día se utilizan aparatos más sofisticados, como los espectcrógrafos y espectrómetros, que son capaces de detectar tanto las radiaciones visibles como las de otras regiones del espectro electromagnético. Con la ayuda de estos instrumentos se están obteniendo datos interesantísimos acerca de la composición elemental del Sol, de los planetas solares y de estrellas muy lejanas a la Tierra.

https://historiaybiografias.com/linea_divisoria5.jpg

HISTORIA DE LOS ELEMENTOS QUIMICOS: En la Edad Media, los alquimistas, antecesores de los químicos, tenían como meta fundamental modificar su ser interior para alcanzar un estado espiritual más elevado y pensaban que con la transmutación de los metales en oro podían lograrlo. Esta transmutación, conocida como la Gran Obra, debía realizarse en presencia de la piedra filosofal, cuya preparación fue la tarea que se impusieron los alquimistas.

En el siglo XIII, el objetivo de la alquimia incorporó la búsqueda del elixir de la larga vida, infusión de la piedra filosofal, que debía eliminar la enfermedad y prolongar la vida.

Durante el siglo XVII, a un alquimista alemán, Henning Brand , se le ocurrió la idea de que para encontrar la piedra filosofal debía fabricar oro a partir de la orina humana (¿quizá por el color?). Juntó durante varios días cinco litros de orina y la calentó hasta la ebullición luego de dejarla reposar durante dos semanas.

Al final, después de eliminar toda el agua, le quedó un residuo sólido. Brand mezcló este residuo con arena, lo calentó fuertemente y recogió los vapores que salían en un recipiente vacío.

Al enfriarse el vapor, sobre las paredes del recipiente se formó un sólido blanco: ¡cuál sería su asombro al ver que aquella sustancia brillaba en la oscuridad!

Brand había aislado el fósforo (del griego, «portador de luz»). El fósforo resplandece porque se combina lentamente con el oxígeno del aire, proceso durante el cual emite energía luminosa. Brand no conocía las propiedades del fósforo, pero aislar un elemento en 1669 resultó un descubrimiento espectacular.

En el siglo XVII el interés de los químicos se centraba en el descubrimiento de nuevos elementos gaseosos, y así fue como, entre 1766 y 1774, Henry Cavendish (1731-1810) identificó el hidrógeno, Daniel Rutherford (1749-1819), el nitrógeno y Cari Scheele (1742-1786), el cloro.

Además, al calentar mo-nóxido de mercurio, Joseph Priestley (1733-1804) obtuvo dos vapores: uno se condensó en gotitas, el mercurio, pero el otro, ¿qué era?. Priestley juntó ese gas en un recipiente e hizo algunos ensayos: si introducía una astilla de madera, ardía; si acercaba ratones vivos, éstos se volvían muy activos. En vista de lo cual, Priestley inhaló un poco de ese gas y notó que se sentía muy «ligero y cómodo».

A este gas lo llamó aire deflogistizado; hoy sabemos que era oxígeno.

Sin saberlo, Priestley fue la primera persona que usó la mascarilla de oxígeno.

La lista de elementos aislados e identificados se amplió a través de los años y en el siglo XIX surgió la necesidad de ordenarlos. Estos y otros descubrimientos realizados por innumerables científicos, sumados a las nuevas tecnologías, hoy permiten afirmar que, de alguna manera, las metas de los alquimistas se han alcanzado. Los químicos son capaces de sintetizar sustancias que benefician a la humanidad de múltiples formas.

Por ejemplo, se han obtenido casi 1.500 isótopos radiactivos artificiales, que se usan en medicina y en la industria.

El elixir que cura todas las enfermedades no se ha obtenido, pero sí se han sintetizado decenas de miles de productos para combatir y prevenir enfermedades y que han aumentado la expectativa y la calidad de vida del hombre.

Fuente Consultada:
QUIMICA I – Sistemas Materiales – Estructura de la Materia  – Mónica P. Alegría, Alejandro Bosack, Alejandra Dal Fávero y otros Editorial Santillana

 

 

 

Teoria de los Cuatro Humores Medicina Hipocrática Tierra Aire Fuego

Teoría de los Cuatro Humores – Medicina Hipocrática – Tierra Aire Fuego Agua

Teoria de los cuatro humores - Medicina HipocráticaHipócrates (c. 460-c. 377 a.C.), el médico más importante de la

Nacido probablemente en la isla de Cos, Grecia, realizó numerosos viajes antes de establecerse definitivamente en la isla para dedicarse a la enseñanza y la práctica de la medicina.

Murió en Larissa, Grecia, y poco más se sabe de él.

Su nombre se asocia al juramento hipocrático, aunque es muy posible que no fuera el autor del documento. De hecho, de las casi setenta obras que forman parte de la Corpus hippocraticum, es posible que sólo escribiera alrededor de seis.

La Corpus hippocraticum probablemente es lo único que queda de la biblioteca médica de la famosa Escuela de Medicina de Cos.

Sus enseñanzas, su sentido del distanciamiento y su capacidad para la observación clínica directa quizá influyeran a los autores de esos trabajos y, sin duda, contribuyeron en gran medida a desterrar la superstición de la medicina antigua.

Entre las obras más importantes de la Corpus hippocraticum está el Tratado de los aires, las aguas y los lugares (siglo V a.C.) que, en vez de atribuir un origen divino a las enfermedades, discute sus causas ambientales.

Sugiere que consideraciones tales como el clima de una población, el agua o su situación en un lugar en el que los vientos sean favorables son elementos que pueden ayudar al médico a evaluar la salud general de sus habitantes.

Otras obras, Tratado del pronóstico y Aforismos, anticiparon la idea, entonces revolucionaria, de que el médico podría predecir la evolución de una enfermedad mediante la observación de un número suficiente de casos.

La idea de la medicina preventiva, concebida por primera vez en Régimen y en Régimen en enfermedades agudas, hace hincapié no sólo en la dieta, sino también en el estilo de vida del paciente y en cómo ello influye sobre su estado de salud y convalecencia.

La enfermedad sagrada, un tratado sobre la epilepsia, revela el rudimentario conocimiento de la anatomía que imperaba en la antigua Grecia.

Se creía que su causa era la falta de aire, transportada al cerebro y las extremidades a través de las venas. En Articulaciones, se describe el uso del llamado banco hipocrático para el tratamiento de las dislocaciones.

En la época de Hipócrates los griegos habían desarrollado un sistema interpretativo del mecanismo de producción de las enfermedades, basado en la teoría de los cuatro humores orgánicos.

Puede reconstruirse claramente el camino que llevó al pensamiento griego a este sistema médico: la ya mencionada idea de que el universo esta formado por cuatro elementos básicos (agua, aire, fuego y tierra) cada uno de ellos caracterizado por una cualidad especifica (humedad, sequedad, calor, frío), y la teoría de los cuatro contrarios que sostenía que entre los elementos opuestos debe conservarse un equilibrio para mantener la armonía del cosmos y la salud en el microcosmos que es el hombre.

El principio médico básico fue la teoría según la cual todos los fluidos orgánicos están compuestos, en proporción variable, por sangre (caliente y húmeda), flema (fría y húmeda), bilis amarilla (caliente y seca) y bilis negra (fría y seca).

Si estos «humores» se encuentran en equilibrio el cuerpo goza de salud, pero en cambio el exceso o defecto de alguno de ellos produce la enfermedad. Existen tres etapas en toda enfermedad: el cambio en las proporciones humorales causado por factores externos o internos, la reacción del organismo ante esa alteración , y la crisis final en la que la alteración acaba con la eliminación del humor que está en exceso o con la muerte.

La eliminación de los humores por el organismo puede observarse durante la enfermedad (sangre, flema o moco de la nariz, vómitos, materias fecales, orina, sudor), y la afección normalmente desaparece después de alcanzar la crisis con expulsión de uno de los humores.

Además, según la proporción propia de los cuatro humores en cada individuo se clasificaba a estos en flemáticos, melancólicos, coléricos o sanguíneos:

Las heridas y las úlceras se limpiaban y luego se espolvoreaban con diversos tipos de sustancias minerales o con mezclas de extractos vegetales. Con ello pretendían calmar el dolor y facilitar la curación.

Como la experiencia les había demostrado que en los furúnculos molestos la extracción del pus venía seguida habitualmente de la curación, el drenaje de las heridas purulentas se convirtió en una práctica frecuente.

El tratamiento de las fracturas y lesiones óseas constituía un aspecto importante de la práctica médica. Las técnicas manuales de reducción de las luxaciones y fracturas alcanzaron un alto nivel de complejidad, con la utilización en ocasiones de instrumentos mecánicos.

Tanto en los textos hipocráticos como en otros posteriores se mencionan diversas técnicas para el vendaje de las distintas regiones del cuerpo. Según parece, los griegos utilizaron el cauterio en el tratamiento de infecciones, heridas y tumores.

Seguramente fue Cos el lugar donde la exploración física se elevó a la condición de arte médico. Sus prácticos no solamente pensaban que no debía omitirse ningún detalle sobre el aspecto del paciente o el estado de sus funciones, sino que examinaban cuidadosamente sus costumbres, el estado emocional, el ambiente y el comportamiento del enfermo.

También eran objeto de este examen el clima y las costumbres de la ciudad y la región en que el paciente habitaba.

Una vez recogida toda la información y valoradas las respuestas del enfermo, el médico de Cos emitía su juicio sobre las posibilidades de curación (pronóstico) y acerca de lo que el paciente debía hacer para curarse.

La explicación del tipo de enfermedad que padecía estaba siempre en función del pronóstico, ya que en una sociedad en que los médicos viajaban de un lado para otro, su reputación dependía mas de la predicción que hicieran del desenlace que del diagnóstico exacto de la enfermedad.

Al final de la etapa hipocrática se produjo la influencia de Aristóteles sobre el campo de la medicina. Aunque muchos conocen a Aristóteles sólo por sus obras lógicas, éticas y filosófico-naturales, sus obras biológicas son sin duda de gran importancia. Aristóteles concedió gran importancia a la anatomía comparada, sentando sus fundamentos metodológicos al diferenciar entre «analogía» (aplicable a las partes de la misma función y posición relativa) y «homología» (semejanza estructural y de origen). Además fue el padre de la anatomía estructural.

Ampliar: Visión Cosmológica del Universo y del Hombre