Las Erupciones Volcánicas

Escalas de Mercalli y Richter Para Medir Terremotos Sus Diferencias

Escalas de Mercalli y Richter Para Medir Terremotos
Tabla Con Sus Diferencias y Caracteristicas

INTRODUCCIÓN: La presencia de fósiles marinos en rocas que se encuentran actualmente a centenares de metros sobre la superficie del mar, es una prueba concluyeme de los movimientos de la corteza terrestre. Estos movimientos suelen ser muy lentos, pero pueden dar lugar a un aumento de las tensiones entre las rocas.

Las tensiones pueden alcanzar tales valores que las rocas se fracturan, formando una falla.

Las vibraciones desarrolladas por la fractura de las rocas, o por cualquier movimiento de éstas a lo largo del plano de la falla, se transmiten a través de la tierra en forma de temblores o terremotos.

Los temblores pueden también ser debidos a movimientos a lo largo del plano de una falla antigua. Entre otras causas se incluyen las explosiones volcánicas y los desprendimientos de tierra, pero sus efectos suelen ser relativamente pequeños y locales.

La mayoría de los temblores de tierra se originan por movimientos de fallas producidos en el interior de la corteza terrestre, a una profundidad máxima de ochenta kilómetros. El lugar de origen se denomina foco o hipocentro y, desde él, la vibración se extiende en todas direcciones.

terremoto kobe en japon

Una imagen de la tragedia en Japón, Terremoto Kobe

Sus velocidades dependen de la densidad de las rocas, siendo máxima para los granitos compactos, y mínima para las arenas y gravas.

La intensidad de la vibración disminuye a medida que la distancia recorrida aumenta. Exactamente encima del foco, sobre la superficie terrestre, se encuentra el epicentro. Éste es el primer punto afectado y el que sufre mayores daños. A medida que se alejan del epicentro, las vibraciones son menos intensas.

Las líneas que unen puntos de igual intensidad se denominan isosísmicas, y encierran una serie de zonas isosísmicas. Si la corteza terrestre estuviera formada por un solo tipo de rocas, estas zonas serían circulares, pero las variaciones locales de las rocas destruyen esta regularidad.

Es posible contar y medir las vibraciones de un temblor de tierra mediante el empleo de instrumentos, pero se ha desarrollado una escala sencilla para apreciar su intensidad esta escala se denomina escala de Mercalli.

A su extremo inferior corresponden los temblores de tierra más débiles, que se detectan solamente con instrumentos muy sensibles. Al otro extremo corresponden los terremotos catastróficos que abren grietas en la corteza terrestre, destrozándolo todo.

Entre estos dos extremos se pueden emplear como orientación efectos tales como el sonido de las campanas o el agrietamiento de las paredes.

https://historiaybiografias.com/archivos_varios5/estrella1_bullet.png

MOVIMIENTOS SISMICOS:

Son movimientos violentos de las placas tectónicas, tanto de las continentales como de las oceánicas. Esa sacudida produce ondas en todas direcciones desde el lugar donde se produce, también llamado hipocentro, por estar situado en la profundidad.

Dichas ondas llegan a la superficie continental, donde golpea con fuerza y se forma un área de impacto denominada epicentro.

Si el sismo repercute en la corteza continental, se lo llama terremoto y si afecta la oceánica, se denomina maremoto.

Los tsunamis son causados por sismos en la corteza oceánica de gran intensidad, generando olas que pueden superar los 20 m de altura.

Existen dos escalas que se utilizan para medir los sismos. Se registran con mucha precisión por medio de los sismógrafos.

Escala Richter: creada por el sismólogo norteamericano Charles Richter. Esta escala marca 10 puntos y se utiliza para medir la energía liberada durante el sismo.

Escala Mercalli:  la escala de 12 puntos representa la intensidad del sismo. Es cualitativa y subjetiva, porque evalúa la sensación de la sociedad. Se expresa en números romanos.

https://historiaybiografias.com/archivos_varios5/estrella1_bullet.png

En la escala de Richter, 32.000 veces es el incremento de la energía liberada en un terremoto de magnitud 8 respecto a uno de magnitud 5,
como en uno de magnitud 7 comparado con otro de magnitud 4.

https://historiaybiografias.com/archivos_varios5/estrella1_bullet.png

TABLA DE LAS ESCALAS DE RICHTER Y MERCALLI: En el año 1902, el vulcanólogo italiano Giuseppe Mercalli creó una escala de intensidades de I a XII para indicar los efectos de los terremotos en un punto determinado. Posteriormente, esta escala fue modificada y así surgió la escala Mercalli, tal como se la conoce en la actualidad, y poco tiempo después, la escala de intensidad MSK.

En 1935, el sismólogo estadounidense Charles F. Richter (1900-1985) ideó una escala para determinar la magnitud de los terremotos utilizando un sismógrafo.

Midió el terremoto de menor magnitud que éste podía registrar y le adjudicó el grado 0 (cero) en lo que sería su escala de magnitudes sísmicas, más conocida como escala de Richter.

Luego fue adjudicando valores sucesivos y obtuvo una escala de tipo logarítmico. Hoy los sismógrafos modernos pueden medir terremotos menores a los detectados por Richter en su época, por lo que se usan valores negativos en la escala.

ritchher escala de terremotos

Charles E Richter (1900-1985): Físico estadounidense especialista en sismología que desarrolló la famosa escala de I— magnitud de los terremotos. Autor de varios libros, este hombre era un apasionado por el estudio de los terremotos, la poesía y la ciencia ficción. Después de su retiro, ayudó a organizar una consultora sísmica para evaluar edificios del gobierno y de servicios públicos, como el Departamento de Los Ángeles de Agua y Energía.

La intensidad de un terremoto no indica la energía que libera, sino simplemente expresa el grado de destrucción que ha alcanzado, al analizar las consecuencias sobre las personas y las construcciones. La magnitud de un terremoto, en cambio, es una medida física de la energía que libera y es, en consecuencia mensurable.

MAGNITUD, INTENSIDAD Y EFECTOS DE LOS TERREMOTOS

Número de Terremotos Por AñosMagnitud
(escala Ritcher)
Intensidad
(escala de MKS)
Efectos Producidos
800.000<3,4IImperceptibles. Sólo los detectan los sismógrafos.
30.0003,5 a 4,2II y III

Pueden llegar a percibirse en el interior de los edificios. Los objetos colgados se balancean. Producen vibraciones como las del paso de un camión pequeño.

4.8004,3 a 4,8IV

Se perciben en el interior de los edificios e incluso en el exterior. Los automóviles se mueven ligeramente. Las ventanas, la vajilla y las puertas vibran.

1.4004,9 a 5,4VSe perciben en el exterior. Se rompen ventanas y vajilla. Las puertas golpean, las ventanas se rompen. Los relojes de péndulo cambian de ritmo. Algunos ob­jetos pequeños pueden moverse.
5005,5 a 6,1VI y VII

Los perciben todas las personas. Algunos edificios pueden sufrir importantes daños. La vajilla y la cristalería así como las ventanas se hacen añicos. Los cuadros se caen y los libros saltan de los estantes. Los muebles se mueven o se caen. Los árboles y arbustos se balancean ostensiblemente.

1006,2 a 6,9VIII y IXPánico general. Destrucción de construcciones de mediana y de baja calidad. Daños generales en los ci­mientos y en las armazones de los edificios. Graves daños en represas y rotura de tuberías subterráneas. Grietas visibles en el suelo.
157,0 a 7,3XSe destruye la mayoría de los edificios de mediana calidad, incluso algunos de construcción sólida y hasta puentes de madera. Daños graves en represas. Grandes desprendimientos. Se desborda el agua de los ríos, canales, lagos, etc. Los rieles se deforman.
47,4 a 7,9XI

La mayoría de los edificios se destruye. Los rieles se re­tuercen. Las tuberías subterráneas quedan inutilizadas.

1 c/5 – 10 años<8,0XIIDestrucción casi total. Se desplazan grandes masas de rocas. Algunos objetos son arrojados al aíre. Grandes grietas en el suelo y en el subsuelo.

Hacer Clic Para Ampliar Un Mapa Con Los Principales Terremotos

La escala más popular

Nacido en 1900 en Hamilton (Ohio), Charles F. Richter estudió física en la Universidad de Stanford, en California, y desde 1927 hasta su jubilación trabajó en el Laboratorio Kresge de la Institución Carnegie, en Pasadena, más tarde convertido en el Seismological Laboratory (Laboratorio de Sismología) dependiente del Instituto de Tecnología de California.

Allí se inició Richter, primero como asistente de investigación, junto a renombrados colegas como Beño Gutenberg y Hugo Benioff.

El laboratorio de sismología en Caltech tenía la intención de emitir informes periódicos sobre los terremotos en el sur de California, por lo que Richter y Gutenberg se abocaron a esa tarea.

La pareja de científicos empezó a pensar cómo diseñar una tabla segura y confiable que midiera los cientos de temblores que se producen al año.

Hasta entonces, la única forma de evaluarlos era mediante una escala que había desarrollado Giuseppe Mercalli en 1902.

Esta escala clasifica los terremotos del 1 al 12, dependiendo de cómo los edificios y la gente responden ante el temblor. Así por ejemplo, una sacudida que balancea las lámparas del techo se clasificaba con una magnitud de 1 y 2, mientras que otro seísmo que destruye grandes edificios se clasifica de magnitud 10.

La escala desarrollada por Richter y Gutenberg, que luego se reconocería sólo como la escala de Richter, proporcionaba datos más certeros.

La forma de construcción de esta escala fue el resultado de varias observaciones; de tener en cuenta que el comportamiento de la amplitud máxima registrada por un sismógrafo depende de dos causas: la distancia entre el foco y el aparato y, además, de algo intrínseco del temblor.

Así por ejemplo, un terremoto de magnitud 3 es aquel que a una distancia de 100 km imprime en un sismógrafo una amplitud máxima de un milímetro. Es decir que el tipo de observación -una amplitud-permite relacionarlo de forma directa con la energía, por lo que puede decirse que la magnitudes una forma simplificada de cuantif ¡car la energía liberada.

Otras pasiones
Richter, que estuvo casado con una maestra, también disfrutaba de la música clásica, la lectura de ciencia ficción y la poesía. Entre los papeles privados que a su muerte, en 1985, fueron donados al archivo del Caltech, había un gran número de poemas, escritos a lo largo de su vida. Sólo algunos de ellos llegaron a ver la luz en revistas literarias de escasa circulación.

QUE HACER ANTE UN TERREMOTO:

Antes del terremoto

Se debe tener preparado botiquín de primeros auxilios, linternas, radio con pilas, algunas provisiones en un sitio conocido por todas las personas.

Se debe saber cómo desconectar la luz, el agua y el suministro de gas.

Hay que prever un plan de evacuación en caso de emergencia y asegurar el reagrupamiento de las personas en un lugar seguro.

Confeccionar un directorio telefónico para que en caso de una necesidad, se pueda llamar a las autoridades civiles que ayuden en casos de emergencia: bomberos, defensa civil, policía.

Al máximo se debe evitar colocar objetos pesados encima de muebles altos. Se deben asegurar al suelo.

A las paredes deben estar bien fijas muebles como armarios, estanterías, etc. Se debe sujetar aquellos objetos que pueden provocar daños al caerse, como cuadros, espejos, lámparas, productos tóxicos o inflamables, entre otros.

La estructura de la vivienda, del colegio, o del lugar de trabajo se debe revisar y sobre todo, asegurarse de que las chimeneas, los aleros, los revestimientos, balcones y demás, tengan una buena fijación a los elementos estructurales. Si es necesario, hay que consultar a una persona especializada en la construcción.

Durante el terremoto

Si el terremoto no es fuerte, hay que estar tranquilos, pues acabará pronto,

Si el terremoto es fuerte, hay que mantener la calma y transmitirla a las demás personas. Se debe agudizar la atención para evitar riesgos y recordar las siguientes instrucciones:

Si se está dentro de un edificio, hay que quedarse dentro; si se está fuerza, se debe permanecer fuera. El entrar o salir de los edificios, solo puede causar accidentes.

Dentro de un edificio se debe buscar las estructuras fuertes: bajo una mesa o una cama, bajo el dintel de una puerta, junto a un pilar, pared maestra o en un rincón y proteger la cabeza.

No utilizar el ascensor y nunca huir en forma precipitada hacia la salida.

Apagar todo fuego. No utilizar ningún tipo de llama (cerilla, encendedor, vela, etc.) durante o inmediatamente después del temblor.

Si se está fuera de un edificio, hay que alejarse de cables eléctricos, cornisas, cristales, pretiles, etc.

No hay que acercarse ni entrar en los edificios para evitar ser alcanzado por la caída de objetos peligrosos (cristales, cornisas, …). Se debe ir hacia lugares abiertos, sin correr y teniendo cuidado con el tráfico.

Si se está en un automóvil, cuando ocurra el temblor se debe parar donde le permita permanecer dentro del mismo, retirado de puentes y tajos.

Después del terremoto

Hay que guardar la calma y hacer que las demás personas la guarden. Se deben impedir situaciones de pánico.

Comprobar si alguna persona está herida. Prestar los primeros auxilios. Las personas heridas graves, no deben moverse, salvo que tengan conocimiento de cómo hacerlo; en caso de empeoramiento de la situación (fuego, derrumbamientos, etc.) mover a esa persona con precaución.

Se debe comprobare! estado de los conductos de agua, gas y electricidad. Hacerlo en forma visual y por el olor, nunca se debe poner en funcionamiento algún aparato. Ante cualquier anomalía o duda, cerrar las llaves de paso generales y comunicarlos al personal técnico.

No se debe utilizar e teléfono, Hacerlo sólo en caso de extrema urgencia. Conectar la radio para recibir información o instrucciones de autoridades.

Tener precaución al abrir armarios, algunos objetos pueden caer al quedaren posición inestable.

Utilizar botas o zapatos de suela gruesa para protegerse de objetos punzantes o cortantes.

No retirar de inmediato los desperdicios, excepto si hay vidrio rotos o botellas con sustancias tóxicas o inflamables.

Apagar cualquier incendio; si no se puede dominarlo contactar de inmediato a los bomberos.

Después de una sacudida muy violenta se debe salir en forma ordenada y paulatinamente del lugar que se ocupe, sobre todo si éste tiene daños.

Hay que alejarse de las construcciones dañadas. Se debe ir hacia zonas abiertas.

Después de un terremoto fuerte siguen otros pequeños, réplicas que pueden ser causa de destrozos adicionales, en especial, de construcciones dañadas. Se debe permanecer alejado de éstas.

Si fuera urgente entrar en edificios dañados hacerlo de manera rápida y no permanecer dentro.

En construcciones con daños graves no entrar hasta que sea autorizado.

Tener cuidado al utilizar agua de la red ya que puede estar contaminada. Consumir agua embotellada o hervida.

Si el epicentro de un gran terremoto es marino puede producirse un maremoto. Esto puede ser importante en las zonas cercanas al mar Por ello hay que permanecer alejados de la playa.

Terremoto de San Juan Tragedia en 1944 Perón conoce a Eva

Terremoto de San Juan Tragedia en 1944 – Perón conoce a Evita

TERREMOTO EN SAN JUAN (1944):  Una sensación de terrible angustia —aumentada por la incertidumbre— invadió la capital y todo el territorio del país cuando llegaron las primeras noticias sobre el terremoto de San Juan.

Alrededor de las 20 fue registrado el fenómeno por los sismógrafos, y antes de una hora, ya Buenos Aires estaba enterada, en parte, de sus horrorosas consecuencias. Las primeras informaciones daban la sensación del desastre. En pocos minutos había quedado destruido el 90% de los edificios de la ciudad cuyana. Se supo después que Mendoza se había convertido en el cuartel general de los auxilios.

Mientras tanto, una lluvia de informaciones caía sobre Buenos Aires y a medianoche se conocía ya la magnitud de la catástrofe. Se organizan inmediatamente los auxilios necesarios para atender a las víctimas que, según los cálculos, sumarían millares. Parten médicos y enfermeras.

En tren, en automóvil, en avión. Todos los medios de transporte se utilizan, y el auxilio afluye de todos los puntos del país. Se sabe que, con ayuda de fogatas y antorchas, se remueven escombros en busca de victimas que, desgraciadamente aparecen en gran número.

Al día siguiente, se hace un llamado a la solidaridad. El pueblo responde con su generoso aporte. Millares de dadores de sangre se presentan de inmediato y ese día, en señal de duelo, se suspenden los espectáculos.

El 17 sale para San Juan el presidente de la República, mientras el gobierno vota diez millones de pesos para ayudar a las víctimas de la catástrofe, trascendiendo ese mismo día que las pérdidas llegan a 400 millones de pesos.

El público sigue contribuyendo con su óbolo, que deposita en los lugares destinados al efecto o en las alcancías con que recorren las calles céntricas numerosas artistas de nuestra escena. Se recaudan de ese modo varias decenas de millones de pesos que expresan el amplio espíritu de solidaridad del pueblo argentino.

Desde países vecinos llega también ayuda. Médicos y enfermeras de todas partes van a San Juan. Algunos pagan tributo a su espíritu solidario. Un avión sanitario chileno, con elementos de auxilio, cae y mueren nueve personas entre médicos y enfermeras.

El 18, fue declarado día de duelo nacional y al siguiente comienza el éxodo de la ciudad devastada. Llegan a Buenos Aires y a otras poblaciones millares de refugiados, que encuentran en todas partes el afecto y el apoyo de sus compatriotas, que, hacen más llevadera su desgracia.

Después, el saldo terrible. Nunca se supo exactamente el número de víctimas, pero los cálculos indicaron 7.000 muertos y 12.000 heridos en cifras globales, que indicaron la real magnitud de la tragedia, una de las más severas sufridas por el país.

Riegos de Vivir Cerca de Volcanes

Terremotos Mas Importantes de Argentina

Terremoto Más Grande de Chile 1960 Valdivia Terremotos en América

Terremoto Más Grande de Chile 1960 Valdivia

TERREMOTO EN CHILE (1960):  Chile es bien conocida por ser afectada a terremotos, y el más fuerte del mundo se produjo el 22 de mayo 1960, cuando un sismo de magnitud 9,5 golpeó Valdivia. El terremoto provocó un tsunami que lanzó olas de 20 m. en la costa de Chile y llegó a las costas de  Hilo, (Hawaii) 15 horas más tarde donde las olas alcanzaron la altura de de 10 m. y acabó con la línea de la costa.

Según el informe de los EE.UU. Geological Survey fue el Top Ten de los terremotos más potentes del mundo, en cambio el terremoto de Chile de 2010 está en el quinto lugar entre los más fuerte desde 1900. Un terremoto de 8,8 golpeó a Ecuador en 1906. Otro muy fuerte hirió a Alaska en 1964 con una magnitud de 9,1. El tercero más potente fue en Sumatra en 2004 con una magnitud de 9,1 generando un tsunami mortal en el Océano Índico. Le sigue el ocurrido en Kamchatka en Rusia en 1952 con una magnitud de 9, está en cuarto lugar.

El tsunami también fue muy destructivo en el Océano Pacífico, pero sobre todo en las islas de Hawai y en Japón, donde hubo pérdida de vidas y daños a la propiedad. Le tomó cerca de 15 horas para que el tsunami llegase a las islas de Hawai (una distancia total de más de 10.000 kilómetros de la zona de generación en el sur de Chile).

En otros lugares a lo largo de la costa oeste de los Estados Unidos, las ondas de tsunami se iniciaron unas 15.5 horas después de producirse el terremoto en Chile. En Crescent City, California, las olas de hasta 1,7 metros y se observaron daños menores.

En Chile aproximadamente 1.700 personas muertas, 3.000 heridos, 2.000.000 de victimas sin hogar, y 550 millones de dólares fueron los daños ocasionados en el sur de Chile, el tsunami causó 61 muertes, 75 millones de gastos por los daños en Hawai; 138 muertes y 50 millones los daños en Japón;  32 muertos y desaparecidos en Filipinas, y por 500 millones los daños la costa oeste de los Estados Unidos.

El daño mas severo de la sacudida se produjo en la zona de Valdivia-Puerto Montt. La mayoría de las víctimas y gran parte del daño fue a causa de grandes tsunamis que causaron daños a lo largo de la costa de Chile desde Lebu a Puerto Aisén y en muchas zonas del Océano Pacífico.

En la ciudad portuaria de Valparaíso, una ciudad de 200.000 habitantes, muchos edificios se derrumbaron. Un total de 130.000 viviendas fueron destruidas, una de cada tres en la zona del terremoto y alrededor de 2 millones quedaron sin hogar. Las pérdidas totales de los daños, incluyendo a la agricultura ya la industria, se estima en más de mil quinientos millones de dólares.

El número total de muertes asociadas con el tsunami y el terremoto nunca se estableció con precisión para la región. Las estimaciones de muertes oscila entre 490 a 5700 sin distinción de cuántas muertes fueron causadas por el terremoto y cuántos fueron causados por el tsunami Sin embargo, se cree que la mayoría de las muertes en Chile fueron causados por el tsunami.

Puerto Saavedra fue completamente destruida por  olas que alcanzaron alturas de 11,5 m (38 pies) y llevó los restos de las casas desde el interior hasta 3 Km. (2 millas) de distancia. Alturas de olas de 8 metros (26 pies) causaron gran daño en el Corral, que sufrió las graves consecuencias del maremoto, donde lamentablemente sus habitantes no alcanzaron a ponerse a salvo y fueron llevados por el mar junto a sus casas y animales.

Poblaciones completas, como la de pescadores de la Caleta San Carlos, fueron arrasadas por las olas registrándose centenares de muertos y desaparecidos. En esta zona, que es una bahía en la cual desemboca el río Valdivia en el océano Pacífico, varias naves se encontraban fondeadas en sus puertos.

Los tsunamis causaron 61 muertes y graves daños en Hawai, sobre todo en Hilo, donde la altura período previo alcanzado 10,6 m (35 pies). Olas de hasta 5.5 m (18 pies) sacudió el norte de Honshu, cerca de 1 día después del terremoto, donde se destruyeron más de 1.600 casas y dejó 185 personas muertas o desaparecidas. Otras 32 personas fueron muertas o desaparecidas en Filipinas tras el tsunami golpeó las islas.

El daño  también se produjo en la Isla de Pascua, en las islas Samoa y en California. Uno a 1.5 m (3.5 pies) de hundimiento se produjo a lo largo de la costa chilena del extremo sur de la Península de Arauco a Quellón en la Isla de Chiloé. En la medida de 3 metros (10 pies) de elevación se produjo en la Isla Guafo. Muchos deslizamientos de tierra ocurridos en la región de Los Lagos desde el Lago Villarrica hasta el Lago Todos los Santos.

El 24 de mayo, entró en erupción Volcán Puyehue, el enviando cenizas y vapor de hasta 6.000 m. La erupción continuó durante varias semanas.

Este sismo fue precedido por cuatro temblores más grande que la magnitud 7.0, incluyendo una de magnitud 7,9 el 21 de mayo que causó graves daños en la zona de Concepción. Muchas réplicas ocurrieron, de 5 de magnitud a mayor de 7.0 hasta el 01 de noviembre. Fue el terremoto más grande del siglo XX. La zona de ruptura se estima en cerca de 1000 Km. de largo, desde Lebu a Puerto Aisén.

En Chile hubo 9 terremotos entre el 21 de Mayo y el 6 de Junio de 1960
(informe del subdirector del Instituto de Sismología de la Universidad de Chile Edgar Kausel):

 EpicentroFecha y HoraMagnitud Richter* 
1 Concepción y LebuMayo 21          06,02 horas7.25 
2ConcepciónMayo 21          06,33 horas7.25
3ConcepciónMayo 22          14,58 horas7.5 
4ValdiviaMayo 22          15,10 horas 7.5 
5ValdiviaMayo 22          15,40 horas8.75
6Península de TaitaoMayo 25          04,37 horas7.0
7Isla Wellington (Puerto Edén)Mayo 26          09,56 horas7.0
8Península de TaitaoJunio 2             01,58 horas6.75
9Península de TaitaoJunio 6             01,55 horas7.0

  * Se refiere a la Escala Richter Standard (Ms), reportada entonces por la Universidad de Georgetown y el Boston
College de EE.UU. , y los observatorios Villa Ortúzar de Buenos Aires e Instituto Geofísico Los Andes de Bogotá.

Tenga en cuenta que las muertes por el tsunami  fuera de Chile se incluyen en el total de 1700. Esto sigue siendo considerablemente inferior al de algunas estimaciones que fueron tan altas como 5700. Sin embargo, Rothe y otros afirman que los informes iniciales se sobrestimaron en gran medida. La cifra de muertos por este gran terremoto fue menor de lo que podría haber sido porque se produjo en medio de la tarde, muchas de las estructuras se habían construido para ser resistente a los terremotos y una serie de temblores antes había hecho que la gente tome los cuidados pertinentes.

Riegos de Vivir Cerca de Volcanes

Terremotos Mas Importantes de Argentina

Tsunami de Indonesia Causas y Consecuencias El Anillo de Fuego

Tsunami de Indonesia Asia – Causas y Consecuencias

Uno de los sucesos que más fresco está en la memoria fue el tsunami del 26 de diciembre de 2004. Un terremoto a 4.000 metros de profundidad en el océano Índico, a unos 260 kilómetros al oeste de la costa de Aceh, Indonesia, que llegaría a los 9 grados de la escala Richter, ocasionó una cadena de tsunamis que borraron literalmente del mapa islas, playas y poblaciones, que quedaron sumergidas en una densa capa de lodo y agua. Murieron cerca de 300.000 personas.

El fenómeno, de proporciones increíblemente devastadoras, afectó a m de 5 millones de personas. En marzo de 2005 se calculaba que más de un millón de personas quedaron sin hogar y que unas 300.000 de todas las nacionalidades (numerosos turistas pasaban en la zona sus vacaciones de Navidad) habían perdido la vida en una docena de países, la mayor parte de ellas, un 170.000, en Indonesia, pero también miles en la India, Sri Lanka y Tailandia.  (ver el sexto sentido de los animales)

Cualquier movimiento de suelo en una escala mayor a 7 en la escala de Richter está considerado muy peligroso, por todos los destrozos materiales que puede provocar y la cantidad de victimas mortales. Este terremoto submarino es el segundo mas grande de la historia, casi superando al ocurrido en Valdivia Chile , en 1960, , cuya intensidad fue de 9,6.

El terremoto que generó el gran tsunami del Océano Índico de 2004 se estima que han dado a conocer la energía de 23.000 bombas atómicas de Hiroshima (unos 500 Megatones) y tipo, según el Servicio Geológico de EE.UU. (USGS). Al final del día más de 150.000 personas fueron muertas o desaparecidas y millones más se quedaron sin hogar en 11 países, por lo que es tal vez fue el tsunami más destructivo de la historia.

El epicentro del sismo de magnitud 9,0 se corresponden con el Océano Índico cerca de la costa oeste de la isla Indonesia de Sumatra, según el organismo internacional (USGS) que monitorea terremotos en todo el mundo. El movimiento violento de las secciones de la corteza de la Tierra, conocidos como placas tectónicas, el desplazamiento de gran cantidad de agua, el envío de potentes ondas de choque en todas las direcciones.

El terremoto fue el resultado del deslizamiento de la porción de la corteza terrestre que se conoce como la placa de la India bajo la sección llamada la placa de Birmania. El proceso ha estado ocurriendo durante miles de años, una placa de empuje contra el otro hasta que algo tiene que ceder.

El resultado del 26 de diciembre fue una ruptura de las estimaciones del USGS fue más de 1.000 kilómetros de largo, desplazando el fondo del mar por encima de la ruptura de tal vez 10 metros a varios metros de forma horizontal y vertical. Eso no suena como mucho, pero los billones de toneladas de roca que se movieron a lo largo de cientos de millas del planeta causado a estremecerse con el terremoto de mayor magnitud en 40 años.

Sobre el lecho del mar desplazado o quebrado, el gran volumen del océano se desplaza a lo largo de la línea de la ruptura, iniciando la creación de uno de los fenómenos más letales de la naturaleza: un tsunami. En cuestión de horas las enorme olas asesinas que se irradian en la zona del terremoto golpeó la costa de 11 países del Océano Índico, arrebatando a la gente al mar, otros ahogados en sus casas o en las playas, y la propiedad la demolición de África a Tailandia.

En las zonas más afectadas, en medio del desastre, los supervivientes tuvieron que enfrentarse desde el domingo a nuevos temblores. La noche del miércoles 29 se registraron seis réplicas del terremoto, la mayor de 6,2 grados magnitud, que volvieron a aterrorizaron a miles de damnificados que pasan la noche en tiendas proporcionadas por el Ejército.

Los tsunamis grandes han sido relativamente raros en el Océano Índico, al menos en la memoria humana, pues son más frecuentes en el Pacífico. Pero todos los océanos ha generado los flagelos. Muchos países están en riesgo. De todas maneras Indonesia pertenece a una zona llamada «Anillo de Fuego del Pacífico», un área de gran actividad sísmica y volcánica que es sacudida por unos 7.000 temblores al año, la mayoría de baja potencia. El aumento de la actividad sísmica de características severas desde 2004 ha generado preocupación en la comunidad científica.

El tsunami del Océano Índico viajó hasta casi 5.000 kilómetros llegando a África  con fuerza suficiente para matar gente y destruir propiedades.

Un tsunami puede ser inferior a un pie (30 centímetros) de altura sobre la superficie del océano abierto, por lo que no son percibidas por los marineros. Pero el pulso de gran alcance de la energía se desplaza rápidamente a través del océano a cientos de kilómetros por hora. Una vez que un tsunami llega a aguas poco profundas cerca de la costa es más lento. La parte superior de la onda se mueve más rápido que la parte inferior, haciendo que el mar aumentará drásticamente.

El tsunami del Océano Índico provocó olas de hasta 5 metros en algunos lugares, según informes de prensa. Pero en muchos otros lugares testigos describieron una rápida alza de los océanos, más como un río muy poderoso o una inundación que el avance y el retroceso de las olas gigantes.

Los tsunamis son enormes olas generadas, principalmente, a partir de terremotos localizados en el mar y, en algunos casos, a partir de erupciones volcánicas o de deslizamientos de tierra submarinos. Las sacudidas provocadas por estos eventos pueden, en ocasiones, originar grandes olas que arrasan todo lo que encuentran a su llegada a las zonas costeras. Las olas generadas en un tsunami pueden alcanzar velocidades de 800 km/h y recorrer grandes distancias. La prevención de los efectos dañinos de los tsunamis pasa por la construcción de diques y barreras de desvío, como se ha hecho en Japón, pero estas obras son tremendamente costosas y degradan el paisaje. Por otra parte, veintidós países de la región del Pacífico han puesto en marcha un sistema de alarma para desalojar las zonas ante la posible aparición de este fenómeno y reducir los efectos.

Keny E. Sieh (1952)
Kerry SiehGeólogo y sismólogo estadounidense. Fue quien predijo el maremoto de Sumatra que ocurrió en diciembre de 2004 causando la muerte de más de 200.000 personas en varios países de Asia.

Actualmente es el director fundador del Observatorio Tierra de Singapur, que tiene :omo objetivo llevar a cabo investigación básica y aplicada relacionada con terremotos, tsunamis, erupciones y riesgos climáticos  

El geólogo californiano Kerry Edward Sieh lleva varios años estudiando la falla frente a la costa del oeste de Sumatra y ef comportamiento de los corales en busca de información sobre los terremotos. Para este hombre la llegada de un desastre sísmico en el océano índico era sólo cuestión de tiempo.

Ahora Sieh y otros especialistas temen que sea apenas el comienzo de una serie de catástrofes. Según Kerry, lo peor todavía no ocurrió. La posibilidad de un nuevo terremoto de magnitud 8,8 seguido de un tsunami es casi una certeza en el curso de la próxima década, augura Sieh. “Hay auténticas bestias tectónicas en el mundo, pero la falla de subducción paralela a Sumatra es un tigre. Atacará con toda seguridad.”

La Falla de San Andrés
Antes de establecerse en Singapur, Sieh dedicó sus primeros años de investigación al análisis de las capas geológicas y los accidentes geográficos de la falla de San Andrés para comprender la frecuencia y la regularidad con que se producen los grandes terremotos en el sur de California. Para ello, estudió los árboles, los sedimentos y los viejos lechos de corrientes y lagos que se encuentran a lo largo de la falla de San Andrés en Patlett Creek, cerca de Palmcla-le, California.

Gracias a un minucioso trabajo en equipo y al registro de las evidencias de diferentes rupturas encontradas fue posible identificar una docena de terremotos históricos. El trabajo de exploración llevado a cabo en Pallett Creek sirvió también para descifrar que la ruptura se ha venido repitiendo, en promedio, cada 130 años durante los últimos 1.500 años. Sin embargo, los intervalos reales han variado mucho, desde menos de 50 años a más de 300 lo cual hace muy difícil hacer pronósticos certeros. El problema parece estar en la complejidad de la geología de la Tierra.

California abriga docenas de fallas importantes, pera también está llena de otras más pequeñas. Por lo tanto, ante cada terremoto se vuelve a acomodar la deformación en las fallas, aliviando la deformación en una e incrementándola en otra.

El resultado es una historia caótica de terremotos imprevisibles en lugar de un ciclo sísmico perfectamente uniforme que opere con regularidad y precisión. En consecuencia, tos sismólogos deben apoyarse en las probabilidades estadísticas a! hacer afirmaciones acerca del futuro.(Fuente: Revista Gran Atlas de la Ciencia – National Geographic, Terremotos y Tsunamis)

Ver: Terremotos Históricos

Las Eras Geologicas del Planeta Tierra Caracteristicas y Duracion

LAS ERAS GEOLÓGICAS  DEL PLANETA TIERRA
Características y Duración

Hace muchísimos años nació nuestro Sistema Solar y, dentro de él, la Tierra, el único planeta en el cual se ha establecido un equilibrio que permitió el surgimiento de la vida. Según estudios científicos, hace alrededor de 15.000 millones de años toda la materia y la energía del Universo estaban concentradas en una pequeñísima zona.

Entonces sucedió el Big Bang o Gran Explosión: un gigantesco estallido hizo que la materia y la energía salieran expulsadas en todas las direcciones.

A partir de choques y del desorden, la materia se fue agrupando y concentrando, y así se formaron las primeras estrellas y las primeras galaxias. Se supone que una gran nube de gas y polvo formó nuestro Sistema Solar. Primero, gran parte de ella se acumuló y dio origen al Sol. El resto, se comprimió y formó los distintos planetas

El origen: Se cree que nuestro planeta nació hace unos 4.500 millones de años. Pero su aspecto no era ni siquiera parecido al que hoy conocemos. En sus primeros momentos, se trataba simplemente de un conglomerado de rocas, cuyo interior se calentó y provocó la fusión de todos los elementos.

Luego, la Tierra comenzó poco a poco a enfriarse y las capas del exterior se volvieron sólidas, aunque el calor que provenía del centro del planeta las volvía a fundir.

Este proceso continuó hasta que la temperatura bajó lo suficiente como para que se formara una corteza terrestre relativamente estable, hace alrededor de 3.800 millones de años. La atmósfera todavía no se había formado y la Tierra recibía el impacto de una enorme cantidad de meteoritos.

Los volcanes estaban en plena actividad: la lava corría sobre la superficie en grandes masas y hacía que la temperatura fuera elevada.

LAS ERAS GEOLÓGICAS:

1-ERA PRECÁMBRICA – 4500 MILLONES DE AÑOS

2-ERA PALEOZOICA – ENTRE 600 Y 300 MILLONES DE AÑOS

3-ERA MESOZOICA – ENTRE 250 Y 150 MILLONES DE AÑOS

4- ERA CENOZOICA – ENTRE 65 Y 0,01 MILLONES DE AÑOS (10.000 AÑOS)

linea divisoria

INTRODUCCIÓN Y DESCRIPCIÓN DE LA ERAS GEOLÓGICAS: La edad de la tierra se calcula en más de cuatro mil quinientos millones de años. Las ciencias geológicas que estudian cómo fue evolucionando nuestro planeta durante este larguísimo período de tiempo, tasan sus investigaciones en las rocas y en los fósiles contenidos en algunas rocas.

Por el estudio de las rocas se ha podido conocer:
1) la enorme antigüedad de la tierra;
2) las temperaturas existentes en las distintas épocas;
5) los movimientos registrados en la corteza terrestre, los cuales han dado origen a la formación de montañas y depresiones; y
4) las variaciones en la distribución de las tierras y las aguas sobre la superficie de nuestro planeta, ocurridas en períodos de tiempo muy largos.

La antigüedad de la tierra ha sido posible calcularla estudiando la constitución de las rocas radioactivos. Los átomos de uranio se transforman en átomos de plomo con un ritmo constante, de tal manera que, comparando la cantidad de plomo contenido en un mineral de uranio, se puede calcular cuándo se formó la roca que lo contiene. De este modo se cree que las rocas más antiguas de la tierra, conocidas hasta hoy, se formaron hace más de cuatro mil millones de años, lo cual indica que la tierra es mucho más antigua.

Mediante el estudio de los fósiles contenidos en las rocas sedimentarias se han conocido:

1) las diferentes especies animales y vegetales que vivieron en las distintas épocas; y
2) las variaciones ocurridas en el clima de las diferentes regiones.

Un fósil es cualquier resto o impresión de origen animal o vegetal, preservado bajo la corteza terrestre al formarse las rocas sedimentarias.

En las rocas sedimentarias abundan los fósiles. Como en cada época vivieron ciertas especies animales y vegetales típicas, que no existieron en otras, los geólogos pueden determinar en qué época se formó la roca, observando los fósiles típicos que presente.

La evolución de la tierra en el tiempo ha sido reconstruida por la geología histórica, al ser estudiadas las capas formadas por las rocas sedimentarias. Estas rocas, depositadas en los fondos de los mares y lagos durante millones y millones de años, están situadas unas sobre otras, formando estratos, y Kan sido comparadas en su conjunto con un enorme libro.

Las rocas formadas en cada época serían como las páginas del libro. Las rocas más antiguas se encuentran en las capas más profundas y las más recientes muy cerca de la superficie. Sólo cuando las rocas han sido muy perturbadas por fenómenos posteriores, su orden puede aparecer cambiado.

La historia de la tierra consta de cuatro grandes etapas denominadas eras, las cuales tuvieron distinta duración. Las eras geológicas reciben los nombres de Protozoica, Paleozoica, Mesozoica y Cenozoica.

Era Protozoica: Esta era se divide en dos etapas: Arcaico y Precábrico.

Arcaico: Los primeros millares de millones de años de la tierra. La tierra debió ser, en sus comienzos, una esfera de gases incandescentes, semejantes a los que forman el sol, del cual se desprendió al igual que los demás planetas, según las hipótesis más aceptadas.

Debido a su tamaño relativamente pequeño, la tierra comenzó a enfriarse pronto. Los gases primitivos se convirtieron en líquidos, etapa durante la cual la luna debió desprenderse de la tierra. Más tarde, las materias líquidas comenzaron a enfriarse en la superficie y a solidificarse, formando las primeras rocas. Los vapores que se escapaban de esas rocas se convertían en nubes muy densas, formando una atmósfera semejante a la que se supone cubre el planeta Venus actualmente. A partir de entonces, y durante millares de millones de años, no hubo vida sobre la tierra; de ahí el nombre de Azoica (sin vida) que se da a esta primera era.

Aparición de los océanos y de las primeras manifestaciones de vida. Las rocas que formaban la superficie de la tierra continuaron enfriándose, hasta que el vapor de agua que contenía la atmósfera comenzó a precipitarse en forma de lluvia.

El agua procedente de estas lluvias iniciales, escurriéndose desde las zonas altas a las bajas, fue a depositarse en las depresiones de la corteza, para formar ormar los océanos primitivos. De las profundidades del planeta brotaban rocas fundidas (magma), originando grandes volcanes; y la corteza terrestre se arrugaba, formando estos plegamientos altísimas montañas.

Precámbrico: La débil corteza terrestre se compone de rocas que provienen del interior (granitos, basaltos). Grandes zonas son intensamente atacadas por los agentes externos (lluvias, vientos, diferencias de temperatura). Rocas metamórficas (gnesis, pizarras). Rocas sedimentarias (areniscas rojas). Casi todas guardan en su interior el secreto del inicio de la vida en el planeta. Primeras glaciaciones.

En esta era debieron aparecer las primeras manifestaciones de vida en forma de seres de una sola célula, semejantes a las bacterias actuales, los cuales no podían dejar huellas fósiles.

Los fósiles más antiguos conocidos son de fines de esta era, y corresponden a impresiones de algas marinas muy rudimentarias.

El enfriamiento de nuestro planeta continuó. Aunque las grandes explosiones volcánicas disminuyeron, inmensas cantidades de rocas fundidas traían de las profundidades del planeta minerales de hierro, plata, cobre, oro y otros metales que hoy conocemos. Estas rocas, que antes de consolidarse pasaron por el estado de fusión, son denominadas rocas ígneas, o sea, rocas formadas por el fuego.

Las lluvias, cada vez más intensas, al caer sobre las partes elevadas de la corteza, arrastraban los materiales sueltos y los iban depositando en los fondos de los mares, dando origen a las rocas sedimentarias.

Esta era, denominada Proterozoica, o de la vida elemental, debió durar, al igual que la anterior, unos 650 millones de años. En ella aparecieron organismos más complejos, como las esponjas y corales y las primeras plantas con raíces.

Era Paleozoica: Las tierras emergidas ya poseían potentes mantos de sedimentación marina (calizas, mármoles, cuarcitas). Gran dinamismo interno de la Tierra. Se originan zonas de montañas en todo el mundo. Variaciones climáticas mundiales importantes (cálidas y húmedas). Gran desarrollo de la flora continental y de los primeros animales vertebrados marinos y terrestres. Formación de rocas ricas en carbón (antracita y hulla). Gran purificación de la atmósfera gracias a los vegetales continentales.

La era de los peces y de los grandes helechos. Durante un largo período no se produjeron en la tierra grandes conmociones. Los océanos cubrían extensas zonas de la superficie terrestre y la erosión iba reduciendo intensamente el relieve de las áreas emergidas.

En los mares de esa era vivían cantidades enormes de animales provistos de conchas o caparazones, cuyos restos, al depositarse en el fondo de los océanos, formaron profundas capas de rocas calizas. En las costas se depositó gran cantidad de arena. Más tarde, según indican los fósiles, aparecieron los peces en los océanos y plantas mayores en las tierras. Los insectos se multiplicaron.

En los finales de esta era se formó la mayor parte de la hulla o carbón mineral de que disponemos hoy. En este período, llamado carbonífero, cuyo clima era caliente, hubo extensos bosques de helechos arborescentes, que medían hasta 30 metros de altura. Los restos de estos helechos fosilizados en las zonas cenagosas, después de quedar cubiertos por arcillas y arenas, formaron la hulla, que actualmente es extraída de sus yacimientos por los mineros.

Durante esta era aparecieron los primeros animales vertebrados, que podían vivir lo mismo en tierra que en el mar: los anfibios.
La temperatura, que se mantuvo relativamente cálida, favoreció la multiplicación de las especies tanto vegetales como animales. Después, el clima se enfrió considerablemente, y muchas de estas especies se extinguieron.

La era Paleozoica (de la vida antigua), duró más de 360 millones de años.

Era Mesozoica: Se produce la ruptura del supercontinente de Pangea. El clima de la Tierra cambia varias veces, de húmedo a desértico. Los animales sufren constantes transformaciones y adaptaciones al medio natural. Desaparición de los grandes saurios. Surgen otras especies animales y vegetales. Zonas muy localizadas de orogénesis. Se inicia la formación petrolífera.

La era de los reptiles gigantescos. Durante millones de años los animales más notables que vivieron sobre la tierra fueron unos reptiles gigantescos, de figuras grotescas, que habitaban en tierra firme y en los lagos.

Algunos poseían alas y podían volar. Entre estos reptiles figuraron los animales mayores que han vivido sobre los continentes. Muchos de sus esqueletos han sido descubiertos. Algunos de los reptiles más pequeños evolucionaron en esta época, hasta convertirse en los antecesores de las aves actuales.

Sobre la tierra firme aparecieron unos pequeños seres de sangre caliente y cubiertos de pelos, que alimentaban con leche a sus pequeñuelos. Eran los mamíferos, a los que pertenecería el hombre millones de siglos después.

En los últimos tiempos de esta era hubo gran actividad volcánica, y se produjeron grandes plegamientos y fallas en la superficie terrestre. Entonces se formaron las mayores montañas que hay sobre la tierra: los Himalayas de Asia, los Andes de la América del Sur y las Rocosas de la América del Norte.

La era Mesozoica (de la vida media), duró unos 120 millones de años.

La tierra adopta sus caracteres actuales. (Era Cenozoica.) En esta era, que es la más reciente de la historia de la tierra, se han producido distintos períodos en los cuales la temperatura descendió tanto, que grandes masas de hielo (glaciares) avanzaron desde los polos. En el hemisferio norte estas glaciaciones cubrieron gran parte de la América del Norte, Europa y Asia.

Los mamíferos se multiplicaron durante estas épocas frías, siendo notable, entre ellos, el mamut, antepasado de los elefantes actuales.

En esta era los continentes y los océanos adquirieron su forma actual y aparecieron casi todos nuestros animales domésticos: caballo, perro, gato, cerdo y muchos más.

La era Cenozoica (de la vida reciente), abarca los últimos 60 millones de años de la historia de la tierra. Hará cerca de dos millones de años surgieron sobre la tierra los primeros seres parecidos al hombre. Mucho más tarde, hará unos 50.000 años, encontramos ya los primeros hombres, que conocían e! uso del fuego y de la piedra.

Algunos autores estiman que, a partir del cese de las glaciaciones hará unos 30.000 años cuando los hombres comenzaron su lenta marcha la civilización , dando comienzo a la era actual.

Una era de Grandes cambios climáticos (de cálido y templado a frío glaciar). Los glaciares cubren vastas zonas del planeta. Cuatro períodos glaciares. En una época de desglaciación aparecen los homínidos (antecesores del hombre actual).

El mamut y el tigre diente de sable (esmilodonte) son vistos por los primeros humanos. Las diferencias de temperatura ocasionan grandes migraciones de flora y fauna. Rocas: loess, conglomerados, limos. Formación de lagos y nuevos drenajes fluviales. Relieve actual.

Cuadro de Animales y Plantas

CRONOLOGÍA DE LA TIERRA

EraPeríodoÉpocaMillones de AñosPrincipales Acontecimientos
Protezoica Arcaico
Precámbrico
 4500-3500
3500-590
Origen del Sistema Solar. Origen de las primeras células vivas. Dominio de las bacterias. Aparición de las células eucariotas. Primeros seres pluricelulares.
PaleozoicaCámbrico 570-505Incremento súbito de fósiles de invertebrados. Gran variedad de algas marinas.
 Ordocivico 505-438Dominio de los invertebrados. Primeros vertebrados.
 Silúrico 438-408Primeras plantas e invertebrados terrestres.
 Devónico 408-360Primeros vertebrados terrestres.
 Carbonífero 360-286Bosques de helechos arbóreos. Desarrollo de los anfibios e insectos. Aparición de los primeros reptiles
 Pérmico 286-248Origen de las coníferas. Proliferación de los reptiles. Extinción de muchas formas de invertebrados.
MesozoicaTriásico 248-213Bosques de gimnospermas y de helechos arbóreos. Origen de los dinosaurios y mamíferos.
 Jurásico 213-144Dominio de los dinosaurios y las coníferas. Primeras aves.
 Cretácico 144-65Primeras plantas con flores. Extinción de los dinosaurios.
CenozoicaTerciarioPaleoceno65-54Radiación de los mamíferos primitivos.
  Eoceno54-37Dominio de las plantas con flores.
  Oligoceno37-24Surgimiento de los grupos modernos de mamíferos e invertebrados.
  Mioceno24-5Proliferación de peces óseos.
  Plioceno5-2Dominio de mamíferos y aves.
 CuaternarioPleistoceno2-0,01Aparición de los humanos.
  Reciente0,01 – hoy

cuadro de las eras geológicas

Ver un Amplio Cuadro Con Las Características de cada Etapa

Cuadro Estratigráfico

tabla geologica

Ver Una Tabla Geológica

Ver un Amplio Cuadro Sintesis Con Las Características de cada Etapa

Explosión de vida: Los primeros océanos se convirtieron en el hogar de las bacterias y algas, como por ejemplo las algas azul verdosas.

Se cree que estas formas tempranas de vida marina fueron las responsables de la generación de oxígeno en la Tierra, ya que hasta ese entonces nuestra atmósfera no lo contenía y los rayos ultravioletas del Sol llegaban al planeta en forma directa sin ninguna barrera de por medio.

Las algas, las primeras productoras de clorofila, lograron absorber la energía del Sol y producir su propio alimento, al tiempo que liberaban oxígeno. Fueron vertiéndolo gradualmente y preparando así el camino para la evolución de otras criaturas marinas.

Los organismos unicelulares precursores necesitaron miles de millones de años para conseguir organizarse en formas más complejas.

Fue hace alrededor de 680 a 650 millones de años, hacia fines de la Era Precámbrica, cuando finalmente aparecieron los primeros organismos pluricelulares. Los restos más antiguos de organismos complejos fueron encontrados en Edicara, Australia.

Son, por lo general, impresiones sobre la piedra de restos de ancestros de anélidos y medusas. Debido a estos hallazgos, se discute la posibilidad de crear un nuevo período, denominado Edicariano, que marcaría el inicio de la Era Paleozoica.

organismo unicelular

Unicelulares:
Los primeros organismos estaban compuestos por una sola célula sin núcleo (Era Precámbrica).

organismo primitvos de la tierra
Medusa:
Hacia fines de la Era Precámbrica, surgieron le primeros organismos pluricelulares.

eras geologicas
En la Era Paleozoica:
Surgieron peces sin mandíbula como el Arandapsis; insectoscomo la efémera; anfibios como Phlegelhontia y escorpiones.

organismo primitvos de la tierra
Trilobites:
Se originaron durante el Período Cámbrico. Eran animales articulados que contaban con un caparazón de quitina.

organismo primitvos de la tierra
Reptiles:
En la Era Mesozoica surgieron grandes reptiles voladores, como Eudimorphodon y los dinosaurios.

organismo primitvos de la tierra
Mamíferos:
El Crusafontia vivió durante el Cretácico, y es uno de los mamíferos primitivos. Era parecido a una ardilla.

organismo primitvos de la tierra
Era Cenozoica:
Animales muy parecidos al ornitorrinco actual vivieron durante este tiempo. También el Didododus un cuadrúpedo.

organismo primitvos de la tierra
Caballo y tigre:
Uno de los ancestros del caballo actual, el Mesobippus, y un antiguo felino, el Esmilodonte (Era Cenozoica).

el hombre primitivo
El Hombre:
Los primeros homínidos y losantepasados directos del hombre vivieron en los últimos períodos de la Era Cenozoica.

Fuente Consultada:
La Tierra y Sus Recursos Levi Morrero
Biología II Ecología y Evolución Bocalandro-Frid-Socolovsky
Nuestro Planeta – La Evolución- Enciclopedia Universal Billiken

Ver: BOSQUES EN LA ERA CARBONÍFERA

Estructura Interna de la Tierra Corteza Manto y Nucleo Litosfera

Estructura Interna de la Tierra Corteza Manto y Nucleo Litosfera

Es evidente que la Tierra tiene una corteza sólida y estable. Algunas veces se abre y se traga una isla, algunas veces …tiembla y derrumba una ciudad; pero en general es ciertamente tierra firme. Sin embargo, cuando nos preguntamos lo que hay bajo la corteza, llegamos a un campo más discutible y encontramos muchas diferencias de opiniones. 

En verdad, es casi imposible determinar con seguridad el estado de la masa central de la Tierra. Estudiemos algunos de los hechos, como los movimientos terrestres. El estudio de los terremotos ha permitido definir el interior de la Tierra y distinguir tres capas principales, desde la superficie avanzando en profundidad, en función de la velocidad de propagación de las ondas sísmicas.

Dichas capas, apreciables en un corte transversal, son: corteza, manto y núcleo. También la información que nos proporcionan los meteoritos puede ser de gran utilidad para conocer la composición de los materiales del interior de la Tierra.

Los métodos de datación sitúan la edad de algunos meteoritos en unos 4500 millones de años coincidente con la edad de la tierra. Se cree que la composición de muchos meteoritos es idéntica a la de algunas capas del interior terrestre. (foto arriba: cráter en Arizona por el impacto de un un meteorito, tiene aproximadamente 1,5 Km. de diámetro, y se cree que su masa era de 300.000 ton. y viajaba a una velocidad de 60.000 Km/h.)

La corteza

Con el nombre de corteza se designa la zona de la Tierra sólida situada en posición más superficial, en contacto directo con la atmósfera, la hidrosfera y la biosfera. La corteza terrestre presenta dos variedades: corteza oceánica y corteza continental.

La corteza oceánica

La corteza oceánica tiene un grosor aproximado de 10 km; no obstante, esta cifra decrece notablemente en determinados puntos del planeta, como en el rift valley, en el área central de las dorsales oceánicas, donde alcanza un valor prácticamente equivalente a O. En dicha zona, el magma procedente del manto aflora directamente.

En la corteza oceánica se pueden distinguir diversas capas. Los sedimentos que forman la primera tienen un espesor situado entre 0 y 4 km; la velocidad media de propagación de las ondas sísmicas alcanza los 2 km/s.

A continuación se localiza una franja de basaltos metamorfizados que presentan entre 1,5 y 2 km de grosor; la velocidad de las ondas es en este punto de 5 km/s. La tercera capa de la corteza oceánica, formada por gabros metamorfizados, mide aproximadamente 5 km; en ella, la velocidad media queda comprendida entre 6,7 y 7 km/s. Cabe mencionar una última parte, donde se registra la máxima velocidad (8 km/s); está constituida por rocas ultra básicas cuyo espesor ronda el medio kilómetro.

La corteza continental

Con un espesor medio de 35 km, la corteza continental incrementa notablemente este valor por debajo de grandes formaciones montañosas, pudiendo alcanzar hasta 60-70 km. Aparece dividida en dos zonas principales: superior e inferior, diferenciadas por la superficie de discontinuidad de Conrad.

En este plano existe un brusco aumento de la velocidad de las ondas sísmicas, que, no obstante, no se registra en todos sus puntos. Consecuentemente, puede afirmarse que no hay una separación nítida entre ambas capas. La corteza superior presenta una densidad medía de 2,7 kg/dm3 y, en el continente europeo, su espesor medio se sitúa en algo más de 810 km. Los materiales que la constituyen son rocas sedimentarias dispuestas sobre rocas volcánicas e intrusivas graníticas. La corteza inferior contiene rocas metamorfizadas cuya composición es intermedia (entre granito y. diorita o gabro); su densidad equivale a 3 kg/dm3.

El manto

En un nivel inmediatamente inferior se sitúa el manto terrestre, que alcanza una profundidad de 1900 km. La discontinuidad de Mohorovicic, además de marcar la separación entre la corteza y el manto terrestres, define una alteración en la composición de las rocas; si en la corteza —especialmente en la franja inferior— eran principalmente basálticas, ahora encontramos rocas mucho más rígidas y densas, las peridotitas. Hay que hacer notar que la discontinuidad de Mohorovicic se encuentra a diferente profundidad, dependiendo de que se sitúe bajo corteza oceánica o continental. El manto se puede subdividir en manto superior e inferior.

El manto superior se prolonga hasta los 650 o los 700 km de profundidad. En este punto, la velocidad de las ondas sísmicas se incrementa, al aumentar la densidad. A su vez, en el manto superior pueden diferenciarse dos regiones; en la superficial, el incremento de velocidad es constante con relación a la profundidad, mientras que en la inferior la velocidad decrece súbitamente. Como resultado de la fusión que experimentan las peridotitas en esta última capa, su rigidez disminuye con relación a la capa superior.

El grosor del manto inferior varía entre 650-700 km —bajo la astenosfera— y 2.900 km —en la discontinuidad de Gutenberg, que marca la separación entre el manto y el núcleo—. En la parte interna de esta capa, tanto la densidad —que pasa de .4 kg/dm3 a 6 kg/dm3, aproximadamente— como la velocidad aumentan de manera constante.

El núcleo

Los principales elementos constitutivos del núcleo terrestre son dos metales: hierro y níquel. A partir del límite marcado por la discontinuidad de Gutenberg, la densidad experimenta un súbito aumento, desde 6 a 10 kg/dm3, aproximadamente. Por otra parte, la velocidad de las ondas sísmicas primarias experimenta un rápido descenso —se pasa de 13 km/s a 8 km/s—, al tiempo que no se registra propagación de ondas secundarias hasta profundidades de 5.080 km. En este último punto, conocido como discontinuidad de Lehmann, la velocidad de las ondas primarias vuelve a incrementarse, situándose en torno a los 14 km/s en el centro del globo terrestre.

Existe un núcleo superior y un núcleo inferior; el primero, con ausencia de ondas secundarias, aparece fundido, mientras que el segundo se encuentra en estado sólido.

La investigación de los fondos oceánicos

La aplicación de grandes avances tecnológicos al estudio de los océanos ha permitido, en las últimas décadas, conocer a fondo aspectos enormemente relevantes de su geología y su morfología. Como resultado, existen en la actualidad mapas precisos de los fondos oceánicos. Elementos característicos de la geografía submarina son los márgenes continentales, las cuencas oceánicas y las dorsales.

Los márgenes continentales

La prolongación de los continentes por debajo del nivel del mar constituye los márgenes continentales, formados por corteza continental. Se distinguen tres zonas principales: la plataforma, el talud y la elevación.

La plataforma continental, una zona que se inclina paulatinamente hasta llegar al talud, puede no presentarse o, por el contrario, alcanzar una extensión de cientos de kilómetros. Aparece recubierta por materiales resultantes de la erosión de la tierra emergida, que han sido transportados por los cursos fluviales.

En torno a —200 m aparece el talud, una pendiente horadada por los denominados cañones submarinos, por los que «viajan» sedimentos procedentes de la plataforma o bien consecuencia de grandes desprendimientos submarinos provocados por los terremotos. La acumulación de sedimentos determina el surgimiento de abanicos, por la forma que adquiere el depósito, que conforman la elevación continental, a veces muy extensa pero generalmente con poca pendiente.

Las cuencas

Las cuencas, cuya profundidad puede superar los 4.000 m, están formadas por corteza oceánica. En ellas pueden individualizarse diversas formas, desde antiguos volcanes, que hoy son montañas submarinas, hasta áreas deprimidas de perfil estrecho y alargado, las denominadas fosas oceánicas, que marcan el punto de contacto entre las placas litosféricas.

Las dorsales oceánicas

Por su parte, las dorsales oceánicas son cadenas montañosas de considerable longitud —de hecho, las más largas del planeta—, que se extienden de forma ininterrumpida por los océanos, a través de unos 80.000 km; su anchura es de 2 .000 km aproximadamente. Están formadas por crestas de origen volcánico, con una altitud media aproximada de 2.000 m sobre el fondo. No obstante, en algunos puntos de la Tierra, por ejemplo en Islandia, pueden llegar a emerger. Las dorsales, centro de actividad sísmica de notable intensidad, aparecen cortadas por numerosas fallas de gran tamaño, denominadas fallas transformantes.

LITOSFERA Y ASTENOSFERA

La franja superior de la superficie terrestre se encuentra dividida en dos partes:

• La litosfera, formada por la corteza y la zona externa del manto superior, es bastante rígida, presenta aproximadamente 100 km de espesor y en ella, la velocidad de las ondas sísmicas aumenta constantemente en función de la profundidad.

• La astenosfera es la franja inferior del manto superior, que se encuentra fundida parcialmente. Se extiende hasta los 400 km, punto en el que el manto recupera sus características de solidez y rigidez, puesto que la velocidad de las ondas sufre una nueva alteración muy brusco.

MODELOS DE LA ESTRUCTURA DE GEOSFERA
Al interior de la tierra también se la conoce con el nombre de geosfera, y si se intenta hacer un estudio directo, solo se puede profundizar un pocos kilómetros, por lo que son necesarios métodos indirectos. Acá se presentan los dos modelos que intentan explicar como es la estructura interior de nuestro planeta.

Está claro que el interior terrestre está formado por varias capas, y en esto coinciden todos los modelos. Pero las investigaciones sobre el interior de la Tierra se han centrado en dos aspectos. en la composición de los materiales que forman las distintas capas del planeta y en el comportamiento mecánico de dichos materiales (su elasticidad, plasticidad, el estado físico…)

Por eso, se distinguen dos tipos de modelos que presentan diferentes capas, aunque coinciden en muchos puntos: el modelo estático y el modelo dinámico.

Capas en el modelo estático

La corteza es la capa externa de la Tierra. Se diferencian dos partes: la corteza continental, con materiales de composición y edad variada (pueden superar los 3.800 millones de años) y la corteza oceánica, más homogénea y formada por rocas relativamente jóvenes desde un punto de vista geológico.

Por debajo de la corteza se encuentra el manto, mucho más uniforme, pero con dos sectores de composición ligeramente distinta: el manto superior, en el que destaca la presencia de olivino, y el superior, con materiales más densos, como los silicatos.

Por último, la capa más interna es el núcleo, que se caracteriza por su elevada densidad debido a la presencia de aleaciones de hierro y níquel en sus materiales. El núcleo interno podría estar formado por hierro puro.

Capas en el modelo dinámico

La capa más externa es la litosfera, que comprende la corteza y parte del manto superior. Es una capa rígida. La litosfera descansa sobre la astenosfera, que equivale a la parte menos profunda del manto. Es una capa plástica, en la que la temperatura y la presión alcanzan valores que permiten que se fundan las rocas en algunos puntos.

A continuación se encuentra la mesosfera, que equivale al resto del manto. En la zona de contacto con el núcleo se encuentra la región denominada zona D”, en la que se cree que podría haber materiales fundidos. La capa más interna es la endosfera, que comprende el núcleo interno y el núcleo externo. Los estudios de propagación de las ondas sísmicas han puesto de manifiesto que la parte externa de la endosfera (el núcleo externo) está compuesta por materiales fundidos, ya que en esa zona se interrumpe la transmisión de algunas de las ondas.

Mohorovicic y la estructura de la Tierra: El 8 de octubre de 1909, se produjo un intenso terremoto a 40 km al sur de Zagreb, en Croacia (que entonces formaba parte del Imperio Austrohúngaro). Otro terremoto ocurrido previamente en Zagreb había determinado la instalación de un sismógrafo en el observatorio meteorológico de la ciudad, dirigido por Andrija Mohorovicic. En su calidad de director del observatorio, Mohorovicic recibió de todas las estaciones de Europa los registros del terremoto de 1909. Después de analizarlos detalladamente, realizó un interesante descubrimiento. Como esperaba, los registros reflejaban dos tipos de ondas: de compresión (P), en las que las partículas oscilan a lo largo de la línea de propagación, y de distorsión (S), en las que el movimiento se produce en ángulo recto con respecto a la línea de propagación.

Luego advirtió que había en realidad dos tipos de ondas P. A escasa distancia del epicentro, la primera onda en llegar se desplaza a una velocidad de 5,5 a 6,5 km por segundo. A una distancia de unos 170 km, esta onda es superada por una segunda onda, que se desplaza a 8,1 km/s. Más allá de este punto, hasta los 800 km, es posible detectar las dos ondas, pero luego las más lentas se desvanecen. Mohorovicic interpretó este fenómeno como la prueba de que las ondas más lentas se desplazan directamente hacia el sismógrafo, mientras que las más veloces son refractadas a una profundidad de unos 50 km. En su honor, la capa refractora recibió el nombre de discontinuidad de Mohorovicic, o Moho. Investigaciones posteriores demostraron que la profundidad del Moho (el límite entre la corteza terrestre y el manto superior) varía entre 30 y 50 km.

PARA SABER MAS…
LAS EDADES RELATIVAS Y ABSOLUTAS DE LA TIERRA: ERAS Y PERÍODOS

Cuando se dice que el hombre pisó la Luna durante la era atómica se está dando una fecha imprecisa, relativa, ya que podría ser ubicada en cualquier punto del transcurso temporal de dicha era; en cambio, al decir que el hombre pisó por vez primera la Luna el 20 de junio de 1969, se está ante una fecha absoluta. Así como sucede con los acontecimientos históricos, los fósiles y los terrenos pueden fecharse en su edad absoluta y en su edad relativa.

Pero las técnicas para desentrañar la edad absoluta constituyen un logro reciente. Antes del descubrimiento del método del carbono 14, el método del plomo, del helio, del estroncio, etc., los científicos sólo podían valerse de una cronología relativa fundada en difíciles estudios de la superposición de las rocas sedimentarias, del contacto con las precedentes si eran rocas eruptivas, del grado de evolución de los fósiles, etcétera.

A partir de este estudio y teniendo en cuenta grandes cambios, como la formación de una cadena montañosa, la desaparición de un grupo de fósiles, etc., la historia de la Tierra se divide en cuatro grandes eras: precámbrica, paleozoica, mesozoica y cenozoica, que se divide en los períodos terciario, cuaternario y reciente. Los períodos son las divisiones internas de cada era. Así, por ejemplo, la era primaria se divide en los períodos cámbrico, silúrico, devónico, carbonífero y pérmico. A su vez los períodos se dividen en pisos.

Con mayor precisión deberíamos emplear la palabra “era” para designar la duración de una serie, período para señalar la duración de un sistema y edad para la duración de un piso.  Los modernos métodos de la determinación de las edades absolutas se basan en la siguiente comprobación científica. Se sabe que la desintegración del uranio 238 (elemento inestable que se modifica por el escape constante de protones y neutrones) da como resultado el radio, que a su vez origina el plomo 206 (elemento estable, pero distinto del plomo de origen no radiactivo, o sea el plomo 204), más un escape de helio 4 durante el proceso:

Uranio 238 = plomo 206 más 8 helio 4. El uranio 235 se transforma en el plomo 207 y el torio deviene plomo 208. La desintegración de estos elementos radiactivos es un fenómeno perfectamente conocido. Como se sabe, un gramo de uranio 238 produce anualmente 0,014 x 10-8 g de plomo 206 y 1,2 x 10-4 mg3 de helio (10-8 equivale a 1/108 y 108 corresponde a 1 seguido de 8 ceros, es decir 100 millones).

De esta fórmula se puede deducir la antigüedad de una roca según sea su proporción de uranio 238 y plomo 206. Pero es necesario además realizar el correspondiente análisis espectográfico para determinar si el elemento originario era el uranio 238 (que da plomo 206), el uranio 235 (que da plomo 207), el torio 232 (que da plomo 208) o todos estos elementos combinados. Éste es el llamado método del plomo.

Otro método tiene en cuenta las proporciones de uranio y helio, pero tropieza con la dificultad de no poder precisar qué cantidad de helio perdió la roca durante su formación. Éste es el método del helio.

El método del estroncio utiliza la transformación de rubidio en estroncio. El método del carbono 14 (fue descubierto en 1947 por el químico estadounidense Williard Libby) se aplica para determinar la antigüedad de los restos de seres vivos. Parte de la siguiente apreciación: todos los organismos vivos absorben, durante su vida, carbono 12 (estable) y carbono 14 (radiactivo). Pero la proporción de carbono 14 y la de carbono 12 (constante en la naturaleza) es la siguiente: un billón de átomos de C 12 por un átomo de C 14.

Cuando el ser muere, el carbono 14 del cuerpo comienza a disminuir en cantidad por un proceso de desintegración, ya que no es renovado. La mitad de este carbono desaparece durante el transcurso de 5.600 años, las tres cuartas partes, a los 11.200 años, los siete octavos a los 16.800 años, etc. En la práctica, por ejemplo, se reduce a carbón una muestra de hueso, madera, etc., y se lo introduce en un contador Geiger, determinándose de este modo su edad.

Este método es aplicado desde 1948, pero tropieza con una seria limitación: sólo puede remontarse a 15.000 o a 16.000 años atrás. Desde que en 1939 el físico estadounidense Alfred Otto Nier efectuó una medición completa y precisa de los isótopos del plomo, en los minerales de uranio y plomo se pudieron construir geocronómetros bastante sensibles que fueron sucesivamente perfeccionados por la electrónica.

Estos geocronómetros, mediante los métodos “potasio-argón”, “rubidio-estroncio” y “uranio-plomo”, pueden determinar la edad de las rocas, fechando incluso Ja data de aquellas de más de 10.000.000 de años. Como todos estos métodos de medición del tiempo se refieren a la edad de las capas de rocas sedimentarias, las etapas previas por las cuales pasó nuestro planeta antes de la formación de las capas sedimentarias pertenecen, casi por completo, al campo de la hipótesis.

Los 16 elementos principales que constituyen el 99% de la corteza terrestre: En conjunto se encuentran en la corteza de la Tierrauinos 80 elementos; pero solamente 16 en grandes cantidades.

Los 16 favorecidos son los siguientes: oxígeno, silicio, carbono, azufre, hidrógeno, cloro, fósforo, flúor, aluminio, calcio, magnesio, potasio, sodio, hierro, manganeso, bario. Estos elementos constituyen el 99% de la corteza terrestre; otros elementos, tales como el oro y la plata, el cinc y el estaño y el yodo forman el 1% restante. Vamos a examinar algunos de los elementos más importantes.

De todos los elementos el oxígeno es el más importante: forma aproximadamente el 23% en peso del aire, un 89% del agua y, aproximadamente, el 47% de las rocas de la corteza. A temperaturas ordinarias y en estado libre es naturalmente un gas, el gas que causa la combustión y es esencial a los fenómenos de la vida. En la corteza terrestre se encuentra en combinación con otros elementos, formando sólidos.

El elemento que le sigue en abundancia es el silicio, que forma, aproximadamente, el 28% de la corteza de la Tierra. En combinación con el oxígeno iorma un mineral llamado sílice, que constituye aproximadamente la mitad de la corteza conocida y sirve para ligar todos los demás.

Se observa mejor en forma de cuarzo. Aparte del papel que desempeña en la formación del mundo, tiene para el hombre una importancia inestimable, por ser la base del cristal. Sin el silicio no hay cristal; sin el cristal nó habría microscopios, ni telescopios, ni espectroscopios. ¡Y qué poco conocería el hombre sin estos instrumentos tan admirables, de «el interior sin límite del átomo, exterior sin límite del todo»!

Después viene el aluminio, que forma el 8% de la corteza. Se encuentra principalmente unido con la sílice, formando los llamados «silicatos de aluminio», y se halla en muchas rocas y arcillas.

Más interesante, sin embargo, que éstas es la notable substancia llamada carbono. En forma de gas bióxido de carbono, constituye en peso la V2500 parte de nuestra atmósfera. En estado sólido lo conocemos como carbón de leña, grafito y diamantes. Al combinarse con el hidrógeno, oxígeno, nitrógeno y azufre forma carbón. Es el elemento fundamental de la vida orgánica; sin él, el mundo no tendría ni plantas ni vida animal.

Podemos también mencionar otro constituyente elemental de la corteza terrestre, el calcio, o cal. El calcio viene naturalmente después del carbono, puesto que se encuentra principalmente asociado con éste en forma de carbonato calcico En forma de carbonato calcico, o caliza, constituye el 4% de la corteza terrestre, y su existencia en ésta es de la mayor importancia para la vida, pues sin él no existirían ni huesos ni terrenos fértiles.

Estos son, pues, algunos de los elementos más importantes que constituyen la corteza de la Tierra.

El Origen del Planeta Tierra

Composición Mineral de la Corteza Terrestre

El Impacto Ambiental de la Erupcion de los Volcanes Activos Clima

El Impacto Ambiental de la Erupción de los Volcanes Activos

La influencia de los volcanes en el clima es estudiada desde el siglo pasado por los científicos, quienes observaron variaciones en la temperatura en relación con los fenómenos volcánicos.

En 1784, Benjamin Franklin (1706-1790), en una conferencia en Manchester, relató sus observaciones sobre la disminución de la radiación solar en el verano de 1783 a causa de la erupción del volcán Laki, en Islandia. Franklin suponía que las cenizas expulsadas por el volcán habían provocado una niebla seca a gran altura que causo los fríos glaciales registrados en el este de Europa y en América del Norte por ese entonces.

El hecho científico comprobado es que los volcanes explosivos (del tipo peleano) se caracterizan por experimentar periódicamente erupciones súbitas y violentas, con suficiente energía como para impulsar polvo y compuestos químicos directamente hasta la estratosfera.

La intensidad de las erupciones se mide mediante un índice de explosividad volcánica (IEV), basado en factores como el volumen de ceniza y de fragmentos de roca expulsados, la altura de la nube de gas y las características de la explosión. Al parecer, durante los últimos diez mil años no se ha producido ninguna erupción que alcanzara el nivel 8; además, se afirma que un IEV 4 puede afectar al clima global.

Pero los impactos sobre el clima no se ven limitados al polvo volcánico. En 1991, la erupción del Pinatubo, en las islas Filipinas, provocó la expulsión no sólo de inmensas cantidades de polvo volcánico, sino también de grandes volúmenes de gases sulfúricos.

El dióxido de azufre (SO2) reacciona con el vapor de agua y produce ácido sulfúrico (S04H2), que queda en suspensión en la estratosfera como máximo hasta dos años, en forma de pequeñas gotas llamadas aerosoles. Éstos dieron lugar a la formación de nubes que se fueron extendiendo por la Tierra, especialmente en latitudes cercanas al ecuador, zona en que se halla el Pinatubo. Como consecuencia de ello, la radiación solar recibida por el planeta no sólo descendió entre 2 y 4 %, sino que los gases se condensaron y formaron la lluvia ácida. Se calcula que por efecto de esta erupción explosiva, la temperatura descendió entre 0,5 y 5 ºC, según la zona, en los dos años siguientes.

El hecho es que la densidad de los aerosoles y el dióxido de azufre en la atmósfera afectan no sólo la temperatura, sino también el régimen de lluvias. Con largos períodos de actividad volcánica, al reducirse la cantidad de radiación solar, se produce una disminución de las precipitaciones.

Por otra parte, actualmente se acepta que el fenómeno de la corriente de El Niño (que se analiza en otro documento) y el fenómeno natural conocido como oscilación del sur (OS), que consiste en anomalías de la presión atmosférica, constituyen los componentes oceánico y atmosférico de un mismo proceso relacionado con ciclos de erupciones volcánicas. Los modelos explicativos de los cambios climáticos permitieron predecir El Niño en 1993. Como consecuencia de la explosión del Pinatubo, se produjo un “Niño” con sequías en la Amazonia y en el nordeste de Brasil, y un exceso de lluvias en el sur y sudeste de Brasil y la Argentina.

https://historiaybiografias.com/linea_divisoria3.jpg

PRINCIPALES ERUPCIONES VOLCÁNICAS

SANTORIN (THERA)
Altura: 584 m
Lugar: Cicladas, Grecia
Fecha: h. 1550 a.C.
Una explosión inmensa, que prácticamente destruyó la isla. Hay quienes opinan que esto contribuyó a la desaparición de la civilización minoíca, en la cercana Creta. Puede que este desastre diera también origen a la leyenda de la ciudad perdida de la Atlántida.

VESUBIO
Altura: 1.280 m
Lugar: Bahia de Napóles, Italia
Fecha: 79 d.C
Las ciudades de Pompeya, Herculano y Stabia quedaron completamente sepultadas y murieron miles de personas. En 1631, murieron otras 3.000; desde entonces se han producido alrededor de 20 erupciones importantes, la última en 1944.

ANÓNIMO
Altura: desconocida
Lugar: Isla del Norte, Nueva Zelanda
Fecha: h. 130 a.C.
Saltaron por los aires alrededor de 30 millones de toneladas de pumitas, creando la amplia caldera que actualmente ocupa el lago Taupo. Una superficie de alrededor de 16.000 km2 quedó devastada; fue el más violento de todos los sucesos volcánicos documentados.

ETNA
Altura: 3.308 m
Lugar: Sicilia. Italia
Fecha: 1669
Murieron 20.000 personas y la lava arrasó la parte occidental de la ciudad de Catania, a 28 km de la cima.

KELUT
Altura: 1.731 m Lugar: Java, Indonesia Fecha: 1586
Murieron 10.000 personas. Otra erupción, en 1919. acabó con la vida de otras 5.000.

TAMBORA
Altura: 2.850 m
Lugar: Sumbava, Indonesia
Fecha: 1815
Se estima que explotaron entre 150 y 180 km3 del cono, que: redujo su altura de 4.100 m a 2.850 en cuestión de minutos. Perecieron un total de 90.000 personas, aproximadamente, como consecuencia de la explosión y de la gigantesca ola posterior, aparte de las victimas de la hambruna que sobrevino a la catástrofe.

KRAKATOA
Altura: 813 m
Lugar: Krakatoa, Indonesia
Fecha: 1883
Desaparecieron 163 aldeas y murieron 36.380 personas, como consecuencia de la ola gigantesca provocada por la mayor explosión volcánica jamás registrada, aunque posiblemente apenas tuvo una quinta parte de la intensidad de la que destruyó Santorín. Las rocas volaron 55 km por los aires y, diez dias más tarde, cayó polvo proveniente de la erupción a 5.330 ftn de distancia. La explosión se oyó en el 8% de la superficie terrestre.

MONT PELEE
Altura: 1.397 m Lugar: Martinica, Antillas Fecha: 1902
En tres minutos, una nube ardiente (ver texto principal) destruyó la ciudad de Saint-Picrre, matando a la totalidad de sus 26.000 habitantes, menos uno: un preso que sobrevivió protegido por los gruesos muros de la prisión.

MOUNT STHELENS
Altura: 2.549 m
Lugar: Estado de Washington, EUA
Fecha: 1980
Se dieron por muertas 66 personas y se destruyeron 260 km de bosques. El humo y las cenizas se elevaron hasta una altura de 6.000 m. Días después, se detectaron cenizas a 800 km de distancia.

Fuentes:
“Los volcanes afectan al clima del planeta”, Ciencia Hoy, vol. 7, NP 38, 1997.
“Polvo atmosférico y lluvia ácida”, Investigación y Ciencia, NP 245, febrero de 1997.

Prediccion de la Actividad de un Volcan Erupciones Volcanicas

Predicción de la Actividad de un Volcán
Erupciones Volcánicas

La América Central es una región de gran actividad volcánica, donde suele registrarse, por lo menos, una erupción todos los años y una gran explosión dentro del lapso regular de una vida humana.

El inventario de las formaciones volcánicas de Nicaragua surgidas en el último millón de años asciende a 28, sin contar lagunas cráteres y otras depresiones semejantes. Todas están ubicadas junto a una fractura de 290 kilómetros de largo que corta los dos grandes lagos del país, cuyas islas y penínsulas están cuajadas de volcanes activos y apagados.

Una distribución similar se percibe en el eje volcánico del istmo, que corre paralelo al litoral del océano Pacífico, con conos y cráteres uno junto a otro desde México hasta Panamá. El agua y el fuego han creado, en combinaciones caprichosas, los paisajes más admirados de la América Central.

interior de un volcan, corte esquematico

Raro es el año en que no se registra una erupción volcánica en el istmo. Entre los de mayor actividad se cuentan los volcanes Pacaya, Santiaguito y Fuego, en Guatemala; lzalco y San Miguel, en El Salvador; Telica, Masaya y Concepción, en Nicaragua, Poás e Irazú, en Costa Rica. En los últimos cuatro siglos se ha registrado actividad en unos 25 volcanes centroamericanos por lo menos, incluso el surgimiento de volcanes nuevos, como el Izalco y el Cerro Negro, que aparecieron en forma inesperada en 1770 y 1850 en El Salvador y Nicaragua, respectivamente. También se produjeron erupciones de magnitud sorprendente en conos que se consideraban extintos, como el caso del Cosigüina en 1835; el Santa María, en Guatemala, en 1902, y el Arenal, en Costa Rica, en 1968. Tres erupciones violentas en menos de 150 años.

La historia de las manifestaciones volcánicas en la región permite conjeturar la probabilidad de que se produzca al menos una gran erupción en algún lugar del istmo dentro del lapso regular de una vida humana. Esta eventualidad merece tomarse en serio, si se considera que el 60% de la población centroamericana vive dentro del área de alcance de algún volcán, a menos de 40 kilómetros. Los habitantes de San José de Costa Rica todavía recuerdan los meses de aflicción en 1963 cuando el volcán Irazú hizo llover cenizas sobre la ciudad. Y en León, Nicaragua, los vecinos barrían constantemente los tejados para evitar que las cenizas despedidas por el Cerro Negro en 1968 y 1971 causaran el derrumbe de los techos coloniales.

Además de lanzar materiales pulverizados, los volcanes también suelen arrojar lava incandescente que baja por las laderas calcinando todo lo que toca. En 1772, la gran corriente de lava del volcán Masaya recorrió unos 15 kilómetros como un río de fuego, sembrando pánico en los pueblos vecinos. Un brazo del río  se desvió y llegó a una laguna cercana, donde se apagó en medio de una gran humareda causada por la vaporización del agua. Otros volcanes como el Pacaya, Fuego, San Miguel y Momotombo tienen las laderas revestidas de negras coladas de aya, que recuerdan erupciones del pasado.

Una de las manifestaciones más temidas de la furia de los volcanes es la proyección de las llamadas nubes ardientes, mezcla sofocante de gases densos y partículas semifluidas que baja velozmente por las laderas arrollando con todo lo que encuentra a su paso. Una de esas nubes ardientes, lanzada por el monte Pelée en 1902, destruyó la capital de la isla de Martinica y sofocó de manera letal e instantánea a sus 30.000 habitantes. El mismo fenómeno se produjo en Costa Rica en 1968, cuando el volcán Arenal asoló dos aldeas en las cercanías de la montaña.

La persistencia de la alta densidad demográfica en las peligrosas regiones volcánicas del istmo centroamericano, que se remonta a los tiempos precolombinos, se debe simplemente a la gran feracidad de los suelos de procedencia volcánica, en los que se puede cultivar una amplia variedad de productos tropicales. Los pobladores precolombinos solían cultivar maíz, frijoles, cacao y otros productos en los mismos lugares donde hoy se cultivan algodón, café, caña de azúcar y donde hay buen pasto para la cría de ganado, actividades que constituyen el principal sustento económico de las repúblicas del istmo.

Algunos países, como El Salvador y Nicaragua, aprendieron también en los últimos años a utilizar la rica energía geotérmica que encierran los volcanes y a depender cada vez menos de la importación de combustibles derivados del petróleo. Los abundantes materiales expulsados por los volcanes también se aprovechan para la construcción de edificios y carreteras, mientras que el turismo se inspira en el paisaje para mostrar la visión espectacular de los conos que reflejan sus figuras imponentes en las plácidas aguas de los lagos.

Vivir junto a los volcanes es un riesgo que los centro americanos conocen y aceptan. Las corrientes de lava, las lluvias de cenizas, las avalanchas, los sordos ruidos subterráneos y otras manifestaciones telúricas no lograron desalentar ni distraer el interés de los habitantes centroamericanos actuales para seguir poblando y explotando sus vulnerables pero fértiles áreas.

Entre los hombres y las montañas existe una dependencia estrecha de raíces muy antiguas. Los pueblos aborígenes de la América Central rendían culto y veneración a los montes de fuego y humo, donde creían que moraban seres legendarios o dioses tutelares cuya ira se manifestaba en las erupciones, terremotos, sequías y otras calamidades. Entre los indígenas que todavía viven al pie de los volcanes y los campesinos que cultivan sus laderas perduran las supersticiones y los relatos de seres fabulosos que moran en sus entrañas, resabios de temores ancestrales.

No obstante los descubrimientos hechos por la ciencia y particularmente los adelantos prodigiosos del siglo XX, los volcanes de la América Central todavía guardan celosos sus secretos.

Predicción de las Erupciones por Actividad de un Volcán:
Todos los volcanes son diferentes, por lo que no puede considerarse que exista una serie de síntomas, en forma de normas de aplicación general, que nos permita determinar la amenaza de una erupción. La observación en particular de cada uno de los volcanes se ha confirmado, en cambio, como un medio muy útil en la predicción de erupciones, por lo que desde el comienzo de este siglo se han establecido observatorios en muchos volcanes.

El observatorio de Monte Etna,  a un kilómetro y medio de su cima, se vio invadido por la lava en la erupción de 1971. Los pequeños temblores de tierra, originados por el movimiento del magma en el interior del volcán, y que preceden a las erupciones, pueden ser detectados mediante sismómetros.

Aunque existen una serie de observatorios dedicados continuamente a la detección de terremotos, se utilizan preferentemente sismómetros portátiles como el representado en la figura 96, para la predicción de las erupciones y de la localización exacta de los nuevos cráteres o salideros de lava. La primera comprobación de la existencia de pequeños temblores de tierra coincidentes con las erupciones se realizó de forma inintencionada, al observar las fotografías de surtidores de lava, como el de la figura 97, hechas con un determinado tiempo de exposición.

Los chorros de lava al rojo no se veían afectados por los temblores de tierra, pero el terreno, y la cámara fotográfica dispuesta sobre él, sí sufrían sacudidas: en consecuencia los trazos de las trayectorias de las partículas de lava al rojo parecían movidas en la fotografía. Algunas erupciones en las Islas Hawai están precedidas por un peculiar ruido rítmico de sonidos graves en forma de tarareo.

Para determinar los cambios producidos en la forma del volcán durante las erupciones, se utilizan inclinómetros y medidores electrónicos de distancias. El registro gráfico, tomado en Hawai desde 1956 a 1969, muestra elevaciones progresivas correspondientes a las erupciones, y bruscas caídas al final de las mismas. Los movimientos del magma se reflejan a veces en cambios de potencial eléctrico o de las características magnéticas de las rocas. (Al calentarse éstas por encima de los 600° C pierden sus características magnéticas naturales.)

El análisis de la composición y la temperatura de los gases emitidos por las fumarolas en los períodos comprendidos entre las erupciones ha resultado ser una guía muy útil del comportamiento de algunos volcanes. Todas estas observaciones y mediciones se suplementan actualmente con la vigilancia continua por medio de satélites especiales. Es de esperar que en un plazo corto se pueda desarrollar un sistema automático de vigilancia global.

Fuente Consultada: Revista América Vol. 39, Nº1

Nombre de las Placas Tectonicas Ubicacion y Teoria Resumen

Nombre de las Placas Tectónicas ,Ubicación y Teoría

La deriva continental: Desde la prehistoria, la búsqueda de minerales metálicos proporcionó a los mineros un amplio conocimiento empírico de la estructura de la corteza terrestre: la forma en que diferentes rocas se disponen en estratos una encima de otra, la posibilidad de que las vetas minerales se abran paso a través de los estratos, y así sucesivamente.

Pero el fundador de la geología como ciencia fue James Hutton, (imagen) que trabajó en Escocia durante la segunda mitad del siglo XVIII. Sus ideas fueron desarrolladas en el siglo XIX por otros precursores, como los geólogos británicos Charles Lyell y Archibald Geikie.

Sus investigaciones entraron en conflicto con las creencias más establecidas sobre la edad de la Tierra y las fuerzas que la habían modelado. Según la opinión predominante, la historia geológica sólo podía interpretarse como una sucesión de catástrofes, entre ellas, el diluvio universal en tiempos de Noé.

Durante los años 60, las ideas científicas sobre la corteza terrestre cambiaron espectacularmente al confirmarse ciertos vagos conceptos que se habían desarrollado durante los tres últimos siglos.

Desde que en 1620 el filósofo inglés Francis Bacon advirtiera que África y América del Sur parecen dos piezas de un enorme rompecabezas, muchos trabajaron sobre esta idea. El más influyente fue el meteorólogo alemán Alfred Wegener, quien en 1915 propuso la teoría de la «deriva continental», según la cual todos los continentes estuvieron unidos en algún momento del pasado. La idea encontró dos partidarios, durante los años 20 y 30, en el geólogo británico Arthur Holmes y el geólogo sudafricano Alexander du Toit.

La aceptación comenzó en 1960, cuando el geofísico norteamericano Harry Hess comprobó que ciertos descubrimientos hechos por oceanógrafos durante la década anterior se ajustaban perfectamente a la idea de la deriva continental.

Entre estos hallazgos figuraba el hecho de que la cordillera que discurre por el centro del océano Atlántico forma parte de un sistema montañoso que puede observarse en todos los océanos, así como el hallazgo de que la corteza terrestre debajo de los océanos es notablemente delgada.

Hess sugirió que las cordilleras oceánicas estaban situadas sobre corrientes de convección ascendentes en el manto y que el material que afloraba, empujado por estas corrientes, se solidificaba en la superficie para formar nueva corteza; esta nueva corteza, a su vez, se desplazaba lateralmente con respecto a la línea de actividad. Estas ideas indicaban que la corteza en las proximidades de las cordilleras era muy reciente y que sería más antigua cuanto más lejos se encontrara del sistema montañoso. Hess denominó a este concepto «expansión del lecho oceánico».

En 1963, los geólogos británicos Fred J. Vine y Drummond H. Matthews descubrieron que la corteza oceánica a ambos lados de la cordillera atlántica estaba magnetizada en bandas paralelas, presentando cada banda una polaridad opuesta a la de sus vecinas. En 1966, se sabía ya que la polaridad del campo magnético de la Tierra se ha invertido varias veces en el pasado reciente, por lo que se dedujo que cada parte nueva de la corteza, en el momento de su formación, asumía la polaridad magnética reinante en su época.

En 1967, el geofísico norteamericano Hugo Benioff observó que los hipocentros de los terremotos en una región sísmica están localizados sobre un plano inclinado que desciende por el borde del continente. El sismólogo japonés Kiyoo Wadati realizó la misma observación, pero el fenómeno recibe solamente el nombre de Benioff.

La «zona de Benioff» representa una zona antigua de la corteza en proceso de sumergirse en el manto terrestre y ser destruida. En esos puntos, el material fundido de la corteza se abre paso hacia la superficie y forma volcanes.

Todos estos fenómenos se combinaron en un único concepto a fines de los años 60. La superficie de la Tierra consiste en varias placas, cada una de las cuales se crea continuamente a lo largo de una cordillera oceánica y se destruye continuamente en una zona de Benioff. El término «placa» fue acuñado por el geólogo norteamericano W. Jason Morgan y, en la actualidad, el concepto en su totalidad recibe el nombre de «tectónica de placas».

mapa tectonicas de placas

Sucesora de la teoría de la deriva continental, la teoría de la tectónica de placas, enunciada a principios de la década del ’70 por varios científicos, postula la existencia de placas litosféricas que se desplazan en forma más o menos independiente unas de otras sobre la blanda astenosfera. También explica la distribución global de los volcanes y de los terremotos.

La litosfera no es una capa continua y uniforme, sino que está dividida en grandes fragmentos o placas litosféricas. Estos fragmentos tienen cierta independencia unos de otros y se desplazan flotando sobre la astenosfera, en forma similar a como lo hacen los grandes bloques de hielo que flotan sobre el agua. Cada una de las placas está totalmente rodeada de otras, y sus formas y tamaños son variados e irregulares.

Existen ocho grandes placas litosféricas: la Pacífica, la Europa-africana, la Antártica, la Asiática, la Norteamericana, la Sudamericana, la Indoaustraliana y la de Nazca, y algunas placas menores, como la del Caribe, la Filipina, la de Cocos y la Arábiga.

1 Placa norteamericana2 Placa pacífica3 Placa de Nazca4 Placa sudamericana
5 Placa africana6 Placa arábiga7 Placa eurasiática8 Placa antártica
9 Placa indoaustraliana____ Convergente______ Divergente 
bordes tectonicos divergente

Bordes convergentes o destructivos. Dos placas con bordes comunes se acercan y colisionan. Una de las placas desciende y se Introduce debajo de la otra (subducción). Se produce este fenómeno cuando el borde de una placa oceánica, que es densa y delgada, choca contra una placa continental, menos densa y más gruesa: la primera se introduce por debajo de la segunda, se ablanda y se funde en el manto. Durante este proceso, se destruye litosfera oceánica. Esto ocurre, por ejemplo, con la placa de Nazca que choca y se introduce debajo de la placa Sudamericana.

bordes tectonicos divergente

Bordes divergentes o constructivos. Dos placas con bordes comunes se alejan o divergen y se forma entre ambas una brecha, a través de la cual asciende el material del magma. Éste se solidifica y se adhiere a los bordes de las placas oceánicas, proceso denominadoacreción, con lo cual se forma nueva litosfera oceánica. Esto ocurre, por ejemplo, con los bordes divergentes de la placa Sudamericana y la Africana.

bordes tectonicos frontera transformacion

Bordes transformantes. Los bordes comunes de dos placas se desplazan uno al lado del otro, lateralmente. En este caso, las placas no chocan ni se alejan: no se crea ni se destruye litosfera; sin embargo, este desplazamiento genera enormes fricciones que liberan energía en forma de terremotos. Uno de los ejemplos más conocidos de bordes transformantes es la falla de San Andrés, en California, producida por el desplazamiento lateral de la placa Pacífica y la Norteamericana.

 LOS BORDES DE PLACAS: BORDES DE LAS PLACAS
En las zonas en que están en contacto dos placas, es decir en sus bordes,,tienen lugar los principales fenómenos geológicos que modelan la superficie del globo. Según sean los movimientos relativos de dos placas en contacto, tenemos tres tipos de bordes.

Los bordes divergentes o constructivos corresponden a las dorsales oceánicas medias. En ellas se da un abundante vulcanísmo, que genera kilómetros cúbicos de basaltos, de composición muy uniforme. Y esta acumulación de basaltos, que presentan el aspecto de lavas almohadilladas por haberse vertido en el mar, forma la nueva corteza oceánica y hace que las dos placas adyacentes se muevan en sentidos opuestos. Al vulcanismo se le suma una actividad sísmica poco profunda.

Los bordes convergentes o destructivos corresponden a las zonas de subducción. Cuando dos placas que se desplazan en sentidos opuestos entran en contacto, una de las dos se hunde bajo la otra y va a destruirse en el manto.

La convergencia va acompañada de violentos fenómenos. Al hundirse, la placa inferior provoca rozamientos que se traducen en movimientos sísmicos. Provoca, también, la producción de magma, que alimenta volcanes de carácter frecuentemente explosivo.

Comprime y deforma fuertemente la placa superior, originando en ella un levantamiento que se convierte en cordillera. Si ambas placas son oceánicas, como en el Pacífico occidental, el levantamiento es un arco insular, erizado de múltiples volcanes, que emerge progresivamente.

Si una placa oceánica entra en contacto con otra continental, la placa oceánica se hunde por debajo de ésta y origina la formación de una imponente cordillera en el borde de la placa continental: es, por ejemplo, el caso de los Andes. Pero la prosecución del movimiento puede hacer que entren en contacto dos continentes y que, al colisionar ambas masas, el movimiento quede bloqueado: así ocurrió en el Himalaya.

Añadamos, por último, que en algunas zonas las placas en contacto se deslizan lateralmente una con respecto a otra. Son los bordes conservadores, así llamados porque en ellos no se da destrucción ni construcción. Dichos bordes quedan materializados por grandes fallas verticales, o fallas transformantes, a lo largo de las cuales se producen intensas fricciones que provocan violentos seísmos. La falla de San Andrés es un buen ejemplo.

Las Glaciaciones Causas y Consecuencias Prehistoria Hombre Neolitico

Las Glaciaciones Causas y Consecuencias
La Prehistoria y el Hombre Neolítico

Gran parte de la historia humana transcurrió durante los bruscos cambios climáticos de la última glaciación, o Era de Hielo, iniciada hace 1,5 millones de años. La capacidad de adaptación a estos cambios ha sido crucial en el desarrollo de la civilización, pero el ser humano también puede ser la causa de un futuro calentamiento. Durante millones de años, la Tierra ha experimentado una diversidad de temperaturas y condiciones climáticas que influyeron en la extinción o supervivencia de grupos enteros de especies y han cambiado la faz del planeta.

Existen indicios del comienzo de otra gran transformación (antes por deriva de los continentes y enormes levantamientos volcánicos) que experimentó el clima hace unos tres millones de años, preludio de la fase en la que aún vivimos, y casi todas las etapas de la evolución humana de las que han quedado vestigios se desarrollaron en las condiciones que surgieron entonces.

Gracias a este cambio aparecieron los entornos que permitieron la supervivencia de la especie humana y de sus antepasados inmediatos. Hace un siglo empezó a denominarse a este período climático Pleistoceno(derivado de términos griegos que significan «lo más reciente»). Se distingue de la etapa anterior por las variaciones del clima, mucho más radicales y frecuentes.

Aunque hay que tener en cuenta que nos referimos a miles de años y que estos cambios no podrían notarse en el corto espacio de vida de un hombre, en el Pleistoceno se produjeron más altibajos que en ninguna otra época de duración similar. Los cambios más destacados se denominan «glaciaciones», cuatro en total.

No sabemos por qué se desencadenaron, pero se cree que el planeta Marte atravesó etapas semejantes, y es probable que se debieran a un cambio que afectó a todo el sistema solar. Las consecuencias resultan mucho más claras: durante siglos enteros, ciertas zonas muy extensas —gran parte de Europa y Norteamérica, por ejemplo— quedaron cubiertas de grandes capas de hielo, en algunos casos de varios kilómetros de espesor.

En ciertos puntos, el hielo hundió el suelo a varios cientos de metros. Estas capas empezaron a formarse porque cada primavera la nieve del invierno se derretía un poco más tarde, hasta que un año no se derritió.

Al cabo de miles de años se produjo un retroceso del hielo, también muy lento, y tanto el avance como el retroceso resultaron catastróficos para el entorno, pues al sobrevenir el deshielo, arrasó la vida animal y vegetal y se desencadenaron enormes inundaciones. A consecuencia de una elevación del nivel del mar tras un deshielo volvió a aparecer el canal de la Mancha, que separó definitivamente las islas Británicas de la Europa continental.

Pero estas inundaciones ofrecieron nuevas oportunidades de desarrollo a las especies mejor dotadas.

Tras cada glaciación, dichas especies se trasladaban a las zonas que habían quedado libres de hielo; y no fueron sólo las zonas directamente afectadas las que experimentaron cambios: como el hielo dejó «encerradas» enormes cantidades de agua, se transformaron miles de kilómetros de costas de las regiones heladas.

Cada glaciación tuvo una duración de entre cincuenta y setenta y cinco mil años. En la actualidad vivimos en el período cálido posterior a la última, y algunos científicos han predicho que se producirá otra dentro de unos cincuenta mil años. No es una perspectiva tan terrible como la del «encogimiento» del universo, pero de todos modos queda tan lejos que no debe preocuparnos demasiado. Las glaciaciones constituyen una ayuda muy valiosa para los estudiosos de la Prehistoria.

En primer lugar, sabemos muy bien cuándo se produjeron y podemos fechar muchos objetos prehistóricos basándonos en ellas. Otro factor importante radica en que podemos especular con un margen de error razonable sobre las consecuencias que tuvieron en el medio ambiente de los primeros seres humanos y prehumanos.

Al estudiar estos cambios físicos y biológicos, no debemos olvidar la extraordinaria lentitud con que se produjeron. Cuando pensamos en las grandes fallas que se abrieron en la tierra, en las costas que surgieron de los océanos, o en los mares que aparecieron al derretirse la gigantesca capa de hielo, hemos de recordar que todo esto sucedió en el transcurso de varios siglos, y en algunos casos, de millones de años.

Los seres que vivieron en este proceso, si hubieran sido capaces de reflexionar sobre él, no habrían podido notarlo en el breve espacio de sus vidas, al igual que una mariposa actual, con una existencia de dos o tres semanas, tampoco apreciaría los cambios que ha experimentado el paisaje en el último siglo. Y las transformaciones biológicas que se operan a causa de la selección natural son aún menos visibles, pues incluso la más pequeña tarda miles de generaciones en completarse.

Las Glaciaciones Causas y Consecuencias Prehistoria Hombre Neolitico

Las cuatro «glaciaciones» se sucedieron en el último millón de años y reciben el nombre de los ríos alemanes en cuyos lugares se hallaron los primeros vestigios. Es imposible dar fechas exactas; sólo aproximadas. Los períodos interglaciares fueron muy semejantes a los actuales. Contrariamente a la idea popular, una glaciación no es una época de congelamiento constante, sino un período de continuas fluctuaciones climáticas cuyo punto máximo consistió en etapas de frío intenso.
Los primeros milenios de la última glaciación —período crítico en el que nuestros remotos antepasados ocuparon gran parte de África— son poco conocidos. La información obtenida de perforaciones del fondo marino y de muestras de hielo ofrece una imagen más nítida del clima posterior a la brusca inversión del campo magnético terrestre producida hace unos 780.000 años. Las muestras del fondo del Pacífico revelan al menos cuatro grandes períodos fríos, o glaciales, a lo largo de esos 780.000 años: el último finalizó hace entre 10.000 y 15.000 años con un súbito e irregular calentamiento global.

Las muestras marinas tan sólo ofrecen una impresión general sobre el cambio climático durante la glaciación, pero como regla general, el enfriamiento se produce con relativa lentitud y el calentamiento es rápido, como sucedió al final del último período glacial. Los períodos glaciales fueron más largos que los interglaciales (breves intervalos de condiciones climáticas más cálidas durante la glaciación, cuando el clima era tan cálido o más que hoy). Estos aumentos de temperatura fueron causados por cambios en el movimiento de la Tierra alrededor del Sol y sobre su propio eje, a los que se añadía un aumento natural de los gases de efecto invernadero. En la actualidad estamos experimentando un período interglacial, provocado por la suma de todos estos fenómenos naturales, que comenzó hace unos 10.000 años.

90 metros bajó el nivel del mar al principio de la ultima glaciación, a medida que el agua se congelaba para formar
los casquetes polares de la Antártida y el Ártico actual.

Cambio medioambiental La glaciación fue testigo de drásticos cambios en el clima global y el medio natural. Durante los períodos glaciales, inmensas capas de hielo cubrieron Escandinavia, gran parte de Canadá y zonas de Estados Unidos hasta Seattle y los Grandes Lagos al sur. En los Alpes se formaron grandes glaciares y hubo casquetes glaciares en los Pirineos, los Andes y las montañas y altiplanos de Asia central. Al sur de los casquetes escandinavos, inmensos espacios de terreno inhabitado se extendían desde el Atlántico hasta Siberia.

Estos entornos sufrían nueve meses de invierno y eran inhabitables para los ancestros de Horno sapiens, que carecían de la tecnología e indumentaria adecuadas para adaptarse a las temperaturas extremas. No es una coincidencia que H. erectus, con su simple Metros bajó el nivel del mar al principio de la última glaciación, a medida que el agua se congelaba para formar los casquetes polares de la Antártida y el Ártico actuales. tecnología y sus limitadas habilidades cognitivas, se estableciera en entornos más templados y tropicales.

El frío causó un drástico descenso del nivel del mar a medida que el agua se convertía en hielo, y quedaron expuestas enormes extensiones de lo que actualmente son plataformas continentales (suelo bajo aguas costeras poco profundas), enlazando masas de tierra: Siberia era parte de Alaska, y Gran Bretaña estaba unida al continente europeo. El Sudeste Asiático estaba separado de Australia y Nueva Guinea por cortos trechos de mar abierto.

Durante los períodos interglaciales, el nivel del mar subió, los casquetes glaciares se redujeron y los bosques avanzaron al norte ganando terreno a la tundra. Los humanos se trasladaron hacia el norte siguiendo a los animales que cazaban y las plantas que recolectaban, y se adaptaron a una gran variedad de entomos de bosque y pradera, y a terrenos áridos y semiáridos.

El hombre y los elementos: El clima de la Era de Hielo era inestable: los hábitats cambiaban constantemente, lo que implicaba que el oportunismo y la capacidad de adaptación de los humanos sufrían un desafío continuo entre un milenio y el siguiente. Estos desafíos pudieron ser incluso un factor en la evolución humana, ya que nuestros antepasados más antiguos eran básicamente animales tropicales.

Durante largos períodos glaciales, el Sahara fue algo más húmedo que hoy; podría considerarse como una bomba que atraía a humanos y animales en los períodos húmedos y los expulsaba hacia los márgenes cuando el clima se volvía más seco. Este efecto ecológico permitió que Homo erectus y los animales que cazaba cruzaran el desierto y se extendieran a entornos más templados hace 1,8 m.a.

Un largo período interglacial elevó las temperaturas hace unos 400.000 años. Para esa época, Homo erectus prosperaba en el norte de Europa, pero no se pudo adaptar a la glaciación de hace 350.000 años. Es probable que los pocos grupos de cazadores que vivían allí se desplazaran al sur, hacia regiones más templadas. Existen evidencias de asentamientos en Europa y partes de Asia oriental de hace unos 250.000 años. El último período interglacial tuvo su apogeo hace unos 128.000 años, cuando los neanderthales prosperaban en Europa. Hace unos 50.000 años, los humanos modernos habían dominado todos los entornos y vivían incluso en las zonas más frías.

Ver: Historia del Cambio Climático desde la Prehistoria

Fuente Consultada:
Geografía Mundial y los desafíos del SXXI. Editorial Santillana. Geografía Mundial, Editorial Puerto de Palos.  

Erupcion Volcanica del Nevado Ruiz Tragedia en Colombia

Erupción Volcánica: La Tragedia  del Nevado Ruiz

En ocasiones, los distintos procesos naturales pueden producirse de manera violenta. Las fuerzas naturales se desatan, afectan a los asentamientos humanos y las actividades económicas, produciendo una catástrofe o desastre natural. Se denomina riesgo natural a la posibilidad que tiene un espacio geográfico de sufrir las consecuencias violentas de un proceso natural; por ejemplo, San Juan y Mendoza tienen alto riesgo sísmico.

En América, los complejos procesos de la naturaleza generan diversas catástrofes naturales: Erupciones volcánicas, en particular en el llamado cinturón de fuego del Pacífico, que coincide con las altas cordilleras del oeste.

La erupción volcánica del Nevado del Ruiz

El caso de Nevado del Ruiz debe ser una lección para todos los gobiernos. Los estados tienen que desarrollar tecnologías que permitan enfrentar los riesgos: estudios científicos sobre los fenómenos naturales, mapas de riesgos, instrumental para medir las fuerzas de la naturaleza.

También, tienen la obligación de preparar a la población que vive en áreas de riesgos naturales para enfrentar esos desastres, brindándole información que le permita saber cómo actuar en tales casos, y así disminuir la pérdida de vidas humanas. Las escuelas pueden colaborar con la función informativa en estas situaciones.

ciudad de armero erupción del nevado ruiz

Casi un año antes de la tragedia, la cumbre del volcán había empezado a inquietar a los científicos, a las autoridades y a los habitantes de la zona de influencia. A las emanaciones de gases, vapores de agua y algunos flujos de magma siguieron trepidaciones más frecuentes de la montaña nevada que finalmente rugieron tras una fuerte emisión de cenizas y arenas.

Pero una evacuación era muy costosa. Hubo largos debates teóricos y, algunas horas antes del drama, una interminable reunión de las autoridades regionales, donde al final no fue tomada ninguna decisión. La comunidad de Armero no estaba preparada. Apenas visible cuando el tiempo es claro, el Nevado no era considerado como una amenaza y las destructivas avalanchas de lodo de los siglos pasados habían sido olvidadas.

El 13 de noviembre de 1985 el cráter Arenas de la cadena volcánica Nevado del Ruiz, entró en erupción sepultando a 25.000 pobladores de Armero, un pueblo agrícola de los Andes colombianos. En esa noche  se generó la mayor tragedia natural en toda la historia del país: Armero desapareció y el 90% de sus 25.000 habitantes murieron sepultados 200 kilómetros al oeste de Bogotá.

El volcán se hallaba apagado desde 1845, y su última actividad volcánica de magnitud se había producido cuatro siglos atrás. En los días anteriores, los geólogos habían anunciado que el deshielo que se produciría al entrar en erupción el volcán, podría tener graves consecuencias.

En efecto, el calentamiento provocado por las emanaciones de gases y cenizas del volcán originaron el deshielo de los glaciares que coronaban el cráter del Nevado. Las cenizas del volcán fundidas con el hielo, conformaron torrentes de lodo y rocas que aplastaron al asentamiento ubicado en el valle, por donde se encauzó la corriente. El lodo se solidificó sepultando a los sorprendidos pobladores.

Como una tromba apocalíptica, más de 350.000 metros cúbicos de lodo, rocas, árboles y animales aumentaron paulatinamente el caudal de esa masa que se inició a 5.400 metros de altura sobre el nivel del mar, descendió por la cordillera andina, arrastró todo a su paso y llegó a los llanos del departamento del Tolima.

El gobierno colombiano no pudo rescatar los cadáveres y declaró al área campo santo, es decir, un cementerio común. El problema se agravó cuando los médicos anunciaron la existencia de un alto riesgo de epidemias, por la ausencia de agua potable.
La ciudad blanca, como se conocía a Armero, por estar ubicada en un área de plantaciones de algodón, fue borrada del mapa por el efecto devastador de la catástrofe. La destrucción también alcanzó a las fincas rurales vecinas donde se cultivaba café, maíz y sorgo, y se criaba ganado.

Las cadenas de TV retransmitieron durante tres días la agonía de la pequeña Omayra Sánchez, de 13 años, sumergida hasta el mentón en lodo, atrapada entre los escombros de su casa. Hablaba con los socorristas.
No se quejaba. Agonizó 60 horas en el fango y murió finalmente víctima de la gangrena gaseosa.

FUE INESPERADA LA ERUPCIÓN DEL NEVADO RUIZ?: La amenaza natural representada por la posibilidad de erupción del Nevado del Ruiz (y su efecto secundario, el lahar) no eran desconocidos en Colombia: Armero ya había sido sepultada por otro flujo de lodo en el año 1845,y el 70 % de su población había perecido. Sin embargo, Armero volvió a ser construida sobre el lodo sólido.

Por otra parte, la erupción que destruyó Armero en 1985 tampoco fue imprevista e inesperada. Científicos colombianos y expertos internacionales habían identificado actividad sísmica y anomalías en el volcán desde al menos un año antes de la catástrofe. Más aun, se habían detectado erupciones de mayor intensidad, sin consecuencias para las poblaciones de las laderas.

Esto demuestra el conocimiento que se tenía de la actividad del volcán y el aprendizaje de experiencias previas, inclusive de erupciones ocurridas en otros volcanes cubiertos con nieve (como, el Monte Santa Helena, en EE.UU., que entró en erupción en 1982). La erupción que desencadenó los torrentes de lodo en el Ruiz fue relativamente pequeña: solamente arrojó cerca de 5.000.000 m3 de magma. Sin embargo, esta cantidad de magma generó unos 60.000.000 m3 de lahares, que contenían unos 20.000.000 m3 de agua. Estas cifras señalan el especial cuidado que requiere, para el futuro manejo de esta amenaza, la consideración de erupciones de pequeña y mediana intensidad en volcanes cubiertos de nieve.

El desastre de Armero no fue provocado por una erupción sin precedentes del Nevado del Ruiz, ni por el desconocimiento de la amenaza; tampoco puede atribuirse sencillamente a la fatalidad. En esa oportunidad, se conjugaron factores relacionados con el estado de la sociedad expuesta, sobre todo con la lentitud, la excesiva burocracia y la indecisión de las autoridades; basta decir que se dio la orden de evacuación cuando el lahar ya estaba sobre Armero.

No es posible atribuir la catástrofe a la fatalidad: el Nevado del Ruiz registra actividad volcánica de distinto tipo desde que se tiene noticia. Luego de la erupción de noviembre de 1985, nuevos episodios sucedieron sin que hayan sido afectados bienes o personas. Sin embargo, esto no implica que no sea necesario monitorear constantemente la actividad del volcán, a fin de conocer la amenaza con la mayor precisión posible.

Como se formaron las rocas? Rocas Igneas sedimentarias metamorficas

¿Como se Formaron las Rocas? – Tipos de Rocas

Se denominan así las masas naturales formadas por agrupación de distintos minerales. De ahí que la acción erosiva se realiza sobre materiales muy diferentes, con resultados también distintos. A la constitución de las rocas se une el factor climático, que aumenta la diversificación del modelado. Una roca presenta diferentes aspectos según se halle en terrenos ecuatoriales, templados o polares.

Todas las rocas de la Tierra se dividen en tres grandes grupos –ígneas o volcánicas, sedimentarias y metamórficas–, según la forma en que se originaron. Las rocas ígneas, cuyo nombre procede de la palabra latina que significa fuego, comenzaron como magma, que es el material fundido del interior de la Tierra. Cuando el magma se enfría lentamente y se endurece bajo tierra forma el granito y otras rocas de grano grueso. El magma que aflora en erupción a la superficie se enfría rápidamente y forma basalto y otras clases de rocas volcánicas.(Fuente Consultada:selecciones Readers Digest)

LAS ROCAS: Toda la Tierra esta hecha de rocas y minerales. Dentro de la tierra hay una base líquida de roca fundida (magma) y en el exterior hay una corteza dura. Podemos comparar la tierra con un huevo, la cáscara del huevo es como la corteza en la tierra. La corteza se compone de rocas y de minerales. Mucha de la corteza esta cubierta por agua, la arena, el suelo y el hielo. Si usted cava lo suficientemente profundo, siempre encontrará rocas.

Se designa con el nombre de roca  a toda asociación de partes minerales homogéneas o heterogéneas que se encuentren en la corteza sólida del globo en masas bastante grandes como para ser consideradas parte esencial, de esa corteza.

La geología (ciencia que estudia los materiales que componen el globo, su naturaleza, su situación y las causas que lo han determinado), la paleontología (que trata de los seres orgánicos cuyos restos están fosilizados) y la litología (parte de la geología que se ocupa de las rocas), establecieron que las rocas más antiguas se encuentran en los estados de Manitoba y Dakota (Estados Unidos de América); la fecha de su formación se remonta a 1700 millones de años, es decir, al período en que aparecieron los primeros invertebrados marinos.

Por lo tanto, el estudio de los minerales nos presenta, en una serie de capítulos sucesivos, la historia misma de la vida hasta la aparición del hombre. Haremos una comparación: si representáramos esa historia reunida en un solo volumen, cada una de cuyas páginas correspondiera a un millón de años, tendríamos un libro de casi 2.000 páginas, y sólo al final de la última descubriríamos la aparición del hombre en el mundo. La litología nos indica la edad de ciertos grandes sistemas montañosos.

Por ejemplo, sabemos que los montes Apalaches (Estados Unidos) son los más antiguos; cuentan alrededor de 240 millones de años, mientras que las Montañas Rocosas tienen 105 millones; los Pirineos, 30 millones; los Alpes, 21 millones: la cadena del Himalaya y la cordillera de los Andes, sólo 8 millones.

Para interpretar el lenguaje de las piedras es menester, ante todo, distinguir sus orígenes, que podemos conocer analizando tres elementos esenciales:

1) la naturaleza química de la roca;
2)
su estructura, es decir, la forma como se aglomeraron los distintos elementos que la componen;
3)
la disposición de los terrenos donde se encuentra.

Esa distinción hizo que los geólogos dividieran todos los tipos de rocas en tres grupos: rocas eruptivas o ígneas, rocas sedimentarias y rocas metamórficas.

I) LAS ROCAS ERUPTIVAS:

Estas rocas, llamadas también ígneas, se formaron por la solidificación del magma que está en fusión bajo la corteza terrestre y es arrojado por los volcanes en erupción. El magma es la masa mineral que se halla en las profundidades de la tierra en estado pastoso debido al calor central. También hay rocas eruptivas en el fondo de los mares y están constituidas, principalmente, por el grupo de los silicatos. Las rocas volcánicas superficiales presentan grandes irregularidades en su estructura. Se deben al enfriamiento que, al operarse rápidamente, no permitió que la cristalización se produjera en forma homogénea.

A ese tipo pertenecen las rocas porfídico-cuarcíferas, cuyas variedades y colores son muy numerosos. Por su solidez son muy indicadas para pavimentar. Menos común, pero más importante, es la porfirita, cuyas variedades más conocidas son el pórfido rojo, con el fondo sembrado de manchitas blancas (cristales de feldespato) y el pórfido verde. El pórfido rojo, muy apreciado por los antiguos, provenía del Alto Egipto; en cuanto al pórfido verde, los griegos lo extraían del monte Taigeto.

El basalto es una roca eruptiva negra, compacta, muy difícil de romper; a pesar de eso, es poco resistente a la intemperie. Es fusible al soplete y produce un esmalte negro. En Irlanda existe una magnífica columnata natural, llamada la calzada de los Gigantes de Antrim, formada por rocas basálticas. La abundancia de los productos gaseosos que despiden las rocas volcánicas durante su consolidación determina la formación de rocas porosas, de una textura celular sumamente liviana, que se conocen con el nombre de piedra pómez o pumita. Se las utiliza mucho para pulir y también en la industria de la cerámica y los esmaltes.

Las rocas eruptivas cuya consolidación se produjo en las profundidades de la tierra se cristalizaron de manera mucho más uniforme; son las rocas graníticas, puestas al desnudo por la erosión que duró millones de años. En cuanto a su disposición, las rocas eruptivas consolidadas desde el interior presentan filones, o sean rocas micro graneadas que llenaron las hendiduras del magma en vías de solidificación. Con el transcurso del tiempo, la erosión arrancó la roca exterior menos dura, hasta que el filón formó en la superficie del suelo un verdadero muro saliente, llamado dique.

Principales Rocas Ígneas:

tipos de rocas

GRANITO

tipos de rocas

BASALTO

tipos de rocas

DIORITA

tipos de rocas

OBSIDIANA

tipos de rocas

PUMITA

GRANITO: Una de las rocas más abundantes en la corteza, y también una de las más variables, pues su composición depende de las proporciones en las que se encuentren los minerales que la forman: cuarzo, mica, plagioclasa y ortosa Es el ejemplo clásico de roca plutónica, que se forma en el interior de La Tierra, donde el magma puede enfriarse lentamente y la cristalización se realiza despacio, de forma que los cristales resultantes están muy bien formados y son claramente visibles a simple vista. El carácter plutónico del granito se aprecia además en sus afloramientos, generalmente muy masivos, formando en ocasiones sierras enteras. En estos casos, se ha producido el afloramiento de un plutón completo.

En el campo, el granito da lugar a paisajes muy agrestes, en los que abundan las grandes rocas redondeadas (piedras caballeras) que se desprenden como consecuencia de la meteorización mecánica. Muchas zonas graníticas se denominan «caos de bolas» por el aspecto que presenta el paisaje.

El granito es duro y muy resistente a la intemperie, lo cual lo hace ideal para la construcción. Muchos edificios notables han sido construidos con granito. Las otras aplicaciones de esta roca son ornamentales, como piedra pulimentada (de uso en revestimiento de fachadas, suelos, encimeras…) y como material para escultura.

BASALTO: La roca ígnea extrusiva (volcánica) más común en la Tierra. Procede en la mayor parte de los casos de coladas de lava. El enfriamiento rápido de la lava produce rocas con los cristales pequeños, aunque visibles. Su textura es más bien densa: en una muestra no se suelen poder identificar visualmente los minerales que la componen. Es muy poco brillante, especialmente en las superficies de corte. Con frecuencia, las muestras de basalto albergan cristales bastante grandes (fenocristales) de minerales como el olivino y el piroxeno.

En el campo presenta aspectos (hábitos) muy variados. Son relativamente frecuentes los hábitos columnares, en los que el basalto forma estructuras similares a columnas, muy juntas, que dan lugar a paisajes bastante espectaculares. En otros casos presenta aspecto bastante liso, y en otros, globular. Esta forma la adopta cuando la colada de lava se ha enfriado debajo del agua (en este caso, se forman las llamadas lavas almohadilladas).

DIORITA: Es una roca intrusiva, de color negro con vetas verdosas o rosadas, de textura porfídica, formada por plagioclasa y hornablenda. Existe una variedad, la granodiorita, que contiene cuarzo.  Se trata de una roca muy dura. Pero existen algunas estatuas egipcias, como la del faraón Kefrén, que están realizadas en diorita, sin que se pueda explicar satisfactoriamente cómo con las herramientas disponibles entonces fue posible trabajar este material tan duro.

OBSIDIANA: No se puede considerar estrictamente una roca, sino un vidrio volcánico. Se trata de un material amorfo, fruto de una cristalización tan rápida que el magma no tuvo tiempo de formar cristales, sino que se convirtió en una especie de pasta vítrea.

Su color es negro brillante. Su forma de fractura es característica: al golpearse se rompe con fracturas en forma de concha, que dejan aristas tan afiladas que algunos pueblos de la Antigüedad, como los aztecas, utilizaron esta roca para fabricar cuchillos muy afilados.

PUMITA: También llamada piedra pómez, es una curiosa roca extrusiva, tan ligera que flota en el agua, y con aspecto de esponja. La pumita se forma en algunas erupciones volcánicas en las que se acumulan gran cantidad de gases en la cámara magmática de los volcanes. Esto hace que se produzcan burbujas en el interior de la aya. Cuando esta se enfría al contacto con el aire, una vez expulsada del volcán (por lo general, de forma violenta), da origen a fragmentos rocosos llenos de poros.

II) ROCAS SEDIMENTARIAS O ESTRATIFICADAS:

Están dispuestas en capas sucesivas o estratos, generalmente de poco espesor, formados por sedimentos. Algunas son de naturaleza aluvional, otras son simples depósitos químicos y otras son de origen orgánico. A veces se dio el nombre de terrenos aluvionales a los terrenos terciarios; esto no es exacto, porque, en toda época hubo aluviones, es decir, depósitos arrastrados por las aguas. Su composición varía, según la proporción en que se encuentren mezclados fragmentos rocosos, cantos rodados y limo.

A menudo se presentan bajo el aspecto de partículas sin cohesión (arena); a veces se amalgaman y forman terrenos arcillosos. Podemos observarlas en todo su esplendor en el Gran Cañón del Colorado de Estados Unidos de América, y en el Valle Encantado del río Limay (Parque Nacional de Nahuel Huapi, República Argentina).

Las rocas de depósitos químicos se formaron por la lenta precipitación de sustancias que se encuentran en suspensión en las aguas. Así, en las lagunas y en los lagos, la sal gema o el yeso se sobrepusieron lentamente hasta formar verdaderas rocas. Admirables ejemplos nos presentan las estalagmitas, de donde derivan algunas variedades de alabastros, que confieren a ciertas grutas un aspecto arquitectónico refinado e imponente a la vez.

Las rocas calcáreas, formadas por ácido carbónico y cal combinados (carbonato de calcio), son duras y de aspecto granuloso; entre ellas podemos mencionar el mármol, la piedra caliza, la piedra litográfica, la calcita, la creta, etc. Por lo común son blancas, pero presentan también coloraciones muy variadas. De ellas se extraen la cal, la tiza, el yeso y el cemento, que se emplean en la construcción.

Las rocas sedimentarias son muy variadas e importantes. Tanto, que mientras que una de ellas, la caliza, configura buena parte de los paisajes, otra, el petróleo, no sólo es la única roca líquida que existe, sino también la principal fuente de energía.

tipos de rocasCALIZA

tipos de rocas

CARBÓN

tipos de rocas

PETRÓLEO

Caliza: Roca sedimentaria evaporítica constituida por carbonato de calcio (calcita aunque en su composición pueden aparecer pequeñas cantidades de otros minerales e impurezas. Su formación, en muchos casos, está asociada a la acumulación de restos de seres vivos (fundamentalmente conchas de moluscos, ricas en carbonato de calcio). En otros casos, se debe a la precipitación del carbonato disuelto en agua, en ambientes propicios, como sucede en las cuevas, donde el carbonato precipita en forma de caliza y origina las estalactitas y las estalagmitas.

La caliza es una roca muy abundante: constituye más deI 10% del conjunto de rocas sedimentarias de nuestro planeta. Se presenta en numerosas variedades, que se distinguen por su textura, su contenido en fósiles, su grano (que puede ser fino o basto) y su color. La caliza pura es blanca, pero su contenido en impurezas, como arcilla, óxido de hierro, etc., hace que pueda tener colores crema, rojizo o gris.

Una roca muy útil: Por su abundancia, la caliza siempre ha sido una roca muy utilizada. Se obtiene de canteras, explotaciones al aire libre, cortándola directamente de los conjuntos rocosos. Sus usos son muy variados: es una de las materias primas del cemento. Su resistencia a la intemperie hace que se pueda usar para el revestimiento de fachadas y la construcción de edificios representativos. También ha sido un material utilizado en escultura desde la Antigüedad, ya que se trabaja con relativa facilidad y tiene un bello aspecto.
A pesar de su resistencia, la caliza es muy sensible al ataque con ácidos. Por eso, en los lugares donde hay lluvia ácida, los edificios con fachada de caliza (como en las catedrales, por ejemplo) corren peligro de deterioro.

Petróleo: El petróleo es La única roca líquida que existe. Es una roca sedimentaria organógena, formada por restos de seres del plancton marino. La sedimentación de estos seres en zonas poco profundas y su transformación, que requiere un proceso de millones de años, originó el petróleo que hoy se extrae. Se trata de una mezcla de hidrocarburos, que a temperatura ambiente se encuentra en estado liquido, acompañados frecuentemente de gases. Puesto que es un fluido, los yacimientos de petróleo no forman parte de estratos, sino que ocupan las bolsas o espacios entre rocas.

Enla formación del petróleo influye la profundidad (por la presión a la que se encuentran es sedimentos) y la temperatura. Si el sedimento se encuentra en una zona poco profunda, a temperatura baja, es habitual que predomine la formación de petróleo pesado, el más denso. En zonas más profundas y a mayor temperatura, el petróleo menos denso (llamado absotualmente crudo) es más abundante. Si las temperaturas superan los 100 °C, se forma gas  natural.

Se puede decir que el petróleo es el combustible fósil más utilizado y, en buena medida, sociedad actual depende de él para su funcionamiento. De ahí que se piense que puede producirse una crisis energética importante si, como se prevé, las reservas de petróleo se agotan en un futuro más o menos próximo.

Carbón: comienza a estar en desuso, pero en el pasado el carbón era un combustible fósil de la máxima importancia. A diferencia del petróleo, el carbón se formó a partir de restos vegetales (fundamentalmente de los helechos gigantes del período Carbonífero), acumulados en zonas pantanosas. De la lenta transformación de estos restos en un ambiente sin oxígeno y su litificación se formaron los carbones, rocas en cuya composición es abundante o predominante el elemento carbono.  La explotación del carbón se realiza mediante minas, normalmente subterráneas. Los yacimientos suelen formar estratos, cuyo espesor oscila entre los 2 cm. y los 20 m. o más.

III) ROCAS METAMÓRFICAS:

Se llaman así porque pueden encontrarse en las rocas eruptivas y en las sedimentarias; se diferencian entre sí por profundas metamorfosis de estructura. A veces, rocas cristalinas de origen eruptivo han soportado una segunda cristalización, o el magma eruptivo ha penetrado entre las capas de la roca sedimentaria (no cristalina) que sufrió corto metamorfismo (transformación natural ocurrida en un mineral o en una roca).

Los tipos principales de estas rocas son los gneis (roca pizarrosa), las micacitas, las pizarras, los esquistos anfibólicos (formados por feldespato y anfíbol) y los filadíos. Las rocas sedimentarias así transformadas en esquistos cristalinos, contienen mucho grafito.

Naturaleza de las rocas metamórficas: Los factores que definen o clasifican las rocas metamórficas son dos: los minerales que la forman y las texturas que presentan dichas rocas. En cuanto a su composición, minerales que se forman como consecuencia del metamorfismo se asocian, y estas asociaciones se suelen repetir en diferentes rocas, constituyendo lo que se conoce como metamórficas. Así, existen las facies de las ceolitas, de las anfibolitas, de las granulitas… Cada facies se define por unas condiciones de presión y temperatura determinadas, en las cuales la composición mineral se mantiene estable.

Las texturas son básicamente de dos tipos: foliada o esquistosaza (con bandas por la alineación de los minerales en planos paralelos) y no foliada o granoblástica (minerales desordenados). Existen, a su vez, tres subtipos de texturas foliadas. La pizarrosidad es característica de rocas con metamorfismo poco intenso en las que los minerales no se ven, y presentan láminas que se separan fácilmente. La esquistosidad aparece en rocas que han sufrido metamorfismo más intenso. El bandeado gnéisico es la alternancia de colores claros (por cristales de cuarzo) y bandas oscuras (anfiboles y micas).

SUBTIPOS DE TEXTURA FOLIADAS

PIZARROCIDAD

tipos de rocasEste tipo de foliación está definida por la cristalización orientada de minerales planares muy pequeños, no visibles a simple vista (fundamentalmente micas).
La pizarrosidad es característica de condiciones
de bajo grado metamórfico, ósea baja presión
y temperatura.

ESQUITOCIDAD

tipos de rocasCuando aumenta el grado metamórfico los minerales planares aumentan de tamaño y son visibles a simple vista. En algunos casos en las superficies de foliación se observan grandes placas de micas, que le dan un aspecto escamoso. La esquistosidad es característica de condiciones de grado metamórfico medio – alto.

BANDEADO GNÉISICO

tipos de rocasDurante el metamorfismo en grado alto las migraciones iónicas pueden ser lo suficiente grandes como para causar, además de la orientación de los minerales con hábito planar, la segregación de minerales en capas.
Estas segregaciones producen bandas de minerales claros y oscuros, que confieren a las rocas metamórficas un aspecto bandeado muy característico. A este conjunto lea denominamos bandeado gnesico, y es propio del metamorfismo de alto grado.

TIPOS DE ROCAS METAMÓRFICAS SEGÚN SU TEXTURA:

TEXTURA FOLIADA

tipos de rocas

PIZARRA

Su aspecto es claramente foliado y al romperse se obtienen láminas planas Procede del metamorfismo de las arcillas y su grano, de tamaño muy fino, está formado por pequeñísimos cristales de mica.

tipos de rocas

ESQUISTO

Esta roca se rompe con facilidad, dando lugar a láminas en las que los minerales se ven de forma clara. Se obtiene a partir de las pizarras o areniscas sometidas a un metamorfismo muy intenso.

tipos de rocas

GNEIS

En esta roca aparecen alternativamente bandas de minerales claros y oscuros debido a fenómenos de recristalización metamórfica y grandes presiones. Sus minerales, de aspecto granular y aplanado, se disponen en planos en el espacio. Procede del metamorfismo de granitos o de esquistos.

  TEXTURA NO FOLIADA

tipos de rocas

MÁRMOL

De textura granoblástica, su aspecto es cristalino y recuerda a un terrón de azúcar por su color blanco, aunque puede tener impurezas y entonces presenta distintos  colores. Se obtiene por metamorfismo  de calizas y dolomías.

tipos de rocas

CUARCITA

Su color blanco en estado de mayor pureza puede cambiar cuando tiene impurezas en su composición. Es una roca campada y dura formada a partir de areniscas ricas en cuarzo.

MÁRMOL:  El mármol es una roca metamórfica que se origina a partir de la caliza (o de la dolomita). Puesto que esta roca es muy abundante en la corteza, el mármol también lo es, y, además, es muy variable. En general, el mármol es una roca más dura que la caliza, su grano es mucho más fino, y su aspecto, más terso. Puede pulirse hasta conseguir superficies muy brillantes y sedosas, por lo que se ha considerado siempre una roca de gran interés para el ante y la decoración.

Durante el metamorfismo de la caliza, los fósiles que contienen estas rocas desaparecen (aunque no siempre, porque es posible encontrar mármoles pulidos en los que se observan cortes de fósiles). Los restos de los fósiles y el cemento original de la roca se disuelven y se recristalizan. Puesto que los nuevos cristales de carbonato de calcio (calcita) que se forman lo hacen prácticamente al mismo tiempo, su tamaño es muy homogéneo. Esta es la causa del aspecto tan particular de la textura del mármol.

El mármol se obtiene en canteras al aire libre. Las canteras más conocidas mundialmente son las de Carrara (Italia) y las del Pentélico (Grecia). Con mármol de Carrara, el escultor italiano Miguel Ángel Buonarroti realizó algunas de sus más bellas creaciones. Y con mármol del Pentélico se construyó el Partenón en la acrópolis ateniense.

PIZARRA: Es una roca bastante abundante, de grano fino, y que se forma por metamorfismo no demasiado intenso, a temperaturas y presiones relativamente bajas. Habitualmente se considera que la pizarra proviene del metamorfismo de las arcillas (lutitas), aunque también se puede producir pizarra a partir de depósitos de cenizas volcánicas.

Se trata de una roca de color variable, aunque predominan el gris y el negro, que tiene una textura foliosa característica. Su capacidad para exfoliarse en láminas ha sido aprovechada para construir techos en la arquitectura popular. Se ha usado también para las pizarras de las aulas. En China, un uso tradicional de esta roca es la fabricación de las piedras, ricamente talladas, en las que se prepara la tinta para la caligrafía.

GNEIS: Es una roca que ha sufrido un metamorfismo de alto grado. Se forma a partir del granito y de los esquistos. Los gneises tienen una textura característica, y normalmente presentan un bandeado debido a la orientación de los minerales, que se han separado por la acción de la presión y la temperatura. Los minerales predominantes en el gneis son el cuarzo, los feldespatos de varios tipos y la plagioclasa. No obstante, puesto que el granito es una roca bastante heterogénea, los gneises también lo son.

CUARCITA: Es la roca derivada del metamorfismo de la arenisca rica en cuarzo, y es mucho más dura que esta. Se trata de una roca bastante común, con un color que varia entre gris (variedades más puras) y anaranjado, ocre o marrón (variedades que contienen impurezas en su composición).  Se forma por exposición de las masas rocosas de arenisca a las altas temperaturas causadas por la proximidad de magmas, a bastante profundidad. El metamorfismo provoca la recristalización y la fusión de los granos que formaban la arenisca, dando lugar a una roca muy compacta, dura y bastante áspera al tacto. A pesar de ser una roca metamórfica, a veces conserva restos de fósiles. Muchas crucianas (huellas fósiles de artrópodos marinos) se conservan en cuarcitas.

AMPLIACIÓN DEL TEMA…

El clima determina que factor de erosión es preponderante y las propiedades de las rocías que mejor papel desempeñan en el modelado (coherencia, permeabilidad, solubilidad, etc.). Atendiendo al origen y a la disposición de las rocas los geólogos han distinguido tres grupos fundamentales: eruptivas, sedimentarias y metamórficas. Las eruptivas o magmáticas o platónicas se hallan en la base de todas las formaciones geológicas. Son las formadas por el enfriamiento de! líquido denominado magma.

Ese enfriamiento lento cristalizó sus componentes. De ahí e! calificativo de holocristalinas que se les ha dado. Las rocas plutónicas (de Plutón, dios del infierno que vivía en las profundidades “de la Tierra), que emergen rápidamente sobre la superficie terrestre, se llaman también rocas volcánicas y tienen una estructura semicristalina o amorfa (obsidiana, utilizada por el hombre primitivo, piedra pómez, etc.). Las rocas plutónicas más importantes son los basaltos, que sirven de sustrato a continentes y océanos; los granitos, roca plutónica no volcánica, y los cuarzos, feldespatos y micas, entre otras. Las rocas sedimentarias son las originadas por la acción de los agentes atmosféricos y superficiales de la Tierra.

Los agentes destructores de tipo mecánico, físico, químico y biológico que actúan sobre las rocas dispersan sus materiales y reducen sus dimensiones. Los cantos y arenas se van depositando en el fondo de lagos y océanos, con los que forman sedimentos variados por sus génesis y estructura. Estos sedimentos, que pueden variar en tamaño, se denominan sedimentos detríticos.

Cuando los fenómenos de destrucción de las rocas son de origen mecánico, aquélla no va acompañada de la desaparición de la estructura cristalina de sus minerales. Si, en cambio, actúan agentes de orden químico, esa estructura desaparecerá y sus constituyentes se convertirán en micelas (agregados moleculares), en coloides, o en sales disueltas. Los materiales que forman las rocas sedimentarias son de variada composición mineralógica y de diferentes tamaños (gravas, arenas, limos y arcillas).

Las margas son una variedad de arcilla y la cimentación de las arenas constituye el gres o arenisca. Las calizas son las rocas sedimentarías más importantes (origen químico-orgánico). Rocas sedimentarias de origen orgánico son las carbonosas (antracita, hulla, lignito y turba). Las rocas metamórficas son las formadas a partir de cualquiera de los dos grupos anteriores, por acción de las elevadas temperaturas y presiones que reinan en el interior de la corteza.

La sucesión de convulsiones orogénicas, la formación de montañas y la erosión pueden ocasionar notables cambios en la estructura y composición de las rocas primitivas. En las zonas de contacto de las rocas plutónicas entre sí, y de éstas con las sedimentarias, pueden ocurrir cambios físicos y químicos (metamorfosis de contacto), como también en algunas regiones al variar las condiciones de temperatura y presión (metamorfosis regional) o al producirse algún movimiento tectónico (metamorfosis dinámica).

Dichas transformaciones dan origen a las rocas metamórficas, que en su composición mineralógica, modelado, etc., se asemejan a las plutónicas y a las sedimentarias. Las más conocidas son los gneis, mármoles, pizarra (sedimentos arcillosos).

Las rocas, por la acción combinada de numerosos elementos corrosivos, se van disgregando físicamente y se alteran químicamente hasta transformarse en una materia blanda, semi-pulverizada, que se llama de suelo. Sobre él seguirán actuando agentes físicos, químicos y biológicos que continuarán su transformación y evolución, las que dependerán de las condiciones ambientales. El clima, la vegetación y la topografía del terreno gravitarán de manera decisiva en su futuro.

Cuadro resumen de las principales rocas, con la definición de sus rasgos más sobresalientes.

CLASIFICACIÓN DE LAS ROCAS

ROCAS PRINCIPALES CLASES TIPOS
ERUPTIVAS o ÍGNEAS Proceden de masas fluidas o magmas que se forman en el seno de la corteza terrestre y afloran a la superficie o a capas inmediatamente inferiores, donde se solidifican

GRANITOIDEAS o INTRUSIVAS. Son rocas de profundidad, solidificadas en el senode la corteza terrestre sin comunicación con el exterior FILONIANAS. Consolidadas en grietas formando filones o diques.

EFUSIVAS o VOLCÁNICAS. Solidificadasen la superficie y que han corrido por ella. Se presentan en capas o mantos

Granitos, Sienitas, Dioritas, Gabros, Nositas, Peridotitas, Granitoporfídicas, Aplíticas, Lamprófidos

(Antiguas) Pórfidos euarcíferos. Pórfidos ortoclásicos, Porfiritas, Melafitas.

(Modernas) Rioíitas, Traquitas, Andesitas, Dacitas, Basaltos, Picritas

SEDIMENTARIAS Son productos detríticos de rocas erup tivas y metamórficas, depósitos formadospor cristalización de sustancias disueltas  en el agua, depósitos de sustancias orgánicas o materiales de explosión de las erupciones volcánicas.

DE ORIGEN QUÍMICO. Formadas por precipitación de sales disueltas en el agua DETRÍTICAS 0 CLÁSTICAS. Formadas a partir de materiales fragmentarios procedentes de otras rocas

CARBONATOS. Los de procedencia orgánica 0 química de esta composición.

SILÍCEAS. Las de procedencia orgánica o química de esta composición

CARBONOSAS. Son de origen orgánico y en su composición predomina el carbono

ASFALTOS Y BETUNES. Rocas con granriqueza de hidrocarburos

Sal, Anhidrita, Yeso, Silvinita Areniscas, Arcosas, Granvacas, Arcillas

Calizas, Dolomías

Tierra de diatomeas, Lidita, Sílex, Travertino

Turba, Lignito, Hulla, Antracita

Asfalto, Pizarras bituminosas

METAMÓRFICAS
Rocas, primitivamente eruptivas o sedimentarias, que han experimentado cambios tan importantes, que presentan una estructura totalmente distinta a la original. En su metamorfosis han influido la temperatura y la presión; el proceso se reduce a deformaciones mecánicas, recristalizaciones y formación de nuevos minerales.

Gneis, Granulitas, Haleflintas, Micacitas, Clositocitas, Talcocitas, Pizarras macliferas. Pizarras satinadas. Pizarras antibélicas, Eclogítas, Serpentinas, Granatitas, Cornubianitas, Mármol, Cuarzitas, Esmeril

Otra Fuente Consultada:
Enciclopedia del Estudiante Tomo V – Lo Sé Todo Tomo II
Mundorama Tomo I

El magnetismo terrestre – Planeta Tierra y los polos magnéticos

El Magnetismo Terrestre – Los Polos Magnéticos

Hasta el siglo XVI el hombre no intuyó que la Tierra se comportaba como un gigantesco imán. Desde entonces, diversos científicos se aplicaron al estudio del magnetismo terrestre, contribuyendo de manera fundamental a aumentar el conocimiento y la comprensión de este fenómeno.

El magnetismo terrestre - Planeta Tierra y los polos magnéticos

La existencia del campo magnético de la Tierra es conocida desde muy antiguo, por sus aplicaciones a la navegación a través de la brújula. En el año 1600, el físico inglés de la corte de Isabel I, William Gilbert, publicó la obra titulada De magnete, considerada como el primer tratado de magnetismo. Gilbert talló un imán en forma de bola y estudió la distribución del campo magnético en su superficie.

Encontró que la inclinación del campo en este imán esférico coincidía con lo que se sabía acerca de la distribución del campo terrestre. De este experimento concluyó que la Tierra era un gigantesco imán esférico. Posteriormente, los estudiosos del geomagnetismo observaron que, tomando en cuenta la declinación, la mejor representación del campo terrestre sería un imán esférico cuyo eje de rotación estuviera desviado unos 110 del eje geográfico de la Tierra.

La Tierra es un imán

Un imán suspendido horizontalmente adopta una posición tal que uno de sus extremos apunta aproximadamente hacia el polo norte geográfico. Este extremo se llama polo norte del imán; el opuesto se denomina polo sur. Los polos del mismo nombre de dos imanes se repelen y los de nombre contrario se atraen.

El polo norte de la aguja de una brújula apunta al polo norte geográfico, porque la Tierra misma es un imán: el polo sur de este imán está cerca del polo norte geográfico y, como los polos contrarios de dos imanes se atraen mutuamente, resulta que el polo norte de la brújula es atraído por el polo sur del imán terrestre, que está en las proximidades del polo norte geográfico.

Sin embargo, la brújula indica cuál es la dirección de la línea geográfica Norte-Sur sólo de un modo aproximado. Los polos norte y sur geográficos son los dos puntos donde el eje de rotación de la Tierra corta a la superficie terrestre. Normalmente, la aguja de la brújula se desvía hacia el Este o hacia el Oeste del norte geográfico. Este ángulo de desviación se denomina declinación.

Una aguja magnética suspendida por su centro de gravedad no se mantiene en posición horizontal. el extremo que señala al Norte se inclina hacia el suelo en el hemisferio septentrional, y lo mismo hace el extremo que señala al Sur, en el hemisferio meridional. Este ángulo de desviación de la aguja respecto de la horizontal se llama inclinación magnética. El valor de la inclinación, al igual que el de la declinación, es diferente de un punto a otro de la superficie de la Tierra.

El campo magnético terrestre se caracteriza también por su intensidad. La intensidad de un campo magnético se mide en gauss. El campo magnético terrestre es bastante débil, del orden de 0,3 gauss en las proximidades del ecuador y de 0,7 gauss en las regiones polares.

El alineamiento en general Norte-Sur de las líneas magnéticas, de acuerdo con el eje de rotación terrestre, sugiere que el campo, en lo fundamental; constituye un dipolo. Resulta inclinado unos 110 respecto al eje de rotación terrestre, y presenta considerables irregularidades (no corresponde al campo de un dipolo perfecto).

Hipótesis del magnetismo terrestre

Hay dos modos de producir un campo magnético: bien por medio de un cuerpo imanado, bien a través de una corriente eléctrica. Antiguamente, se creía que el magnetismo terrestre estaba originado por un gigantesco imán situado dentro de la Tierra (hipótesis del imán permanente). Ciertamente, la Tierra contiene yacimientos de minerales de hierro, y se cree que su núcleo está compuesto por hierro y níquel, sustancias altamente magnéticas. Si este núcleo, cuyo radio excede de los 3.400 km, es en efecto un imán permanente, el campo magnético terrestre puede muy bien ser atribuido a él.

Sin embargo, las sustancias ferromagnéticas, como el hierro y el níquel, pierden su magnetismo por encima del denominado punto de Curie, que es de 770 °C para el hierro y de 360 °C para el níquel. Como la temperatura del núcleo es superior a estos valores (es mayor de 2.000 0C), ni el níquel ni el hierro pueden conservar su ferromagnetismo. El núcleo terrestre no puede ser, pues, un imán permanente.

Otras teorías, posteriores a la de la imanación permanente, están basadas en la rotación de cargas eléctricas. También se han propuesto diversas hipótesis que se fundamentan en el fenómeno termoeléctrico y el efecto Hall. Sin embargo, todas han sido abandonadas a favor de las que postulan la existencia en el núcleo de la  Tierra de fenómenos semejantes a los de una dinamo autoexcitada.

Varios indicios geofísicos sobre la existencia de un núcleo terrestre de naturaleza fluida y alta densidad, compuesto casi en su totalidad de hierro, sirven de base  a las teorías que sitúan el origen del campo magnético en procesos dinámicos que  tienen lugar en su interior. J. Larmor, en 1919, fue el primero en proponer este tipo  de proceso como constitutivo de un efecto de dinamo auto excitada, que originaría el campo magnético terrestre. El fenómeno se basa en que el movimiento de circulación de material conductor en presencia de un campo magnético genera corrientes eléctricas que, a su vez, realimentan el campo inductor. En el caso de la Tierra o este movimiento afecta al material fluido del núcleo. En 1934, Cowling demostró, en oposición a Larmor, que un mecanismo con simetría de revolución no podía servir como explicación de la generación de un campo magnético estable. Desde 1946 se vuelve a dar impulso a las teorías de la dinamo autoinducída, debido a los trabajos pioneros de W. M. Elsasser, E. C. Bullard y H. Gellman; en la actualidad es, prácticamente, la única manera de explicar el origen del campo geomagnético.

Variaciones del campo magnético terrestre

Los estudios permanentes que se realizan en cualquier observatorio demuestran que el campo magnético terrestre no es constante, sino que cambia continuamente. Hay una variación pequeña y bastante regular de un día a otro (variación diurna). La variación en la declinación es de algunos minutos de arco, y la variación en la intensidad es del orden de 10-4gauss.

Algunos días se producen perturbaciones mucho mayores, que alcanzan hasta varios grados en la declinación y 0,01 gauss en la intensidad. Son las llamadas tormentas magnéticas, generadas por corrientes eléctricas que tienen lugar en las capas superiores de la atmósfera. A unos cuantos centenares de kilómetros por encima de la superficie terrestre existe una zona llamada ionosfera, en la que hay electrones libres arrancados a los átomos de oxígeno y nitrógeno por la radiación solar. Las partículas cargadas positiva y negativamente (iones y electrones) hacen que el aire en la ionosfera sea un conductor eléctrico. Estas corrientes eléctricas de la ionosfera originan campos magnéticos que causan variaciones transitorias del campo magnético terrestre.

Variación secular: el campo geomagnético deriva hacia el Oeste

Las variaciones temporales del campo magnético terrestre, de periodo tan largo que sólo se aprecian al comparar valores medios anuales durante varios años, reciben el nombre de variación secular. Un fenómeno de la variación secular hace referencia a que la distribución del campo geomagnético se mueve lentamente hacia el Oeste. El promedio de avance es del orden de 0,18v de longitud por año. A esta velocidad, la distribución del campo daría la vuelta completa a la Tierra en unos 2.000 años. A diferencia de las tempestades magnéticas, que ocurren por causas externas, las anomalías alargo plazo y su marcha hacia el Oeste se deben a causas localizadas en el interior de la Tierra. Los cambios internos tienen lugar de modo muy lento y abarcan hasta millares de millones de años. En comparación, dos mil años es, pues, un tiempo muy corto. Este elemento constituye una de las claves fundamentales en el estudio del magnetismo terrestre.

Paleomagnetismo

El paleomagnetismo es la ciencia qué estudia el magnetismo antiguo de la Tierra. El fundamento dé esta disciplina es la propiedad que tienen ciertas rocas en las que existen granos de minerales magnéticos, como la magnetita, de adquirir una imanación inducida por el campo magnético terrestre y en su misma dirección. Cada grano de magnetita se convierte así en un pequeño imán. Una roca que contenga este mineral tendrá una imanación que será la suma de la de todos sus pequeños granos de magnetita. Esta imanación tiene la propiedad de que, aunque cambie después la dirección del campo magnético terrestre, ella permanece inalterada y se conserva constante. El estudio de la imanación de rocas antiguas permite conocer la dirección que tuvo el campo magnético terrestre en otras épocas.

Fuente Consultada: Gran Enciclopedia Universal (Cap. 23) y Wikipedia

El magma los volcanes cristalizacion magmática Formación Fósiles

El Magma los Volcanes Cristalización Magmática Formación Fósiles

El magma los volcanes cristalizacion magmática Formación FósilesDebajo de la corteza terrestre existe una región grande y profunda, parecida a un océano semifluido y muy caliente, compuesta por materiales fundidos que constituyen el magma y que, a veces, salen proyectados al exterior con gran intensidad a través de los volcanes

El nombre de magma designa la materia en estado semifluido —resultado de la fusión de silicatos y otros compuestos que integran las rocas— que forma la región situada debajo de la corteza terrestre. Debido a las condiciones a que están sometidos (altas presiones y elevadas temperaturas), los materiales magmáticos muestran propiedades que no se corresponden con las del estado sólido y tampoco con las de un líquido o fluido, según los principios generales de la física.

En el magma aparecen en suspensión diferentes tipos de cristales y fragmentos de rocas parcialmente fundidas, así como carbonatos, sulfuros y distintos componentes volátiles disueltos. La interacción de las diversas condiciones físicas determina las características del magma, tanto en lo que se refiere a su composición química como a su viscosidad, resistencia, plasticidad y movimiento.

Tipos de magmas

Una primera clasificación de los distintos tipos de magmas hace referencia a su contenido en sílice. Los magmas con más de un 60% de anhídrido silícico son los llamados ácidos, mientras que los que poseen menos de dicha cantidad se denominan básicos.

Según el estado del gas que contienen, se pueden distinguir; el hipomagma o magma profundo, no saturado de gases, los cuales se encuentran en disolución debido a que la presión exterior es superior a la tensión de vapor del magma; el piromagma, sobresaturado de gases, que constituyen una fase en forma de burbujas debido a que la presión exterior es inferior a la tensión de vapor; y el epimagma o magma desgasificado, del que forman parte solamente minerales fundidos (los gases escapan del resto del magma debido a la escasa presión externa).

Cuando el epimagma se proyecta al exterior por los puntos más débiles de la corteza terrestre, las masas de magma dan origen a los volcanes y forman, por enfriamiento, las rocas magmáticas, también llamadas ígneas o eruptivas, cuyo grado de cristalización es variable, y entre las que se encuentran el granito, el basalto o los pórfidos.

El ascenso de los magmas depende de sus condiciones físico-químicas (viscosidad, densidad, contenido en elementos volátiles, etc.), de las particularidades tectónicas de la región donde se encuentran y de las rocas que han de atravesar. Los magmas ácidos son ligeros y viscosos, ascienden con facilidad y originan grandes depósitos. Los magmas básicos, de mayor densidad, son menos viscosos y ascienden con mayor dificultad que los anteriores.

Al ser mezclas de diversas sustancias, los magmas no tienen un punto de fusión definido, sino un intervalo de fusión. De igual manera, no se puede hablar de temperatura de cristalización, sino de intervalo de cristalización.

LOS VOLCANES:
En el interior de la Tierra se encuentra en su mayor parte en estado liquido e incandescente a elevadísimas temperaturas. A esa inmensa masa de roca fundida, que además contiene cristales disueltos y vapor de agua, entre otros gases se la conoce como magma terrestre. Cuando parte de ese magma surge hacia el exterior a través de los fenómenos volcánicos, se la llama lava. Al alcanzar la superficie de la corteza o el fondo oceánico , la lava comienza a enfriarse y se convierte así en diversos tipos de roca sólida, según su composición original. Ésta es la base de los procesos por los que se ha formado la superficie de nuestro planeta y por los cuales sigue en permanente cambio. Los científicos estudian la lava para conocer en profundidad nuestro planeta

Cristalización magmática

El magma se origina cuando en un lugar de la corteza o del manto superior la temperatura alcanza un punto en el que los minerales con menor punto de fusión empiezan a fundirse (inicio de fusión parcial de las rocas). Sin embargo, la temperatura de fusión no depende sólo del tipo de roca, sino también de otros factores como la presión a la que se encuentra o la presencia o ausencia de agua. El incremento de presión en condiciones de ausencia de agua dificulta la fusión, por lo que, con la profundidad, tiende a aumentar la temperatura de fusión de las rocas. Por el contrario, fa presencia de agua disminuye el punto de fusión.

Tras su formación, el magma asciende, pues es menos denso que las rocas que lo rodean. Durante el ascenso se enfría y empieza a cristalizar, formándose minerales cada vez de más baja temperatura, según una secuencia fija y ordenada conocida como serie de cristalización de Bowen.

La serie de Bowen hace referencia a dos grandes líneas de cristalización. Una de ellas indica el orden en que se forman los silicatos ricos en hierro y magnesio (llamados ferromagnesianos). Se denomina serie discontinua porque los cristales formados van siendo sustituidos por otros de estructura distinta y más compleja medida que desciende la temperatura.

La otra serie de cristalización es la de las plagioclasas. Recibe el nombre de serle continua porque los minerales formados sucesivamente tienen la misma estructura y sólo cambia la proporción relativa de sodio y calcio.Al final de la cristalización, a la vez que la plagioclasa sódica (albita> y las micas se forman el cuarzo y la ortosa.

 Diferenciación magmática

Algunas veces, a medida que se produce la cristalización de un magma si la diferencia de densidad entre los minerales ya formados y el líquido residual es alta y si la viscosidad de éste es baja, los cristales recién formados pueden quedar aislados del resto del magma, que por tanto se verá enriquecido progresivamente en sílice De continuar el proceso, se obtendrá, a partir de un solo magma, una serie de rocas ígneas de distinta composición, por cristalización fraccionada. Este proceso es denominado diferenciación magmática, y puede originaria formación de rocas ácidas a partir de magmas básicos o intermedios.

Fases de cristalización magmática

El enfriamiento de un magma en el interior de la corteza da lugar a una serie de fases sucesivas de cristalización, a temperaturas cada vez más bajas. La primera es la denominada frise ortomagmática, que. se produce en general por encima de los 700 °C (dependiendo de la composición del resto de las condiciones físicas). En ella cristaliza la mayor parte del magma formando las rocas plutónicas.

La fase pegmatítica tiene lugar más o menos entre los 700 y 550 0C. A estas temperaturas, el residuo fundid6 está muy enriquecido en volátiles, por lo que se introduce a través de grietas, donde cristaliza originando yacimentos filonianos de pegmátitas. Los minerales que se forman son silicatos ricos en sílice (cuarzo, ortosa, albita),en grupos hidroxilo (micas) y en elementos como el boro (turmalina), el fósforo (apatito), el flúor (fluorita), etc.

En la tercera fase, denominada neumatolítica, que tiene lugar aproximadamente entre los 550 y 375 °C, el residuo de cristalización está compuesto básicamente por volátiles, que penetran en las rocas encajantes y dan lugar a filones formados por minerales como la moscovita, el cuarzo, el topacio, óxidos y sulfuros metálicos, etc. Igualmente, los volátiles actúan sobre los minerales de las rocas ígneas o del encajante, transformándolos.

La última fase, llamada hidrotermal, se inicia por debajo de los 375 °C da lugar a vetas y filones de cuarzo y calcita, a minerales metálicos y a transformaciones de minerales ya formados.

El magmatismo y la tectónica de placas

El origen del magma se relaciona a menudo con la dinámica global de la corteza y el manto terrestres, ya que, en general, tiene lugar en los bordes de placas. En las dorsales, el magma se forma básicamente por descompresión de los materiales del manto superior, a poca profundidad, y da lugar a rocas básicas (basaltos y gabros).

En las zonas de subducción, el magma se origina a una profundidad de hasta 150 Km. por fusión parcial de la corteza oceánica y/o del manto y la corteza situados por encima. Este proceso da lugar a la formación de rocas en su mayoría intermedias (andesitas y granodioritas).

En las áreas de colisión continental, en relación con los procesos orogénicos, se produce la fusión parcial de la corteza, y surgen esencialmente rocas ácidas, como el granito. Existen también zonas concretas de magmatismo de intraplaca, que se deben a la existencia de puntos calientes en el manto.

Fuente Consultada: Gran Enciclopedia Universal (Cap. 23) y Wikipedia

Teoria de la Deriva Continental Movimiento de los Continentes

Teoría de la Deriva Continental
Movimiento de los Continentes-Colisión de Placas

En la década de 1920, el geofísico y meteorólogo alemán Alfred Lothar Wegener (1880-1930) afirmó que los continentes se desplazan sobre la superficie del globo y que, ¡nicialmente, habían estado unidos en el supercontinente Pangea, del cual se fueron separando de modo progresivo.

Si se recorta un mapamundi y se le quitan los océanos, se percibe, por ejemplo, que la costa oriental del continente americano calza en el contorno occidental de Europa y de África. Lo mismo ocurre con las demás partes del mundo, como si ellas fuesen las piezas de un enorme rompecabezas. Este hecho sugirió la hipótesis de que los continentes se formaron a partir de un único supercontinente que, en una determinada época geológica, se fracturó en varias partes.

Esa hipótesis ha encontrado en el fondo de los océanos una serie de pruebas en su favor. Una de ellas es la existencia, recientemente comprobada, de sistemas montañosos en el fondo de los mares. Estos cordones se encuentran localizados a una distancia uniforme de las áreas continentales, y constituyen una faja de separación entre ellos. Ese descubrimiento es apenas el primer paso hacia la resolución del gran problema: cuándo y por qué se separaron los continentes.

La oceanografía comprobó que el fondo de los mares se fue formando a medida que los continentes se apartaban. Ese movimiento, que aún persiste, se produce a una velocidad de alrededor de tres centímetros por año. Es así como, a principios de la era cristiana, América estaba unos 60 metros más cerca de Europa y de África de lo que se encuentra actualmente.

En Argentina surgió uno de los primeros grandes apoyos científicos a los argumentos de Wegener, a partir de los trabajos del geólogo Juan Keidel (1877-1954), quien encontró una gran semejanza entre los terrenos que afloran en las Sierras de la Ventana y los de las cercanías de la Ciudad del Cabo, en Sudáfrica. En su trabajo descubrió una correlación exacta entre las formaciones marinas y continentales de ambas regiones, señal de su evolución conjunta antes de la formación del Océano Atlántico Sur.

La Deriva Continental:

Desde la prehistoria, la búsqueda de minerales metálicos proporcionó a los mineros un amplio conocimiento empírico de la estructura de la corteza terrestre: la forma en que diferentes  rocas se disponen en estratos una encima de otra, la posibilidad de que las vetas minerales se abran paso a través de los estratos, y así sucesivamente.

Teoria de la Deriva Continental Movimiento de los ContinentesPero el fundador de la geología como ciencia fue James Hutton, (imagen) que trabajó en Escocia durante la segunda mitad del siglo XVIII. Sus ideas fueron desarrolladas en el siglo XIX por otros precursores, como los geólogos británicos Charles Lyell y Archibald Geikie.

Sus investigaciones entraron en conflicto con las creencias más establecidas sobre la edad de la Tierra y las fuerzas que la habían modelado.

Según la opinión predominante, la historia geológica sólo podía interpretarse como una sucesión de catástrofes, entre ellas, el diluvio universal en tiempos de Noé.

Sin embargo los nuevos geólogos eran partidarios del «uniformisrmo» que establecían que la historia de la corteza terrestre podía explicarse sencillamente por la acción continua y sumamente prolongada de las fuerzas corrientes de la naturaleza.

Aunque sólo fuera por las dificultades que planteaban los viajes, los primeros geólogos solían restringir sus estudios a las pequeñas zonas que tenían a su alcance, pero algunos estaban dispuestos a pensar a escala planetaria.

A partir de 1600, cuando los mapas del mundo comenzaron a ser más exactos, los geógrafos advirtieron que la costa occidental de África podía encajar con la costa oriental de América como dos piezas de un gigantesco rompecabezas. Este hecho sugería, de manera muy general, que en una época muy remota los dos continentes atlánticos habían estado unidos y que desde entonces se habían ido separando.

Esta hipótesis fue formulada de forma más concreta por el científico francés A. Snider-Pellegrini en 1858; medio siglo más tarde, H.B. Baker presentó su teoría según la cual hace 200 millones de años todos los continentes habían ocupado el sitio de la Antártida y desde entonces se habían separado. F.B. Taylor, un geólogo norteamericano especialmente interesado en la región de los Grandes Lagos, formuló independientemente una teoría similar en 1910.

La teoría de la deriva continental fue formulada concretamente por primera vez por Alfred Wegener, que aparece en la fotografía (abajo), en 1912. Su idea básica era que una masa continental original (Pangea) se había fragmentado y que a lo largo de las eras geológicas se había Ido separando hasta formar los actuales continentes.

Así pues, en la primera década de este siglo, la idea de que incluso los continentes, lejos de permanecer fijos e inmóviles, podían moverse en el curso de vastos períodos de tiempo no era completamente nueva. La persona más estrechamente vinculada a la teoría de la deriva continental (o del desplazamiento continental, como la denominó al principio) fue el meteorólogo alemán Alfred Wegener. (imagen)

Al considerar la teoría por primera vez, se sintió inclinado a descartarla; pero reavivaron su interés las pruebas paleontológicas de que en un pasado remoto debió existir algún puente terrestre que uniera Africa con Brasil, del mismo modo que Gran Bretaña estaba unida al continente hace 20.000 años, a través del canal de la Mancha, y Asia con América del Norte, a través del estrecho de Bering.

Pero éstos eran ejemplos de puentes relativamente cortos. En cambio, el caso del vasto océano Atlántico hizo que Wegener considerara más seriamente la teoría de la deriva continental y, a partir de 1912, se dedicó a desarrollarla.

Postuló entonces la existencia original de un supercontinente, Pangea, que comenzó a separarse durante la era pérmica, hace más de 200 millones de años. América se desplazó hacia el oeste, alejándose de la masa continental eurasiática, y entre los dos continentes se formó el Atlántico.

Australia se desplazó hacia el norte y la India se alejó de Africa. Más adelante, durante el cuaternario (hace 2 millones de años), Groenlandia se separó de Noruega. Algunos archipiélagos importantes, como los de Japón y las Filipinas, se identificaron como fragmentos dejados atrás por estas colosales separaciones.

El conjunto de la teoría proporcionaba una explicación satisfactoria de la distribución actual de las masas de tierra firme o continentales, pero era preciso encontrar el mecanismo que provocaba estos desplazamientos.

A este respecto, Wegener supuso que las masas continentales flotaban sobre algún tipo de magma plástico, como el que mana de las grandes profundidades durante las erupciones volcánicas, y señaló que la constante rotación de la Tierra determinaría una deriva hacia el oeste.

Los mapas de Wegener  muestran la disposición de los continentes durante los períodos carbonífero, eoceno y cuaternario (hace 300, 45 y 2 millones de años, respectivamente). Los terremotos constituyen pruebas de la inestabilidad de la corteza terrestre. El catastrófico sismo de San Francisco, en 1906, se produjo porque la ciudad se encuentra sobre la falla de San Andrees, tal como señaló Wegener.

Wegener se adentró además por otras dos líneas de estudio: Como meteorólogo, estaba interesado en la historia del clima, y pudo comprobar que los cambios climáticos confirmaban sus ideas. La segunda línea resultó menos satisfactoria. Una vez aceptada la idea de que la deriva continental se había producido, no había razones plausibles para suponer que fuera a detenerse.

En consecuencia, trató de demostrarla mediante la determinación exacta, a largos intervalos, de las distancias entre los puntos de diferentes continentes, utilizando métodos astronómicos muy precisos y calculando la duración de las transmisiones por radio. Sus resultados fueron negativos, pero le fue posible argumentar que el ritmo de la deriva era demasiado lento para ser detectado con los métodos relativamente bastos disponibles en la época.

Pero no es sorprendente que no obtuviera los resultados deseados si es cierto que la separación entre Africa y América ha progresado regularmente desde la era pérmica. te ser así, la velocidad media no sería superior a 1 metro en 30 años.

Sin embargo, a fines del siglo XX, el uso del rayo láser y de los satélites artificiales ha permitido medir con notable precisión el ritmo de la deriva continental, confirmando así la teoría de Wegener.

Mohorovicic y la estructura de la Tierra

El 8 de octubre de 1909, se produjo un intenso terremoto a 40 km. al sur de Zagreb, en Croacia (que entonces formaba parte del imperio Austrohúngaro). Otro terremoto ocurrido previamente en Zagreb había determinado la instalación de un sismógrafo en el observatorio meteorológico de la ciudad, dirigido por Andrija Mohorovicic. En su calidad de director del observatorio, Mohorovicic recibió de todas las estaciones de Europa los registros del terremoto de 1909. Después de analizarlos detalladamente, realizó un interesante descubrimiento. Como esperaba, los registros reflejaban dos tipos de ondas: de compresión (P), en las que las partículas oscilan a lo largo de la línea de propagación, y de distorsión (S), en las que el movimiento se produce en ángulo recto con respecto a la línea de propagación.

Luego advirtió que había en realidad dos tipos de ondas P. A escasa distancia del epicentro, la primera onda en llegar se desplaza a una velocidad de 5,5 a 6,5 km. por segundo. A una distancia de unos 170 km., esta onda es superada por una segunda onda, que se desplaza a 8,1 km/s.

Más allá de este punto, hasta los 800 km., es posible detectar las dos ondas, pero luego las más lentas se desvanecen. Mohorovicic interpretó este fenómeno como la prueba de que las ondas más lentas se desplazan directamente hacia el sismógrafo, mientras que las más veloces son refractadas a una profundidad de unos 50 km. En su honor, la capa refractora recibió el nombre de discontinuidad de Mohorovicic, o Moho. Investigaciones posteriores demostraron que la profundidad del

Moho (el límite entre la corteza terrestre y el manto superior) varía entre 30 y 50 km.

■   Hace doscientos millones de años todos los continentes estaban unidos. Esta formación denominada después “Pangea” dio origen a la “teoría de la deriva continental” elaborada en 1912 por el climatólogo Alfred Wegener.

■   La teoría cobró auge hace unos veinte años y los científicos siguen investigando por qué se produce la separación de los continentes que forma en el medio de la fractura un océano cada vez mayor.

■    Dos corrientes explican la causa de la ruptura de los continentes: una sostiene que la fragmentación empieza en la litosfera y la otra que el proceso se Inicia en el manto.

■   En un futuro Inmediato, de acuerdo con la teoría de las placas tectónicas, la India continuará ñundiéndose bajo el Tíbet y, si el movimiento de la placa no se detiene, dentro de diez millones de años, Katmandú que hoy sólo tiene 1324 metros de altura, será la cima de un nuevo Himalaya.

CONFIRMACIÓN DE LA TEORÍA: Varios son los descubrimientos confirman la validez de la teoría de la deriva de los continentes. Uno de ellos es el de la dirección según la cual se orientan las “cordilleras” de los fondos marinos. Las cadenas montañosas del Atlántico, por ejemplo, se encuentran exactamente en medio de la separación existente entre los bloques Europa-África y América del Norte-América del Sur. Por esa razón, se las ha llamado cadenas mesoatlánticas.

Los oceanógrafos descubrieron que esas montañas sumergidas son, en gran parte, volcanes submarinos que arrojan lava continuamente, desde hace más de cien millones de años. Mientras los continentes se iban apartando gradualmente, por esos volcanes salía magma proveniente del interior de la Tierra, material que iba a llenar el espacio abierto.

De hecho, la lava lanzada por esos volcanes se esparció por igual a ambos lados de la cordillera. Esto se ha podido averiguar gracias a que, cuando la lava sale de un volcán y se solidifica, “graba” en la roca que forma la dirección del campo magnético terrestre existente en ese momento: las partículas del óxido de hierro presente en las rocas permanecen magnetizadas con la misma orientación que la que tenía el campo magnético terrestre en el momento de la formación de la roca.

Esto se debe a una ley física, según la cual una masa ferromagnética, al ser enfriada en presencia de un campo magnético hasta que alcance su punto de Curie —temperatura por encima de la cual una sustancia no se muestra magnetizada—, se magnetiza con características que dependen de las del campo magnético reinante. Los científicos comprobaron que esas características no se alteran con el correr del tiempo y que a través de ellas se puede conocer el “camino” recorrido por los polos magnéticos.

Una vez que se develó el misterio que rodeaba a la alternancia de la magnetización, los científicos comprendieron que las montañas submarinas se habían formado sucesivamente, adquiriendo una magnetización acorde con el campo magnético terrestre existente en el momento preciso en que cristalizaron. Esos conocimientos permitieron determinar aproximadamente las edades de las rocas submarinas.

Es así como hoy se sabe con certeza que ellas son más recientes en las regiones próximas a las costas continentales que en el centro de las cordilleras. Hacia esta área se dirigen las corrientes de calor provenientes del centro de la Tierra: en el interior de las cordilleras submarinas continuos desbordes basálticos modifican la corteza terrestre, la que se agrieta constantemente bajo la acción de las corrientes de convexión.

cordillera dorsal mesoatlántica

Desde Islandia hasta América del Sur, el Océano Atlántico es recorrido por una cadena submarina de montañas (representada por la faja coloreada), llamada dorsal mesoatlántica. Ella está formada por montañas volcánicas que arrojan lava continuamente hacia los dos lados, desde hace más de cien millones de años.

PARA SABER MAS…

Al considerar la teoría por primera vez, se sintió inclinado a descartarla; pero reavivaron su interés las pruebas paleontológicas de que en un pasado remoto debió existir algún puente terrestre que uniera África con Brasil, del mismo modo que Gran Bretaña estaba unida al continente hace 20.000 años, a través del canal de la Mancha, y Asia con América del Norte, a través del estrecho de Bering. Pero éstos eran ejemplos de puentes relativamente cortos. En cambio, el caso del vasto océano Atlántico hizo que Wegener considerara más seriamente la teoría de la deriva continental y, a partir de 1912, se dedicó a desarrollarla.

Postuló entonces la existencia original de un supercontinente, Pangea, que comenzó a separarse durante la era pérmica, hace más de 200 millones de años. América se desplazó hacia el oeste, alejándose de la masa continental eurasiática, y entre los dos continentes se formó el Atlántico. Australia se desplazó hacia el norte y la India se alejó de África. Más adelante, durante el cuaternario (hace 2 millones de años), Groenlandia se separó de Noruega. Algunos archipiélagos importantes, como los de Japón y las Filipinas, se identificaron como fragmentos dejados atrás por estas colosales separaciones.

El conjunto de la teoría proporcionaba una explicación satisfactoria de la distribución actual de las masas de tierra firme o continentales, pero era preciso encontrar el mecanismo que provocaba estos desplazamientos. A este respecto, Wegener supuso que las masas continentales flotaban sobre algún tipo de magma plástico, como el que mana de las grandes profundidades durante las erupciones volcánicas, y señaló que la constante rotación de la Tierra determinaría una deriva hacia el oeste.

Wegener se adentró además por otras dos líneas de estudio. Como meteorólogo, estaba interesado en la historia del clima, y pudo comprobar que los cambios climáticos confirmaban sus ideas. La segunda línea resultó menos satisfactoria. Una vez aceptada la idea de que la deriva continental se había producido, no había razones plausibles para suponer que fuera a detenerse. En consecuencia, trató de demostrarla mediante la determinación exacta, a largos intervalos, de las distancias entre los puntos de diferentes continentes, utilizando métodos astronómicos muy precisos y calculando la duración de las transmisiones por radio. Sus resultados fueron negativos, pero le fue posible argumentar que el ritmo de la deriva era demasiado lento para ser detectado con los métodos relativamente bastos disponibles en la época.

Pero no es sorprendente que no obtuviera los resultados deseados si es cierto que la separación entre África y América ha progresado regularmente desde la era pérmica. De ser así, la velocidad media no sería superior a 1 metro en 30 años. Sin embargo, a fines del siglo XX, el uso del rayo láser y de los satélites artificiales ha permitido medir con notable precisión el ritmo de la deriva continental, confirmando así la teoría de Wegener.

La Colisión
Desde hace 50 millones de años, la masa terrestre de la India presiona sobre China con una terrible fuerza que ha dado origen a las altas montañas del Himalaya y ha elevado a una altitud de 4.500 metros los plegamientos de arenisca rojiza que estuvieron en un tiempo a orillas del Tethys, un océano hoy desaparecido. Esta arenisca, ubicada en las cimas de las altas montañas opera como los dinosaurios en la teoría de la deriva continental, ya que contiene numerosos fósiles de plantas y animales.

Por ejemplo, se han encontrado troncos de una clase de árboles originarios de las tierras bajas tropicales. Hay también indicios de un mar que inundaba el territorio, gracias a restos de ofiolita, una roca que se encuentra en las profundidades marinas. ¿Cómo un mar, animales y plantas pudieron llegar a una altura de 6.000 metros? El proceso parece ser el inverso. Fue la Tierra la que se elevó.

Según la teoría, a finales del mesozoico comenzó a abrirse el Océano Indico y el Tethys se redujo paulatinamente de sus 5.000 kilómetros de anchura. Como la superficie de la Tierra permanece constante, el nacimiento y desarrollo de un nuevo océano conduce irremisiblemente a la desaparición y la muerte de otro. La gran isla de la India, comparable en extensión a la Australia actual, se fue acercando a Asia, y al mismo tiempo se alejaba de África y de la Antártida. Por aquella época se abrió el Atlántico: Sudamérica se distanció de África y Norteamérica de Europa.

Después, hace unos 80 millones de años, la India comenzó a desplazarse hacia el norte a una gran velocidad comparativa, más de diez metros por siglo, hasta que, 30 millones de años después y de manera abrupta, la velocidad descendió a sólo cinco metros por siglo.

A partir de ese momento, el subcon-tinente indio empuja, presionando desde el sur a manera de palanca, a la masa principal de China contra el Océano Pacífico y la aplasta hacia afuera.

El choque trae varias consecuencias: por un lado, la India se hunde lentamente y presiona en dirección a un ascenso de las montañas tibetanas. La teoría de las placas tectónicas establece que las masas de roca magmática suelen formarse donde una placa se ha desrizado oblicuamente debajo de otra y se ha fundido, como en este caso. Las gigantescas cámaras de magma empujan la corteza de la placa superior. Una parte del magma brota a manera de erupciones volcánicas.

El proceso de fusión con la formación de nuevo magma, se mantiene a través de la subducción: el deslizamiento de las placas (en este caso del territorio hindú) en sentido descendente. Pero por el otro y como consecuencia del hundimiento, su superficie se reduce considerablemente, hasta su posible desaparición dentro de cientos de millones de años. En el futuro inmediato, la India continuará hundiéndose bajo el Tíbet y las escamas seguirán depositándose en la parte frontal de las montañas. Si el movimiento de la placa no se detiene de improviso, dentro de diez millones de años, Katmandú, que hoy sólo tiene 1.324 metros de altura, podrá coronar la cima de un nuevo Himalaya.

Huracan Katrina Consecuencias Desastres Naturales en Estados Unidos

Huracán Katrina y sus Consecuencias
Desastres Naturales en Estados Unidos

Fue un desastre natural de magnitud sin precedentes: 1.836 muertos, el 80 por ciento de Nueva Orleans bajo el agua, 1,1 millones de desplazados, y $ 81 mil millones de dólares en daños y perjuicios. Los esfuerzos iniciales de socorro estaban desorganizados, y la policía no pudo controlar la violencia que en los días posteriores, cuando  el cielo se despejó.

Los esfuerzos de recuperación han atraído a nuevos residentes, nuevas industrias a la deriva a la región, y las escuelas charter innovadoras han reemplazado a muchos no las escuelas públicas. Persisten los retos: las partes de la ciudad – incluyendo el Lower 9th Ward – están en su mayor parte vacías, existe una falta de viviendas asequibles, y el riesgo de inundaciones sigue siendo alta. Pero con su nuevo alcalde, la continuación del apoyo financiero, y el espíritu inquebrantable de la gente de Nueva Orleans, esta joya cultural puede brillar algún día aún más brillante que antes.

 

La localidad más devastada fue Nueva Orleáns. Construida en su mayor parte bajo el nivel del mar, el 80 por ciento de la ciudad quedó sumergida en un pantanal de agua sucia, hasta una profundidad de 6 metros en algunos lugares, al reventarse los diques y canales que la surcan y que no pudieron soportar la fuerza del agua que venía del lago Pontchartrain. Las calles se llenaron de cadáveres flotando y miles de personas se vieron obligadas a refugiarse en los tejados de sus casas.

El huracán Katrina fue el más costoso de los ciclones tropicales en el Atlántico, azotó la región de la costa del golfo de los Estados Unidos el 28 de agosto de 2005. Varias personas perdieron la vida y muchos se quedaron sin hogar. El daño ambiental y las amenazas graves para la salud pública fueron los otros resultados del huracán Katrina. Fue registrado como el sexto huracán más fuerte hasta la fecha. Entre las zonas afectadas, la devastación más grave ocurrió en Nueva Orleans, Mississippi y Louisiana. Los graves efectos devastadores del huracán Katrina se debieron  sobre todo a las inundaciones, como podemos ver en la foto arriba.

Huracán Katrina: Efectos económicos:  Según el Bureau of Economic Crisis (BEA), el impacto económico global del huracán Katrina se estimó en unos 150 millones de dólares, y se lo considera el desastre natural más caro en la historia de los Estados Unidos. Los principales factores que contribuyeron a ese impacto económico es debido a la producciónde petróleo, las exportaciones de alimentos, el turismo y otras formas de comercio y los negocios propios de la zona.

La costa del Golfo ha contribuido cerca de un 10 por ciento del suministro de petróleo de la nación, el cual fue alterado por el huracán Katrina. Como resultado, el petróleo y el precio de la gasolina se disparó. Por suerte, ningún daño catastrófico se ha producido en la infraestructura petrolera y por lo tanto, la situación se mantuvo bajo control dentro de los siguientes 9 meses. Además de la perturbación en la economía nacional, un daño a las propiedades públicas y privadas también han contribuido a los efectos globales económico del huracán Katrina.

Huracán Katrina: Efectos Ambientales : Los daños y amenazas ambientales en la salud pública fueron los efectos más duraderos y peligrosos del huracán Katrina. Los residuos industriales, los derrames de petróleo, las aguas residuales del hogar, productos químicos tóxicos y otros contaminantes peligrosos se habían desparramado en las zonas directamente afectadas, así como las regiones vecinas. El agua contaminada que desbordó las zonas residenciales causó efectos en la salud a largo plazo en los seres humanos, animales y otros habitantes de la zona. También dio lugar a la contaminación de las reservas de agua subterránea, que es una importante fuente de agua potable.

Los estudios revelaron que las muestras de agua de las crecidas contienen altas cantidades de la bacteria E. coli, los desechos médicos, las aguas residuales, petróleo, plomo tóxico, cromo hexavalente y el arsénico, junto con las partículas. Como una estrategia para prevenir las complicaciones graves de salud, las tuberías de agua del hogar fueron  reemplazados por nuevas. Aunque se alegó que los derrames de petróleo había sido limpiado por completo, los ecologistas opinan que los efectos del huracán Katrina seguirá afectando a la ecología y la biodiversidad desde hace muchos años.

Huracán Katrina: Efectos sociales: Las consecuencias del huracán Katrina, revelan que más de 1.800 personas perdieron la vida debido a este desastre. Además, cientos de personas quedaron sin hogares, empleos y seguridad social. La mayoría de las personas que residen en la costa del Golfo han tenido una historia diferente que compartir acerca de los efectos del huracán Katrina. La mayoría de ellos habían perdido a familiares y parientes. Hubo falta de alimentos, el agua y la higiene sanitaria y muchos están sufriendo las secuelas  por el estrés emocional y psicológico.

Riegos de Vivir Cerca de Volcanes