Una Central Nuclear

Historia del Descubrimiento De Los Rayos X Biografia de Roentgen

Historia del Descubrimiento De Los Rayos X
Biografía de Roentgen

«La suerte llama a las puertas de los espíritus preparados para recibirla», decía Pasteur.

Los Rayos X Descubrimiento La historia del descubrimiento de  los rayos X se inicia con una serie de investigaciones y experimentos que realiza el científico William Crookes de nacionalidad británico, quien estudió las reacciones de ciertos gases al aplicarles descargas de energía.

Para las experiencias científicas se utilizó  tubos al vacío, y electrodos para crear corrientes de alto voltaje. Llamó a estos tubos especiales, tubo de Crookes.

Al estar en las proximidades de placas fotográficas, estos tubos generaban en las placas algunas imágenes borrosas. Pese al descubrimiento, Crookes no continuó investigando este efecto.

Ver También: Historia de la Medicina

Veamos como sigue esta historia…

HISTORIA DEL DESCUBRIMIENTO: Este cientifico alemán Wilhelm Conrad Roentgen (1845-1923), centró su atención en la capacidad de los rayos catódicos para hacer fluorescentes las diversas materias.

Colocó ciertos productos químicos, conocidos por su fácil fluorescencia, en el interior de un tubo de rayos catódicos, rodeó éste de papel negro y oscureció la habitación para observar la pálida fluorescencia resultante.

El 5 de noviembre de 1895 puso en funcionamiento su tubo de rayos catódicos, y en medio de la palidez reparó en un destello de luz que no procedía del tubo: estaba brillando una hoja de papel recubierta con platinocianuro de bario (uno de los productos químicos que se proponía utilizar).

El brillo cesó en cuanto desconectó el tubo de rayos catódicos. La radiación emergía claramente del tubo cuando los rayos catódicos fluían, y penetraban la materia en alguna medida.

Rontgen ignoraba de qué radiación podía tratarse, y por eso le dio el nombre de rayos X, pues x es el símbolo usual de una cantidad incógnita en matemáticas.

Publicó el hallazgo el 18 de diciembre de 1895.

Respecto a este descubrimiento podemos decir que fue una de las mayores deudas que la medicina ha contraído con la física es sin duda alguna el descubrimiento de los rayos X por Roentegn. El hallazgo supone la culminación práctica de una línea de investigaciones y, en un mayor nivel de importancia, un camino para profundizar en la exploración del enfermo.

Las ventajas que ha reportado la radiología son incalculables; Roentegn representa la cúspide de lo que podríamos considerar, hoy en día que las ramas de la historia se multiplican, la historia de la exploración médica. La medicina aplicó inmediatamente las posibilidades que le ofrecía el hallazgo.

Roentegn pudo vivir las enormes aplicaciones que impulsaba su obra. Es decir, en primer término se creó la radiografía, la cual fue inmediatamente estudiada por el cirujano en el diagnóstico y localización de fracturas, luxaciones, cuerpos extraños y proyectiles.

-El Día De La Gran Experiencia-

Wilhelm Conrad Roentgen, (ó Roentegn) un profesor de la Universidad de Würzburg, haciendo experimentos con los tubos catódicos para demostrar la existencia de ondas y confirmar así la teoría alemana, descubre por casualidad los rayos X.

Fue en una tarde del 8 de Noviembre de 1895, había recubierto su tubo catódico con cartón negro trataba de ver si, tal como decía Lenard, ciertas ondas salían del tubo.

Muy cerca tenía una pantalla fluorescente con el fin de comprobarlo. ¡Cuál no fue su sorpresa cuando ve el esqueleto de su mano proyectado sobre la pantalla fluorescente!

Reemplaza entonces la pantalla fluorescente por una placa fotográfica y obtiene de esta forma el primer cuché radiológico, la primera radiografía: los huesos de su dedo en claro sobre fondo negro… Así pues, ¿qué son esos rayos misteriosos que penetran la materia, pero que se detienen ante los huesos?

  Roentegn no lo sabe, lo único que sabe es que ha hecho un gran descubrimiento. Se lo dice a su mujer pero, en un estado un poco paranoico, ni siquiera le dice de qué se trata. Trabaja en ello día y noche. Repite una y cien veces los experimentos.

Todo cuadra. Eso es!, ha descubierto unos rayos nuevos. Los rayos catódicos son ondas. Los alemanes tienen razón.

Publica su trabajo y a esos rayos los llama rayos X (X es el factor desconocido por excelencia en álgebra). Por ello recibirá el premio Nobel de Física en 1902, por más que la naturaleza de los rayos X no se conozca hasta dieciséis años más tarde, gracias al trabajo de Max von Laue en Múnich.

El descubrimiento de Roentegn, que tiene lugar en 1895, despierta enseguida un enorme interés en toda Europa.

Por supuesto, sobre todo entre los médicos, porque en adelante dispondrán de un medio de exploración del cuerpo humano, técnica que explotan inmediatamente, pero también entre los físicos, intrigados por este nuevo fenómeno. Básicamente, el descubrimiento de Roentegn produce una cierta confusión.

Se creía que Jean Perrin y Thomson habían demostrado que los rayos catódicos estaban formados por partículas y hete aquí que ahora viene este alemán y demuestra que también hay ondas, ¡porque nadie se imaginaba a las partículas atravesando el cartón negro! No cabe duda de que la naturaleza sabía guardar su secreto.

En 1896 publicó su descubrimiento y dio la primera demostración. De ahí en adelante, el desarrollo de las radiografías, como parte importante en los diagnósticos médicos, fue bastante rápido.

Al observar que con ellas, las zonas duras o más densas del cuerpo, aparecían de manera nítida en las fotografías, el campo traumatológico, principalmente, vio posibilidades ilimitadas para mejorar su trabajo diario, como asimismo el relacionado con emergencias médicas. Más adelante, se le dio un uso, en la detección de tumores en el organismo humano.

roentgen rayos x

La propaganda acerca de los rayos X suscitó tanto asombro como temor en el público general. Para muchos, este descubrimiento abrió el camino a las investigaciones más indiscretas y amenazó con matar la Intimidad humana. Un periódico relató la historia fantasiosa de un estudiante a quien su tío le había negado una ayuda financiera y aquél había presentado una radiografía de las monedas que mantenía escondidas en su bolsillo…

https://historiaybiografias.com/linea_divisoria3.jpg

ANTECEDENTES HISTÓRICOS: La línea de investigaciones hace referencia al estudio de descargas eléctricas a través de gases enrarecidos, que si bien empieza a dar sus frutos hacia la década de los setenta, en realidad ya tenía unos antecedentes claros. En efecto, en 1835 el físico Faraday describió los resplandores que se manifestaban en el tubo de descarga cuando la presión gaseosa no sobrepasaba algunos milímetros.

A continuación, los progresos de la técnica del vacío de los tubos, construidos por el alemán Heinrich Geissler, permitieron observar a Julius Plücker, en 1858, que la mancha fluorescente producida por la descarga frente al polo negativo, esto es, el cátodo, se desplazaba desviada por la acción de un campo magnético.

Las observaciones de Plücker supusieron un punto de partida. Había enunciado la radiación invisible que emanaba del cátodo. Esta emanación fue detenidamente observada y proseguida por el alemán Wilhelm Hittorf y el inglés William Cookes.

Casi simultáneamente Engen Goldstein, en 1886, empleando un tubo con cátodo perforado, en el espacio situado detrás del cátodo descubrió unos nuevos rayos, que debido a su modo de obtención denominó rayos canales. Pero un nuevo paso estaba destinado al inglés Philipp Lenard.

Practicando una abertura en la pared del tubo, que cubrió con una hoja de aluminio capaz de resistir la presión atmosférica —después se la llamó «ventanilla de Lenard»—, consiguió hacer salir a los rayos catódicos del tubo y, de este modo, estudiar las complejas condiciones de la descarga productora. Y, finalmente, al explorar la radiación que sale del tubo catódico, Roentgen, guiado por una observación casual, a finales del año 1895 logró el capital descubrimiento de los rayos X.

La contribución de Roentegn completaba el viejo problema de la medicina, que en el fondo no era otro que poder observar directamente la lesión.

https://historiaybiografias.com/linea_divisoria3.jpg

BIOGRAFÍA: Wilhelm Conrad Roentegn nació en el año 1845 en Lennep, un pueblo en Bergischen que pertenece a la provincia del Rhin. Sus padres, alemanes, estaban infundidos por un acentuado nacionalismo.

Esto, sumado a que provenían de una familia de artesanos asidos al trabajo, el padre era un traficante textil, hizo que el ambiente fuera más bien duro e intrasigente; Roentegn acusará estas experiencias, que no obstante en su futuro trabajo imprimirán una tenacidad tan rara como especial.

Cuando Roentegn había cumplido tres años, la familia se tarsladó a Holanda. Allí cursó los estudios secundarios. Se tienen referencias de que era un muchacho inteligente, que aprendía con rapidez y profundidad. Pero una estúpida travesura cometida en la escuela técnica superior le impidió ser admitido en la universidad de Utrecht. La dureza de esta decisión pudo tener consecuencias funestas. 

Roentegn fue asimilado sólo como oyente y hasta su traspaso a la escuela politécnica de Zurich, según manifestó más tarde, pasó por momentos de desazón.En el tercer curso se aplicó a los estudios de la matemática y en varias ramas de la ingeniería mecánica, obteniendo el diploma cumplidos los veintitrés años.

Se doctoró en dicha universidad con una tesis titulada Estudios sobre los gases. Nuestro hombre fue, pues, ingeniero. El grado de doctor en medicina, lógico premio a sus hallazgos, se le otorgó a título honorario; hecho que constatamos en contra de unas apreciaciones erróneas que alguna vez hemos tenido ocasión de leer sobre el particular.

Roentegn encarna el prototipo del antiguo investigador universitario, con una particular inclinación docente que desea compartir con la soledad del laboratorio.Su primera estancia la realizó con el profesor Kundt, de la universidad de Wurzburgo. Tras los años de rigor fue llamado por la universidad de Estrasburgo, donde llegó a ser profesor asociado de física teórica.

En 1886, o sea cuando contaba cuarenta y un años, se le ofreció una cátedra de física en Jena, proposición que también se le hizo desde la de Utrecht. Roentegn había obtenido una vasta fama como pedagogo y hombre de ciencia y los ofrecimientos se prodigaron.

Mas tarde volvió a  Wurzburgo donde estudió los fenómenos de compresibilidad de los líquidos, la conducción de los electrólitos y el coeficiente térmico de expansión. Y cuando contaba cuarenta y nueve años, o sea uno antes de efectuar su descubrimiento definitivo, fue nombrado rector.

Dando muestras de una enorme capacidad de trabajo, sin dejar sus tareas como físico, al año de su rectorado descubrió los rayos X; insertados en su biografía expondremos las vicisitudes de tal descubrimiento.

La tarde del día 8 de noviembre de 1895, mientras hacía experiencias con el tubo catódico en su cuarto oscuro, cubrió una de sus lámparas con el propósito de impedir la salida de rayos luminosos.

Casualmente, cerca de allí se hallaba una placa de vidrio cubierta con una sustancia, platinocianuro de bario, que brilla o se ilumina cuando es expuesta a la luz. Naturalmente, al conectar la corriente a través de la lámpara, que estaba del todo cubierta, la placa se volvió luminosa.

Esto demostró que resultaba afectada por algún agente el cual podía pasar a través de la cubierta oscura de la lámpara. Este hecho fortuito fue el punto de partida para el resto de sus investigaciones.

Roentegn trabajó con una intensidad inusitada. Al mes justo de su hallazgo, esto es el 8 de diciembre de 1895, resumió sus trabajos en un breve como tan sustancioso folleto titulado Sobre una nueva clase de radiaciones.

Este folleto, que además resulta un modelo de concisión y objetividad, un documento a valorar por quienes participan demasiado asiduamente en las páginas de la literatura científica, dio paso a una primera demostración, que se celebró al 9 de enero de 1896 en una sesión de la Sociedad de Física de Wurzburgo.

La presentación de Roentegn fue concreta y convincente. Siguiendo el aire de los grandes descubrimientos en medicina, a este respecto se pueden, por ejemplo, recordar las demostraciones de Harvey o Koch, Roentegn mostró el poder de penetración de sus rayos.

«La demostración fue acogida —escribe Hayward— con un asombro profundo. Se trataba de un nuevo descubrimiento de apariencia milagrosa que no podía provocar ni dudas ni críticas, sino solamente sorpresa. Los que se colocaron frente a la pantalla fluorescente pudieron ver una imagen de su propio esqueleto, y de los botones de su ropa interior.»

En unas palabras, tras el estupor que suscitó esta primera demostración, se divulgó en muy poco tiempo por todo el mundo la importancia que los rayos X podían tener para el diagnóstico de las lesiones.

La difusión del descubrimiento, Roentegn pasó a la cúspide de la fama sólo en cuestión de meses, nada hizo variar en su vida. Siguió trabajando y tratando de perfeccionar los detalles, sin dejar el cargo académico que le habían encomendado. En 1901 le fue concedido el Premio Nobel, que Roentegn fue a recoger teniendo todavía una larguísima vida científica por delante.

El comienzo de la Primera Guerra Mundial, el fallecimiento de su esposa, el de sus últimos amigos, le dejaron totalmente anonadado, y tras un último período gris murió el 10 de febrero de 1922.

La obra de Roentegn fue el principal impulso que recibió la medicina práctica. Su hallazgo llegó en el momento justo y preciso en que la exploración física agotaba sus posibilidades.

El primer Nobel: Las repercusiones de tal descubrimiento fueron inmediatas y significativas en la comunidad científica, más aun cuando en diciembre Roentgen hizo pública la primera radiografía: la imagen de los huesos de la mano de su mujer. Para la medicina, las perspectivas eran extraordinarias.

La idea de poder escudriñar el interior del cuerpo humano gracias a estos rayos dejaba entrever maravillosas esperanzas. Además, los honores que le rindió el mundo a Wilhelm Roentgen fueron un testimonio del gran entusiasmo que sus rayos suscitaron.

Al parecer, esta conmoción tenía sin cuidado al científico. Fiel a su naturaleza discreta, huía de las entrevistas y las conferencias, y sólo aceptó entregar un comunicado frente a un grupo reducido de científicos el 23 de enero de 1896, en Würzburg. No obstante el mundo científico no lo olvidó cuando, en 1901, decidió concederle el primer premio Nobel de física.

Mientras tanto, Roentgen se había asentado en Munich, donde dirigía el Instituto de física. El descubrimiento de los rayos X tuvo efectos inmediatos y espectaculares. En Francia, Henri Becquerel y luego Marie Curie afinaron las investigaciones y recibieron a su vez el premio Nobel en 1903.

Durante la Primera Guerra mundial la radiografía de rayos X demostró con creces su eficacia. Wilhelm Roentgen siguió adelante con su modesta vida en Munich, donde falleció discretamente, pero cubierto de gloria, el 10 de febrero de 1923.

CRONOLOGIA VIDA ROENTGEN

1845 Nacimiento de Wilhelm Conrad Roentgen en Lenep, Renania, el 27 de marzo.

1863 Ingresa en la Escuela técnica de Utrecht, de la cual es expulsado. Asiste a la universidad.

1865 Roentgen es admitido en la Escuela politécnica de Zurich.

1868 Obtiene su diploma de ingeniero y se convierte en asistente de August Kundt.

1870 Es profesor asistente en la universidad de Würzburg.

1872 Roentgen desposa a Anna Bertha Ludwig. Es enviado a Estrasburgo.

1876 Es maestro de conferencia en el Instituto de física de Estrasburgo.

1879 Nombrado profesor titular, Roentgen se instala en Giessen.

1888 Regresa a Würzburg, donde dirige el Instituto de física.

1895 Wilhelm Roentgen descubre los rayos X.

1900 Es nombrado director del Instituto de física de Munich. La Academia de Ciencias de París lo nombra corresponsal extranjero.

1901 Roentgen recibe el premio Nobel de física.

1923 Muerte de Wilhelm Roentgen  en Munich, el 10 de febrero.

https://historiaybiografias.com/linea_divisoria3.jpg

PRIMERAS APLICACIONES: En 1927, Hermann Joseph  Muller publicó su descubrimiento de que los Rayos X y la luz ultravioleta podían provocar cambios hereditarios, conocidos como mutaciones. A partir de entonces, los científicos pudieron crear mutaciones en vez de esperar a que la naturaleza las produjera en forma espontánea. Muller y otros expertos en genética emplearon mutaciones provocadas de modo artificial para investigar el modo en que los genes se ordenan linealmente en cromosomas y cómo se «transmiten» en la reproducción sexual.

imagen de las primeras maquinas de rayos x aplicados a la salud

Muller predijo que los genes tenían que producir el resto de los componentes de las células vivas. Su razonamiento se basaba en el hecho de que los genes, a diferencia del resto de componentes celulares, podían reproducir los cambios que se presentaban en ellos. También sugirió que la vida empezaba con la aparición de moléculas autorreproducidas o «genes puros», que se imaginó similares a los virus.

Muller, socialista, se trasladó a la Unión Soviética en 1933 con la esperanza de continuar allí sus investigaciones. Pero la genética soviética estaba dominada por el agrónomo Trofim Denisovich Lysenko, de gran poder político, que rechazaba la genética de Mendel. Muller tuvo como obstáculo las convicciones de Lysenko, que hacían referencia a que los hijos heredan las características que sus padres han adquirido por enfermedades e influencias ambientales.

Ansioso por abandonar la Unión Soviética, se marchó como voluntario a la guerra civil española en 1937. Cada vez más convencido de que las mutaciones se acumulaban en los genes y que amenazaban a las generaciones futuras, cuando regresó a Estados Unidos, empezó a advertir sobre los peligros de la radiación y de los procesos industriales. Muller también apoyaba el potencial de la eugenesia, o «mejora genética», tergiversada luego por los nazis.

ALGO MAS…
El cuerpo atravesado por rayos

Todo ocurrió por casualidad y de esa coincidencia nacieron los raros X. El prusiano Wilhelm Conrad Rontgen (18454923), un brillante físico de la Universidad de Würzburg, estaba probando en su laboratorio la fluorescencia producida por los tubos de rayos catódicos, una invención reciente; luego de tapar uno de ellos con un cartón negro observó que en una pantalla cercana aparecía una fluorescencia que desaparecía cuando apagaba el tubo.

Rontgen hace una demostracion de los rayos X

Se dio cuenta así de que los ravos atravesaban la materia y repitió la prueba con otros materiales. Para probarlo con plomo utilizó un aro, que sostenía con la mano, y comprobó que este no era atravesado y que era posible ver los huesos de su extremidad. Entonces se le ocurrió que podría tomar una fotografía y grabó una placa con la mano de su mujer. Esto ocurrió en noviembre de 1895, y pocos días después informó sobre el descubrimiento de “una nueva clase de ravos”.

Los llamó rayos X por tratarse de toda una incógnita: no sabía cómo se producían, pero sí sus efectos. Aparecían cuando un haz de electrones muy energéticos se desaceleraba al chocar con una superficie metálica. Lo importante es que había encontrado una nueva manera de iluminar el interior del cuerpo humano.

Su hallazgo causó una gran impresión y, como lo había realizado en el marco de su trabajo como profesor universitario, los rayos X pudieron utilizarse de modo ilimitado, sin ser objeto de patentes. Pronto cambiaron el desarrollo del diagnóstico médico, facilitándolo hasta, extremos antes impensables. Rontgen obtuvo por ello el Premio Nobel de Física en 1901.

Cuando Roentgen recibió el Nobel de Física por sus trabajos con los rayos que dio en llamar «X» (Roentgen no llegó a descubrir el origen de esta nueva fuente energética), nadie podría imaginar la extraordinaria expansión que años después lendrían los rayos X en la sociedad a través de la medicina diagnóstica.

En los años setenta, y aun a sabiendas del perjuicio que la radiactividad suponía para la salud humana, se radiografiaba rutinariamente de manera anual a escolares, soldados y personal al servicio de grandes empresas, con la falsa idea de que una radiografía aseguraba el conocimiento exacto de la salud del individuo.

Todavía hoy en día los medios diagnósticos por rayos X son, con mucho y fundamentalmente debido a su bajo coste, los más utilizados en medicina: odontología, medicina interna, osteopatía, neurología, etc., basan sus estudios en las placas radiográficas.

Pero ¿son los rayos X realmente seguros?. La primera premisa que deberemos tener en cuenta es que la radiación emitida por los rayos X es similar a la producida por la energía nuclear. Conocidas como radiaciones ionizantes, todas estas emisiones se caracterizan por afectar a las células vivas de los organismos dañando su material genético.

Como hemos visto al hablar de los perjuicios de la exposición a la radiactividad procedente de la energía nuclear, al sufrir una dosis (¡o varias!) de los rayos X, las estructuras celulares de los tejidos expuestos corren el riesgo de presentar los denominados «cromosomas discéntricos», es decir, trozos de ADN cuya estructura no se corresponde a la normal. Éste es el inicio de cualquier proceso tumoral.

¿Dosis «segura»?
Cualquier exposición a los rayos X puede ser causa de un shock celular capaz de provocar una mutación en el ADN. No es posi ble establecer un máximo o un mínimo en rems o sieverts que nos garantice una inocuidad. Sin embargo, cuanta mayor sea la ra diación recibida, más probabilidades existen de daños para la salud.

Hemos comentado la cifra de 5 rem como un tope establecido por las autoridades para los trabajadores o particulares que de ban estar en contacto más o menos estrecho con la radiactividad Este máximo supera con mucho lo deseable y comienzan a bara jarse entre los especialistas sanitarios cantidades de «según dad» bastante más pequeñas, como las que a continuación me parece interesante detallarles:

tabla dosis rayos x


Estas cifras, no obstante, no tienen en cuenta la especial sensibilidad que algunos grupos de población presentan frente a la exposición radiactiva, como los ancianos o los mismos niños.

El diagnóstico por rayos X supone en demasiados casos superar el máximo permitido. Veamos por ejemplo cómo, para una persona de tamaño y peso medios, una placa radiográfica de los órganos internos (riñones, estómago, corazón, etc.) implica una dosis de entre 0,13 y 1,3 rems; del cerebro o cráneo, 0,4 rems; dental, 0,25 rems; de la columna vertebral, 1 rem, y una mamografía, 4 rems. Si a esto sumamos el hecho de que, frecuentemente, en cada exploración somos sometidos a más de una radiografía (recuerdo con muy poco sosiego cuando, siendo poco más que una adolescente, me realizaron en una consulta privada ¡once placas del sistema gastrointestinal!), veremos que nada más fácil que superar la cifra tope.

Un riesgo adicional al que nos exponemos casi la mitad de la población de nuestro país de manera anual son las radiografías dentales, utilizadas a discreción a fin de localizar caries o en simples revisiones. Aunque su intensidad no suele superar los 0,2 rems por placa, la incidencia del rayo sobre la glándula tiroides supone un grave peligro de daño en ella.

Si usted padece con frecuencia caries y debe visitar a su dentista todos los años, sepa que la nueva legislación contempla la conveniencia de que el paciente esté protegido con un collarín de plomo durante la exposición.

Además de todo esto, deberemos tener en cuenta que la gran mayoría de los centros de radiodiagnóstico no cumplen la normativa vigente: muchos han sido instalados en los años setenta,cuando aún no se era totalmente consciente de las graves consecuencias para la salud de la exposición a la radiación y la legislación era muy deficiente, y otros (casi todos) datan de antes de 1994, fecha de la entrada real en vigor de las nuevas leyes sobre el control de las instalaciones radiológicas.

Aunque puede parecer en principio poco relevante, la diferencia entre realizarse una radiografía en un centro moderno y hacerlo en uno donde los aparatos han sido instalados hace veinte años puede contarse no ya en milirrems o en milisieverts, sino en completos rems.

Medidas de autodefensa
Puede que a estas alturas usted se halle absolutamente abatido e incluso desesperado. Realmente la situación mundial, de la que nuestro país no se escapa, es preocupante. Sin embargo, aún podemos hacer algo para protegernos de la contaminación radiactiva que sufrimos y minimizar los daños que ésta puede causar en nuestra salud. Algunas sustancias, así como algunas actitudes, son capaces de ampararnos y reducir los estragos de este insidioso tipo de polución.

Vamos a ver, sin más dilación, algunas de las medidas más importantes a tomar para combatir ios efectos perniciosos de la contaminación radiactiva.

Evitemos los factores de riesgo

Consejos para reducir la absorción radiactiva

1. Limite su consumo de alimentos importados de países con un alto nivel de contaminación nuclear. Estos son fundamentalmente los nórdicos y los ex pertenecientes a la antigua Unión Soviética. Entre los productos más exportados figuran los lácteos y sus derivados.

2. Beba agua mineral de baja mineraiización (de venta en cualquier supermercado). El agua que brota de su grifo contiene sustancias nocivas y nadie le asegura que esté exenta de radiactividad residual.

3. Ventile el recinto donde trabaja o pase su tiempo. A partir de las siete horas cerrada, una habitación comienza a acumular importantes cantidades de radón, gas radiactivo que usted inhalará de no tomar la precaución de abrir las ventanas unos minutos cada, al menos, cuatro o cinco horas.

4. Ventile su cuarto de baño antes de ducharse. El agua de la ducha, por su temperatura y el sistema de chorro, desprende radón que es respirado con extrema facilidad. Minimizaremos los riesgos si mantenemos aireado el baño y no dirigimos el chorro directamente al rostro.

5. Tome precauciones sobre los pararrayos radiactivos. Consulte con su comunidad de vecinos e intente que en su tejado no sea instalado uno de estos pararrayos.

6. Extreme los cuidados con las exposiciones al sol. Los rayos ultravioleta son una importante fuente de radiaciones nocivas (véase el capítulo «El sol, ¿amigo o enemigo?»).

7. Procure que su vivienda no se encuentre cercana a una central nuclear. En ocasiones es preferible un pequeño «trastorno» porcambio de domicilio que no la continua exposición a dosis pequeñas pero muy peligrosas de radiactividad.

Fuente: Como Sobrevivir Al Siglo XXI – Ana P. Fernandez Magdalena – Editorial Robin Book

Ver:  Usos de los Rayos Infrarrojos

Ver: Descubrimiento de los Rayos X

Ver:Efectos de los Rayos Ultravioleta

Rayos Catódicos Thompson Caracteristicas Historia Energia Definicion

Rayos Catódicos: Sus Características

LOS RAYOS CATÓDICOS: Michael Faraday, después de haber entendido bien el fenómeno eléctrico, después de haber demostrado que el agua en la que se ha diluido una buena cantidad de sal es una buena conductora de la corriente eléctrica y después de haber comprendido perfectamente el fenómeno de la electrolisis, quiso saber si los gases y el vacío también eran conductores de la electricidad.

Había construido tubos con un cátodo y un ánodo, es decir, unidos ambos a los dos bornes de una pila Volta o a los de uno de esos generadores de electricidad que acababa de inventar. Previamente había hecho el vacío en el tubo. De hecho, era un vacío muy malo y el tubo quedaba lleno de gas diluido, pero él no llegó a darse cuenta.

Al conectar la corriente observó un resplandor macilento que se extendía desde el cátodo al ánodo (es lo que se emplea hoy en día para la iluminación mediante los tubos de neón). Enseguida se llamó a este resplandor «rayos catódicos». ¿Cuál era la naturaleza de este resplandor? Los sucesores de Faraday comenzaron a enfrentarse a este interrogante.

Para el inglés Crookes, que había mejorado mucho el montaje de Faraday, se trataba de partículas, de una especie de iones como los que se forman en la electrolisis, que, al encontrarse con el vacío residual, creaban el resplandor.

Para el alemán Lenard, alumno de Hertz (el «descubridor» de las ondas electromagnéticas), se trataba, por supuesto, de ondas. Las ondas excitaban el vacío residual y creaban la luz macilenta. Por ambas partes se intercambiaban argumentos y afirmaciones pocos amables, tanto que la disputa adquirió rápidamente aires de rivalidad nacional, una lucha germano-inglesa.

Sin embargo, fue un joven francés, Jean Perrin, por entonces catedrático auxiliar en el laboratorio de Física de La Escuela Normal Superior (lugar destacado de la Física francesa), quien presentó en 1895 el argumento decisivo en favor de las partículas cargadas.

Con la ayuda de un imán desvía los rayos catódicos (el resplandor macileto) y, colocando una caja de Faraday, es decir, una caja metálica donde les rayos chocan con el tubo, recupera una corriente eléctrica que procede a medir. Por lo tanto es cierto que los rayos catódicos están formados por una corriente eléctrica, es decir, por un flujo de partículas cargadas de electricidad. Como en la electrolisis.

De buenas a primeras, J. J. Thomson se vuelca en el experimento de Perrin, pero ahora desvía los rayos catódicos no sólo mediante un campo magnético, sino también con un campo eléctrico. Entonces se piensa que los rayos catódicos son una especie de iones. Las descargas eléctricas en los tubo de vacío serían de este modo la manifestación de una electrolisis gaseosa.

Entonces Thomson, mediante fórmulas matemáticas del electromagnetismo, calcula la relación entre la carga eléctrica y la masa de esas partículas, midiendo las desviaciones de los rayos en función de la intensidad de los campos magnético y eléctrico que se aplican.

A ello añade una hipótesis de trabajo interesante: si se toma como valor de la carga eléctrica la caga elemental de electricidad determinada por Faraday en sus experimentos de electrolisis, la masa obtenida para la partícula cargada es pequeñísima 1.800 veces más pequeña que la del átomo más ligero, el del hidrógeno.

Por lo tanto, esas partículas que van del cátodo al ánodo no son ni átomos ni iones, como en la electrólisis. ¿Qué son entonces? Thomson no lo sabe muy bien, pero sugiere que se las llame corpúsculos, palabra que muy pronto quedará olvidada ante la de electrones (portadores de electricidad).

Un tubo de descarga de Thompson. Un haz de rayos catódicos emitido por el cátodo C se focaliza en A y B y pasa entre D y E, donde hay un campo eléctrico. Se crea un campo magnético perpendicular al campo eléctrico mediante bobinas colocadas en el exterior del tubo (según E. Segré).

rayos catodicos

Los tubos de rayos catódicos, llamados más corrientemente tubos catódicos, se utilizan en los aparatos de televisión. Thompson, como hemos visto, determinaba la trayectoria de dichos rayos (invisibles) a partir del punto luminoso producido por la interacción entre esos rayos y la pared del tubo de vidrio. El punto luminoso sirve hoy en día para formar la imagen en la pantalla fluorescente de los tubos catódicos. Un tubo de televisión es un tubo catódico dirigido hacia el telespectador. En el tubo, los rayos quedan desviados por fuerzas eléctricas y barren la pantalla fluorescente. Cuando ésta, recubierta de una capa especial, recibe los rayos catódicos, se forma un punto luminoso.

La señal de televisión dirige la intensidad de los rayos en cada momento, de tal forma que se hace aparecer en pantalla puntos luminosos o sombras. La lentitud del cerebro y del ojo con relación a esas estructuras cambiantes nos permite tener una visión global de la imagen producida (según Steve Weinberg).

Pero ¿de dónde vienen esos electrones? No pueden provenir más que del cátodo. Así pues, el cátodo, sólido y metálico, contiene electrones capaces de desprenderse de él. Por lo tanto, los electrones son partículas cargadas de electricidad negativa y constitutivos esenciales de la materia sólida. Los rayos catódicos no son ondas, sino partículas, corpúsculos de materia. Thomson, yendo aún más lejos en este razonamiento, se pregunta: ¿no está hecha la materia más que de electrones? Entonces construye un modelo de átomo según el cual los electrones desempeñan un papel esencial.

Para él un átomo es un conjunto de electrones que se desplazan dentro de una esfera de diámetro limitado. Esta esfera de paredes infinitamente delgadas llevaría una carga eléctrica positiva para garantizar la neutralidad eléctrica del conjunto, y encerraría en su interior una población de electrones. Además de que la naturaleza de las paredes cargadas de electricidad positiva sigue siendo misteriosa, Thomson tiene que enfrentarse a un problema de masa. ¡Desde los tiempos de Avogadro se sabía calcular la masa de un solo átomo en un elemento dado al tomar la masa atómica y dividirla por 6,02 1023! Pero ¿cómo explicar esta masa con electrones tan livianos -¡Thompson no duda en imaginar que un solo átomo encierra millares de electrones!

Fuente Consultada: Un Poco de Ciencia Para Todo El Mundo – Wikipedia – Enciclopedia de Electrónica Tomo I.

 

Riesgos del Uso de Uranio en la Centrales Atomicas Ventajas Riesgos

Riesgos del Uso de Uranio en la Centrales Atómicas

DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe Un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos. La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones. Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

El funcionamiento normal de las centrales nucleares esparce por todo el mundo un repugnante espectro de substancias letales que no podrán nunca ser contenidas de modo seguro y que el ambiente natural no puede absorber de modo seguro. Por fortuna, la energía nuclear es tan innecesaria como injustificada: podemos satisfacer las necesidades de electricidad del mundo sin una sola central nuclear de fisión, si atemperamos de modo razonable nuestra demandas de energía.

Las únicas centrales que existen actualmente utilizan la fisión. La fusión, una tecnología que podría revolucionar la vida sobre la Tierra si se logran superar a un coste competitivo las barreras científicas que lo impiden, no existirá, suponiendo que así sea, hasta finales de siglo.

La energía de la fisión se debe a la liberación de calor que se produce cuando los átomos de uranio, bombardeados por partícula» atómicas llamadas neutrones, absorben un neutrón y se dividen dando elementos más ligeros, como estroncio y yodo. La división de los átomos de uranio libera también otros neutrones que repiten el pro ceso, en una reacción en cadena.

Se crean también elementos mas pesados cuando algunos de los átomos de uranio 238 en lugar de dividirse se transforman en plutonio 239, absorbiendo un neutrón. Muchos de los elementos creados a consecuencia de la fisión son inestables, es decir, que pierden energía rápidamente emitiendo partícula», Estas emisiones, llamadas radioactividad, son peligrosas para lo» seres vivos porque pueden desorganizar los genes y los tejidos.

La energía de fisión tiene la característica única entre todos los sistemas de obtención de energía, de añadir a los niveles del fondo natural cantidades de radiación equivalente, lo que no hace ninguna otra tecnología. El calor liberado en la fisión, se utiliza para convertir agua en vapor, que una vez proyectado sobre las paletas de una turbina eléctrica crea electricidad por la rotación de una bobina dentro de un campo magnético.

Este proceso ha fascinado a los científicos, los ingenieros y burócratas, debido principalmente a un hecho asombroso: la fisión de unos 30 gramos de uranio libera la misma energía aproximadamente que la combustión de 100 toneladas de carbón. Muchas personas a la caza de esta milagrosa cornucopia de energía, han cernido los ojos a los problemas y consecuencias que la fisión trae para nuestro ambiente.

Los partidarios de la fisión nuclear aseguran que es asegura, barata y limpia con respecto al medio ambiente», y que sus riesgos son aceptables. Mantienen que la fisión es una tecnología probada, disponible, y «en producción», mientras que otras energías de recambio no producirán energía con la rapidez necesaria para satisfacer nuestras necesidades.

La Energía Nuclear aporta un 33% de la energía consumida en Europa, de manera limpia, sin emisiones de gases de efecto invernadero y causantes de la lluvia ácida y sin perjudicar la capa de ozono. Además las centrales nucleares producen cantidades muy pequeñas de residuos sólidos en proporción a las grandes cantidades de electricidad que producen y el efecto de las emisiones líquidas y gaseosas en el medio ambiente es inapreciable. Otro problema distinto, es donde almacenar los residuos que se producen, residuos con vidas media muy largas.

Por otro lado la Energía Nuclear no está sujeta a cambios en las condiciones climáticas, sino que las centrales nucleares operan 24 horas al día durante los 365 días del año, lo que supone una gran garantía de suministro. Además no sufre fluctuaciones imprevisibles en los costes y no depende de suministros del extranjero, lo que produce precios estables a medio y largo plazo.

Los que defienden energías de recambio están en total desacuerdo y aseguran que si se dispusiera de sólo una pequeña fracción de los fondos dedicados actualmente a la fisión nuclear, se podrían crear en unos pocos años industrias energéticas de recambio seguras, industrias que proporcionarían tanta energía como la que se obtiene de la fisión. Señalan especialmente que el desarrollo de «energías menos duras» ha sido perjudicado por la enorme sangría de recursos que la fisión nuclear ha impuesto a los fondos de investigación energética de los EE.UU.

Los problemas más serios de la fisión se deben a que una sola central nuclear de fisión de gran tamaño produce tanta radioactividad de vida prolongada como la explosión de 1.000 bombas atómicas de Hiroshima. Y se cree que la exposición de las personas a la radiación aumenta el riesgo de cáncer, de daños genéticos, enfermedades del corazón y muchas otras dolencias. Parece ser que en los niños que todavía no han nacido, la radiación aumenta los riesgos de defectos congénitos y retraso mental. Pero a pesar de esto, la Comisión de energía atómica (AEC), ha anunciado planes para autorizar la instalación de 1.000 centrales nucleares en los próximos 25 años.

El contaminante radioactivo más peligroso de los muchos que producen los reactores, es el plutonio. Se trata de una sustancia artificial, que no existe de modo natural en la Tierra, y que es el ingrediente explosivo de las armas nucleares. Es tan mortal, que tres cucharadas de plutonio contienen suficiente radioactividad para inducir el cáncer en más de 500 millones de personas, según el Dr. John W. Gofman, codescubridor del uranio 233.

En su opinión se trata de la sustancia más tóxica de la Tierra, y una mota infinitesimal, más pequeña que un grano de polen, produce cáncer si se respira o se traga con el agua. Y, sin embargo, el funciona-miento de 2.000 reactores producirá 400.000 kilos de este material cada año: un desecho para el cual no existen sistemas de recolección. Hay que guardar el plutonio en depósitos con una vigilancia sin falla por los menos durante 250.000 años, más de 125 veces la duración de toda la era cristiana, a no ser que se dé un gran paso en la tecnología de los deshechos radioactivos.

Hay que guardar también el plutonio para evitar que sea robado con fines terroristas. Se necesitan sólo unos pocos kilos de plutonio para fabricar una bomba que borraría del mapa ciudades como San Francisco, Nueva York o Moscú. Estas destrucciones pueden llevarse a cabo con una facilidad escandalosa. Un estudio secreto de la AEC informó que dos físicos que acababan de finalizar su carrera fueron capaces de diseñar una bomba atómica recurriendo únicamente a las obras accesibles al público.

Vivimos una época en la que casi cualquier país o grupo de presión con unos pocos científicos capacitados, puede convertirse en potencia nuclear, creando un riesgo terrible de guerra o accidente nuclear Si éstos fuesen los únicos peligros que presenta la energía de fisión, constituirían motivo suficiente para abandonarla.

Entre otros problemas están la falta de técnicas seguras de almacenamiento para los deshechos nucleares de alto nivel, la posibilidad de que se produzcan fugas catastróficas de radioactividad de las centrales nucleares, y emisiones normales radioactivas.

— Cuando sus recipientes sufren alteraciones normales escapan al medio ambiente deshechos de alto nivel, y los que critican el sistema aseguran que parte de los deshechos se ha incorporado al agua del suelo. Los deshechos se ven expuestos dentro de sus tanques a la acción de saboteadores, terremotos, guerras o accidentes; una sola de estas causas, bastaría para dejar sueltas de golpe cantidades colosales de radioactividad.

— Las medidas de protección destinadas a proteger al público contra accidentes nucleares serios, no se han puesto nunca a prueba de modo completo y en condiciones reales de funciona miento. La explosión de una central podría causar miles de muertos y daños por valor de 17.000 millones de dólares, según la AEC. (caso de Chernobyl en 1986 y Japón en 2010)

— La fuga de sólo un mínimo por ciento de la radioactividad del núcleo de un reactor, podría convertir en inhabitable una zona del tamaño de California.

— Aparte de los accidentes, las centrales de fisión emiten de modo normal radioactividad por los gases de sus chimeneas y por el agua de deshecho. Según cálculos realizados por eminentes cien tíficos, los límites federales legales para este tipo de radiación son tan altos que si cada persona en el país se viera expuesta a los límites de radiación permitidos, se producirían cada año, 32.000 fallecimientos más por cáncer y leucemia y de 150.000 a 1.500.000 fallecimientos genéticos adicionales. El coste-anual para la seguridad social de las enfermedades inducidas genéticamente ha sido calculado por el especialista en genética, premio Nobel, Joshua Lederberg, en 10.000 millones de dólares.

cuadro central nuclear

Cuadro funcionamiento de una central nuclear

Central Nuclear Atucha I

La Fision o Desintegracion Nuclear La Energia del Atomo de Uranio

TEORÍA ATÓMICA: FISIÓN NUCLEAR O ATÓMICA

https://historiaybiografias.com/linea_divisoria1.jpg

LISTA DE TEMAS TRATADOS:

1-¿Que es un Atomo?
2-La Energía Nuclear y sus Usos
3-La Física Moderna
4-La Fisión Nuclear
5-Partículas Elementales
6-Vida de Max Planck

https://historiaybiografias.com/linea_divisoria1.jpg

Los fundamentos de la física atómica
DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos.(Ver: Fision Nuclear)

La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones.

Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

La rapidez con que se establece y se propaga la reacción en cadena dilataría y haría explotar la masa con extrema violencia antes que todos los núcleos hubiesen podido ser fragmentados. Si se admite que sólo el 10% de los átomos participa en la reacción, la enorme cantidad de energía liberada equivale a la producida por la explosión de 2000 toneladas de trinitrotolueno.

En la foto de arriba se encuentran compartiendo una información física Albert Einstein y Leo Szilard.
El doctor Leo Szilard, fue a quien se le ocurrió mientras esperaba el cambio de un semáforo en la intersección de Southampton Row en Londres, la ideas de producir una reacción nuclear controlada, bombardeando núcleos con neutrones. Por puro juego, y no por ningún impulso agresivo, el físico bajito y gordo, húngaro de nacimiento, visualizó una reacción atómica en cadena mientras deambulada por la ciudad en aquel dorado septiembre de 1933, dedicado a sus pasatiempos favoritos: pensar y pasear.

En forma de calor, mil novecientos millones de grandes calorías estarían disponibles, constituyendo el centro de la volatilización de toda materia presente. En una fracción infinitesimal de segundo, la temperatura se elevaría a centenares de miles de grados en el lugar de la explosión, engendrando un espantoso vendaval cuyos efectos destructores —merced a la propagación de la onda de compresión— semejarían a la devastadora barrida de una gigantesca marca.

En vísperas de la Segunda Guerra Mundial, todas estas posibilidades no pasaban de ser meras previsiones teóricas, a las cuales, sin embargo, el comienzo del conflicto bélico iba a conferir excepcionales alcances. Hacia fines de 1940, cuando el secreto militar comenzó a volver impenetrable el velo que cubría las investigaciones sobre la energía nuclear, la utilización de la misma para producir una bomba parecía todavía un objetivo muy lejano e incluso utópico.

Sin duda se sabía que el uranio 235 era particularmente sensible a la “fisión” y que ofrecía una sección eficaz mayor a los neutrones lentos que a los rápidos; se habían desarrollado métodos para producir neutrones lentos; se habían elaborado procedimientos para separar el uranio 235 de su isótopo corriente; se había logrado aislar dos elementos transuránicos, el neptunio y el plutonio, y se reconocía que este último era también “fisionable” en circunstancias semejantes a las del uranio 235.

Además, se habla adquirido la certeza de que en la “fisión”, al menos un neutrón rápido —y en término medio dos o tres— era emitido por el núcleo. Sin embargo, a pesar del conjunto de tales progresos, todavía nadie había logrado producir una reacción autosustentada. Algunos investigadores incluso se preguntaban si la naturaleza acepta someterse a las exigencias de los teóricos. Tal vez la reacción en cadena era, en general, irrealizable. Pero las dudas terminaron por disiparse definitivamente el 2 de diciembre de 1942: ENRICO FERMI había realizado en Chicago, por primera vez, una reacción nuclear autosostenida.

El dispositivo construido en Chicago consistía en una pila de ladrillos de grafito puro que incluía trozos de uranio, separados por distancias regulares conforme a un esquema geométrico. El grafito servía de sustancia moderadora destinada a frenar mediante choques elásticos los neutrones que salen dotados de elevadas velocidades de la ruptura nuclear del uranio 235. Algunos de los neutrones penetran en el isótopo pesado U-238, otros vuelven a ser capturados por el isótopo liviano U-235, puesto que ambos están presentes en los trozos de metal de la pila.

Los proyectiles que golpean el U-238 provocan su transformación, que termina por dar origen al plutonio, mientras neutrones capturados por núcleos de U-235 producen la “fisión” de éstos, expulsando neutrones que siguen provocando nuevas rupturas.

Así, la pila produce a la vez materia “fisionahle” (plutonio) y libera energía al desintegrar núcleos. Agreguemos que para el arranque no se necesita detonador ni ningún otro dispositivo especial; los neutrones de origen cósmico existentes en la atmósfera, o neutrones errantes que provienen de la explosión espontánea de un átomo de uranio, son suficientes para iniciar la reacción.

Una condición indispensable para el funcionamiento de la pila es su volumen, que debe superar cierto tamaño crítico. De lo contrario el número de neutrones que escapan por la superficie de la pila no permite que se establezca la cadena de las reacciones. Para el autosostenímiento de la cadena es menester, además, que cada neutrón incidente produzca al menos un nuevo neutrón apto para determinar a su vez la ruptura de un núcleo, siendo en este caso el “factor de multiplicación” igual a la unidad.

La cadena se extingue si dicho factor resulta inferior a uno; en cambio, si es considerablemente superior, la liberación continua y lenta de la energía se transforma en un proceso explosivo, convirtiendo a la pila en una bomba. Tan peligrosa proliferación de neutrones es contrarrestada introduciendo en la masa de grafito láminas de materia absorbente (cadmio) que permiten mantener constante la velocidad de la reacción y “controlar” el nivel energético de la pila mediante un dispositivo automático. Tales fueron, a grandes rasgos, las fundamentales características de la pila de FERMI, arquetipo de todos los reactores.

Al principio la pila de FERMI engendró, en forma de calor, una potencia de 0,5 vatio; poco después aumentó su nivel de energía hasta llegar a 200 vatios. Con tal reducido poder, una pila debería funcionar varios miles de años para producir la cantidad de plutonio requerida en la fabricación de una sola bomba. Mas una conquista no puede medirse en vatios. La posibilidad de liberar energía nuclear en escala macroscópica estaba magníficamente demostrada. Si bien la distancia que separa la pila experimental de Chicago de la bomba experimental de Alamogordo era muy superior a la existente entre la rudimentaria máquina de vapor de NEWCOMEN y la locomotora de STEPHENSON, el largo camino fue recorrido en el breve intervalo de treinta meses gracias al formidable potencial tecnológico de los Estados Unidos, y al esfuerzo de un verdadero ejército de científicos, técnicos y trabajadores. El 6 de agosto, la pavorosa explosión que arrasó la ciudad de Hiroshima anunció al mundo que el hombre disponía de nuevas y tremendas fuerzas aprisionadas desde eternidades en las entrañas de la materia.

“En el interior de una bomba de fisión —escribe uno de los principales constructores de la bomba, ROBERT OPPENHEIMER (1904-1967)—, se materializa un lugar con el cual ningún otro

El factor de multiplicación es el cociente del número de los nuevos neutrones producidos y el número inicial de los neutrones primitivos.
En la pila de FERMI el factor de multiplicación era igual a 1,007.

puede ser comparado. Al explotar la bomba se producen temperaturas más elevadas que las que reinan en el centro del Sol; su carga está constituida por materias que normalmente no existen en la naturaleza y se emiten radiaciones (neutrones, rayos gamma, electrones) de una intensidad que no tiene precedentes en la experiencia humana. Las presiones que se obtienen equivalen a billones de veces la presión atmosférica. En el sentido más primario y más sencillo, es perfectamente cierto que con las armas atómicas el hombre ha creado situaciones nuevas.”

En pilas y bombas de uranio (o plutonio), la energía se produce por la ruptura de un elemento muy pesado en fragmentos menos pesados. Sin embargo, para producir enormes cantidades de energía no es éste el proceso que la naturaleza elige. Las estrellas prefieren la fusión a la “fisión”; como ya dijimos, transforman en gigantesca escala —por síntesis de elementos livianos— una parte de su materia nuclear en energía radiante. Tan sólo las prodigiosas reservas energéticas, cuyo depósito son los núcleos, pueden permitir al Sol irradiar en forma de luz y calor, año tras año, tres quintillones (3 x 1030) de grandes calorías.

Este torrente de energía solar fluye por lo menos desde hace cuatrocientos o quinientos millones de años, puesto que las pruebas aportadas por la flora y fauna paleozoicas sugieren que las condiciones climáticas de la Tierra no han cambiado esencialmente desde aquella remotísima era primaria. Mas ¿cuál es la transformación nuclear capaz de alimentar tan formidable despliegue energético, que equivale por segundo a una pérdida de cuatro millones de toneladas de masa solar? No cabe duda de que la transformación del elemento más común del universo, el hidrógeno en helio (el elemento que sigue al hidrógeno en la Tabla Periódica), podría suministrar la fuente energética de la radiación solar.

En efecto, la síntesis del helio a partir de los constituyentes de su núcleo está acompañada —como hemos explicado al tratar la energía de la unión nuclear— por la pérdida de una parte de las masas que intervienen, siendo liberada la masa desaparecida —de acuerdo con la equivalencia einsteniana— en forma de energía radiante. Sin embargo, el mecanismo de la supuesta transmutación no había dejado de ser enigmático hasta que HANS BETHE, hacia 1940, propuso su hipótesis del ciclo del carbono.

Las enormes temperaturas que reinan en el interior del Sol —veinte millones de grados en la región central— confieren a las partículas de la masa solar —y especialmente a los protones a velocidades tan elevadas que éstas pueden penetrar en los núcleos de elementos livianos y transmutarlos. Así, el núcleo ordinario de carbono, bombardeado por un protón, se transforma al capturarlo en un isótopo del nitrógeno que se desintegra. En cinco reacciones consecutivas engendran con la emisión de dos electrones positivos varios isótopos de carbono, de nitrógeno y de oxígeno. Bombardeados éstos a su vez por núcleos de hidrógeno, conducen finalmente a la formación del helio.

La excepcional característica de este ciclo, que convierte cuatro núcleos de hidrógeno en un núcleo de helio, es la reaparición del carbono inicial en la última reacción, que se encuentra así regenerado. Desempeña el papel de catalizador y puede ser utilizado innumerables veces, hasta que todo el hidrógeno solar haya sido transmutado en helio, asegurando así las reservas energéticas del Sol durante miles de millones de años. A idénticas o análogas reacciones termonucleares deben sus caudales de energía también otras estrellas.

No cabe duda de que el ciclo de carbono, productor de la energía solar, representa el primordial proceso físico-químico del universo desde la perspectiva de la historia humana. Sin las reacciones termonucleares, que se realizan en el interior del Sol, la vida no habría podido surgir sobre la superficie de la Tierra, donde los fenómenos biológicos, desde la fotosíntesis de la clorofila de los vegetales hasta el metabolismo en el organismo de los animales y del hombre, son tributarios de la radiación solar. Es un hecho realmente notable que el carbono —sustancia básica de la materia viva— desempeñe también el papel de catalizador en el grandioso proceso cósmico que dio origen primario a todas las actividades vitales en la naturaleza terrestre.

La síntesis de elementos livianos a partir del hidrógeno ha dejado de ser privilegio de las masas estelares desde hace algunos años. Reacciones termonucleares, productoras de la fusión de núcleos, suministran la fuente energética a la novísima arma: la bomba de hidrógeno. Desde luego, el ciclo de BETHE, que genera helio en las profundidades del globo solar es demasiado lento y complicado para el uso militar.

Es probable que la transmutación de una masa de los dos isótopos pesados del hidrógeno, el deuterio y el tritio, en helio, esté en la base de la liberación de energía realizada por la nueva bomba. Para establecer las formidables temperaturas (varios millones de centígrados) capaces de desencadenar la reacción se utiliza la ruptura del uranio o del plutonio: la bomba de “fisión” sirve de detonador a la superbomba de fusión. El modelo de ésta, utilizado por los expertos estadounidenses en las pruebas de Enivetock, a fines de 1952, superaba doscientas veces el poder (es decir, la cantidad de energía liberada) de la bomba de Hiroshima, según estimaciones extraoficiales.

No cabe duda de que la posibilidad de borrar de la superficie del globo cualquiera de las grandes metrópolis de la Tierra mediante la explosión de una bomba o a lo sumo de muy pocas bombas está, desde ahora, dentro de los alcances del hombre. El uso de esta arma en un conflicto bélico significaría la abdicación de la razón humana y equivaldría a una tentativa de suicidio del homo sapiens.

PARA SABER MAS…
1938:SE DESCUBRE LA FISIÓN NUCLEAR

A mediados de los anos treinta, físicos de Alemania, Francia e Italia competían por ser los primeros en conseguir romper un átomo. El físico francés Frédéric Joliot-Curie había iniciado la carrera al declarar que «las reacciones nucleares en cadena» conducían a la «liberación de enormes cantidades de energía aprovechable».

En 1935 había sido galardonado con el Premio Nobel (junto con su mujer, Irene Joliot-Curie) por el descubrimiento de la radiactividad artificial. En Berlín, un equipo de investigación compuesto por Otto Hahn, Fritz Strassmann y Lise Meitner empezó a bombardear átomos de uranio con neutrones. Los científicos esperaban que el proceso diera lugar a elementos radiactivos más pesados similares al uranio. En vez de esto, a finales de 1938, Hahn y Strassmann (Meitner, judía austríaca, había huido a Suecia después de que Hitler invadiera Austria en marzo) se sorprendieron al descubrir que su bombardeo sobre el uranio había dado lugar a un elemento mucho más ligero que el uranio, llamado bario.

Hahn y Strassmann enviaron sus resultados a Meitner, a Estocolmo, donde ella y su sobrino, el físico Otto Frisen, investigaron el misterio. Llegaron a la conclusión de que el núcleo del uranio, en vez de emitir una partícula o un pequeño grupo de partículas, como se suponía, desarrollaba una «cadena» y luego se rompía en dos fragmentos ligeros prácticamente iguales, cuyas masas, unidas, pesaban menos que el núcleo original del uranio. La diferencia de peso se convertía en energía.

Meitner dio el nombre de «fisión» al proceso. Joliot-Curie descubrió que la fisión del uranio producía la liberación de neutrones adicionales que, a su vez, podían ser utilizados para romper otros átomos de uranio. Se habían establecido las condiciones para el tipo de reacción en cadena que daría lugar a la bomba atómica.

Durante la guerra, Hahn y Strassmann permanecieron en Alemania. Hahn fue capturado por los aliados en la primavera de 1945 y, mientras se hallaba detenido en Inglaterra, se enteró de que había ganado el Nobel de Química de 1944. Cuando aceptó el premio, el sentimiento de que había realizado un gran descubrimiento científico estaba empañado a causa de que la fisión había hecho posible la destrucción de Hiroshima y Nagasaki. Después de la guerra, Hahn defendió con gran pasión el control de las armas nucleares.

Fuente Consultada: Historia de la Ciencia Desidero Papp

Historia de los Descubrimientos Electricos Estudio de los Fenómenos

Historia de los Descubrimientos Eléctricos

INTRODUCCIÓN:
PRIMEROS CIENTÍFICOS Y PRIMERAS EXPERIENCIAS

Las primeras nociones de la electricidad.
Se da el nombre de electricidad a un agente físico imponderable, que produce una multitud de fenómenos como atracciones, repulsiones, producción de luz y calor, conmociones orgánicas y reacciones químicas.

El hombre primitivo sintió los efectos ingentes de la electricidad atmosférica manifestada por el trueno y por el rayo, pero a pesar del terror que le ocasionaban, no supo explicárselos, atribuyéndolos a la pujanza de la divinidad irritada con los hombres. Según los griegos, Zeus, para castigar a los mortales arrojaba las flechas de su aljaba cada una de las cuales era un rayo.

La electricidad por frotamiento, obtenida del ámbar y manifestada por atracciones de cuerpos ligeros, fue conocida desde los tiempos más remotos, por el año 3400 antes de J. C, pero distaban mucho los hombres de creer que se produjese esto por una causa común a la productora del rayo.

Tales, filósofo griego de la escuela jónica que vivió desde el año 640 hasta el 548 antes de J. C, descubrió que estos fenómenos eran debidos a un fluido que, según él existía únicamente en el ámbar y como éste en griego se llama ” electrón”, el fluido derivado de él tomó mucho más tarde el nombre de electricidad. Plinio, antiguo naturalista que pereció en la erupción del Vesubio en el 79 de la era cristiana, escribió sobre el ámbar y sus cualidades comparándolo con la piedra imán cuya propiedad era ya bien conocida.

Progreso en el estudio de la electricidad.
Guillermo Gilbert, célebre físico y médico de la Reina Isabel de Inglaterra, fue el primero que se dedicó al estudio metódico de la electricidad, descubriendo que no era la resina la única substancia que la producía. Comprobó idénticos resultados frotando azufre, lacre, goma, sal gema y varias otras substancias.

Historia de los Descubrimientos Electricos

Otto de Guericke, físico alemán nacido en Magdeburgo en 1602 y muerto en 1686, inventor de la máquina neumática, parece haberlo sido también de la primera máquina eléctrica, basada en el frotamiento del azufre. Constaba su invento en una esfera de azufre que giraba mecánicamente y era frotada con la mano, obteniéndose diminutas chispas. Más tarde la substituyó con vidrio y perfeccionado el procedimiento de la frotación, obtuvo mejores resultados.

guerike

Esteban Gray, que consagró su vida al estudio de la electricidad hizo verdaderos progresos en el campo de la Física. Después de innúmeras experiencias clasifico los cuerpos en buenos y malos conductores de la electricidad, y notó la posibilidad de electrizar un cuerpo por contacto. Fue el primero que utilizó el hilo metálico para trasladar la electricidad de un punto a otro.

Gray

Dufay, continuando los estudios de Gray descubrió las dos clases de electricidad llamadas positiva y negativa. El descubrimiento de la electrización por influencia marcó el punto de partida para los grandes inventos que mostraron la importancia excepcional de la electricidad a la que, hasta entonces, no se le había dado importancia. Entre las máquinas basadas en la influencia merecen citarse como las más importantes, el eletróforo de Volta, la máquina de Ramsden y la de Wimshurt.

El problema del almacenamiento de la electricidad era el más esencial tal vez, para llegar a su aprovechamiento y después de muchos estudios fue solucionado a la vez, pero separadamente por un monje y por un catedrático de Leiden, ciudad de Holanda, aparato que quedó consagrado con el nombre de ” Botella de Leiden “.

LOS DESCUBRIMIENTOS: Hace ya más de 2.000 años los griegos descubrieron que al ser frotado con una tela el ámbar atrae objetos livianos como plumas, polvo, etc. Se descubrió que dos varillas de ámbar luego de ser trotadas se repelían. Pero la razón de estos fenómenos no era comprendida.

gilbertGuillermo Gilbert, releyendo los escritos de los griegos alrededor del 1600, se interesó más por el magnetismo (sugirió que la Tierra se comportaba como un inmenso imán). Con todo, se dio cuenta de que las fuerzas de atracción y repulsión entre varillas frotadas eran similares a las fuerzas que ejercen entre sí los imanes naturales. Fue Gilbert quien dio al nuevo campo de estudio el nombre de electricidad, que derivó del nombre griego del ámbar.

Con el transcurso del tiempo se comprobó que muchas otras sustancias podían producir también efectos eléctricos. Otto Von Guericke, en el siglo XVII, construyó una esfera de azufre que podía hacer girar con una mano y frotar con la otra.

Además de atraer pequeños trozos de papel producía (lo cual era inesperado) crujidos y diminutas chispas mientras se la frotaba. Por primera vez se veía que la electricidad podía fluir; en realidad se pensaba que era un fluido que podía ser transferido de un objeto a otro por frotamiento.

La esfera de azufre de Guericke fue muy empleada y desarrollada por los primeros investigadores. Fue uno de los primeros métodos deelectricidad estatica producir electricidad. Posteriormente encontraron la forma de conservar la electricidad así producida en la botella de Leyden —una botella parcialmente llena de agua con una cadena metálica que colgaba a través del corcho—. Éste fue el antecesor del capacitor.

Benjamín Franklin vio la conexión entre las diminutas chispas de la esfera de azufre a las gigantes chispas del rayo —ambos eran flujos de “fluido” eléctrico—. Demostró su afirmación con su famoso experimento que consistió en hacer volar un barrilete hacia una nube ele tormenta. El cable húmedo del barrilete condujo hasta tierra la carga eléctrica de la nube.

El italiano Galvani hizo otro descubrimiento importante en forma accidental hacia fines del siglo XVIII.

galvaniDescubrió que tocando con alambres de hierro y latón los músculos de las patas de una rana recién muerta, se los hacia contraer del mismo modo que cuando se los tocaba con la electricidad almacenada en una jarra de Leyden.

Galvani pensaba que, de alguna manera misteriosa, las patas habían producido su propia electricidad.

Había muy poco, en los estudios que se hacían en aquellos tiempos, que tuviera verdadero significado. A la electricidad se la consideraba más bien como un juego, para atraer o repeler y producir chispitas.

Y en realidad, las minúsculas cantidades de electricidad generadas por las máquinas de frotamiento no tenían ninguna utilidad práctica. Casi todos los conocimientos actuales de electricidad se adquirieron en los últimos 160 años.

El descubrimiento, Von Alejandro Volta, de la pila ” eléctrica marcó una nueva senda al estudio de la electricidad. Volta demostró que la contracción de las patas de la rana observadas por Galvani no tenían nada que ver con la rana en sí, sino que era debida a los alambres de hierro y latón, que al entrar en contacto con la humedad salina de la rana generaban electricidad.

Constituían, en verdad, una forma primitiva de célula electrolítica. Volta fabricó su pila con placas de cobre y cinc puestas en una solución salina. Luego construyó una batería más útil conectando una cantidad de estas unidades entre sí.Carlisle

El primer efecto importante que se descubrió con las corrientes eléctricas fue su facultad de descomponer en sus elementos componentes a ciertos compuestos químicos: la electrólisis. A principios del siglo XIX, dos científicos ingleses, Carlisle y Nicholson, conectaron los extremos de una pila de Volta a dos alambres de platino colocados en tubos que contenían ácido diluido.

De los alambres surgieron burbujas y se comprobó que las que salían de un cable eran de oxígeno y las que salían del otro eran de hidrógeno. Los químicos llegaron correctamente a la conclusión de que el agua había sido descompuesta en los elementos que la componen por el paso de la corriente eléctrica.

Con las pilas de Volta la electricidad podía producirse fácil y continuamente. Científicos de todas partes adoptaron la pila de Volta y la empezaron a utilizar para sus propios experimentos. Una de las grandes dificultades que encontraron fue que no se disponía de un método para medir la electricidad.

Hasta 1820 los únicos instrumentos de medición eléctrica se basaban en las fuerzas de atracción y repulsión entre cargas de electricidad estática y no servían para medir corrientes eléctricas. En 1819 salió a la luz un aspecto enteramente nuevo de la electricidad. Desde los días de Gilbert se pensaba que la electricidad y el magnetismo debían estar relacionados de alguna manera desconocida.

oersterdCuando Juan Oersted provocó la deflexión de una brújula magnética colocándole encima un cable que conducía una corriente eléctrica, demostró la naturaleza de esta relación —un conductor por el cual circule una corriente eléctrica se comporta como un imán—.

Al año siguiente Oersted demostró que el conductor queda rodeado por un campo magnético. Andrés María Ampére desarrolló estos descubrimientos con una maravillosa serie de experimentos, mediante los cuales pudo deducir claramente las leyes de atracción y repulsión entre cables conductores de corrientes eléctricas.

Como las fuerzas obedecían a ciertas leyes —y cuanto más grande la corriente mayor la fuerza que ejercía— este efecto pudo ser utilizado para precisas mediciones eléctricas. Es el principio en que se basan el galvanómetro y la mayoría de los amperímetros y voltímetros. Por primera vez la electricidad pasó a ser una ciencia exacta.

Jorge Ohm y más tarde Kirchoff pudieron establecer la relación existente entre corriente, voltaje (presión eléctrica) y resistencia en un circuito. Miguel Faraday fue el siguiente descubridor de importancia.

Siguió rápidamente el trabajo de Oersted empleando grandes bobinas de alambre para obtener poderosos electroimanes. Mediante éstos Faraday consiguió hacer el primer motor eléctrico sencillo. Las fuerzas actuantes entre dos bobinas, una fija y otra móvil, harían girar a esta última.

A continuación se les ocurrió a varios científicos que si una corriente eléctrica podía producir un campo magnético, la inversa también podría ampereser posible y un imán serviría para producir una corriente eléctrica. Durante 10 años Faraday estudió, este problema hasta que finalmente consiguió mostrar que una corriente variable en un conductor puede producir una corriente en un conductor cercano.

Este fenómeno se denomina ahora inducción electromagnética. El descubrimiento de Faraday condujo directamente al del dinamo, o principio del generador: cuando Una bobina gira dentro de un campo magnético en el cable se genera una corriente eléctrica.

edisonThomas Alva Edison, el científico e inventor estadounidense, desarrolló este concepto y construyó un generador eléctrico capaz de producir corrientes eléctricas mucho mayores que la pila de Volta. Ya era obvio que la electricidad en movimiento era una forma de energía.

En realidad, el generador eléctrico convertía la energía mecánica en eléctrica. Un cable que conduce corriente se calienta porque la resistencia del cable convierte parte de la energía eléctrica en calor. Ésta es la base de todos los aparatos eléctricos de calefacción o similares.

Humphrey Davy descubrió que la electricidad podía emplearse también para producir luz.

Conectó los terminales de una batería muy potente a dos varillas de carbón apenas separadas entre sí, y obtuvo una luz muy brillante; la primera lámpara de arco había sido inventada.

Edison introdujo la lámpara eléctrica haciendo pasar una corriente eléctrica a través de un fino filamento de carbón encerrado en una ampolla de vidrio, en cuyo interior había hecho el vacío. El filamento se ponía incandescente e iluminaba.

Hacia el año 1850, casi todos los efectos eléctricos importantes habían sido descubiertos y explicados. Había dos importantes excepciones. Una de ellas era la existencia de ondas electromagnéticas.

Jaime Clerk Maxwell demostró matemáticamente que las ondas, alteraciones electromagnéticas, están asociadas a todas las corrientes eléctricas variables, y Enrique Hertz, 24 años después (1887) produjo y detectó en la realidad las ondas previstas por Maxwell.

Maxwell

El descubrimiento condujo a la idea, desarrollada extensamente por Guillermo Marconi, de que las ondas electromagnéticas podían ser empleadas para transmitir mensajes sin cables, a través del aire. Al principio se las utilizó para enviar señales telegráficas y luego, en este siglo, para transmitir sonidos e imágenes.

Marconi

La pregunta acerca de qué era realmente la electricidad y qué era lo que fluía por el circuito eléctrico no fue contestada hasta 1897, en que J. f. Thompson descubrió el “ladrillo” de que estaba construida la electricidad: el electrón.

Mediante un fuerte campo eléctrico deflectó una corriente eléctrica que circulaba por el vacío y constatando en qué dirección se desviaba, probó que estaba constituida por cargas eléctricas negativas, o electrones. Roberto Millikan en 1911 demostró que el electrón transportaba la menor carga eléctrica posible. Las minúsculas partículas, presentes en toda materia, pueden ser distinguidas por la cantidad de electricidad que transportan.

boton

PRIMEROS ARTEFACTOS ELECTRICOS HOGAREÑOS

primeros artefactos elctricos para el hogar

Ver: La Era de la Energía Eléctrica

El Uranio en Argentina Reservas de Uranio en el Mundo

El Uranio en Argentina y Las Reservas en el Mundo

La energía nuclear  es la que se obtiene a partir de la transformación de una masa de materia radiactiva por procesos de fisión nuclear (división de núcleos atómicos pesados por bombardeo de neutrones) o de fusión nuclear (unión de núcleos atómicos muy livianos).

Este tipo de energía se obtiene en complejas instalaciones llamadas centrales nucleares o atómicas. Allí hay reactores que generan energía por fisión, utilizando como combustible el uranio. En la Argentina existen importantes reservas de uranio en Salta, Catamarca, La Rioja, Mendoza y Chubut.

Mineral de Uranio

La energía por fisión generada en las centrales atómicas impulsa el funcionamiento de turbinas que generan energía eléctrica. Alrededor del 8% de la generación de electricidad proviene de centrales nucleares. En la Argentina existen tres centrales atómicas: Atucha I , Atucha II (situadas en Zárate, provincia de Buenos Aires); Embalse (a orillas del Embalse de Río Tercero, Córdoba).

Además de electricidad, de la energía nuclear pueden obtenerse otros productos importantes para la medicina y la industria, como el cobalto y los radioisótopos. es la que se obtiene a partir de la transformación de una masa de materia por procesos de fisión nuclear (división de núcleos atómicos pesados por bombardeo de neutrones) o de fusión nuclear (unión de núcleos atómicos muy livianos).

Respecto al uranio en el mundo y en Argentina, el Dr. Domingo García, en el libro “Argentina, Una visión actual y prospectiva desde la dimensión territorial”, no informa lo siguiente:

“Las reservas mundiales comprobadas de mineral de uranio (denominadas “recursos razonablemente asegurados” en la terminología nuclear), agregando las reservas adicionales estimadas, permitirían obtener 3.340.000 toneladas de concentrado de óxido de uranio (U308), sustancia básica para elaborar el combustible que utilizan las centrales nucleoeléctricas.

De acuerdo con la tecnología actual, la duración de dichas reservas es de aproximadamente 50 años. Los países con mayores reservas son Australia (27%), Kazakhstan (17%), Canadá (15%) y Sud África (11 %). En cuanto a la producción de uranio, medida en tU (toneladas de uranio recuperable), cabe decir que en el año 2004 se produjeron 40.219 tU en el mundo. Los principales países productores son Canadá, con 11.597 tU (29%); Australia, con 8.982 tU (22%); Kazajstán, con 3.719 tU (9,2%); Níger, con 3.282 tU (8,2%), y Federación Rusa, con 3.200 tU (8%). Con respecto al consumo, las centrales eléctricas demandan alrededor de 66.529 tu. La producción llega a cubrir aproximadamente el 60% de la demanda.

Este desnivel obedece a razones tales como uso de stocks acumulados en años anteriores y transferencia de material que pasó del uso militar al civil. Precisamente esta oferta de material, que en su origen era para uso militar, afectó a los precios en el mercado del uranio, disminuyendo la rentabilidad de los productores, hecho que no estimuló el crecimiento de la producción.

Las centrales eléctricas nucleares fueron vistas desde sus comienzos, en la década de 1950, como una alternativa al uso del carbón, cuyo efecto contaminante sería así evitado. Sin embargo, accidentes ocurridos en varios países y en especial el de la central de Chernobyl, Ucrania, en 1987, generaron fuertes resistencias a la instalación y funcionamiento de estas instalaciones, participando en este movimiento organizaciones ecologistas.

Muchos establecimientos fueron cerrados hasta el presente, en unos casos por razones ambientales pero en muchos otros porque su tecnología fue superada. No obstante, en el mundo hay 30 plantas en construcción. Un caso curioso es el de Italia, que cerró sus cuatro centrales nucleares para protección del medio ambiente, pero importa el 50% de la energía eléctrica que consume desde Francia, país en el que el 78% de la electricidad es de origen nuclear.

A pesar de objeciones y cuestionamientos, las plantas electronucleares han alcanzado un importante desarrollo y suministran el 15% de la electricidad consumida en el mundo. Estos establecimientos están equipados con reactores que utilizan el combustible nuclear y producen calor que a su vez produce vapor de agua, el que hace funcionar la maquinaria que genera la electricidad. A fines del año 2006 había en el mundo 437 reactores en operación, cuya potencia instalada para producir electricidad es de 370 gw(e). Asimismo, había en construcción 30 reactores  con una potencia de 22,4 gw(e).

El país más importante es Estados Unidos, que cuenta con 103 reactores y una capacidad  instalada de 98.254 mw(e), teniendo uno en construcción, con una potencia de 1.200 mw(e). Le siguen: Francia con 59 reactores y 63.473 mw(e) -ninguno en construcción-; Japón con 55 reactores y 47.700 mw(e) -más dos en construcción que totalizan 2.285 mw(e)-; Federación Rusa con 31 reactores y 21.743 mw(e) -más cinco en construcción que suman 2.720 mw(e)-; Alemania con 17 reactores y 20.303 mw( e) -ninguno en construcción-; Corea del Sur con 20 reactores y 17.533 mw(e) -rnás uno en construcción con 950 mw(e)-.

Los principales países participan en la capacidad instalada mundial (de los reactores operativos) con los siguientes porcentajes: Estados Unidos, 26,5%; Francia, 17%; Japón, 13%; Federación Rusa, 6%; Alemania, 5,5%, y Corea del Sur, 4,7%.

Por número de reactores en operación, los principales países son los siguientes:

PAÍS

REACTORES %s/Total
EE.UU.10323.6
Francia5913.5
Japón5512.6
Federación Rusa317.0
Corea del Sur204.6

Con respecto a los reactores en construcción, India tiene seis, Federación Rusa cinco, China cuatro, Ucrania cuatro, Carea del Sur cuatro, Japón dos, República Eslovaca dos y Canadá dos. Siguen otros países con uno cada uno. Entre estos está la República Argentina, por la construcción de Atucha II.

Los países con mayor participación de la energía nuclear en la generación de electricidad 50n los siguientes: Francia, 78,3%; Lituania, 78,3%; República Eslovaca, 55,7%; Bélgica, 55,2%; Ucrania, 48%; Bulgaria, 40%; Carea del Sur, 35,5%, y Hungría, 35,3%. La electricidad generada por centrales nucleares alcanzó en el año 2006 a los 2.658 twh(e). Los países con mayor producción fueron Estados Unidos con 787.200 gwh(e) -30%-, Francia con 428.700 gwh(e) -16%-, Japón con 291.500 gwh(e) -11%-, Alemania con 158.700 gwh(e) -6%-, Federación Rusa con 144.300 gwh(e) -5,4%- y Carea del Sur con 141.200 gwh(e) -5,3%-.

La República Argentina cuenta con depósitos comprobados de mineral de uranio (recursos razonablemente asegurados) que llegan a las 8.800 tU Y recursos adicionales estimados por 4.200 tU. En la actualidad, los principales yacimientos conocidos, con recursos explotables son: Sierra Pintada (provincia de Mendoza), con reservas uraníferas evaluadas en 9.200 tU, Y Cerro Solo (provincia del Chubut), con reservas de 5.200 tU.

El Complejo Minero Fabril San Rafael es de mayor centro de producción del país, pero su actividad se encuentra detenida desde hace unos diez años, habiéndose optado por la importación.

La producción argentina de concentrado de uranio entre 1995 y 2006 fue la siguiente:

199565 tU
199628 tU
199728 tU
19987 tU
19994 tU
2000-20060 tU

En los datos precedentes se observa una gran caída en la producción de concentrado de uranio hasta llegar a ser nula a partir de 2000. Esta situación se debe a razones de costos, pues se ha preferido material importado, con menor precio. Actualmente se importan alrededor de 100 toneladas de concentrado de uranio por año.”

OTRA CARA DE LA EXPLORACIÓN DEL URANIO
CUESTIONAMIENTO DE LA ONG (Fundación para la defensa del ambiente (FUNAM)) Sigue promocionándose en Argentina la minería de uranio y la energía nuclear sin ningún tipo de consulta previa, e ignorando que organismos de energía atómica como CNEA, NASA y ARN protegen más sus propios intereses que la seguridad y la salud de la población. La mayoría de las minas de uranio cerradas siguen contaminando el ambiente porque no fueron remediadas, y en un barrio densamente poblado de la ciudad de Córdoba una sola empresa vinculada a CNEA, Dioxitek S.A., tiene enterradas sin membranas y sin aislamiento más de 36.000 toneladas de residuos radiactivos de uranio de baja actividad. No se comunica a la población las descargas rutinarias y accidentales de sustancias radiactivas desde las centrales de potencia (Atucha I, Embalse), ni se advierte que los depósitos de combustible radiactivo agotado de esas dos centrales, altamente radiactivos, pueden ser blanco de ataques terroristas y caída accidental de grandes aviones comerciales. Si esto sucediera, se generarían accidentes que equivaldrían a varios Chernobyl simultáneos (accidente nuclear grado 7 en la escala INES)
.

Fuente Consultada: “Argentina, Una visión actual y prospectiva desde la dimensión territorial”  Juan A. Roccatagliata

Centrifugado Aplicacion en los Ciclones Separador de Polvos

Centrifugado: Aplicación en los Ciclones

LA CENTRIFUGACIÓN
Una forma de separar las partículas que están suspendidas en un líquido consiste en dejarlo en reposo, con lo que dichas partículas se depositarán en el fondo al cabo de cierto tiempo, simplemente, por acción de la gravedad. Este proceso de separación, que se denomina decantación, es una operación frecuente en la industria.

Sin embargo, presenta graves inconvenientes; entre ellos, que se necesitan grandes depósitos para reposar los líquidos y que el tiempo de operación puede ser muy largo cuando las partículas que se trata de separar son excesivamente pequeñas, e incluso en ocasiones no se logra la decantación.

Para resolver estos problemas se desarrollaron las centrífugas, cuyo objeto primordial es el de aumentar por medios artificiales la fuerza de la gravedad que opera sobre el líquido y sus partículas, con lo que la tendencia de éstas a depositarse se multiplica paralelamente.

Esta gravedad artificial se logra por fuerza centrífuga, sometiendo la suspensión a un movimiento circular de gran velocidad. Se puede conocer y ajustar perfectamente a cada problema la fuerza correspondiente, que suele expresarse en unidades g o campos gravitatorios, es decir, una centrifugación a 2.000 g significa que se está aplicando al líquido una fuerza equivalente a 2.000 veces la fuerza de la gravedad.

Es interesante señalar que los datos de una operación expresados en revoluciones por minuto, como aparecen frecuentemente en publicaciones técnicas, no indican nado concreto, puesto que, por ejemplo, 5.000 r. p. m. en una determinada centrífuga proporcionan los mismos g que otra centrífuga distinta operando a 3.000 r. p. m. Esto sucede porque la fuerza centrífuga depende no sólo de la velocidad angular de la máquina, sino también del radio de giro.

La expresión matemática que relaciona todas estas velocidades es la siguiente:

formula centrifugado


en donde F, es la fuerza centrífuga expresada directamente en unidades gravitatorios g, S la velocidad de la máquina en revoluciones por minuto y R la distancia en centímetros del radio de rotación.

Por tanto, para reproducir un proceso de centrifugación que viene descrito en revoluciones por minuto, es necesario conocer la máquina (y por tanto, su radio de giro) que se ha utilizado. Con estos datos se calculan los g y se puede reproducir la operación en cualquier otra centrífuga parecida.

Con las centrífugas no sólo se ha resuelto la separación rápida de multitud de suspensiones, sino también el problema de los depósitos, puesto que existen centrífugas que operan a flujo continuo, es decir, entra el líquido por una parte en su interior y por otras salen los lodos o precipitados y el líquido clasificado.

El rendimiento de tales máquinas puede ser muy elevado, 50.000- o más litros por hora, lo que significa una gran economía en todos los aspectos (espacio, tiempo, materiales, etc.), aparte de la ventaja que supone en química industrial el poder realizar un proceso en régimen continuo.

Pero el adelanto en esta técnica ha llegado a límites insospechados. En la actualidad se dispone de centrífugas refrigeradas muy necesarias para la separación de materiales hábiles (sustancias biológicas, alimenticias, etc.). Por otra parte, existen centrífugas con las que se consiguen fuerzas centrífugas superiores a 200.000 g. (¡Doscientas mil veces la fuerza de la gravedad!) Estas máquinas suelen operar a vacío, ya que el rozamiento del aire impediría la enorme velocidad necesaria para alcanzarlas y, en el mejor de los casos, generaría una cantidad de calor excesiva.

Es fácil suponer que las posibilidades de separación que ofrecen estas centrífugas, cuya operación se puede programar y cumplir automáticamente, son inmensas. Incluso existen centrífugas, las centrífugas analíticas, que pueden separar las moléculas de diversos productos en solución verdadera (no en suspensión), a causa de sus diferentes pesos moleculares.

SEPARACIÓN DE POLVOS
Aunque existe un procedimiento clásico para separar sustancias pulverulentas por medio de tamices (cribas, con mallas de diverso espesor), tal sistema no se puede aplicar en muchas ocasiones.

En efecto, cuando se pretende recoger el polvo de una corriente gaseosa (aire, por ejemplo), bien para purificar dicho fluido c para aprovechar los sólidos que contiene, es difícil imaginar cómo podría conseguirse tal fin con unos tamices. En estos casos, se utilizan ciclones como el representado en la figura. El aire o gas cargado de polvo entra tangencialmente y a elevada velocidad en un cuerpo cilíndrico.

La fuerza centrífuga, creada por el movimiento rotatorio, despide el polvo hacia las paredes, donde, por choque, pierde la velocidad y cae, siendo recogido por la parte inferior, que tiene forma de tolva. El aire tratado sale por la parte superior.

Este procedimiento, cuya utilización era forzosa siempre que se presentaba un problema como el citado anteriormente, cada día es más utilizado, puesto que éste se ha hecho cada vez más frecuente. Hasta hace relativamente pocos años, el transporte de sustancias pulverulentas o gránulos finos en el interior de una fábrica se realizaba por medio de carretillas, zorras volcadoras, canjilones, etc.

Hoy día, las fábricas modernas utilizan cada vez más el transporte neumático, es decir, en el seno de una corriente de aire, porque ofrece claras ventajas (mayor automatismo, menor mano de obra, simplicidad técnica, pues el transporte de fluidos obedece a leyes muy definidas, etc.). Una aplicación más conocida de este sistema quizá sea la manipulación y carga de cereales (trigo) en los modernos silos y muelles.

En definitiva, el ciclón es, hoy día, un dispositivo de máxima actualidad. Una máquina muy parecida a la anterior, aunque algo más compleja, es el separador centrifugo. La diferencia con los ciclones reside en que, en este caso, el movimiento rotatorio del producto se obtiene mediante el rápido giro de un disco, al que acompaña también el de un sistema de paletas, cuya misión es crear corrientes de aire que permiten la clasificación del polvo; es decir, estos aparatos consiguen la separación y clasificación de polvo en partículas de diverso tamaño. En la figura adjunta se puede apreciar el esquema de uno de estos aparatos, que da idea de su funcionamiento.

Los separadores centrífugos de polvo se utilizan corrientemente en circuito con los molinos de finos, haciendo circular por el molino una corriente de aire que, a la vez que actúa como refrigerante, extrae el polvo, cuya presencia disminuye los rendimientos de la molienda. El aire cargado se pasa por el separador, el cual da una fracción gruesa, que vuelve al molino, y una fracción fina que se aprovecha directamente.

Ciclones separador de polvo

 

Fuente Consultada: Revista TECNIRAMA N° 67

Centrales Generadoras de Energía Electrica Con Basura

Centrales Generadoras de Energía Eléctrica Con Basura

GENERACIÓN DE ELECTRICIDAD Y CALOR CON BASURA: Cada día se acumulan en todo el mundo millones de toneladas de basura. Se calcula que la basura producida en Estados Unidos durante un año podría aportar tanta energía como 100 toneladas de hulla. Sin embargo, la mayor parte se entierra y jamás se aprovecha.

Cerca de la mitad de la basura desechada en los hogares de todo el orbe es papel; a los desperdicios de cocina corresponde la cuarta parte, y a los plásticos menos de la décima. Sólo una quinta parte no se quema y casi toda ésta puede reciclarse.

En Europa Occidental hay más de 200 Mantas donde se quema la basura para producir electricidad. Una gran planta londinense, que empezó a funcionar en 1974, quema unas 400 000 toneladas de desechos al año, con los que se calienta agua cuyo vapor hace funcionar generadores eléctricos, En 10 años la planta ha permitido ahorrar un millón Je toneladas de hulla.

En Dusseldorf, Alemania Occidental, seis plantas similares suministran vapor que genera electricidad para los sistemas de calefacción locales. Y en Peekskill, Estados Unidos, se ha construido una planta para procesar 2 250 toneladas de basura al día y generar 60 mega-vatios de electricidad, suficientes para una localidad de 70 000 habitantes.

En las fábricas también puede quemarse basura en vez de hulla o petróleo, pero antes hay que tratarla. Primero se separan las partículas orgánicas pequeñas, para convertirlas en abono. En Suiza, una cuarta parte del desperdicio sólido total se trata así y se rédela.

Después la parte pesada de la basura, que consta sobre todo de metales, debe clasificarse y retirarse, para dejar principalmente los desechos de papel y tela, que se venden como combustible.

Aun la basura callejera puede usarse como combustible. A medida que se descompone produce gas metano, idéntico al gas natural que se extrae del subsuelo. Cada tonelada de desechos permite obtener casi 230 m3 de metano. Este gas suele emerger de la basura a la superficie, y a veces causa explosiones. Sin embargo, es posible explotarlo a muy bajo costo para generar calor o electricidad. En más de 140 plantas de 1 5 países se hace, con un ahorro de 825 000 toneladas de hulla al año.

En otras plantas se aprovecha ese gas como combustible para generar electricidad, en vez de surtir con él la fluctuante demanda de las fábricas.

En el futuro podría mejorarse la producción de gas en los depósitos de basura con la adición de bacterias. Ciertas especies de éstas descomponen los desechos más rápidamente que otras. Al utilizar la mejor mezcla de bacterias para determinados desperdicios podrá obtenerse la cantidad óptima de gas.

Impacto de los desechos nucleares

El creciente empleo de la energía nuclear como fuente de energía eléctrica plantea un problema, ya que el combustible utilizado, el uranio, es radiactivo. Una exposición prolongada a la radiación daña a los organismos y puede resultar riesgosa para el ambiente. Los combustibles empleados en los reactores nucleares, una vez agotados, siguen desprendiendo una cantidad de energía considerable que puede conservar su toxicidad durante miles de años. Por eso, uno de los problemas que enfrenta la industria nuclear es cómo deshacerse de los residuos nucleares.

Aunque algunos países pusieron en práctica métodos de reciclaje, lo habitual es almacenarlos en recipientes especiales y enterrarlos en depósitos subterráneos o en el fondo del mar, en zonas estables y aisladas. Sin embargo, este método no parece ser la solución, ya que no permite recuperar lo depositado ni controlar el estado de los contenedores.

Se están buscando otros métodos para neutralizar los residuos nucleares y evitar que la radiactividad pase al ambiente, aunque ninguno es del todo fiable a largo plazo. Otro de los riesgos de las centrales atómicas son los accidentes nucleares, que liberan enormes cantidades de radiación al medio ambiente, como ocurrió en Chernobil (en el territorio de la ex URSS) en 1986.

Las partículas radiactivas liberadas en la atmósfera por explosiones nucleares o escapes de instalaciones y centrales nucleares se depositan sobre la superficie de la Tierra y pueden seguir siendo un riesgo potencial durante muchos años, ya que se acumulan en las cadenas alimentarias acuáticas o terrestres, y pueden llegar a los alimentos destinados al consumo humano. Para impedir esto, los ingenieros nucleares deben diseñar los sistemas intentando minimizar el riesgo de fugas accidentales.

Central Termoeléctrica Funcionamiento Centrales Generadores de Energia

Central Termoeléctrica – Generadores de Energía

En una central termoeléctrica, la producción de energía realiza a partir de la combustión de carbón, fuel-oil o gas en el interior de una caldera. Generalmente, este tipo de instalaciones se denominan centrales termoeléctricas convencionales, para diferenciaras de otras centrales termoeléctricas que, como las nucleares o las solares, generan electricidad también a través de un ciclo termodinámico, pero utilizando fuentes de energía diferentes de los combustibles fósiles y recurriendo a una tecnología muy avanzada mucho más reciente que la aplicada en las centrales termoeléctricas convencionales

Funcionamiento de las centrales termoeléctricas clásicas

Central TermoeléctricaSea cual sea el combustible fósil utilizado (fuel-oil, gas o carbón), las centrales termoeléctricas funcionan según el mismo esquema básico; las diferencias vienen dadas por el peculiar tratamiento que cada uno de los combustibles mencionados experimenta antes de ser inyectado en la caldera.

Asimismo, determinadas instalaciones, como los quemadores de la caldera, varían dependiendo de dicho factor.

Uno de los elementos esenciales de una instalación termoeléctrica es el depósito donde se almacena el combustible, ubicado dentro del propio recinto.

En las centrales de carbón, el mineral se tritura previamente en molinos, que lo convierten en polvo muy fino; de esta manera, la combustión resulta más fácil.

Desde el molino se envía a la caldera mediante chorros de aire precalentado. En las centrales de fuel-oil este componente se precalienta para asegurar su fluidificación; posteriormente proyectado en quemadores especialmente adaptados, cuyo diseño y funcionamiento es diferente si el combustible empleado es gas.

Las centrales mixtas disponen instalaciones aptas para quemar indistintamente todo tipo de combustibles fósiles.

Cuando el gas, el carbón o el fuel-oil ha llegado a la caldera, los quemadores provocan su combustión, como consecuencia de la cual se genera energía calorífica. Esta energía transforma el agua que transita por la vasta red de tubos que componen la caldera en vapor, a elevada temperatura.

A continuación, el vapor, a gran presión, penetra en la turbina, integrada por tres cuerpos de alta, media y baja presión unidos a un mismo eje. En el primero de estos cuerpos, el de alta presión, existen centenares de paletas o alabes de pequeño tamaño. En el segundo, los álabes, también numerosos, son mayores.

Finalmente, las paletas del cuerpo de baja presión son aun más grandes que las precedentes Con esta gradación de tamaños se aprovecha al máximo la fuerza del vapor puesto que éste va disminuyendo su presión poco a poco; ésta es la razón de que los álabes de la turbina crezcan en tamaño a medida que se pasa de un cuerpo a otro.

Antes de que el vapor penetre en la turbina es necesaria su deshumidificación. Si no se sometiera a dicho proceso, las diminutas gotas de agua que transporta en suspensión serían despedidas a gran velocidad contra los álabes, erosionando el mecanismo.

Así pues, el vapor de agua a presión provoca el giro de los álabes de la turbina y genera energía mecánica. Por otra parte, el eje que mantiene unidos los tres cuerpos de la turbina hace girar, a su vez, un alternador que se encuentra conectado a ella, produciendo energía eléctrica. Gracias al empleo de un transformador la energía eléctrica pasa a la red de transporte a alta tensión.

El vapor, cuya presión ha resultado ya muy debilitada, pasa a los condensadores, donde se enfría y se convierte nuevamente en agua. El agua retorna otra vez a los tubos que conforman las paredes de la caldera, reiniciándose así el ciclo productivo.

La protección del medio ambiente

La emisión de residuos a la atmósfera y los propios procesos de combustión que se producen en las centrales termoeléctricas tienen una incidencia importante sobre el medio ambiente. Para tratar de paliar, en la medida de lo posible, los daños que estas plantas provocan en el entorno natural, se incorporan a las instalaciones diverso elementos y sistemas.

El problema de la contaminación es máximo en el caso de las central termoeléctricas convencionales que utilizan como combustible carbón. En las de gas, los niveles de polución son mucho menores, prácticamente inapreciables plantas de gas. Sin embargo, la combustión del carbón tiene como consecuencia la emisión de partículas y ácidos de azufre.

Uno de los sistemas ideados para red volumen de estas emanaciones es la construcción de chimeneas de gran altura sirven para dispersar las mencionadas partículas en las capas altas de la atmósfera consiguiendo así que su nociva influencia sea mínima. Por otra parte, el empleo de filtros electrostáticos y precipitadores permite la retención de estas partículas les dentro de la propia central.

En las centrales de fuel-oil, la emisión de partículas sólidas es, como se ha indicado, mucho más pequeña. No obstante, ha de tenerse en cuenta la emisión de óxidos de azufre y hollines ácidos. El efecto de los primeros puede ser anulado parcialmente a través de diversos sistemas de purificación; los hollines pueden ser neutralizados gracias a la adición de neutralizantes de la acidez.

El proceso de combustión que se verifica en las centrales termoeléctricas constituye una forma de contaminación (contaminación térmica) que puede ser contrarrestada gracias a la instalación de torres de refrigeración. Como se ha indicado el agua que, tras ser convertida en vapor, se emplea para hacer girar la turbina enfriada en los condensadores para volver nuevamente a los conductos de la caldera.

La refrigeración se lleva a cabo utilizando el agua del mar o la de a cercano a la instalación; este agua recibe el calor incorporado por el agua de la central que atraviesa los condensadores. Cuando los caudales de los ríos son pequeños, las centrales emplean sistemas de refrigeración en circuito cerrado, a través de torres refrigerantes, para evitar así la contaminación térmica.

El agua caliente procedente de los condensadores penetra en la torre a determinada altura. De manera natural, el aire frío asciende de forma continua en la torre. El agua, al penetrar en ella desciende por su propio peso y, en su caída, tropieza con un sistema de rejillas colocadas de tal manera que la pulverizan hasta convertirla en una fina lluvia.

Cuando las gotas de agua que caen contactan con la corriente de aire frío ascendente, pierden su calor. El agua enfriada de esta manera retorna a los condensadores por medio de un circuito cerrado; el proceso de producción continúa eliminando los daños medioambientales.

En diversos países se han puesto en marcha proyectos encaminados a aprovechar estos residuos nocivos producidos por la combustión en las centrales termoeléctricas; asimismo, el exceso térmico de estas plantas puede servir para criar minadas especies marinas, cuyo desarrollo se beneficia del aumento de la temperatura de las aguas en las que se desarrollan.

La aplicación de las nuevas tecnologías

La gasificación del carbón in situ o el empleo de maquinaria hidráulica de arranque de mineral y de avance continuo son dos de los procedimientos utilizados para optimizar el aprovechamiento del carbón. Con estos sistemas es posible explotar yacimientos de poco espesor o bien aquellos en los que el mineral se encuentra disperso o mezclado en exceso.

La gasificación consiste en inyectar oxígeno en el yacimiento para provocar la combustión del carbón. Así se produce un gas aprovechable para generar energía eléctrica gracias a la instalación de centrales eléctricas en la bocamina.

El segundo de los procedimientos mencionados se lleva a cabo lanzando potentes chorros de agua contra las vetas de mineral, para provocar los denominados barros de carbón, que, a través de tuberías, son evacuados fuera de la mina. Por otra parte, puede mencionarse también el sistema de combustión de carbón en lecho fluidificado. Según este método, el carbón se quema en un lecho de partículas inertes (por ejemplo, caliza), a través del cual se hace pasar una corriente de aire que soporta el peso de las partículas, manteniéndolas en suspensión.

Finalmente, cabe citar diversas líneas de investigación con nuevas tecnologías, encaminadas a sustituir el fuel-oíl, en un intento de reducir la dependencia respecto del petróleo.

Funcionamiento de una Central Nuclear Caracteristicas y Partes

Funcionamiento de una Central Nuclear:
Caracteristicas y Componentes

INTROUDUCCIÓN HISTÓRICA: Un 12 de diciembre de 1942 comenzó a montarse, en Chicago, la primera pila atómica del mundo, a partir de trozos de uranio natural y óxido de uranio, separados por grafito. Conforme se fue aumentando su tamaño, la pila comenzó a hacerse crítica y a suministrar energía.

En un principio, la potencia de su energía sólo era de medio vatio, suficiente para encender una pequeña lamparilla de linterna. Diez días después, cuando aumentaron su diámetro a 8 metros, la potencia subió a 200 vatios.

No se continuó aumentando, debido a la peligrosidad de la radiación. Las modernas plantas de energía nuclear son capaces de suministrar energía a razón de más de 200 millones de vatios.

Aunque el primer reactor experimental produjo una potencia que hoy calificaríamos de anormalmente baja, sirvió, al menos, para demostrar que la fisión del núcleo atómico del uranio podría suministrar energía controlable. Unos pocos átomos de la pila se escinden, espontáneamente, en dos partes pesadas, liberando energía y fragmentos más pequeños, entre los cuales se encuentran los neutrones.

Éstos pueden ser capturados por otros núcleos de uranio y dar lugar a nuevas fisiones nucleares.

Por cada fisión se liberan varios neutrones, de tal modo que, si al menos uno de los que se producen en cada fisión es capturado, una única fisión espontánea puede dar lugar a una reacción en cadena. Se tendría, así, una fuente de energía continua (aunque no ilimitada).

En un pequeño trozo de uranio, los neutrones se dispersan con facilidad, pues son partículas rápidas y difíciles de capturar. Cuanto mayor sea el tamaño de la pila, más grande será el número de neutrones que no escaparán de ella y que podrán ser capturados para provocar la reacción en cadena.

Con un tamaño determinado, el número de neutrones que no escapan es justamente suficiente como para mantener la reacción a un nivel estacionario. Entonces, se dice que la pila, o el reactor, es crítico.

Una disminución de tamaño haría que la reacción no tuviera lugar; un aumento brusco iniciaría una reacción en cadena explosiva, que escaparía al control humano. Las bombas atómicas se basan, precisamente, en este fenómeno.

Desde 1942 se han construido reactores de muy diversos tipos. Los primeros eran puramente experimentales. Algunos se destinaron a la producción de plutonio, para preparar bombas atómicas. Hacia la mitad de los años 50 comenzó a utilizarse a escala comercial el calor producido por reacciones nucleares, para calefacción y para obtener energía eléctrica.

La energía eléctrica que consumimos se producirá cada vez en mayor proporción a partir de la energía nuclear. Actualmente, se construyen reactores pequeños, compactos, para la propulsión de barcos, submarinos y quizá también aeroplanos, cohetes y satélites artificiales.

FUNCIONAMIENTO: Las centrales nucleares constituyen un tipo específico de instalaciones termoeléctricas; aprovechan una fuente de calor para convertir en vapor a alta temperatura un líquido que circula por una red de conductos.

El vapor acciona el grupo turbina-alternador, generando energía eléctrica. La principal diferencia entre centrales nucleares y centrales clásicas es que, en las primeras, la fuente de calor se obtiene a partir de la fisión de núcleos de uranio

Funcionamiento de una Central Nuclear

(Icnografía tomada de Icarito)

La Fisión Nuclear

Con el nombre de fisión se conoce la reacción mediante la cual ciertos nucleos de elementos químicos pesados se escinden (se fisionan) en dos fragmentos como consecuencia del impacto de un neutrón. El resultado es la liberación de gran cantidad de energía que se manifiesta en forma de calor.

Los neutrones emitidos en la reacción de fisión pueden provocar, a su vez, nuevas fisiones de otros núcleos, siempre que se den determinadas condiciones. El proceso se conoce como reaccción nuclear en cadena.

Los descubridores de la reacción nuclear de fisión fueron O. Hahn y F. Strassman, que, en 1938, detectaron la presencia de elementos pequeña masa en una muestra de uranio puro irradiada por neutrones.

Los reactores

Los reactores nucleares son máquinas preparadas para iniciar, mantener y controlar una reacción en cadena de fisión nuclear; en cierto sentido, son las «calderas» de las centrales nucleares. El combustible que se consume en las centrales nucleares es el uranio.

A diferencia de lo que ocurre en las instalaciones termoeléctricas convencionales en las primeras no se produce reacción de combustión química alguna.

El conjunto de núcleo  del reactor está contenido en un recipiente de acero de varios metros de diámetro y cuya altura supera, generalmente, los 12 m. Las paredes de la denominada vasija del reactor alcanzan espesores de 25 o 30 cm.

La vasija del reactor y el conjunto de conductos por donde circula el líquido refrigerante, denominado circuito primario se encuentran en el edificio de contención, provisto de espesos muros preparados resistir hipotéticos movimientos sísmicos y evitar el escape de radiactividad en caso de accidente. Su forma suele ser esférica y está rematado por una cúpula.

ELECCIÓN  DEL COMBUSTIBLE

El uranio natural consta, principalmente, del isótopo de peso atómico 238 (uranio 238). Pero un átomo de cada 140 es de un isótopo más ligero: uranio 235. Éste se divide en dos cuando captura un neutrón, liberando energía y varios neutrones.

El uranio 238 absorbe neutrones, pero no se escinde; a veces, el neutrón absorbido pasa a formar parte del núcleo, trasformándolo en el de otro elemento: el neptunio.

Eventualmente, tras una desintegración se convierte en el núcleo del plutonio. Éste puede experimentar una fisión, es decir, puede romperse, liberando energía. No obstante, el uranio 238 suele limitarse a absorber los neutrones, que, de otro modo, llevarían adelante la reacción en cadena.

Con ello, el uranio 235 se ve privado de los neutrones que podrían activarlo. Luego, el uranio 238 constituye un estorbo en la mayor parte de los reactores; en cambio, el isótopo 235 es el que provoca y mantiene la reacción en cadena. Existen dos tipos principales de reactores: el rápido y el térmico. En cada uno de ellos se practican distintos métodos para impedir que el uranio 238 frene la reacción.

El primer reactor nuclear de 200 vatios era térmico; en él, los neutrones rápidos, procedentes de una fisión nuclear, se veían frenados por un moderador (barras de grafito).

El grafito no captura los neutrones, pero los frena; los neutrones lentos (cuya velocidad corresponde a la temperatura del medio en que se encuentran) reciben el nombre de neutrones térmicos. El uranio 238 no absorbe los neutrones térmicos, mientras que la probabilidad de captura de los neutrones por el uranio 235 es mayor para los térmicos que para los rápidos.

La mayor parte de los reactores empleados para la producción de energía eléctrica, a escala industrial, son reactores térmicos. En los reactores rápidos se emplea uranio como combustible, pero con una mayor proporción del 235. No se emplea moderador para frenar los neutrones.

Al aumentar la proporción de uranio 235 pueden tener lugar más fisiones nucleares, que compensan la absorción por parte del 238. Éste absorbe, con facilidad, los neutrones rápidos, siempre que sean lo suíicientemente energéticos (rápidos) como para convertir el uranio 238 en plutonio.

Los reactores rápidos se emplean en la producción de energía y en la producción de nuevo combustible. De hecho, producen más combustible del que consumen.

Esto no supone, como a primera vista parece, una violación de las leyes de conservación de la masa y la energía; lo que ocurre es que parte de la energía de fisión del uranio 235 se utiliza para convertir en plutonio (átomo fisible) el 238. Los reactores térmicos son mayores que los rápidos, porque éstos no llevan moderador. Las estructuras internas de estos reactores son distintas, ya que el reactor rápido es mucho más caliente que el térmico.

Componentes de una central nuclear

Como decíamos antes el combustible de la central nuclear, que se encuentra en el núcleo del reactor está formado, habitualmente, por una mezcla de isótopos fisionables e isótopos.

Dicho combustible ha de ser un elemento fisionable que, en ausencia de neutrones se mantenga estable el mayor tiempo posible, para que pueda ser manipuleado el uranio-233, el uranio-235 y el plutonio-239 son los tres isótopos que cumplen esta condición.

Entre ellos, únicamente el uranio-235 se halla presente en la naturaleza (aunque en muy baja proporción: el 0,7% del uranio natural); los otros dos se obtienen de manera artificial, a partir del bombardeo con neutrones del uranio-238 y del torio-232, denominados isótopos fértiles. Por su parte, estos dos últimos son isótopos fisionables con neutrones rápidos.

Los neutrones que resultan liberados como consecuencia de la reacción de fisión sufrida por los elementos fisionables pueden golpear, a su vez, a los elementos fértiles, los que, por su parte, dan lugar a nuevos elementos fisionables.

En función del tipo de reactor que posea la central nuclear se empleará una clase u otra de combustible.

Los más comunes son uranio natural, óxido de uranio natural y óxido de uranio enriquecido en su isótopo 235U. Habitualmente, el combustible se presenta en forma de pastillas incorporadas en el interior de vainas de acero inoxidable, de 1 cm. de diámetro y 4 o 5 m de longitud.

Las vainas forman conjuntos de sección cuadrada o circular, denominados elementos de combustible.

El moderador es otro de los elementos básicos de la central nuclear; se trata de un mecanismo que controla la velocidad con que los neutrones impactan en nuevos núcleos de uranio.

La presencia de determinadas sustancias, como el agua pesada, el berilio, el grafito o el agua ligera aseguran este proceso. El berilio es el menos empleado, debido a su elevada toxicidad.

El tercer componente fundamental son las barras de control, que se encuentran en el núcleo del reactor.

Las barras de control permiten regular el nivel de potencia de aquél. La potencia del reactor depende del calor generado en su núcleo, que se encuentra, a su vez, en relación con el número de neutrones que se ponen en acción durante la reacción de fisión en cadena.

Cuanto menor es el número de neutrones menor es la energía calorífica y, consecuentemente, la potencia.

Si no se actúa sobre el número de neutrones que se ponen en acción durante la reacción en cadena se logra el efecto contrario. Para regular el número de neutrones, se insertan en el núcleo determinadas sustancias que los absorben parcialmente; dichas sustancias reciben el nombre de barras de control del reactor.

Cuando las barras se encuentran totalmente introducidas en el núcleo del reactor, la absorción de neutrones intensa que el proceso de reacción en cadena no continúa. A la inversa, que se van retirando, el número de neutrones que se ponen en acción se incrementa, consiguiéndose así el restablecimiento de la reacción en cadena.

Generalmente las barras de control se fabrican a partir de la aleación de cadmio con plata, se incorporan berilio y aluminio, con el objetivo de incrementar su resistencia su resistencia a la corrosión.

Es también habitual la aleación de boro con acero. La extracción del calor del núcleo y su transporte hasta el grupo turbo-alternador se realiza a través de un fluido refrigerante, que se encuentra también en el interior del núcleo, en contacto con los elementos de combustible, el moderador y las de control.

El líquido refrigerante traslada el calor generado en el núcleo, de ra directa o bien a través de un circuito secundario, hasta el conjunto turbina-alternador, retornando posteriormente al núcleo del reactor, donde comienza nuevamente y el proceso.

Como refrigerantes más habituales hay que mencionar el agua ligera, el agua pesada, el Sodio, el litio y el potasio (todos ellos líquidos), así como el nitrógeno, el helio, el hidrógeno y el dióxido de carbono (entre los gaseosos).

OTRAS INSTALACIONES

Junto al edificio de contención, las centrales nucleares poseen instalaciones destinadas a operaciones concretas. El edificio de turbinas contiene el grupo o grupos turbina-alternador. En las centrales con sistemas de refrigeración integrados por un único circuito, el edificio está protegido, puesto que el vapor que mueve los alabes de la turbina puede arrastrar elementos radiactivos.

Los reactores provistos de dos circuitos de refrigeración no precisan de este control, dado que el líquido del circuito secundario no entra en contacto con el refrigerante del reactor y, consecuentemente, no transporta elementos radiactivos.

En el recinto de manipulación de combustible se almacenan las nuevas cargas de este elemento así como combustible ya empleado, que, posteriormente, se traslada al centro de reprocesamiento para extraer de él los materiales aprovechables.

Este edificio y el de contención están interconectados para asegurar el traslado de elementos radiactivos sin salir de la zona controlada de la central, que se encuentra aislada de las restantes de dependencias.

Las centrales nucleares cuentan, asimismo, con un sistema que permite refrigerar el vapor a alta temperatura que acciona los alabes de la turbina antes de que éste retorne al reactor, donde se reinicia el ciclo productivo. Finalmente, existen en una planta nuclear edificios de salvaguardia y equipos auxiliares, donde se los sistemas de emergencia (para los casos de avería) y los sistemas auxiliares propiamente dichos (recarga del combustible, puesta en marcha del reactor, etc.

dependencias destinadas al tratamiento de aguas y al almacenamiento temporal de residuos, laboratorios, talleres y un parque eléctrico propio —empleado para las operaciones de parada segura del reactor en casos de emergencia— completan las instalaciones y edificios de una central nuclear.

Funcionamiento de una central nuclear

Una vez que se ha realizado la carga de combustible en el reactor se inicia la reacción de fisión en cadena mediante un isótopo generador de neutrones, que permite la entrada en actividad de los átomos de uranio contenidos en el combustible.

El moderador proporciona a los neutrones el nivel de energía cinética que garantiza la Continuidad de la reacción en cadena. Las barras de control se introducen en el núcleo del reactor en mayor o menor medida, para absorber más o menos neutrones y mantener el grado de Potencia adecuado.

Las continuas reacciones de fisión que se verifican en el núcleo determinan grandes cantidades de energía en forma de calor.

Esta energía calorífica eleva la temperatura del fluido refrigerante que circula por la red de conductores A partir de aquí, en función del tipo de reactor, el proceso varía.

En los reactores de agua a presión, el fluido (agua ligera) circula de manera continua por un circuito primario cerrado, que conduce el refrigerante hasta el generador de vapor. Allí, el fluido a elevada temperatura convierte en vapor el agua que circula por un circuito secundario también cerrado. El agua del primer circuito no entra nunca en contacto con la del segundo.

Por su parte, el vapor de agua del circuito secundario es enviado al grupo o grupos turbina-alternador En los reactores de agua en ebullición sólo existe un circuito; el propio refrigerante se convierte en vapor por efecto del calor, en la misma vasija, y es enviado al grupo turbina-alternador tras accionarlo, el fluido se refrigera y se condensa de nuevo, para volver al núcleo y reiniciar el proceso.

En ambos casos, el vapor mueve los alabes , la turbina y el alternador unido a ella generando energía eléctrica como resultado de un ciclo termodinámico convencional.

En los reactores de agua a presión, el fluido refrigerante, una vez que ha vaporizado el agua del circuito secundario, retorna al núcleo del reactor El vapor, tras accionar el grupo turbina-alternador es enfriado nuevamente y vuelve a su estado líquido, para pasar inmediatamente por una batería de precalentadores. A continuación retorna al generador de vapor, para repetir el ciclo.

V

PARA SABER MAS…
ELECCIÓN DEL REFRIGERANTE
El refrigerante absorbe el calor para cederlo en un cambiador de calor, donde, si lo que se pretende es obtener energía eléctrica, se calienta un vapor para accionar los generadores eléctricos. El refrigerante se hace circular para que, después de haber entregado el calor, vuelva al reactor, a calentarse nuevamente y repetir el ciclo.

Conviene usar el mismo refrigerante una y otra vez, porque se contamina de radiactividad, y el manejo de sustancias contaminadas resulta bastante costoso. Como refrigerante, suele utilizarse el anhídrido carbónico, pero el uso del agua y del agua pesada es también frecuente. Todos estos productos pueden emplearse en reactores térmicos.

Los reactores rápidos plantean problemas de refrigeración algo mayores. El reactor es, de por sí, compacto; hay poco espacio para el refrigerante, y éste debe ser de mayor capacidad térmica (aptitud para almacenar calor) y mayor conductividad térmica que los gases y líquidos utilizados en los reactores térmicos. Para refrigerar reactores rápidos se emplean metales, como el sodio y el potasio, en estado líquido. Por su parte, estos metales plantean problemas de ingeniería, pues son muy corrosivos.

MODERADORES
Los moderadores sólo se usan en los reactores térmicos lentos. Los neutrones que salen de los núcleos de uranio 235 escindidos chocan con los átomos del moderador. Los mejores moderadores poseen dos propiedades: no absorben neutrones (que se limitan a rebotar en los átomos del moderador) y son de sustancias relativamente ligeras.

Cuanto más ligeros son los átomos del moderador, mayor es la energía que ceden los neutrones al chocar con ellos; por tanto, serán necesarias menos colisiones con los átomos moderadores para alcanzar velocidades térmicas. El grafito es el moderador más usado.

En algunos reactores, el combustible se disuelve en el moderador (que también actúa como refrigerante). El combustible está formado por sulfatos o nitratos de óxido de uranio, y el refrigerante —a la vez, disolvente y moderador—, es agua o agua pesada.

CONTROL DE LA REACCIÓN
La clave de todas las reacciones nucleares en cadena reside en el flujo de neutrones. Cuando éste aumenta, la reacción se acelera (incluso puede escapar al control); cuando disminuye, la reacción puede frenarse tan aparatosamente como en el caso anterior. Las válvulas de seguridad de los reactores nucleares son barras de boro o cadmio. Ambas sustancias absorben neutrones. Al introducir las barras, la reacción se frena; al sacarlas del reactor, se acelera.

Pero, en una reacción en cadena, las reacciones pueden tener lugar muy de prisa. Si el número de neutrones que desencadenan nuevas fisiones aumenta en sólo un 1 %, se produce tal cantidad de colisiones por segundo que el número de neutrones del reactor puede aumentar 25.000 veces cada segundo. La variación del número de neutrones debe, pues, detectarse y regularse muy rápidamente.

Tal velocidad en el aumento del número de neutrones es, virtual-mente, imposible de controlar. De hecho, todos los reactores nucleares habrían explotado hace mucho tiempo, si no fuese por un pequeño 0,8 % de neutrones a los que les lleva algún tiempo desprenderse del núcleo escindido. Por término medio, este 0,8 % del total de neutrones tarda 10 segundos en ser emitido, lo que deja margen suficiente para la detección y la regulación.

Los neutrones son aún más veloces en un reactor rápido. Por ello, sorprende que el reactor rápido se controle, virtualmente, a sí mismo. Ocurre, sin embargo, que existe un equilibrio entre la velocidad de los neutrones, la temperatura del reactor y la mayor o menor facilidad con que el uranio 235 absorbe mejor los neutrones lentos que los rápidos. Cuando el reactor se calienta y los neutrones se aceleran, el uranio 235 los absorbe en menor cantidad, la reacción en cadena se detiene, el reactor se enfría, los neutrones se frenan y se restablece la situación de equilibrio.

Central Hidroeléctrica Funcionamiento y Descripción

Funcionamiento de una Central Hidroeléctrica

Durante siglos y siglos, el hombre, que supo subyugar las fuerzas de la naturaleza tales como el fuego, el viento y el agua, no conocía más combustible que la madera. Hasta que, en el siglo XVIII, se inició en Europa la revolución industrial.

En esta época la técnica hizo progresos pasmosos gracias a toda clase de innovaciones y de inventos. Uno de los principales, entre estos descubrimientos, fue el de la máquina de vapor. Como esta máquina exigía grandes cantidades de combustible, provocó la puesta en explotación de algunos yacimientos de carbón; de este modo, el siglo XIX se convirtió en el siglo de la hulla.

Pero el hombre, una vez en el buen camino, no se detuvo, y ese combustible se convirtió a su vez en la base de una nueva fuente de energía: la electricidad. Pero, con vistas a la fabricación de la electricidad, la hulla sufrió muy pronto la competencia de una poderosa rival: la fuerza hidráulica. En la actualidad, los dos pilares sobre los que se sostiene el progreso técnico son el petróleo , la electricidad y la energía atómica.

Hoy día la producción de electricidad se distribuye como sigue: 45 % corre a cargo de centrales térmicas, que utilizan carbón, , 40 % por centrales hidroeléctricas, que utilizan la fuerza propulsora del agua y un 15% energía atómica.

Las centrales hidroeléctricas, es decir, las que producen energía eléctrica por la acción de una fuerza hidráulica, pueden dividirse en dos grupos. En primer lugar tenemos las centrales hidroeléctricas establecidas en la corriente que utilizan esencialmente el caudal del curso de agua y que sacan su fuerza del volumen de agua que pasa por un lugar determinado en cada unidad de tiempo. En el segundo grupo englobamos las centrales construidas al pie de una presa. El agua retenida por ésta forma un lago artificial llamado  pantano,  que  acumula inmensas reservas de energía.

DESCRIPCIÓN GENERAL: Las centrales hidroeléctricas son instalaciones que aprovechan la energía potencial contenida en el agua transportada por los ríos para convertirla en energía eléctrica Para ello, emplean un sistemas de turbinas acopladas a alternadores.

Represa Hidroelectrica Central ElectricaLas centrales hidroeléctricas actúan a partir de la energía potencial del agua embalsada a niveles superiores con respecto al punto donde se encuentra situada la central.

Durante la caída, el agua se transforma en energía cinética que se aplica al movimiento de turbinas hidráulicas unidas a generadores, para su transformación en energía eléctrica. Una turbina hidráulica es una rueda forma tas curvas denominadas alabes, sobre las que actúa la corriente de agua, las en movimiento.

Hay que recordar que un generador funciona sobre la base de los principios de la inducción electromagnética, descubierta en 1831 por Faraday, que logró crear una corriente eléctrica al mover un imán junto a un circuito eléctrico cerrado.

Existen dos tipos de generadores, los que originan una corriente eléctrica continua, dínamos, y los que crean una corriente alterna, denominados alternadores.

La potencia de una central hidroeléctrica viene determinada por el producto del caudal, el volumen de agua que puede ser desalojado por segundo y el salto de diferencia de altura existente entre la situación del agua y el lugar donde se sitúa la turbina.

El emplazamiento

Dado que, normalmente, el caudal de los ríos no asegura una aportación regular de agua, la construcción de una central hidroeléctrica requiere del embalse previo del agua , en una presa. Se forma así un lago artificial en el que puede generarse un salto a partir del cual se libera la energía potencial de la masa de agua, que se transforma posteriormente en energía eléctrica.

El emplazamiento de una central hidroeléctrica viene condicionada lugar, por las peculiaridades orográficas del terreno. No obstante, existen dos modelos básicos: el aprovechamiento por derivación de las aguas y el aprovechamiento acumulación.

Aprovechamiento por derivación

En este primer caso, las aguas del río se desvían mediante la construcción de una pequeña presa hacia un canal que las conduce hasta un depósito, la cámara de carga procurando que la pérdida de nivel sea mínima.

Aprovechamiento por acumulación

En las centrales de aprovechamiento por acumulación se construye una presa a altura determinada, en un tramo del río que presenta un desnivel apreciable. De esta manera, el nivel del agua se sitúa en un punto cercano al extremo superior de la presa. Para aprovechar el volumen de embalse de la cota superior, a medía altura se emplaza la toma de aguas; en la base inferior se sitúa el sistema de turbina-alternador

//historiaybiografias.com/archivos_varios5/corte_central.jpg

Funcionamiento de una central hidroeléctrica:
componentes principales

La presa

Se trata de un elemento esencial en los aprovechamientos hidráulicos. Existen dos grandes tipos de presas, las de gravedad y las de bóveda. En el primer caso, el propio peso del muro de la presa sirve para contener el agua. En las presas de bóveda, Li contención de las aguas se consigue mediante el empuje que ejercen los dos extremos del arco formado por la presa sobre las paredes laterales de la roca.

Aliviaderos

En la pared principal de la presa existen puntos donde parte del agua retenida se libera sin necesidad de que pase previamente por la sala de máquinas, donde se localiza el sistema de turbina-alternador Los aliviaderos entran en funcionamiento cuando se producen grandes avenidas en el río o para asegurar las necesidades del riego.

La salida del agua por los aliviaderos se regula gracias a la presencia de grandes puertas metálicas. La energía de caída del agua ha de ser disipada para evitar cause daños en su caída a los terrenos emplazados aguas abajo de la presa. La instalación de cuencos de amortiguación permite guiar la corriente.

Tomas de agua

Se sitúan en la pared anterior de la presa, la que da al embalse. Desde las agua parten diversas conducciones que se dirigen hacia las turbinas. Unas compuertas permite regular el volumen de agua que llega a la sala de máquinas otra parte, la existencia de rejillas metálicas impide el acceso de elementos tales como troncos o ramas, que podrían dañar la maquinaria. Desde la toma de agua pasa a una tubería forzada que atraviesa el cuerpo de la presa y con hacia las máquinas de la central. En el interior de la tubería, el agua transforma la energía potencial en cinética, es decir, adquiere velocidad.

La sala de máquinas: turbina y alternador

La turbina y el alternador son los mecanismos esenciales de la central hidroelélectrica. Cuando el agua llega a las máquinas, actúa sobre los alabes de la turbinas,—girar el rodete y perdiendo energía. El rodete de la turbina permanece unido al rotor del alternador, que, al girar con los polos excitados por una corriente induce una corriente alterna en las bobinas del estator del alternador.

Cuando ha cedido su energía, es restituida nuevamente al río, aguas abajo de la instalación. Unido al eje de la turbina y el alternador gira un generador de corriente empleado para excitar los polos del rotor del alternador. De esta manera, en los terminales del estator aparece una corriente alterna de media tensión y alta intensidad. Mediante un transformador esta corriente altera sus propiedades y pasa a ser alta tensión y baja intensidad. Se encuentra ya disponible para ser transportada mediante líneas de alta tensión hacia los centro de distribución y consumo

Central Hidroeléctrica de Bombeo

Las centrales de bombeo constituyen un tipo especifico de instalaciones hidroeléctricas. Están pensadas para el máximo aprovechamiento de la energía del agua.

Una central hidroeléctrica de bombeo consta de dos embalses emplazados a diferente altura. En las horas en que la demanda de electricidad es máxima, el funcionamiento del sistema no difiere del de las centrales hidroeléctricas convencionales. Así, el agua almacenada en el embalse superior provoca con su caída el giro de una turbina que se encuentra asociada a un alternador. Finalizada esta operación, el agua permanece almacenada, gracias a la presencia de una presa en un embalse construido a nivel inferior.

Cuando la demanda de electricidad disminuye, el agua almacenada en el embalse inferior se bombea hacia el superior, haciendo posible que el ciclo se reinicie. Para ello, la central está provista de motobombas, o bien de turbinas reversibles que pueden actuar como bombas, y alternadores que funcionan como motores.

Las centrales termoeléctricas no pueden adaptarse a los cambios de demanda señalados, puesto que están diseñadas para producir de manera estable. Puede darse el caso de que, en un momento de poca demanda, se esté generando un volumen de energía eléctrica excesivo. Dado que la energía no puede almacenarse, en las centrales de bombeo puede aprovecharse la generada en la central termoeléctrica —.funcionando a su mínimo técnico— para elevar el agua desde el embalse inferior al superior.

Una vez que el agua ha sido recuperada, la central de bombeo se utiliza nuevamente como central hidroeléctrica convencional, a lo largo del periodo del día en que la demanda es mayor. En suma, las instalaciones hidroeléctricas de bombeo evitan la pérdida de un importante volumen de energía, optimizando el aprovechamiento de los recursos hidráulicos.

Centrales Solares-Generar Energia Electrica con el Sol

Centrales Solares: Generan Energía Eléctrica con el Sol

1-Central Solar
2-El Sol Un Gigantesco Reactor
3-Aprovechamiento de la Energía Nuclear
4-Centrales Solares de Torre Central
5-Centrales solares con discos parabólicos
6-Sistemas solares fotovoltaicos
7-Ejemplos Prácticos (Ir)

Central solar: Las centrales solares son instalaciones destinadas a aprovechar la radicación del Sol para generar energía eléctrica. De manera general, puede decirse que las principales aplicaciones de los sistemas de aprovechamiento solar de baja y media temperatura se dan en el ámbito doméstico o industrial; son los sistemas basados en alta temperatura los que1 de manera específica, se utilizan para la producción de electricidad

Colectores Solares de Una Central En Europa

Colectores Solares de Una Central En Europa

El Sol, un gigantesco reactor nuclear

Tras la crisis de los años setenta, diversos países pusieron en marcha una política de diversificación energética, encaminada a la explotación de fuentes de energía alternativas. Entre ellas, la solar ocupa un lugar destacado. Los distintos sistemas de aprovechamiento solar se basan en la utilización de la enorme cantidad de energía que emite el Sol y que llega a la Tierra en forma de radiación.

En este sentido, el Sol, una enorme masa gaseosa formada, sobre todo, por helio, hidrógeno y carbono, actuaría como una especie de reactor de gigantescas dimensiones. Efectivamente, en el interior del Sol se producen continuamente reacciones nucleares de fusión, en las cuales dos átomos de hidrógeno se fusionan para formar uno de helio y liberar en el proceso gran cantidad de energía.

Únicamente una parte de ésta llega de forma efectiva a la superficie de la Tierra; la restante retorna al espacio por efecto de la reflexión y refracción provocadas por la presencia de la atmósfera terrestre, o bien es absorbida por las sucesivas capas atmosféricas.

La energía solar alcanza la Tierra por radiación directa o bien como reflejo de la radiación solar absorbida por el aire y el polvo (radiación difusa). La primera se aprovecha de forma masiva gracias a la tecnología actual; para poder utilizar la segunda existen sistemas específicos, como los colectores planos y las células fotovoltaicas.

Las ventajas de la energía solar se encuentran en su carácter inagotable. Utilizando la tecnología adecuada, es posible concentrar la enorme temperatura generada1 para poner en funcionamiento ciclos termodinámicos de elevado rendimiento.

El principal problema es la forma en que esta energía llega a la superficie terrestre de manera semialeatoria y dispersa, con fuertes oscilaciones en función de las horas del día, las peculiaridades climatológicas, las regiones del planeta o el ciclo estacional.

Por otra parte, la energía solar no puede almacenarse; ha de ser transformada inmediatamente en otra forma de energía, como calor o electricidad Finalmente, su captación requiere de instalaciones que, en buena medida, resultan todavía muy costosas.

El aprovechamiento de la energía solar: La vía térmica y la vía fotovoltaica

Actualmente existen dos formas principales de aprovechamiento de la energía solar: la térmica, que convierte la energía procedente del Sol en calor, y la fotovoltaica, que la transforma  en energía eléctrica.

En los sistemas solares basados en la vía térmica se distinguen tres modalidades de baja, media y alta temperatura Los primeros funcionan a partir de colectores que transmiten la radiación en forma de calor hasta un fluido que circula por conducto y alimenta sistemas de calefacción, climatización, etc. Aprovechan la energía solar. temperaturas de entre 35° y 100 °C.

Las principales instalaciones de media temperatura empleadas, generalmente, para producir vapor utilizado en aplicaciones industriales, son las de colectores distribuidos Constan de un conjunto de colectores de concentración normalmente de forma cilíndrico-parabólica —para favorecer una eficaz absorción de la radiación solar—, que, tras captar la energía solar la transmiten a un fluido (por ejemplo, aceite térmico) en forma de calor. El fluido se calienta y transporta la energía calorífica a través de un circuito primario hasta una caldera, de donde se transfiere otro fluido que transita por el circuito secundario.

Este segundo fluido, normalmente agua, pasa al estado de vapor a alta temperatura, y es enviado al grupo turbina-alternador donde generará energía eléctrica en virtud de un ciclo termodinámico convencional, o bien será empleado para alimentar procesos industriales.

Este tipo de instalaciones disponen, además, de un elemento que permite almacenar la energía calorífica para afrontar las fluctuaciones de la radiación solar. En este solo, el fluido del circuito secundario envía previamente su calor al sistema de almacenamiento antes de llegar al grupo turbina-alternador La modalidad de media temperatura aprovecha la energía solar a temperaturas de entre 100 y 300 °C. Por su parte, los sistemas de alta temperatura pueden ser aprovechados para proveer energía eléctrica.

Centrales solares de torre central

El tipo de planta más común es la denominada central termoeléctrica de receptor central, integrada por una vasta superficie cubierta de grandes espejos que reflejan la radiación del Sol, concentrándola en un pequeño punto.

Son los denominados helióstatos. Provistos de mecanismos específicos conectados a un ordenador centre estos espejos direccionales se van moviendo según dos ejes de giro, de manera que en todo momento, se encuentran en la posición idónea para recibir la máxima intensidad de la radiación solar y para concentrarla de modo eficaz en el receptor central. Generalmente, el punto receptor se dispone sobre una caldera situada de una torre de gran altura; en este caso se trata de centrales solares de tipos central.

En la caldera, la energía calorífica de la radiación solar reflejada es absorbida por un fluido térmico, que va a parar a un generador de vapor. Allí transfiere hasta un segundo fluido, que se encarga de poner en movimiento los álabes grupo turbina-alternador, para generar energía eléctrica. En una fase posterior, el fluido se condensa en un aerocondensador, para la repetición del proceso.

Intercalados en el circuito de calentamiento existen sistemas de almacenamiento térmico, destinados a aumentar y estabilizar la producción de la central sola, que como se ha indicado, depende estrechamente de las horas de insolación. El fluido secundario transmite hasta el dispositivo de almacenamiento la energía calorífica de llegar al grupo turbina-alternador.

Centrales solares con discos parabólicos

En este tipo de instalaciones, las superficies reflectantes adoptan la forma geométrica de un paraboloide de revolución. En el foco del paraboloide, donde se localiza el receptor, se concentra la energía solar captada. El receptor opera como un intercambiador de calor, a través del cual circula el fluido portador de calor. El máximo aprovechamiento de la energía solar se logra gracias a que los discos posee un sistema de seguimiento de la trayectoria solar según dos ejes. Cada uno de los discos parabólicos puede actuar como unidad independiente o bien integrar un conjunto, originando, al operar de forma interconectada, un sistema de mayor potencia.

Sistemas solares fotovoltaicos

a transformación directa de energía solar en energía eléctrica se verifica a través dE instalación de paneles provistos de células fotovoltaicas Como cualquier onda electromagnética la luz del Sol transporta energía en forma de un flujo de fotones. Cuando los fotones inciden sobre un determinado tipo de materiales, y siempre que existan las condiciones adecuadas, provocan una corriente eléctrica. Es el denominado efecto fotovoltaico

Las células fotovoltaicas (también llamadas simplemente células solares) son, por tanto, pequeños elementos fabricados con materiales semiconductores cristalinos -normalmente silicio—, que, cuando son golpeadas por la radiación solar, transforman la energía luminosa en energía eléctrica, en virtud del mencionado efecto fotovoltaico.

Las instalaciones que aprovechan la energía solar a partir de células fotovoltaicas han alcanzado menor difusión que las plantas basadas en sistemas de aprovechamiento por vía térmica. Razones económicas explican, al menos en parte, este diferente nivel de desarrollo entre una y otra modalidad.