Una Central Nuclear

Historia del Descubrimiento De Los Rayos X Biografia de Roentgen

Historia del Descubrimiento De Los Rayos X- Biografía de Roentgen

«La suerte llama a las puertas de los espíritus preparados para recibirla», decía Pasteur.

El 8 de noviembre de 1895 un profesor alemán de física acerca accidentalmente su mano a un tubo de rayos catódicos y observa con asombro que sus huesos se proyectan sobre una pantalla.

Wilhem Konrad Roentgen descubrió, mientras realizaba experimentos con un tubo de rayos catódicos, la existencia de unos misteriosos rayos capaces de atravesar los objetos e impresionar una placa fotográfica.

Roentgen los llamó rayos X, pues desconocía su naturaleza. Ahora se sabe que los rayos X son una radiación electromagnética invisible que tiene la propiedad de atravesar los cuerpos sólidos.

https://historiaybiografias.com/bullet_explorar.jpg

Los Rayos X Descubrimiento La historia del descubrimiento de  los rayos X se inicia con una serie de investigaciones y experimentos que realiza el científico William Crookes de nacionalidad británico, quien estudió las reacciones de ciertos gases al aplicarles descargas de energía.

Para las experiencias científicas se utilizó  tubos al vacío, y electrodos para crear corrientes de alto voltaje.

Llamó a estos tubos especiales, tubo de Crookes.

Al estar en las proximidades de placas fotográficas, estos tubos generaban en las placas algunas imágenes borrosas. Pese al descubrimiento, Crookes no continuó investigando este efecto.

Ver También: Historia de la Medicina

Veamos como sigue esta historia…

HISTORIA DEL DESCUBRIMIENTO: Este cientifico alemán Wilhelm Conrad Roentgen (1845-1923), centró su atención en la capacidad de los rayos catódicos para hacer fluorescentes las diversas materias.

Colocó ciertos productos químicos, conocidos por su fácil fluorescencia, en el interior de un tubo de rayos catódicos, rodeó éste de papel negro y oscureció la habitación para observar la pálida fluorescencia resultante.

El 5 de noviembre de 1895 puso en funcionamiento su tubo de rayos catódicos, y en medio de la palidez reparó en un destello de luz que no procedía del tubo: estaba brillando una hoja de papel recubierta con platinocianuro de bario (uno de los productos químicos que se proponía utilizar).

El brillo cesó en cuanto desconectó el tubo de rayos catódicos. La radiación emergía claramente del tubo cuando los rayos catódicos fluían, y penetraban la materia en alguna medida.

Rontgen ignoraba de qué radiación podía tratarse, y por eso le dio el nombre de rayos X, pues x es el símbolo usual de una cantidad incógnita en matemáticas.

Publicó el hallazgo el 18 de diciembre de 1895.

Respecto a este descubrimiento podemos decir que fue una de las mayores deudas que la medicina ha contraído con la física es sin duda alguna el descubrimiento de los rayos X por Roentegn. El hallazgo supone la culminación práctica de una línea de investigaciones y, en un mayor nivel de importancia, un camino para profundizar en la exploración del enfermo.

Las ventajas que ha reportado la radiología son incalculables; Roentegn representa la cúspide de lo que podríamos considerar, hoy en día que las ramas de la historia se multiplican, la historia de la exploración médica. La medicina aplicó inmediatamente las posibilidades que le ofrecía el hallazgo.

Roentegn pudo vivir las enormes aplicaciones que impulsaba su obra. Es decir, en primer término se creó la radiografía, la cual fue inmediatamente estudiada por el cirujano en el diagnóstico y localización de fracturas, luxaciones, cuerpos extraños y proyectiles.

-El Día De La Gran Experiencia-

Wilhelm Conrad Roentgen, (ó Roentegn) un profesor de la Universidad de Würzburg, haciendo experimentos con los tubos catódicos para demostrar la existencia de ondas y confirmar así la teoría alemana, descubre por casualidad los rayos X.

Fue en una tarde del 8 de Noviembre de 1895, había recubierto su tubo catódico con cartón negro trataba de ver si, tal como decía Lenard, ciertas ondas salían del tubo.

Muy cerca tenía una pantalla fluorescente con el fin de comprobarlo. ¡Cuál no fue su sorpresa cuando ve el esqueleto de su mano proyectado sobre la pantalla fluorescente!

Reemplaza entonces la pantalla fluorescente por una placa fotográfica y obtiene de esta forma el primer cuché radiológico, la primera radiografía: los huesos de su dedo en claro sobre fondo negro… Así pues, ¿qué son esos rayos misteriosos que penetran la materia, pero que se detienen ante los huesos?

  Roentegn no lo sabe, lo único que sabe es que ha hecho un gran descubrimiento. Se lo dice a su mujer pero, en un estado un poco paranoico, ni siquiera le dice de qué se trata. Trabaja en ello día y noche. Repite una y cien veces los experimentos.

Todo cuadra. Eso es!, ha descubierto unos rayos nuevos. Los rayos catódicos son ondas. Los alemanes tienen razón.

Publica su trabajo y a esos rayos los llama rayos X (X es el factor desconocido por excelencia en álgebra). Por ello recibirá el premio Nobel de Física en 1902, por más que la naturaleza de los rayos X no se conozca hasta dieciséis años más tarde, gracias al trabajo de Max von Laue en Múnich.

El descubrimiento de Roentegn, que tiene lugar en 1895, despierta enseguida un enorme interés en toda Europa.

Por supuesto, sobre todo entre los médicos, porque en adelante dispondrán de un medio de exploración del cuerpo humano, técnica que explotan inmediatamente, pero también entre los físicos, intrigados por este nuevo fenómeno. Básicamente, el descubrimiento de Roentegn produce una cierta confusión.

Se creía que Jean Perrin y Thomson habían demostrado que los rayos catódicos estaban formados por partículas y hete aquí que ahora viene este alemán y demuestra que también hay ondas, ¡porque nadie se imaginaba a las partículas atravesando el cartón negro! No cabe duda de que la naturaleza sabía guardar su secreto.

En 1896 publicó su descubrimiento y dio la primera demostración. De ahí en adelante, el desarrollo de las radiografías, como parte importante en los diagnósticos médicos, fue bastante rápido.

Al observar que con ellas, las zonas duras o más densas del cuerpo, aparecían de manera nítida en las fotografías, el campo traumatológico, principalmente, vio posibilidades ilimitadas para mejorar su trabajo diario, como asimismo el relacionado con emergencias médicas. Más adelante, se le dio un uso, en la detección de tumores en el organismo humano.

roentgen rayos x

La propaganda acerca de los rayos X suscitó tanto asombro como temor en el público general. Para muchos, este descubrimiento abrió el camino a las investigaciones más indiscretas y amenazó con matar la Intimidad humana. Un periódico relató la historia fantasiosa de un estudiante a quien su tío le había negado una ayuda financiera y aquél había presentado una radiografía de las monedas que mantenía escondidas en su bolsillo…

https://historiaybiografias.com/linea_divisoria3.jpg

ANTECEDENTES HISTÓRICOS: La línea de investigaciones hace referencia al estudio de descargas eléctricas a través de gases enrarecidos, que si bien empieza a dar sus frutos hacia la década de los setenta, en realidad ya tenía unos antecedentes claros. En efecto, en 1835 el físico Faraday describió los resplandores que se manifestaban en el tubo de descarga cuando la presión gaseosa no sobrepasaba algunos milímetros.

A continuación, los progresos de la técnica del vacío de los tubos, construidos por el alemán Heinrich Geissler, permitieron observar a Julius Plücker, en 1858, que la mancha fluorescente producida por la descarga frente al polo negativo, esto es, el cátodo, se desplazaba desviada por la acción de un campo magnético.

Las observaciones de Plücker supusieron un punto de partida. Había enunciado la radiación invisible que emanaba del cátodo. Esta emanación fue detenidamente observada y proseguida por el alemán Wilhelm Hittorf y el inglés William Cookes.

Casi simultáneamente Engen Goldstein, en 1886, empleando un tubo con cátodo perforado, en el espacio situado detrás del cátodo descubrió unos nuevos rayos, que debido a su modo de obtención denominó rayos canales. Pero un nuevo paso estaba destinado al inglés Philipp Lenard.

Practicando una abertura en la pared del tubo, que cubrió con una hoja de aluminio capaz de resistir la presión atmosférica —después se la llamó «ventanilla de Lenard»—, consiguió hacer salir a los rayos catódicos del tubo y, de este modo, estudiar las complejas condiciones de la descarga productora. Y, finalmente, al explorar la radiación que sale del tubo catódico, Roentgen, guiado por una observación casual, a finales del año 1895 logró el capital descubrimiento de los rayos X.

La contribución de Roentegn completaba el viejo problema de la medicina, que en el fondo no era otro que poder observar directamente la lesión.

https://historiaybiografias.com/linea_divisoria3.jpg

BIOGRAFÍA: Wilhelm Conrad Roentegn nació en el año 1845 en Lennep, un pueblo en Bergischen que pertenece a la provincia del Rhin. Sus padres, alemanes, estaban infundidos por un acentuado nacionalismo.

Esto, sumado a que provenían de una familia de artesanos asidos al trabajo, el padre era un traficante textil, hizo que el ambiente fuera más bien duro e intrasigente; Roentegn acusará estas experiencias, que no obstante en su futuro trabajo imprimirán una tenacidad tan rara como especial.

Cuando Roentegn había cumplido tres años, la familia se tarsladó a Holanda. Allí cursó los estudios secundarios. Se tienen referencias de que era un muchacho inteligente, que aprendía con rapidez y profundidad. Pero una estúpida travesura cometida en la escuela técnica superior le impidió ser admitido en la universidad de Utrecht. La dureza de esta decisión pudo tener consecuencias funestas. 

Roentegn fue asimilado sólo como oyente y hasta su traspaso a la escuela politécnica de Zurich, según manifestó más tarde, pasó por momentos de desazón.En el tercer curso se aplicó a los estudios de la matemática y en varias ramas de la ingeniería mecánica, obteniendo el diploma cumplidos los veintitrés años.

Se doctoró en dicha universidad con una tesis titulada Estudios sobre los gases. Nuestro hombre fue, pues, ingeniero. El grado de doctor en medicina, lógico premio a sus hallazgos, se le otorgó a título honorario; hecho que constatamos en contra de unas apreciaciones erróneas que alguna vez hemos tenido ocasión de leer sobre el particular.

Roentegn encarna el prototipo del antiguo investigador universitario, con una particular inclinación docente que desea compartir con la soledad del laboratorio.Su primera estancia la realizó con el profesor Kundt, de la universidad de Wurzburgo. Tras los años de rigor fue llamado por la universidad de Estrasburgo, donde llegó a ser profesor asociado de física teórica.

En 1886, o sea cuando contaba cuarenta y un años, se le ofreció una cátedra de física en Jena, proposición que también se le hizo desde la de Utrecht. Roentegn había obtenido una vasta fama como pedagogo y hombre de ciencia y los ofrecimientos se prodigaron.

Mas tarde volvió a  Wurzburgo donde estudió los fenómenos de compresibilidad de los líquidos, la conducción de los electrólitos y el coeficiente térmico de expansión. Y cuando contaba cuarenta y nueve años, o sea uno antes de efectuar su descubrimiento definitivo, fue nombrado rector.

Dando muestras de una enorme capacidad de trabajo, sin dejar sus tareas como físico, al año de su rectorado descubrió los rayos X; insertados en su biografía expondremos las vicisitudes de tal descubrimiento.

La tarde del día 8 de noviembre de 1895, mientras hacía experiencias con el tubo catódico en su cuarto oscuro, cubrió una de sus lámparas con el propósito de impedir la salida de rayos luminosos.

Casualmente, cerca de allí se hallaba una placa de vidrio cubierta con una sustancia, platinocianuro de bario, que brilla o se ilumina cuando es expuesta a la luz. Naturalmente, al conectar la corriente a través de la lámpara, que estaba del todo cubierta, la placa se volvió luminosa.

Esto demostró que resultaba afectada por algún agente el cual podía pasar a través de la cubierta oscura de la lámpara. Este hecho fortuito fue el punto de partida para el resto de sus investigaciones.

Roentegn trabajó con una intensidad inusitada. Al mes justo de su hallazgo, esto es el 8 de diciembre de 1895, resumió sus trabajos en un breve como tan sustancioso folleto titulado Sobre una nueva clase de radiaciones.

Este folleto, que además resulta un modelo de concisión y objetividad, un documento a valorar por quienes participan demasiado asiduamente en las páginas de la literatura científica, dio paso a una primera demostración, que se celebró al 9 de enero de 1896 en una sesión de la Sociedad de Física de Wurzburgo.

La presentación de Roentegn fue concreta y convincente. Siguiendo el aire de los grandes descubrimientos en medicina, a este respecto se pueden, por ejemplo, recordar las demostraciones de Harvey o Koch, Roentegn mostró el poder de penetración de sus rayos.

«La demostración fue acogida —escribe Hayward— con un asombro profundo. Se trataba de un nuevo descubrimiento de apariencia milagrosa que no podía provocar ni dudas ni críticas, sino solamente sorpresa. Los que se colocaron frente a la pantalla fluorescente pudieron ver una imagen de su propio esqueleto, y de los botones de su ropa interior.»

En unas palabras, tras el estupor que suscitó esta primera demostración, se divulgó en muy poco tiempo por todo el mundo la importancia que los rayos X podían tener para el diagnóstico de las lesiones.

La difusión del descubrimiento, Roentegn pasó a la cúspide de la fama sólo en cuestión de meses, nada hizo variar en su vida. Siguió trabajando y tratando de perfeccionar los detalles, sin dejar el cargo académico que le habían encomendado. En 1901 le fue concedido el Premio Nobel, que Roentegn fue a recoger teniendo todavía una larguísima vida científica por delante.

El comienzo de la Primera Guerra Mundial, el fallecimiento de su esposa, el de sus últimos amigos, le dejaron totalmente anonadado, y tras un último período gris murió el 10 de febrero de 1922.

La obra de Roentegn fue el principal impulso que recibió la medicina práctica. Su hallazgo llegó en el momento justo y preciso en que la exploración física agotaba sus posibilidades.

El primer Nobel: Las repercusiones de tal descubrimiento fueron inmediatas y significativas en la comunidad científica, más aun cuando en diciembre Roentgen hizo pública la primera radiografía: la imagen de los huesos de la mano de su mujer. Para la medicina, las perspectivas eran extraordinarias.

La idea de poder escudriñar el interior del cuerpo humano gracias a estos rayos dejaba entrever maravillosas esperanzas. Además, los honores que le rindió el mundo a Wilhelm Roentgen fueron un testimonio del gran entusiasmo que sus rayos suscitaron.

Al parecer, esta conmoción tenía sin cuidado al científico. Fiel a su naturaleza discreta, huía de las entrevistas y las conferencias, y sólo aceptó entregar un comunicado frente a un grupo reducido de científicos el 23 de enero de 1896, en Würzburg. No obstante el mundo científico no lo olvidó cuando, en 1901, decidió concederle el primer premio Nobel de física.

Mientras tanto, Roentgen se había asentado en Munich, donde dirigía el Instituto de física. El descubrimiento de los rayos X tuvo efectos inmediatos y espectaculares. En Francia, Henri Becquerel y luego Marie Curie afinaron las investigaciones y recibieron a su vez el premio Nobel en 1903.

Durante la Primera Guerra mundial la radiografía de rayos X demostró con creces su eficacia. Wilhelm Roentgen siguió adelante con su modesta vida en Munich, donde falleció discretamente, pero cubierto de gloria, el 10 de febrero de 1923.

CRONOLOGIA VIDA ROENTGEN

1845 Nacimiento de Wilhelm Conrad Roentgen en Lenep, Renania, el 27 de marzo.

1863 Ingresa en la Escuela técnica de Utrecht, de la cual es expulsado. Asiste a la universidad.

1865 Roentgen es admitido en la Escuela politécnica de Zurich.

1868 Obtiene su diploma de ingeniero y se convierte en asistente de August Kundt.

1870 Es profesor asistente en la universidad de Würzburg.

1872 Roentgen desposa a Anna Bertha Ludwig. Es enviado a Estrasburgo.

1876 Es maestro de conferencia en el Instituto de física de Estrasburgo.

1879 Nombrado profesor titular, Roentgen se instala en Giessen.

1888 Regresa a Würzburg, donde dirige el Instituto de física.

1895 Wilhelm Roentgen descubre los rayos X.

1900 Es nombrado director del Instituto de física de Munich. La Academia de Ciencias de París lo nombra corresponsal extranjero.

1901 Roentgen recibe el premio Nobel de física.

1923 Muerte de Wilhelm Roentgen  en Munich, el 10 de febrero.

https://historiaybiografias.com/linea_divisoria3.jpg

PRIMERAS APLICACIONES: En 1927, Hermann Joseph  Muller publicó su descubrimiento de que los Rayos X y la luz ultravioleta podían provocar cambios hereditarios, conocidos como mutaciones. A partir de entonces, los científicos pudieron crear mutaciones en vez de esperar a que la naturaleza las produjera en forma espontánea. Muller y otros expertos en genética emplearon mutaciones provocadas de modo artificial para investigar el modo en que los genes se ordenan linealmente en cromosomas y cómo se «transmiten» en la reproducción sexual.

imagen de las primeras maquinas de rayos x aplicados a la salud

Muller predijo que los genes tenían que producir el resto de los componentes de las células vivas. Su razonamiento se basaba en el hecho de que los genes, a diferencia del resto de componentes celulares, podían reproducir los cambios que se presentaban en ellos. También sugirió que la vida empezaba con la aparición de moléculas autorreproducidas o «genes puros», que se imaginó similares a los virus.

Muller, socialista, se trasladó a la Unión Soviética en 1933 con la esperanza de continuar allí sus investigaciones. Pero la genética soviética estaba dominada por el agrónomo Trofim Denisovich Lysenko, de gran poder político, que rechazaba la genética de Mendel. Muller tuvo como obstáculo las convicciones de Lysenko, que hacían referencia a que los hijos heredan las características que sus padres han adquirido por enfermedades e influencias ambientales.

Ansioso por abandonar la Unión Soviética, se marchó como voluntario a la guerra civil española en 1937. Cada vez más convencido de que las mutaciones se acumulaban en los genes y que amenazaban a las generaciones futuras, cuando regresó a Estados Unidos, empezó a advertir sobre los peligros de la radiación y de los procesos industriales. Muller también apoyaba el potencial de la eugenesia, o «mejora genética», tergiversada luego por los nazis.

ALGO MAS…
El cuerpo atravesado por rayos

Todo ocurrió por casualidad y de esa coincidencia nacieron los raros X. El prusiano Wilhelm Conrad Rontgen (18454923), un brillante físico de la Universidad de Würzburg, estaba probando en su laboratorio la fluorescencia producida por los tubos de rayos catódicos, una invención reciente; luego de tapar uno de ellos con un cartón negro observó que en una pantalla cercana aparecía una fluorescencia que desaparecía cuando apagaba el tubo.

Rontgen hace una demostracion de los rayos X

Se dio cuenta así de que los ravos atravesaban la materia y repitió la prueba con otros materiales. Para probarlo con plomo utilizó un aro, que sostenía con la mano, y comprobó que este no era atravesado y que era posible ver los huesos de su extremidad. Entonces se le ocurrió que podría tomar una fotografía y grabó una placa con la mano de su mujer. Esto ocurrió en noviembre de 1895, y pocos días después informó sobre el descubrimiento de «una nueva clase de ravos».

Los llamó rayos X por tratarse de toda una incógnita: no sabía cómo se producían, pero sí sus efectos. Aparecían cuando un haz de electrones muy energéticos se desaceleraba al chocar con una superficie metálica. Lo importante es que había encontrado una nueva manera de iluminar el interior del cuerpo humano.

Su hallazgo causó una gran impresión y, como lo había realizado en el marco de su trabajo como profesor universitario, los rayos X pudieron utilizarse de modo ilimitado, sin ser objeto de patentes. Pronto cambiaron el desarrollo del diagnóstico médico, facilitándolo hasta, extremos antes impensables. Rontgen obtuvo por ello el Premio Nobel de Física en 1901.

Cuando Roentgen recibió el Nobel de Física por sus trabajos con los rayos que dio en llamar «X» (Roentgen no llegó a descubrir el origen de esta nueva fuente energética), nadie podría imaginar la extraordinaria expansión que años después lendrían los rayos X en la sociedad a través de la medicina diagnóstica.

En los años setenta, y aun a sabiendas del perjuicio que la radiactividad suponía para la salud humana, se radiografiaba rutinariamente de manera anual a escolares, soldados y personal al servicio de grandes empresas, con la falsa idea de que una radiografía aseguraba el conocimiento exacto de la salud del individuo.

Todavía hoy en día los medios diagnósticos por rayos X son, con mucho y fundamentalmente debido a su bajo coste, los más utilizados en medicina: odontología, medicina interna, osteopatía, neurología, etc., basan sus estudios en las placas radiográficas.

Pero ¿son los rayos X realmente seguros?. La primera premisa que deberemos tener en cuenta es que la radiación emitida por los rayos X es similar a la producida por la energía nuclear. Conocidas como radiaciones ionizantes, todas estas emisiones se caracterizan por afectar a las células vivas de los organismos dañando su material genético.

Como hemos visto al hablar de los perjuicios de la exposición a la radiactividad procedente de la energía nuclear, al sufrir una dosis (¡o varias!) de los rayos X, las estructuras celulares de los tejidos expuestos corren el riesgo de presentar los denominados «cromosomas discéntricos», es decir, trozos de ADN cuya estructura no se corresponde a la normal. Éste es el inicio de cualquier proceso tumoral.

¿Dosis «segura»?
Cualquier exposición a los rayos X puede ser causa de un shock celular capaz de provocar una mutación en el ADN. No es posi ble establecer un máximo o un mínimo en rems o sieverts que nos garantice una inocuidad. Sin embargo, cuanta mayor sea la ra diación recibida, más probabilidades existen de daños para la salud.

Hemos comentado la cifra de 5 rem como un tope establecido por las autoridades para los trabajadores o particulares que de ban estar en contacto más o menos estrecho con la radiactividad Este máximo supera con mucho lo deseable y comienzan a bara jarse entre los especialistas sanitarios cantidades de «según dad» bastante más pequeñas, como las que a continuación me parece interesante detallarles:

tabla dosis rayos x


Estas cifras, no obstante, no tienen en cuenta la especial sensibilidad que algunos grupos de población presentan frente a la exposición radiactiva, como los ancianos o los mismos niños.

El diagnóstico por rayos X supone en demasiados casos superar el máximo permitido. Veamos por ejemplo cómo, para una persona de tamaño y peso medios, una placa radiográfica de los órganos internos (riñones, estómago, corazón, etc.) implica una dosis de entre 0,13 y 1,3 rems; del cerebro o cráneo, 0,4 rems; dental, 0,25 rems; de la columna vertebral, 1 rem, y una mamografía, 4 rems. Si a esto sumamos el hecho de que, frecuentemente, en cada exploración somos sometidos a más de una radiografía (recuerdo con muy poco sosiego cuando, siendo poco más que una adolescente, me realizaron en una consulta privada ¡once placas del sistema gastrointestinal!), veremos que nada más fácil que superar la cifra tope.

Un riesgo adicional al que nos exponemos casi la mitad de la población de nuestro país de manera anual son las radiografías dentales, utilizadas a discreción a fin de localizar caries o en simples revisiones. Aunque su intensidad no suele superar los 0,2 rems por placa, la incidencia del rayo sobre la glándula tiroides supone un grave peligro de daño en ella.

Si usted padece con frecuencia caries y debe visitar a su dentista todos los años, sepa que la nueva legislación contempla la conveniencia de que el paciente esté protegido con un collarín de plomo durante la exposición.

Además de todo esto, deberemos tener en cuenta que la gran mayoría de los centros de radiodiagnóstico no cumplen la normativa vigente: muchos han sido instalados en los años setenta,cuando aún no se era totalmente consciente de las graves consecuencias para la salud de la exposición a la radiación y la legislación era muy deficiente, y otros (casi todos) datan de antes de 1994, fecha de la entrada real en vigor de las nuevas leyes sobre el control de las instalaciones radiológicas.

Aunque puede parecer en principio poco relevante, la diferencia entre realizarse una radiografía en un centro moderno y hacerlo en uno donde los aparatos han sido instalados hace veinte años puede contarse no ya en milirrems o en milisieverts, sino en completos rems.

Medidas de autodefensa
Puede que a estas alturas usted se halle absolutamente abatido e incluso desesperado. Realmente la situación mundial, de la que nuestro país no se escapa, es preocupante. Sin embargo, aún podemos hacer algo para protegernos de la contaminación radiactiva que sufrimos y minimizar los daños que ésta puede causar en nuestra salud. Algunas sustancias, así como algunas actitudes, son capaces de ampararnos y reducir los estragos de este insidioso tipo de polución.

Vamos a ver, sin más dilación, algunas de las medidas más importantes a tomar para combatir ios efectos perniciosos de la contaminación radiactiva.

Evitemos los factores de riesgo

Consejos para reducir la absorción radiactiva

1. Limite su consumo de alimentos importados de países con un alto nivel de contaminación nuclear. Estos son fundamentalmente los nórdicos y los ex pertenecientes a la antigua Unión Soviética. Entre los productos más exportados figuran los lácteos y sus derivados.

2. Beba agua mineral de baja mineraiización (de venta en cualquier supermercado). El agua que brota de su grifo contiene sustancias nocivas y nadie le asegura que esté exenta de radiactividad residual.

3. Ventile el recinto donde trabaja o pase su tiempo. A partir de las siete horas cerrada, una habitación comienza a acumular importantes cantidades de radón, gas radiactivo que usted inhalará de no tomar la precaución de abrir las ventanas unos minutos cada, al menos, cuatro o cinco horas.

4. Ventile su cuarto de baño antes de ducharse. El agua de la ducha, por su temperatura y el sistema de chorro, desprende radón que es respirado con extrema facilidad. Minimizaremos los riesgos si mantenemos aireado el baño y no dirigimos el chorro directamente al rostro.

5. Tome precauciones sobre los pararrayos radiactivos. Consulte con su comunidad de vecinos e intente que en su tejado no sea instalado uno de estos pararrayos.

6. Extreme los cuidados con las exposiciones al sol. Los rayos ultravioleta son una importante fuente de radiaciones nocivas (véase el capítulo «El sol, ¿amigo o enemigo?»).

7. Procure que su vivienda no se encuentre cercana a una central nuclear. En ocasiones es preferible un pequeño «trastorno» porcambio de domicilio que no la continua exposición a dosis pequeñas pero muy peligrosas de radiactividad.

Fuente: Como Sobrevivir Al Siglo XXI – Ana P. Fernandez Magdalena – Editorial Robin Book

Ver:  Usos de los Rayos Infrarrojos

Ver: Descubrimiento de los Rayos X

Ver:Efectos de los Rayos Ultravioleta

Rayos Catódicos Thompson Caracteristicas Historia Energia Definicion

Rayos Catódicos: Sus Características

LOS RAYOS CATÓDICOS: Michael Faraday, después de haber entendido bien el fenómeno eléctrico, después de haber demostrado que el agua en la que se ha diluido una buena cantidad de sal es una buena conductora de la corriente eléctrica y después de haber comprendido perfectamente el fenómeno de la electrolisis, quiso saber si los gases y el vacío también eran conductores de la electricidad.

Había construido tubos con un cátodo y un ánodo, es decir, unidos ambos a los dos bornes de una pila Volta o a los de uno de esos generadores de electricidad que acababa de inventar. Previamente había hecho el vacío en el tubo. De hecho, era un vacío muy malo y el tubo quedaba lleno de gas diluido, pero él no llegó a darse cuenta.

Al conectar la corriente observó un resplandor macilento que se extendía desde el cátodo al ánodo (es lo que se emplea hoy en día para la iluminación mediante los tubos de neón). Enseguida se llamó a este resplandor «rayos catódicos». ¿Cuál era la naturaleza de este resplandor? Los sucesores de Faraday comenzaron a enfrentarse a este interrogante.

Para el inglés Crookes, que había mejorado mucho el montaje de Faraday, se trataba de partículas, de una especie de iones como los que se forman en la electrolisis, que, al encontrarse con el vacío residual, creaban el resplandor.

Para el alemán Lenard, alumno de Hertz (el «descubridor» de las ondas electromagnéticas), se trataba, por supuesto, de ondas. Las ondas excitaban el vacío residual y creaban la luz macilenta. Por ambas partes se intercambiaban argumentos y afirmaciones pocos amables, tanto que la disputa adquirió rápidamente aires de rivalidad nacional, una lucha germano-inglesa.

Sin embargo, fue un joven francés, Jean Perrin, por entonces catedrático auxiliar en el laboratorio de Física de La Escuela Normal Superior (lugar destacado de la Física francesa), quien presentó en 1895 el argumento decisivo en favor de las partículas cargadas.

Con la ayuda de un imán desvía los rayos catódicos (el resplandor macileto) y, colocando una caja de Faraday, es decir, una caja metálica donde les rayos chocan con el tubo, recupera una corriente eléctrica que procede a medir. Por lo tanto es cierto que los rayos catódicos están formados por una corriente eléctrica, es decir, por un flujo de partículas cargadas de electricidad. Como en la electrolisis.

De buenas a primeras, J. J. Thomson se vuelca en el experimento de Perrin, pero ahora desvía los rayos catódicos no sólo mediante un campo magnético, sino también con un campo eléctrico. Entonces se piensa que los rayos catódicos son una especie de iones. Las descargas eléctricas en los tubo de vacío serían de este modo la manifestación de una electrolisis gaseosa.

Entonces Thomson, mediante fórmulas matemáticas del electromagnetismo, calcula la relación entre la carga eléctrica y la masa de esas partículas, midiendo las desviaciones de los rayos en función de la intensidad de los campos magnético y eléctrico que se aplican.

A ello añade una hipótesis de trabajo interesante: si se toma como valor de la carga eléctrica la caga elemental de electricidad determinada por Faraday en sus experimentos de electrolisis, la masa obtenida para la partícula cargada es pequeñísima 1.800 veces más pequeña que la del átomo más ligero, el del hidrógeno.

Por lo tanto, esas partículas que van del cátodo al ánodo no son ni átomos ni iones, como en la electrólisis. ¿Qué son entonces? Thomson no lo sabe muy bien, pero sugiere que se las llame corpúsculos, palabra que muy pronto quedará olvidada ante la de electrones (portadores de electricidad).

Un tubo de descarga de Thompson. Un haz de rayos catódicos emitido por el cátodo C se focaliza en A y B y pasa entre D y E, donde hay un campo eléctrico. Se crea un campo magnético perpendicular al campo eléctrico mediante bobinas colocadas en el exterior del tubo (según E. Segré).

rayos catodicos

Los tubos de rayos catódicos, llamados más corrientemente tubos catódicos, se utilizan en los aparatos de televisión. Thompson, como hemos visto, determinaba la trayectoria de dichos rayos (invisibles) a partir del punto luminoso producido por la interacción entre esos rayos y la pared del tubo de vidrio. El punto luminoso sirve hoy en día para formar la imagen en la pantalla fluorescente de los tubos catódicos. Un tubo de televisión es un tubo catódico dirigido hacia el telespectador. En el tubo, los rayos quedan desviados por fuerzas eléctricas y barren la pantalla fluorescente. Cuando ésta, recubierta de una capa especial, recibe los rayos catódicos, se forma un punto luminoso.

La señal de televisión dirige la intensidad de los rayos en cada momento, de tal forma que se hace aparecer en pantalla puntos luminosos o sombras. La lentitud del cerebro y del ojo con relación a esas estructuras cambiantes nos permite tener una visión global de la imagen producida (según Steve Weinberg).

Pero ¿de dónde vienen esos electrones? No pueden provenir más que del cátodo. Así pues, el cátodo, sólido y metálico, contiene electrones capaces de desprenderse de él. Por lo tanto, los electrones son partículas cargadas de electricidad negativa y constitutivos esenciales de la materia sólida. Los rayos catódicos no son ondas, sino partículas, corpúsculos de materia. Thomson, yendo aún más lejos en este razonamiento, se pregunta: ¿no está hecha la materia más que de electrones? Entonces construye un modelo de átomo según el cual los electrones desempeñan un papel esencial.

Para él un átomo es un conjunto de electrones que se desplazan dentro de una esfera de diámetro limitado. Esta esfera de paredes infinitamente delgadas llevaría una carga eléctrica positiva para garantizar la neutralidad eléctrica del conjunto, y encerraría en su interior una población de electrones. Además de que la naturaleza de las paredes cargadas de electricidad positiva sigue siendo misteriosa, Thomson tiene que enfrentarse a un problema de masa. ¡Desde los tiempos de Avogadro se sabía calcular la masa de un solo átomo en un elemento dado al tomar la masa atómica y dividirla por 6,02 1023! Pero ¿cómo explicar esta masa con electrones tan livianos -¡Thompson no duda en imaginar que un solo átomo encierra millares de electrones!

Fuente Consultada: Un Poco de Ciencia Para Todo El Mundo – Wikipedia – Enciclopedia de Electrónica Tomo I.

 

Riesgos del Uso de Uranio en la Centrales Atomicas Ventajas Riesgos

Riesgos del Uso de Uranio en la Centrales Atómicas

DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe Un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos. La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones. Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

El funcionamiento normal de las centrales nucleares esparce por todo el mundo un repugnante espectro de substancias letales que no podrán nunca ser contenidas de modo seguro y que el ambiente natural no puede absorber de modo seguro. Por fortuna, la energía nuclear es tan innecesaria como injustificada: podemos satisfacer las necesidades de electricidad del mundo sin una sola central nuclear de fisión, si atemperamos de modo razonable nuestra demandas de energía.

Las únicas centrales que existen actualmente utilizan la fisión. La fusión, una tecnología que podría revolucionar la vida sobre la Tierra si se logran superar a un coste competitivo las barreras científicas que lo impiden, no existirá, suponiendo que así sea, hasta finales de siglo.

La energía de la fisión se debe a la liberación de calor que se produce cuando los átomos de uranio, bombardeados por partícula» atómicas llamadas neutrones, absorben un neutrón y se dividen dando elementos más ligeros, como estroncio y yodo. La división de los átomos de uranio libera también otros neutrones que repiten el pro ceso, en una reacción en cadena.

Se crean también elementos mas pesados cuando algunos de los átomos de uranio 238 en lugar de dividirse se transforman en plutonio 239, absorbiendo un neutrón. Muchos de los elementos creados a consecuencia de la fisión son inestables, es decir, que pierden energía rápidamente emitiendo partícula», Estas emisiones, llamadas radioactividad, son peligrosas para lo» seres vivos porque pueden desorganizar los genes y los tejidos.

La energía de fisión tiene la característica única entre todos los sistemas de obtención de energía, de añadir a los niveles del fondo natural cantidades de radiación equivalente, lo que no hace ninguna otra tecnología. El calor liberado en la fisión, se utiliza para convertir agua en vapor, que una vez proyectado sobre las paletas de una turbina eléctrica crea electricidad por la rotación de una bobina dentro de un campo magnético.

Este proceso ha fascinado a los científicos, los ingenieros y burócratas, debido principalmente a un hecho asombroso: la fisión de unos 30 gramos de uranio libera la misma energía aproximadamente que la combustión de 100 toneladas de carbón. Muchas personas a la caza de esta milagrosa cornucopia de energía, han cernido los ojos a los problemas y consecuencias que la fisión trae para nuestro ambiente.

Los partidarios de la fisión nuclear aseguran que es asegura, barata y limpia con respecto al medio ambiente», y que sus riesgos son aceptables. Mantienen que la fisión es una tecnología probada, disponible, y «en producción», mientras que otras energías de recambio no producirán energía con la rapidez necesaria para satisfacer nuestras necesidades.

La Energía Nuclear aporta un 33% de la energía consumida en Europa, de manera limpia, sin emisiones de gases de efecto invernadero y causantes de la lluvia ácida y sin perjudicar la capa de ozono. Además las centrales nucleares producen cantidades muy pequeñas de residuos sólidos en proporción a las grandes cantidades de electricidad que producen y el efecto de las emisiones líquidas y gaseosas en el medio ambiente es inapreciable. Otro problema distinto, es donde almacenar los residuos que se producen, residuos con vidas media muy largas.

Por otro lado la Energía Nuclear no está sujeta a cambios en las condiciones climáticas, sino que las centrales nucleares operan 24 horas al día durante los 365 días del año, lo que supone una gran garantía de suministro. Además no sufre fluctuaciones imprevisibles en los costes y no depende de suministros del extranjero, lo que produce precios estables a medio y largo plazo.

Los que defienden energías de recambio están en total desacuerdo y aseguran que si se dispusiera de sólo una pequeña fracción de los fondos dedicados actualmente a la fisión nuclear, se podrían crear en unos pocos años industrias energéticas de recambio seguras, industrias que proporcionarían tanta energía como la que se obtiene de la fisión. Señalan especialmente que el desarrollo de «energías menos duras» ha sido perjudicado por la enorme sangría de recursos que la fisión nuclear ha impuesto a los fondos de investigación energética de los EE.UU.

Los problemas más serios de la fisión se deben a que una sola central nuclear de fisión de gran tamaño produce tanta radioactividad de vida prolongada como la explosión de 1.000 bombas atómicas de Hiroshima. Y se cree que la exposición de las personas a la radiación aumenta el riesgo de cáncer, de daños genéticos, enfermedades del corazón y muchas otras dolencias. Parece ser que en los niños que todavía no han nacido, la radiación aumenta los riesgos de defectos congénitos y retraso mental. Pero a pesar de esto, la Comisión de energía atómica (AEC), ha anunciado planes para autorizar la instalación de 1.000 centrales nucleares en los próximos 25 años.

El contaminante radioactivo más peligroso de los muchos que producen los reactores, es el plutonio. Se trata de una sustancia artificial, que no existe de modo natural en la Tierra, y que es el ingrediente explosivo de las armas nucleares. Es tan mortal, que tres cucharadas de plutonio contienen suficiente radioactividad para inducir el cáncer en más de 500 millones de personas, según el Dr. John W. Gofman, codescubridor del uranio 233.

En su opinión se trata de la sustancia más tóxica de la Tierra, y una mota infinitesimal, más pequeña que un grano de polen, produce cáncer si se respira o se traga con el agua. Y, sin embargo, el funciona-miento de 2.000 reactores producirá 400.000 kilos de este material cada año: un desecho para el cual no existen sistemas de recolección. Hay que guardar el plutonio en depósitos con una vigilancia sin falla por los menos durante 250.000 años, más de 125 veces la duración de toda la era cristiana, a no ser que se dé un gran paso en la tecnología de los deshechos radioactivos.

Hay que guardar también el plutonio para evitar que sea robado con fines terroristas. Se necesitan sólo unos pocos kilos de plutonio para fabricar una bomba que borraría del mapa ciudades como San Francisco, Nueva York o Moscú. Estas destrucciones pueden llevarse a cabo con una facilidad escandalosa. Un estudio secreto de la AEC informó que dos físicos que acababan de finalizar su carrera fueron capaces de diseñar una bomba atómica recurriendo únicamente a las obras accesibles al público.

Vivimos una época en la que casi cualquier país o grupo de presión con unos pocos científicos capacitados, puede convertirse en potencia nuclear, creando un riesgo terrible de guerra o accidente nuclear Si éstos fuesen los únicos peligros que presenta la energía de fisión, constituirían motivo suficiente para abandonarla.

Entre otros problemas están la falta de técnicas seguras de almacenamiento para los deshechos nucleares de alto nivel, la posibilidad de que se produzcan fugas catastróficas de radioactividad de las centrales nucleares, y emisiones normales radioactivas.

— Cuando sus recipientes sufren alteraciones normales escapan al medio ambiente deshechos de alto nivel, y los que critican el sistema aseguran que parte de los deshechos se ha incorporado al agua del suelo. Los deshechos se ven expuestos dentro de sus tanques a la acción de saboteadores, terremotos, guerras o accidentes; una sola de estas causas, bastaría para dejar sueltas de golpe cantidades colosales de radioactividad.

— Las medidas de protección destinadas a proteger al público contra accidentes nucleares serios, no se han puesto nunca a prueba de modo completo y en condiciones reales de funciona miento. La explosión de una central podría causar miles de muertos y daños por valor de 17.000 millones de dólares, según la AEC. (caso de Chernobyl en 1986 y Japón en 2010)

— La fuga de sólo un mínimo por ciento de la radioactividad del núcleo de un reactor, podría convertir en inhabitable una zona del tamaño de California.

— Aparte de los accidentes, las centrales de fisión emiten de modo normal radioactividad por los gases de sus chimeneas y por el agua de deshecho. Según cálculos realizados por eminentes cien tíficos, los límites federales legales para este tipo de radiación son tan altos que si cada persona en el país se viera expuesta a los límites de radiación permitidos, se producirían cada año, 32.000 fallecimientos más por cáncer y leucemia y de 150.000 a 1.500.000 fallecimientos genéticos adicionales. El coste-anual para la seguridad social de las enfermedades inducidas genéticamente ha sido calculado por el especialista en genética, premio Nobel, Joshua Lederberg, en 10.000 millones de dólares.

cuadro central nuclear

Cuadro funcionamiento de una central nuclear

Central Nuclear Atucha I

La Energia de la Fision Nuclear (301)

La Energia de la Fisión Nuclear

EXPLICACION CIENTIFICA DEL FENOMENO DE FISION O DESINTEGRACION NUCLEAR

Radiactividad natural: Descubierta accidentalmente por Henri Becquerel, en 1896, y estudiada en profundidad por Pierre y Marie Curie , a quienes se debe el nombre, la radiactividad natural es el fenómeno según el cual determinados materiales, como, por ejemplo, las sales de uranio, emiten radiaciones espontáneamente.

Las radiaciones emitidas son de tres tipos que se denominan alfa, beta y gamma, y tienen las siguientes características:

Las radiaciones alfa son poco penetrantes, ya que son detenidas por una hoja de papel y se desvían en presencia de campos magnéticos y eléctricos intensos. Están formadas por partículas cuya masa es de 4u y cuya carga, positiva, es igual a dos veces la carga del electrón.

Las radiaciones beta son más penetrantes que las radiaciones alfa, aunque son detenidas por una lámina metálica. En realidad consisten en un flujo de electrones.

Una reacción de fusión nuclear es un proceso según el cual se unen núcleos ligeros o intermedios para formar núcleos más pesados, obteniéndose energía.

La fusión de un núcleo de deuterio, 2H, con un núcleo de tritio, 3H, da lugar a la formación de un núcleo de helio-4, 4He, además de un neutrón y una energía dc 17,6 MeV, que se desprende en forma de calor.

Esta es una de las reacciones mediante las que el Sol produce energia. La ecuación que describe el proceso es la siguiente:

2H + 3H —-> 4He+ 1 neutrón +  17,6 MeV

https://historiaybiografias.com/linea_divisoria1.jpg

Los fundamentos de la física atómica DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos.(Ver: Fision Nuclear)

La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones.

fision nuclear

Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

La rapidez con que se establece y se propaga la reacción en cadena dilataría y haría explotar la masa con extrema violencia antes que todos los núcleos hubiesen podido ser fragmentados.

Si se admite que sólo el 10% de los átomos participa en la reacción, la enorme cantidad de energía liberada equivale a la producida por la explosión de 2000 toneladas de trinitrotolueno.

En la foto de arriba se encuentran compartiendo una información física Albert Einstein y Leo Szilard. El doctor Leo Szilard, fue a quien se le ocurrió mientras esperaba el cambio de un semáforo en la intersección de Southampton Row en Londres, la ideas de producir una reacción nuclear controlada, bombardeando núcleos con neutrones. Por puro juego, y no por ningún impulso agresivo, el físico bajito y gordo, húngaro de nacimiento, visualizó una reacción atómica en cadena mientras deambulada por la ciudad en aquel dorado septiembre de 1933, dedicado a sus pasatiempos favoritos: pensar y pasear.

En forma de calor, mil novecientos millones de grandes calorías estarían disponibles, constituyendo el centro de la volatilización de toda materia presente.

En una fracción infinitesimal de segundo, la temperatura se elevaría a centenares de miles de grados en el lugar de la explosión, engendrando un espantoso vendaval cuyos efectos destructores —merced a la propagación de la onda de compresión— semejarían a la devastadora barrida de una gigantesca marca.

En vísperas de la Segunda Guerra Mundial, todas estas posibilidades no pasaban de ser meras previsiones teóricas, a las cuales, sin embargo, el comienzo del conflicto bélico iba a conferir excepcionales alcances.

Hacia fines de 1940, cuando el secreto militar comenzó a volver impenetrable el velo que cubría las investigaciones sobre la energía nuclear, la utilización de la misma para producir una bomba parecía todavía un objetivo muy lejano e incluso utópico.

Sin duda se sabía que el uranio 235 era particularmente sensible a la “fisión” y que ofrecía una sección eficaz mayor a los neutrones lentos que a los rápidos; se habían desarrollado métodos para producir neutrones lentos; se habían elaborado procedimientos para separar el uranio 235 de su isótopo corriente; se había logrado aislar dos elementos transuránicos, el neptunio y el plutonio, y se reconocía que este último era también “fisionable” en circunstancias semejantes a las del uranio 235.

Además, se habla adquirido la certeza de que en la “fisión”, al menos un neutrón rápido —y en término medio dos o tres— era emitido por el núcleo.

Sin embargo, a pesar del conjunto de tales progresos, todavía nadie había logrado producir una reacción autosustentada.

Algunos investigadores incluso se preguntaban si la naturaleza acepta someterse a las exigencias de los teóricos. Tal vez la reacción en cadena era, en general, irrealizable. Pero las dudas terminaron por disiparse definitivamente el 2 de diciembre de 1942: ENRICO FERMI había realizado en Chicago, por primera vez, una reacción nuclear autosostenida.

El dispositivo construido en Chicago consistía en una pila de ladrillos de grafito puro que incluía trozos de uranio, separados por distancias regulares conforme a un esquema geométrico.

El grafito servía de sustancia moderadora destinada a frenar mediante choques elásticos los neutrones que salen dotados de elevadas velocidades de la ruptura nuclear del uranio 235.

Algunos de los neutrones penetran en el isótopo pesado U-238, otros vuelven a ser capturados por el isótopo liviano U-235, puesto que ambos están presentes en los trozos de metal de la pila.

Los proyectiles que golpean el U-238 provocan su transformación, que termina por dar origen al plutonio, mientras neutrones capturados por núcleos de U-235 producen la “fisión” de éstos, expulsando neutrones que siguen provocando nuevas rupturas.

Así, la pila produce a la vez materia “fisionahle” (plutonio) y libera energía al desintegrar núcleos.

Agreguemos que para el arranque no se necesita detonador ni ningún otro dispositivo especial; los neutrones de origen cósmico existentes en la atmósfera, o neutrones errantes que provienen de la explosión espontánea de un átomo de uranio, son suficientes para iniciar la reacción.

Una condición indispensable para el funcionamiento de la pila es su volumen, que debe superar cierto tamaño crítico.

De lo contrario el número de neutrones que escapan por la superficie de la pila no permite que se establezca la cadena de las reacciones.

Para el autosostenímiento de la cadena es menester, además, que cada neutrón incidente produzca al menos un nuevo neutrón apto para determinar a su vez la ruptura de un núcleo, siendo en este caso el “factor de multiplicación” igual a la unidad.

La cadena se extingue si dicho factor resulta inferior a uno; en cambio, si es considerablemente superior, la liberación continua y lenta de la energía se transforma en un proceso explosivo, convirtiendo a la pila en una bomba.

Tan peligrosa proliferación de neutrones es contrarrestada introduciendo en la masa de grafito láminas de materia absorbente (cadmio) que permiten mantener constante la velocidad de la reacción y “controlar” el nivel energético de la pila mediante un dispositivo automático.

Tales fueron, a grandes rasgos, las fundamentales características de la pila de FERMI, arquetipo de todos los reactores.

Al principio la pila de FERMI engendró, en forma de calor, una potencia de 0,5 vatio; poco después aumentó su nivel de energía hasta llegar a 200 vatios. Con tal reducido poder, una pila debería funcionar varios miles de años para producir la cantidad de plutonio requerida en la fabricación de una sola bomba.

Mas una conquista no puede medirse en vatios.

La posibilidad de liberar energía nuclear en escala macroscópica estaba magníficamente demostrada.

Si bien la distancia que separa la pila experimental de Chicago de la bomba experimental de Alamogordo era muy superior a la existente entre la rudimentaria máquina de vapor de NEWCOMEN y la locomotora de STEPHENSON, el largo camino fue recorrido en el breve intervalo de treinta meses gracias al formidable potencial tecnológico de los Estados Unidos, y al esfuerzo de un verdadero ejército de científicos, técnicos y trabajadores.

El 6 de agosto, la pavorosa explosión que arrasó la ciudad de Hiroshima anunció al mundo que el hombre disponía de nuevas y tremendas fuerzas aprisionadas desde eternidades en las entrañas de la materia.

“En el interior de una bomba de fisión —escribe uno de los principales constructores de la bomba, ROBERT OPPENHEIMER (1904-1967)—, se materializa un lugar con el cual ningún otro puede ser comparado.

Al explotar la bomba se producen temperaturas más elevadas que las que reinan en el centro del Sol; su carga está constituida por materias que normalmente no existen en la naturaleza y se emiten radiaciones (neutrones, rayos gamma, electrones) de una intensidad que no tiene precedentes en la experiencia humana.

El factor de multiplicación es el cociente del número de los nuevos neutrones producidos y el número inicial de los neutrones primitivos.En la pila de FERMI el factor de multiplicación era igual a 1,007.

Las presiones que se obtienen equivalen a billones de veces la presión atmosférica.

En el sentido más primario y más sencillo, es perfectamente cierto que con las armas atómicas el hombre ha creado situaciones nuevas.”

En pilas y bombas de uranio (o plutonio), la energía se produce por la ruptura de un elemento muy pesado en fragmentos menos pesados. Sin embargo, para producir enormes cantidades de energía no es éste el proceso que la naturaleza elige.

Las estrellas prefieren la fusión a la “fisión”; como ya dijimos, transforman en gigantesca escala —por síntesis de elementos livianos— una parte de su materia nuclear en energía radiante.

Tan sólo las prodigiosas reservas energéticas, cuyo depósito son los núcleos, pueden permitir al Sol irradiar en forma de luz y calor, año tras año, tres quintillones (3 x 1030) de grandes calorías.

Este torrente de energía solar fluye por lo menos desde hace cuatrocientos o quinientos millones de años, puesto que las pruebas aportadas por la flora y fauna paleozoicas sugieren que las condiciones climáticas de la Tierra no han cambiado esencialmente desde aquella remotísima era primaria.

Mas ¿cuál es la transformación nuclear capaz de alimentar tan formidable despliegue energético, que equivale por segundo a una pérdida de cuatro millones de toneladas de masa solar?.

No cabe duda de que la transformación del elemento más común del universo, el hidrógeno en helio (el elemento que sigue al hidrógeno en la Tabla Periódica), podría suministrar la fuente energética de la radiación solar.

En efecto, la síntesis del helio a partir de los constituyentes de su núcleo está acompañada —como hemos explicado al tratar la energía de la unión nuclear— por la pérdida de una parte de las masas que intervienen, siendo liberada la masa desaparecida —de acuerdo con la equivalencia einsteniana— en forma de energía radiante. Sin embargo, el mecanismo de la supuesta transmutación no había dejado de ser enigmático hasta que HANS BETHE, hacia 1940, propuso su hipótesis del ciclo del carbono.

Las enormes temperaturas que reinan en el interior del Sol —veinte millones de grados en la región central— confieren a las partículas de la masa solar —y especialmente a los protones a velocidades tan elevadas que éstas pueden penetrar en los núcleos de elementos livianos y transmutarlos.

Así, el núcleo ordinario de carbono, bombardeado por un protón, se transforma al capturarlo en un isótopo del nitrógeno que se desintegra.

En cinco reacciones consecutivas engendran con la emisión de dos electrones positivos varios isótopos de carbono, de nitrógeno y de oxígeno. Bombardeados éstos a su vez por núcleos de hidrógeno, conducen finalmente a la formación del helio.

La excepcional característica de este ciclo, que convierte cuatro núcleos de hidrógeno en un núcleo de helio, es la reaparición del carbono inicial en la última reacción, que se encuentra así regenerado.

Desempeña el papel de catalizador y puede ser utilizado innumerables veces, hasta que todo el hidrógeno solar haya sido transmutado en helio, asegurando así las reservas energéticas del Sol durante miles de millones de años. A idénticas o análogas reacciones termonucleares deben sus caudales de energía también otras estrellas.

No cabe duda de que el ciclo de carbono, productor de la energía solar, representa el primordial proceso físico-químico del universo desde la perspectiva de la historia humana.

Sin las reacciones termonucleares, que se realizan en el interior del Sol, la vida no habría podido surgir sobre la superficie de la Tierra, donde los fenómenos biológicos, desde la fotosíntesis de la clorofila de los vegetales hasta el metabolismo en el organismo de los animales y del hombre, son tributarios de la radiación solar.

Es un hecho realmente notable que el carbono —sustancia básica de la materia viva— desempeñe también el papel de catalizador en el grandioso proceso cósmico que dio origen primario a todas las actividades vitales en la naturaleza terrestre.

La síntesis de elementos livianos a partir del hidrógeno ha dejado de ser privilegio de las masas estelares desde hace algunos años.

Reacciones termonucleares, productoras de la fusión de núcleos, suministran la fuente energética a la novísima arma: la bomba de hidrógeno. Desde luego, el ciclo de BETHE, que genera helio en las profundidades del globo solar es demasiado lento y complicado para el uso militar.

Es probable que la transmutación de una masa de los dos isótopos pesados del hidrógeno, el deuterio y el tritio, en helio, esté en la base de la liberación de energía realizada por la nueva bomba.

Para establecer las formidables temperaturas (varios millones de centígrados) capaces de desencadenar la reacción se utiliza la ruptura del uranio o del plutonio: la bomba de “fisión” sirve de detonador a la superbomba de fusión.

El modelo de ésta, utilizado por los expertos estadounidenses en las pruebas de Enivetock, a fines de 1952, superaba doscientas veces el poder (es decir, la cantidad de energía liberada) de la bomba de Hiroshima, según estimaciones extraoficiales.

No cabe duda de que la posibilidad de borrar de la superficie del globo cualquiera de las grandes metrópolis de la Tierra mediante la explosión de una bomba o a lo sumo de muy pocas bombas está, desde ahora, dentro de los alcances del hombre.

El uso de esta arma en un conflicto bélico significaría la abdicación de la razón humana y equivaldría a una tentativa de suicidio del homo sapiens.

Fuente Consultada: Historia de la Ciencia Desidero Papp

LISTA DE TEMAS TRATADOS EN ESTE SITIO:

1-¿Que es un Atomo? 2-La Energía Nuclear y sus Usos 3-La Física Moderna 4-La Fisión Nuclear 5-Partículas Elementales 6-Vida de Max Planck

La Fusión Nuclear

Una reacción de fusión nuclear es un proceso según el cual se unen núcleos ligeros o intermedios para formar núcleos más pesados, obteniéndose energía.

La fusión de un núcleo de deuterio, 2H, con un núcleo de tritio, 3H, da lugar a la formación de un núcleo de helio-4, 4He, además de un neutrón y una energía dc 17,6 MeV, que se desprende en forma de calor.

Esta es una de las reacciones mediante las que el Sol produce energia. La ecuación que describe el proceso es la siguiente:

2H + 3H —-> 4He+ 1 neutrón +  17,6 MeV

https://historiaybiografias.com/linea_divisoria1.jpg

Los fundamentos de la física atómica DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos.(Ver: Fision Nuclear)

La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones.

fision nuclear

Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

La rapidez con que se establece y se propaga la reacción en cadena dilataría y haría explotar la masa con extrema violencia antes que todos los núcleos hubiesen podido ser fragmentados.

Si se admite que sólo el 10% de los átomos participa en la reacción, la enorme cantidad de energía liberada equivale a la producida por la explosión de 2000 toneladas de trinitrotolueno.

En la foto de arriba se encuentran compartiendo una información física Albert Einstein y Leo Szilard. El doctor Leo Szilard, fue a quien se le ocurrió mientras esperaba el cambio de un semáforo en la intersección de Southampton Row en Londres, la ideas de producir una reacción nuclear controlada, bombardeando núcleos con neutrones. Por puro juego, y no por ningún impulso agresivo, el físico bajito y gordo, húngaro de nacimiento, visualizó una reacción atómica en cadena mientras deambulada por la ciudad en aquel dorado septiembre de 1933, dedicado a sus pasatiempos favoritos: pensar y pasear.

En forma de calor, mil novecientos millones de grandes calorías estarían disponibles, constituyendo el centro de la volatilización de toda materia presente.

En una fracción infinitesimal de segundo, la temperatura se elevaría a centenares de miles de grados en el lugar de la explosión, engendrando un espantoso vendaval cuyos efectos destructores —merced a la propagación de la onda de compresión— semejarían a la devastadora barrida de una gigantesca marca.

En vísperas de la Segunda Guerra Mundial, todas estas posibilidades no pasaban de ser meras previsiones teóricas, a las cuales, sin embargo, el comienzo del conflicto bélico iba a conferir excepcionales alcances.

Hacia fines de 1940, cuando el secreto militar comenzó a volver impenetrable el velo que cubría las investigaciones sobre la energía nuclear, la utilización de la misma para producir una bomba parecía todavía un objetivo muy lejano e incluso utópico.

Sin duda se sabía que el uranio 235 era particularmente sensible a la “fisión” y que ofrecía una sección eficaz mayor a los neutrones lentos que a los rápidos; se habían desarrollado métodos para producir neutrones lentos; se habían elaborado procedimientos para separar el uranio 235 de su isótopo corriente; se había logrado aislar dos elementos transuránicos, el neptunio y el plutonio, y se reconocía que este último era también “fisionable” en circunstancias semejantes a las del uranio 235.

Además, se habla adquirido la certeza de que en la “fisión”, al menos un neutrón rápido —y en término medio dos o tres— era emitido por el núcleo.

Sin embargo, a pesar del conjunto de tales progresos, todavía nadie había logrado producir una reacción autosustentada.

Algunos investigadores incluso se preguntaban si la naturaleza acepta someterse a las exigencias de los teóricos. Tal vez la reacción en cadena era, en general, irrealizable. Pero las dudas terminaron por disiparse definitivamente el 2 de diciembre de 1942: ENRICO FERMI había realizado en Chicago, por primera vez, una reacción nuclear autosostenida.

El dispositivo construido en Chicago consistía en una pila de ladrillos de grafito puro que incluía trozos de uranio, separados por distancias regulares conforme a un esquema geométrico.

El grafito servía de sustancia moderadora destinada a frenar mediante choques elásticos los neutrones que salen dotados de elevadas velocidades de la ruptura nuclear del uranio 235.

Algunos de los neutrones penetran en el isótopo pesado U-238, otros vuelven a ser capturados por el isótopo liviano U-235, puesto que ambos están presentes en los trozos de metal de la pila.

Los proyectiles que golpean el U-238 provocan su transformación, que termina por dar origen al plutonio, mientras neutrones capturados por núcleos de U-235 producen la “fisión” de éstos, expulsando neutrones que siguen provocando nuevas rupturas.

Así, la pila produce a la vez materia “fisionahle” (plutonio) y libera energía al desintegrar núcleos.

Agreguemos que para el arranque no se necesita detonador ni ningún otro dispositivo especial; los neutrones de origen cósmico existentes en la atmósfera, o neutrones errantes que provienen de la explosión espontánea de un átomo de uranio, son suficientes para iniciar la reacción.

Una condición indispensable para el funcionamiento de la pila es su volumen, que debe superar cierto tamaño crítico.

De lo contrario el número de neutrones que escapan por la superficie de la pila no permite que se establezca la cadena de las reacciones.

Para el autosostenímiento de la cadena es menester, además, que cada neutrón incidente produzca al menos un nuevo neutrón apto para determinar a su vez la ruptura de un núcleo, siendo en este caso el “factor de multiplicación” igual a la unidad.

La cadena se extingue si dicho factor resulta inferior a uno; en cambio, si es considerablemente superior, la liberación continua y lenta de la energía se transforma en un proceso explosivo, convirtiendo a la pila en una bomba.

Tan peligrosa proliferación de neutrones es contrarrestada introduciendo en la masa de grafito láminas de materia absorbente (cadmio) que permiten mantener constante la velocidad de la reacción y “controlar” el nivel energético de la pila mediante un dispositivo automático.

Tales fueron, a grandes rasgos, las fundamentales características de la pila de FERMI, arquetipo de todos los reactores.

Al principio la pila de FERMI engendró, en forma de calor, una potencia de 0,5 vatio; poco después aumentó su nivel de energía hasta llegar a 200 vatios. Con tal reducido poder, una pila debería funcionar varios miles de años para producir la cantidad de plutonio requerida en la fabricación de una sola bomba.

Mas una conquista no puede medirse en vatios.

La posibilidad de liberar energía nuclear en escala macroscópica estaba magníficamente demostrada.

Si bien la distancia que separa la pila experimental de Chicago de la bomba experimental de Alamogordo era muy superior a la existente entre la rudimentaria máquina de vapor de NEWCOMEN y la locomotora de STEPHENSON, el largo camino fue recorrido en el breve intervalo de treinta meses gracias al formidable potencial tecnológico de los Estados Unidos, y al esfuerzo de un verdadero ejército de científicos, técnicos y trabajadores.

El 6 de agosto, la pavorosa explosión que arrasó la ciudad de Hiroshima anunció al mundo que el hombre disponía de nuevas y tremendas fuerzas aprisionadas desde eternidades en las entrañas de la materia.

“En el interior de una bomba de fisión —escribe uno de los principales constructores de la bomba, ROBERT OPPENHEIMER (1904-1967)—, se materializa un lugar con el cual ningún otro puede ser comparado.

Al explotar la bomba se producen temperaturas más elevadas que las que reinan en el centro del Sol; su carga está constituida por materias que normalmente no existen en la naturaleza y se emiten radiaciones (neutrones, rayos gamma, electrones) de una intensidad que no tiene precedentes en la experiencia humana.

El factor de multiplicación es el cociente del número de los nuevos neutrones producidos y el número inicial de los neutrones primitivos.En la pila de FERMI el factor de multiplicación era igual a 1,007.

Las presiones que se obtienen equivalen a billones de veces la presión atmosférica.

En el sentido más primario y más sencillo, es perfectamente cierto que con las armas atómicas el hombre ha creado situaciones nuevas.”

En pilas y bombas de uranio (o plutonio), la energía se produce por la ruptura de un elemento muy pesado en fragmentos menos pesados. Sin embargo, para producir enormes cantidades de energía no es éste el proceso que la naturaleza elige.

Las estrellas prefieren la fusión a la “fisión”; como ya dijimos, transforman en gigantesca escala —por síntesis de elementos livianos— una parte de su materia nuclear en energía radiante.

Tan sólo las prodigiosas reservas energéticas, cuyo depósito son los núcleos, pueden permitir al Sol irradiar en forma de luz y calor, año tras año, tres quintillones (3 x 1030) de grandes calorías.

Este torrente de energía solar fluye por lo menos desde hace cuatrocientos o quinientos millones de años, puesto que las pruebas aportadas por la flora y fauna paleozoicas sugieren que las condiciones climáticas de la Tierra no han cambiado esencialmente desde aquella remotísima era primaria.

Mas ¿cuál es la transformación nuclear capaz de alimentar tan formidable despliegue energético, que equivale por segundo a una pérdida de cuatro millones de toneladas de masa solar?.

No cabe duda de que la transformación del elemento más común del universo, el hidrógeno en helio (el elemento que sigue al hidrógeno en la Tabla Periódica), podría suministrar la fuente energética de la radiación solar.

En efecto, la síntesis del helio a partir de los constituyentes de su núcleo está acompañada —como hemos explicado al tratar la energía de la unión nuclear— por la pérdida de una parte de las masas que intervienen, siendo liberada la masa desaparecida —de acuerdo con la equivalencia einsteniana— en forma de energía radiante. Sin embargo, el mecanismo de la supuesta transmutación no había dejado de ser enigmático hasta que HANS BETHE, hacia 1940, propuso su hipótesis del ciclo del carbono.

Las enormes temperaturas que reinan en el interior del Sol —veinte millones de grados en la región central— confieren a las partículas de la masa solar —y especialmente a los protones a velocidades tan elevadas que éstas pueden penetrar en los núcleos de elementos livianos y transmutarlos.

Así, el núcleo ordinario de carbono, bombardeado por un protón, se transforma al capturarlo en un isótopo del nitrógeno que se desintegra.

En cinco reacciones consecutivas engendran con la emisión de dos electrones positivos varios isótopos de carbono, de nitrógeno y de oxígeno. Bombardeados éstos a su vez por núcleos de hidrógeno, conducen finalmente a la formación del helio.

La excepcional característica de este ciclo, que convierte cuatro núcleos de hidrógeno en un núcleo de helio, es la reaparición del carbono inicial en la última reacción, que se encuentra así regenerado.

Desempeña el papel de catalizador y puede ser utilizado innumerables veces, hasta que todo el hidrógeno solar haya sido transmutado en helio, asegurando así las reservas energéticas del Sol durante miles de millones de años. A idénticas o análogas reacciones termonucleares deben sus caudales de energía también otras estrellas.

No cabe duda de que el ciclo de carbono, productor de la energía solar, representa el primordial proceso físico-químico del universo desde la perspectiva de la historia humana.

Sin las reacciones termonucleares, que se realizan en el interior del Sol, la vida no habría podido surgir sobre la superficie de la Tierra, donde los fenómenos biológicos, desde la fotosíntesis de la clorofila de los vegetales hasta el metabolismo en el organismo de los animales y del hombre, son tributarios de la radiación solar.

Es un hecho realmente notable que el carbono —sustancia básica de la materia viva— desempeñe también el papel de catalizador en el grandioso proceso cósmico que dio origen primario a todas las actividades vitales en la naturaleza terrestre.

La síntesis de elementos livianos a partir del hidrógeno ha dejado de ser privilegio de las masas estelares desde hace algunos años.

Reacciones termonucleares, productoras de la fusión de núcleos, suministran la fuente energética a la novísima arma: la bomba de hidrógeno. Desde luego, el ciclo de BETHE, que genera helio en las profundidades del globo solar es demasiado lento y complicado para el uso militar.

Es probable que la transmutación de una masa de los dos isótopos pesados del hidrógeno, el deuterio y el tritio, en helio, esté en la base de la liberación de energía realizada por la nueva bomba.

Para establecer las formidables temperaturas (varios millones de centígrados) capaces de desencadenar la reacción se utiliza la ruptura del uranio o del plutonio: la bomba de “fisión” sirve de detonador a la superbomba de fusión.

El modelo de ésta, utilizado por los expertos estadounidenses en las pruebas de Enivetock, a fines de 1952, superaba doscientas veces el poder (es decir, la cantidad de energía liberada) de la bomba de Hiroshima, según estimaciones extraoficiales.

No cabe duda de que la posibilidad de borrar de la superficie del globo cualquiera de las grandes metrópolis de la Tierra mediante la explosión de una bomba o a lo sumo de muy pocas bombas está, desde ahora, dentro de los alcances del hombre.

El uso de esta arma en un conflicto bélico significaría la abdicación de la razón humana y equivaldría a una tentativa de suicidio del homo sapiens.

Fuente Consultada: Historia de la Ciencia Desidero Papp

LISTA DE TEMAS TRATADOS EN ESTE SITIO:

1-¿Que es un Atomo? 2-La Energía Nuclear y sus Usos 3-La Física Moderna 4-La Fisión Nuclear 5-Partículas Elementales 6-Vida de Max Planck

Reacción en cadena

La Fusión Nuclear

Una reacción de fusión nuclear es un proceso según el cual se unen núcleos ligeros o intermedios para formar núcleos más pesados, obteniéndose energía.

La fusión de un núcleo de deuterio, 2H, con un núcleo de tritio, 3H, da lugar a la formación de un núcleo de helio-4, 4He, además de un neutrón y una energía dc 17,6 MeV, que se desprende en forma de calor.

Esta es una de las reacciones mediante las que el Sol produce energia. La ecuación que describe el proceso es la siguiente:

2H + 3H —-> 4He+ 1 neutrón +  17,6 MeV

https://historiaybiografias.com/linea_divisoria1.jpg

Los fundamentos de la física atómica DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos.(Ver: Fision Nuclear)

La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones.

fision nuclear

Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

La rapidez con que se establece y se propaga la reacción en cadena dilataría y haría explotar la masa con extrema violencia antes que todos los núcleos hubiesen podido ser fragmentados.

Si se admite que sólo el 10% de los átomos participa en la reacción, la enorme cantidad de energía liberada equivale a la producida por la explosión de 2000 toneladas de trinitrotolueno.

En la foto de arriba se encuentran compartiendo una información física Albert Einstein y Leo Szilard. El doctor Leo Szilard, fue a quien se le ocurrió mientras esperaba el cambio de un semáforo en la intersección de Southampton Row en Londres, la ideas de producir una reacción nuclear controlada, bombardeando núcleos con neutrones. Por puro juego, y no por ningún impulso agresivo, el físico bajito y gordo, húngaro de nacimiento, visualizó una reacción atómica en cadena mientras deambulada por la ciudad en aquel dorado septiembre de 1933, dedicado a sus pasatiempos favoritos: pensar y pasear.

En forma de calor, mil novecientos millones de grandes calorías estarían disponibles, constituyendo el centro de la volatilización de toda materia presente.

En una fracción infinitesimal de segundo, la temperatura se elevaría a centenares de miles de grados en el lugar de la explosión, engendrando un espantoso vendaval cuyos efectos destructores —merced a la propagación de la onda de compresión— semejarían a la devastadora barrida de una gigantesca marca.

En vísperas de la Segunda Guerra Mundial, todas estas posibilidades no pasaban de ser meras previsiones teóricas, a las cuales, sin embargo, el comienzo del conflicto bélico iba a conferir excepcionales alcances.

Hacia fines de 1940, cuando el secreto militar comenzó a volver impenetrable el velo que cubría las investigaciones sobre la energía nuclear, la utilización de la misma para producir una bomba parecía todavía un objetivo muy lejano e incluso utópico.

Sin duda se sabía que el uranio 235 era particularmente sensible a la “fisión” y que ofrecía una sección eficaz mayor a los neutrones lentos que a los rápidos; se habían desarrollado métodos para producir neutrones lentos; se habían elaborado procedimientos para separar el uranio 235 de su isótopo corriente; se había logrado aislar dos elementos transuránicos, el neptunio y el plutonio, y se reconocía que este último era también “fisionable” en circunstancias semejantes a las del uranio 235.

Además, se habla adquirido la certeza de que en la “fisión”, al menos un neutrón rápido —y en término medio dos o tres— era emitido por el núcleo.

Sin embargo, a pesar del conjunto de tales progresos, todavía nadie había logrado producir una reacción autosustentada.

Algunos investigadores incluso se preguntaban si la naturaleza acepta someterse a las exigencias de los teóricos. Tal vez la reacción en cadena era, en general, irrealizable. Pero las dudas terminaron por disiparse definitivamente el 2 de diciembre de 1942: ENRICO FERMI había realizado en Chicago, por primera vez, una reacción nuclear autosostenida.

El dispositivo construido en Chicago consistía en una pila de ladrillos de grafito puro que incluía trozos de uranio, separados por distancias regulares conforme a un esquema geométrico.

El grafito servía de sustancia moderadora destinada a frenar mediante choques elásticos los neutrones que salen dotados de elevadas velocidades de la ruptura nuclear del uranio 235.

Algunos de los neutrones penetran en el isótopo pesado U-238, otros vuelven a ser capturados por el isótopo liviano U-235, puesto que ambos están presentes en los trozos de metal de la pila.

Los proyectiles que golpean el U-238 provocan su transformación, que termina por dar origen al plutonio, mientras neutrones capturados por núcleos de U-235 producen la “fisión” de éstos, expulsando neutrones que siguen provocando nuevas rupturas.

Así, la pila produce a la vez materia “fisionahle” (plutonio) y libera energía al desintegrar núcleos.

Agreguemos que para el arranque no se necesita detonador ni ningún otro dispositivo especial; los neutrones de origen cósmico existentes en la atmósfera, o neutrones errantes que provienen de la explosión espontánea de un átomo de uranio, son suficientes para iniciar la reacción.

Una condición indispensable para el funcionamiento de la pila es su volumen, que debe superar cierto tamaño crítico.

De lo contrario el número de neutrones que escapan por la superficie de la pila no permite que se establezca la cadena de las reacciones.

Para el autosostenímiento de la cadena es menester, además, que cada neutrón incidente produzca al menos un nuevo neutrón apto para determinar a su vez la ruptura de un núcleo, siendo en este caso el “factor de multiplicación” igual a la unidad.

La cadena se extingue si dicho factor resulta inferior a uno; en cambio, si es considerablemente superior, la liberación continua y lenta de la energía se transforma en un proceso explosivo, convirtiendo a la pila en una bomba.

Tan peligrosa proliferación de neutrones es contrarrestada introduciendo en la masa de grafito láminas de materia absorbente (cadmio) que permiten mantener constante la velocidad de la reacción y “controlar” el nivel energético de la pila mediante un dispositivo automático.

Tales fueron, a grandes rasgos, las fundamentales características de la pila de FERMI, arquetipo de todos los reactores.

Al principio la pila de FERMI engendró, en forma de calor, una potencia de 0,5 vatio; poco después aumentó su nivel de energía hasta llegar a 200 vatios. Con tal reducido poder, una pila debería funcionar varios miles de años para producir la cantidad de plutonio requerida en la fabricación de una sola bomba.

Mas una conquista no puede medirse en vatios.

La posibilidad de liberar energía nuclear en escala macroscópica estaba magníficamente demostrada.

Si bien la distancia que separa la pila experimental de Chicago de la bomba experimental de Alamogordo era muy superior a la existente entre la rudimentaria máquina de vapor de NEWCOMEN y la locomotora de STEPHENSON, el largo camino fue recorrido en el breve intervalo de treinta meses gracias al formidable potencial tecnológico de los Estados Unidos, y al esfuerzo de un verdadero ejército de científicos, técnicos y trabajadores.

El 6 de agosto, la pavorosa explosión que arrasó la ciudad de Hiroshima anunció al mundo que el hombre disponía de nuevas y tremendas fuerzas aprisionadas desde eternidades en las entrañas de la materia.

“En el interior de una bomba de fisión —escribe uno de los principales constructores de la bomba, ROBERT OPPENHEIMER (1904-1967)—, se materializa un lugar con el cual ningún otro puede ser comparado.

Al explotar la bomba se producen temperaturas más elevadas que las que reinan en el centro del Sol; su carga está constituida por materias que normalmente no existen en la naturaleza y se emiten radiaciones (neutrones, rayos gamma, electrones) de una intensidad que no tiene precedentes en la experiencia humana.

El factor de multiplicación es el cociente del número de los nuevos neutrones producidos y el número inicial de los neutrones primitivos.En la pila de FERMI el factor de multiplicación era igual a 1,007.

Las presiones que se obtienen equivalen a billones de veces la presión atmosférica.

En el sentido más primario y más sencillo, es perfectamente cierto que con las armas atómicas el hombre ha creado situaciones nuevas.”

En pilas y bombas de uranio (o plutonio), la energía se produce por la ruptura de un elemento muy pesado en fragmentos menos pesados. Sin embargo, para producir enormes cantidades de energía no es éste el proceso que la naturaleza elige.

Las estrellas prefieren la fusión a la “fisión”; como ya dijimos, transforman en gigantesca escala —por síntesis de elementos livianos— una parte de su materia nuclear en energía radiante.

Tan sólo las prodigiosas reservas energéticas, cuyo depósito son los núcleos, pueden permitir al Sol irradiar en forma de luz y calor, año tras año, tres quintillones (3 x 1030) de grandes calorías.

Este torrente de energía solar fluye por lo menos desde hace cuatrocientos o quinientos millones de años, puesto que las pruebas aportadas por la flora y fauna paleozoicas sugieren que las condiciones climáticas de la Tierra no han cambiado esencialmente desde aquella remotísima era primaria.

Mas ¿cuál es la transformación nuclear capaz de alimentar tan formidable despliegue energético, que equivale por segundo a una pérdida de cuatro millones de toneladas de masa solar?.

No cabe duda de que la transformación del elemento más común del universo, el hidrógeno en helio (el elemento que sigue al hidrógeno en la Tabla Periódica), podría suministrar la fuente energética de la radiación solar.

En efecto, la síntesis del helio a partir de los constituyentes de su núcleo está acompañada —como hemos explicado al tratar la energía de la unión nuclear— por la pérdida de una parte de las masas que intervienen, siendo liberada la masa desaparecida —de acuerdo con la equivalencia einsteniana— en forma de energía radiante. Sin embargo, el mecanismo de la supuesta transmutación no había dejado de ser enigmático hasta que HANS BETHE, hacia 1940, propuso su hipótesis del ciclo del carbono.

Las enormes temperaturas que reinan en el interior del Sol —veinte millones de grados en la región central— confieren a las partículas de la masa solar —y especialmente a los protones a velocidades tan elevadas que éstas pueden penetrar en los núcleos de elementos livianos y transmutarlos.

Así, el núcleo ordinario de carbono, bombardeado por un protón, se transforma al capturarlo en un isótopo del nitrógeno que se desintegra.

En cinco reacciones consecutivas engendran con la emisión de dos electrones positivos varios isótopos de carbono, de nitrógeno y de oxígeno. Bombardeados éstos a su vez por núcleos de hidrógeno, conducen finalmente a la formación del helio.

La excepcional característica de este ciclo, que convierte cuatro núcleos de hidrógeno en un núcleo de helio, es la reaparición del carbono inicial en la última reacción, que se encuentra así regenerado.

Desempeña el papel de catalizador y puede ser utilizado innumerables veces, hasta que todo el hidrógeno solar haya sido transmutado en helio, asegurando así las reservas energéticas del Sol durante miles de millones de años. A idénticas o análogas reacciones termonucleares deben sus caudales de energía también otras estrellas.

No cabe duda de que el ciclo de carbono, productor de la energía solar, representa el primordial proceso físico-químico del universo desde la perspectiva de la historia humana.

Sin las reacciones termonucleares, que se realizan en el interior del Sol, la vida no habría podido surgir sobre la superficie de la Tierra, donde los fenómenos biológicos, desde la fotosíntesis de la clorofila de los vegetales hasta el metabolismo en el organismo de los animales y del hombre, son tributarios de la radiación solar.

Es un hecho realmente notable que el carbono —sustancia básica de la materia viva— desempeñe también el papel de catalizador en el grandioso proceso cósmico que dio origen primario a todas las actividades vitales en la naturaleza terrestre.

La síntesis de elementos livianos a partir del hidrógeno ha dejado de ser privilegio de las masas estelares desde hace algunos años.

Reacciones termonucleares, productoras de la fusión de núcleos, suministran la fuente energética a la novísima arma: la bomba de hidrógeno. Desde luego, el ciclo de BETHE, que genera helio en las profundidades del globo solar es demasiado lento y complicado para el uso militar.

Es probable que la transmutación de una masa de los dos isótopos pesados del hidrógeno, el deuterio y el tritio, en helio, esté en la base de la liberación de energía realizada por la nueva bomba.

Para establecer las formidables temperaturas (varios millones de centígrados) capaces de desencadenar la reacción se utiliza la ruptura del uranio o del plutonio: la bomba de “fisión” sirve de detonador a la superbomba de fusión.

El modelo de ésta, utilizado por los expertos estadounidenses en las pruebas de Enivetock, a fines de 1952, superaba doscientas veces el poder (es decir, la cantidad de energía liberada) de la bomba de Hiroshima, según estimaciones extraoficiales.

No cabe duda de que la posibilidad de borrar de la superficie del globo cualquiera de las grandes metrópolis de la Tierra mediante la explosión de una bomba o a lo sumo de muy pocas bombas está, desde ahora, dentro de los alcances del hombre.

El uso de esta arma en un conflicto bélico significaría la abdicación de la razón humana y equivaldría a una tentativa de suicidio del homo sapiens.

Fuente Consultada: Historia de la Ciencia Desidero Papp

LISTA DE TEMAS TRATADOS EN ESTE SITIO:

1-¿Que es un Atomo? 2-La Energía Nuclear y sus Usos 3-La Física Moderna 4-La Fisión Nuclear 5-Partículas Elementales 6-Vida de Max Planck
desintegracion nuclear

Reacción en cadena

La Fusión Nuclear

Una reacción de fusión nuclear es un proceso según el cual se unen núcleos ligeros o intermedios para formar núcleos más pesados, obteniéndose energía.

La fusión de un núcleo de deuterio, 2H, con un núcleo de tritio, 3H, da lugar a la formación de un núcleo de helio-4, 4He, además de un neutrón y una energía dc 17,6 MeV, que se desprende en forma de calor.

Esta es una de las reacciones mediante las que el Sol produce energia. La ecuación que describe el proceso es la siguiente:

2H + 3H —-> 4He+ 1 neutrón +  17,6 MeV

https://historiaybiografias.com/linea_divisoria1.jpg

Los fundamentos de la física atómica DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos.(Ver: Fision Nuclear)

La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones.

fision nuclear

Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

La rapidez con que se establece y se propaga la reacción en cadena dilataría y haría explotar la masa con extrema violencia antes que todos los núcleos hubiesen podido ser fragmentados.

Si se admite que sólo el 10% de los átomos participa en la reacción, la enorme cantidad de energía liberada equivale a la producida por la explosión de 2000 toneladas de trinitrotolueno.

En la foto de arriba se encuentran compartiendo una información física Albert Einstein y Leo Szilard. El doctor Leo Szilard, fue a quien se le ocurrió mientras esperaba el cambio de un semáforo en la intersección de Southampton Row en Londres, la ideas de producir una reacción nuclear controlada, bombardeando núcleos con neutrones. Por puro juego, y no por ningún impulso agresivo, el físico bajito y gordo, húngaro de nacimiento, visualizó una reacción atómica en cadena mientras deambulada por la ciudad en aquel dorado septiembre de 1933, dedicado a sus pasatiempos favoritos: pensar y pasear.

En forma de calor, mil novecientos millones de grandes calorías estarían disponibles, constituyendo el centro de la volatilización de toda materia presente.

En una fracción infinitesimal de segundo, la temperatura se elevaría a centenares de miles de grados en el lugar de la explosión, engendrando un espantoso vendaval cuyos efectos destructores —merced a la propagación de la onda de compresión— semejarían a la devastadora barrida de una gigantesca marca.

En vísperas de la Segunda Guerra Mundial, todas estas posibilidades no pasaban de ser meras previsiones teóricas, a las cuales, sin embargo, el comienzo del conflicto bélico iba a conferir excepcionales alcances.

Hacia fines de 1940, cuando el secreto militar comenzó a volver impenetrable el velo que cubría las investigaciones sobre la energía nuclear, la utilización de la misma para producir una bomba parecía todavía un objetivo muy lejano e incluso utópico.

Sin duda se sabía que el uranio 235 era particularmente sensible a la “fisión” y que ofrecía una sección eficaz mayor a los neutrones lentos que a los rápidos; se habían desarrollado métodos para producir neutrones lentos; se habían elaborado procedimientos para separar el uranio 235 de su isótopo corriente; se había logrado aislar dos elementos transuránicos, el neptunio y el plutonio, y se reconocía que este último era también “fisionable” en circunstancias semejantes a las del uranio 235.

Además, se habla adquirido la certeza de que en la “fisión”, al menos un neutrón rápido —y en término medio dos o tres— era emitido por el núcleo.

Sin embargo, a pesar del conjunto de tales progresos, todavía nadie había logrado producir una reacción autosustentada.

Algunos investigadores incluso se preguntaban si la naturaleza acepta someterse a las exigencias de los teóricos. Tal vez la reacción en cadena era, en general, irrealizable. Pero las dudas terminaron por disiparse definitivamente el 2 de diciembre de 1942: ENRICO FERMI había realizado en Chicago, por primera vez, una reacción nuclear autosostenida.

El dispositivo construido en Chicago consistía en una pila de ladrillos de grafito puro que incluía trozos de uranio, separados por distancias regulares conforme a un esquema geométrico.

El grafito servía de sustancia moderadora destinada a frenar mediante choques elásticos los neutrones que salen dotados de elevadas velocidades de la ruptura nuclear del uranio 235.

Algunos de los neutrones penetran en el isótopo pesado U-238, otros vuelven a ser capturados por el isótopo liviano U-235, puesto que ambos están presentes en los trozos de metal de la pila.

Los proyectiles que golpean el U-238 provocan su transformación, que termina por dar origen al plutonio, mientras neutrones capturados por núcleos de U-235 producen la “fisión” de éstos, expulsando neutrones que siguen provocando nuevas rupturas.

Así, la pila produce a la vez materia “fisionahle” (plutonio) y libera energía al desintegrar núcleos.

Agreguemos que para el arranque no se necesita detonador ni ningún otro dispositivo especial; los neutrones de origen cósmico existentes en la atmósfera, o neutrones errantes que provienen de la explosión espontánea de un átomo de uranio, son suficientes para iniciar la reacción.

Una condición indispensable para el funcionamiento de la pila es su volumen, que debe superar cierto tamaño crítico.

De lo contrario el número de neutrones que escapan por la superficie de la pila no permite que se establezca la cadena de las reacciones.

Para el autosostenímiento de la cadena es menester, además, que cada neutrón incidente produzca al menos un nuevo neutrón apto para determinar a su vez la ruptura de un núcleo, siendo en este caso el “factor de multiplicación” igual a la unidad.

La cadena se extingue si dicho factor resulta inferior a uno; en cambio, si es considerablemente superior, la liberación continua y lenta de la energía se transforma en un proceso explosivo, convirtiendo a la pila en una bomba.

Tan peligrosa proliferación de neutrones es contrarrestada introduciendo en la masa de grafito láminas de materia absorbente (cadmio) que permiten mantener constante la velocidad de la reacción y “controlar” el nivel energético de la pila mediante un dispositivo automático.

Tales fueron, a grandes rasgos, las fundamentales características de la pila de FERMI, arquetipo de todos los reactores.

Al principio la pila de FERMI engendró, en forma de calor, una potencia de 0,5 vatio; poco después aumentó su nivel de energía hasta llegar a 200 vatios. Con tal reducido poder, una pila debería funcionar varios miles de años para producir la cantidad de plutonio requerida en la fabricación de una sola bomba.

Mas una conquista no puede medirse en vatios.

La posibilidad de liberar energía nuclear en escala macroscópica estaba magníficamente demostrada.

Si bien la distancia que separa la pila experimental de Chicago de la bomba experimental de Alamogordo era muy superior a la existente entre la rudimentaria máquina de vapor de NEWCOMEN y la locomotora de STEPHENSON, el largo camino fue recorrido en el breve intervalo de treinta meses gracias al formidable potencial tecnológico de los Estados Unidos, y al esfuerzo de un verdadero ejército de científicos, técnicos y trabajadores.

El 6 de agosto, la pavorosa explosión que arrasó la ciudad de Hiroshima anunció al mundo que el hombre disponía de nuevas y tremendas fuerzas aprisionadas desde eternidades en las entrañas de la materia.

“En el interior de una bomba de fisión —escribe uno de los principales constructores de la bomba, ROBERT OPPENHEIMER (1904-1967)—, se materializa un lugar con el cual ningún otro puede ser comparado.

Al explotar la bomba se producen temperaturas más elevadas que las que reinan en el centro del Sol; su carga está constituida por materias que normalmente no existen en la naturaleza y se emiten radiaciones (neutrones, rayos gamma, electrones) de una intensidad que no tiene precedentes en la experiencia humana.

El factor de multiplicación es el cociente del número de los nuevos neutrones producidos y el número inicial de los neutrones primitivos.En la pila de FERMI el factor de multiplicación era igual a 1,007.

Las presiones que se obtienen equivalen a billones de veces la presión atmosférica.

En el sentido más primario y más sencillo, es perfectamente cierto que con las armas atómicas el hombre ha creado situaciones nuevas.”

En pilas y bombas de uranio (o plutonio), la energía se produce por la ruptura de un elemento muy pesado en fragmentos menos pesados. Sin embargo, para producir enormes cantidades de energía no es éste el proceso que la naturaleza elige.

Las estrellas prefieren la fusión a la “fisión”; como ya dijimos, transforman en gigantesca escala —por síntesis de elementos livianos— una parte de su materia nuclear en energía radiante.

Tan sólo las prodigiosas reservas energéticas, cuyo depósito son los núcleos, pueden permitir al Sol irradiar en forma de luz y calor, año tras año, tres quintillones (3 x 1030) de grandes calorías.

Este torrente de energía solar fluye por lo menos desde hace cuatrocientos o quinientos millones de años, puesto que las pruebas aportadas por la flora y fauna paleozoicas sugieren que las condiciones climáticas de la Tierra no han cambiado esencialmente desde aquella remotísima era primaria.

Mas ¿cuál es la transformación nuclear capaz de alimentar tan formidable despliegue energético, que equivale por segundo a una pérdida de cuatro millones de toneladas de masa solar?.

No cabe duda de que la transformación del elemento más común del universo, el hidrógeno en helio (el elemento que sigue al hidrógeno en la Tabla Periódica), podría suministrar la fuente energética de la radiación solar.

En efecto, la síntesis del helio a partir de los constituyentes de su núcleo está acompañada —como hemos explicado al tratar la energía de la unión nuclear— por la pérdida de una parte de las masas que intervienen, siendo liberada la masa desaparecida —de acuerdo con la equivalencia einsteniana— en forma de energía radiante. Sin embargo, el mecanismo de la supuesta transmutación no había dejado de ser enigmático hasta que HANS BETHE, hacia 1940, propuso su hipótesis del ciclo del carbono.

Las enormes temperaturas que reinan en el interior del Sol —veinte millones de grados en la región central— confieren a las partículas de la masa solar —y especialmente a los protones a velocidades tan elevadas que éstas pueden penetrar en los núcleos de elementos livianos y transmutarlos.

Así, el núcleo ordinario de carbono, bombardeado por un protón, se transforma al capturarlo en un isótopo del nitrógeno que se desintegra.

En cinco reacciones consecutivas engendran con la emisión de dos electrones positivos varios isótopos de carbono, de nitrógeno y de oxígeno. Bombardeados éstos a su vez por núcleos de hidrógeno, conducen finalmente a la formación del helio.

La excepcional característica de este ciclo, que convierte cuatro núcleos de hidrógeno en un núcleo de helio, es la reaparición del carbono inicial en la última reacción, que se encuentra así regenerado.

Desempeña el papel de catalizador y puede ser utilizado innumerables veces, hasta que todo el hidrógeno solar haya sido transmutado en helio, asegurando así las reservas energéticas del Sol durante miles de millones de años. A idénticas o análogas reacciones termonucleares deben sus caudales de energía también otras estrellas.

No cabe duda de que el ciclo de carbono, productor de la energía solar, representa el primordial proceso físico-químico del universo desde la perspectiva de la historia humana.

Sin las reacciones termonucleares, que se realizan en el interior del Sol, la vida no habría podido surgir sobre la superficie de la Tierra, donde los fenómenos biológicos, desde la fotosíntesis de la clorofila de los vegetales hasta el metabolismo en el organismo de los animales y del hombre, son tributarios de la radiación solar.

Es un hecho realmente notable que el carbono —sustancia básica de la materia viva— desempeñe también el papel de catalizador en el grandioso proceso cósmico que dio origen primario a todas las actividades vitales en la naturaleza terrestre.

La síntesis de elementos livianos a partir del hidrógeno ha dejado de ser privilegio de las masas estelares desde hace algunos años.

Reacciones termonucleares, productoras de la fusión de núcleos, suministran la fuente energética a la novísima arma: la bomba de hidrógeno. Desde luego, el ciclo de BETHE, que genera helio en las profundidades del globo solar es demasiado lento y complicado para el uso militar.

Es probable que la transmutación de una masa de los dos isótopos pesados del hidrógeno, el deuterio y el tritio, en helio, esté en la base de la liberación de energía realizada por la nueva bomba.

Para establecer las formidables temperaturas (varios millones de centígrados) capaces de desencadenar la reacción se utiliza la ruptura del uranio o del plutonio: la bomba de “fisión” sirve de detonador a la superbomba de fusión.

El modelo de ésta, utilizado por los expertos estadounidenses en las pruebas de Enivetock, a fines de 1952, superaba doscientas veces el poder (es decir, la cantidad de energía liberada) de la bomba de Hiroshima, según estimaciones extraoficiales.

No cabe duda de que la posibilidad de borrar de la superficie del globo cualquiera de las grandes metrópolis de la Tierra mediante la explosión de una bomba o a lo sumo de muy pocas bombas está, desde ahora, dentro de los alcances del hombre.

El uso de esta arma en un conflicto bélico significaría la abdicación de la razón humana y equivaldría a una tentativa de suicidio del homo sapiens.

Fuente Consultada: Historia de la Ciencia Desidero Papp

LISTA DE TEMAS TRATADOS EN ESTE SITIO:

1-¿Que es un Atomo? 2-La Energía Nuclear y sus Usos 3-La Física Moderna 4-La Fisión Nuclear 5-Partículas Elementales 6-Vida de Max Planck

Los neutrones que se obtienen en la fisión de un núcleo de uranio-235 pueden utilizarse para bombardear otros núcleos de este isótopo y provocar nuevas fisiones que a su vez producirán nuevos neutrones, y así sucesivamente.

Se origina de este modo una reacción en cadena mediante la cual, en un tiempo muy breve, se consigue la fisión de un gran número de núcleos y se libera una enorme cantidad de radiación y energía.

desintegracion nuclear

Reacción en cadena

La Fusión Nuclear

Una reacción de fusión nuclear es un proceso según el cual se unen núcleos ligeros o intermedios para formar núcleos más pesados, obteniéndose energía.

La fusión de un núcleo de deuterio, 2H, con un núcleo de tritio, 3H, da lugar a la formación de un núcleo de helio-4, 4He, además de un neutrón y una energía dc 17,6 MeV, que se desprende en forma de calor.

Esta es una de las reacciones mediante las que el Sol produce energia. La ecuación que describe el proceso es la siguiente:

2H + 3H —-> 4He+ 1 neutrón +  17,6 MeV

https://historiaybiografias.com/linea_divisoria1.jpg

Los fundamentos de la física atómica DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos.(Ver: Fision Nuclear)

La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones.

fision nuclear

Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

La rapidez con que se establece y se propaga la reacción en cadena dilataría y haría explotar la masa con extrema violencia antes que todos los núcleos hubiesen podido ser fragmentados.

Si se admite que sólo el 10% de los átomos participa en la reacción, la enorme cantidad de energía liberada equivale a la producida por la explosión de 2000 toneladas de trinitrotolueno.

En la foto de arriba se encuentran compartiendo una información física Albert Einstein y Leo Szilard. El doctor Leo Szilard, fue a quien se le ocurrió mientras esperaba el cambio de un semáforo en la intersección de Southampton Row en Londres, la ideas de producir una reacción nuclear controlada, bombardeando núcleos con neutrones. Por puro juego, y no por ningún impulso agresivo, el físico bajito y gordo, húngaro de nacimiento, visualizó una reacción atómica en cadena mientras deambulada por la ciudad en aquel dorado septiembre de 1933, dedicado a sus pasatiempos favoritos: pensar y pasear.

En forma de calor, mil novecientos millones de grandes calorías estarían disponibles, constituyendo el centro de la volatilización de toda materia presente.

En una fracción infinitesimal de segundo, la temperatura se elevaría a centenares de miles de grados en el lugar de la explosión, engendrando un espantoso vendaval cuyos efectos destructores —merced a la propagación de la onda de compresión— semejarían a la devastadora barrida de una gigantesca marca.

En vísperas de la Segunda Guerra Mundial, todas estas posibilidades no pasaban de ser meras previsiones teóricas, a las cuales, sin embargo, el comienzo del conflicto bélico iba a conferir excepcionales alcances.

Hacia fines de 1940, cuando el secreto militar comenzó a volver impenetrable el velo que cubría las investigaciones sobre la energía nuclear, la utilización de la misma para producir una bomba parecía todavía un objetivo muy lejano e incluso utópico.

Sin duda se sabía que el uranio 235 era particularmente sensible a la “fisión” y que ofrecía una sección eficaz mayor a los neutrones lentos que a los rápidos; se habían desarrollado métodos para producir neutrones lentos; se habían elaborado procedimientos para separar el uranio 235 de su isótopo corriente; se había logrado aislar dos elementos transuránicos, el neptunio y el plutonio, y se reconocía que este último era también “fisionable” en circunstancias semejantes a las del uranio 235.

Además, se habla adquirido la certeza de que en la “fisión”, al menos un neutrón rápido —y en término medio dos o tres— era emitido por el núcleo.

Sin embargo, a pesar del conjunto de tales progresos, todavía nadie había logrado producir una reacción autosustentada.

Algunos investigadores incluso se preguntaban si la naturaleza acepta someterse a las exigencias de los teóricos. Tal vez la reacción en cadena era, en general, irrealizable. Pero las dudas terminaron por disiparse definitivamente el 2 de diciembre de 1942: ENRICO FERMI había realizado en Chicago, por primera vez, una reacción nuclear autosostenida.

El dispositivo construido en Chicago consistía en una pila de ladrillos de grafito puro que incluía trozos de uranio, separados por distancias regulares conforme a un esquema geométrico.

El grafito servía de sustancia moderadora destinada a frenar mediante choques elásticos los neutrones que salen dotados de elevadas velocidades de la ruptura nuclear del uranio 235.

Algunos de los neutrones penetran en el isótopo pesado U-238, otros vuelven a ser capturados por el isótopo liviano U-235, puesto que ambos están presentes en los trozos de metal de la pila.

Los proyectiles que golpean el U-238 provocan su transformación, que termina por dar origen al plutonio, mientras neutrones capturados por núcleos de U-235 producen la “fisión” de éstos, expulsando neutrones que siguen provocando nuevas rupturas.

Así, la pila produce a la vez materia “fisionahle” (plutonio) y libera energía al desintegrar núcleos.

Agreguemos que para el arranque no se necesita detonador ni ningún otro dispositivo especial; los neutrones de origen cósmico existentes en la atmósfera, o neutrones errantes que provienen de la explosión espontánea de un átomo de uranio, son suficientes para iniciar la reacción.

Una condición indispensable para el funcionamiento de la pila es su volumen, que debe superar cierto tamaño crítico.

De lo contrario el número de neutrones que escapan por la superficie de la pila no permite que se establezca la cadena de las reacciones.

Para el autosostenímiento de la cadena es menester, además, que cada neutrón incidente produzca al menos un nuevo neutrón apto para determinar a su vez la ruptura de un núcleo, siendo en este caso el “factor de multiplicación” igual a la unidad.

La cadena se extingue si dicho factor resulta inferior a uno; en cambio, si es considerablemente superior, la liberación continua y lenta de la energía se transforma en un proceso explosivo, convirtiendo a la pila en una bomba.

Tan peligrosa proliferación de neutrones es contrarrestada introduciendo en la masa de grafito láminas de materia absorbente (cadmio) que permiten mantener constante la velocidad de la reacción y “controlar” el nivel energético de la pila mediante un dispositivo automático.

Tales fueron, a grandes rasgos, las fundamentales características de la pila de FERMI, arquetipo de todos los reactores.

Al principio la pila de FERMI engendró, en forma de calor, una potencia de 0,5 vatio; poco después aumentó su nivel de energía hasta llegar a 200 vatios. Con tal reducido poder, una pila debería funcionar varios miles de años para producir la cantidad de plutonio requerida en la fabricación de una sola bomba.

Mas una conquista no puede medirse en vatios.

La posibilidad de liberar energía nuclear en escala macroscópica estaba magníficamente demostrada.

Si bien la distancia que separa la pila experimental de Chicago de la bomba experimental de Alamogordo era muy superior a la existente entre la rudimentaria máquina de vapor de NEWCOMEN y la locomotora de STEPHENSON, el largo camino fue recorrido en el breve intervalo de treinta meses gracias al formidable potencial tecnológico de los Estados Unidos, y al esfuerzo de un verdadero ejército de científicos, técnicos y trabajadores.

El 6 de agosto, la pavorosa explosión que arrasó la ciudad de Hiroshima anunció al mundo que el hombre disponía de nuevas y tremendas fuerzas aprisionadas desde eternidades en las entrañas de la materia.

“En el interior de una bomba de fisión —escribe uno de los principales constructores de la bomba, ROBERT OPPENHEIMER (1904-1967)—, se materializa un lugar con el cual ningún otro puede ser comparado.

Al explotar la bomba se producen temperaturas más elevadas que las que reinan en el centro del Sol; su carga está constituida por materias que normalmente no existen en la naturaleza y se emiten radiaciones (neutrones, rayos gamma, electrones) de una intensidad que no tiene precedentes en la experiencia humana.

El factor de multiplicación es el cociente del número de los nuevos neutrones producidos y el número inicial de los neutrones primitivos.En la pila de FERMI el factor de multiplicación era igual a 1,007.

Las presiones que se obtienen equivalen a billones de veces la presión atmosférica.

En el sentido más primario y más sencillo, es perfectamente cierto que con las armas atómicas el hombre ha creado situaciones nuevas.”

En pilas y bombas de uranio (o plutonio), la energía se produce por la ruptura de un elemento muy pesado en fragmentos menos pesados. Sin embargo, para producir enormes cantidades de energía no es éste el proceso que la naturaleza elige.

Las estrellas prefieren la fusión a la “fisión”; como ya dijimos, transforman en gigantesca escala —por síntesis de elementos livianos— una parte de su materia nuclear en energía radiante.

Tan sólo las prodigiosas reservas energéticas, cuyo depósito son los núcleos, pueden permitir al Sol irradiar en forma de luz y calor, año tras año, tres quintillones (3 x 1030) de grandes calorías.

Este torrente de energía solar fluye por lo menos desde hace cuatrocientos o quinientos millones de años, puesto que las pruebas aportadas por la flora y fauna paleozoicas sugieren que las condiciones climáticas de la Tierra no han cambiado esencialmente desde aquella remotísima era primaria.

Mas ¿cuál es la transformación nuclear capaz de alimentar tan formidable despliegue energético, que equivale por segundo a una pérdida de cuatro millones de toneladas de masa solar?.

No cabe duda de que la transformación del elemento más común del universo, el hidrógeno en helio (el elemento que sigue al hidrógeno en la Tabla Periódica), podría suministrar la fuente energética de la radiación solar.

En efecto, la síntesis del helio a partir de los constituyentes de su núcleo está acompañada —como hemos explicado al tratar la energía de la unión nuclear— por la pérdida de una parte de las masas que intervienen, siendo liberada la masa desaparecida —de acuerdo con la equivalencia einsteniana— en forma de energía radiante. Sin embargo, el mecanismo de la supuesta transmutación no había dejado de ser enigmático hasta que HANS BETHE, hacia 1940, propuso su hipótesis del ciclo del carbono.

Las enormes temperaturas que reinan en el interior del Sol —veinte millones de grados en la región central— confieren a las partículas de la masa solar —y especialmente a los protones a velocidades tan elevadas que éstas pueden penetrar en los núcleos de elementos livianos y transmutarlos.

Así, el núcleo ordinario de carbono, bombardeado por un protón, se transforma al capturarlo en un isótopo del nitrógeno que se desintegra.

En cinco reacciones consecutivas engendran con la emisión de dos electrones positivos varios isótopos de carbono, de nitrógeno y de oxígeno. Bombardeados éstos a su vez por núcleos de hidrógeno, conducen finalmente a la formación del helio.

La excepcional característica de este ciclo, que convierte cuatro núcleos de hidrógeno en un núcleo de helio, es la reaparición del carbono inicial en la última reacción, que se encuentra así regenerado.

Desempeña el papel de catalizador y puede ser utilizado innumerables veces, hasta que todo el hidrógeno solar haya sido transmutado en helio, asegurando así las reservas energéticas del Sol durante miles de millones de años. A idénticas o análogas reacciones termonucleares deben sus caudales de energía también otras estrellas.

No cabe duda de que el ciclo de carbono, productor de la energía solar, representa el primordial proceso físico-químico del universo desde la perspectiva de la historia humana.

Sin las reacciones termonucleares, que se realizan en el interior del Sol, la vida no habría podido surgir sobre la superficie de la Tierra, donde los fenómenos biológicos, desde la fotosíntesis de la clorofila de los vegetales hasta el metabolismo en el organismo de los animales y del hombre, son tributarios de la radiación solar.

Es un hecho realmente notable que el carbono —sustancia básica de la materia viva— desempeñe también el papel de catalizador en el grandioso proceso cósmico que dio origen primario a todas las actividades vitales en la naturaleza terrestre.

La síntesis de elementos livianos a partir del hidrógeno ha dejado de ser privilegio de las masas estelares desde hace algunos años.

Reacciones termonucleares, productoras de la fusión de núcleos, suministran la fuente energética a la novísima arma: la bomba de hidrógeno. Desde luego, el ciclo de BETHE, que genera helio en las profundidades del globo solar es demasiado lento y complicado para el uso militar.

Es probable que la transmutación de una masa de los dos isótopos pesados del hidrógeno, el deuterio y el tritio, en helio, esté en la base de la liberación de energía realizada por la nueva bomba.

Para establecer las formidables temperaturas (varios millones de centígrados) capaces de desencadenar la reacción se utiliza la ruptura del uranio o del plutonio: la bomba de “fisión” sirve de detonador a la superbomba de fusión.

El modelo de ésta, utilizado por los expertos estadounidenses en las pruebas de Enivetock, a fines de 1952, superaba doscientas veces el poder (es decir, la cantidad de energía liberada) de la bomba de Hiroshima, según estimaciones extraoficiales.

No cabe duda de que la posibilidad de borrar de la superficie del globo cualquiera de las grandes metrópolis de la Tierra mediante la explosión de una bomba o a lo sumo de muy pocas bombas está, desde ahora, dentro de los alcances del hombre.

El uso de esta arma en un conflicto bélico significaría la abdicación de la razón humana y equivaldría a una tentativa de suicidio del homo sapiens.

Fuente Consultada: Historia de la Ciencia Desidero Papp

LISTA DE TEMAS TRATADOS EN ESTE SITIO:

1-¿Que es un Atomo? 2-La Energía Nuclear y sus Usos 3-La Física Moderna 4-La Fisión Nuclear 5-Partículas Elementales 6-Vida de Max Planck

La masa del núcleo de uranio-235 sumada con la masa del neutrón es ligeramente superior a la suma de las masas del núcleo de bario- 142, el núcleo de criptón-91 y los tres neutrones. Este pequeño defecto de masa se ha transformado en energía.

Los neutrones que se obtienen en la fisión de un núcleo de uranio-235 pueden utilizarse para bombardear otros núcleos de este isótopo y provocar nuevas fisiones que a su vez producirán nuevos neutrones, y así sucesivamente.

Se origina de este modo una reacción en cadena mediante la cual, en un tiempo muy breve, se consigue la fisión de un gran número de núcleos y se libera una enorme cantidad de radiación y energía.

desintegracion nuclear

Reacción en cadena

La Fusión Nuclear

Una reacción de fusión nuclear es un proceso según el cual se unen núcleos ligeros o intermedios para formar núcleos más pesados, obteniéndose energía.

La fusión de un núcleo de deuterio, 2H, con un núcleo de tritio, 3H, da lugar a la formación de un núcleo de helio-4, 4He, además de un neutrón y una energía dc 17,6 MeV, que se desprende en forma de calor.

Esta es una de las reacciones mediante las que el Sol produce energia. La ecuación que describe el proceso es la siguiente:

2H + 3H —-> 4He+ 1 neutrón +  17,6 MeV

https://historiaybiografias.com/linea_divisoria1.jpg

Los fundamentos de la física atómica DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos.(Ver: Fision Nuclear)

La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones.

fision nuclear

Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

La rapidez con que se establece y se propaga la reacción en cadena dilataría y haría explotar la masa con extrema violencia antes que todos los núcleos hubiesen podido ser fragmentados.

Si se admite que sólo el 10% de los átomos participa en la reacción, la enorme cantidad de energía liberada equivale a la producida por la explosión de 2000 toneladas de trinitrotolueno.

En la foto de arriba se encuentran compartiendo una información física Albert Einstein y Leo Szilard. El doctor Leo Szilard, fue a quien se le ocurrió mientras esperaba el cambio de un semáforo en la intersección de Southampton Row en Londres, la ideas de producir una reacción nuclear controlada, bombardeando núcleos con neutrones. Por puro juego, y no por ningún impulso agresivo, el físico bajito y gordo, húngaro de nacimiento, visualizó una reacción atómica en cadena mientras deambulada por la ciudad en aquel dorado septiembre de 1933, dedicado a sus pasatiempos favoritos: pensar y pasear.

En forma de calor, mil novecientos millones de grandes calorías estarían disponibles, constituyendo el centro de la volatilización de toda materia presente.

En una fracción infinitesimal de segundo, la temperatura se elevaría a centenares de miles de grados en el lugar de la explosión, engendrando un espantoso vendaval cuyos efectos destructores —merced a la propagación de la onda de compresión— semejarían a la devastadora barrida de una gigantesca marca.

En vísperas de la Segunda Guerra Mundial, todas estas posibilidades no pasaban de ser meras previsiones teóricas, a las cuales, sin embargo, el comienzo del conflicto bélico iba a conferir excepcionales alcances.

Hacia fines de 1940, cuando el secreto militar comenzó a volver impenetrable el velo que cubría las investigaciones sobre la energía nuclear, la utilización de la misma para producir una bomba parecía todavía un objetivo muy lejano e incluso utópico.

Sin duda se sabía que el uranio 235 era particularmente sensible a la “fisión” y que ofrecía una sección eficaz mayor a los neutrones lentos que a los rápidos; se habían desarrollado métodos para producir neutrones lentos; se habían elaborado procedimientos para separar el uranio 235 de su isótopo corriente; se había logrado aislar dos elementos transuránicos, el neptunio y el plutonio, y se reconocía que este último era también “fisionable” en circunstancias semejantes a las del uranio 235.

Además, se habla adquirido la certeza de que en la “fisión”, al menos un neutrón rápido —y en término medio dos o tres— era emitido por el núcleo.

Sin embargo, a pesar del conjunto de tales progresos, todavía nadie había logrado producir una reacción autosustentada.

Algunos investigadores incluso se preguntaban si la naturaleza acepta someterse a las exigencias de los teóricos. Tal vez la reacción en cadena era, en general, irrealizable. Pero las dudas terminaron por disiparse definitivamente el 2 de diciembre de 1942: ENRICO FERMI había realizado en Chicago, por primera vez, una reacción nuclear autosostenida.

El dispositivo construido en Chicago consistía en una pila de ladrillos de grafito puro que incluía trozos de uranio, separados por distancias regulares conforme a un esquema geométrico.

El grafito servía de sustancia moderadora destinada a frenar mediante choques elásticos los neutrones que salen dotados de elevadas velocidades de la ruptura nuclear del uranio 235.

Algunos de los neutrones penetran en el isótopo pesado U-238, otros vuelven a ser capturados por el isótopo liviano U-235, puesto que ambos están presentes en los trozos de metal de la pila.

Los proyectiles que golpean el U-238 provocan su transformación, que termina por dar origen al plutonio, mientras neutrones capturados por núcleos de U-235 producen la “fisión” de éstos, expulsando neutrones que siguen provocando nuevas rupturas.

Así, la pila produce a la vez materia “fisionahle” (plutonio) y libera energía al desintegrar núcleos.

Agreguemos que para el arranque no se necesita detonador ni ningún otro dispositivo especial; los neutrones de origen cósmico existentes en la atmósfera, o neutrones errantes que provienen de la explosión espontánea de un átomo de uranio, son suficientes para iniciar la reacción.

Una condición indispensable para el funcionamiento de la pila es su volumen, que debe superar cierto tamaño crítico.

De lo contrario el número de neutrones que escapan por la superficie de la pila no permite que se establezca la cadena de las reacciones.

Para el autosostenímiento de la cadena es menester, además, que cada neutrón incidente produzca al menos un nuevo neutrón apto para determinar a su vez la ruptura de un núcleo, siendo en este caso el “factor de multiplicación” igual a la unidad.

La cadena se extingue si dicho factor resulta inferior a uno; en cambio, si es considerablemente superior, la liberación continua y lenta de la energía se transforma en un proceso explosivo, convirtiendo a la pila en una bomba.

Tan peligrosa proliferación de neutrones es contrarrestada introduciendo en la masa de grafito láminas de materia absorbente (cadmio) que permiten mantener constante la velocidad de la reacción y “controlar” el nivel energético de la pila mediante un dispositivo automático.

Tales fueron, a grandes rasgos, las fundamentales características de la pila de FERMI, arquetipo de todos los reactores.

Al principio la pila de FERMI engendró, en forma de calor, una potencia de 0,5 vatio; poco después aumentó su nivel de energía hasta llegar a 200 vatios. Con tal reducido poder, una pila debería funcionar varios miles de años para producir la cantidad de plutonio requerida en la fabricación de una sola bomba.

Mas una conquista no puede medirse en vatios.

La posibilidad de liberar energía nuclear en escala macroscópica estaba magníficamente demostrada.

Si bien la distancia que separa la pila experimental de Chicago de la bomba experimental de Alamogordo era muy superior a la existente entre la rudimentaria máquina de vapor de NEWCOMEN y la locomotora de STEPHENSON, el largo camino fue recorrido en el breve intervalo de treinta meses gracias al formidable potencial tecnológico de los Estados Unidos, y al esfuerzo de un verdadero ejército de científicos, técnicos y trabajadores.

El 6 de agosto, la pavorosa explosión que arrasó la ciudad de Hiroshima anunció al mundo que el hombre disponía de nuevas y tremendas fuerzas aprisionadas desde eternidades en las entrañas de la materia.

“En el interior de una bomba de fisión —escribe uno de los principales constructores de la bomba, ROBERT OPPENHEIMER (1904-1967)—, se materializa un lugar con el cual ningún otro puede ser comparado.

Al explotar la bomba se producen temperaturas más elevadas que las que reinan en el centro del Sol; su carga está constituida por materias que normalmente no existen en la naturaleza y se emiten radiaciones (neutrones, rayos gamma, electrones) de una intensidad que no tiene precedentes en la experiencia humana.

El factor de multiplicación es el cociente del número de los nuevos neutrones producidos y el número inicial de los neutrones primitivos.En la pila de FERMI el factor de multiplicación era igual a 1,007.

Las presiones que se obtienen equivalen a billones de veces la presión atmosférica.

En el sentido más primario y más sencillo, es perfectamente cierto que con las armas atómicas el hombre ha creado situaciones nuevas.”

En pilas y bombas de uranio (o plutonio), la energía se produce por la ruptura de un elemento muy pesado en fragmentos menos pesados. Sin embargo, para producir enormes cantidades de energía no es éste el proceso que la naturaleza elige.

Las estrellas prefieren la fusión a la “fisión”; como ya dijimos, transforman en gigantesca escala —por síntesis de elementos livianos— una parte de su materia nuclear en energía radiante.

Tan sólo las prodigiosas reservas energéticas, cuyo depósito son los núcleos, pueden permitir al Sol irradiar en forma de luz y calor, año tras año, tres quintillones (3 x 1030) de grandes calorías.

Este torrente de energía solar fluye por lo menos desde hace cuatrocientos o quinientos millones de años, puesto que las pruebas aportadas por la flora y fauna paleozoicas sugieren que las condiciones climáticas de la Tierra no han cambiado esencialmente desde aquella remotísima era primaria.

Mas ¿cuál es la transformación nuclear capaz de alimentar tan formidable despliegue energético, que equivale por segundo a una pérdida de cuatro millones de toneladas de masa solar?.

No cabe duda de que la transformación del elemento más común del universo, el hidrógeno en helio (el elemento que sigue al hidrógeno en la Tabla Periódica), podría suministrar la fuente energética de la radiación solar.

En efecto, la síntesis del helio a partir de los constituyentes de su núcleo está acompañada —como hemos explicado al tratar la energía de la unión nuclear— por la pérdida de una parte de las masas que intervienen, siendo liberada la masa desaparecida —de acuerdo con la equivalencia einsteniana— en forma de energía radiante. Sin embargo, el mecanismo de la supuesta transmutación no había dejado de ser enigmático hasta que HANS BETHE, hacia 1940, propuso su hipótesis del ciclo del carbono.

Las enormes temperaturas que reinan en el interior del Sol —veinte millones de grados en la región central— confieren a las partículas de la masa solar —y especialmente a los protones a velocidades tan elevadas que éstas pueden penetrar en los núcleos de elementos livianos y transmutarlos.

Así, el núcleo ordinario de carbono, bombardeado por un protón, se transforma al capturarlo en un isótopo del nitrógeno que se desintegra.

En cinco reacciones consecutivas engendran con la emisión de dos electrones positivos varios isótopos de carbono, de nitrógeno y de oxígeno. Bombardeados éstos a su vez por núcleos de hidrógeno, conducen finalmente a la formación del helio.

La excepcional característica de este ciclo, que convierte cuatro núcleos de hidrógeno en un núcleo de helio, es la reaparición del carbono inicial en la última reacción, que se encuentra así regenerado.

Desempeña el papel de catalizador y puede ser utilizado innumerables veces, hasta que todo el hidrógeno solar haya sido transmutado en helio, asegurando así las reservas energéticas del Sol durante miles de millones de años. A idénticas o análogas reacciones termonucleares deben sus caudales de energía también otras estrellas.

No cabe duda de que el ciclo de carbono, productor de la energía solar, representa el primordial proceso físico-químico del universo desde la perspectiva de la historia humana.

Sin las reacciones termonucleares, que se realizan en el interior del Sol, la vida no habría podido surgir sobre la superficie de la Tierra, donde los fenómenos biológicos, desde la fotosíntesis de la clorofila de los vegetales hasta el metabolismo en el organismo de los animales y del hombre, son tributarios de la radiación solar.

Es un hecho realmente notable que el carbono —sustancia básica de la materia viva— desempeñe también el papel de catalizador en el grandioso proceso cósmico que dio origen primario a todas las actividades vitales en la naturaleza terrestre.

La síntesis de elementos livianos a partir del hidrógeno ha dejado de ser privilegio de las masas estelares desde hace algunos años.

Reacciones termonucleares, productoras de la fusión de núcleos, suministran la fuente energética a la novísima arma: la bomba de hidrógeno. Desde luego, el ciclo de BETHE, que genera helio en las profundidades del globo solar es demasiado lento y complicado para el uso militar.

Es probable que la transmutación de una masa de los dos isótopos pesados del hidrógeno, el deuterio y el tritio, en helio, esté en la base de la liberación de energía realizada por la nueva bomba.

Para establecer las formidables temperaturas (varios millones de centígrados) capaces de desencadenar la reacción se utiliza la ruptura del uranio o del plutonio: la bomba de “fisión” sirve de detonador a la superbomba de fusión.

El modelo de ésta, utilizado por los expertos estadounidenses en las pruebas de Enivetock, a fines de 1952, superaba doscientas veces el poder (es decir, la cantidad de energía liberada) de la bomba de Hiroshima, según estimaciones extraoficiales.

No cabe duda de que la posibilidad de borrar de la superficie del globo cualquiera de las grandes metrópolis de la Tierra mediante la explosión de una bomba o a lo sumo de muy pocas bombas está, desde ahora, dentro de los alcances del hombre.

El uso de esta arma en un conflicto bélico significaría la abdicación de la razón humana y equivaldría a una tentativa de suicidio del homo sapiens.

Fuente Consultada: Historia de la Ciencia Desidero Papp

LISTA DE TEMAS TRATADOS EN ESTE SITIO:

1-¿Que es un Atomo? 2-La Energía Nuclear y sus Usos 3-La Física Moderna 4-La Fisión Nuclear 5-Partículas Elementales 6-Vida de Max Planck

235U + 1 neutrón —-> 142Ba + 91Kr + 3 neutrones + 210 MeV

La masa del núcleo de uranio-235 sumada con la masa del neutrón es ligeramente superior a la suma de las masas del núcleo de bario- 142, el núcleo de criptón-91 y los tres neutrones. Este pequeño defecto de masa se ha transformado en energía.

Los neutrones que se obtienen en la fisión de un núcleo de uranio-235 pueden utilizarse para bombardear otros núcleos de este isótopo y provocar nuevas fisiones que a su vez producirán nuevos neutrones, y así sucesivamente.

Se origina de este modo una reacción en cadena mediante la cual, en un tiempo muy breve, se consigue la fisión de un gran número de núcleos y se libera una enorme cantidad de radiación y energía.

desintegracion nuclear

Reacción en cadena

La Fusión Nuclear

Una reacción de fusión nuclear es un proceso según el cual se unen núcleos ligeros o intermedios para formar núcleos más pesados, obteniéndose energía.

La fusión de un núcleo de deuterio, 2H, con un núcleo de tritio, 3H, da lugar a la formación de un núcleo de helio-4, 4He, además de un neutrón y una energía dc 17,6 MeV, que se desprende en forma de calor.

Esta es una de las reacciones mediante las que el Sol produce energia. La ecuación que describe el proceso es la siguiente:

2H + 3H —-> 4He+ 1 neutrón +  17,6 MeV

https://historiaybiografias.com/linea_divisoria1.jpg

Los fundamentos de la física atómica DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos.(Ver: Fision Nuclear)

La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones.

fision nuclear

Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

La rapidez con que se establece y se propaga la reacción en cadena dilataría y haría explotar la masa con extrema violencia antes que todos los núcleos hubiesen podido ser fragmentados.

Si se admite que sólo el 10% de los átomos participa en la reacción, la enorme cantidad de energía liberada equivale a la producida por la explosión de 2000 toneladas de trinitrotolueno.

En la foto de arriba se encuentran compartiendo una información física Albert Einstein y Leo Szilard. El doctor Leo Szilard, fue a quien se le ocurrió mientras esperaba el cambio de un semáforo en la intersección de Southampton Row en Londres, la ideas de producir una reacción nuclear controlada, bombardeando núcleos con neutrones. Por puro juego, y no por ningún impulso agresivo, el físico bajito y gordo, húngaro de nacimiento, visualizó una reacción atómica en cadena mientras deambulada por la ciudad en aquel dorado septiembre de 1933, dedicado a sus pasatiempos favoritos: pensar y pasear.

En forma de calor, mil novecientos millones de grandes calorías estarían disponibles, constituyendo el centro de la volatilización de toda materia presente.

En una fracción infinitesimal de segundo, la temperatura se elevaría a centenares de miles de grados en el lugar de la explosión, engendrando un espantoso vendaval cuyos efectos destructores —merced a la propagación de la onda de compresión— semejarían a la devastadora barrida de una gigantesca marca.

En vísperas de la Segunda Guerra Mundial, todas estas posibilidades no pasaban de ser meras previsiones teóricas, a las cuales, sin embargo, el comienzo del conflicto bélico iba a conferir excepcionales alcances.

Hacia fines de 1940, cuando el secreto militar comenzó a volver impenetrable el velo que cubría las investigaciones sobre la energía nuclear, la utilización de la misma para producir una bomba parecía todavía un objetivo muy lejano e incluso utópico.

Sin duda se sabía que el uranio 235 era particularmente sensible a la “fisión” y que ofrecía una sección eficaz mayor a los neutrones lentos que a los rápidos; se habían desarrollado métodos para producir neutrones lentos; se habían elaborado procedimientos para separar el uranio 235 de su isótopo corriente; se había logrado aislar dos elementos transuránicos, el neptunio y el plutonio, y se reconocía que este último era también “fisionable” en circunstancias semejantes a las del uranio 235.

Además, se habla adquirido la certeza de que en la “fisión”, al menos un neutrón rápido —y en término medio dos o tres— era emitido por el núcleo.

Sin embargo, a pesar del conjunto de tales progresos, todavía nadie había logrado producir una reacción autosustentada.

Algunos investigadores incluso se preguntaban si la naturaleza acepta someterse a las exigencias de los teóricos. Tal vez la reacción en cadena era, en general, irrealizable. Pero las dudas terminaron por disiparse definitivamente el 2 de diciembre de 1942: ENRICO FERMI había realizado en Chicago, por primera vez, una reacción nuclear autosostenida.

El dispositivo construido en Chicago consistía en una pila de ladrillos de grafito puro que incluía trozos de uranio, separados por distancias regulares conforme a un esquema geométrico.

El grafito servía de sustancia moderadora destinada a frenar mediante choques elásticos los neutrones que salen dotados de elevadas velocidades de la ruptura nuclear del uranio 235.

Algunos de los neutrones penetran en el isótopo pesado U-238, otros vuelven a ser capturados por el isótopo liviano U-235, puesto que ambos están presentes en los trozos de metal de la pila.

Los proyectiles que golpean el U-238 provocan su transformación, que termina por dar origen al plutonio, mientras neutrones capturados por núcleos de U-235 producen la “fisión” de éstos, expulsando neutrones que siguen provocando nuevas rupturas.

Así, la pila produce a la vez materia “fisionahle” (plutonio) y libera energía al desintegrar núcleos.

Agreguemos que para el arranque no se necesita detonador ni ningún otro dispositivo especial; los neutrones de origen cósmico existentes en la atmósfera, o neutrones errantes que provienen de la explosión espontánea de un átomo de uranio, son suficientes para iniciar la reacción.

Una condición indispensable para el funcionamiento de la pila es su volumen, que debe superar cierto tamaño crítico.

De lo contrario el número de neutrones que escapan por la superficie de la pila no permite que se establezca la cadena de las reacciones.

Para el autosostenímiento de la cadena es menester, además, que cada neutrón incidente produzca al menos un nuevo neutrón apto para determinar a su vez la ruptura de un núcleo, siendo en este caso el “factor de multiplicación” igual a la unidad.

La cadena se extingue si dicho factor resulta inferior a uno; en cambio, si es considerablemente superior, la liberación continua y lenta de la energía se transforma en un proceso explosivo, convirtiendo a la pila en una bomba.

Tan peligrosa proliferación de neutrones es contrarrestada introduciendo en la masa de grafito láminas de materia absorbente (cadmio) que permiten mantener constante la velocidad de la reacción y “controlar” el nivel energético de la pila mediante un dispositivo automático.

Tales fueron, a grandes rasgos, las fundamentales características de la pila de FERMI, arquetipo de todos los reactores.

Al principio la pila de FERMI engendró, en forma de calor, una potencia de 0,5 vatio; poco después aumentó su nivel de energía hasta llegar a 200 vatios. Con tal reducido poder, una pila debería funcionar varios miles de años para producir la cantidad de plutonio requerida en la fabricación de una sola bomba.

Mas una conquista no puede medirse en vatios.

La posibilidad de liberar energía nuclear en escala macroscópica estaba magníficamente demostrada.

Si bien la distancia que separa la pila experimental de Chicago de la bomba experimental de Alamogordo era muy superior a la existente entre la rudimentaria máquina de vapor de NEWCOMEN y la locomotora de STEPHENSON, el largo camino fue recorrido en el breve intervalo de treinta meses gracias al formidable potencial tecnológico de los Estados Unidos, y al esfuerzo de un verdadero ejército de científicos, técnicos y trabajadores.

El 6 de agosto, la pavorosa explosión que arrasó la ciudad de Hiroshima anunció al mundo que el hombre disponía de nuevas y tremendas fuerzas aprisionadas desde eternidades en las entrañas de la materia.

“En el interior de una bomba de fisión —escribe uno de los principales constructores de la bomba, ROBERT OPPENHEIMER (1904-1967)—, se materializa un lugar con el cual ningún otro puede ser comparado.

Al explotar la bomba se producen temperaturas más elevadas que las que reinan en el centro del Sol; su carga está constituida por materias que normalmente no existen en la naturaleza y se emiten radiaciones (neutrones, rayos gamma, electrones) de una intensidad que no tiene precedentes en la experiencia humana.

El factor de multiplicación es el cociente del número de los nuevos neutrones producidos y el número inicial de los neutrones primitivos.En la pila de FERMI el factor de multiplicación era igual a 1,007.

Las presiones que se obtienen equivalen a billones de veces la presión atmosférica.

En el sentido más primario y más sencillo, es perfectamente cierto que con las armas atómicas el hombre ha creado situaciones nuevas.”

En pilas y bombas de uranio (o plutonio), la energía se produce por la ruptura de un elemento muy pesado en fragmentos menos pesados. Sin embargo, para producir enormes cantidades de energía no es éste el proceso que la naturaleza elige.

Las estrellas prefieren la fusión a la “fisión”; como ya dijimos, transforman en gigantesca escala —por síntesis de elementos livianos— una parte de su materia nuclear en energía radiante.

Tan sólo las prodigiosas reservas energéticas, cuyo depósito son los núcleos, pueden permitir al Sol irradiar en forma de luz y calor, año tras año, tres quintillones (3 x 1030) de grandes calorías.

Este torrente de energía solar fluye por lo menos desde hace cuatrocientos o quinientos millones de años, puesto que las pruebas aportadas por la flora y fauna paleozoicas sugieren que las condiciones climáticas de la Tierra no han cambiado esencialmente desde aquella remotísima era primaria.

Mas ¿cuál es la transformación nuclear capaz de alimentar tan formidable despliegue energético, que equivale por segundo a una pérdida de cuatro millones de toneladas de masa solar?.

No cabe duda de que la transformación del elemento más común del universo, el hidrógeno en helio (el elemento que sigue al hidrógeno en la Tabla Periódica), podría suministrar la fuente energética de la radiación solar.

En efecto, la síntesis del helio a partir de los constituyentes de su núcleo está acompañada —como hemos explicado al tratar la energía de la unión nuclear— por la pérdida de una parte de las masas que intervienen, siendo liberada la masa desaparecida —de acuerdo con la equivalencia einsteniana— en forma de energía radiante. Sin embargo, el mecanismo de la supuesta transmutación no había dejado de ser enigmático hasta que HANS BETHE, hacia 1940, propuso su hipótesis del ciclo del carbono.

Las enormes temperaturas que reinan en el interior del Sol —veinte millones de grados en la región central— confieren a las partículas de la masa solar —y especialmente a los protones a velocidades tan elevadas que éstas pueden penetrar en los núcleos de elementos livianos y transmutarlos.

Así, el núcleo ordinario de carbono, bombardeado por un protón, se transforma al capturarlo en un isótopo del nitrógeno que se desintegra.

En cinco reacciones consecutivas engendran con la emisión de dos electrones positivos varios isótopos de carbono, de nitrógeno y de oxígeno. Bombardeados éstos a su vez por núcleos de hidrógeno, conducen finalmente a la formación del helio.

La excepcional característica de este ciclo, que convierte cuatro núcleos de hidrógeno en un núcleo de helio, es la reaparición del carbono inicial en la última reacción, que se encuentra así regenerado.

Desempeña el papel de catalizador y puede ser utilizado innumerables veces, hasta que todo el hidrógeno solar haya sido transmutado en helio, asegurando así las reservas energéticas del Sol durante miles de millones de años. A idénticas o análogas reacciones termonucleares deben sus caudales de energía también otras estrellas.

No cabe duda de que el ciclo de carbono, productor de la energía solar, representa el primordial proceso físico-químico del universo desde la perspectiva de la historia humana.

Sin las reacciones termonucleares, que se realizan en el interior del Sol, la vida no habría podido surgir sobre la superficie de la Tierra, donde los fenómenos biológicos, desde la fotosíntesis de la clorofila de los vegetales hasta el metabolismo en el organismo de los animales y del hombre, son tributarios de la radiación solar.

Es un hecho realmente notable que el carbono —sustancia básica de la materia viva— desempeñe también el papel de catalizador en el grandioso proceso cósmico que dio origen primario a todas las actividades vitales en la naturaleza terrestre.

La síntesis de elementos livianos a partir del hidrógeno ha dejado de ser privilegio de las masas estelares desde hace algunos años.

Reacciones termonucleares, productoras de la fusión de núcleos, suministran la fuente energética a la novísima arma: la bomba de hidrógeno. Desde luego, el ciclo de BETHE, que genera helio en las profundidades del globo solar es demasiado lento y complicado para el uso militar.

Es probable que la transmutación de una masa de los dos isótopos pesados del hidrógeno, el deuterio y el tritio, en helio, esté en la base de la liberación de energía realizada por la nueva bomba.

Para establecer las formidables temperaturas (varios millones de centígrados) capaces de desencadenar la reacción se utiliza la ruptura del uranio o del plutonio: la bomba de “fisión” sirve de detonador a la superbomba de fusión.

El modelo de ésta, utilizado por los expertos estadounidenses en las pruebas de Enivetock, a fines de 1952, superaba doscientas veces el poder (es decir, la cantidad de energía liberada) de la bomba de Hiroshima, según estimaciones extraoficiales.

No cabe duda de que la posibilidad de borrar de la superficie del globo cualquiera de las grandes metrópolis de la Tierra mediante la explosión de una bomba o a lo sumo de muy pocas bombas está, desde ahora, dentro de los alcances del hombre.

El uso de esta arma en un conflicto bélico significaría la abdicación de la razón humana y equivaldría a una tentativa de suicidio del homo sapiens.

Fuente Consultada: Historia de la Ciencia Desidero Papp

LISTA DE TEMAS TRATADOS EN ESTE SITIO:

1-¿Que es un Atomo? 2-La Energía Nuclear y sus Usos 3-La Física Moderna 4-La Fisión Nuclear 5-Partículas Elementales 6-Vida de Max Planck

De la fisión de un núcleo de uranio-235 se obtiene un átomo de bario-142, un átomo de criptón-91, 3 neutrones y una energía de 210 MeV que se desprende en forma de calor. La ecuación que describe el proceso es la siguiente:

235U + 1 neutrón —-> 142Ba + 91Kr + 3 neutrones + 210 MeV

La masa del núcleo de uranio-235 sumada con la masa del neutrón es ligeramente superior a la suma de las masas del núcleo de bario- 142, el núcleo de criptón-91 y los tres neutrones. Este pequeño defecto de masa se ha transformado en energía.

Los neutrones que se obtienen en la fisión de un núcleo de uranio-235 pueden utilizarse para bombardear otros núcleos de este isótopo y provocar nuevas fisiones que a su vez producirán nuevos neutrones, y así sucesivamente.

Se origina de este modo una reacción en cadena mediante la cual, en un tiempo muy breve, se consigue la fisión de un gran número de núcleos y se libera una enorme cantidad de radiación y energía.

desintegracion nuclear

Reacción en cadena

La Fusión Nuclear

Una reacción de fusión nuclear es un proceso según el cual se unen núcleos ligeros o intermedios para formar núcleos más pesados, obteniéndose energía.

La fusión de un núcleo de deuterio, 2H, con un núcleo de tritio, 3H, da lugar a la formación de un núcleo de helio-4, 4He, además de un neutrón y una energía dc 17,6 MeV, que se desprende en forma de calor.

Esta es una de las reacciones mediante las que el Sol produce energia. La ecuación que describe el proceso es la siguiente:

2H + 3H —-> 4He+ 1 neutrón +  17,6 MeV

https://historiaybiografias.com/linea_divisoria1.jpg

Los fundamentos de la física atómica DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos.(Ver: Fision Nuclear)

La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones.

fision nuclear

Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

La rapidez con que se establece y se propaga la reacción en cadena dilataría y haría explotar la masa con extrema violencia antes que todos los núcleos hubiesen podido ser fragmentados.

Si se admite que sólo el 10% de los átomos participa en la reacción, la enorme cantidad de energía liberada equivale a la producida por la explosión de 2000 toneladas de trinitrotolueno.

En la foto de arriba se encuentran compartiendo una información física Albert Einstein y Leo Szilard. El doctor Leo Szilard, fue a quien se le ocurrió mientras esperaba el cambio de un semáforo en la intersección de Southampton Row en Londres, la ideas de producir una reacción nuclear controlada, bombardeando núcleos con neutrones. Por puro juego, y no por ningún impulso agresivo, el físico bajito y gordo, húngaro de nacimiento, visualizó una reacción atómica en cadena mientras deambulada por la ciudad en aquel dorado septiembre de 1933, dedicado a sus pasatiempos favoritos: pensar y pasear.

En forma de calor, mil novecientos millones de grandes calorías estarían disponibles, constituyendo el centro de la volatilización de toda materia presente.

En una fracción infinitesimal de segundo, la temperatura se elevaría a centenares de miles de grados en el lugar de la explosión, engendrando un espantoso vendaval cuyos efectos destructores —merced a la propagación de la onda de compresión— semejarían a la devastadora barrida de una gigantesca marca.

En vísperas de la Segunda Guerra Mundial, todas estas posibilidades no pasaban de ser meras previsiones teóricas, a las cuales, sin embargo, el comienzo del conflicto bélico iba a conferir excepcionales alcances.

Hacia fines de 1940, cuando el secreto militar comenzó a volver impenetrable el velo que cubría las investigaciones sobre la energía nuclear, la utilización de la misma para producir una bomba parecía todavía un objetivo muy lejano e incluso utópico.

Sin duda se sabía que el uranio 235 era particularmente sensible a la “fisión” y que ofrecía una sección eficaz mayor a los neutrones lentos que a los rápidos; se habían desarrollado métodos para producir neutrones lentos; se habían elaborado procedimientos para separar el uranio 235 de su isótopo corriente; se había logrado aislar dos elementos transuránicos, el neptunio y el plutonio, y se reconocía que este último era también “fisionable” en circunstancias semejantes a las del uranio 235.

Además, se habla adquirido la certeza de que en la “fisión”, al menos un neutrón rápido —y en término medio dos o tres— era emitido por el núcleo.

Sin embargo, a pesar del conjunto de tales progresos, todavía nadie había logrado producir una reacción autosustentada.

Algunos investigadores incluso se preguntaban si la naturaleza acepta someterse a las exigencias de los teóricos. Tal vez la reacción en cadena era, en general, irrealizable. Pero las dudas terminaron por disiparse definitivamente el 2 de diciembre de 1942: ENRICO FERMI había realizado en Chicago, por primera vez, una reacción nuclear autosostenida.

El dispositivo construido en Chicago consistía en una pila de ladrillos de grafito puro que incluía trozos de uranio, separados por distancias regulares conforme a un esquema geométrico.

El grafito servía de sustancia moderadora destinada a frenar mediante choques elásticos los neutrones que salen dotados de elevadas velocidades de la ruptura nuclear del uranio 235.

Algunos de los neutrones penetran en el isótopo pesado U-238, otros vuelven a ser capturados por el isótopo liviano U-235, puesto que ambos están presentes en los trozos de metal de la pila.

Los proyectiles que golpean el U-238 provocan su transformación, que termina por dar origen al plutonio, mientras neutrones capturados por núcleos de U-235 producen la “fisión” de éstos, expulsando neutrones que siguen provocando nuevas rupturas.

Así, la pila produce a la vez materia “fisionahle” (plutonio) y libera energía al desintegrar núcleos.

Agreguemos que para el arranque no se necesita detonador ni ningún otro dispositivo especial; los neutrones de origen cósmico existentes en la atmósfera, o neutrones errantes que provienen de la explosión espontánea de un átomo de uranio, son suficientes para iniciar la reacción.

Una condición indispensable para el funcionamiento de la pila es su volumen, que debe superar cierto tamaño crítico.

De lo contrario el número de neutrones que escapan por la superficie de la pila no permite que se establezca la cadena de las reacciones.

Para el autosostenímiento de la cadena es menester, además, que cada neutrón incidente produzca al menos un nuevo neutrón apto para determinar a su vez la ruptura de un núcleo, siendo en este caso el “factor de multiplicación” igual a la unidad.

La cadena se extingue si dicho factor resulta inferior a uno; en cambio, si es considerablemente superior, la liberación continua y lenta de la energía se transforma en un proceso explosivo, convirtiendo a la pila en una bomba.

Tan peligrosa proliferación de neutrones es contrarrestada introduciendo en la masa de grafito láminas de materia absorbente (cadmio) que permiten mantener constante la velocidad de la reacción y “controlar” el nivel energético de la pila mediante un dispositivo automático.

Tales fueron, a grandes rasgos, las fundamentales características de la pila de FERMI, arquetipo de todos los reactores.

Al principio la pila de FERMI engendró, en forma de calor, una potencia de 0,5 vatio; poco después aumentó su nivel de energía hasta llegar a 200 vatios. Con tal reducido poder, una pila debería funcionar varios miles de años para producir la cantidad de plutonio requerida en la fabricación de una sola bomba.

Mas una conquista no puede medirse en vatios.

La posibilidad de liberar energía nuclear en escala macroscópica estaba magníficamente demostrada.

Si bien la distancia que separa la pila experimental de Chicago de la bomba experimental de Alamogordo era muy superior a la existente entre la rudimentaria máquina de vapor de NEWCOMEN y la locomotora de STEPHENSON, el largo camino fue recorrido en el breve intervalo de treinta meses gracias al formidable potencial tecnológico de los Estados Unidos, y al esfuerzo de un verdadero ejército de científicos, técnicos y trabajadores.

El 6 de agosto, la pavorosa explosión que arrasó la ciudad de Hiroshima anunció al mundo que el hombre disponía de nuevas y tremendas fuerzas aprisionadas desde eternidades en las entrañas de la materia.

“En el interior de una bomba de fisión —escribe uno de los principales constructores de la bomba, ROBERT OPPENHEIMER (1904-1967)—, se materializa un lugar con el cual ningún otro puede ser comparado.

Al explotar la bomba se producen temperaturas más elevadas que las que reinan en el centro del Sol; su carga está constituida por materias que normalmente no existen en la naturaleza y se emiten radiaciones (neutrones, rayos gamma, electrones) de una intensidad que no tiene precedentes en la experiencia humana.

El factor de multiplicación es el cociente del número de los nuevos neutrones producidos y el número inicial de los neutrones primitivos.En la pila de FERMI el factor de multiplicación era igual a 1,007.

Las presiones que se obtienen equivalen a billones de veces la presión atmosférica.

En el sentido más primario y más sencillo, es perfectamente cierto que con las armas atómicas el hombre ha creado situaciones nuevas.”

En pilas y bombas de uranio (o plutonio), la energía se produce por la ruptura de un elemento muy pesado en fragmentos menos pesados. Sin embargo, para producir enormes cantidades de energía no es éste el proceso que la naturaleza elige.

Las estrellas prefieren la fusión a la “fisión”; como ya dijimos, transforman en gigantesca escala —por síntesis de elementos livianos— una parte de su materia nuclear en energía radiante.

Tan sólo las prodigiosas reservas energéticas, cuyo depósito son los núcleos, pueden permitir al Sol irradiar en forma de luz y calor, año tras año, tres quintillones (3 x 1030) de grandes calorías.

Este torrente de energía solar fluye por lo menos desde hace cuatrocientos o quinientos millones de años, puesto que las pruebas aportadas por la flora y fauna paleozoicas sugieren que las condiciones climáticas de la Tierra no han cambiado esencialmente desde aquella remotísima era primaria.

Mas ¿cuál es la transformación nuclear capaz de alimentar tan formidable despliegue energético, que equivale por segundo a una pérdida de cuatro millones de toneladas de masa solar?.

No cabe duda de que la transformación del elemento más común del universo, el hidrógeno en helio (el elemento que sigue al hidrógeno en la Tabla Periódica), podría suministrar la fuente energética de la radiación solar.

En efecto, la síntesis del helio a partir de los constituyentes de su núcleo está acompañada —como hemos explicado al tratar la energía de la unión nuclear— por la pérdida de una parte de las masas que intervienen, siendo liberada la masa desaparecida —de acuerdo con la equivalencia einsteniana— en forma de energía radiante. Sin embargo, el mecanismo de la supuesta transmutación no había dejado de ser enigmático hasta que HANS BETHE, hacia 1940, propuso su hipótesis del ciclo del carbono.

Las enormes temperaturas que reinan en el interior del Sol —veinte millones de grados en la región central— confieren a las partículas de la masa solar —y especialmente a los protones a velocidades tan elevadas que éstas pueden penetrar en los núcleos de elementos livianos y transmutarlos.

Así, el núcleo ordinario de carbono, bombardeado por un protón, se transforma al capturarlo en un isótopo del nitrógeno que se desintegra.

En cinco reacciones consecutivas engendran con la emisión de dos electrones positivos varios isótopos de carbono, de nitrógeno y de oxígeno. Bombardeados éstos a su vez por núcleos de hidrógeno, conducen finalmente a la formación del helio.

La excepcional característica de este ciclo, que convierte cuatro núcleos de hidrógeno en un núcleo de helio, es la reaparición del carbono inicial en la última reacción, que se encuentra así regenerado.

Desempeña el papel de catalizador y puede ser utilizado innumerables veces, hasta que todo el hidrógeno solar haya sido transmutado en helio, asegurando así las reservas energéticas del Sol durante miles de millones de años. A idénticas o análogas reacciones termonucleares deben sus caudales de energía también otras estrellas.

No cabe duda de que el ciclo de carbono, productor de la energía solar, representa el primordial proceso físico-químico del universo desde la perspectiva de la historia humana.

Sin las reacciones termonucleares, que se realizan en el interior del Sol, la vida no habría podido surgir sobre la superficie de la Tierra, donde los fenómenos biológicos, desde la fotosíntesis de la clorofila de los vegetales hasta el metabolismo en el organismo de los animales y del hombre, son tributarios de la radiación solar.

Es un hecho realmente notable que el carbono —sustancia básica de la materia viva— desempeñe también el papel de catalizador en el grandioso proceso cósmico que dio origen primario a todas las actividades vitales en la naturaleza terrestre.

La síntesis de elementos livianos a partir del hidrógeno ha dejado de ser privilegio de las masas estelares desde hace algunos años.

Reacciones termonucleares, productoras de la fusión de núcleos, suministran la fuente energética a la novísima arma: la bomba de hidrógeno. Desde luego, el ciclo de BETHE, que genera helio en las profundidades del globo solar es demasiado lento y complicado para el uso militar.

Es probable que la transmutación de una masa de los dos isótopos pesados del hidrógeno, el deuterio y el tritio, en helio, esté en la base de la liberación de energía realizada por la nueva bomba.

Para establecer las formidables temperaturas (varios millones de centígrados) capaces de desencadenar la reacción se utiliza la ruptura del uranio o del plutonio: la bomba de “fisión” sirve de detonador a la superbomba de fusión.

El modelo de ésta, utilizado por los expertos estadounidenses en las pruebas de Enivetock, a fines de 1952, superaba doscientas veces el poder (es decir, la cantidad de energía liberada) de la bomba de Hiroshima, según estimaciones extraoficiales.

No cabe duda de que la posibilidad de borrar de la superficie del globo cualquiera de las grandes metrópolis de la Tierra mediante la explosión de una bomba o a lo sumo de muy pocas bombas está, desde ahora, dentro de los alcances del hombre.

El uso de esta arma en un conflicto bélico significaría la abdicación de la razón humana y equivaldría a una tentativa de suicidio del homo sapiens.

Fuente Consultada: Historia de la Ciencia Desidero Papp

LISTA DE TEMAS TRATADOS EN ESTE SITIO:

1-¿Que es un Atomo? 2-La Energía Nuclear y sus Usos 3-La Física Moderna 4-La Fisión Nuclear 5-Partículas Elementales 6-Vida de Max Planck

Determinados núcleos pesados, como, por ejemplo, el núcleo de uranio-235, se rompen en dos núcleos intermedios cuando se bombardean con neutrones.

En este proceso, conocido como fisión nuclear, también se emiten otras partículas, además de radiación y una gran cantidad de energía.

De la fisión de un núcleo de uranio-235 se obtiene un átomo de bario-142, un átomo de criptón-91, 3 neutrones y una energía de 210 MeV que se desprende en forma de calor. La ecuación que describe el proceso es la siguiente:

235U + 1 neutrón —-> 142Ba + 91Kr + 3 neutrones + 210 MeV

La masa del núcleo de uranio-235 sumada con la masa del neutrón es ligeramente superior a la suma de las masas del núcleo de bario- 142, el núcleo de criptón-91 y los tres neutrones. Este pequeño defecto de masa se ha transformado en energía.

Los neutrones que se obtienen en la fisión de un núcleo de uranio-235 pueden utilizarse para bombardear otros núcleos de este isótopo y provocar nuevas fisiones que a su vez producirán nuevos neutrones, y así sucesivamente.

Se origina de este modo una reacción en cadena mediante la cual, en un tiempo muy breve, se consigue la fisión de un gran número de núcleos y se libera una enorme cantidad de radiación y energía.

desintegracion nuclear

Reacción en cadena

La Fusión Nuclear

Una reacción de fusión nuclear es un proceso según el cual se unen núcleos ligeros o intermedios para formar núcleos más pesados, obteniéndose energía.

La fusión de un núcleo de deuterio, 2H, con un núcleo de tritio, 3H, da lugar a la formación de un núcleo de helio-4, 4He, además de un neutrón y una energía dc 17,6 MeV, que se desprende en forma de calor.

Esta es una de las reacciones mediante las que el Sol produce energia. La ecuación que describe el proceso es la siguiente:

2H + 3H —-> 4He+ 1 neutrón +  17,6 MeV

https://historiaybiografias.com/linea_divisoria1.jpg

Los fundamentos de la física atómica DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos.(Ver: Fision Nuclear)

La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones.

fision nuclear

Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

La rapidez con que se establece y se propaga la reacción en cadena dilataría y haría explotar la masa con extrema violencia antes que todos los núcleos hubiesen podido ser fragmentados.

Si se admite que sólo el 10% de los átomos participa en la reacción, la enorme cantidad de energía liberada equivale a la producida por la explosión de 2000 toneladas de trinitrotolueno.

En la foto de arriba se encuentran compartiendo una información física Albert Einstein y Leo Szilard. El doctor Leo Szilard, fue a quien se le ocurrió mientras esperaba el cambio de un semáforo en la intersección de Southampton Row en Londres, la ideas de producir una reacción nuclear controlada, bombardeando núcleos con neutrones. Por puro juego, y no por ningún impulso agresivo, el físico bajito y gordo, húngaro de nacimiento, visualizó una reacción atómica en cadena mientras deambulada por la ciudad en aquel dorado septiembre de 1933, dedicado a sus pasatiempos favoritos: pensar y pasear.

En forma de calor, mil novecientos millones de grandes calorías estarían disponibles, constituyendo el centro de la volatilización de toda materia presente.

En una fracción infinitesimal de segundo, la temperatura se elevaría a centenares de miles de grados en el lugar de la explosión, engendrando un espantoso vendaval cuyos efectos destructores —merced a la propagación de la onda de compresión— semejarían a la devastadora barrida de una gigantesca marca.

En vísperas de la Segunda Guerra Mundial, todas estas posibilidades no pasaban de ser meras previsiones teóricas, a las cuales, sin embargo, el comienzo del conflicto bélico iba a conferir excepcionales alcances.

Hacia fines de 1940, cuando el secreto militar comenzó a volver impenetrable el velo que cubría las investigaciones sobre la energía nuclear, la utilización de la misma para producir una bomba parecía todavía un objetivo muy lejano e incluso utópico.

Sin duda se sabía que el uranio 235 era particularmente sensible a la “fisión” y que ofrecía una sección eficaz mayor a los neutrones lentos que a los rápidos; se habían desarrollado métodos para producir neutrones lentos; se habían elaborado procedimientos para separar el uranio 235 de su isótopo corriente; se había logrado aislar dos elementos transuránicos, el neptunio y el plutonio, y se reconocía que este último era también “fisionable” en circunstancias semejantes a las del uranio 235.

Además, se habla adquirido la certeza de que en la “fisión”, al menos un neutrón rápido —y en término medio dos o tres— era emitido por el núcleo.

Sin embargo, a pesar del conjunto de tales progresos, todavía nadie había logrado producir una reacción autosustentada.

Algunos investigadores incluso se preguntaban si la naturaleza acepta someterse a las exigencias de los teóricos. Tal vez la reacción en cadena era, en general, irrealizable. Pero las dudas terminaron por disiparse definitivamente el 2 de diciembre de 1942: ENRICO FERMI había realizado en Chicago, por primera vez, una reacción nuclear autosostenida.

El dispositivo construido en Chicago consistía en una pila de ladrillos de grafito puro que incluía trozos de uranio, separados por distancias regulares conforme a un esquema geométrico.

El grafito servía de sustancia moderadora destinada a frenar mediante choques elásticos los neutrones que salen dotados de elevadas velocidades de la ruptura nuclear del uranio 235.

Algunos de los neutrones penetran en el isótopo pesado U-238, otros vuelven a ser capturados por el isótopo liviano U-235, puesto que ambos están presentes en los trozos de metal de la pila.

Los proyectiles que golpean el U-238 provocan su transformación, que termina por dar origen al plutonio, mientras neutrones capturados por núcleos de U-235 producen la “fisión” de éstos, expulsando neutrones que siguen provocando nuevas rupturas.

Así, la pila produce a la vez materia “fisionahle” (plutonio) y libera energía al desintegrar núcleos.

Agreguemos que para el arranque no se necesita detonador ni ningún otro dispositivo especial; los neutrones de origen cósmico existentes en la atmósfera, o neutrones errantes que provienen de la explosión espontánea de un átomo de uranio, son suficientes para iniciar la reacción.

Una condición indispensable para el funcionamiento de la pila es su volumen, que debe superar cierto tamaño crítico.

De lo contrario el número de neutrones que escapan por la superficie de la pila no permite que se establezca la cadena de las reacciones.

Para el autosostenímiento de la cadena es menester, además, que cada neutrón incidente produzca al menos un nuevo neutrón apto para determinar a su vez la ruptura de un núcleo, siendo en este caso el “factor de multiplicación” igual a la unidad.

La cadena se extingue si dicho factor resulta inferior a uno; en cambio, si es considerablemente superior, la liberación continua y lenta de la energía se transforma en un proceso explosivo, convirtiendo a la pila en una bomba.

Tan peligrosa proliferación de neutrones es contrarrestada introduciendo en la masa de grafito láminas de materia absorbente (cadmio) que permiten mantener constante la velocidad de la reacción y “controlar” el nivel energético de la pila mediante un dispositivo automático.

Tales fueron, a grandes rasgos, las fundamentales características de la pila de FERMI, arquetipo de todos los reactores.

Al principio la pila de FERMI engendró, en forma de calor, una potencia de 0,5 vatio; poco después aumentó su nivel de energía hasta llegar a 200 vatios. Con tal reducido poder, una pila debería funcionar varios miles de años para producir la cantidad de plutonio requerida en la fabricación de una sola bomba.

Mas una conquista no puede medirse en vatios.

La posibilidad de liberar energía nuclear en escala macroscópica estaba magníficamente demostrada.

Si bien la distancia que separa la pila experimental de Chicago de la bomba experimental de Alamogordo era muy superior a la existente entre la rudimentaria máquina de vapor de NEWCOMEN y la locomotora de STEPHENSON, el largo camino fue recorrido en el breve intervalo de treinta meses gracias al formidable potencial tecnológico de los Estados Unidos, y al esfuerzo de un verdadero ejército de científicos, técnicos y trabajadores.

El 6 de agosto, la pavorosa explosión que arrasó la ciudad de Hiroshima anunció al mundo que el hombre disponía de nuevas y tremendas fuerzas aprisionadas desde eternidades en las entrañas de la materia.

“En el interior de una bomba de fisión —escribe uno de los principales constructores de la bomba, ROBERT OPPENHEIMER (1904-1967)—, se materializa un lugar con el cual ningún otro puede ser comparado.

Al explotar la bomba se producen temperaturas más elevadas que las que reinan en el centro del Sol; su carga está constituida por materias que normalmente no existen en la naturaleza y se emiten radiaciones (neutrones, rayos gamma, electrones) de una intensidad que no tiene precedentes en la experiencia humana.

El factor de multiplicación es el cociente del número de los nuevos neutrones producidos y el número inicial de los neutrones primitivos.En la pila de FERMI el factor de multiplicación era igual a 1,007.

Las presiones que se obtienen equivalen a billones de veces la presión atmosférica.

En el sentido más primario y más sencillo, es perfectamente cierto que con las armas atómicas el hombre ha creado situaciones nuevas.”

En pilas y bombas de uranio (o plutonio), la energía se produce por la ruptura de un elemento muy pesado en fragmentos menos pesados. Sin embargo, para producir enormes cantidades de energía no es éste el proceso que la naturaleza elige.

Las estrellas prefieren la fusión a la “fisión”; como ya dijimos, transforman en gigantesca escala —por síntesis de elementos livianos— una parte de su materia nuclear en energía radiante.

Tan sólo las prodigiosas reservas energéticas, cuyo depósito son los núcleos, pueden permitir al Sol irradiar en forma de luz y calor, año tras año, tres quintillones (3 x 1030) de grandes calorías.

Este torrente de energía solar fluye por lo menos desde hace cuatrocientos o quinientos millones de años, puesto que las pruebas aportadas por la flora y fauna paleozoicas sugieren que las condiciones climáticas de la Tierra no han cambiado esencialmente desde aquella remotísima era primaria.

Mas ¿cuál es la transformación nuclear capaz de alimentar tan formidable despliegue energético, que equivale por segundo a una pérdida de cuatro millones de toneladas de masa solar?.

No cabe duda de que la transformación del elemento más común del universo, el hidrógeno en helio (el elemento que sigue al hidrógeno en la Tabla Periódica), podría suministrar la fuente energética de la radiación solar.

En efecto, la síntesis del helio a partir de los constituyentes de su núcleo está acompañada —como hemos explicado al tratar la energía de la unión nuclear— por la pérdida de una parte de las masas que intervienen, siendo liberada la masa desaparecida —de acuerdo con la equivalencia einsteniana— en forma de energía radiante. Sin embargo, el mecanismo de la supuesta transmutación no había dejado de ser enigmático hasta que HANS BETHE, hacia 1940, propuso su hipótesis del ciclo del carbono.

Las enormes temperaturas que reinan en el interior del Sol —veinte millones de grados en la región central— confieren a las partículas de la masa solar —y especialmente a los protones a velocidades tan elevadas que éstas pueden penetrar en los núcleos de elementos livianos y transmutarlos.

Así, el núcleo ordinario de carbono, bombardeado por un protón, se transforma al capturarlo en un isótopo del nitrógeno que se desintegra.

En cinco reacciones consecutivas engendran con la emisión de dos electrones positivos varios isótopos de carbono, de nitrógeno y de oxígeno. Bombardeados éstos a su vez por núcleos de hidrógeno, conducen finalmente a la formación del helio.

La excepcional característica de este ciclo, que convierte cuatro núcleos de hidrógeno en un núcleo de helio, es la reaparición del carbono inicial en la última reacción, que se encuentra así regenerado.

Desempeña el papel de catalizador y puede ser utilizado innumerables veces, hasta que todo el hidrógeno solar haya sido transmutado en helio, asegurando así las reservas energéticas del Sol durante miles de millones de años. A idénticas o análogas reacciones termonucleares deben sus caudales de energía también otras estrellas.

No cabe duda de que el ciclo de carbono, productor de la energía solar, representa el primordial proceso físico-químico del universo desde la perspectiva de la historia humana.

Sin las reacciones termonucleares, que se realizan en el interior del Sol, la vida no habría podido surgir sobre la superficie de la Tierra, donde los fenómenos biológicos, desde la fotosíntesis de la clorofila de los vegetales hasta el metabolismo en el organismo de los animales y del hombre, son tributarios de la radiación solar.

Es un hecho realmente notable que el carbono —sustancia básica de la materia viva— desempeñe también el papel de catalizador en el grandioso proceso cósmico que dio origen primario a todas las actividades vitales en la naturaleza terrestre.

La síntesis de elementos livianos a partir del hidrógeno ha dejado de ser privilegio de las masas estelares desde hace algunos años.

Reacciones termonucleares, productoras de la fusión de núcleos, suministran la fuente energética a la novísima arma: la bomba de hidrógeno. Desde luego, el ciclo de BETHE, que genera helio en las profundidades del globo solar es demasiado lento y complicado para el uso militar.

Es probable que la transmutación de una masa de los dos isótopos pesados del hidrógeno, el deuterio y el tritio, en helio, esté en la base de la liberación de energía realizada por la nueva bomba.

Para establecer las formidables temperaturas (varios millones de centígrados) capaces de desencadenar la reacción se utiliza la ruptura del uranio o del plutonio: la bomba de “fisión” sirve de detonador a la superbomba de fusión.

El modelo de ésta, utilizado por los expertos estadounidenses en las pruebas de Enivetock, a fines de 1952, superaba doscientas veces el poder (es decir, la cantidad de energía liberada) de la bomba de Hiroshima, según estimaciones extraoficiales.

No cabe duda de que la posibilidad de borrar de la superficie del globo cualquiera de las grandes metrópolis de la Tierra mediante la explosión de una bomba o a lo sumo de muy pocas bombas está, desde ahora, dentro de los alcances del hombre.

El uso de esta arma en un conflicto bélico significaría la abdicación de la razón humana y equivaldría a una tentativa de suicidio del homo sapiens.

Fuente Consultada: Historia de la Ciencia Desidero Papp

LISTA DE TEMAS TRATADOS EN ESTE SITIO:

1-¿Que es un Atomo? 2-La Energía Nuclear y sus Usos 3-La Física Moderna 4-La Fisión Nuclear 5-Partículas Elementales 6-Vida de Max Planck

Ejemplo de Fisión Nuclear:

Determinados núcleos pesados, como, por ejemplo, el núcleo de uranio-235, se rompen en dos núcleos intermedios cuando se bombardean con neutrones.

En este proceso, conocido como fisión nuclear, también se emiten otras partículas, además de radiación y una gran cantidad de energía.

De la fisión de un núcleo de uranio-235 se obtiene un átomo de bario-142, un átomo de criptón-91, 3 neutrones y una energía de 210 MeV que se desprende en forma de calor. La ecuación que describe el proceso es la siguiente:

235U + 1 neutrón —-> 142Ba + 91Kr + 3 neutrones + 210 MeV

La masa del núcleo de uranio-235 sumada con la masa del neutrón es ligeramente superior a la suma de las masas del núcleo de bario- 142, el núcleo de criptón-91 y los tres neutrones. Este pequeño defecto de masa se ha transformado en energía.

Los neutrones que se obtienen en la fisión de un núcleo de uranio-235 pueden utilizarse para bombardear otros núcleos de este isótopo y provocar nuevas fisiones que a su vez producirán nuevos neutrones, y así sucesivamente.

Se origina de este modo una reacción en cadena mediante la cual, en un tiempo muy breve, se consigue la fisión de un gran número de núcleos y se libera una enorme cantidad de radiación y energía.

desintegracion nuclear

Reacción en cadena

La Fusión Nuclear

Una reacción de fusión nuclear es un proceso según el cual se unen núcleos ligeros o intermedios para formar núcleos más pesados, obteniéndose energía.

La fusión de un núcleo de deuterio, 2H, con un núcleo de tritio, 3H, da lugar a la formación de un núcleo de helio-4, 4He, además de un neutrón y una energía dc 17,6 MeV, que se desprende en forma de calor.

Esta es una de las reacciones mediante las que el Sol produce energia. La ecuación que describe el proceso es la siguiente:

2H + 3H —-> 4He+ 1 neutrón +  17,6 MeV

https://historiaybiografias.com/linea_divisoria1.jpg

Los fundamentos de la física atómica DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos.(Ver: Fision Nuclear)

La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones.

fision nuclear

Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

La rapidez con que se establece y se propaga la reacción en cadena dilataría y haría explotar la masa con extrema violencia antes que todos los núcleos hubiesen podido ser fragmentados.

Si se admite que sólo el 10% de los átomos participa en la reacción, la enorme cantidad de energía liberada equivale a la producida por la explosión de 2000 toneladas de trinitrotolueno.

En la foto de arriba se encuentran compartiendo una información física Albert Einstein y Leo Szilard. El doctor Leo Szilard, fue a quien se le ocurrió mientras esperaba el cambio de un semáforo en la intersección de Southampton Row en Londres, la ideas de producir una reacción nuclear controlada, bombardeando núcleos con neutrones. Por puro juego, y no por ningún impulso agresivo, el físico bajito y gordo, húngaro de nacimiento, visualizó una reacción atómica en cadena mientras deambulada por la ciudad en aquel dorado septiembre de 1933, dedicado a sus pasatiempos favoritos: pensar y pasear.

En forma de calor, mil novecientos millones de grandes calorías estarían disponibles, constituyendo el centro de la volatilización de toda materia presente.

En una fracción infinitesimal de segundo, la temperatura se elevaría a centenares de miles de grados en el lugar de la explosión, engendrando un espantoso vendaval cuyos efectos destructores —merced a la propagación de la onda de compresión— semejarían a la devastadora barrida de una gigantesca marca.

En vísperas de la Segunda Guerra Mundial, todas estas posibilidades no pasaban de ser meras previsiones teóricas, a las cuales, sin embargo, el comienzo del conflicto bélico iba a conferir excepcionales alcances.

Hacia fines de 1940, cuando el secreto militar comenzó a volver impenetrable el velo que cubría las investigaciones sobre la energía nuclear, la utilización de la misma para producir una bomba parecía todavía un objetivo muy lejano e incluso utópico.

Sin duda se sabía que el uranio 235 era particularmente sensible a la “fisión” y que ofrecía una sección eficaz mayor a los neutrones lentos que a los rápidos; se habían desarrollado métodos para producir neutrones lentos; se habían elaborado procedimientos para separar el uranio 235 de su isótopo corriente; se había logrado aislar dos elementos transuránicos, el neptunio y el plutonio, y se reconocía que este último era también “fisionable” en circunstancias semejantes a las del uranio 235.

Además, se habla adquirido la certeza de que en la “fisión”, al menos un neutrón rápido —y en término medio dos o tres— era emitido por el núcleo.

Sin embargo, a pesar del conjunto de tales progresos, todavía nadie había logrado producir una reacción autosustentada.

Algunos investigadores incluso se preguntaban si la naturaleza acepta someterse a las exigencias de los teóricos. Tal vez la reacción en cadena era, en general, irrealizable. Pero las dudas terminaron por disiparse definitivamente el 2 de diciembre de 1942: ENRICO FERMI había realizado en Chicago, por primera vez, una reacción nuclear autosostenida.

El dispositivo construido en Chicago consistía en una pila de ladrillos de grafito puro que incluía trozos de uranio, separados por distancias regulares conforme a un esquema geométrico.

El grafito servía de sustancia moderadora destinada a frenar mediante choques elásticos los neutrones que salen dotados de elevadas velocidades de la ruptura nuclear del uranio 235.

Algunos de los neutrones penetran en el isótopo pesado U-238, otros vuelven a ser capturados por el isótopo liviano U-235, puesto que ambos están presentes en los trozos de metal de la pila.

Los proyectiles que golpean el U-238 provocan su transformación, que termina por dar origen al plutonio, mientras neutrones capturados por núcleos de U-235 producen la “fisión” de éstos, expulsando neutrones que siguen provocando nuevas rupturas.

Así, la pila produce a la vez materia “fisionahle” (plutonio) y libera energía al desintegrar núcleos.

Agreguemos que para el arranque no se necesita detonador ni ningún otro dispositivo especial; los neutrones de origen cósmico existentes en la atmósfera, o neutrones errantes que provienen de la explosión espontánea de un átomo de uranio, son suficientes para iniciar la reacción.

Una condición indispensable para el funcionamiento de la pila es su volumen, que debe superar cierto tamaño crítico.

De lo contrario el número de neutrones que escapan por la superficie de la pila no permite que se establezca la cadena de las reacciones.

Para el autosostenímiento de la cadena es menester, además, que cada neutrón incidente produzca al menos un nuevo neutrón apto para determinar a su vez la ruptura de un núcleo, siendo en este caso el “factor de multiplicación” igual a la unidad.

La cadena se extingue si dicho factor resulta inferior a uno; en cambio, si es considerablemente superior, la liberación continua y lenta de la energía se transforma en un proceso explosivo, convirtiendo a la pila en una bomba.

Tan peligrosa proliferación de neutrones es contrarrestada introduciendo en la masa de grafito láminas de materia absorbente (cadmio) que permiten mantener constante la velocidad de la reacción y “controlar” el nivel energético de la pila mediante un dispositivo automático.

Tales fueron, a grandes rasgos, las fundamentales características de la pila de FERMI, arquetipo de todos los reactores.

Al principio la pila de FERMI engendró, en forma de calor, una potencia de 0,5 vatio; poco después aumentó su nivel de energía hasta llegar a 200 vatios. Con tal reducido poder, una pila debería funcionar varios miles de años para producir la cantidad de plutonio requerida en la fabricación de una sola bomba.

Mas una conquista no puede medirse en vatios.

La posibilidad de liberar energía nuclear en escala macroscópica estaba magníficamente demostrada.

Si bien la distancia que separa la pila experimental de Chicago de la bomba experimental de Alamogordo era muy superior a la existente entre la rudimentaria máquina de vapor de NEWCOMEN y la locomotora de STEPHENSON, el largo camino fue recorrido en el breve intervalo de treinta meses gracias al formidable potencial tecnológico de los Estados Unidos, y al esfuerzo de un verdadero ejército de científicos, técnicos y trabajadores.

El 6 de agosto, la pavorosa explosión que arrasó la ciudad de Hiroshima anunció al mundo que el hombre disponía de nuevas y tremendas fuerzas aprisionadas desde eternidades en las entrañas de la materia.

“En el interior de una bomba de fisión —escribe uno de los principales constructores de la bomba, ROBERT OPPENHEIMER (1904-1967)—, se materializa un lugar con el cual ningún otro puede ser comparado.

Al explotar la bomba se producen temperaturas más elevadas que las que reinan en el centro del Sol; su carga está constituida por materias que normalmente no existen en la naturaleza y se emiten radiaciones (neutrones, rayos gamma, electrones) de una intensidad que no tiene precedentes en la experiencia humana.

El factor de multiplicación es el cociente del número de los nuevos neutrones producidos y el número inicial de los neutrones primitivos.En la pila de FERMI el factor de multiplicación era igual a 1,007.

Las presiones que se obtienen equivalen a billones de veces la presión atmosférica.

En el sentido más primario y más sencillo, es perfectamente cierto que con las armas atómicas el hombre ha creado situaciones nuevas.”

En pilas y bombas de uranio (o plutonio), la energía se produce por la ruptura de un elemento muy pesado en fragmentos menos pesados. Sin embargo, para producir enormes cantidades de energía no es éste el proceso que la naturaleza elige.

Las estrellas prefieren la fusión a la “fisión”; como ya dijimos, transforman en gigantesca escala —por síntesis de elementos livianos— una parte de su materia nuclear en energía radiante.

Tan sólo las prodigiosas reservas energéticas, cuyo depósito son los núcleos, pueden permitir al Sol irradiar en forma de luz y calor, año tras año, tres quintillones (3 x 1030) de grandes calorías.

Este torrente de energía solar fluye por lo menos desde hace cuatrocientos o quinientos millones de años, puesto que las pruebas aportadas por la flora y fauna paleozoicas sugieren que las condiciones climáticas de la Tierra no han cambiado esencialmente desde aquella remotísima era primaria.

Mas ¿cuál es la transformación nuclear capaz de alimentar tan formidable despliegue energético, que equivale por segundo a una pérdida de cuatro millones de toneladas de masa solar?.

No cabe duda de que la transformación del elemento más común del universo, el hidrógeno en helio (el elemento que sigue al hidrógeno en la Tabla Periódica), podría suministrar la fuente energética de la radiación solar.

En efecto, la síntesis del helio a partir de los constituyentes de su núcleo está acompañada —como hemos explicado al tratar la energía de la unión nuclear— por la pérdida de una parte de las masas que intervienen, siendo liberada la masa desaparecida —de acuerdo con la equivalencia einsteniana— en forma de energía radiante. Sin embargo, el mecanismo de la supuesta transmutación no había dejado de ser enigmático hasta que HANS BETHE, hacia 1940, propuso su hipótesis del ciclo del carbono.

Las enormes temperaturas que reinan en el interior del Sol —veinte millones de grados en la región central— confieren a las partículas de la masa solar —y especialmente a los protones a velocidades tan elevadas que éstas pueden penetrar en los núcleos de elementos livianos y transmutarlos.

Así, el núcleo ordinario de carbono, bombardeado por un protón, se transforma al capturarlo en un isótopo del nitrógeno que se desintegra.

En cinco reacciones consecutivas engendran con la emisión de dos electrones positivos varios isótopos de carbono, de nitrógeno y de oxígeno. Bombardeados éstos a su vez por núcleos de hidrógeno, conducen finalmente a la formación del helio.

La excepcional característica de este ciclo, que convierte cuatro núcleos de hidrógeno en un núcleo de helio, es la reaparición del carbono inicial en la última reacción, que se encuentra así regenerado.

Desempeña el papel de catalizador y puede ser utilizado innumerables veces, hasta que todo el hidrógeno solar haya sido transmutado en helio, asegurando así las reservas energéticas del Sol durante miles de millones de años. A idénticas o análogas reacciones termonucleares deben sus caudales de energía también otras estrellas.

No cabe duda de que el ciclo de carbono, productor de la energía solar, representa el primordial proceso físico-químico del universo desde la perspectiva de la historia humana.

Sin las reacciones termonucleares, que se realizan en el interior del Sol, la vida no habría podido surgir sobre la superficie de la Tierra, donde los fenómenos biológicos, desde la fotosíntesis de la clorofila de los vegetales hasta el metabolismo en el organismo de los animales y del hombre, son tributarios de la radiación solar.

Es un hecho realmente notable que el carbono —sustancia básica de la materia viva— desempeñe también el papel de catalizador en el grandioso proceso cósmico que dio origen primario a todas las actividades vitales en la naturaleza terrestre.

La síntesis de elementos livianos a partir del hidrógeno ha dejado de ser privilegio de las masas estelares desde hace algunos años.

Reacciones termonucleares, productoras de la fusión de núcleos, suministran la fuente energética a la novísima arma: la bomba de hidrógeno. Desde luego, el ciclo de BETHE, que genera helio en las profundidades del globo solar es demasiado lento y complicado para el uso militar.

Es probable que la transmutación de una masa de los dos isótopos pesados del hidrógeno, el deuterio y el tritio, en helio, esté en la base de la liberación de energía realizada por la nueva bomba.

Para establecer las formidables temperaturas (varios millones de centígrados) capaces de desencadenar la reacción se utiliza la ruptura del uranio o del plutonio: la bomba de “fisión” sirve de detonador a la superbomba de fusión.

El modelo de ésta, utilizado por los expertos estadounidenses en las pruebas de Enivetock, a fines de 1952, superaba doscientas veces el poder (es decir, la cantidad de energía liberada) de la bomba de Hiroshima, según estimaciones extraoficiales.

No cabe duda de que la posibilidad de borrar de la superficie del globo cualquiera de las grandes metrópolis de la Tierra mediante la explosión de una bomba o a lo sumo de muy pocas bombas está, desde ahora, dentro de los alcances del hombre.

El uso de esta arma en un conflicto bélico significaría la abdicación de la razón humana y equivaldría a una tentativa de suicidio del homo sapiens.

Fuente Consultada: Historia de la Ciencia Desidero Papp

LISTA DE TEMAS TRATADOS EN ESTE SITIO:

1-¿Que es un Atomo? 2-La Energía Nuclear y sus Usos 3-La Física Moderna 4-La Fisión Nuclear 5-Partículas Elementales 6-Vida de Max Planck
einstein

Ejemplo de Fisión Nuclear:

Determinados núcleos pesados, como, por ejemplo, el núcleo de uranio-235, se rompen en dos núcleos intermedios cuando se bombardean con neutrones.

En este proceso, conocido como fisión nuclear, también se emiten otras partículas, además de radiación y una gran cantidad de energía.

De la fisión de un núcleo de uranio-235 se obtiene un átomo de bario-142, un átomo de criptón-91, 3 neutrones y una energía de 210 MeV que se desprende en forma de calor. La ecuación que describe el proceso es la siguiente:

235U + 1 neutrón —-> 142Ba + 91Kr + 3 neutrones + 210 MeV

La masa del núcleo de uranio-235 sumada con la masa del neutrón es ligeramente superior a la suma de las masas del núcleo de bario- 142, el núcleo de criptón-91 y los tres neutrones. Este pequeño defecto de masa se ha transformado en energía.

Los neutrones que se obtienen en la fisión de un núcleo de uranio-235 pueden utilizarse para bombardear otros núcleos de este isótopo y provocar nuevas fisiones que a su vez producirán nuevos neutrones, y así sucesivamente.

Se origina de este modo una reacción en cadena mediante la cual, en un tiempo muy breve, se consigue la fisión de un gran número de núcleos y se libera una enorme cantidad de radiación y energía.

desintegracion nuclear

Reacción en cadena

La Fusión Nuclear

Una reacción de fusión nuclear es un proceso según el cual se unen núcleos ligeros o intermedios para formar núcleos más pesados, obteniéndose energía.

La fusión de un núcleo de deuterio, 2H, con un núcleo de tritio, 3H, da lugar a la formación de un núcleo de helio-4, 4He, además de un neutrón y una energía dc 17,6 MeV, que se desprende en forma de calor.

Esta es una de las reacciones mediante las que el Sol produce energia. La ecuación que describe el proceso es la siguiente:

2H + 3H —-> 4He+ 1 neutrón +  17,6 MeV

https://historiaybiografias.com/linea_divisoria1.jpg

Los fundamentos de la física atómica DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos.(Ver: Fision Nuclear)

La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones.

fision nuclear

Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

La rapidez con que se establece y se propaga la reacción en cadena dilataría y haría explotar la masa con extrema violencia antes que todos los núcleos hubiesen podido ser fragmentados.

Si se admite que sólo el 10% de los átomos participa en la reacción, la enorme cantidad de energía liberada equivale a la producida por la explosión de 2000 toneladas de trinitrotolueno.

En la foto de arriba se encuentran compartiendo una información física Albert Einstein y Leo Szilard. El doctor Leo Szilard, fue a quien se le ocurrió mientras esperaba el cambio de un semáforo en la intersección de Southampton Row en Londres, la ideas de producir una reacción nuclear controlada, bombardeando núcleos con neutrones. Por puro juego, y no por ningún impulso agresivo, el físico bajito y gordo, húngaro de nacimiento, visualizó una reacción atómica en cadena mientras deambulada por la ciudad en aquel dorado septiembre de 1933, dedicado a sus pasatiempos favoritos: pensar y pasear.

En forma de calor, mil novecientos millones de grandes calorías estarían disponibles, constituyendo el centro de la volatilización de toda materia presente.

En una fracción infinitesimal de segundo, la temperatura se elevaría a centenares de miles de grados en el lugar de la explosión, engendrando un espantoso vendaval cuyos efectos destructores —merced a la propagación de la onda de compresión— semejarían a la devastadora barrida de una gigantesca marca.

En vísperas de la Segunda Guerra Mundial, todas estas posibilidades no pasaban de ser meras previsiones teóricas, a las cuales, sin embargo, el comienzo del conflicto bélico iba a conferir excepcionales alcances.

Hacia fines de 1940, cuando el secreto militar comenzó a volver impenetrable el velo que cubría las investigaciones sobre la energía nuclear, la utilización de la misma para producir una bomba parecía todavía un objetivo muy lejano e incluso utópico.

Sin duda se sabía que el uranio 235 era particularmente sensible a la “fisión” y que ofrecía una sección eficaz mayor a los neutrones lentos que a los rápidos; se habían desarrollado métodos para producir neutrones lentos; se habían elaborado procedimientos para separar el uranio 235 de su isótopo corriente; se había logrado aislar dos elementos transuránicos, el neptunio y el plutonio, y se reconocía que este último era también “fisionable” en circunstancias semejantes a las del uranio 235.

Además, se habla adquirido la certeza de que en la “fisión”, al menos un neutrón rápido —y en término medio dos o tres— era emitido por el núcleo.

Sin embargo, a pesar del conjunto de tales progresos, todavía nadie había logrado producir una reacción autosustentada.

Algunos investigadores incluso se preguntaban si la naturaleza acepta someterse a las exigencias de los teóricos. Tal vez la reacción en cadena era, en general, irrealizable. Pero las dudas terminaron por disiparse definitivamente el 2 de diciembre de 1942: ENRICO FERMI había realizado en Chicago, por primera vez, una reacción nuclear autosostenida.

El dispositivo construido en Chicago consistía en una pila de ladrillos de grafito puro que incluía trozos de uranio, separados por distancias regulares conforme a un esquema geométrico.

El grafito servía de sustancia moderadora destinada a frenar mediante choques elásticos los neutrones que salen dotados de elevadas velocidades de la ruptura nuclear del uranio 235.

Algunos de los neutrones penetran en el isótopo pesado U-238, otros vuelven a ser capturados por el isótopo liviano U-235, puesto que ambos están presentes en los trozos de metal de la pila.

Los proyectiles que golpean el U-238 provocan su transformación, que termina por dar origen al plutonio, mientras neutrones capturados por núcleos de U-235 producen la “fisión” de éstos, expulsando neutrones que siguen provocando nuevas rupturas.

Así, la pila produce a la vez materia “fisionahle” (plutonio) y libera energía al desintegrar núcleos.

Agreguemos que para el arranque no se necesita detonador ni ningún otro dispositivo especial; los neutrones de origen cósmico existentes en la atmósfera, o neutrones errantes que provienen de la explosión espontánea de un átomo de uranio, son suficientes para iniciar la reacción.

Una condición indispensable para el funcionamiento de la pila es su volumen, que debe superar cierto tamaño crítico.

De lo contrario el número de neutrones que escapan por la superficie de la pila no permite que se establezca la cadena de las reacciones.

Para el autosostenímiento de la cadena es menester, además, que cada neutrón incidente produzca al menos un nuevo neutrón apto para determinar a su vez la ruptura de un núcleo, siendo en este caso el “factor de multiplicación” igual a la unidad.

La cadena se extingue si dicho factor resulta inferior a uno; en cambio, si es considerablemente superior, la liberación continua y lenta de la energía se transforma en un proceso explosivo, convirtiendo a la pila en una bomba.

Tan peligrosa proliferación de neutrones es contrarrestada introduciendo en la masa de grafito láminas de materia absorbente (cadmio) que permiten mantener constante la velocidad de la reacción y “controlar” el nivel energético de la pila mediante un dispositivo automático.

Tales fueron, a grandes rasgos, las fundamentales características de la pila de FERMI, arquetipo de todos los reactores.

Al principio la pila de FERMI engendró, en forma de calor, una potencia de 0,5 vatio; poco después aumentó su nivel de energía hasta llegar a 200 vatios. Con tal reducido poder, una pila debería funcionar varios miles de años para producir la cantidad de plutonio requerida en la fabricación de una sola bomba.

Mas una conquista no puede medirse en vatios.

La posibilidad de liberar energía nuclear en escala macroscópica estaba magníficamente demostrada.

Si bien la distancia que separa la pila experimental de Chicago de la bomba experimental de Alamogordo era muy superior a la existente entre la rudimentaria máquina de vapor de NEWCOMEN y la locomotora de STEPHENSON, el largo camino fue recorrido en el breve intervalo de treinta meses gracias al formidable potencial tecnológico de los Estados Unidos, y al esfuerzo de un verdadero ejército de científicos, técnicos y trabajadores.

El 6 de agosto, la pavorosa explosión que arrasó la ciudad de Hiroshima anunció al mundo que el hombre disponía de nuevas y tremendas fuerzas aprisionadas desde eternidades en las entrañas de la materia.

“En el interior de una bomba de fisión —escribe uno de los principales constructores de la bomba, ROBERT OPPENHEIMER (1904-1967)—, se materializa un lugar con el cual ningún otro puede ser comparado.

Al explotar la bomba se producen temperaturas más elevadas que las que reinan en el centro del Sol; su carga está constituida por materias que normalmente no existen en la naturaleza y se emiten radiaciones (neutrones, rayos gamma, electrones) de una intensidad que no tiene precedentes en la experiencia humana.

El factor de multiplicación es el cociente del número de los nuevos neutrones producidos y el número inicial de los neutrones primitivos.En la pila de FERMI el factor de multiplicación era igual a 1,007.

Las presiones que se obtienen equivalen a billones de veces la presión atmosférica.

En el sentido más primario y más sencillo, es perfectamente cierto que con las armas atómicas el hombre ha creado situaciones nuevas.”

En pilas y bombas de uranio (o plutonio), la energía se produce por la ruptura de un elemento muy pesado en fragmentos menos pesados. Sin embargo, para producir enormes cantidades de energía no es éste el proceso que la naturaleza elige.

Las estrellas prefieren la fusión a la “fisión”; como ya dijimos, transforman en gigantesca escala —por síntesis de elementos livianos— una parte de su materia nuclear en energía radiante.

Tan sólo las prodigiosas reservas energéticas, cuyo depósito son los núcleos, pueden permitir al Sol irradiar en forma de luz y calor, año tras año, tres quintillones (3 x 1030) de grandes calorías.

Este torrente de energía solar fluye por lo menos desde hace cuatrocientos o quinientos millones de años, puesto que las pruebas aportadas por la flora y fauna paleozoicas sugieren que las condiciones climáticas de la Tierra no han cambiado esencialmente desde aquella remotísima era primaria.

Mas ¿cuál es la transformación nuclear capaz de alimentar tan formidable despliegue energético, que equivale por segundo a una pérdida de cuatro millones de toneladas de masa solar?.

No cabe duda de que la transformación del elemento más común del universo, el hidrógeno en helio (el elemento que sigue al hidrógeno en la Tabla Periódica), podría suministrar la fuente energética de la radiación solar.

En efecto, la síntesis del helio a partir de los constituyentes de su núcleo está acompañada —como hemos explicado al tratar la energía de la unión nuclear— por la pérdida de una parte de las masas que intervienen, siendo liberada la masa desaparecida —de acuerdo con la equivalencia einsteniana— en forma de energía radiante. Sin embargo, el mecanismo de la supuesta transmutación no había dejado de ser enigmático hasta que HANS BETHE, hacia 1940, propuso su hipótesis del ciclo del carbono.

Las enormes temperaturas que reinan en el interior del Sol —veinte millones de grados en la región central— confieren a las partículas de la masa solar —y especialmente a los protones a velocidades tan elevadas que éstas pueden penetrar en los núcleos de elementos livianos y transmutarlos.

Así, el núcleo ordinario de carbono, bombardeado por un protón, se transforma al capturarlo en un isótopo del nitrógeno que se desintegra.

En cinco reacciones consecutivas engendran con la emisión de dos electrones positivos varios isótopos de carbono, de nitrógeno y de oxígeno. Bombardeados éstos a su vez por núcleos de hidrógeno, conducen finalmente a la formación del helio.

La excepcional característica de este ciclo, que convierte cuatro núcleos de hidrógeno en un núcleo de helio, es la reaparición del carbono inicial en la última reacción, que se encuentra así regenerado.

Desempeña el papel de catalizador y puede ser utilizado innumerables veces, hasta que todo el hidrógeno solar haya sido transmutado en helio, asegurando así las reservas energéticas del Sol durante miles de millones de años. A idénticas o análogas reacciones termonucleares deben sus caudales de energía también otras estrellas.

No cabe duda de que el ciclo de carbono, productor de la energía solar, representa el primordial proceso físico-químico del universo desde la perspectiva de la historia humana.

Sin las reacciones termonucleares, que se realizan en el interior del Sol, la vida no habría podido surgir sobre la superficie de la Tierra, donde los fenómenos biológicos, desde la fotosíntesis de la clorofila de los vegetales hasta el metabolismo en el organismo de los animales y del hombre, son tributarios de la radiación solar.

Es un hecho realmente notable que el carbono —sustancia básica de la materia viva— desempeñe también el papel de catalizador en el grandioso proceso cósmico que dio origen primario a todas las actividades vitales en la naturaleza terrestre.

La síntesis de elementos livianos a partir del hidrógeno ha dejado de ser privilegio de las masas estelares desde hace algunos años.

Reacciones termonucleares, productoras de la fusión de núcleos, suministran la fuente energética a la novísima arma: la bomba de hidrógeno. Desde luego, el ciclo de BETHE, que genera helio en las profundidades del globo solar es demasiado lento y complicado para el uso militar.

Es probable que la transmutación de una masa de los dos isótopos pesados del hidrógeno, el deuterio y el tritio, en helio, esté en la base de la liberación de energía realizada por la nueva bomba.

Para establecer las formidables temperaturas (varios millones de centígrados) capaces de desencadenar la reacción se utiliza la ruptura del uranio o del plutonio: la bomba de “fisión” sirve de detonador a la superbomba de fusión.

El modelo de ésta, utilizado por los expertos estadounidenses en las pruebas de Enivetock, a fines de 1952, superaba doscientas veces el poder (es decir, la cantidad de energía liberada) de la bomba de Hiroshima, según estimaciones extraoficiales.

No cabe duda de que la posibilidad de borrar de la superficie del globo cualquiera de las grandes metrópolis de la Tierra mediante la explosión de una bomba o a lo sumo de muy pocas bombas está, desde ahora, dentro de los alcances del hombre.

El uso de esta arma en un conflicto bélico significaría la abdicación de la razón humana y equivaldría a una tentativa de suicidio del homo sapiens.

Fuente Consultada: Historia de la Ciencia Desidero Papp

LISTA DE TEMAS TRATADOS EN ESTE SITIO:

1-¿Que es un Atomo? 2-La Energía Nuclear y sus Usos 3-La Física Moderna 4-La Fisión Nuclear 5-Partículas Elementales 6-Vida de Max Planck

Donde E es la energía desprendida, m es el defecto de masa y c es la velocidad de propagación de la luz en el vacío.

Debido al elevado valor de c, a partir de una pequeña cantidad de materia es posible obtener una enorme cantidad de energía.

Albert Einstein (1879-1955)
einstein

Ejemplo de Fisión Nuclear:

Determinados núcleos pesados, como, por ejemplo, el núcleo de uranio-235, se rompen en dos núcleos intermedios cuando se bombardean con neutrones.

En este proceso, conocido como fisión nuclear, también se emiten otras partículas, además de radiación y una gran cantidad de energía.

De la fisión de un núcleo de uranio-235 se obtiene un átomo de bario-142, un átomo de criptón-91, 3 neutrones y una energía de 210 MeV que se desprende en forma de calor. La ecuación que describe el proceso es la siguiente:

235U + 1 neutrón —-> 142Ba + 91Kr + 3 neutrones + 210 MeV

La masa del núcleo de uranio-235 sumada con la masa del neutrón es ligeramente superior a la suma de las masas del núcleo de bario- 142, el núcleo de criptón-91 y los tres neutrones. Este pequeño defecto de masa se ha transformado en energía.

Los neutrones que se obtienen en la fisión de un núcleo de uranio-235 pueden utilizarse para bombardear otros núcleos de este isótopo y provocar nuevas fisiones que a su vez producirán nuevos neutrones, y así sucesivamente.

Se origina de este modo una reacción en cadena mediante la cual, en un tiempo muy breve, se consigue la fisión de un gran número de núcleos y se libera una enorme cantidad de radiación y energía.

desintegracion nuclear

Reacción en cadena

La Fusión Nuclear

Una reacción de fusión nuclear es un proceso según el cual se unen núcleos ligeros o intermedios para formar núcleos más pesados, obteniéndose energía.

La fusión de un núcleo de deuterio, 2H, con un núcleo de tritio, 3H, da lugar a la formación de un núcleo de helio-4, 4He, además de un neutrón y una energía dc 17,6 MeV, que se desprende en forma de calor.

Esta es una de las reacciones mediante las que el Sol produce energia. La ecuación que describe el proceso es la siguiente:

2H + 3H —-> 4He+ 1 neutrón +  17,6 MeV

https://historiaybiografias.com/linea_divisoria1.jpg

Los fundamentos de la física atómica DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos.(Ver: Fision Nuclear)

La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones.

fision nuclear

Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

La rapidez con que se establece y se propaga la reacción en cadena dilataría y haría explotar la masa con extrema violencia antes que todos los núcleos hubiesen podido ser fragmentados.

Si se admite que sólo el 10% de los átomos participa en la reacción, la enorme cantidad de energía liberada equivale a la producida por la explosión de 2000 toneladas de trinitrotolueno.

En la foto de arriba se encuentran compartiendo una información física Albert Einstein y Leo Szilard. El doctor Leo Szilard, fue a quien se le ocurrió mientras esperaba el cambio de un semáforo en la intersección de Southampton Row en Londres, la ideas de producir una reacción nuclear controlada, bombardeando núcleos con neutrones. Por puro juego, y no por ningún impulso agresivo, el físico bajito y gordo, húngaro de nacimiento, visualizó una reacción atómica en cadena mientras deambulada por la ciudad en aquel dorado septiembre de 1933, dedicado a sus pasatiempos favoritos: pensar y pasear.

En forma de calor, mil novecientos millones de grandes calorías estarían disponibles, constituyendo el centro de la volatilización de toda materia presente.

En una fracción infinitesimal de segundo, la temperatura se elevaría a centenares de miles de grados en el lugar de la explosión, engendrando un espantoso vendaval cuyos efectos destructores —merced a la propagación de la onda de compresión— semejarían a la devastadora barrida de una gigantesca marca.

En vísperas de la Segunda Guerra Mundial, todas estas posibilidades no pasaban de ser meras previsiones teóricas, a las cuales, sin embargo, el comienzo del conflicto bélico iba a conferir excepcionales alcances.

Hacia fines de 1940, cuando el secreto militar comenzó a volver impenetrable el velo que cubría las investigaciones sobre la energía nuclear, la utilización de la misma para producir una bomba parecía todavía un objetivo muy lejano e incluso utópico.

Sin duda se sabía que el uranio 235 era particularmente sensible a la “fisión” y que ofrecía una sección eficaz mayor a los neutrones lentos que a los rápidos; se habían desarrollado métodos para producir neutrones lentos; se habían elaborado procedimientos para separar el uranio 235 de su isótopo corriente; se había logrado aislar dos elementos transuránicos, el neptunio y el plutonio, y se reconocía que este último era también “fisionable” en circunstancias semejantes a las del uranio 235.

Además, se habla adquirido la certeza de que en la “fisión”, al menos un neutrón rápido —y en término medio dos o tres— era emitido por el núcleo.

Sin embargo, a pesar del conjunto de tales progresos, todavía nadie había logrado producir una reacción autosustentada.

Algunos investigadores incluso se preguntaban si la naturaleza acepta someterse a las exigencias de los teóricos. Tal vez la reacción en cadena era, en general, irrealizable. Pero las dudas terminaron por disiparse definitivamente el 2 de diciembre de 1942: ENRICO FERMI había realizado en Chicago, por primera vez, una reacción nuclear autosostenida.

El dispositivo construido en Chicago consistía en una pila de ladrillos de grafito puro que incluía trozos de uranio, separados por distancias regulares conforme a un esquema geométrico.

El grafito servía de sustancia moderadora destinada a frenar mediante choques elásticos los neutrones que salen dotados de elevadas velocidades de la ruptura nuclear del uranio 235.

Algunos de los neutrones penetran en el isótopo pesado U-238, otros vuelven a ser capturados por el isótopo liviano U-235, puesto que ambos están presentes en los trozos de metal de la pila.

Los proyectiles que golpean el U-238 provocan su transformación, que termina por dar origen al plutonio, mientras neutrones capturados por núcleos de U-235 producen la “fisión” de éstos, expulsando neutrones que siguen provocando nuevas rupturas.

Así, la pila produce a la vez materia “fisionahle” (plutonio) y libera energía al desintegrar núcleos.

Agreguemos que para el arranque no se necesita detonador ni ningún otro dispositivo especial; los neutrones de origen cósmico existentes en la atmósfera, o neutrones errantes que provienen de la explosión espontánea de un átomo de uranio, son suficientes para iniciar la reacción.

Una condición indispensable para el funcionamiento de la pila es su volumen, que debe superar cierto tamaño crítico.

De lo contrario el número de neutrones que escapan por la superficie de la pila no permite que se establezca la cadena de las reacciones.

Para el autosostenímiento de la cadena es menester, además, que cada neutrón incidente produzca al menos un nuevo neutrón apto para determinar a su vez la ruptura de un núcleo, siendo en este caso el “factor de multiplicación” igual a la unidad.

La cadena se extingue si dicho factor resulta inferior a uno; en cambio, si es considerablemente superior, la liberación continua y lenta de la energía se transforma en un proceso explosivo, convirtiendo a la pila en una bomba.

Tan peligrosa proliferación de neutrones es contrarrestada introduciendo en la masa de grafito láminas de materia absorbente (cadmio) que permiten mantener constante la velocidad de la reacción y “controlar” el nivel energético de la pila mediante un dispositivo automático.

Tales fueron, a grandes rasgos, las fundamentales características de la pila de FERMI, arquetipo de todos los reactores.

Al principio la pila de FERMI engendró, en forma de calor, una potencia de 0,5 vatio; poco después aumentó su nivel de energía hasta llegar a 200 vatios. Con tal reducido poder, una pila debería funcionar varios miles de años para producir la cantidad de plutonio requerida en la fabricación de una sola bomba.

Mas una conquista no puede medirse en vatios.

La posibilidad de liberar energía nuclear en escala macroscópica estaba magníficamente demostrada.

Si bien la distancia que separa la pila experimental de Chicago de la bomba experimental de Alamogordo era muy superior a la existente entre la rudimentaria máquina de vapor de NEWCOMEN y la locomotora de STEPHENSON, el largo camino fue recorrido en el breve intervalo de treinta meses gracias al formidable potencial tecnológico de los Estados Unidos, y al esfuerzo de un verdadero ejército de científicos, técnicos y trabajadores.

El 6 de agosto, la pavorosa explosión que arrasó la ciudad de Hiroshima anunció al mundo que el hombre disponía de nuevas y tremendas fuerzas aprisionadas desde eternidades en las entrañas de la materia.

“En el interior de una bomba de fisión —escribe uno de los principales constructores de la bomba, ROBERT OPPENHEIMER (1904-1967)—, se materializa un lugar con el cual ningún otro puede ser comparado.

Al explotar la bomba se producen temperaturas más elevadas que las que reinan en el centro del Sol; su carga está constituida por materias que normalmente no existen en la naturaleza y se emiten radiaciones (neutrones, rayos gamma, electrones) de una intensidad que no tiene precedentes en la experiencia humana.

El factor de multiplicación es el cociente del número de los nuevos neutrones producidos y el número inicial de los neutrones primitivos.En la pila de FERMI el factor de multiplicación era igual a 1,007.

Las presiones que se obtienen equivalen a billones de veces la presión atmosférica.

En el sentido más primario y más sencillo, es perfectamente cierto que con las armas atómicas el hombre ha creado situaciones nuevas.”

En pilas y bombas de uranio (o plutonio), la energía se produce por la ruptura de un elemento muy pesado en fragmentos menos pesados. Sin embargo, para producir enormes cantidades de energía no es éste el proceso que la naturaleza elige.

Las estrellas prefieren la fusión a la “fisión”; como ya dijimos, transforman en gigantesca escala —por síntesis de elementos livianos— una parte de su materia nuclear en energía radiante.

Tan sólo las prodigiosas reservas energéticas, cuyo depósito son los núcleos, pueden permitir al Sol irradiar en forma de luz y calor, año tras año, tres quintillones (3 x 1030) de grandes calorías.

Este torrente de energía solar fluye por lo menos desde hace cuatrocientos o quinientos millones de años, puesto que las pruebas aportadas por la flora y fauna paleozoicas sugieren que las condiciones climáticas de la Tierra no han cambiado esencialmente desde aquella remotísima era primaria.

Mas ¿cuál es la transformación nuclear capaz de alimentar tan formidable despliegue energético, que equivale por segundo a una pérdida de cuatro millones de toneladas de masa solar?.

No cabe duda de que la transformación del elemento más común del universo, el hidrógeno en helio (el elemento que sigue al hidrógeno en la Tabla Periódica), podría suministrar la fuente energética de la radiación solar.

En efecto, la síntesis del helio a partir de los constituyentes de su núcleo está acompañada —como hemos explicado al tratar la energía de la unión nuclear— por la pérdida de una parte de las masas que intervienen, siendo liberada la masa desaparecida —de acuerdo con la equivalencia einsteniana— en forma de energía radiante. Sin embargo, el mecanismo de la supuesta transmutación no había dejado de ser enigmático hasta que HANS BETHE, hacia 1940, propuso su hipótesis del ciclo del carbono.

Las enormes temperaturas que reinan en el interior del Sol —veinte millones de grados en la región central— confieren a las partículas de la masa solar —y especialmente a los protones a velocidades tan elevadas que éstas pueden penetrar en los núcleos de elementos livianos y transmutarlos.

Así, el núcleo ordinario de carbono, bombardeado por un protón, se transforma al capturarlo en un isótopo del nitrógeno que se desintegra.

En cinco reacciones consecutivas engendran con la emisión de dos electrones positivos varios isótopos de carbono, de nitrógeno y de oxígeno. Bombardeados éstos a su vez por núcleos de hidrógeno, conducen finalmente a la formación del helio.

La excepcional característica de este ciclo, que convierte cuatro núcleos de hidrógeno en un núcleo de helio, es la reaparición del carbono inicial en la última reacción, que se encuentra así regenerado.

Desempeña el papel de catalizador y puede ser utilizado innumerables veces, hasta que todo el hidrógeno solar haya sido transmutado en helio, asegurando así las reservas energéticas del Sol durante miles de millones de años. A idénticas o análogas reacciones termonucleares deben sus caudales de energía también otras estrellas.

No cabe duda de que el ciclo de carbono, productor de la energía solar, representa el primordial proceso físico-químico del universo desde la perspectiva de la historia humana.

Sin las reacciones termonucleares, que se realizan en el interior del Sol, la vida no habría podido surgir sobre la superficie de la Tierra, donde los fenómenos biológicos, desde la fotosíntesis de la clorofila de los vegetales hasta el metabolismo en el organismo de los animales y del hombre, son tributarios de la radiación solar.

Es un hecho realmente notable que el carbono —sustancia básica de la materia viva— desempeñe también el papel de catalizador en el grandioso proceso cósmico que dio origen primario a todas las actividades vitales en la naturaleza terrestre.

La síntesis de elementos livianos a partir del hidrógeno ha dejado de ser privilegio de las masas estelares desde hace algunos años.

Reacciones termonucleares, productoras de la fusión de núcleos, suministran la fuente energética a la novísima arma: la bomba de hidrógeno. Desde luego, el ciclo de BETHE, que genera helio en las profundidades del globo solar es demasiado lento y complicado para el uso militar.

Es probable que la transmutación de una masa de los dos isótopos pesados del hidrógeno, el deuterio y el tritio, en helio, esté en la base de la liberación de energía realizada por la nueva bomba.

Para establecer las formidables temperaturas (varios millones de centígrados) capaces de desencadenar la reacción se utiliza la ruptura del uranio o del plutonio: la bomba de “fisión” sirve de detonador a la superbomba de fusión.

El modelo de ésta, utilizado por los expertos estadounidenses en las pruebas de Enivetock, a fines de 1952, superaba doscientas veces el poder (es decir, la cantidad de energía liberada) de la bomba de Hiroshima, según estimaciones extraoficiales.

No cabe duda de que la posibilidad de borrar de la superficie del globo cualquiera de las grandes metrópolis de la Tierra mediante la explosión de una bomba o a lo sumo de muy pocas bombas está, desde ahora, dentro de los alcances del hombre.

El uso de esta arma en un conflicto bélico significaría la abdicación de la razón humana y equivaldría a una tentativa de suicidio del homo sapiens.

Fuente Consultada: Historia de la Ciencia Desidero Papp

LISTA DE TEMAS TRATADOS EN ESTE SITIO:

1-¿Que es un Atomo? 2-La Energía Nuclear y sus Usos 3-La Física Moderna 4-La Fisión Nuclear 5-Partículas Elementales 6-Vida de Max Planck

Los procesos en los que se modifican los núcleos de los átomos reciben el nombre de reacciones nucleares.

En las reacciones nucleares, pequeñas cantidades de masa se transforman en grandes cantidades de energía, de acuerdo con la equivalencia establecida por Einstein.

E = m.c2

Donde E es la energía desprendida, m es el defecto de masa y c es la velocidad de propagación de la luz en el vacío.

Debido al elevado valor de c, a partir de una pequeña cantidad de materia es posible obtener una enorme cantidad de energía.

Albert Einstein (1879-1955)
einstein

Ejemplo de Fisión Nuclear:

Determinados núcleos pesados, como, por ejemplo, el núcleo de uranio-235, se rompen en dos núcleos intermedios cuando se bombardean con neutrones.

En este proceso, conocido como fisión nuclear, también se emiten otras partículas, además de radiación y una gran cantidad de energía.

De la fisión de un núcleo de uranio-235 se obtiene un átomo de bario-142, un átomo de criptón-91, 3 neutrones y una energía de 210 MeV que se desprende en forma de calor. La ecuación que describe el proceso es la siguiente:

235U + 1 neutrón —-> 142Ba + 91Kr + 3 neutrones + 210 MeV

La masa del núcleo de uranio-235 sumada con la masa del neutrón es ligeramente superior a la suma de las masas del núcleo de bario- 142, el núcleo de criptón-91 y los tres neutrones. Este pequeño defecto de masa se ha transformado en energía.

Los neutrones que se obtienen en la fisión de un núcleo de uranio-235 pueden utilizarse para bombardear otros núcleos de este isótopo y provocar nuevas fisiones que a su vez producirán nuevos neutrones, y así sucesivamente.

Se origina de este modo una reacción en cadena mediante la cual, en un tiempo muy breve, se consigue la fisión de un gran número de núcleos y se libera una enorme cantidad de radiación y energía.

desintegracion nuclear

Reacción en cadena

La Fusión Nuclear

Una reacción de fusión nuclear es un proceso según el cual se unen núcleos ligeros o intermedios para formar núcleos más pesados, obteniéndose energía.

La fusión de un núcleo de deuterio, 2H, con un núcleo de tritio, 3H, da lugar a la formación de un núcleo de helio-4, 4He, además de un neutrón y una energía dc 17,6 MeV, que se desprende en forma de calor.

Esta es una de las reacciones mediante las que el Sol produce energia. La ecuación que describe el proceso es la siguiente:

2H + 3H —-> 4He+ 1 neutrón +  17,6 MeV

https://historiaybiografias.com/linea_divisoria1.jpg

Los fundamentos de la física atómica DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos.(Ver: Fision Nuclear)

La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones.

fision nuclear

Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

La rapidez con que se establece y se propaga la reacción en cadena dilataría y haría explotar la masa con extrema violencia antes que todos los núcleos hubiesen podido ser fragmentados.

Si se admite que sólo el 10% de los átomos participa en la reacción, la enorme cantidad de energía liberada equivale a la producida por la explosión de 2000 toneladas de trinitrotolueno.

En la foto de arriba se encuentran compartiendo una información física Albert Einstein y Leo Szilard. El doctor Leo Szilard, fue a quien se le ocurrió mientras esperaba el cambio de un semáforo en la intersección de Southampton Row en Londres, la ideas de producir una reacción nuclear controlada, bombardeando núcleos con neutrones. Por puro juego, y no por ningún impulso agresivo, el físico bajito y gordo, húngaro de nacimiento, visualizó una reacción atómica en cadena mientras deambulada por la ciudad en aquel dorado septiembre de 1933, dedicado a sus pasatiempos favoritos: pensar y pasear.

En forma de calor, mil novecientos millones de grandes calorías estarían disponibles, constituyendo el centro de la volatilización de toda materia presente.

En una fracción infinitesimal de segundo, la temperatura se elevaría a centenares de miles de grados en el lugar de la explosión, engendrando un espantoso vendaval cuyos efectos destructores —merced a la propagación de la onda de compresión— semejarían a la devastadora barrida de una gigantesca marca.

En vísperas de la Segunda Guerra Mundial, todas estas posibilidades no pasaban de ser meras previsiones teóricas, a las cuales, sin embargo, el comienzo del conflicto bélico iba a conferir excepcionales alcances.

Hacia fines de 1940, cuando el secreto militar comenzó a volver impenetrable el velo que cubría las investigaciones sobre la energía nuclear, la utilización de la misma para producir una bomba parecía todavía un objetivo muy lejano e incluso utópico.

Sin duda se sabía que el uranio 235 era particularmente sensible a la “fisión” y que ofrecía una sección eficaz mayor a los neutrones lentos que a los rápidos; se habían desarrollado métodos para producir neutrones lentos; se habían elaborado procedimientos para separar el uranio 235 de su isótopo corriente; se había logrado aislar dos elementos transuránicos, el neptunio y el plutonio, y se reconocía que este último era también “fisionable” en circunstancias semejantes a las del uranio 235.

Además, se habla adquirido la certeza de que en la “fisión”, al menos un neutrón rápido —y en término medio dos o tres— era emitido por el núcleo.

Sin embargo, a pesar del conjunto de tales progresos, todavía nadie había logrado producir una reacción autosustentada.

Algunos investigadores incluso se preguntaban si la naturaleza acepta someterse a las exigencias de los teóricos. Tal vez la reacción en cadena era, en general, irrealizable. Pero las dudas terminaron por disiparse definitivamente el 2 de diciembre de 1942: ENRICO FERMI había realizado en Chicago, por primera vez, una reacción nuclear autosostenida.

El dispositivo construido en Chicago consistía en una pila de ladrillos de grafito puro que incluía trozos de uranio, separados por distancias regulares conforme a un esquema geométrico.

El grafito servía de sustancia moderadora destinada a frenar mediante choques elásticos los neutrones que salen dotados de elevadas velocidades de la ruptura nuclear del uranio 235.

Algunos de los neutrones penetran en el isótopo pesado U-238, otros vuelven a ser capturados por el isótopo liviano U-235, puesto que ambos están presentes en los trozos de metal de la pila.

Los proyectiles que golpean el U-238 provocan su transformación, que termina por dar origen al plutonio, mientras neutrones capturados por núcleos de U-235 producen la “fisión” de éstos, expulsando neutrones que siguen provocando nuevas rupturas.

Así, la pila produce a la vez materia “fisionahle” (plutonio) y libera energía al desintegrar núcleos.

Agreguemos que para el arranque no se necesita detonador ni ningún otro dispositivo especial; los neutrones de origen cósmico existentes en la atmósfera, o neutrones errantes que provienen de la explosión espontánea de un átomo de uranio, son suficientes para iniciar la reacción.

Una condición indispensable para el funcionamiento de la pila es su volumen, que debe superar cierto tamaño crítico.

De lo contrario el número de neutrones que escapan por la superficie de la pila no permite que se establezca la cadena de las reacciones.

Para el autosostenímiento de la cadena es menester, además, que cada neutrón incidente produzca al menos un nuevo neutrón apto para determinar a su vez la ruptura de un núcleo, siendo en este caso el “factor de multiplicación” igual a la unidad.

La cadena se extingue si dicho factor resulta inferior a uno; en cambio, si es considerablemente superior, la liberación continua y lenta de la energía se transforma en un proceso explosivo, convirtiendo a la pila en una bomba.

Tan peligrosa proliferación de neutrones es contrarrestada introduciendo en la masa de grafito láminas de materia absorbente (cadmio) que permiten mantener constante la velocidad de la reacción y “controlar” el nivel energético de la pila mediante un dispositivo automático.

Tales fueron, a grandes rasgos, las fundamentales características de la pila de FERMI, arquetipo de todos los reactores.

Al principio la pila de FERMI engendró, en forma de calor, una potencia de 0,5 vatio; poco después aumentó su nivel de energía hasta llegar a 200 vatios. Con tal reducido poder, una pila debería funcionar varios miles de años para producir la cantidad de plutonio requerida en la fabricación de una sola bomba.

Mas una conquista no puede medirse en vatios.

La posibilidad de liberar energía nuclear en escala macroscópica estaba magníficamente demostrada.

Si bien la distancia que separa la pila experimental de Chicago de la bomba experimental de Alamogordo era muy superior a la existente entre la rudimentaria máquina de vapor de NEWCOMEN y la locomotora de STEPHENSON, el largo camino fue recorrido en el breve intervalo de treinta meses gracias al formidable potencial tecnológico de los Estados Unidos, y al esfuerzo de un verdadero ejército de científicos, técnicos y trabajadores.

El 6 de agosto, la pavorosa explosión que arrasó la ciudad de Hiroshima anunció al mundo que el hombre disponía de nuevas y tremendas fuerzas aprisionadas desde eternidades en las entrañas de la materia.

“En el interior de una bomba de fisión —escribe uno de los principales constructores de la bomba, ROBERT OPPENHEIMER (1904-1967)—, se materializa un lugar con el cual ningún otro puede ser comparado.

Al explotar la bomba se producen temperaturas más elevadas que las que reinan en el centro del Sol; su carga está constituida por materias que normalmente no existen en la naturaleza y se emiten radiaciones (neutrones, rayos gamma, electrones) de una intensidad que no tiene precedentes en la experiencia humana.

El factor de multiplicación es el cociente del número de los nuevos neutrones producidos y el número inicial de los neutrones primitivos.En la pila de FERMI el factor de multiplicación era igual a 1,007.

Las presiones que se obtienen equivalen a billones de veces la presión atmosférica.

En el sentido más primario y más sencillo, es perfectamente cierto que con las armas atómicas el hombre ha creado situaciones nuevas.”

En pilas y bombas de uranio (o plutonio), la energía se produce por la ruptura de un elemento muy pesado en fragmentos menos pesados. Sin embargo, para producir enormes cantidades de energía no es éste el proceso que la naturaleza elige.

Las estrellas prefieren la fusión a la “fisión”; como ya dijimos, transforman en gigantesca escala —por síntesis de elementos livianos— una parte de su materia nuclear en energía radiante.

Tan sólo las prodigiosas reservas energéticas, cuyo depósito son los núcleos, pueden permitir al Sol irradiar en forma de luz y calor, año tras año, tres quintillones (3 x 1030) de grandes calorías.

Este torrente de energía solar fluye por lo menos desde hace cuatrocientos o quinientos millones de años, puesto que las pruebas aportadas por la flora y fauna paleozoicas sugieren que las condiciones climáticas de la Tierra no han cambiado esencialmente desde aquella remotísima era primaria.

Mas ¿cuál es la transformación nuclear capaz de alimentar tan formidable despliegue energético, que equivale por segundo a una pérdida de cuatro millones de toneladas de masa solar?.

No cabe duda de que la transformación del elemento más común del universo, el hidrógeno en helio (el elemento que sigue al hidrógeno en la Tabla Periódica), podría suministrar la fuente energética de la radiación solar.

En efecto, la síntesis del helio a partir de los constituyentes de su núcleo está acompañada —como hemos explicado al tratar la energía de la unión nuclear— por la pérdida de una parte de las masas que intervienen, siendo liberada la masa desaparecida —de acuerdo con la equivalencia einsteniana— en forma de energía radiante. Sin embargo, el mecanismo de la supuesta transmutación no había dejado de ser enigmático hasta que HANS BETHE, hacia 1940, propuso su hipótesis del ciclo del carbono.

Las enormes temperaturas que reinan en el interior del Sol —veinte millones de grados en la región central— confieren a las partículas de la masa solar —y especialmente a los protones a velocidades tan elevadas que éstas pueden penetrar en los núcleos de elementos livianos y transmutarlos.

Así, el núcleo ordinario de carbono, bombardeado por un protón, se transforma al capturarlo en un isótopo del nitrógeno que se desintegra.

En cinco reacciones consecutivas engendran con la emisión de dos electrones positivos varios isótopos de carbono, de nitrógeno y de oxígeno. Bombardeados éstos a su vez por núcleos de hidrógeno, conducen finalmente a la formación del helio.

La excepcional característica de este ciclo, que convierte cuatro núcleos de hidrógeno en un núcleo de helio, es la reaparición del carbono inicial en la última reacción, que se encuentra así regenerado.

Desempeña el papel de catalizador y puede ser utilizado innumerables veces, hasta que todo el hidrógeno solar haya sido transmutado en helio, asegurando así las reservas energéticas del Sol durante miles de millones de años. A idénticas o análogas reacciones termonucleares deben sus caudales de energía también otras estrellas.

No cabe duda de que el ciclo de carbono, productor de la energía solar, representa el primordial proceso físico-químico del universo desde la perspectiva de la historia humana.

Sin las reacciones termonucleares, que se realizan en el interior del Sol, la vida no habría podido surgir sobre la superficie de la Tierra, donde los fenómenos biológicos, desde la fotosíntesis de la clorofila de los vegetales hasta el metabolismo en el organismo de los animales y del hombre, son tributarios de la radiación solar.

Es un hecho realmente notable que el carbono —sustancia básica de la materia viva— desempeñe también el papel de catalizador en el grandioso proceso cósmico que dio origen primario a todas las actividades vitales en la naturaleza terrestre.

La síntesis de elementos livianos a partir del hidrógeno ha dejado de ser privilegio de las masas estelares desde hace algunos años.

Reacciones termonucleares, productoras de la fusión de núcleos, suministran la fuente energética a la novísima arma: la bomba de hidrógeno. Desde luego, el ciclo de BETHE, que genera helio en las profundidades del globo solar es demasiado lento y complicado para el uso militar.

Es probable que la transmutación de una masa de los dos isótopos pesados del hidrógeno, el deuterio y el tritio, en helio, esté en la base de la liberación de energía realizada por la nueva bomba.

Para establecer las formidables temperaturas (varios millones de centígrados) capaces de desencadenar la reacción se utiliza la ruptura del uranio o del plutonio: la bomba de “fisión” sirve de detonador a la superbomba de fusión.

El modelo de ésta, utilizado por los expertos estadounidenses en las pruebas de Enivetock, a fines de 1952, superaba doscientas veces el poder (es decir, la cantidad de energía liberada) de la bomba de Hiroshima, según estimaciones extraoficiales.

No cabe duda de que la posibilidad de borrar de la superficie del globo cualquiera de las grandes metrópolis de la Tierra mediante la explosión de una bomba o a lo sumo de muy pocas bombas está, desde ahora, dentro de los alcances del hombre.

El uso de esta arma en un conflicto bélico significaría la abdicación de la razón humana y equivaldría a una tentativa de suicidio del homo sapiens.

Fuente Consultada: Historia de la Ciencia Desidero Papp

LISTA DE TEMAS TRATADOS EN ESTE SITIO:

1-¿Que es un Atomo? 2-La Energía Nuclear y sus Usos 3-La Física Moderna 4-La Fisión Nuclear 5-Partículas Elementales 6-Vida de Max Planck

A partir de este hecho se define una nueva magnitud, la energía total de enlace nuclear, que es la energía que se desprende en la formación de un núcleo a partir de los nucleones que lo forman.

Para el núcleo de litio, dicha energía es de 32 MeV. (nota 1 electronvoltio (eV) es la energía cinética que adquiere un electrón al someterse a una diferecia de potencial de 1 voltio.

Dicha energía es de 1.6 . 10-19 Julio. Un MeV equivale a un millón de eV)

Los procesos en los que se modifican los núcleos de los átomos reciben el nombre de reacciones nucleares.

En las reacciones nucleares, pequeñas cantidades de masa se transforman en grandes cantidades de energía, de acuerdo con la equivalencia establecida por Einstein.

E = m.c2

Donde E es la energía desprendida, m es el defecto de masa y c es la velocidad de propagación de la luz en el vacío.

Debido al elevado valor de c, a partir de una pequeña cantidad de materia es posible obtener una enorme cantidad de energía.

Albert Einstein (1879-1955)
einstein

Ejemplo de Fisión Nuclear:

Determinados núcleos pesados, como, por ejemplo, el núcleo de uranio-235, se rompen en dos núcleos intermedios cuando se bombardean con neutrones.

En este proceso, conocido como fisión nuclear, también se emiten otras partículas, además de radiación y una gran cantidad de energía.

De la fisión de un núcleo de uranio-235 se obtiene un átomo de bario-142, un átomo de criptón-91, 3 neutrones y una energía de 210 MeV que se desprende en forma de calor. La ecuación que describe el proceso es la siguiente:

235U + 1 neutrón —-> 142Ba + 91Kr + 3 neutrones + 210 MeV

La masa del núcleo de uranio-235 sumada con la masa del neutrón es ligeramente superior a la suma de las masas del núcleo de bario- 142, el núcleo de criptón-91 y los tres neutrones. Este pequeño defecto de masa se ha transformado en energía.

Los neutrones que se obtienen en la fisión de un núcleo de uranio-235 pueden utilizarse para bombardear otros núcleos de este isótopo y provocar nuevas fisiones que a su vez producirán nuevos neutrones, y así sucesivamente.

Se origina de este modo una reacción en cadena mediante la cual, en un tiempo muy breve, se consigue la fisión de un gran número de núcleos y se libera una enorme cantidad de radiación y energía.

desintegracion nuclear

Reacción en cadena

La Fusión Nuclear

Una reacción de fusión nuclear es un proceso según el cual se unen núcleos ligeros o intermedios para formar núcleos más pesados, obteniéndose energía.

La fusión de un núcleo de deuterio, 2H, con un núcleo de tritio, 3H, da lugar a la formación de un núcleo de helio-4, 4He, además de un neutrón y una energía dc 17,6 MeV, que se desprende en forma de calor.

Esta es una de las reacciones mediante las que el Sol produce energia. La ecuación que describe el proceso es la siguiente:

2H + 3H —-> 4He+ 1 neutrón +  17,6 MeV

https://historiaybiografias.com/linea_divisoria1.jpg

Los fundamentos de la física atómica DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos.(Ver: Fision Nuclear)

La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones.

fision nuclear

Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

La rapidez con que se establece y se propaga la reacción en cadena dilataría y haría explotar la masa con extrema violencia antes que todos los núcleos hubiesen podido ser fragmentados.

Si se admite que sólo el 10% de los átomos participa en la reacción, la enorme cantidad de energía liberada equivale a la producida por la explosión de 2000 toneladas de trinitrotolueno.

En la foto de arriba se encuentran compartiendo una información física Albert Einstein y Leo Szilard. El doctor Leo Szilard, fue a quien se le ocurrió mientras esperaba el cambio de un semáforo en la intersección de Southampton Row en Londres, la ideas de producir una reacción nuclear controlada, bombardeando núcleos con neutrones. Por puro juego, y no por ningún impulso agresivo, el físico bajito y gordo, húngaro de nacimiento, visualizó una reacción atómica en cadena mientras deambulada por la ciudad en aquel dorado septiembre de 1933, dedicado a sus pasatiempos favoritos: pensar y pasear.

En forma de calor, mil novecientos millones de grandes calorías estarían disponibles, constituyendo el centro de la volatilización de toda materia presente.

En una fracción infinitesimal de segundo, la temperatura se elevaría a centenares de miles de grados en el lugar de la explosión, engendrando un espantoso vendaval cuyos efectos destructores —merced a la propagación de la onda de compresión— semejarían a la devastadora barrida de una gigantesca marca.

En vísperas de la Segunda Guerra Mundial, todas estas posibilidades no pasaban de ser meras previsiones teóricas, a las cuales, sin embargo, el comienzo del conflicto bélico iba a conferir excepcionales alcances.

Hacia fines de 1940, cuando el secreto militar comenzó a volver impenetrable el velo que cubría las investigaciones sobre la energía nuclear, la utilización de la misma para producir una bomba parecía todavía un objetivo muy lejano e incluso utópico.

Sin duda se sabía que el uranio 235 era particularmente sensible a la “fisión” y que ofrecía una sección eficaz mayor a los neutrones lentos que a los rápidos; se habían desarrollado métodos para producir neutrones lentos; se habían elaborado procedimientos para separar el uranio 235 de su isótopo corriente; se había logrado aislar dos elementos transuránicos, el neptunio y el plutonio, y se reconocía que este último era también “fisionable” en circunstancias semejantes a las del uranio 235.

Además, se habla adquirido la certeza de que en la “fisión”, al menos un neutrón rápido —y en término medio dos o tres— era emitido por el núcleo.

Sin embargo, a pesar del conjunto de tales progresos, todavía nadie había logrado producir una reacción autosustentada.

Algunos investigadores incluso se preguntaban si la naturaleza acepta someterse a las exigencias de los teóricos. Tal vez la reacción en cadena era, en general, irrealizable. Pero las dudas terminaron por disiparse definitivamente el 2 de diciembre de 1942: ENRICO FERMI había realizado en Chicago, por primera vez, una reacción nuclear autosostenida.

El dispositivo construido en Chicago consistía en una pila de ladrillos de grafito puro que incluía trozos de uranio, separados por distancias regulares conforme a un esquema geométrico.

El grafito servía de sustancia moderadora destinada a frenar mediante choques elásticos los neutrones que salen dotados de elevadas velocidades de la ruptura nuclear del uranio 235.

Algunos de los neutrones penetran en el isótopo pesado U-238, otros vuelven a ser capturados por el isótopo liviano U-235, puesto que ambos están presentes en los trozos de metal de la pila.

Los proyectiles que golpean el U-238 provocan su transformación, que termina por dar origen al plutonio, mientras neutrones capturados por núcleos de U-235 producen la “fisión” de éstos, expulsando neutrones que siguen provocando nuevas rupturas.

Así, la pila produce a la vez materia “fisionahle” (plutonio) y libera energía al desintegrar núcleos.

Agreguemos que para el arranque no se necesita detonador ni ningún otro dispositivo especial; los neutrones de origen cósmico existentes en la atmósfera, o neutrones errantes que provienen de la explosión espontánea de un átomo de uranio, son suficientes para iniciar la reacción.

Una condición indispensable para el funcionamiento de la pila es su volumen, que debe superar cierto tamaño crítico.

De lo contrario el número de neutrones que escapan por la superficie de la pila no permite que se establezca la cadena de las reacciones.

Para el autosostenímiento de la cadena es menester, además, que cada neutrón incidente produzca al menos un nuevo neutrón apto para determinar a su vez la ruptura de un núcleo, siendo en este caso el “factor de multiplicación” igual a la unidad.

La cadena se extingue si dicho factor resulta inferior a uno; en cambio, si es considerablemente superior, la liberación continua y lenta de la energía se transforma en un proceso explosivo, convirtiendo a la pila en una bomba.

Tan peligrosa proliferación de neutrones es contrarrestada introduciendo en la masa de grafito láminas de materia absorbente (cadmio) que permiten mantener constante la velocidad de la reacción y “controlar” el nivel energético de la pila mediante un dispositivo automático.

Tales fueron, a grandes rasgos, las fundamentales características de la pila de FERMI, arquetipo de todos los reactores.

Al principio la pila de FERMI engendró, en forma de calor, una potencia de 0,5 vatio; poco después aumentó su nivel de energía hasta llegar a 200 vatios. Con tal reducido poder, una pila debería funcionar varios miles de años para producir la cantidad de plutonio requerida en la fabricación de una sola bomba.

Mas una conquista no puede medirse en vatios.

La posibilidad de liberar energía nuclear en escala macroscópica estaba magníficamente demostrada.

Si bien la distancia que separa la pila experimental de Chicago de la bomba experimental de Alamogordo era muy superior a la existente entre la rudimentaria máquina de vapor de NEWCOMEN y la locomotora de STEPHENSON, el largo camino fue recorrido en el breve intervalo de treinta meses gracias al formidable potencial tecnológico de los Estados Unidos, y al esfuerzo de un verdadero ejército de científicos, técnicos y trabajadores.

El 6 de agosto, la pavorosa explosión que arrasó la ciudad de Hiroshima anunció al mundo que el hombre disponía de nuevas y tremendas fuerzas aprisionadas desde eternidades en las entrañas de la materia.

“En el interior de una bomba de fisión —escribe uno de los principales constructores de la bomba, ROBERT OPPENHEIMER (1904-1967)—, se materializa un lugar con el cual ningún otro puede ser comparado.

Al explotar la bomba se producen temperaturas más elevadas que las que reinan en el centro del Sol; su carga está constituida por materias que normalmente no existen en la naturaleza y se emiten radiaciones (neutrones, rayos gamma, electrones) de una intensidad que no tiene precedentes en la experiencia humana.

El factor de multiplicación es el cociente del número de los nuevos neutrones producidos y el número inicial de los neutrones primitivos.En la pila de FERMI el factor de multiplicación era igual a 1,007.

Las presiones que se obtienen equivalen a billones de veces la presión atmosférica.

En el sentido más primario y más sencillo, es perfectamente cierto que con las armas atómicas el hombre ha creado situaciones nuevas.”

En pilas y bombas de uranio (o plutonio), la energía se produce por la ruptura de un elemento muy pesado en fragmentos menos pesados. Sin embargo, para producir enormes cantidades de energía no es éste el proceso que la naturaleza elige.

Las estrellas prefieren la fusión a la “fisión”; como ya dijimos, transforman en gigantesca escala —por síntesis de elementos livianos— una parte de su materia nuclear en energía radiante.

Tan sólo las prodigiosas reservas energéticas, cuyo depósito son los núcleos, pueden permitir al Sol irradiar en forma de luz y calor, año tras año, tres quintillones (3 x 1030) de grandes calorías.

Este torrente de energía solar fluye por lo menos desde hace cuatrocientos o quinientos millones de años, puesto que las pruebas aportadas por la flora y fauna paleozoicas sugieren que las condiciones climáticas de la Tierra no han cambiado esencialmente desde aquella remotísima era primaria.

Mas ¿cuál es la transformación nuclear capaz de alimentar tan formidable despliegue energético, que equivale por segundo a una pérdida de cuatro millones de toneladas de masa solar?.

No cabe duda de que la transformación del elemento más común del universo, el hidrógeno en helio (el elemento que sigue al hidrógeno en la Tabla Periódica), podría suministrar la fuente energética de la radiación solar.

En efecto, la síntesis del helio a partir de los constituyentes de su núcleo está acompañada —como hemos explicado al tratar la energía de la unión nuclear— por la pérdida de una parte de las masas que intervienen, siendo liberada la masa desaparecida —de acuerdo con la equivalencia einsteniana— en forma de energía radiante. Sin embargo, el mecanismo de la supuesta transmutación no había dejado de ser enigmático hasta que HANS BETHE, hacia 1940, propuso su hipótesis del ciclo del carbono.

Las enormes temperaturas que reinan en el interior del Sol —veinte millones de grados en la región central— confieren a las partículas de la masa solar —y especialmente a los protones a velocidades tan elevadas que éstas pueden penetrar en los núcleos de elementos livianos y transmutarlos.

Así, el núcleo ordinario de carbono, bombardeado por un protón, se transforma al capturarlo en un isótopo del nitrógeno que se desintegra.

En cinco reacciones consecutivas engendran con la emisión de dos electrones positivos varios isótopos de carbono, de nitrógeno y de oxígeno. Bombardeados éstos a su vez por núcleos de hidrógeno, conducen finalmente a la formación del helio.

La excepcional característica de este ciclo, que convierte cuatro núcleos de hidrógeno en un núcleo de helio, es la reaparición del carbono inicial en la última reacción, que se encuentra así regenerado.

Desempeña el papel de catalizador y puede ser utilizado innumerables veces, hasta que todo el hidrógeno solar haya sido transmutado en helio, asegurando así las reservas energéticas del Sol durante miles de millones de años. A idénticas o análogas reacciones termonucleares deben sus caudales de energía también otras estrellas.

No cabe duda de que el ciclo de carbono, productor de la energía solar, representa el primordial proceso físico-químico del universo desde la perspectiva de la historia humana.

Sin las reacciones termonucleares, que se realizan en el interior del Sol, la vida no habría podido surgir sobre la superficie de la Tierra, donde los fenómenos biológicos, desde la fotosíntesis de la clorofila de los vegetales hasta el metabolismo en el organismo de los animales y del hombre, son tributarios de la radiación solar.

Es un hecho realmente notable que el carbono —sustancia básica de la materia viva— desempeñe también el papel de catalizador en el grandioso proceso cósmico que dio origen primario a todas las actividades vitales en la naturaleza terrestre.

La síntesis de elementos livianos a partir del hidrógeno ha dejado de ser privilegio de las masas estelares desde hace algunos años.

Reacciones termonucleares, productoras de la fusión de núcleos, suministran la fuente energética a la novísima arma: la bomba de hidrógeno. Desde luego, el ciclo de BETHE, que genera helio en las profundidades del globo solar es demasiado lento y complicado para el uso militar.

Es probable que la transmutación de una masa de los dos isótopos pesados del hidrógeno, el deuterio y el tritio, en helio, esté en la base de la liberación de energía realizada por la nueva bomba.

Para establecer las formidables temperaturas (varios millones de centígrados) capaces de desencadenar la reacción se utiliza la ruptura del uranio o del plutonio: la bomba de “fisión” sirve de detonador a la superbomba de fusión.

El modelo de ésta, utilizado por los expertos estadounidenses en las pruebas de Enivetock, a fines de 1952, superaba doscientas veces el poder (es decir, la cantidad de energía liberada) de la bomba de Hiroshima, según estimaciones extraoficiales.

No cabe duda de que la posibilidad de borrar de la superficie del globo cualquiera de las grandes metrópolis de la Tierra mediante la explosión de una bomba o a lo sumo de muy pocas bombas está, desde ahora, dentro de los alcances del hombre.

El uso de esta arma en un conflicto bélico significaría la abdicación de la razón humana y equivaldría a una tentativa de suicidio del homo sapiens.

Fuente Consultada: Historia de la Ciencia Desidero Papp

LISTA DE TEMAS TRATADOS EN ESTE SITIO:

1-¿Que es un Atomo? 2-La Energía Nuclear y sus Usos 3-La Física Moderna 4-La Fisión Nuclear 5-Partículas Elementales 6-Vida de Max Planck

El defecto de masa se produce porque parte de la masa de los protones y neutrones se transforma en energía cuando dichas partículas se unen para formar un núcleo atómico.

A partir de este hecho se define una nueva magnitud, la energía total de enlace nuclear, que es la energía que se desprende en la formación de un núcleo a partir de los nucleones que lo forman.

Para el núcleo de litio, dicha energía es de 32 MeV. (nota 1 electronvoltio (eV) es la energía cinética que adquiere un electrón al someterse a una diferecia de potencial de 1 voltio.

Dicha energía es de 1.6 . 10-19 Julio. Un MeV equivale a un millón de eV)

Los procesos en los que se modifican los núcleos de los átomos reciben el nombre de reacciones nucleares.

En las reacciones nucleares, pequeñas cantidades de masa se transforman en grandes cantidades de energía, de acuerdo con la equivalencia establecida por Einstein.

E = m.c2

Donde E es la energía desprendida, m es el defecto de masa y c es la velocidad de propagación de la luz en el vacío.

Debido al elevado valor de c, a partir de una pequeña cantidad de materia es posible obtener una enorme cantidad de energía.

Albert Einstein (1879-1955)
einstein

Ejemplo de Fisión Nuclear:

Determinados núcleos pesados, como, por ejemplo, el núcleo de uranio-235, se rompen en dos núcleos intermedios cuando se bombardean con neutrones.

En este proceso, conocido como fisión nuclear, también se emiten otras partículas, además de radiación y una gran cantidad de energía.

De la fisión de un núcleo de uranio-235 se obtiene un átomo de bario-142, un átomo de criptón-91, 3 neutrones y una energía de 210 MeV que se desprende en forma de calor. La ecuación que describe el proceso es la siguiente:

235U + 1 neutrón —-> 142Ba + 91Kr + 3 neutrones + 210 MeV

La masa del núcleo de uranio-235 sumada con la masa del neutrón es ligeramente superior a la suma de las masas del núcleo de bario- 142, el núcleo de criptón-91 y los tres neutrones. Este pequeño defecto de masa se ha transformado en energía.

Los neutrones que se obtienen en la fisión de un núcleo de uranio-235 pueden utilizarse para bombardear otros núcleos de este isótopo y provocar nuevas fisiones que a su vez producirán nuevos neutrones, y así sucesivamente.

Se origina de este modo una reacción en cadena mediante la cual, en un tiempo muy breve, se consigue la fisión de un gran número de núcleos y se libera una enorme cantidad de radiación y energía.

desintegracion nuclear

Reacción en cadena

La Fusión Nuclear

Una reacción de fusión nuclear es un proceso según el cual se unen núcleos ligeros o intermedios para formar núcleos más pesados, obteniéndose energía.

La fusión de un núcleo de deuterio, 2H, con un núcleo de tritio, 3H, da lugar a la formación de un núcleo de helio-4, 4He, además de un neutrón y una energía dc 17,6 MeV, que se desprende en forma de calor.

Esta es una de las reacciones mediante las que el Sol produce energia. La ecuación que describe el proceso es la siguiente:

2H + 3H —-> 4He+ 1 neutrón +  17,6 MeV

https://historiaybiografias.com/linea_divisoria1.jpg

Los fundamentos de la física atómica DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos.(Ver: Fision Nuclear)

La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones.

fision nuclear

Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

La rapidez con que se establece y se propaga la reacción en cadena dilataría y haría explotar la masa con extrema violencia antes que todos los núcleos hubiesen podido ser fragmentados.

Si se admite que sólo el 10% de los átomos participa en la reacción, la enorme cantidad de energía liberada equivale a la producida por la explosión de 2000 toneladas de trinitrotolueno.

En la foto de arriba se encuentran compartiendo una información física Albert Einstein y Leo Szilard. El doctor Leo Szilard, fue a quien se le ocurrió mientras esperaba el cambio de un semáforo en la intersección de Southampton Row en Londres, la ideas de producir una reacción nuclear controlada, bombardeando núcleos con neutrones. Por puro juego, y no por ningún impulso agresivo, el físico bajito y gordo, húngaro de nacimiento, visualizó una reacción atómica en cadena mientras deambulada por la ciudad en aquel dorado septiembre de 1933, dedicado a sus pasatiempos favoritos: pensar y pasear.

En forma de calor, mil novecientos millones de grandes calorías estarían disponibles, constituyendo el centro de la volatilización de toda materia presente.

En una fracción infinitesimal de segundo, la temperatura se elevaría a centenares de miles de grados en el lugar de la explosión, engendrando un espantoso vendaval cuyos efectos destructores —merced a la propagación de la onda de compresión— semejarían a la devastadora barrida de una gigantesca marca.

En vísperas de la Segunda Guerra Mundial, todas estas posibilidades no pasaban de ser meras previsiones teóricas, a las cuales, sin embargo, el comienzo del conflicto bélico iba a conferir excepcionales alcances.

Hacia fines de 1940, cuando el secreto militar comenzó a volver impenetrable el velo que cubría las investigaciones sobre la energía nuclear, la utilización de la misma para producir una bomba parecía todavía un objetivo muy lejano e incluso utópico.

Sin duda se sabía que el uranio 235 era particularmente sensible a la “fisión” y que ofrecía una sección eficaz mayor a los neutrones lentos que a los rápidos; se habían desarrollado métodos para producir neutrones lentos; se habían elaborado procedimientos para separar el uranio 235 de su isótopo corriente; se había logrado aislar dos elementos transuránicos, el neptunio y el plutonio, y se reconocía que este último era también “fisionable” en circunstancias semejantes a las del uranio 235.

Además, se habla adquirido la certeza de que en la “fisión”, al menos un neutrón rápido —y en término medio dos o tres— era emitido por el núcleo.

Sin embargo, a pesar del conjunto de tales progresos, todavía nadie había logrado producir una reacción autosustentada.

Algunos investigadores incluso se preguntaban si la naturaleza acepta someterse a las exigencias de los teóricos. Tal vez la reacción en cadena era, en general, irrealizable. Pero las dudas terminaron por disiparse definitivamente el 2 de diciembre de 1942: ENRICO FERMI había realizado en Chicago, por primera vez, una reacción nuclear autosostenida.

El dispositivo construido en Chicago consistía en una pila de ladrillos de grafito puro que incluía trozos de uranio, separados por distancias regulares conforme a un esquema geométrico.

El grafito servía de sustancia moderadora destinada a frenar mediante choques elásticos los neutrones que salen dotados de elevadas velocidades de la ruptura nuclear del uranio 235.

Algunos de los neutrones penetran en el isótopo pesado U-238, otros vuelven a ser capturados por el isótopo liviano U-235, puesto que ambos están presentes en los trozos de metal de la pila.

Los proyectiles que golpean el U-238 provocan su transformación, que termina por dar origen al plutonio, mientras neutrones capturados por núcleos de U-235 producen la “fisión” de éstos, expulsando neutrones que siguen provocando nuevas rupturas.

Así, la pila produce a la vez materia “fisionahle” (plutonio) y libera energía al desintegrar núcleos.

Agreguemos que para el arranque no se necesita detonador ni ningún otro dispositivo especial; los neutrones de origen cósmico existentes en la atmósfera, o neutrones errantes que provienen de la explosión espontánea de un átomo de uranio, son suficientes para iniciar la reacción.

Una condición indispensable para el funcionamiento de la pila es su volumen, que debe superar cierto tamaño crítico.

De lo contrario el número de neutrones que escapan por la superficie de la pila no permite que se establezca la cadena de las reacciones.

Para el autosostenímiento de la cadena es menester, además, que cada neutrón incidente produzca al menos un nuevo neutrón apto para determinar a su vez la ruptura de un núcleo, siendo en este caso el “factor de multiplicación” igual a la unidad.

La cadena se extingue si dicho factor resulta inferior a uno; en cambio, si es considerablemente superior, la liberación continua y lenta de la energía se transforma en un proceso explosivo, convirtiendo a la pila en una bomba.

Tan peligrosa proliferación de neutrones es contrarrestada introduciendo en la masa de grafito láminas de materia absorbente (cadmio) que permiten mantener constante la velocidad de la reacción y “controlar” el nivel energético de la pila mediante un dispositivo automático.

Tales fueron, a grandes rasgos, las fundamentales características de la pila de FERMI, arquetipo de todos los reactores.

Al principio la pila de FERMI engendró, en forma de calor, una potencia de 0,5 vatio; poco después aumentó su nivel de energía hasta llegar a 200 vatios. Con tal reducido poder, una pila debería funcionar varios miles de años para producir la cantidad de plutonio requerida en la fabricación de una sola bomba.

Mas una conquista no puede medirse en vatios.

La posibilidad de liberar energía nuclear en escala macroscópica estaba magníficamente demostrada.

Si bien la distancia que separa la pila experimental de Chicago de la bomba experimental de Alamogordo era muy superior a la existente entre la rudimentaria máquina de vapor de NEWCOMEN y la locomotora de STEPHENSON, el largo camino fue recorrido en el breve intervalo de treinta meses gracias al formidable potencial tecnológico de los Estados Unidos, y al esfuerzo de un verdadero ejército de científicos, técnicos y trabajadores.

El 6 de agosto, la pavorosa explosión que arrasó la ciudad de Hiroshima anunció al mundo que el hombre disponía de nuevas y tremendas fuerzas aprisionadas desde eternidades en las entrañas de la materia.

“En el interior de una bomba de fisión —escribe uno de los principales constructores de la bomba, ROBERT OPPENHEIMER (1904-1967)—, se materializa un lugar con el cual ningún otro puede ser comparado.

Al explotar la bomba se producen temperaturas más elevadas que las que reinan en el centro del Sol; su carga está constituida por materias que normalmente no existen en la naturaleza y se emiten radiaciones (neutrones, rayos gamma, electrones) de una intensidad que no tiene precedentes en la experiencia humana.

El factor de multiplicación es el cociente del número de los nuevos neutrones producidos y el número inicial de los neutrones primitivos.En la pila de FERMI el factor de multiplicación era igual a 1,007.

Las presiones que se obtienen equivalen a billones de veces la presión atmosférica.

En el sentido más primario y más sencillo, es perfectamente cierto que con las armas atómicas el hombre ha creado situaciones nuevas.”

En pilas y bombas de uranio (o plutonio), la energía se produce por la ruptura de un elemento muy pesado en fragmentos menos pesados. Sin embargo, para producir enormes cantidades de energía no es éste el proceso que la naturaleza elige.

Las estrellas prefieren la fusión a la “fisión”; como ya dijimos, transforman en gigantesca escala —por síntesis de elementos livianos— una parte de su materia nuclear en energía radiante.

Tan sólo las prodigiosas reservas energéticas, cuyo depósito son los núcleos, pueden permitir al Sol irradiar en forma de luz y calor, año tras año, tres quintillones (3 x 1030) de grandes calorías.

Este torrente de energía solar fluye por lo menos desde hace cuatrocientos o quinientos millones de años, puesto que las pruebas aportadas por la flora y fauna paleozoicas sugieren que las condiciones climáticas de la Tierra no han cambiado esencialmente desde aquella remotísima era primaria.

Mas ¿cuál es la transformación nuclear capaz de alimentar tan formidable despliegue energético, que equivale por segundo a una pérdida de cuatro millones de toneladas de masa solar?.

No cabe duda de que la transformación del elemento más común del universo, el hidrógeno en helio (el elemento que sigue al hidrógeno en la Tabla Periódica), podría suministrar la fuente energética de la radiación solar.

En efecto, la síntesis del helio a partir de los constituyentes de su núcleo está acompañada —como hemos explicado al tratar la energía de la unión nuclear— por la pérdida de una parte de las masas que intervienen, siendo liberada la masa desaparecida —de acuerdo con la equivalencia einsteniana— en forma de energía radiante. Sin embargo, el mecanismo de la supuesta transmutación no había dejado de ser enigmático hasta que HANS BETHE, hacia 1940, propuso su hipótesis del ciclo del carbono.

Las enormes temperaturas que reinan en el interior del Sol —veinte millones de grados en la región central— confieren a las partículas de la masa solar —y especialmente a los protones a velocidades tan elevadas que éstas pueden penetrar en los núcleos de elementos livianos y transmutarlos.

Así, el núcleo ordinario de carbono, bombardeado por un protón, se transforma al capturarlo en un isótopo del nitrógeno que se desintegra.

En cinco reacciones consecutivas engendran con la emisión de dos electrones positivos varios isótopos de carbono, de nitrógeno y de oxígeno. Bombardeados éstos a su vez por núcleos de hidrógeno, conducen finalmente a la formación del helio.

La excepcional característica de este ciclo, que convierte cuatro núcleos de hidrógeno en un núcleo de helio, es la reaparición del carbono inicial en la última reacción, que se encuentra así regenerado.

Desempeña el papel de catalizador y puede ser utilizado innumerables veces, hasta que todo el hidrógeno solar haya sido transmutado en helio, asegurando así las reservas energéticas del Sol durante miles de millones de años. A idénticas o análogas reacciones termonucleares deben sus caudales de energía también otras estrellas.

No cabe duda de que el ciclo de carbono, productor de la energía solar, representa el primordial proceso físico-químico del universo desde la perspectiva de la historia humana.

Sin las reacciones termonucleares, que se realizan en el interior del Sol, la vida no habría podido surgir sobre la superficie de la Tierra, donde los fenómenos biológicos, desde la fotosíntesis de la clorofila de los vegetales hasta el metabolismo en el organismo de los animales y del hombre, son tributarios de la radiación solar.

Es un hecho realmente notable que el carbono —sustancia básica de la materia viva— desempeñe también el papel de catalizador en el grandioso proceso cósmico que dio origen primario a todas las actividades vitales en la naturaleza terrestre.

La síntesis de elementos livianos a partir del hidrógeno ha dejado de ser privilegio de las masas estelares desde hace algunos años.

Reacciones termonucleares, productoras de la fusión de núcleos, suministran la fuente energética a la novísima arma: la bomba de hidrógeno. Desde luego, el ciclo de BETHE, que genera helio en las profundidades del globo solar es demasiado lento y complicado para el uso militar.

Es probable que la transmutación de una masa de los dos isótopos pesados del hidrógeno, el deuterio y el tritio, en helio, esté en la base de la liberación de energía realizada por la nueva bomba.

Para establecer las formidables temperaturas (varios millones de centígrados) capaces de desencadenar la reacción se utiliza la ruptura del uranio o del plutonio: la bomba de “fisión” sirve de detonador a la superbomba de fusión.

El modelo de ésta, utilizado por los expertos estadounidenses en las pruebas de Enivetock, a fines de 1952, superaba doscientas veces el poder (es decir, la cantidad de energía liberada) de la bomba de Hiroshima, según estimaciones extraoficiales.

No cabe duda de que la posibilidad de borrar de la superficie del globo cualquiera de las grandes metrópolis de la Tierra mediante la explosión de una bomba o a lo sumo de muy pocas bombas está, desde ahora, dentro de los alcances del hombre.

El uso de esta arma en un conflicto bélico significaría la abdicación de la razón humana y equivaldría a una tentativa de suicidio del homo sapiens.

Fuente Consultada: Historia de la Ciencia Desidero Papp

LISTA DE TEMAS TRATADOS EN ESTE SITIO:

1-¿Que es un Atomo? 2-La Energía Nuclear y sus Usos 3-La Física Moderna 4-La Fisión Nuclear 5-Partículas Elementales 6-Vida de Max Planck

Este hecho se repite para todos los núcleos atómicos. La masa de un núcleo atómico es menor que la que se obtiene cuando se suman las masas de los protones y los neutrones que lo constituyen.

La diferencia entre ambos valores recibe el nombre de defecto de masa.

El defecto de masa se produce porque parte de la masa de los protones y neutrones se transforma en energía cuando dichas partículas se unen para formar un núcleo atómico.

A partir de este hecho se define una nueva magnitud, la energía total de enlace nuclear, que es la energía que se desprende en la formación de un núcleo a partir de los nucleones que lo forman.

Para el núcleo de litio, dicha energía es de 32 MeV. (nota 1 electronvoltio (eV) es la energía cinética que adquiere un electrón al someterse a una diferecia de potencial de 1 voltio.

Dicha energía es de 1.6 . 10-19 Julio. Un MeV equivale a un millón de eV)

Los procesos en los que se modifican los núcleos de los átomos reciben el nombre de reacciones nucleares.

En las reacciones nucleares, pequeñas cantidades de masa se transforman en grandes cantidades de energía, de acuerdo con la equivalencia establecida por Einstein.

E = m.c2

Donde E es la energía desprendida, m es el defecto de masa y c es la velocidad de propagación de la luz en el vacío.

Debido al elevado valor de c, a partir de una pequeña cantidad de materia es posible obtener una enorme cantidad de energía.

Albert Einstein (1879-1955)
einstein

Ejemplo de Fisión Nuclear:

Determinados núcleos pesados, como, por ejemplo, el núcleo de uranio-235, se rompen en dos núcleos intermedios cuando se bombardean con neutrones.

En este proceso, conocido como fisión nuclear, también se emiten otras partículas, además de radiación y una gran cantidad de energía.

De la fisión de un núcleo de uranio-235 se obtiene un átomo de bario-142, un átomo de criptón-91, 3 neutrones y una energía de 210 MeV que se desprende en forma de calor. La ecuación que describe el proceso es la siguiente:

235U + 1 neutrón —-> 142Ba + 91Kr + 3 neutrones + 210 MeV

La masa del núcleo de uranio-235 sumada con la masa del neutrón es ligeramente superior a la suma de las masas del núcleo de bario- 142, el núcleo de criptón-91 y los tres neutrones. Este pequeño defecto de masa se ha transformado en energía.

Los neutrones que se obtienen en la fisión de un núcleo de uranio-235 pueden utilizarse para bombardear otros núcleos de este isótopo y provocar nuevas fisiones que a su vez producirán nuevos neutrones, y así sucesivamente.

Se origina de este modo una reacción en cadena mediante la cual, en un tiempo muy breve, se consigue la fisión de un gran número de núcleos y se libera una enorme cantidad de radiación y energía.

desintegracion nuclear

Reacción en cadena

La Fusión Nuclear

Una reacción de fusión nuclear es un proceso según el cual se unen núcleos ligeros o intermedios para formar núcleos más pesados, obteniéndose energía.

La fusión de un núcleo de deuterio, 2H, con un núcleo de tritio, 3H, da lugar a la formación de un núcleo de helio-4, 4He, además de un neutrón y una energía dc 17,6 MeV, que se desprende en forma de calor.

Esta es una de las reacciones mediante las que el Sol produce energia. La ecuación que describe el proceso es la siguiente:

2H + 3H —-> 4He+ 1 neutrón +  17,6 MeV

https://historiaybiografias.com/linea_divisoria1.jpg

Los fundamentos de la física atómica DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos.(Ver: Fision Nuclear)

La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones.

fision nuclear

Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

La rapidez con que se establece y se propaga la reacción en cadena dilataría y haría explotar la masa con extrema violencia antes que todos los núcleos hubiesen podido ser fragmentados.

Si se admite que sólo el 10% de los átomos participa en la reacción, la enorme cantidad de energía liberada equivale a la producida por la explosión de 2000 toneladas de trinitrotolueno.

En la foto de arriba se encuentran compartiendo una información física Albert Einstein y Leo Szilard. El doctor Leo Szilard, fue a quien se le ocurrió mientras esperaba el cambio de un semáforo en la intersección de Southampton Row en Londres, la ideas de producir una reacción nuclear controlada, bombardeando núcleos con neutrones. Por puro juego, y no por ningún impulso agresivo, el físico bajito y gordo, húngaro de nacimiento, visualizó una reacción atómica en cadena mientras deambulada por la ciudad en aquel dorado septiembre de 1933, dedicado a sus pasatiempos favoritos: pensar y pasear.

En forma de calor, mil novecientos millones de grandes calorías estarían disponibles, constituyendo el centro de la volatilización de toda materia presente.

En una fracción infinitesimal de segundo, la temperatura se elevaría a centenares de miles de grados en el lugar de la explosión, engendrando un espantoso vendaval cuyos efectos destructores —merced a la propagación de la onda de compresión— semejarían a la devastadora barrida de una gigantesca marca.

En vísperas de la Segunda Guerra Mundial, todas estas posibilidades no pasaban de ser meras previsiones teóricas, a las cuales, sin embargo, el comienzo del conflicto bélico iba a conferir excepcionales alcances.

Hacia fines de 1940, cuando el secreto militar comenzó a volver impenetrable el velo que cubría las investigaciones sobre la energía nuclear, la utilización de la misma para producir una bomba parecía todavía un objetivo muy lejano e incluso utópico.

Sin duda se sabía que el uranio 235 era particularmente sensible a la “fisión” y que ofrecía una sección eficaz mayor a los neutrones lentos que a los rápidos; se habían desarrollado métodos para producir neutrones lentos; se habían elaborado procedimientos para separar el uranio 235 de su isótopo corriente; se había logrado aislar dos elementos transuránicos, el neptunio y el plutonio, y se reconocía que este último era también “fisionable” en circunstancias semejantes a las del uranio 235.

Además, se habla adquirido la certeza de que en la “fisión”, al menos un neutrón rápido —y en término medio dos o tres— era emitido por el núcleo.

Sin embargo, a pesar del conjunto de tales progresos, todavía nadie había logrado producir una reacción autosustentada.

Algunos investigadores incluso se preguntaban si la naturaleza acepta someterse a las exigencias de los teóricos. Tal vez la reacción en cadena era, en general, irrealizable. Pero las dudas terminaron por disiparse definitivamente el 2 de diciembre de 1942: ENRICO FERMI había realizado en Chicago, por primera vez, una reacción nuclear autosostenida.

El dispositivo construido en Chicago consistía en una pila de ladrillos de grafito puro que incluía trozos de uranio, separados por distancias regulares conforme a un esquema geométrico.

El grafito servía de sustancia moderadora destinada a frenar mediante choques elásticos los neutrones que salen dotados de elevadas velocidades de la ruptura nuclear del uranio 235.

Algunos de los neutrones penetran en el isótopo pesado U-238, otros vuelven a ser capturados por el isótopo liviano U-235, puesto que ambos están presentes en los trozos de metal de la pila.

Los proyectiles que golpean el U-238 provocan su transformación, que termina por dar origen al plutonio, mientras neutrones capturados por núcleos de U-235 producen la “fisión” de éstos, expulsando neutrones que siguen provocando nuevas rupturas.

Así, la pila produce a la vez materia “fisionahle” (plutonio) y libera energía al desintegrar núcleos.

Agreguemos que para el arranque no se necesita detonador ni ningún otro dispositivo especial; los neutrones de origen cósmico existentes en la atmósfera, o neutrones errantes que provienen de la explosión espontánea de un átomo de uranio, son suficientes para iniciar la reacción.

Una condición indispensable para el funcionamiento de la pila es su volumen, que debe superar cierto tamaño crítico.

De lo contrario el número de neutrones que escapan por la superficie de la pila no permite que se establezca la cadena de las reacciones.

Para el autosostenímiento de la cadena es menester, además, que cada neutrón incidente produzca al menos un nuevo neutrón apto para determinar a su vez la ruptura de un núcleo, siendo en este caso el “factor de multiplicación” igual a la unidad.

La cadena se extingue si dicho factor resulta inferior a uno; en cambio, si es considerablemente superior, la liberación continua y lenta de la energía se transforma en un proceso explosivo, convirtiendo a la pila en una bomba.

Tan peligrosa proliferación de neutrones es contrarrestada introduciendo en la masa de grafito láminas de materia absorbente (cadmio) que permiten mantener constante la velocidad de la reacción y “controlar” el nivel energético de la pila mediante un dispositivo automático.

Tales fueron, a grandes rasgos, las fundamentales características de la pila de FERMI, arquetipo de todos los reactores.

Al principio la pila de FERMI engendró, en forma de calor, una potencia de 0,5 vatio; poco después aumentó su nivel de energía hasta llegar a 200 vatios. Con tal reducido poder, una pila debería funcionar varios miles de años para producir la cantidad de plutonio requerida en la fabricación de una sola bomba.

Mas una conquista no puede medirse en vatios.

La posibilidad de liberar energía nuclear en escala macroscópica estaba magníficamente demostrada.

Si bien la distancia que separa la pila experimental de Chicago de la bomba experimental de Alamogordo era muy superior a la existente entre la rudimentaria máquina de vapor de NEWCOMEN y la locomotora de STEPHENSON, el largo camino fue recorrido en el breve intervalo de treinta meses gracias al formidable potencial tecnológico de los Estados Unidos, y al esfuerzo de un verdadero ejército de científicos, técnicos y trabajadores.

El 6 de agosto, la pavorosa explosión que arrasó la ciudad de Hiroshima anunció al mundo que el hombre disponía de nuevas y tremendas fuerzas aprisionadas desde eternidades en las entrañas de la materia.

“En el interior de una bomba de fisión —escribe uno de los principales constructores de la bomba, ROBERT OPPENHEIMER (1904-1967)—, se materializa un lugar con el cual ningún otro puede ser comparado.

Al explotar la bomba se producen temperaturas más elevadas que las que reinan en el centro del Sol; su carga está constituida por materias que normalmente no existen en la naturaleza y se emiten radiaciones (neutrones, rayos gamma, electrones) de una intensidad que no tiene precedentes en la experiencia humana.

El factor de multiplicación es el cociente del número de los nuevos neutrones producidos y el número inicial de los neutrones primitivos.En la pila de FERMI el factor de multiplicación era igual a 1,007.

Las presiones que se obtienen equivalen a billones de veces la presión atmosférica.

En el sentido más primario y más sencillo, es perfectamente cierto que con las armas atómicas el hombre ha creado situaciones nuevas.”

En pilas y bombas de uranio (o plutonio), la energía se produce por la ruptura de un elemento muy pesado en fragmentos menos pesados. Sin embargo, para producir enormes cantidades de energía no es éste el proceso que la naturaleza elige.

Las estrellas prefieren la fusión a la “fisión”; como ya dijimos, transforman en gigantesca escala —por síntesis de elementos livianos— una parte de su materia nuclear en energía radiante.

Tan sólo las prodigiosas reservas energéticas, cuyo depósito son los núcleos, pueden permitir al Sol irradiar en forma de luz y calor, año tras año, tres quintillones (3 x 1030) de grandes calorías.

Este torrente de energía solar fluye por lo menos desde hace cuatrocientos o quinientos millones de años, puesto que las pruebas aportadas por la flora y fauna paleozoicas sugieren que las condiciones climáticas de la Tierra no han cambiado esencialmente desde aquella remotísima era primaria.

Mas ¿cuál es la transformación nuclear capaz de alimentar tan formidable despliegue energético, que equivale por segundo a una pérdida de cuatro millones de toneladas de masa solar?.

No cabe duda de que la transformación del elemento más común del universo, el hidrógeno en helio (el elemento que sigue al hidrógeno en la Tabla Periódica), podría suministrar la fuente energética de la radiación solar.

En efecto, la síntesis del helio a partir de los constituyentes de su núcleo está acompañada —como hemos explicado al tratar la energía de la unión nuclear— por la pérdida de una parte de las masas que intervienen, siendo liberada la masa desaparecida —de acuerdo con la equivalencia einsteniana— en forma de energía radiante. Sin embargo, el mecanismo de la supuesta transmutación no había dejado de ser enigmático hasta que HANS BETHE, hacia 1940, propuso su hipótesis del ciclo del carbono.

Las enormes temperaturas que reinan en el interior del Sol —veinte millones de grados en la región central— confieren a las partículas de la masa solar —y especialmente a los protones a velocidades tan elevadas que éstas pueden penetrar en los núcleos de elementos livianos y transmutarlos.

Así, el núcleo ordinario de carbono, bombardeado por un protón, se transforma al capturarlo en un isótopo del nitrógeno que se desintegra.

En cinco reacciones consecutivas engendran con la emisión de dos electrones positivos varios isótopos de carbono, de nitrógeno y de oxígeno. Bombardeados éstos a su vez por núcleos de hidrógeno, conducen finalmente a la formación del helio.

La excepcional característica de este ciclo, que convierte cuatro núcleos de hidrógeno en un núcleo de helio, es la reaparición del carbono inicial en la última reacción, que se encuentra así regenerado.

Desempeña el papel de catalizador y puede ser utilizado innumerables veces, hasta que todo el hidrógeno solar haya sido transmutado en helio, asegurando así las reservas energéticas del Sol durante miles de millones de años. A idénticas o análogas reacciones termonucleares deben sus caudales de energía también otras estrellas.

No cabe duda de que el ciclo de carbono, productor de la energía solar, representa el primordial proceso físico-químico del universo desde la perspectiva de la historia humana.

Sin las reacciones termonucleares, que se realizan en el interior del Sol, la vida no habría podido surgir sobre la superficie de la Tierra, donde los fenómenos biológicos, desde la fotosíntesis de la clorofila de los vegetales hasta el metabolismo en el organismo de los animales y del hombre, son tributarios de la radiación solar.

Es un hecho realmente notable que el carbono —sustancia básica de la materia viva— desempeñe también el papel de catalizador en el grandioso proceso cósmico que dio origen primario a todas las actividades vitales en la naturaleza terrestre.

La síntesis de elementos livianos a partir del hidrógeno ha dejado de ser privilegio de las masas estelares desde hace algunos años.

Reacciones termonucleares, productoras de la fusión de núcleos, suministran la fuente energética a la novísima arma: la bomba de hidrógeno. Desde luego, el ciclo de BETHE, que genera helio en las profundidades del globo solar es demasiado lento y complicado para el uso militar.

Es probable que la transmutación de una masa de los dos isótopos pesados del hidrógeno, el deuterio y el tritio, en helio, esté en la base de la liberación de energía realizada por la nueva bomba.

Para establecer las formidables temperaturas (varios millones de centígrados) capaces de desencadenar la reacción se utiliza la ruptura del uranio o del plutonio: la bomba de “fisión” sirve de detonador a la superbomba de fusión.

El modelo de ésta, utilizado por los expertos estadounidenses en las pruebas de Enivetock, a fines de 1952, superaba doscientas veces el poder (es decir, la cantidad de energía liberada) de la bomba de Hiroshima, según estimaciones extraoficiales.

No cabe duda de que la posibilidad de borrar de la superficie del globo cualquiera de las grandes metrópolis de la Tierra mediante la explosión de una bomba o a lo sumo de muy pocas bombas está, desde ahora, dentro de los alcances del hombre.

El uso de esta arma en un conflicto bélico significaría la abdicación de la razón humana y equivaldría a una tentativa de suicidio del homo sapiens.

Fuente Consultada: Historia de la Ciencia Desidero Papp

LISTA DE TEMAS TRATADOS EN ESTE SITIO:

1-¿Que es un Atomo? 2-La Energía Nuclear y sus Usos 3-La Física Moderna 4-La Fisión Nuclear 5-Partículas Elementales 6-Vida de Max Planck

Defecto de masa en el núcleo de Litio

Este hecho se repite para todos los núcleos atómicos. La masa de un núcleo atómico es menor que la que se obtiene cuando se suman las masas de los protones y los neutrones que lo constituyen.

La diferencia entre ambos valores recibe el nombre de defecto de masa.

El defecto de masa se produce porque parte de la masa de los protones y neutrones se transforma en energía cuando dichas partículas se unen para formar un núcleo atómico.

A partir de este hecho se define una nueva magnitud, la energía total de enlace nuclear, que es la energía que se desprende en la formación de un núcleo a partir de los nucleones que lo forman.

Para el núcleo de litio, dicha energía es de 32 MeV. (nota 1 electronvoltio (eV) es la energía cinética que adquiere un electrón al someterse a una diferecia de potencial de 1 voltio.

Dicha energía es de 1.6 . 10-19 Julio. Un MeV equivale a un millón de eV)

Los procesos en los que se modifican los núcleos de los átomos reciben el nombre de reacciones nucleares.

En las reacciones nucleares, pequeñas cantidades de masa se transforman en grandes cantidades de energía, de acuerdo con la equivalencia establecida por Einstein.

E = m.c2

Donde E es la energía desprendida, m es el defecto de masa y c es la velocidad de propagación de la luz en el vacío.

Debido al elevado valor de c, a partir de una pequeña cantidad de materia es posible obtener una enorme cantidad de energía.

Albert Einstein (1879-1955)
einstein

Ejemplo de Fisión Nuclear:

Determinados núcleos pesados, como, por ejemplo, el núcleo de uranio-235, se rompen en dos núcleos intermedios cuando se bombardean con neutrones.

En este proceso, conocido como fisión nuclear, también se emiten otras partículas, además de radiación y una gran cantidad de energía.

De la fisión de un núcleo de uranio-235 se obtiene un átomo de bario-142, un átomo de criptón-91, 3 neutrones y una energía de 210 MeV que se desprende en forma de calor. La ecuación que describe el proceso es la siguiente:

235U + 1 neutrón —-> 142Ba + 91Kr + 3 neutrones + 210 MeV

La masa del núcleo de uranio-235 sumada con la masa del neutrón es ligeramente superior a la suma de las masas del núcleo de bario- 142, el núcleo de criptón-91 y los tres neutrones. Este pequeño defecto de masa se ha transformado en energía.

Los neutrones que se obtienen en la fisión de un núcleo de uranio-235 pueden utilizarse para bombardear otros núcleos de este isótopo y provocar nuevas fisiones que a su vez producirán nuevos neutrones, y así sucesivamente.

Se origina de este modo una reacción en cadena mediante la cual, en un tiempo muy breve, se consigue la fisión de un gran número de núcleos y se libera una enorme cantidad de radiación y energía.

desintegracion nuclear

Reacción en cadena

La Fusión Nuclear

Una reacción de fusión nuclear es un proceso según el cual se unen núcleos ligeros o intermedios para formar núcleos más pesados, obteniéndose energía.

La fusión de un núcleo de deuterio, 2H, con un núcleo de tritio, 3H, da lugar a la formación de un núcleo de helio-4, 4He, además de un neutrón y una energía dc 17,6 MeV, que se desprende en forma de calor.

Esta es una de las reacciones mediante las que el Sol produce energia. La ecuación que describe el proceso es la siguiente:

2H + 3H —-> 4He+ 1 neutrón +  17,6 MeV

https://historiaybiografias.com/linea_divisoria1.jpg

Los fundamentos de la física atómica DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos.(Ver: Fision Nuclear)

La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones.

fision nuclear

Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

La rapidez con que se establece y se propaga la reacción en cadena dilataría y haría explotar la masa con extrema violencia antes que todos los núcleos hubiesen podido ser fragmentados.

Si se admite que sólo el 10% de los átomos participa en la reacción, la enorme cantidad de energía liberada equivale a la producida por la explosión de 2000 toneladas de trinitrotolueno.

En la foto de arriba se encuentran compartiendo una información física Albert Einstein y Leo Szilard. El doctor Leo Szilard, fue a quien se le ocurrió mientras esperaba el cambio de un semáforo en la intersección de Southampton Row en Londres, la ideas de producir una reacción nuclear controlada, bombardeando núcleos con neutrones. Por puro juego, y no por ningún impulso agresivo, el físico bajito y gordo, húngaro de nacimiento, visualizó una reacción atómica en cadena mientras deambulada por la ciudad en aquel dorado septiembre de 1933, dedicado a sus pasatiempos favoritos: pensar y pasear.

En forma de calor, mil novecientos millones de grandes calorías estarían disponibles, constituyendo el centro de la volatilización de toda materia presente.

En una fracción infinitesimal de segundo, la temperatura se elevaría a centenares de miles de grados en el lugar de la explosión, engendrando un espantoso vendaval cuyos efectos destructores —merced a la propagación de la onda de compresión— semejarían a la devastadora barrida de una gigantesca marca.

En vísperas de la Segunda Guerra Mundial, todas estas posibilidades no pasaban de ser meras previsiones teóricas, a las cuales, sin embargo, el comienzo del conflicto bélico iba a conferir excepcionales alcances.

Hacia fines de 1940, cuando el secreto militar comenzó a volver impenetrable el velo que cubría las investigaciones sobre la energía nuclear, la utilización de la misma para producir una bomba parecía todavía un objetivo muy lejano e incluso utópico.

Sin duda se sabía que el uranio 235 era particularmente sensible a la “fisión” y que ofrecía una sección eficaz mayor a los neutrones lentos que a los rápidos; se habían desarrollado métodos para producir neutrones lentos; se habían elaborado procedimientos para separar el uranio 235 de su isótopo corriente; se había logrado aislar dos elementos transuránicos, el neptunio y el plutonio, y se reconocía que este último era también “fisionable” en circunstancias semejantes a las del uranio 235.

Además, se habla adquirido la certeza de que en la “fisión”, al menos un neutrón rápido —y en término medio dos o tres— era emitido por el núcleo.

Sin embargo, a pesar del conjunto de tales progresos, todavía nadie había logrado producir una reacción autosustentada.

Algunos investigadores incluso se preguntaban si la naturaleza acepta someterse a las exigencias de los teóricos. Tal vez la reacción en cadena era, en general, irrealizable. Pero las dudas terminaron por disiparse definitivamente el 2 de diciembre de 1942: ENRICO FERMI había realizado en Chicago, por primera vez, una reacción nuclear autosostenida.

El dispositivo construido en Chicago consistía en una pila de ladrillos de grafito puro que incluía trozos de uranio, separados por distancias regulares conforme a un esquema geométrico.

El grafito servía de sustancia moderadora destinada a frenar mediante choques elásticos los neutrones que salen dotados de elevadas velocidades de la ruptura nuclear del uranio 235.

Algunos de los neutrones penetran en el isótopo pesado U-238, otros vuelven a ser capturados por el isótopo liviano U-235, puesto que ambos están presentes en los trozos de metal de la pila.

Los proyectiles que golpean el U-238 provocan su transformación, que termina por dar origen al plutonio, mientras neutrones capturados por núcleos de U-235 producen la “fisión” de éstos, expulsando neutrones que siguen provocando nuevas rupturas.

Así, la pila produce a la vez materia “fisionahle” (plutonio) y libera energía al desintegrar núcleos.

Agreguemos que para el arranque no se necesita detonador ni ningún otro dispositivo especial; los neutrones de origen cósmico existentes en la atmósfera, o neutrones errantes que provienen de la explosión espontánea de un átomo de uranio, son suficientes para iniciar la reacción.

Una condición indispensable para el funcionamiento de la pila es su volumen, que debe superar cierto tamaño crítico.

De lo contrario el número de neutrones que escapan por la superficie de la pila no permite que se establezca la cadena de las reacciones.

Para el autosostenímiento de la cadena es menester, además, que cada neutrón incidente produzca al menos un nuevo neutrón apto para determinar a su vez la ruptura de un núcleo, siendo en este caso el “factor de multiplicación” igual a la unidad.

La cadena se extingue si dicho factor resulta inferior a uno; en cambio, si es considerablemente superior, la liberación continua y lenta de la energía se transforma en un proceso explosivo, convirtiendo a la pila en una bomba.

Tan peligrosa proliferación de neutrones es contrarrestada introduciendo en la masa de grafito láminas de materia absorbente (cadmio) que permiten mantener constante la velocidad de la reacción y “controlar” el nivel energético de la pila mediante un dispositivo automático.

Tales fueron, a grandes rasgos, las fundamentales características de la pila de FERMI, arquetipo de todos los reactores.

Al principio la pila de FERMI engendró, en forma de calor, una potencia de 0,5 vatio; poco después aumentó su nivel de energía hasta llegar a 200 vatios. Con tal reducido poder, una pila debería funcionar varios miles de años para producir la cantidad de plutonio requerida en la fabricación de una sola bomba.

Mas una conquista no puede medirse en vatios.

La posibilidad de liberar energía nuclear en escala macroscópica estaba magníficamente demostrada.

Si bien la distancia que separa la pila experimental de Chicago de la bomba experimental de Alamogordo era muy superior a la existente entre la rudimentaria máquina de vapor de NEWCOMEN y la locomotora de STEPHENSON, el largo camino fue recorrido en el breve intervalo de treinta meses gracias al formidable potencial tecnológico de los Estados Unidos, y al esfuerzo de un verdadero ejército de científicos, técnicos y trabajadores.

El 6 de agosto, la pavorosa explosión que arrasó la ciudad de Hiroshima anunció al mundo que el hombre disponía de nuevas y tremendas fuerzas aprisionadas desde eternidades en las entrañas de la materia.

“En el interior de una bomba de fisión —escribe uno de los principales constructores de la bomba, ROBERT OPPENHEIMER (1904-1967)—, se materializa un lugar con el cual ningún otro puede ser comparado.

Al explotar la bomba se producen temperaturas más elevadas que las que reinan en el centro del Sol; su carga está constituida por materias que normalmente no existen en la naturaleza y se emiten radiaciones (neutrones, rayos gamma, electrones) de una intensidad que no tiene precedentes en la experiencia humana.

El factor de multiplicación es el cociente del número de los nuevos neutrones producidos y el número inicial de los neutrones primitivos.En la pila de FERMI el factor de multiplicación era igual a 1,007.

Las presiones que se obtienen equivalen a billones de veces la presión atmosférica.

En el sentido más primario y más sencillo, es perfectamente cierto que con las armas atómicas el hombre ha creado situaciones nuevas.”

En pilas y bombas de uranio (o plutonio), la energía se produce por la ruptura de un elemento muy pesado en fragmentos menos pesados. Sin embargo, para producir enormes cantidades de energía no es éste el proceso que la naturaleza elige.

Las estrellas prefieren la fusión a la “fisión”; como ya dijimos, transforman en gigantesca escala —por síntesis de elementos livianos— una parte de su materia nuclear en energía radiante.

Tan sólo las prodigiosas reservas energéticas, cuyo depósito son los núcleos, pueden permitir al Sol irradiar en forma de luz y calor, año tras año, tres quintillones (3 x 1030) de grandes calorías.

Este torrente de energía solar fluye por lo menos desde hace cuatrocientos o quinientos millones de años, puesto que las pruebas aportadas por la flora y fauna paleozoicas sugieren que las condiciones climáticas de la Tierra no han cambiado esencialmente desde aquella remotísima era primaria.

Mas ¿cuál es la transformación nuclear capaz de alimentar tan formidable despliegue energético, que equivale por segundo a una pérdida de cuatro millones de toneladas de masa solar?.

No cabe duda de que la transformación del elemento más común del universo, el hidrógeno en helio (el elemento que sigue al hidrógeno en la Tabla Periódica), podría suministrar la fuente energética de la radiación solar.

En efecto, la síntesis del helio a partir de los constituyentes de su núcleo está acompañada —como hemos explicado al tratar la energía de la unión nuclear— por la pérdida de una parte de las masas que intervienen, siendo liberada la masa desaparecida —de acuerdo con la equivalencia einsteniana— en forma de energía radiante. Sin embargo, el mecanismo de la supuesta transmutación no había dejado de ser enigmático hasta que HANS BETHE, hacia 1940, propuso su hipótesis del ciclo del carbono.

Las enormes temperaturas que reinan en el interior del Sol —veinte millones de grados en la región central— confieren a las partículas de la masa solar —y especialmente a los protones a velocidades tan elevadas que éstas pueden penetrar en los núcleos de elementos livianos y transmutarlos.

Así, el núcleo ordinario de carbono, bombardeado por un protón, se transforma al capturarlo en un isótopo del nitrógeno que se desintegra.

En cinco reacciones consecutivas engendran con la emisión de dos electrones positivos varios isótopos de carbono, de nitrógeno y de oxígeno. Bombardeados éstos a su vez por núcleos de hidrógeno, conducen finalmente a la formación del helio.

La excepcional característica de este ciclo, que convierte cuatro núcleos de hidrógeno en un núcleo de helio, es la reaparición del carbono inicial en la última reacción, que se encuentra así regenerado.

Desempeña el papel de catalizador y puede ser utilizado innumerables veces, hasta que todo el hidrógeno solar haya sido transmutado en helio, asegurando así las reservas energéticas del Sol durante miles de millones de años. A idénticas o análogas reacciones termonucleares deben sus caudales de energía también otras estrellas.

No cabe duda de que el ciclo de carbono, productor de la energía solar, representa el primordial proceso físico-químico del universo desde la perspectiva de la historia humana.

Sin las reacciones termonucleares, que se realizan en el interior del Sol, la vida no habría podido surgir sobre la superficie de la Tierra, donde los fenómenos biológicos, desde la fotosíntesis de la clorofila de los vegetales hasta el metabolismo en el organismo de los animales y del hombre, son tributarios de la radiación solar.

Es un hecho realmente notable que el carbono —sustancia básica de la materia viva— desempeñe también el papel de catalizador en el grandioso proceso cósmico que dio origen primario a todas las actividades vitales en la naturaleza terrestre.

La síntesis de elementos livianos a partir del hidrógeno ha dejado de ser privilegio de las masas estelares desde hace algunos años.

Reacciones termonucleares, productoras de la fusión de núcleos, suministran la fuente energética a la novísima arma: la bomba de hidrógeno. Desde luego, el ciclo de BETHE, que genera helio en las profundidades del globo solar es demasiado lento y complicado para el uso militar.

Es probable que la transmutación de una masa de los dos isótopos pesados del hidrógeno, el deuterio y el tritio, en helio, esté en la base de la liberación de energía realizada por la nueva bomba.

Para establecer las formidables temperaturas (varios millones de centígrados) capaces de desencadenar la reacción se utiliza la ruptura del uranio o del plutonio: la bomba de “fisión” sirve de detonador a la superbomba de fusión.

El modelo de ésta, utilizado por los expertos estadounidenses en las pruebas de Enivetock, a fines de 1952, superaba doscientas veces el poder (es decir, la cantidad de energía liberada) de la bomba de Hiroshima, según estimaciones extraoficiales.

No cabe duda de que la posibilidad de borrar de la superficie del globo cualquiera de las grandes metrópolis de la Tierra mediante la explosión de una bomba o a lo sumo de muy pocas bombas está, desde ahora, dentro de los alcances del hombre.

El uso de esta arma en un conflicto bélico significaría la abdicación de la razón humana y equivaldría a una tentativa de suicidio del homo sapiens.

Fuente Consultada: Historia de la Ciencia Desidero Papp

LISTA DE TEMAS TRATADOS EN ESTE SITIO:

1-¿Que es un Atomo? 2-La Energía Nuclear y sus Usos 3-La Física Moderna 4-La Fisión Nuclear 5-Partículas Elementales 6-Vida de Max Planck
energia de un atomo

Defecto de masa en el núcleo de Litio

Este hecho se repite para todos los núcleos atómicos. La masa de un núcleo atómico es menor que la que se obtiene cuando se suman las masas de los protones y los neutrones que lo constituyen.

La diferencia entre ambos valores recibe el nombre de defecto de masa.

El defecto de masa se produce porque parte de la masa de los protones y neutrones se transforma en energía cuando dichas partículas se unen para formar un núcleo atómico.

A partir de este hecho se define una nueva magnitud, la energía total de enlace nuclear, que es la energía que se desprende en la formación de un núcleo a partir de los nucleones que lo forman.

Para el núcleo de litio, dicha energía es de 32 MeV. (nota 1 electronvoltio (eV) es la energía cinética que adquiere un electrón al someterse a una diferecia de potencial de 1 voltio.

Dicha energía es de 1.6 . 10-19 Julio. Un MeV equivale a un millón de eV)

Los procesos en los que se modifican los núcleos de los átomos reciben el nombre de reacciones nucleares.

En las reacciones nucleares, pequeñas cantidades de masa se transforman en grandes cantidades de energía, de acuerdo con la equivalencia establecida por Einstein.

E = m.c2

Donde E es la energía desprendida, m es el defecto de masa y c es la velocidad de propagación de la luz en el vacío.

Debido al elevado valor de c, a partir de una pequeña cantidad de materia es posible obtener una enorme cantidad de energía.

Albert Einstein (1879-1955)
einstein

Ejemplo de Fisión Nuclear:

Determinados núcleos pesados, como, por ejemplo, el núcleo de uranio-235, se rompen en dos núcleos intermedios cuando se bombardean con neutrones.

En este proceso, conocido como fisión nuclear, también se emiten otras partículas, además de radiación y una gran cantidad de energía.

De la fisión de un núcleo de uranio-235 se obtiene un átomo de bario-142, un átomo de criptón-91, 3 neutrones y una energía de 210 MeV que se desprende en forma de calor. La ecuación que describe el proceso es la siguiente:

235U + 1 neutrón —-> 142Ba + 91Kr + 3 neutrones + 210 MeV

La masa del núcleo de uranio-235 sumada con la masa del neutrón es ligeramente superior a la suma de las masas del núcleo de bario- 142, el núcleo de criptón-91 y los tres neutrones. Este pequeño defecto de masa se ha transformado en energía.

Los neutrones que se obtienen en la fisión de un núcleo de uranio-235 pueden utilizarse para bombardear otros núcleos de este isótopo y provocar nuevas fisiones que a su vez producirán nuevos neutrones, y así sucesivamente.

Se origina de este modo una reacción en cadena mediante la cual, en un tiempo muy breve, se consigue la fisión de un gran número de núcleos y se libera una enorme cantidad de radiación y energía.

desintegracion nuclear

Reacción en cadena

La Fusión Nuclear

Una reacción de fusión nuclear es un proceso según el cual se unen núcleos ligeros o intermedios para formar núcleos más pesados, obteniéndose energía.

La fusión de un núcleo de deuterio, 2H, con un núcleo de tritio, 3H, da lugar a la formación de un núcleo de helio-4, 4He, además de un neutrón y una energía dc 17,6 MeV, que se desprende en forma de calor.

Esta es una de las reacciones mediante las que el Sol produce energia. La ecuación que describe el proceso es la siguiente:

2H + 3H —-> 4He+ 1 neutrón +  17,6 MeV

https://historiaybiografias.com/linea_divisoria1.jpg

Los fundamentos de la física atómica DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos.(Ver: Fision Nuclear)

La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones.

fision nuclear

Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

La rapidez con que se establece y se propaga la reacción en cadena dilataría y haría explotar la masa con extrema violencia antes que todos los núcleos hubiesen podido ser fragmentados.

Si se admite que sólo el 10% de los átomos participa en la reacción, la enorme cantidad de energía liberada equivale a la producida por la explosión de 2000 toneladas de trinitrotolueno.

En la foto de arriba se encuentran compartiendo una información física Albert Einstein y Leo Szilard. El doctor Leo Szilard, fue a quien se le ocurrió mientras esperaba el cambio de un semáforo en la intersección de Southampton Row en Londres, la ideas de producir una reacción nuclear controlada, bombardeando núcleos con neutrones. Por puro juego, y no por ningún impulso agresivo, el físico bajito y gordo, húngaro de nacimiento, visualizó una reacción atómica en cadena mientras deambulada por la ciudad en aquel dorado septiembre de 1933, dedicado a sus pasatiempos favoritos: pensar y pasear.

En forma de calor, mil novecientos millones de grandes calorías estarían disponibles, constituyendo el centro de la volatilización de toda materia presente.

En una fracción infinitesimal de segundo, la temperatura se elevaría a centenares de miles de grados en el lugar de la explosión, engendrando un espantoso vendaval cuyos efectos destructores —merced a la propagación de la onda de compresión— semejarían a la devastadora barrida de una gigantesca marca.

En vísperas de la Segunda Guerra Mundial, todas estas posibilidades no pasaban de ser meras previsiones teóricas, a las cuales, sin embargo, el comienzo del conflicto bélico iba a conferir excepcionales alcances.

Hacia fines de 1940, cuando el secreto militar comenzó a volver impenetrable el velo que cubría las investigaciones sobre la energía nuclear, la utilización de la misma para producir una bomba parecía todavía un objetivo muy lejano e incluso utópico.

Sin duda se sabía que el uranio 235 era particularmente sensible a la “fisión” y que ofrecía una sección eficaz mayor a los neutrones lentos que a los rápidos; se habían desarrollado métodos para producir neutrones lentos; se habían elaborado procedimientos para separar el uranio 235 de su isótopo corriente; se había logrado aislar dos elementos transuránicos, el neptunio y el plutonio, y se reconocía que este último era también “fisionable” en circunstancias semejantes a las del uranio 235.

Además, se habla adquirido la certeza de que en la “fisión”, al menos un neutrón rápido —y en término medio dos o tres— era emitido por el núcleo.

Sin embargo, a pesar del conjunto de tales progresos, todavía nadie había logrado producir una reacción autosustentada.

Algunos investigadores incluso se preguntaban si la naturaleza acepta someterse a las exigencias de los teóricos. Tal vez la reacción en cadena era, en general, irrealizable. Pero las dudas terminaron por disiparse definitivamente el 2 de diciembre de 1942: ENRICO FERMI había realizado en Chicago, por primera vez, una reacción nuclear autosostenida.

El dispositivo construido en Chicago consistía en una pila de ladrillos de grafito puro que incluía trozos de uranio, separados por distancias regulares conforme a un esquema geométrico.

El grafito servía de sustancia moderadora destinada a frenar mediante choques elásticos los neutrones que salen dotados de elevadas velocidades de la ruptura nuclear del uranio 235.

Algunos de los neutrones penetran en el isótopo pesado U-238, otros vuelven a ser capturados por el isótopo liviano U-235, puesto que ambos están presentes en los trozos de metal de la pila.

Los proyectiles que golpean el U-238 provocan su transformación, que termina por dar origen al plutonio, mientras neutrones capturados por núcleos de U-235 producen la “fisión” de éstos, expulsando neutrones que siguen provocando nuevas rupturas.

Así, la pila produce a la vez materia “fisionahle” (plutonio) y libera energía al desintegrar núcleos.

Agreguemos que para el arranque no se necesita detonador ni ningún otro dispositivo especial; los neutrones de origen cósmico existentes en la atmósfera, o neutrones errantes que provienen de la explosión espontánea de un átomo de uranio, son suficientes para iniciar la reacción.

Una condición indispensable para el funcionamiento de la pila es su volumen, que debe superar cierto tamaño crítico.

De lo contrario el número de neutrones que escapan por la superficie de la pila no permite que se establezca la cadena de las reacciones.

Para el autosostenímiento de la cadena es menester, además, que cada neutrón incidente produzca al menos un nuevo neutrón apto para determinar a su vez la ruptura de un núcleo, siendo en este caso el “factor de multiplicación” igual a la unidad.

La cadena se extingue si dicho factor resulta inferior a uno; en cambio, si es considerablemente superior, la liberación continua y lenta de la energía se transforma en un proceso explosivo, convirtiendo a la pila en una bomba.

Tan peligrosa proliferación de neutrones es contrarrestada introduciendo en la masa de grafito láminas de materia absorbente (cadmio) que permiten mantener constante la velocidad de la reacción y “controlar” el nivel energético de la pila mediante un dispositivo automático.

Tales fueron, a grandes rasgos, las fundamentales características de la pila de FERMI, arquetipo de todos los reactores.

Al principio la pila de FERMI engendró, en forma de calor, una potencia de 0,5 vatio; poco después aumentó su nivel de energía hasta llegar a 200 vatios. Con tal reducido poder, una pila debería funcionar varios miles de años para producir la cantidad de plutonio requerida en la fabricación de una sola bomba.

Mas una conquista no puede medirse en vatios.

La posibilidad de liberar energía nuclear en escala macroscópica estaba magníficamente demostrada.

Si bien la distancia que separa la pila experimental de Chicago de la bomba experimental de Alamogordo era muy superior a la existente entre la rudimentaria máquina de vapor de NEWCOMEN y la locomotora de STEPHENSON, el largo camino fue recorrido en el breve intervalo de treinta meses gracias al formidable potencial tecnológico de los Estados Unidos, y al esfuerzo de un verdadero ejército de científicos, técnicos y trabajadores.

El 6 de agosto, la pavorosa explosión que arrasó la ciudad de Hiroshima anunció al mundo que el hombre disponía de nuevas y tremendas fuerzas aprisionadas desde eternidades en las entrañas de la materia.

“En el interior de una bomba de fisión —escribe uno de los principales constructores de la bomba, ROBERT OPPENHEIMER (1904-1967)—, se materializa un lugar con el cual ningún otro puede ser comparado.

Al explotar la bomba se producen temperaturas más elevadas que las que reinan en el centro del Sol; su carga está constituida por materias que normalmente no existen en la naturaleza y se emiten radiaciones (neutrones, rayos gamma, electrones) de una intensidad que no tiene precedentes en la experiencia humana.

El factor de multiplicación es el cociente del número de los nuevos neutrones producidos y el número inicial de los neutrones primitivos.En la pila de FERMI el factor de multiplicación era igual a 1,007.

Las presiones que se obtienen equivalen a billones de veces la presión atmosférica.

En el sentido más primario y más sencillo, es perfectamente cierto que con las armas atómicas el hombre ha creado situaciones nuevas.”

En pilas y bombas de uranio (o plutonio), la energía se produce por la ruptura de un elemento muy pesado en fragmentos menos pesados. Sin embargo, para producir enormes cantidades de energía no es éste el proceso que la naturaleza elige.

Las estrellas prefieren la fusión a la “fisión”; como ya dijimos, transforman en gigantesca escala —por síntesis de elementos livianos— una parte de su materia nuclear en energía radiante.

Tan sólo las prodigiosas reservas energéticas, cuyo depósito son los núcleos, pueden permitir al Sol irradiar en forma de luz y calor, año tras año, tres quintillones (3 x 1030) de grandes calorías.

Este torrente de energía solar fluye por lo menos desde hace cuatrocientos o quinientos millones de años, puesto que las pruebas aportadas por la flora y fauna paleozoicas sugieren que las condiciones climáticas de la Tierra no han cambiado esencialmente desde aquella remotísima era primaria.

Mas ¿cuál es la transformación nuclear capaz de alimentar tan formidable despliegue energético, que equivale por segundo a una pérdida de cuatro millones de toneladas de masa solar?.

No cabe duda de que la transformación del elemento más común del universo, el hidrógeno en helio (el elemento que sigue al hidrógeno en la Tabla Periódica), podría suministrar la fuente energética de la radiación solar.

En efecto, la síntesis del helio a partir de los constituyentes de su núcleo está acompañada —como hemos explicado al tratar la energía de la unión nuclear— por la pérdida de una parte de las masas que intervienen, siendo liberada la masa desaparecida —de acuerdo con la equivalencia einsteniana— en forma de energía radiante. Sin embargo, el mecanismo de la supuesta transmutación no había dejado de ser enigmático hasta que HANS BETHE, hacia 1940, propuso su hipótesis del ciclo del carbono.

Las enormes temperaturas que reinan en el interior del Sol —veinte millones de grados en la región central— confieren a las partículas de la masa solar —y especialmente a los protones a velocidades tan elevadas que éstas pueden penetrar en los núcleos de elementos livianos y transmutarlos.

Así, el núcleo ordinario de carbono, bombardeado por un protón, se transforma al capturarlo en un isótopo del nitrógeno que se desintegra.

En cinco reacciones consecutivas engendran con la emisión de dos electrones positivos varios isótopos de carbono, de nitrógeno y de oxígeno. Bombardeados éstos a su vez por núcleos de hidrógeno, conducen finalmente a la formación del helio.

La excepcional característica de este ciclo, que convierte cuatro núcleos de hidrógeno en un núcleo de helio, es la reaparición del carbono inicial en la última reacción, que se encuentra así regenerado.

Desempeña el papel de catalizador y puede ser utilizado innumerables veces, hasta que todo el hidrógeno solar haya sido transmutado en helio, asegurando así las reservas energéticas del Sol durante miles de millones de años. A idénticas o análogas reacciones termonucleares deben sus caudales de energía también otras estrellas.

No cabe duda de que el ciclo de carbono, productor de la energía solar, representa el primordial proceso físico-químico del universo desde la perspectiva de la historia humana.

Sin las reacciones termonucleares, que se realizan en el interior del Sol, la vida no habría podido surgir sobre la superficie de la Tierra, donde los fenómenos biológicos, desde la fotosíntesis de la clorofila de los vegetales hasta el metabolismo en el organismo de los animales y del hombre, son tributarios de la radiación solar.

Es un hecho realmente notable que el carbono —sustancia básica de la materia viva— desempeñe también el papel de catalizador en el grandioso proceso cósmico que dio origen primario a todas las actividades vitales en la naturaleza terrestre.

La síntesis de elementos livianos a partir del hidrógeno ha dejado de ser privilegio de las masas estelares desde hace algunos años.

Reacciones termonucleares, productoras de la fusión de núcleos, suministran la fuente energética a la novísima arma: la bomba de hidrógeno. Desde luego, el ciclo de BETHE, que genera helio en las profundidades del globo solar es demasiado lento y complicado para el uso militar.

Es probable que la transmutación de una masa de los dos isótopos pesados del hidrógeno, el deuterio y el tritio, en helio, esté en la base de la liberación de energía realizada por la nueva bomba.

Para establecer las formidables temperaturas (varios millones de centígrados) capaces de desencadenar la reacción se utiliza la ruptura del uranio o del plutonio: la bomba de “fisión” sirve de detonador a la superbomba de fusión.

El modelo de ésta, utilizado por los expertos estadounidenses en las pruebas de Enivetock, a fines de 1952, superaba doscientas veces el poder (es decir, la cantidad de energía liberada) de la bomba de Hiroshima, según estimaciones extraoficiales.

No cabe duda de que la posibilidad de borrar de la superficie del globo cualquiera de las grandes metrópolis de la Tierra mediante la explosión de una bomba o a lo sumo de muy pocas bombas está, desde ahora, dentro de los alcances del hombre.

El uso de esta arma en un conflicto bélico significaría la abdicación de la razón humana y equivaldría a una tentativa de suicidio del homo sapiens.

Fuente Consultada: Historia de la Ciencia Desidero Papp

LISTA DE TEMAS TRATADOS EN ESTE SITIO:

1-¿Que es un Atomo? 2-La Energía Nuclear y sus Usos 3-La Física Moderna 4-La Fisión Nuclear 5-Partículas Elementales 6-Vida de Max Planck

El núcleo de Li contiene tres protones y tres neutrones.

La masa de un neutrón es de 1,6748 . 10-27 kg y la masa de un protón es de 1,6725 . 10-27 kg.

En consecuencia, cabría esperar que la masa de este núcleo fuera de 10,0419 . 10-27 kg.

Sin embargo, la masa de un núcleo de litio, 9,9846 10-27kg., es menor que la calculada sumando las masas de los tres protones y los tres neutrones que lo constituyen. El defecto de masa es de 0,0573 . 10-27 kg.

energia de un atomo

Defecto de masa en el núcleo de Litio

Este hecho se repite para todos los núcleos atómicos. La masa de un núcleo atómico es menor que la que se obtiene cuando se suman las masas de los protones y los neutrones que lo constituyen.

La diferencia entre ambos valores recibe el nombre de defecto de masa.

El defecto de masa se produce porque parte de la masa de los protones y neutrones se transforma en energía cuando dichas partículas se unen para formar un núcleo atómico.

A partir de este hecho se define una nueva magnitud, la energía total de enlace nuclear, que es la energía que se desprende en la formación de un núcleo a partir de los nucleones que lo forman.

Para el núcleo de litio, dicha energía es de 32 MeV. (nota 1 electronvoltio (eV) es la energía cinética que adquiere un electrón al someterse a una diferecia de potencial de 1 voltio.

Dicha energía es de 1.6 . 10-19 Julio. Un MeV equivale a un millón de eV)

Los procesos en los que se modifican los núcleos de los átomos reciben el nombre de reacciones nucleares.

En las reacciones nucleares, pequeñas cantidades de masa se transforman en grandes cantidades de energía, de acuerdo con la equivalencia establecida por Einstein.

E = m.c2

Donde E es la energía desprendida, m es el defecto de masa y c es la velocidad de propagación de la luz en el vacío.

Debido al elevado valor de c, a partir de una pequeña cantidad de materia es posible obtener una enorme cantidad de energía.

Albert Einstein (1879-1955)
einstein

Ejemplo de Fisión Nuclear:

Determinados núcleos pesados, como, por ejemplo, el núcleo de uranio-235, se rompen en dos núcleos intermedios cuando se bombardean con neutrones.

En este proceso, conocido como fisión nuclear, también se emiten otras partículas, además de radiación y una gran cantidad de energía.

De la fisión de un núcleo de uranio-235 se obtiene un átomo de bario-142, un átomo de criptón-91, 3 neutrones y una energía de 210 MeV que se desprende en forma de calor. La ecuación que describe el proceso es la siguiente:

235U + 1 neutrón —-> 142Ba + 91Kr + 3 neutrones + 210 MeV

La masa del núcleo de uranio-235 sumada con la masa del neutrón es ligeramente superior a la suma de las masas del núcleo de bario- 142, el núcleo de criptón-91 y los tres neutrones. Este pequeño defecto de masa se ha transformado en energía.

Los neutrones que se obtienen en la fisión de un núcleo de uranio-235 pueden utilizarse para bombardear otros núcleos de este isótopo y provocar nuevas fisiones que a su vez producirán nuevos neutrones, y así sucesivamente.

Se origina de este modo una reacción en cadena mediante la cual, en un tiempo muy breve, se consigue la fisión de un gran número de núcleos y se libera una enorme cantidad de radiación y energía.

desintegracion nuclear

Reacción en cadena

La Fusión Nuclear

Una reacción de fusión nuclear es un proceso según el cual se unen núcleos ligeros o intermedios para formar núcleos más pesados, obteniéndose energía.

La fusión de un núcleo de deuterio, 2H, con un núcleo de tritio, 3H, da lugar a la formación de un núcleo de helio-4, 4He, además de un neutrón y una energía dc 17,6 MeV, que se desprende en forma de calor.

Esta es una de las reacciones mediante las que el Sol produce energia. La ecuación que describe el proceso es la siguiente:

2H + 3H —-> 4He+ 1 neutrón +  17,6 MeV

https://historiaybiografias.com/linea_divisoria1.jpg

Los fundamentos de la física atómica DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos.(Ver: Fision Nuclear)

La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones.

fision nuclear

Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

La rapidez con que se establece y se propaga la reacción en cadena dilataría y haría explotar la masa con extrema violencia antes que todos los núcleos hubiesen podido ser fragmentados.

Si se admite que sólo el 10% de los átomos participa en la reacción, la enorme cantidad de energía liberada equivale a la producida por la explosión de 2000 toneladas de trinitrotolueno.

En la foto de arriba se encuentran compartiendo una información física Albert Einstein y Leo Szilard. El doctor Leo Szilard, fue a quien se le ocurrió mientras esperaba el cambio de un semáforo en la intersección de Southampton Row en Londres, la ideas de producir una reacción nuclear controlada, bombardeando núcleos con neutrones. Por puro juego, y no por ningún impulso agresivo, el físico bajito y gordo, húngaro de nacimiento, visualizó una reacción atómica en cadena mientras deambulada por la ciudad en aquel dorado septiembre de 1933, dedicado a sus pasatiempos favoritos: pensar y pasear.

En forma de calor, mil novecientos millones de grandes calorías estarían disponibles, constituyendo el centro de la volatilización de toda materia presente.

En una fracción infinitesimal de segundo, la temperatura se elevaría a centenares de miles de grados en el lugar de la explosión, engendrando un espantoso vendaval cuyos efectos destructores —merced a la propagación de la onda de compresión— semejarían a la devastadora barrida de una gigantesca marca.

En vísperas de la Segunda Guerra Mundial, todas estas posibilidades no pasaban de ser meras previsiones teóricas, a las cuales, sin embargo, el comienzo del conflicto bélico iba a conferir excepcionales alcances.

Hacia fines de 1940, cuando el secreto militar comenzó a volver impenetrable el velo que cubría las investigaciones sobre la energía nuclear, la utilización de la misma para producir una bomba parecía todavía un objetivo muy lejano e incluso utópico.

Sin duda se sabía que el uranio 235 era particularmente sensible a la “fisión” y que ofrecía una sección eficaz mayor a los neutrones lentos que a los rápidos; se habían desarrollado métodos para producir neutrones lentos; se habían elaborado procedimientos para separar el uranio 235 de su isótopo corriente; se había logrado aislar dos elementos transuránicos, el neptunio y el plutonio, y se reconocía que este último era también “fisionable” en circunstancias semejantes a las del uranio 235.

Además, se habla adquirido la certeza de que en la “fisión”, al menos un neutrón rápido —y en término medio dos o tres— era emitido por el núcleo.

Sin embargo, a pesar del conjunto de tales progresos, todavía nadie había logrado producir una reacción autosustentada.

Algunos investigadores incluso se preguntaban si la naturaleza acepta someterse a las exigencias de los teóricos. Tal vez la reacción en cadena era, en general, irrealizable. Pero las dudas terminaron por disiparse definitivamente el 2 de diciembre de 1942: ENRICO FERMI había realizado en Chicago, por primera vez, una reacción nuclear autosostenida.

El dispositivo construido en Chicago consistía en una pila de ladrillos de grafito puro que incluía trozos de uranio, separados por distancias regulares conforme a un esquema geométrico.

El grafito servía de sustancia moderadora destinada a frenar mediante choques elásticos los neutrones que salen dotados de elevadas velocidades de la ruptura nuclear del uranio 235.

Algunos de los neutrones penetran en el isótopo pesado U-238, otros vuelven a ser capturados por el isótopo liviano U-235, puesto que ambos están presentes en los trozos de metal de la pila.

Los proyectiles que golpean el U-238 provocan su transformación, que termina por dar origen al plutonio, mientras neutrones capturados por núcleos de U-235 producen la “fisión” de éstos, expulsando neutrones que siguen provocando nuevas rupturas.

Así, la pila produce a la vez materia “fisionahle” (plutonio) y libera energía al desintegrar núcleos.

Agreguemos que para el arranque no se necesita detonador ni ningún otro dispositivo especial; los neutrones de origen cósmico existentes en la atmósfera, o neutrones errantes que provienen de la explosión espontánea de un átomo de uranio, son suficientes para iniciar la reacción.

Una condición indispensable para el funcionamiento de la pila es su volumen, que debe superar cierto tamaño crítico.

De lo contrario el número de neutrones que escapan por la superficie de la pila no permite que se establezca la cadena de las reacciones.

Para el autosostenímiento de la cadena es menester, además, que cada neutrón incidente produzca al menos un nuevo neutrón apto para determinar a su vez la ruptura de un núcleo, siendo en este caso el “factor de multiplicación” igual a la unidad.

La cadena se extingue si dicho factor resulta inferior a uno; en cambio, si es considerablemente superior, la liberación continua y lenta de la energía se transforma en un proceso explosivo, convirtiendo a la pila en una bomba.

Tan peligrosa proliferación de neutrones es contrarrestada introduciendo en la masa de grafito láminas de materia absorbente (cadmio) que permiten mantener constante la velocidad de la reacción y “controlar” el nivel energético de la pila mediante un dispositivo automático.

Tales fueron, a grandes rasgos, las fundamentales características de la pila de FERMI, arquetipo de todos los reactores.

Al principio la pila de FERMI engendró, en forma de calor, una potencia de 0,5 vatio; poco después aumentó su nivel de energía hasta llegar a 200 vatios. Con tal reducido poder, una pila debería funcionar varios miles de años para producir la cantidad de plutonio requerida en la fabricación de una sola bomba.

Mas una conquista no puede medirse en vatios.

La posibilidad de liberar energía nuclear en escala macroscópica estaba magníficamente demostrada.

Si bien la distancia que separa la pila experimental de Chicago de la bomba experimental de Alamogordo era muy superior a la existente entre la rudimentaria máquina de vapor de NEWCOMEN y la locomotora de STEPHENSON, el largo camino fue recorrido en el breve intervalo de treinta meses gracias al formidable potencial tecnológico de los Estados Unidos, y al esfuerzo de un verdadero ejército de científicos, técnicos y trabajadores.

El 6 de agosto, la pavorosa explosión que arrasó la ciudad de Hiroshima anunció al mundo que el hombre disponía de nuevas y tremendas fuerzas aprisionadas desde eternidades en las entrañas de la materia.

“En el interior de una bomba de fisión —escribe uno de los principales constructores de la bomba, ROBERT OPPENHEIMER (1904-1967)—, se materializa un lugar con el cual ningún otro puede ser comparado.

Al explotar la bomba se producen temperaturas más elevadas que las que reinan en el centro del Sol; su carga está constituida por materias que normalmente no existen en la naturaleza y se emiten radiaciones (neutrones, rayos gamma, electrones) de una intensidad que no tiene precedentes en la experiencia humana.

El factor de multiplicación es el cociente del número de los nuevos neutrones producidos y el número inicial de los neutrones primitivos.En la pila de FERMI el factor de multiplicación era igual a 1,007.

Las presiones que se obtienen equivalen a billones de veces la presión atmosférica.

En el sentido más primario y más sencillo, es perfectamente cierto que con las armas atómicas el hombre ha creado situaciones nuevas.”

En pilas y bombas de uranio (o plutonio), la energía se produce por la ruptura de un elemento muy pesado en fragmentos menos pesados. Sin embargo, para producir enormes cantidades de energía no es éste el proceso que la naturaleza elige.

Las estrellas prefieren la fusión a la “fisión”; como ya dijimos, transforman en gigantesca escala —por síntesis de elementos livianos— una parte de su materia nuclear en energía radiante.

Tan sólo las prodigiosas reservas energéticas, cuyo depósito son los núcleos, pueden permitir al Sol irradiar en forma de luz y calor, año tras año, tres quintillones (3 x 1030) de grandes calorías.

Este torrente de energía solar fluye por lo menos desde hace cuatrocientos o quinientos millones de años, puesto que las pruebas aportadas por la flora y fauna paleozoicas sugieren que las condiciones climáticas de la Tierra no han cambiado esencialmente desde aquella remotísima era primaria.

Mas ¿cuál es la transformación nuclear capaz de alimentar tan formidable despliegue energético, que equivale por segundo a una pérdida de cuatro millones de toneladas de masa solar?.

No cabe duda de que la transformación del elemento más común del universo, el hidrógeno en helio (el elemento que sigue al hidrógeno en la Tabla Periódica), podría suministrar la fuente energética de la radiación solar.

En efecto, la síntesis del helio a partir de los constituyentes de su núcleo está acompañada —como hemos explicado al tratar la energía de la unión nuclear— por la pérdida de una parte de las masas que intervienen, siendo liberada la masa desaparecida —de acuerdo con la equivalencia einsteniana— en forma de energía radiante. Sin embargo, el mecanismo de la supuesta transmutación no había dejado de ser enigmático hasta que HANS BETHE, hacia 1940, propuso su hipótesis del ciclo del carbono.

Las enormes temperaturas que reinan en el interior del Sol —veinte millones de grados en la región central— confieren a las partículas de la masa solar —y especialmente a los protones a velocidades tan elevadas que éstas pueden penetrar en los núcleos de elementos livianos y transmutarlos.

Así, el núcleo ordinario de carbono, bombardeado por un protón, se transforma al capturarlo en un isótopo del nitrógeno que se desintegra.

En cinco reacciones consecutivas engendran con la emisión de dos electrones positivos varios isótopos de carbono, de nitrógeno y de oxígeno. Bombardeados éstos a su vez por núcleos de hidrógeno, conducen finalmente a la formación del helio.

La excepcional característica de este ciclo, que convierte cuatro núcleos de hidrógeno en un núcleo de helio, es la reaparición del carbono inicial en la última reacción, que se encuentra así regenerado.

Desempeña el papel de catalizador y puede ser utilizado innumerables veces, hasta que todo el hidrógeno solar haya sido transmutado en helio, asegurando así las reservas energéticas del Sol durante miles de millones de años. A idénticas o análogas reacciones termonucleares deben sus caudales de energía también otras estrellas.

No cabe duda de que el ciclo de carbono, productor de la energía solar, representa el primordial proceso físico-químico del universo desde la perspectiva de la historia humana.

Sin las reacciones termonucleares, que se realizan en el interior del Sol, la vida no habría podido surgir sobre la superficie de la Tierra, donde los fenómenos biológicos, desde la fotosíntesis de la clorofila de los vegetales hasta el metabolismo en el organismo de los animales y del hombre, son tributarios de la radiación solar.

Es un hecho realmente notable que el carbono —sustancia básica de la materia viva— desempeñe también el papel de catalizador en el grandioso proceso cósmico que dio origen primario a todas las actividades vitales en la naturaleza terrestre.

La síntesis de elementos livianos a partir del hidrógeno ha dejado de ser privilegio de las masas estelares desde hace algunos años.

Reacciones termonucleares, productoras de la fusión de núcleos, suministran la fuente energética a la novísima arma: la bomba de hidrógeno. Desde luego, el ciclo de BETHE, que genera helio en las profundidades del globo solar es demasiado lento y complicado para el uso militar.

Es probable que la transmutación de una masa de los dos isótopos pesados del hidrógeno, el deuterio y el tritio, en helio, esté en la base de la liberación de energía realizada por la nueva bomba.

Para establecer las formidables temperaturas (varios millones de centígrados) capaces de desencadenar la reacción se utiliza la ruptura del uranio o del plutonio: la bomba de “fisión” sirve de detonador a la superbomba de fusión.

El modelo de ésta, utilizado por los expertos estadounidenses en las pruebas de Enivetock, a fines de 1952, superaba doscientas veces el poder (es decir, la cantidad de energía liberada) de la bomba de Hiroshima, según estimaciones extraoficiales.

No cabe duda de que la posibilidad de borrar de la superficie del globo cualquiera de las grandes metrópolis de la Tierra mediante la explosión de una bomba o a lo sumo de muy pocas bombas está, desde ahora, dentro de los alcances del hombre.

El uso de esta arma en un conflicto bélico significaría la abdicación de la razón humana y equivaldría a una tentativa de suicidio del homo sapiens.

Fuente Consultada: Historia de la Ciencia Desidero Papp

LISTA DE TEMAS TRATADOS EN ESTE SITIO:

1-¿Que es un Atomo? 2-La Energía Nuclear y sus Usos 3-La Física Moderna 4-La Fisión Nuclear 5-Partículas Elementales 6-Vida de Max Planck

Para calcular la masa de un cierto núcleo se multiplicará el número de protones que contiene por la masa de un protón, se multiplicará el número de neutrones por la masa de un neutrón y se sumarán ambas cantidades.

El núcleo de Li contiene tres protones y tres neutrones.

La masa de un neutrón es de 1,6748 . 10-27 kg y la masa de un protón es de 1,6725 . 10-27 kg.

En consecuencia, cabría esperar que la masa de este núcleo fuera de 10,0419 . 10-27 kg.

Sin embargo, la masa de un núcleo de litio, 9,9846 10-27kg., es menor que la calculada sumando las masas de los tres protones y los tres neutrones que lo constituyen. El defecto de masa es de 0,0573 . 10-27 kg.

energia de un atomo

Defecto de masa en el núcleo de Litio

Este hecho se repite para todos los núcleos atómicos. La masa de un núcleo atómico es menor que la que se obtiene cuando se suman las masas de los protones y los neutrones que lo constituyen.

La diferencia entre ambos valores recibe el nombre de defecto de masa.

El defecto de masa se produce porque parte de la masa de los protones y neutrones se transforma en energía cuando dichas partículas se unen para formar un núcleo atómico.

A partir de este hecho se define una nueva magnitud, la energía total de enlace nuclear, que es la energía que se desprende en la formación de un núcleo a partir de los nucleones que lo forman.

Para el núcleo de litio, dicha energía es de 32 MeV. (nota 1 electronvoltio (eV) es la energía cinética que adquiere un electrón al someterse a una diferecia de potencial de 1 voltio.

Dicha energía es de 1.6 . 10-19 Julio. Un MeV equivale a un millón de eV)

Los procesos en los que se modifican los núcleos de los átomos reciben el nombre de reacciones nucleares.

En las reacciones nucleares, pequeñas cantidades de masa se transforman en grandes cantidades de energía, de acuerdo con la equivalencia establecida por Einstein.

E = m.c2

Donde E es la energía desprendida, m es el defecto de masa y c es la velocidad de propagación de la luz en el vacío.

Debido al elevado valor de c, a partir de una pequeña cantidad de materia es posible obtener una enorme cantidad de energía.

Albert Einstein (1879-1955)
einstein

Ejemplo de Fisión Nuclear:

Determinados núcleos pesados, como, por ejemplo, el núcleo de uranio-235, se rompen en dos núcleos intermedios cuando se bombardean con neutrones.

En este proceso, conocido como fisión nuclear, también se emiten otras partículas, además de radiación y una gran cantidad de energía.

De la fisión de un núcleo de uranio-235 se obtiene un átomo de bario-142, un átomo de criptón-91, 3 neutrones y una energía de 210 MeV que se desprende en forma de calor. La ecuación que describe el proceso es la siguiente:

235U + 1 neutrón —-> 142Ba + 91Kr + 3 neutrones + 210 MeV

La masa del núcleo de uranio-235 sumada con la masa del neutrón es ligeramente superior a la suma de las masas del núcleo de bario- 142, el núcleo de criptón-91 y los tres neutrones. Este pequeño defecto de masa se ha transformado en energía.

Los neutrones que se obtienen en la fisión de un núcleo de uranio-235 pueden utilizarse para bombardear otros núcleos de este isótopo y provocar nuevas fisiones que a su vez producirán nuevos neutrones, y así sucesivamente.

Se origina de este modo una reacción en cadena mediante la cual, en un tiempo muy breve, se consigue la fisión de un gran número de núcleos y se libera una enorme cantidad de radiación y energía.

desintegracion nuclear

Reacción en cadena

La Fusión Nuclear

Una reacción de fusión nuclear es un proceso según el cual se unen núcleos ligeros o intermedios para formar núcleos más pesados, obteniéndose energía.

La fusión de un núcleo de deuterio, 2H, con un núcleo de tritio, 3H, da lugar a la formación de un núcleo de helio-4, 4He, además de un neutrón y una energía dc 17,6 MeV, que se desprende en forma de calor.

Esta es una de las reacciones mediante las que el Sol produce energia. La ecuación que describe el proceso es la siguiente:

2H + 3H —-> 4He+ 1 neutrón +  17,6 MeV

https://historiaybiografias.com/linea_divisoria1.jpg

Los fundamentos de la física atómica DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos.(Ver: Fision Nuclear)

La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones.

fision nuclear

Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

La rapidez con que se establece y se propaga la reacción en cadena dilataría y haría explotar la masa con extrema violencia antes que todos los núcleos hubiesen podido ser fragmentados.

Si se admite que sólo el 10% de los átomos participa en la reacción, la enorme cantidad de energía liberada equivale a la producida por la explosión de 2000 toneladas de trinitrotolueno.

En la foto de arriba se encuentran compartiendo una información física Albert Einstein y Leo Szilard. El doctor Leo Szilard, fue a quien se le ocurrió mientras esperaba el cambio de un semáforo en la intersección de Southampton Row en Londres, la ideas de producir una reacción nuclear controlada, bombardeando núcleos con neutrones. Por puro juego, y no por ningún impulso agresivo, el físico bajito y gordo, húngaro de nacimiento, visualizó una reacción atómica en cadena mientras deambulada por la ciudad en aquel dorado septiembre de 1933, dedicado a sus pasatiempos favoritos: pensar y pasear.

En forma de calor, mil novecientos millones de grandes calorías estarían disponibles, constituyendo el centro de la volatilización de toda materia presente.

En una fracción infinitesimal de segundo, la temperatura se elevaría a centenares de miles de grados en el lugar de la explosión, engendrando un espantoso vendaval cuyos efectos destructores —merced a la propagación de la onda de compresión— semejarían a la devastadora barrida de una gigantesca marca.

En vísperas de la Segunda Guerra Mundial, todas estas posibilidades no pasaban de ser meras previsiones teóricas, a las cuales, sin embargo, el comienzo del conflicto bélico iba a conferir excepcionales alcances.

Hacia fines de 1940, cuando el secreto militar comenzó a volver impenetrable el velo que cubría las investigaciones sobre la energía nuclear, la utilización de la misma para producir una bomba parecía todavía un objetivo muy lejano e incluso utópico.

Sin duda se sabía que el uranio 235 era particularmente sensible a la “fisión” y que ofrecía una sección eficaz mayor a los neutrones lentos que a los rápidos; se habían desarrollado métodos para producir neutrones lentos; se habían elaborado procedimientos para separar el uranio 235 de su isótopo corriente; se había logrado aislar dos elementos transuránicos, el neptunio y el plutonio, y se reconocía que este último era también “fisionable” en circunstancias semejantes a las del uranio 235.

Además, se habla adquirido la certeza de que en la “fisión”, al menos un neutrón rápido —y en término medio dos o tres— era emitido por el núcleo.

Sin embargo, a pesar del conjunto de tales progresos, todavía nadie había logrado producir una reacción autosustentada.

Algunos investigadores incluso se preguntaban si la naturaleza acepta someterse a las exigencias de los teóricos. Tal vez la reacción en cadena era, en general, irrealizable. Pero las dudas terminaron por disiparse definitivamente el 2 de diciembre de 1942: ENRICO FERMI había realizado en Chicago, por primera vez, una reacción nuclear autosostenida.

El dispositivo construido en Chicago consistía en una pila de ladrillos de grafito puro que incluía trozos de uranio, separados por distancias regulares conforme a un esquema geométrico.

El grafito servía de sustancia moderadora destinada a frenar mediante choques elásticos los neutrones que salen dotados de elevadas velocidades de la ruptura nuclear del uranio 235.

Algunos de los neutrones penetran en el isótopo pesado U-238, otros vuelven a ser capturados por el isótopo liviano U-235, puesto que ambos están presentes en los trozos de metal de la pila.

Los proyectiles que golpean el U-238 provocan su transformación, que termina por dar origen al plutonio, mientras neutrones capturados por núcleos de U-235 producen la “fisión” de éstos, expulsando neutrones que siguen provocando nuevas rupturas.

Así, la pila produce a la vez materia “fisionahle” (plutonio) y libera energía al desintegrar núcleos.

Agreguemos que para el arranque no se necesita detonador ni ningún otro dispositivo especial; los neutrones de origen cósmico existentes en la atmósfera, o neutrones errantes que provienen de la explosión espontánea de un átomo de uranio, son suficientes para iniciar la reacción.

Una condición indispensable para el funcionamiento de la pila es su volumen, que debe superar cierto tamaño crítico.

De lo contrario el número de neutrones que escapan por la superficie de la pila no permite que se establezca la cadena de las reacciones.

Para el autosostenímiento de la cadena es menester, además, que cada neutrón incidente produzca al menos un nuevo neutrón apto para determinar a su vez la ruptura de un núcleo, siendo en este caso el “factor de multiplicación” igual a la unidad.

La cadena se extingue si dicho factor resulta inferior a uno; en cambio, si es considerablemente superior, la liberación continua y lenta de la energía se transforma en un proceso explosivo, convirtiendo a la pila en una bomba.

Tan peligrosa proliferación de neutrones es contrarrestada introduciendo en la masa de grafito láminas de materia absorbente (cadmio) que permiten mantener constante la velocidad de la reacción y “controlar” el nivel energético de la pila mediante un dispositivo automático.

Tales fueron, a grandes rasgos, las fundamentales características de la pila de FERMI, arquetipo de todos los reactores.

Al principio la pila de FERMI engendró, en forma de calor, una potencia de 0,5 vatio; poco después aumentó su nivel de energía hasta llegar a 200 vatios. Con tal reducido poder, una pila debería funcionar varios miles de años para producir la cantidad de plutonio requerida en la fabricación de una sola bomba.

Mas una conquista no puede medirse en vatios.

La posibilidad de liberar energía nuclear en escala macroscópica estaba magníficamente demostrada.

Si bien la distancia que separa la pila experimental de Chicago de la bomba experimental de Alamogordo era muy superior a la existente entre la rudimentaria máquina de vapor de NEWCOMEN y la locomotora de STEPHENSON, el largo camino fue recorrido en el breve intervalo de treinta meses gracias al formidable potencial tecnológico de los Estados Unidos, y al esfuerzo de un verdadero ejército de científicos, técnicos y trabajadores.

El 6 de agosto, la pavorosa explosión que arrasó la ciudad de Hiroshima anunció al mundo que el hombre disponía de nuevas y tremendas fuerzas aprisionadas desde eternidades en las entrañas de la materia.

“En el interior de una bomba de fisión —escribe uno de los principales constructores de la bomba, ROBERT OPPENHEIMER (1904-1967)—, se materializa un lugar con el cual ningún otro puede ser comparado.

Al explotar la bomba se producen temperaturas más elevadas que las que reinan en el centro del Sol; su carga está constituida por materias que normalmente no existen en la naturaleza y se emiten radiaciones (neutrones, rayos gamma, electrones) de una intensidad que no tiene precedentes en la experiencia humana.

El factor de multiplicación es el cociente del número de los nuevos neutrones producidos y el número inicial de los neutrones primitivos.En la pila de FERMI el factor de multiplicación era igual a 1,007.

Las presiones que se obtienen equivalen a billones de veces la presión atmosférica.

En el sentido más primario y más sencillo, es perfectamente cierto que con las armas atómicas el hombre ha creado situaciones nuevas.”

En pilas y bombas de uranio (o plutonio), la energía se produce por la ruptura de un elemento muy pesado en fragmentos menos pesados. Sin embargo, para producir enormes cantidades de energía no es éste el proceso que la naturaleza elige.

Las estrellas prefieren la fusión a la “fisión”; como ya dijimos, transforman en gigantesca escala —por síntesis de elementos livianos— una parte de su materia nuclear en energía radiante.

Tan sólo las prodigiosas reservas energéticas, cuyo depósito son los núcleos, pueden permitir al Sol irradiar en forma de luz y calor, año tras año, tres quintillones (3 x 1030) de grandes calorías.

Este torrente de energía solar fluye por lo menos desde hace cuatrocientos o quinientos millones de años, puesto que las pruebas aportadas por la flora y fauna paleozoicas sugieren que las condiciones climáticas de la Tierra no han cambiado esencialmente desde aquella remotísima era primaria.

Mas ¿cuál es la transformación nuclear capaz de alimentar tan formidable despliegue energético, que equivale por segundo a una pérdida de cuatro millones de toneladas de masa solar?.

No cabe duda de que la transformación del elemento más común del universo, el hidrógeno en helio (el elemento que sigue al hidrógeno en la Tabla Periódica), podría suministrar la fuente energética de la radiación solar.

En efecto, la síntesis del helio a partir de los constituyentes de su núcleo está acompañada —como hemos explicado al tratar la energía de la unión nuclear— por la pérdida de una parte de las masas que intervienen, siendo liberada la masa desaparecida —de acuerdo con la equivalencia einsteniana— en forma de energía radiante. Sin embargo, el mecanismo de la supuesta transmutación no había dejado de ser enigmático hasta que HANS BETHE, hacia 1940, propuso su hipótesis del ciclo del carbono.

Las enormes temperaturas que reinan en el interior del Sol —veinte millones de grados en la región central— confieren a las partículas de la masa solar —y especialmente a los protones a velocidades tan elevadas que éstas pueden penetrar en los núcleos de elementos livianos y transmutarlos.

Así, el núcleo ordinario de carbono, bombardeado por un protón, se transforma al capturarlo en un isótopo del nitrógeno que se desintegra.

En cinco reacciones consecutivas engendran con la emisión de dos electrones positivos varios isótopos de carbono, de nitrógeno y de oxígeno. Bombardeados éstos a su vez por núcleos de hidrógeno, conducen finalmente a la formación del helio.

La excepcional característica de este ciclo, que convierte cuatro núcleos de hidrógeno en un núcleo de helio, es la reaparición del carbono inicial en la última reacción, que se encuentra así regenerado.

Desempeña el papel de catalizador y puede ser utilizado innumerables veces, hasta que todo el hidrógeno solar haya sido transmutado en helio, asegurando así las reservas energéticas del Sol durante miles de millones de años. A idénticas o análogas reacciones termonucleares deben sus caudales de energía también otras estrellas.

No cabe duda de que el ciclo de carbono, productor de la energía solar, representa el primordial proceso físico-químico del universo desde la perspectiva de la historia humana.

Sin las reacciones termonucleares, que se realizan en el interior del Sol, la vida no habría podido surgir sobre la superficie de la Tierra, donde los fenómenos biológicos, desde la fotosíntesis de la clorofila de los vegetales hasta el metabolismo en el organismo de los animales y del hombre, son tributarios de la radiación solar.

Es un hecho realmente notable que el carbono —sustancia básica de la materia viva— desempeñe también el papel de catalizador en el grandioso proceso cósmico que dio origen primario a todas las actividades vitales en la naturaleza terrestre.

La síntesis de elementos livianos a partir del hidrógeno ha dejado de ser privilegio de las masas estelares desde hace algunos años.

Reacciones termonucleares, productoras de la fusión de núcleos, suministran la fuente energética a la novísima arma: la bomba de hidrógeno. Desde luego, el ciclo de BETHE, que genera helio en las profundidades del globo solar es demasiado lento y complicado para el uso militar.

Es probable que la transmutación de una masa de los dos isótopos pesados del hidrógeno, el deuterio y el tritio, en helio, esté en la base de la liberación de energía realizada por la nueva bomba.

Para establecer las formidables temperaturas (varios millones de centígrados) capaces de desencadenar la reacción se utiliza la ruptura del uranio o del plutonio: la bomba de “fisión” sirve de detonador a la superbomba de fusión.

El modelo de ésta, utilizado por los expertos estadounidenses en las pruebas de Enivetock, a fines de 1952, superaba doscientas veces el poder (es decir, la cantidad de energía liberada) de la bomba de Hiroshima, según estimaciones extraoficiales.

No cabe duda de que la posibilidad de borrar de la superficie del globo cualquiera de las grandes metrópolis de la Tierra mediante la explosión de una bomba o a lo sumo de muy pocas bombas está, desde ahora, dentro de los alcances del hombre.

El uso de esta arma en un conflicto bélico significaría la abdicación de la razón humana y equivaldría a una tentativa de suicidio del homo sapiens.

Fuente Consultada: Historia de la Ciencia Desidero Papp

LISTA DE TEMAS TRATADOS EN ESTE SITIO:

1-¿Que es un Atomo? 2-La Energía Nuclear y sus Usos 3-La Física Moderna 4-La Fisión Nuclear 5-Partículas Elementales 6-Vida de Max Planck

Energía de Enlace Nuclear

Para calcular la masa de un cierto núcleo se multiplicará el número de protones que contiene por la masa de un protón, se multiplicará el número de neutrones por la masa de un neutrón y se sumarán ambas cantidades.

El núcleo de Li contiene tres protones y tres neutrones.

La masa de un neutrón es de 1,6748 . 10-27 kg y la masa de un protón es de 1,6725 . 10-27 kg.

En consecuencia, cabría esperar que la masa de este núcleo fuera de 10,0419 . 10-27 kg.

Sin embargo, la masa de un núcleo de litio, 9,9846 10-27kg., es menor que la calculada sumando las masas de los tres protones y los tres neutrones que lo constituyen. El defecto de masa es de 0,0573 . 10-27 kg.

energia de un atomo

Defecto de masa en el núcleo de Litio

Este hecho se repite para todos los núcleos atómicos. La masa de un núcleo atómico es menor que la que se obtiene cuando se suman las masas de los protones y los neutrones que lo constituyen.

La diferencia entre ambos valores recibe el nombre de defecto de masa.

El defecto de masa se produce porque parte de la masa de los protones y neutrones se transforma en energía cuando dichas partículas se unen para formar un núcleo atómico.

A partir de este hecho se define una nueva magnitud, la energía total de enlace nuclear, que es la energía que se desprende en la formación de un núcleo a partir de los nucleones que lo forman.

Para el núcleo de litio, dicha energía es de 32 MeV. (nota 1 electronvoltio (eV) es la energía cinética que adquiere un electrón al someterse a una diferecia de potencial de 1 voltio.

Dicha energía es de 1.6 . 10-19 Julio. Un MeV equivale a un millón de eV)

Los procesos en los que se modifican los núcleos de los átomos reciben el nombre de reacciones nucleares.

En las reacciones nucleares, pequeñas cantidades de masa se transforman en grandes cantidades de energía, de acuerdo con la equivalencia establecida por Einstein.

E = m.c2

Donde E es la energía desprendida, m es el defecto de masa y c es la velocidad de propagación de la luz en el vacío.

Debido al elevado valor de c, a partir de una pequeña cantidad de materia es posible obtener una enorme cantidad de energía.

Albert Einstein (1879-1955)
einstein

Ejemplo de Fisión Nuclear:

Determinados núcleos pesados, como, por ejemplo, el núcleo de uranio-235, se rompen en dos núcleos intermedios cuando se bombardean con neutrones.

En este proceso, conocido como fisión nuclear, también se emiten otras partículas, además de radiación y una gran cantidad de energía.

De la fisión de un núcleo de uranio-235 se obtiene un átomo de bario-142, un átomo de criptón-91, 3 neutrones y una energía de 210 MeV que se desprende en forma de calor. La ecuación que describe el proceso es la siguiente:

235U + 1 neutrón —-> 142Ba + 91Kr + 3 neutrones + 210 MeV

La masa del núcleo de uranio-235 sumada con la masa del neutrón es ligeramente superior a la suma de las masas del núcleo de bario- 142, el núcleo de criptón-91 y los tres neutrones. Este pequeño defecto de masa se ha transformado en energía.

Los neutrones que se obtienen en la fisión de un núcleo de uranio-235 pueden utilizarse para bombardear otros núcleos de este isótopo y provocar nuevas fisiones que a su vez producirán nuevos neutrones, y así sucesivamente.

Se origina de este modo una reacción en cadena mediante la cual, en un tiempo muy breve, se consigue la fisión de un gran número de núcleos y se libera una enorme cantidad de radiación y energía.

desintegracion nuclear

Reacción en cadena

La Fusión Nuclear

Una reacción de fusión nuclear es un proceso según el cual se unen núcleos ligeros o intermedios para formar núcleos más pesados, obteniéndose energía.

La fusión de un núcleo de deuterio, 2H, con un núcleo de tritio, 3H, da lugar a la formación de un núcleo de helio-4, 4He, además de un neutrón y una energía dc 17,6 MeV, que se desprende en forma de calor.

Esta es una de las reacciones mediante las que el Sol produce energia. La ecuación que describe el proceso es la siguiente:

2H + 3H —-> 4He+ 1 neutrón +  17,6 MeV

https://historiaybiografias.com/linea_divisoria1.jpg

Los fundamentos de la física atómica DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos.(Ver: Fision Nuclear)

La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones.

fision nuclear

Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

La rapidez con que se establece y se propaga la reacción en cadena dilataría y haría explotar la masa con extrema violencia antes que todos los núcleos hubiesen podido ser fragmentados.

Si se admite que sólo el 10% de los átomos participa en la reacción, la enorme cantidad de energía liberada equivale a la producida por la explosión de 2000 toneladas de trinitrotolueno.

En la foto de arriba se encuentran compartiendo una información física Albert Einstein y Leo Szilard. El doctor Leo Szilard, fue a quien se le ocurrió mientras esperaba el cambio de un semáforo en la intersección de Southampton Row en Londres, la ideas de producir una reacción nuclear controlada, bombardeando núcleos con neutrones. Por puro juego, y no por ningún impulso agresivo, el físico bajito y gordo, húngaro de nacimiento, visualizó una reacción atómica en cadena mientras deambulada por la ciudad en aquel dorado septiembre de 1933, dedicado a sus pasatiempos favoritos: pensar y pasear.

En forma de calor, mil novecientos millones de grandes calorías estarían disponibles, constituyendo el centro de la volatilización de toda materia presente.

En una fracción infinitesimal de segundo, la temperatura se elevaría a centenares de miles de grados en el lugar de la explosión, engendrando un espantoso vendaval cuyos efectos destructores —merced a la propagación de la onda de compresión— semejarían a la devastadora barrida de una gigantesca marca.

En vísperas de la Segunda Guerra Mundial, todas estas posibilidades no pasaban de ser meras previsiones teóricas, a las cuales, sin embargo, el comienzo del conflicto bélico iba a conferir excepcionales alcances.

Hacia fines de 1940, cuando el secreto militar comenzó a volver impenetrable el velo que cubría las investigaciones sobre la energía nuclear, la utilización de la misma para producir una bomba parecía todavía un objetivo muy lejano e incluso utópico.

Sin duda se sabía que el uranio 235 era particularmente sensible a la “fisión” y que ofrecía una sección eficaz mayor a los neutrones lentos que a los rápidos; se habían desarrollado métodos para producir neutrones lentos; se habían elaborado procedimientos para separar el uranio 235 de su isótopo corriente; se había logrado aislar dos elementos transuránicos, el neptunio y el plutonio, y se reconocía que este último era también “fisionable” en circunstancias semejantes a las del uranio 235.

Además, se habla adquirido la certeza de que en la “fisión”, al menos un neutrón rápido —y en término medio dos o tres— era emitido por el núcleo.

Sin embargo, a pesar del conjunto de tales progresos, todavía nadie había logrado producir una reacción autosustentada.

Algunos investigadores incluso se preguntaban si la naturaleza acepta someterse a las exigencias de los teóricos. Tal vez la reacción en cadena era, en general, irrealizable. Pero las dudas terminaron por disiparse definitivamente el 2 de diciembre de 1942: ENRICO FERMI había realizado en Chicago, por primera vez, una reacción nuclear autosostenida.

El dispositivo construido en Chicago consistía en una pila de ladrillos de grafito puro que incluía trozos de uranio, separados por distancias regulares conforme a un esquema geométrico.

El grafito servía de sustancia moderadora destinada a frenar mediante choques elásticos los neutrones que salen dotados de elevadas velocidades de la ruptura nuclear del uranio 235.

Algunos de los neutrones penetran en el isótopo pesado U-238, otros vuelven a ser capturados por el isótopo liviano U-235, puesto que ambos están presentes en los trozos de metal de la pila.

Los proyectiles que golpean el U-238 provocan su transformación, que termina por dar origen al plutonio, mientras neutrones capturados por núcleos de U-235 producen la “fisión” de éstos, expulsando neutrones que siguen provocando nuevas rupturas.

Así, la pila produce a la vez materia “fisionahle” (plutonio) y libera energía al desintegrar núcleos.

Agreguemos que para el arranque no se necesita detonador ni ningún otro dispositivo especial; los neutrones de origen cósmico existentes en la atmósfera, o neutrones errantes que provienen de la explosión espontánea de un átomo de uranio, son suficientes para iniciar la reacción.

Una condición indispensable para el funcionamiento de la pila es su volumen, que debe superar cierto tamaño crítico.

De lo contrario el número de neutrones que escapan por la superficie de la pila no permite que se establezca la cadena de las reacciones.

Para el autosostenímiento de la cadena es menester, además, que cada neutrón incidente produzca al menos un nuevo neutrón apto para determinar a su vez la ruptura de un núcleo, siendo en este caso el “factor de multiplicación” igual a la unidad.

La cadena se extingue si dicho factor resulta inferior a uno; en cambio, si es considerablemente superior, la liberación continua y lenta de la energía se transforma en un proceso explosivo, convirtiendo a la pila en una bomba.

Tan peligrosa proliferación de neutrones es contrarrestada introduciendo en la masa de grafito láminas de materia absorbente (cadmio) que permiten mantener constante la velocidad de la reacción y “controlar” el nivel energético de la pila mediante un dispositivo automático.

Tales fueron, a grandes rasgos, las fundamentales características de la pila de FERMI, arquetipo de todos los reactores.

Al principio la pila de FERMI engendró, en forma de calor, una potencia de 0,5 vatio; poco después aumentó su nivel de energía hasta llegar a 200 vatios. Con tal reducido poder, una pila debería funcionar varios miles de años para producir la cantidad de plutonio requerida en la fabricación de una sola bomba.

Mas una conquista no puede medirse en vatios.

La posibilidad de liberar energía nuclear en escala macroscópica estaba magníficamente demostrada.

Si bien la distancia que separa la pila experimental de Chicago de la bomba experimental de Alamogordo era muy superior a la existente entre la rudimentaria máquina de vapor de NEWCOMEN y la locomotora de STEPHENSON, el largo camino fue recorrido en el breve intervalo de treinta meses gracias al formidable potencial tecnológico de los Estados Unidos, y al esfuerzo de un verdadero ejército de científicos, técnicos y trabajadores.

El 6 de agosto, la pavorosa explosión que arrasó la ciudad de Hiroshima anunció al mundo que el hombre disponía de nuevas y tremendas fuerzas aprisionadas desde eternidades en las entrañas de la materia.

“En el interior de una bomba de fisión —escribe uno de los principales constructores de la bomba, ROBERT OPPENHEIMER (1904-1967)—, se materializa un lugar con el cual ningún otro puede ser comparado.

Al explotar la bomba se producen temperaturas más elevadas que las que reinan en el centro del Sol; su carga está constituida por materias que normalmente no existen en la naturaleza y se emiten radiaciones (neutrones, rayos gamma, electrones) de una intensidad que no tiene precedentes en la experiencia humana.

El factor de multiplicación es el cociente del número de los nuevos neutrones producidos y el número inicial de los neutrones primitivos.En la pila de FERMI el factor de multiplicación era igual a 1,007.

Las presiones que se obtienen equivalen a billones de veces la presión atmosférica.

En el sentido más primario y más sencillo, es perfectamente cierto que con las armas atómicas el hombre ha creado situaciones nuevas.”

En pilas y bombas de uranio (o plutonio), la energía se produce por la ruptura de un elemento muy pesado en fragmentos menos pesados. Sin embargo, para producir enormes cantidades de energía no es éste el proceso que la naturaleza elige.

Las estrellas prefieren la fusión a la “fisión”; como ya dijimos, transforman en gigantesca escala —por síntesis de elementos livianos— una parte de su materia nuclear en energía radiante.

Tan sólo las prodigiosas reservas energéticas, cuyo depósito son los núcleos, pueden permitir al Sol irradiar en forma de luz y calor, año tras año, tres quintillones (3 x 1030) de grandes calorías.

Este torrente de energía solar fluye por lo menos desde hace cuatrocientos o quinientos millones de años, puesto que las pruebas aportadas por la flora y fauna paleozoicas sugieren que las condiciones climáticas de la Tierra no han cambiado esencialmente desde aquella remotísima era primaria.

Mas ¿cuál es la transformación nuclear capaz de alimentar tan formidable despliegue energético, que equivale por segundo a una pérdida de cuatro millones de toneladas de masa solar?.

No cabe duda de que la transformación del elemento más común del universo, el hidrógeno en helio (el elemento que sigue al hidrógeno en la Tabla Periódica), podría suministrar la fuente energética de la radiación solar.

En efecto, la síntesis del helio a partir de los constituyentes de su núcleo está acompañada —como hemos explicado al tratar la energía de la unión nuclear— por la pérdida de una parte de las masas que intervienen, siendo liberada la masa desaparecida —de acuerdo con la equivalencia einsteniana— en forma de energía radiante. Sin embargo, el mecanismo de la supuesta transmutación no había dejado de ser enigmático hasta que HANS BETHE, hacia 1940, propuso su hipótesis del ciclo del carbono.

Las enormes temperaturas que reinan en el interior del Sol —veinte millones de grados en la región central— confieren a las partículas de la masa solar —y especialmente a los protones a velocidades tan elevadas que éstas pueden penetrar en los núcleos de elementos livianos y transmutarlos.

Así, el núcleo ordinario de carbono, bombardeado por un protón, se transforma al capturarlo en un isótopo del nitrógeno que se desintegra.

En cinco reacciones consecutivas engendran con la emisión de dos electrones positivos varios isótopos de carbono, de nitrógeno y de oxígeno. Bombardeados éstos a su vez por núcleos de hidrógeno, conducen finalmente a la formación del helio.

La excepcional característica de este ciclo, que convierte cuatro núcleos de hidrógeno en un núcleo de helio, es la reaparición del carbono inicial en la última reacción, que se encuentra así regenerado.

Desempeña el papel de catalizador y puede ser utilizado innumerables veces, hasta que todo el hidrógeno solar haya sido transmutado en helio, asegurando así las reservas energéticas del Sol durante miles de millones de años. A idénticas o análogas reacciones termonucleares deben sus caudales de energía también otras estrellas.

No cabe duda de que el ciclo de carbono, productor de la energía solar, representa el primordial proceso físico-químico del universo desde la perspectiva de la historia humana.

Sin las reacciones termonucleares, que se realizan en el interior del Sol, la vida no habría podido surgir sobre la superficie de la Tierra, donde los fenómenos biológicos, desde la fotosíntesis de la clorofila de los vegetales hasta el metabolismo en el organismo de los animales y del hombre, son tributarios de la radiación solar.

Es un hecho realmente notable que el carbono —sustancia básica de la materia viva— desempeñe también el papel de catalizador en el grandioso proceso cósmico que dio origen primario a todas las actividades vitales en la naturaleza terrestre.

La síntesis de elementos livianos a partir del hidrógeno ha dejado de ser privilegio de las masas estelares desde hace algunos años.

Reacciones termonucleares, productoras de la fusión de núcleos, suministran la fuente energética a la novísima arma: la bomba de hidrógeno. Desde luego, el ciclo de BETHE, que genera helio en las profundidades del globo solar es demasiado lento y complicado para el uso militar.

Es probable que la transmutación de una masa de los dos isótopos pesados del hidrógeno, el deuterio y el tritio, en helio, esté en la base de la liberación de energía realizada por la nueva bomba.

Para establecer las formidables temperaturas (varios millones de centígrados) capaces de desencadenar la reacción se utiliza la ruptura del uranio o del plutonio: la bomba de “fisión” sirve de detonador a la superbomba de fusión.

El modelo de ésta, utilizado por los expertos estadounidenses en las pruebas de Enivetock, a fines de 1952, superaba doscientas veces el poder (es decir, la cantidad de energía liberada) de la bomba de Hiroshima, según estimaciones extraoficiales.

No cabe duda de que la posibilidad de borrar de la superficie del globo cualquiera de las grandes metrópolis de la Tierra mediante la explosión de una bomba o a lo sumo de muy pocas bombas está, desde ahora, dentro de los alcances del hombre.

El uso de esta arma en un conflicto bélico significaría la abdicación de la razón humana y equivaldría a una tentativa de suicidio del homo sapiens.

Fuente Consultada: Historia de la Ciencia Desidero Papp

LISTA DE TEMAS TRATADOS EN ESTE SITIO:

1-¿Que es un Atomo? 2-La Energía Nuclear y sus Usos 3-La Física Moderna 4-La Fisión Nuclear 5-Partículas Elementales 6-Vida de Max Planck

Como el período de desintegración del Radio 223 es de 8 días, tendrán que pasar unos 24 días para que la radioactividad de la muestra de este isótopo se reduzca a la octava parte (1/8)

Energía de Enlace Nuclear

Para calcular la masa de un cierto núcleo se multiplicará el número de protones que contiene por la masa de un protón, se multiplicará el número de neutrones por la masa de un neutrón y se sumarán ambas cantidades.

El núcleo de Li contiene tres protones y tres neutrones.

La masa de un neutrón es de 1,6748 . 10-27 kg y la masa de un protón es de 1,6725 . 10-27 kg.

En consecuencia, cabría esperar que la masa de este núcleo fuera de 10,0419 . 10-27 kg.

Sin embargo, la masa de un núcleo de litio, 9,9846 10-27kg., es menor que la calculada sumando las masas de los tres protones y los tres neutrones que lo constituyen. El defecto de masa es de 0,0573 . 10-27 kg.

energia de un atomo

Defecto de masa en el núcleo de Litio

Este hecho se repite para todos los núcleos atómicos. La masa de un núcleo atómico es menor que la que se obtiene cuando se suman las masas de los protones y los neutrones que lo constituyen.

La diferencia entre ambos valores recibe el nombre de defecto de masa.

El defecto de masa se produce porque parte de la masa de los protones y neutrones se transforma en energía cuando dichas partículas se unen para formar un núcleo atómico.

A partir de este hecho se define una nueva magnitud, la energía total de enlace nuclear, que es la energía que se desprende en la formación de un núcleo a partir de los nucleones que lo forman.

Para el núcleo de litio, dicha energía es de 32 MeV. (nota 1 electronvoltio (eV) es la energía cinética que adquiere un electrón al someterse a una diferecia de potencial de 1 voltio.

Dicha energía es de 1.6 . 10-19 Julio. Un MeV equivale a un millón de eV)

Los procesos en los que se modifican los núcleos de los átomos reciben el nombre de reacciones nucleares.

En las reacciones nucleares, pequeñas cantidades de masa se transforman en grandes cantidades de energía, de acuerdo con la equivalencia establecida por Einstein.

E = m.c2

Donde E es la energía desprendida, m es el defecto de masa y c es la velocidad de propagación de la luz en el vacío.

Debido al elevado valor de c, a partir de una pequeña cantidad de materia es posible obtener una enorme cantidad de energía.

Albert Einstein (1879-1955)
einstein

Ejemplo de Fisión Nuclear:

Determinados núcleos pesados, como, por ejemplo, el núcleo de uranio-235, se rompen en dos núcleos intermedios cuando se bombardean con neutrones.

En este proceso, conocido como fisión nuclear, también se emiten otras partículas, además de radiación y una gran cantidad de energía.

De la fisión de un núcleo de uranio-235 se obtiene un átomo de bario-142, un átomo de criptón-91, 3 neutrones y una energía de 210 MeV que se desprende en forma de calor. La ecuación que describe el proceso es la siguiente:

235U + 1 neutrón —-> 142Ba + 91Kr + 3 neutrones + 210 MeV

La masa del núcleo de uranio-235 sumada con la masa del neutrón es ligeramente superior a la suma de las masas del núcleo de bario- 142, el núcleo de criptón-91 y los tres neutrones. Este pequeño defecto de masa se ha transformado en energía.

Los neutrones que se obtienen en la fisión de un núcleo de uranio-235 pueden utilizarse para bombardear otros núcleos de este isótopo y provocar nuevas fisiones que a su vez producirán nuevos neutrones, y así sucesivamente.

Se origina de este modo una reacción en cadena mediante la cual, en un tiempo muy breve, se consigue la fisión de un gran número de núcleos y se libera una enorme cantidad de radiación y energía.

desintegracion nuclear

Reacción en cadena

La Fusión Nuclear

Una reacción de fusión nuclear es un proceso según el cual se unen núcleos ligeros o intermedios para formar núcleos más pesados, obteniéndose energía.

La fusión de un núcleo de deuterio, 2H, con un núcleo de tritio, 3H, da lugar a la formación de un núcleo de helio-4, 4He, además de un neutrón y una energía dc 17,6 MeV, que se desprende en forma de calor.

Esta es una de las reacciones mediante las que el Sol produce energia. La ecuación que describe el proceso es la siguiente:

2H + 3H —-> 4He+ 1 neutrón +  17,6 MeV

https://historiaybiografias.com/linea_divisoria1.jpg

Los fundamentos de la física atómica DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos.(Ver: Fision Nuclear)

La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones.

fision nuclear

Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

La rapidez con que se establece y se propaga la reacción en cadena dilataría y haría explotar la masa con extrema violencia antes que todos los núcleos hubiesen podido ser fragmentados.

Si se admite que sólo el 10% de los átomos participa en la reacción, la enorme cantidad de energía liberada equivale a la producida por la explosión de 2000 toneladas de trinitrotolueno.

En la foto de arriba se encuentran compartiendo una información física Albert Einstein y Leo Szilard. El doctor Leo Szilard, fue a quien se le ocurrió mientras esperaba el cambio de un semáforo en la intersección de Southampton Row en Londres, la ideas de producir una reacción nuclear controlada, bombardeando núcleos con neutrones. Por puro juego, y no por ningún impulso agresivo, el físico bajito y gordo, húngaro de nacimiento, visualizó una reacción atómica en cadena mientras deambulada por la ciudad en aquel dorado septiembre de 1933, dedicado a sus pasatiempos favoritos: pensar y pasear.

En forma de calor, mil novecientos millones de grandes calorías estarían disponibles, constituyendo el centro de la volatilización de toda materia presente.

En una fracción infinitesimal de segundo, la temperatura se elevaría a centenares de miles de grados en el lugar de la explosión, engendrando un espantoso vendaval cuyos efectos destructores —merced a la propagación de la onda de compresión— semejarían a la devastadora barrida de una gigantesca marca.

En vísperas de la Segunda Guerra Mundial, todas estas posibilidades no pasaban de ser meras previsiones teóricas, a las cuales, sin embargo, el comienzo del conflicto bélico iba a conferir excepcionales alcances.

Hacia fines de 1940, cuando el secreto militar comenzó a volver impenetrable el velo que cubría las investigaciones sobre la energía nuclear, la utilización de la misma para producir una bomba parecía todavía un objetivo muy lejano e incluso utópico.

Sin duda se sabía que el uranio 235 era particularmente sensible a la “fisión” y que ofrecía una sección eficaz mayor a los neutrones lentos que a los rápidos; se habían desarrollado métodos para producir neutrones lentos; se habían elaborado procedimientos para separar el uranio 235 de su isótopo corriente; se había logrado aislar dos elementos transuránicos, el neptunio y el plutonio, y se reconocía que este último era también “fisionable” en circunstancias semejantes a las del uranio 235.

Además, se habla adquirido la certeza de que en la “fisión”, al menos un neutrón rápido —y en término medio dos o tres— era emitido por el núcleo.

Sin embargo, a pesar del conjunto de tales progresos, todavía nadie había logrado producir una reacción autosustentada.

Algunos investigadores incluso se preguntaban si la naturaleza acepta someterse a las exigencias de los teóricos. Tal vez la reacción en cadena era, en general, irrealizable. Pero las dudas terminaron por disiparse definitivamente el 2 de diciembre de 1942: ENRICO FERMI había realizado en Chicago, por primera vez, una reacción nuclear autosostenida.

El dispositivo construido en Chicago consistía en una pila de ladrillos de grafito puro que incluía trozos de uranio, separados por distancias regulares conforme a un esquema geométrico.

El grafito servía de sustancia moderadora destinada a frenar mediante choques elásticos los neutrones que salen dotados de elevadas velocidades de la ruptura nuclear del uranio 235.

Algunos de los neutrones penetran en el isótopo pesado U-238, otros vuelven a ser capturados por el isótopo liviano U-235, puesto que ambos están presentes en los trozos de metal de la pila.

Los proyectiles que golpean el U-238 provocan su transformación, que termina por dar origen al plutonio, mientras neutrones capturados por núcleos de U-235 producen la “fisión” de éstos, expulsando neutrones que siguen provocando nuevas rupturas.

Así, la pila produce a la vez materia “fisionahle” (plutonio) y libera energía al desintegrar núcleos.

Agreguemos que para el arranque no se necesita detonador ni ningún otro dispositivo especial; los neutrones de origen cósmico existentes en la atmósfera, o neutrones errantes que provienen de la explosión espontánea de un átomo de uranio, son suficientes para iniciar la reacción.

Una condición indispensable para el funcionamiento de la pila es su volumen, que debe superar cierto tamaño crítico.

De lo contrario el número de neutrones que escapan por la superficie de la pila no permite que se establezca la cadena de las reacciones.

Para el autosostenímiento de la cadena es menester, además, que cada neutrón incidente produzca al menos un nuevo neutrón apto para determinar a su vez la ruptura de un núcleo, siendo en este caso el “factor de multiplicación” igual a la unidad.

La cadena se extingue si dicho factor resulta inferior a uno; en cambio, si es considerablemente superior, la liberación continua y lenta de la energía se transforma en un proceso explosivo, convirtiendo a la pila en una bomba.

Tan peligrosa proliferación de neutrones es contrarrestada introduciendo en la masa de grafito láminas de materia absorbente (cadmio) que permiten mantener constante la velocidad de la reacción y “controlar” el nivel energético de la pila mediante un dispositivo automático.

Tales fueron, a grandes rasgos, las fundamentales características de la pila de FERMI, arquetipo de todos los reactores.

Al principio la pila de FERMI engendró, en forma de calor, una potencia de 0,5 vatio; poco después aumentó su nivel de energía hasta llegar a 200 vatios. Con tal reducido poder, una pila debería funcionar varios miles de años para producir la cantidad de plutonio requerida en la fabricación de una sola bomba.

Mas una conquista no puede medirse en vatios.

La posibilidad de liberar energía nuclear en escala macroscópica estaba magníficamente demostrada.

Si bien la distancia que separa la pila experimental de Chicago de la bomba experimental de Alamogordo era muy superior a la existente entre la rudimentaria máquina de vapor de NEWCOMEN y la locomotora de STEPHENSON, el largo camino fue recorrido en el breve intervalo de treinta meses gracias al formidable potencial tecnológico de los Estados Unidos, y al esfuerzo de un verdadero ejército de científicos, técnicos y trabajadores.

El 6 de agosto, la pavorosa explosión que arrasó la ciudad de Hiroshima anunció al mundo que el hombre disponía de nuevas y tremendas fuerzas aprisionadas desde eternidades en las entrañas de la materia.

“En el interior de una bomba de fisión —escribe uno de los principales constructores de la bomba, ROBERT OPPENHEIMER (1904-1967)—, se materializa un lugar con el cual ningún otro puede ser comparado.

Al explotar la bomba se producen temperaturas más elevadas que las que reinan en el centro del Sol; su carga está constituida por materias que normalmente no existen en la naturaleza y se emiten radiaciones (neutrones, rayos gamma, electrones) de una intensidad que no tiene precedentes en la experiencia humana.

El factor de multiplicación es el cociente del número de los nuevos neutrones producidos y el número inicial de los neutrones primitivos.En la pila de FERMI el factor de multiplicación era igual a 1,007.

Las presiones que se obtienen equivalen a billones de veces la presión atmosférica.

En el sentido más primario y más sencillo, es perfectamente cierto que con las armas atómicas el hombre ha creado situaciones nuevas.”

En pilas y bombas de uranio (o plutonio), la energía se produce por la ruptura de un elemento muy pesado en fragmentos menos pesados. Sin embargo, para producir enormes cantidades de energía no es éste el proceso que la naturaleza elige.

Las estrellas prefieren la fusión a la “fisión”; como ya dijimos, transforman en gigantesca escala —por síntesis de elementos livianos— una parte de su materia nuclear en energía radiante.

Tan sólo las prodigiosas reservas energéticas, cuyo depósito son los núcleos, pueden permitir al Sol irradiar en forma de luz y calor, año tras año, tres quintillones (3 x 1030) de grandes calorías.

Este torrente de energía solar fluye por lo menos desde hace cuatrocientos o quinientos millones de años, puesto que las pruebas aportadas por la flora y fauna paleozoicas sugieren que las condiciones climáticas de la Tierra no han cambiado esencialmente desde aquella remotísima era primaria.

Mas ¿cuál es la transformación nuclear capaz de alimentar tan formidable despliegue energético, que equivale por segundo a una pérdida de cuatro millones de toneladas de masa solar?.

No cabe duda de que la transformación del elemento más común del universo, el hidrógeno en helio (el elemento que sigue al hidrógeno en la Tabla Periódica), podría suministrar la fuente energética de la radiación solar.

En efecto, la síntesis del helio a partir de los constituyentes de su núcleo está acompañada —como hemos explicado al tratar la energía de la unión nuclear— por la pérdida de una parte de las masas que intervienen, siendo liberada la masa desaparecida —de acuerdo con la equivalencia einsteniana— en forma de energía radiante. Sin embargo, el mecanismo de la supuesta transmutación no había dejado de ser enigmático hasta que HANS BETHE, hacia 1940, propuso su hipótesis del ciclo del carbono.

Las enormes temperaturas que reinan en el interior del Sol —veinte millones de grados en la región central— confieren a las partículas de la masa solar —y especialmente a los protones a velocidades tan elevadas que éstas pueden penetrar en los núcleos de elementos livianos y transmutarlos.

Así, el núcleo ordinario de carbono, bombardeado por un protón, se transforma al capturarlo en un isótopo del nitrógeno que se desintegra.

En cinco reacciones consecutivas engendran con la emisión de dos electrones positivos varios isótopos de carbono, de nitrógeno y de oxígeno. Bombardeados éstos a su vez por núcleos de hidrógeno, conducen finalmente a la formación del helio.

La excepcional característica de este ciclo, que convierte cuatro núcleos de hidrógeno en un núcleo de helio, es la reaparición del carbono inicial en la última reacción, que se encuentra así regenerado.

Desempeña el papel de catalizador y puede ser utilizado innumerables veces, hasta que todo el hidrógeno solar haya sido transmutado en helio, asegurando así las reservas energéticas del Sol durante miles de millones de años. A idénticas o análogas reacciones termonucleares deben sus caudales de energía también otras estrellas.

No cabe duda de que el ciclo de carbono, productor de la energía solar, representa el primordial proceso físico-químico del universo desde la perspectiva de la historia humana.

Sin las reacciones termonucleares, que se realizan en el interior del Sol, la vida no habría podido surgir sobre la superficie de la Tierra, donde los fenómenos biológicos, desde la fotosíntesis de la clorofila de los vegetales hasta el metabolismo en el organismo de los animales y del hombre, son tributarios de la radiación solar.

Es un hecho realmente notable que el carbono —sustancia básica de la materia viva— desempeñe también el papel de catalizador en el grandioso proceso cósmico que dio origen primario a todas las actividades vitales en la naturaleza terrestre.

La síntesis de elementos livianos a partir del hidrógeno ha dejado de ser privilegio de las masas estelares desde hace algunos años.

Reacciones termonucleares, productoras de la fusión de núcleos, suministran la fuente energética a la novísima arma: la bomba de hidrógeno. Desde luego, el ciclo de BETHE, que genera helio en las profundidades del globo solar es demasiado lento y complicado para el uso militar.

Es probable que la transmutación de una masa de los dos isótopos pesados del hidrógeno, el deuterio y el tritio, en helio, esté en la base de la liberación de energía realizada por la nueva bomba.

Para establecer las formidables temperaturas (varios millones de centígrados) capaces de desencadenar la reacción se utiliza la ruptura del uranio o del plutonio: la bomba de “fisión” sirve de detonador a la superbomba de fusión.

El modelo de ésta, utilizado por los expertos estadounidenses en las pruebas de Enivetock, a fines de 1952, superaba doscientas veces el poder (es decir, la cantidad de energía liberada) de la bomba de Hiroshima, según estimaciones extraoficiales.

No cabe duda de que la posibilidad de borrar de la superficie del globo cualquiera de las grandes metrópolis de la Tierra mediante la explosión de una bomba o a lo sumo de muy pocas bombas está, desde ahora, dentro de los alcances del hombre.

El uso de esta arma en un conflicto bélico significaría la abdicación de la razón humana y equivaldría a una tentativa de suicidio del homo sapiens.

Fuente Consultada: Historia de la Ciencia Desidero Papp

LISTA DE TEMAS TRATADOS EN ESTE SITIO:

1-¿Que es un Atomo? 2-La Energía Nuclear y sus Usos 3-La Física Moderna 4-La Fisión Nuclear 5-Partículas Elementales 6-Vida de Max Planck
tabla tiempo desintegracion
Períodos de semidesintegración de algunos isótopos

Como el período de desintegración del Radio 223 es de 8 días, tendrán que pasar unos 24 días para que la radioactividad de la muestra de este isótopo se reduzca a la octava parte (1/8)

Energía de Enlace Nuclear

Para calcular la masa de un cierto núcleo se multiplicará el número de protones que contiene por la masa de un protón, se multiplicará el número de neutrones por la masa de un neutrón y se sumarán ambas cantidades.

El núcleo de Li contiene tres protones y tres neutrones.

La masa de un neutrón es de 1,6748 . 10-27 kg y la masa de un protón es de 1,6725 . 10-27 kg.

En consecuencia, cabría esperar que la masa de este núcleo fuera de 10,0419 . 10-27 kg.

Sin embargo, la masa de un núcleo de litio, 9,9846 10-27kg., es menor que la calculada sumando las masas de los tres protones y los tres neutrones que lo constituyen. El defecto de masa es de 0,0573 . 10-27 kg.

energia de un atomo

Defecto de masa en el núcleo de Litio

Este hecho se repite para todos los núcleos atómicos. La masa de un núcleo atómico es menor que la que se obtiene cuando se suman las masas de los protones y los neutrones que lo constituyen.

La diferencia entre ambos valores recibe el nombre de defecto de masa.

El defecto de masa se produce porque parte de la masa de los protones y neutrones se transforma en energía cuando dichas partículas se unen para formar un núcleo atómico.

A partir de este hecho se define una nueva magnitud, la energía total de enlace nuclear, que es la energía que se desprende en la formación de un núcleo a partir de los nucleones que lo forman.

Para el núcleo de litio, dicha energía es de 32 MeV. (nota 1 electronvoltio (eV) es la energía cinética que adquiere un electrón al someterse a una diferecia de potencial de 1 voltio.

Dicha energía es de 1.6 . 10-19 Julio. Un MeV equivale a un millón de eV)

Los procesos en los que se modifican los núcleos de los átomos reciben el nombre de reacciones nucleares.

En las reacciones nucleares, pequeñas cantidades de masa se transforman en grandes cantidades de energía, de acuerdo con la equivalencia establecida por Einstein.

E = m.c2

Donde E es la energía desprendida, m es el defecto de masa y c es la velocidad de propagación de la luz en el vacío.

Debido al elevado valor de c, a partir de una pequeña cantidad de materia es posible obtener una enorme cantidad de energía.

Albert Einstein (1879-1955)
einstein

Ejemplo de Fisión Nuclear:

Determinados núcleos pesados, como, por ejemplo, el núcleo de uranio-235, se rompen en dos núcleos intermedios cuando se bombardean con neutrones.

En este proceso, conocido como fisión nuclear, también se emiten otras partículas, además de radiación y una gran cantidad de energía.

De la fisión de un núcleo de uranio-235 se obtiene un átomo de bario-142, un átomo de criptón-91, 3 neutrones y una energía de 210 MeV que se desprende en forma de calor. La ecuación que describe el proceso es la siguiente:

235U + 1 neutrón —-> 142Ba + 91Kr + 3 neutrones + 210 MeV

La masa del núcleo de uranio-235 sumada con la masa del neutrón es ligeramente superior a la suma de las masas del núcleo de bario- 142, el núcleo de criptón-91 y los tres neutrones. Este pequeño defecto de masa se ha transformado en energía.

Los neutrones que se obtienen en la fisión de un núcleo de uranio-235 pueden utilizarse para bombardear otros núcleos de este isótopo y provocar nuevas fisiones que a su vez producirán nuevos neutrones, y así sucesivamente.

Se origina de este modo una reacción en cadena mediante la cual, en un tiempo muy breve, se consigue la fisión de un gran número de núcleos y se libera una enorme cantidad de radiación y energía.

desintegracion nuclear

Reacción en cadena

La Fusión Nuclear

Una reacción de fusión nuclear es un proceso según el cual se unen núcleos ligeros o intermedios para formar núcleos más pesados, obteniéndose energía.

La fusión de un núcleo de deuterio, 2H, con un núcleo de tritio, 3H, da lugar a la formación de un núcleo de helio-4, 4He, además de un neutrón y una energía dc 17,6 MeV, que se desprende en forma de calor.

Esta es una de las reacciones mediante las que el Sol produce energia. La ecuación que describe el proceso es la siguiente:

2H + 3H —-> 4He+ 1 neutrón +  17,6 MeV

https://historiaybiografias.com/linea_divisoria1.jpg

Los fundamentos de la física atómica DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos.(Ver: Fision Nuclear)

La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones.

fision nuclear

Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

La rapidez con que se establece y se propaga la reacción en cadena dilataría y haría explotar la masa con extrema violencia antes que todos los núcleos hubiesen podido ser fragmentados.

Si se admite que sólo el 10% de los átomos participa en la reacción, la enorme cantidad de energía liberada equivale a la producida por la explosión de 2000 toneladas de trinitrotolueno.

En la foto de arriba se encuentran compartiendo una información física Albert Einstein y Leo Szilard. El doctor Leo Szilard, fue a quien se le ocurrió mientras esperaba el cambio de un semáforo en la intersección de Southampton Row en Londres, la ideas de producir una reacción nuclear controlada, bombardeando núcleos con neutrones. Por puro juego, y no por ningún impulso agresivo, el físico bajito y gordo, húngaro de nacimiento, visualizó una reacción atómica en cadena mientras deambulada por la ciudad en aquel dorado septiembre de 1933, dedicado a sus pasatiempos favoritos: pensar y pasear.

En forma de calor, mil novecientos millones de grandes calorías estarían disponibles, constituyendo el centro de la volatilización de toda materia presente.

En una fracción infinitesimal de segundo, la temperatura se elevaría a centenares de miles de grados en el lugar de la explosión, engendrando un espantoso vendaval cuyos efectos destructores —merced a la propagación de la onda de compresión— semejarían a la devastadora barrida de una gigantesca marca.

En vísperas de la Segunda Guerra Mundial, todas estas posibilidades no pasaban de ser meras previsiones teóricas, a las cuales, sin embargo, el comienzo del conflicto bélico iba a conferir excepcionales alcances.

Hacia fines de 1940, cuando el secreto militar comenzó a volver impenetrable el velo que cubría las investigaciones sobre la energía nuclear, la utilización de la misma para producir una bomba parecía todavía un objetivo muy lejano e incluso utópico.

Sin duda se sabía que el uranio 235 era particularmente sensible a la “fisión” y que ofrecía una sección eficaz mayor a los neutrones lentos que a los rápidos; se habían desarrollado métodos para producir neutrones lentos; se habían elaborado procedimientos para separar el uranio 235 de su isótopo corriente; se había logrado aislar dos elementos transuránicos, el neptunio y el plutonio, y se reconocía que este último era también “fisionable” en circunstancias semejantes a las del uranio 235.

Además, se habla adquirido la certeza de que en la “fisión”, al menos un neutrón rápido —y en término medio dos o tres— era emitido por el núcleo.

Sin embargo, a pesar del conjunto de tales progresos, todavía nadie había logrado producir una reacción autosustentada.

Algunos investigadores incluso se preguntaban si la naturaleza acepta someterse a las exigencias de los teóricos. Tal vez la reacción en cadena era, en general, irrealizable. Pero las dudas terminaron por disiparse definitivamente el 2 de diciembre de 1942: ENRICO FERMI había realizado en Chicago, por primera vez, una reacción nuclear autosostenida.

El dispositivo construido en Chicago consistía en una pila de ladrillos de grafito puro que incluía trozos de uranio, separados por distancias regulares conforme a un esquema geométrico.

El grafito servía de sustancia moderadora destinada a frenar mediante choques elásticos los neutrones que salen dotados de elevadas velocidades de la ruptura nuclear del uranio 235.

Algunos de los neutrones penetran en el isótopo pesado U-238, otros vuelven a ser capturados por el isótopo liviano U-235, puesto que ambos están presentes en los trozos de metal de la pila.

Los proyectiles que golpean el U-238 provocan su transformación, que termina por dar origen al plutonio, mientras neutrones capturados por núcleos de U-235 producen la “fisión” de éstos, expulsando neutrones que siguen provocando nuevas rupturas.

Así, la pila produce a la vez materia “fisionahle” (plutonio) y libera energía al desintegrar núcleos.

Agreguemos que para el arranque no se necesita detonador ni ningún otro dispositivo especial; los neutrones de origen cósmico existentes en la atmósfera, o neutrones errantes que provienen de la explosión espontánea de un átomo de uranio, son suficientes para iniciar la reacción.

Una condición indispensable para el funcionamiento de la pila es su volumen, que debe superar cierto tamaño crítico.

De lo contrario el número de neutrones que escapan por la superficie de la pila no permite que se establezca la cadena de las reacciones.

Para el autosostenímiento de la cadena es menester, además, que cada neutrón incidente produzca al menos un nuevo neutrón apto para determinar a su vez la ruptura de un núcleo, siendo en este caso el “factor de multiplicación” igual a la unidad.

La cadena se extingue si dicho factor resulta inferior a uno; en cambio, si es considerablemente superior, la liberación continua y lenta de la energía se transforma en un proceso explosivo, convirtiendo a la pila en una bomba.

Tan peligrosa proliferación de neutrones es contrarrestada introduciendo en la masa de grafito láminas de materia absorbente (cadmio) que permiten mantener constante la velocidad de la reacción y “controlar” el nivel energético de la pila mediante un dispositivo automático.

Tales fueron, a grandes rasgos, las fundamentales características de la pila de FERMI, arquetipo de todos los reactores.

Al principio la pila de FERMI engendró, en forma de calor, una potencia de 0,5 vatio; poco después aumentó su nivel de energía hasta llegar a 200 vatios. Con tal reducido poder, una pila debería funcionar varios miles de años para producir la cantidad de plutonio requerida en la fabricación de una sola bomba.

Mas una conquista no puede medirse en vatios.

La posibilidad de liberar energía nuclear en escala macroscópica estaba magníficamente demostrada.

Si bien la distancia que separa la pila experimental de Chicago de la bomba experimental de Alamogordo era muy superior a la existente entre la rudimentaria máquina de vapor de NEWCOMEN y la locomotora de STEPHENSON, el largo camino fue recorrido en el breve intervalo de treinta meses gracias al formidable potencial tecnológico de los Estados Unidos, y al esfuerzo de un verdadero ejército de científicos, técnicos y trabajadores.

El 6 de agosto, la pavorosa explosión que arrasó la ciudad de Hiroshima anunció al mundo que el hombre disponía de nuevas y tremendas fuerzas aprisionadas desde eternidades en las entrañas de la materia.

“En el interior de una bomba de fisión —escribe uno de los principales constructores de la bomba, ROBERT OPPENHEIMER (1904-1967)—, se materializa un lugar con el cual ningún otro puede ser comparado.

Al explotar la bomba se producen temperaturas más elevadas que las que reinan en el centro del Sol; su carga está constituida por materias que normalmente no existen en la naturaleza y se emiten radiaciones (neutrones, rayos gamma, electrones) de una intensidad que no tiene precedentes en la experiencia humana.

El factor de multiplicación es el cociente del número de los nuevos neutrones producidos y el número inicial de los neutrones primitivos.En la pila de FERMI el factor de multiplicación era igual a 1,007.

Las presiones que se obtienen equivalen a billones de veces la presión atmosférica.

En el sentido más primario y más sencillo, es perfectamente cierto que con las armas atómicas el hombre ha creado situaciones nuevas.”

En pilas y bombas de uranio (o plutonio), la energía se produce por la ruptura de un elemento muy pesado en fragmentos menos pesados. Sin embargo, para producir enormes cantidades de energía no es éste el proceso que la naturaleza elige.

Las estrellas prefieren la fusión a la “fisión”; como ya dijimos, transforman en gigantesca escala —por síntesis de elementos livianos— una parte de su materia nuclear en energía radiante.

Tan sólo las prodigiosas reservas energéticas, cuyo depósito son los núcleos, pueden permitir al Sol irradiar en forma de luz y calor, año tras año, tres quintillones (3 x 1030) de grandes calorías.

Este torrente de energía solar fluye por lo menos desde hace cuatrocientos o quinientos millones de años, puesto que las pruebas aportadas por la flora y fauna paleozoicas sugieren que las condiciones climáticas de la Tierra no han cambiado esencialmente desde aquella remotísima era primaria.

Mas ¿cuál es la transformación nuclear capaz de alimentar tan formidable despliegue energético, que equivale por segundo a una pérdida de cuatro millones de toneladas de masa solar?.

No cabe duda de que la transformación del elemento más común del universo, el hidrógeno en helio (el elemento que sigue al hidrógeno en la Tabla Periódica), podría suministrar la fuente energética de la radiación solar.

En efecto, la síntesis del helio a partir de los constituyentes de su núcleo está acompañada —como hemos explicado al tratar la energía de la unión nuclear— por la pérdida de una parte de las masas que intervienen, siendo liberada la masa desaparecida —de acuerdo con la equivalencia einsteniana— en forma de energía radiante. Sin embargo, el mecanismo de la supuesta transmutación no había dejado de ser enigmático hasta que HANS BETHE, hacia 1940, propuso su hipótesis del ciclo del carbono.

Las enormes temperaturas que reinan en el interior del Sol —veinte millones de grados en la región central— confieren a las partículas de la masa solar —y especialmente a los protones a velocidades tan elevadas que éstas pueden penetrar en los núcleos de elementos livianos y transmutarlos.

Así, el núcleo ordinario de carbono, bombardeado por un protón, se transforma al capturarlo en un isótopo del nitrógeno que se desintegra.

En cinco reacciones consecutivas engendran con la emisión de dos electrones positivos varios isótopos de carbono, de nitrógeno y de oxígeno. Bombardeados éstos a su vez por núcleos de hidrógeno, conducen finalmente a la formación del helio.

La excepcional característica de este ciclo, que convierte cuatro núcleos de hidrógeno en un núcleo de helio, es la reaparición del carbono inicial en la última reacción, que se encuentra así regenerado.

Desempeña el papel de catalizador y puede ser utilizado innumerables veces, hasta que todo el hidrógeno solar haya sido transmutado en helio, asegurando así las reservas energéticas del Sol durante miles de millones de años. A idénticas o análogas reacciones termonucleares deben sus caudales de energía también otras estrellas.

No cabe duda de que el ciclo de carbono, productor de la energía solar, representa el primordial proceso físico-químico del universo desde la perspectiva de la historia humana.

Sin las reacciones termonucleares, que se realizan en el interior del Sol, la vida no habría podido surgir sobre la superficie de la Tierra, donde los fenómenos biológicos, desde la fotosíntesis de la clorofila de los vegetales hasta el metabolismo en el organismo de los animales y del hombre, son tributarios de la radiación solar.

Es un hecho realmente notable que el carbono —sustancia básica de la materia viva— desempeñe también el papel de catalizador en el grandioso proceso cósmico que dio origen primario a todas las actividades vitales en la naturaleza terrestre.

La síntesis de elementos livianos a partir del hidrógeno ha dejado de ser privilegio de las masas estelares desde hace algunos años.

Reacciones termonucleares, productoras de la fusión de núcleos, suministran la fuente energética a la novísima arma: la bomba de hidrógeno. Desde luego, el ciclo de BETHE, que genera helio en las profundidades del globo solar es demasiado lento y complicado para el uso militar.

Es probable que la transmutación de una masa de los dos isótopos pesados del hidrógeno, el deuterio y el tritio, en helio, esté en la base de la liberación de energía realizada por la nueva bomba.

Para establecer las formidables temperaturas (varios millones de centígrados) capaces de desencadenar la reacción se utiliza la ruptura del uranio o del plutonio: la bomba de “fisión” sirve de detonador a la superbomba de fusión.

El modelo de ésta, utilizado por los expertos estadounidenses en las pruebas de Enivetock, a fines de 1952, superaba doscientas veces el poder (es decir, la cantidad de energía liberada) de la bomba de Hiroshima, según estimaciones extraoficiales.

No cabe duda de que la posibilidad de borrar de la superficie del globo cualquiera de las grandes metrópolis de la Tierra mediante la explosión de una bomba o a lo sumo de muy pocas bombas está, desde ahora, dentro de los alcances del hombre.

El uso de esta arma en un conflicto bélico significaría la abdicación de la razón humana y equivaldría a una tentativa de suicidio del homo sapiens.

Fuente Consultada: Historia de la Ciencia Desidero Papp

LISTA DE TEMAS TRATADOS EN ESTE SITIO:

1-¿Que es un Atomo? 2-La Energía Nuclear y sus Usos 3-La Física Moderna 4-La Fisión Nuclear 5-Partículas Elementales 6-Vida de Max Planck

Curva de desintergración radiactiva

tabla tiempo desintegracion
Períodos de semidesintegración de algunos isótopos

Como el período de desintegración del Radio 223 es de 8 días, tendrán que pasar unos 24 días para que la radioactividad de la muestra de este isótopo se reduzca a la octava parte (1/8)

Energía de Enlace Nuclear

Para calcular la masa de un cierto núcleo se multiplicará el número de protones que contiene por la masa de un protón, se multiplicará el número de neutrones por la masa de un neutrón y se sumarán ambas cantidades.

El núcleo de Li contiene tres protones y tres neutrones.

La masa de un neutrón es de 1,6748 . 10-27 kg y la masa de un protón es de 1,6725 . 10-27 kg.

En consecuencia, cabría esperar que la masa de este núcleo fuera de 10,0419 . 10-27 kg.

Sin embargo, la masa de un núcleo de litio, 9,9846 10-27kg., es menor que la calculada sumando las masas de los tres protones y los tres neutrones que lo constituyen. El defecto de masa es de 0,0573 . 10-27 kg.

energia de un atomo

Defecto de masa en el núcleo de Litio

Este hecho se repite para todos los núcleos atómicos. La masa de un núcleo atómico es menor que la que se obtiene cuando se suman las masas de los protones y los neutrones que lo constituyen.

La diferencia entre ambos valores recibe el nombre de defecto de masa.

El defecto de masa se produce porque parte de la masa de los protones y neutrones se transforma en energía cuando dichas partículas se unen para formar un núcleo atómico.

A partir de este hecho se define una nueva magnitud, la energía total de enlace nuclear, que es la energía que se desprende en la formación de un núcleo a partir de los nucleones que lo forman.

Para el núcleo de litio, dicha energía es de 32 MeV. (nota 1 electronvoltio (eV) es la energía cinética que adquiere un electrón al someterse a una diferecia de potencial de 1 voltio.

Dicha energía es de 1.6 . 10-19 Julio. Un MeV equivale a un millón de eV)

Los procesos en los que se modifican los núcleos de los átomos reciben el nombre de reacciones nucleares.

En las reacciones nucleares, pequeñas cantidades de masa se transforman en grandes cantidades de energía, de acuerdo con la equivalencia establecida por Einstein.

E = m.c2

Donde E es la energía desprendida, m es el defecto de masa y c es la velocidad de propagación de la luz en el vacío.

Debido al elevado valor de c, a partir de una pequeña cantidad de materia es posible obtener una enorme cantidad de energía.

Albert Einstein (1879-1955)
einstein

Ejemplo de Fisión Nuclear:

Determinados núcleos pesados, como, por ejemplo, el núcleo de uranio-235, se rompen en dos núcleos intermedios cuando se bombardean con neutrones.

En este proceso, conocido como fisión nuclear, también se emiten otras partículas, además de radiación y una gran cantidad de energía.

De la fisión de un núcleo de uranio-235 se obtiene un átomo de bario-142, un átomo de criptón-91, 3 neutrones y una energía de 210 MeV que se desprende en forma de calor. La ecuación que describe el proceso es la siguiente:

235U + 1 neutrón —-> 142Ba + 91Kr + 3 neutrones + 210 MeV

La masa del núcleo de uranio-235 sumada con la masa del neutrón es ligeramente superior a la suma de las masas del núcleo de bario- 142, el núcleo de criptón-91 y los tres neutrones. Este pequeño defecto de masa se ha transformado en energía.

Los neutrones que se obtienen en la fisión de un núcleo de uranio-235 pueden utilizarse para bombardear otros núcleos de este isótopo y provocar nuevas fisiones que a su vez producirán nuevos neutrones, y así sucesivamente.

Se origina de este modo una reacción en cadena mediante la cual, en un tiempo muy breve, se consigue la fisión de un gran número de núcleos y se libera una enorme cantidad de radiación y energía.

desintegracion nuclear

Reacción en cadena

La Fusión Nuclear

Una reacción de fusión nuclear es un proceso según el cual se unen núcleos ligeros o intermedios para formar núcleos más pesados, obteniéndose energía.

La fusión de un núcleo de deuterio, 2H, con un núcleo de tritio, 3H, da lugar a la formación de un núcleo de helio-4, 4He, además de un neutrón y una energía dc 17,6 MeV, que se desprende en forma de calor.

Esta es una de las reacciones mediante las que el Sol produce energia. La ecuación que describe el proceso es la siguiente:

2H + 3H —-> 4He+ 1 neutrón +  17,6 MeV

https://historiaybiografias.com/linea_divisoria1.jpg

Los fundamentos de la física atómica DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos.(Ver: Fision Nuclear)

La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones.

fision nuclear

Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

La rapidez con que se establece y se propaga la reacción en cadena dilataría y haría explotar la masa con extrema violencia antes que todos los núcleos hubiesen podido ser fragmentados.

Si se admite que sólo el 10% de los átomos participa en la reacción, la enorme cantidad de energía liberada equivale a la producida por la explosión de 2000 toneladas de trinitrotolueno.

En la foto de arriba se encuentran compartiendo una información física Albert Einstein y Leo Szilard. El doctor Leo Szilard, fue a quien se le ocurrió mientras esperaba el cambio de un semáforo en la intersección de Southampton Row en Londres, la ideas de producir una reacción nuclear controlada, bombardeando núcleos con neutrones. Por puro juego, y no por ningún impulso agresivo, el físico bajito y gordo, húngaro de nacimiento, visualizó una reacción atómica en cadena mientras deambulada por la ciudad en aquel dorado septiembre de 1933, dedicado a sus pasatiempos favoritos: pensar y pasear.

En forma de calor, mil novecientos millones de grandes calorías estarían disponibles, constituyendo el centro de la volatilización de toda materia presente.

En una fracción infinitesimal de segundo, la temperatura se elevaría a centenares de miles de grados en el lugar de la explosión, engendrando un espantoso vendaval cuyos efectos destructores —merced a la propagación de la onda de compresión— semejarían a la devastadora barrida de una gigantesca marca.

En vísperas de la Segunda Guerra Mundial, todas estas posibilidades no pasaban de ser meras previsiones teóricas, a las cuales, sin embargo, el comienzo del conflicto bélico iba a conferir excepcionales alcances.

Hacia fines de 1940, cuando el secreto militar comenzó a volver impenetrable el velo que cubría las investigaciones sobre la energía nuclear, la utilización de la misma para producir una bomba parecía todavía un objetivo muy lejano e incluso utópico.

Sin duda se sabía que el uranio 235 era particularmente sensible a la “fisión” y que ofrecía una sección eficaz mayor a los neutrones lentos que a los rápidos; se habían desarrollado métodos para producir neutrones lentos; se habían elaborado procedimientos para separar el uranio 235 de su isótopo corriente; se había logrado aislar dos elementos transuránicos, el neptunio y el plutonio, y se reconocía que este último era también “fisionable” en circunstancias semejantes a las del uranio 235.

Además, se habla adquirido la certeza de que en la “fisión”, al menos un neutrón rápido —y en término medio dos o tres— era emitido por el núcleo.

Sin embargo, a pesar del conjunto de tales progresos, todavía nadie había logrado producir una reacción autosustentada.

Algunos investigadores incluso se preguntaban si la naturaleza acepta someterse a las exigencias de los teóricos. Tal vez la reacción en cadena era, en general, irrealizable. Pero las dudas terminaron por disiparse definitivamente el 2 de diciembre de 1942: ENRICO FERMI había realizado en Chicago, por primera vez, una reacción nuclear autosostenida.

El dispositivo construido en Chicago consistía en una pila de ladrillos de grafito puro que incluía trozos de uranio, separados por distancias regulares conforme a un esquema geométrico.

El grafito servía de sustancia moderadora destinada a frenar mediante choques elásticos los neutrones que salen dotados de elevadas velocidades de la ruptura nuclear del uranio 235.

Algunos de los neutrones penetran en el isótopo pesado U-238, otros vuelven a ser capturados por el isótopo liviano U-235, puesto que ambos están presentes en los trozos de metal de la pila.

Los proyectiles que golpean el U-238 provocan su transformación, que termina por dar origen al plutonio, mientras neutrones capturados por núcleos de U-235 producen la “fisión” de éstos, expulsando neutrones que siguen provocando nuevas rupturas.

Así, la pila produce a la vez materia “fisionahle” (plutonio) y libera energía al desintegrar núcleos.

Agreguemos que para el arranque no se necesita detonador ni ningún otro dispositivo especial; los neutrones de origen cósmico existentes en la atmósfera, o neutrones errantes que provienen de la explosión espontánea de un átomo de uranio, son suficientes para iniciar la reacción.

Una condición indispensable para el funcionamiento de la pila es su volumen, que debe superar cierto tamaño crítico.

De lo contrario el número de neutrones que escapan por la superficie de la pila no permite que se establezca la cadena de las reacciones.

Para el autosostenímiento de la cadena es menester, además, que cada neutrón incidente produzca al menos un nuevo neutrón apto para determinar a su vez la ruptura de un núcleo, siendo en este caso el “factor de multiplicación” igual a la unidad.

La cadena se extingue si dicho factor resulta inferior a uno; en cambio, si es considerablemente superior, la liberación continua y lenta de la energía se transforma en un proceso explosivo, convirtiendo a la pila en una bomba.

Tan peligrosa proliferación de neutrones es contrarrestada introduciendo en la masa de grafito láminas de materia absorbente (cadmio) que permiten mantener constante la velocidad de la reacción y “controlar” el nivel energético de la pila mediante un dispositivo automático.

Tales fueron, a grandes rasgos, las fundamentales características de la pila de FERMI, arquetipo de todos los reactores.

Al principio la pila de FERMI engendró, en forma de calor, una potencia de 0,5 vatio; poco después aumentó su nivel de energía hasta llegar a 200 vatios. Con tal reducido poder, una pila debería funcionar varios miles de años para producir la cantidad de plutonio requerida en la fabricación de una sola bomba.

Mas una conquista no puede medirse en vatios.

La posibilidad de liberar energía nuclear en escala macroscópica estaba magníficamente demostrada.

Si bien la distancia que separa la pila experimental de Chicago de la bomba experimental de Alamogordo era muy superior a la existente entre la rudimentaria máquina de vapor de NEWCOMEN y la locomotora de STEPHENSON, el largo camino fue recorrido en el breve intervalo de treinta meses gracias al formidable potencial tecnológico de los Estados Unidos, y al esfuerzo de un verdadero ejército de científicos, técnicos y trabajadores.

El 6 de agosto, la pavorosa explosión que arrasó la ciudad de Hiroshima anunció al mundo que el hombre disponía de nuevas y tremendas fuerzas aprisionadas desde eternidades en las entrañas de la materia.

“En el interior de una bomba de fisión —escribe uno de los principales constructores de la bomba, ROBERT OPPENHEIMER (1904-1967)—, se materializa un lugar con el cual ningún otro puede ser comparado.

Al explotar la bomba se producen temperaturas más elevadas que las que reinan en el centro del Sol; su carga está constituida por materias que normalmente no existen en la naturaleza y se emiten radiaciones (neutrones, rayos gamma, electrones) de una intensidad que no tiene precedentes en la experiencia humana.

El factor de multiplicación es el cociente del número de los nuevos neutrones producidos y el número inicial de los neutrones primitivos.En la pila de FERMI el factor de multiplicación era igual a 1,007.

Las presiones que se obtienen equivalen a billones de veces la presión atmosférica.

En el sentido más primario y más sencillo, es perfectamente cierto que con las armas atómicas el hombre ha creado situaciones nuevas.”

En pilas y bombas de uranio (o plutonio), la energía se produce por la ruptura de un elemento muy pesado en fragmentos menos pesados. Sin embargo, para producir enormes cantidades de energía no es éste el proceso que la naturaleza elige.

Las estrellas prefieren la fusión a la “fisión”; como ya dijimos, transforman en gigantesca escala —por síntesis de elementos livianos— una parte de su materia nuclear en energía radiante.

Tan sólo las prodigiosas reservas energéticas, cuyo depósito son los núcleos, pueden permitir al Sol irradiar en forma de luz y calor, año tras año, tres quintillones (3 x 1030) de grandes calorías.

Este torrente de energía solar fluye por lo menos desde hace cuatrocientos o quinientos millones de años, puesto que las pruebas aportadas por la flora y fauna paleozoicas sugieren que las condiciones climáticas de la Tierra no han cambiado esencialmente desde aquella remotísima era primaria.

Mas ¿cuál es la transformación nuclear capaz de alimentar tan formidable despliegue energético, que equivale por segundo a una pérdida de cuatro millones de toneladas de masa solar?.

No cabe duda de que la transformación del elemento más común del universo, el hidrógeno en helio (el elemento que sigue al hidrógeno en la Tabla Periódica), podría suministrar la fuente energética de la radiación solar.

En efecto, la síntesis del helio a partir de los constituyentes de su núcleo está acompañada —como hemos explicado al tratar la energía de la unión nuclear— por la pérdida de una parte de las masas que intervienen, siendo liberada la masa desaparecida —de acuerdo con la equivalencia einsteniana— en forma de energía radiante. Sin embargo, el mecanismo de la supuesta transmutación no había dejado de ser enigmático hasta que HANS BETHE, hacia 1940, propuso su hipótesis del ciclo del carbono.

Las enormes temperaturas que reinan en el interior del Sol —veinte millones de grados en la región central— confieren a las partículas de la masa solar —y especialmente a los protones a velocidades tan elevadas que éstas pueden penetrar en los núcleos de elementos livianos y transmutarlos.

Así, el núcleo ordinario de carbono, bombardeado por un protón, se transforma al capturarlo en un isótopo del nitrógeno que se desintegra.

En cinco reacciones consecutivas engendran con la emisión de dos electrones positivos varios isótopos de carbono, de nitrógeno y de oxígeno. Bombardeados éstos a su vez por núcleos de hidrógeno, conducen finalmente a la formación del helio.

La excepcional característica de este ciclo, que convierte cuatro núcleos de hidrógeno en un núcleo de helio, es la reaparición del carbono inicial en la última reacción, que se encuentra así regenerado.

Desempeña el papel de catalizador y puede ser utilizado innumerables veces, hasta que todo el hidrógeno solar haya sido transmutado en helio, asegurando así las reservas energéticas del Sol durante miles de millones de años. A idénticas o análogas reacciones termonucleares deben sus caudales de energía también otras estrellas.

No cabe duda de que el ciclo de carbono, productor de la energía solar, representa el primordial proceso físico-químico del universo desde la perspectiva de la historia humana.

Sin las reacciones termonucleares, que se realizan en el interior del Sol, la vida no habría podido surgir sobre la superficie de la Tierra, donde los fenómenos biológicos, desde la fotosíntesis de la clorofila de los vegetales hasta el metabolismo en el organismo de los animales y del hombre, son tributarios de la radiación solar.

Es un hecho realmente notable que el carbono —sustancia básica de la materia viva— desempeñe también el papel de catalizador en el grandioso proceso cósmico que dio origen primario a todas las actividades vitales en la naturaleza terrestre.

La síntesis de elementos livianos a partir del hidrógeno ha dejado de ser privilegio de las masas estelares desde hace algunos años.

Reacciones termonucleares, productoras de la fusión de núcleos, suministran la fuente energética a la novísima arma: la bomba de hidrógeno. Desde luego, el ciclo de BETHE, que genera helio en las profundidades del globo solar es demasiado lento y complicado para el uso militar.

Es probable que la transmutación de una masa de los dos isótopos pesados del hidrógeno, el deuterio y el tritio, en helio, esté en la base de la liberación de energía realizada por la nueva bomba.

Para establecer las formidables temperaturas (varios millones de centígrados) capaces de desencadenar la reacción se utiliza la ruptura del uranio o del plutonio: la bomba de “fisión” sirve de detonador a la superbomba de fusión.

El modelo de ésta, utilizado por los expertos estadounidenses en las pruebas de Enivetock, a fines de 1952, superaba doscientas veces el poder (es decir, la cantidad de energía liberada) de la bomba de Hiroshima, según estimaciones extraoficiales.

No cabe duda de que la posibilidad de borrar de la superficie del globo cualquiera de las grandes metrópolis de la Tierra mediante la explosión de una bomba o a lo sumo de muy pocas bombas está, desde ahora, dentro de los alcances del hombre.

El uso de esta arma en un conflicto bélico significaría la abdicación de la razón humana y equivaldría a una tentativa de suicidio del homo sapiens.

Fuente Consultada: Historia de la Ciencia Desidero Papp

LISTA DE TEMAS TRATADOS EN ESTE SITIO:

1-¿Que es un Atomo? 2-La Energía Nuclear y sus Usos 3-La Física Moderna 4-La Fisión Nuclear 5-Partículas Elementales 6-Vida de Max Planck
curva de desintegracion atomica

Curva de desintergración radiactiva

tabla tiempo desintegracion
Períodos de semidesintegración de algunos isótopos

Como el período de desintegración del Radio 223 es de 8 días, tendrán que pasar unos 24 días para que la radioactividad de la muestra de este isótopo se reduzca a la octava parte (1/8)

Energía de Enlace Nuclear

Para calcular la masa de un cierto núcleo se multiplicará el número de protones que contiene por la masa de un protón, se multiplicará el número de neutrones por la masa de un neutrón y se sumarán ambas cantidades.

El núcleo de Li contiene tres protones y tres neutrones.

La masa de un neutrón es de 1,6748 . 10-27 kg y la masa de un protón es de 1,6725 . 10-27 kg.

En consecuencia, cabría esperar que la masa de este núcleo fuera de 10,0419 . 10-27 kg.

Sin embargo, la masa de un núcleo de litio, 9,9846 10-27kg., es menor que la calculada sumando las masas de los tres protones y los tres neutrones que lo constituyen. El defecto de masa es de 0,0573 . 10-27 kg.

energia de un atomo

Defecto de masa en el núcleo de Litio

Este hecho se repite para todos los núcleos atómicos. La masa de un núcleo atómico es menor que la que se obtiene cuando se suman las masas de los protones y los neutrones que lo constituyen.

La diferencia entre ambos valores recibe el nombre de defecto de masa.

El defecto de masa se produce porque parte de la masa de los protones y neutrones se transforma en energía cuando dichas partículas se unen para formar un núcleo atómico.

A partir de este hecho se define una nueva magnitud, la energía total de enlace nuclear, que es la energía que se desprende en la formación de un núcleo a partir de los nucleones que lo forman.

Para el núcleo de litio, dicha energía es de 32 MeV. (nota 1 electronvoltio (eV) es la energía cinética que adquiere un electrón al someterse a una diferecia de potencial de 1 voltio.

Dicha energía es de 1.6 . 10-19 Julio. Un MeV equivale a un millón de eV)

Los procesos en los que se modifican los núcleos de los átomos reciben el nombre de reacciones nucleares.

En las reacciones nucleares, pequeñas cantidades de masa se transforman en grandes cantidades de energía, de acuerdo con la equivalencia establecida por Einstein.

E = m.c2

Donde E es la energía desprendida, m es el defecto de masa y c es la velocidad de propagación de la luz en el vacío.

Debido al elevado valor de c, a partir de una pequeña cantidad de materia es posible obtener una enorme cantidad de energía.

Albert Einstein (1879-1955)
einstein

Ejemplo de Fisión Nuclear:

Determinados núcleos pesados, como, por ejemplo, el núcleo de uranio-235, se rompen en dos núcleos intermedios cuando se bombardean con neutrones.

En este proceso, conocido como fisión nuclear, también se emiten otras partículas, además de radiación y una gran cantidad de energía.

De la fisión de un núcleo de uranio-235 se obtiene un átomo de bario-142, un átomo de criptón-91, 3 neutrones y una energía de 210 MeV que se desprende en forma de calor. La ecuación que describe el proceso es la siguiente:

235U + 1 neutrón —-> 142Ba + 91Kr + 3 neutrones + 210 MeV

La masa del núcleo de uranio-235 sumada con la masa del neutrón es ligeramente superior a la suma de las masas del núcleo de bario- 142, el núcleo de criptón-91 y los tres neutrones. Este pequeño defecto de masa se ha transformado en energía.

Los neutrones que se obtienen en la fisión de un núcleo de uranio-235 pueden utilizarse para bombardear otros núcleos de este isótopo y provocar nuevas fisiones que a su vez producirán nuevos neutrones, y así sucesivamente.

Se origina de este modo una reacción en cadena mediante la cual, en un tiempo muy breve, se consigue la fisión de un gran número de núcleos y se libera una enorme cantidad de radiación y energía.

desintegracion nuclear

Reacción en cadena

La Fusión Nuclear

Una reacción de fusión nuclear es un proceso según el cual se unen núcleos ligeros o intermedios para formar núcleos más pesados, obteniéndose energía.

La fusión de un núcleo de deuterio, 2H, con un núcleo de tritio, 3H, da lugar a la formación de un núcleo de helio-4, 4He, además de un neutrón y una energía dc 17,6 MeV, que se desprende en forma de calor.

Esta es una de las reacciones mediante las que el Sol produce energia. La ecuación que describe el proceso es la siguiente:

2H + 3H —-> 4He+ 1 neutrón +  17,6 MeV

https://historiaybiografias.com/linea_divisoria1.jpg

Los fundamentos de la física atómica DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos.(Ver: Fision Nuclear)

La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones.

fision nuclear

Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

La rapidez con que se establece y se propaga la reacción en cadena dilataría y haría explotar la masa con extrema violencia antes que todos los núcleos hubiesen podido ser fragmentados.

Si se admite que sólo el 10% de los átomos participa en la reacción, la enorme cantidad de energía liberada equivale a la producida por la explosión de 2000 toneladas de trinitrotolueno.

En la foto de arriba se encuentran compartiendo una información física Albert Einstein y Leo Szilard. El doctor Leo Szilard, fue a quien se le ocurrió mientras esperaba el cambio de un semáforo en la intersección de Southampton Row en Londres, la ideas de producir una reacción nuclear controlada, bombardeando núcleos con neutrones. Por puro juego, y no por ningún impulso agresivo, el físico bajito y gordo, húngaro de nacimiento, visualizó una reacción atómica en cadena mientras deambulada por la ciudad en aquel dorado septiembre de 1933, dedicado a sus pasatiempos favoritos: pensar y pasear.

En forma de calor, mil novecientos millones de grandes calorías estarían disponibles, constituyendo el centro de la volatilización de toda materia presente.

En una fracción infinitesimal de segundo, la temperatura se elevaría a centenares de miles de grados en el lugar de la explosión, engendrando un espantoso vendaval cuyos efectos destructores —merced a la propagación de la onda de compresión— semejarían a la devastadora barrida de una gigantesca marca.

En vísperas de la Segunda Guerra Mundial, todas estas posibilidades no pasaban de ser meras previsiones teóricas, a las cuales, sin embargo, el comienzo del conflicto bélico iba a conferir excepcionales alcances.

Hacia fines de 1940, cuando el secreto militar comenzó a volver impenetrable el velo que cubría las investigaciones sobre la energía nuclear, la utilización de la misma para producir una bomba parecía todavía un objetivo muy lejano e incluso utópico.

Sin duda se sabía que el uranio 235 era particularmente sensible a la “fisión” y que ofrecía una sección eficaz mayor a los neutrones lentos que a los rápidos; se habían desarrollado métodos para producir neutrones lentos; se habían elaborado procedimientos para separar el uranio 235 de su isótopo corriente; se había logrado aislar dos elementos transuránicos, el neptunio y el plutonio, y se reconocía que este último era también “fisionable” en circunstancias semejantes a las del uranio 235.

Además, se habla adquirido la certeza de que en la “fisión”, al menos un neutrón rápido —y en término medio dos o tres— era emitido por el núcleo.

Sin embargo, a pesar del conjunto de tales progresos, todavía nadie había logrado producir una reacción autosustentada.

Algunos investigadores incluso se preguntaban si la naturaleza acepta someterse a las exigencias de los teóricos. Tal vez la reacción en cadena era, en general, irrealizable. Pero las dudas terminaron por disiparse definitivamente el 2 de diciembre de 1942: ENRICO FERMI había realizado en Chicago, por primera vez, una reacción nuclear autosostenida.

El dispositivo construido en Chicago consistía en una pila de ladrillos de grafito puro que incluía trozos de uranio, separados por distancias regulares conforme a un esquema geométrico.

El grafito servía de sustancia moderadora destinada a frenar mediante choques elásticos los neutrones que salen dotados de elevadas velocidades de la ruptura nuclear del uranio 235.

Algunos de los neutrones penetran en el isótopo pesado U-238, otros vuelven a ser capturados por el isótopo liviano U-235, puesto que ambos están presentes en los trozos de metal de la pila.

Los proyectiles que golpean el U-238 provocan su transformación, que termina por dar origen al plutonio, mientras neutrones capturados por núcleos de U-235 producen la “fisión” de éstos, expulsando neutrones que siguen provocando nuevas rupturas.

Así, la pila produce a la vez materia “fisionahle” (plutonio) y libera energía al desintegrar núcleos.

Agreguemos que para el arranque no se necesita detonador ni ningún otro dispositivo especial; los neutrones de origen cósmico existentes en la atmósfera, o neutrones errantes que provienen de la explosión espontánea de un átomo de uranio, son suficientes para iniciar la reacción.

Una condición indispensable para el funcionamiento de la pila es su volumen, que debe superar cierto tamaño crítico.

De lo contrario el número de neutrones que escapan por la superficie de la pila no permite que se establezca la cadena de las reacciones.

Para el autosostenímiento de la cadena es menester, además, que cada neutrón incidente produzca al menos un nuevo neutrón apto para determinar a su vez la ruptura de un núcleo, siendo en este caso el “factor de multiplicación” igual a la unidad.

La cadena se extingue si dicho factor resulta inferior a uno; en cambio, si es considerablemente superior, la liberación continua y lenta de la energía se transforma en un proceso explosivo, convirtiendo a la pila en una bomba.

Tan peligrosa proliferación de neutrones es contrarrestada introduciendo en la masa de grafito láminas de materia absorbente (cadmio) que permiten mantener constante la velocidad de la reacción y “controlar” el nivel energético de la pila mediante un dispositivo automático.

Tales fueron, a grandes rasgos, las fundamentales características de la pila de FERMI, arquetipo de todos los reactores.

Al principio la pila de FERMI engendró, en forma de calor, una potencia de 0,5 vatio; poco después aumentó su nivel de energía hasta llegar a 200 vatios. Con tal reducido poder, una pila debería funcionar varios miles de años para producir la cantidad de plutonio requerida en la fabricación de una sola bomba.

Mas una conquista no puede medirse en vatios.

La posibilidad de liberar energía nuclear en escala macroscópica estaba magníficamente demostrada.

Si bien la distancia que separa la pila experimental de Chicago de la bomba experimental de Alamogordo era muy superior a la existente entre la rudimentaria máquina de vapor de NEWCOMEN y la locomotora de STEPHENSON, el largo camino fue recorrido en el breve intervalo de treinta meses gracias al formidable potencial tecnológico de los Estados Unidos, y al esfuerzo de un verdadero ejército de científicos, técnicos y trabajadores.

El 6 de agosto, la pavorosa explosión que arrasó la ciudad de Hiroshima anunció al mundo que el hombre disponía de nuevas y tremendas fuerzas aprisionadas desde eternidades en las entrañas de la materia.

“En el interior de una bomba de fisión —escribe uno de los principales constructores de la bomba, ROBERT OPPENHEIMER (1904-1967)—, se materializa un lugar con el cual ningún otro puede ser comparado.

Al explotar la bomba se producen temperaturas más elevadas que las que reinan en el centro del Sol; su carga está constituida por materias que normalmente no existen en la naturaleza y se emiten radiaciones (neutrones, rayos gamma, electrones) de una intensidad que no tiene precedentes en la experiencia humana.

El factor de multiplicación es el cociente del número de los nuevos neutrones producidos y el número inicial de los neutrones primitivos.En la pila de FERMI el factor de multiplicación era igual a 1,007.

Las presiones que se obtienen equivalen a billones de veces la presión atmosférica.

En el sentido más primario y más sencillo, es perfectamente cierto que con las armas atómicas el hombre ha creado situaciones nuevas.”

En pilas y bombas de uranio (o plutonio), la energía se produce por la ruptura de un elemento muy pesado en fragmentos menos pesados. Sin embargo, para producir enormes cantidades de energía no es éste el proceso que la naturaleza elige.

Las estrellas prefieren la fusión a la “fisión”; como ya dijimos, transforman en gigantesca escala —por síntesis de elementos livianos— una parte de su materia nuclear en energía radiante.

Tan sólo las prodigiosas reservas energéticas, cuyo depósito son los núcleos, pueden permitir al Sol irradiar en forma de luz y calor, año tras año, tres quintillones (3 x 1030) de grandes calorías.

Este torrente de energía solar fluye por lo menos desde hace cuatrocientos o quinientos millones de años, puesto que las pruebas aportadas por la flora y fauna paleozoicas sugieren que las condiciones climáticas de la Tierra no han cambiado esencialmente desde aquella remotísima era primaria.

Mas ¿cuál es la transformación nuclear capaz de alimentar tan formidable despliegue energético, que equivale por segundo a una pérdida de cuatro millones de toneladas de masa solar?.

No cabe duda de que la transformación del elemento más común del universo, el hidrógeno en helio (el elemento que sigue al hidrógeno en la Tabla Periódica), podría suministrar la fuente energética de la radiación solar.

En efecto, la síntesis del helio a partir de los constituyentes de su núcleo está acompañada —como hemos explicado al tratar la energía de la unión nuclear— por la pérdida de una parte de las masas que intervienen, siendo liberada la masa desaparecida —de acuerdo con la equivalencia einsteniana— en forma de energía radiante. Sin embargo, el mecanismo de la supuesta transmutación no había dejado de ser enigmático hasta que HANS BETHE, hacia 1940, propuso su hipótesis del ciclo del carbono.

Las enormes temperaturas que reinan en el interior del Sol —veinte millones de grados en la región central— confieren a las partículas de la masa solar —y especialmente a los protones a velocidades tan elevadas que éstas pueden penetrar en los núcleos de elementos livianos y transmutarlos.

Así, el núcleo ordinario de carbono, bombardeado por un protón, se transforma al capturarlo en un isótopo del nitrógeno que se desintegra.

En cinco reacciones consecutivas engendran con la emisión de dos electrones positivos varios isótopos de carbono, de nitrógeno y de oxígeno. Bombardeados éstos a su vez por núcleos de hidrógeno, conducen finalmente a la formación del helio.

La excepcional característica de este ciclo, que convierte cuatro núcleos de hidrógeno en un núcleo de helio, es la reaparición del carbono inicial en la última reacción, que se encuentra así regenerado.

Desempeña el papel de catalizador y puede ser utilizado innumerables veces, hasta que todo el hidrógeno solar haya sido transmutado en helio, asegurando así las reservas energéticas del Sol durante miles de millones de años. A idénticas o análogas reacciones termonucleares deben sus caudales de energía también otras estrellas.

No cabe duda de que el ciclo de carbono, productor de la energía solar, representa el primordial proceso físico-químico del universo desde la perspectiva de la historia humana.

Sin las reacciones termonucleares, que se realizan en el interior del Sol, la vida no habría podido surgir sobre la superficie de la Tierra, donde los fenómenos biológicos, desde la fotosíntesis de la clorofila de los vegetales hasta el metabolismo en el organismo de los animales y del hombre, son tributarios de la radiación solar.

Es un hecho realmente notable que el carbono —sustancia básica de la materia viva— desempeñe también el papel de catalizador en el grandioso proceso cósmico que dio origen primario a todas las actividades vitales en la naturaleza terrestre.

La síntesis de elementos livianos a partir del hidrógeno ha dejado de ser privilegio de las masas estelares desde hace algunos años.

Reacciones termonucleares, productoras de la fusión de núcleos, suministran la fuente energética a la novísima arma: la bomba de hidrógeno. Desde luego, el ciclo de BETHE, que genera helio en las profundidades del globo solar es demasiado lento y complicado para el uso militar.

Es probable que la transmutación de una masa de los dos isótopos pesados del hidrógeno, el deuterio y el tritio, en helio, esté en la base de la liberación de energía realizada por la nueva bomba.

Para establecer las formidables temperaturas (varios millones de centígrados) capaces de desencadenar la reacción se utiliza la ruptura del uranio o del plutonio: la bomba de “fisión” sirve de detonador a la superbomba de fusión.

El modelo de ésta, utilizado por los expertos estadounidenses en las pruebas de Enivetock, a fines de 1952, superaba doscientas veces el poder (es decir, la cantidad de energía liberada) de la bomba de Hiroshima, según estimaciones extraoficiales.

No cabe duda de que la posibilidad de borrar de la superficie del globo cualquiera de las grandes metrópolis de la Tierra mediante la explosión de una bomba o a lo sumo de muy pocas bombas está, desde ahora, dentro de los alcances del hombre.

El uso de esta arma en un conflicto bélico significaría la abdicación de la razón humana y equivaldría a una tentativa de suicidio del homo sapiens.

Fuente Consultada: Historia de la Ciencia Desidero Papp

LISTA DE TEMAS TRATADOS EN ESTE SITIO:

1-¿Que es un Atomo? 2-La Energía Nuclear y sus Usos 3-La Física Moderna 4-La Fisión Nuclear 5-Partículas Elementales 6-Vida de Max Planck

El período de semidesintegración varía para las distintas sustancias radiactivas desde millones de años a fracciones de segundo Sin embargo, cualquier sustancia radiactiva evoluciona en el tiempo ajustándose a una curva como la que se representa en la figura siguiente:

curva de desintegracion atomica

Curva de desintergración radiactiva

tabla tiempo desintegracion
Períodos de semidesintegración de algunos isótopos

Como el período de desintegración del Radio 223 es de 8 días, tendrán que pasar unos 24 días para que la radioactividad de la muestra de este isótopo se reduzca a la octava parte (1/8)

Energía de Enlace Nuclear

Para calcular la masa de un cierto núcleo se multiplicará el número de protones que contiene por la masa de un protón, se multiplicará el número de neutrones por la masa de un neutrón y se sumarán ambas cantidades.

El núcleo de Li contiene tres protones y tres neutrones.

La masa de un neutrón es de 1,6748 . 10-27 kg y la masa de un protón es de 1,6725 . 10-27 kg.

En consecuencia, cabría esperar que la masa de este núcleo fuera de 10,0419 . 10-27 kg.

Sin embargo, la masa de un núcleo de litio, 9,9846 10-27kg., es menor que la calculada sumando las masas de los tres protones y los tres neutrones que lo constituyen. El defecto de masa es de 0,0573 . 10-27 kg.

energia de un atomo

Defecto de masa en el núcleo de Litio

Este hecho se repite para todos los núcleos atómicos. La masa de un núcleo atómico es menor que la que se obtiene cuando se suman las masas de los protones y los neutrones que lo constituyen.

La diferencia entre ambos valores recibe el nombre de defecto de masa.

El defecto de masa se produce porque parte de la masa de los protones y neutrones se transforma en energía cuando dichas partículas se unen para formar un núcleo atómico.

A partir de este hecho se define una nueva magnitud, la energía total de enlace nuclear, que es la energía que se desprende en la formación de un núcleo a partir de los nucleones que lo forman.

Para el núcleo de litio, dicha energía es de 32 MeV. (nota 1 electronvoltio (eV) es la energía cinética que adquiere un electrón al someterse a una diferecia de potencial de 1 voltio.

Dicha energía es de 1.6 . 10-19 Julio. Un MeV equivale a un millón de eV)

Los procesos en los que se modifican los núcleos de los átomos reciben el nombre de reacciones nucleares.

En las reacciones nucleares, pequeñas cantidades de masa se transforman en grandes cantidades de energía, de acuerdo con la equivalencia establecida por Einstein.

E = m.c2

Donde E es la energía desprendida, m es el defecto de masa y c es la velocidad de propagación de la luz en el vacío.

Debido al elevado valor de c, a partir de una pequeña cantidad de materia es posible obtener una enorme cantidad de energía.

Albert Einstein (1879-1955)
einstein

Ejemplo de Fisión Nuclear:

Determinados núcleos pesados, como, por ejemplo, el núcleo de uranio-235, se rompen en dos núcleos intermedios cuando se bombardean con neutrones.

En este proceso, conocido como fisión nuclear, también se emiten otras partículas, además de radiación y una gran cantidad de energía.

De la fisión de un núcleo de uranio-235 se obtiene un átomo de bario-142, un átomo de criptón-91, 3 neutrones y una energía de 210 MeV que se desprende en forma de calor. La ecuación que describe el proceso es la siguiente:

235U + 1 neutrón —-> 142Ba + 91Kr + 3 neutrones + 210 MeV

La masa del núcleo de uranio-235 sumada con la masa del neutrón es ligeramente superior a la suma de las masas del núcleo de bario- 142, el núcleo de criptón-91 y los tres neutrones. Este pequeño defecto de masa se ha transformado en energía.

Los neutrones que se obtienen en la fisión de un núcleo de uranio-235 pueden utilizarse para bombardear otros núcleos de este isótopo y provocar nuevas fisiones que a su vez producirán nuevos neutrones, y así sucesivamente.

Se origina de este modo una reacción en cadena mediante la cual, en un tiempo muy breve, se consigue la fisión de un gran número de núcleos y se libera una enorme cantidad de radiación y energía.

desintegracion nuclear

Reacción en cadena

La Fusión Nuclear

Una reacción de fusión nuclear es un proceso según el cual se unen núcleos ligeros o intermedios para formar núcleos más pesados, obteniéndose energía.

La fusión de un núcleo de deuterio, 2H, con un núcleo de tritio, 3H, da lugar a la formación de un núcleo de helio-4, 4He, además de un neutrón y una energía dc 17,6 MeV, que se desprende en forma de calor.

Esta es una de las reacciones mediante las que el Sol produce energia. La ecuación que describe el proceso es la siguiente:

2H + 3H —-> 4He+ 1 neutrón +  17,6 MeV

https://historiaybiografias.com/linea_divisoria1.jpg

Los fundamentos de la física atómica DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos.(Ver: Fision Nuclear)

La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones.

fision nuclear

Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

La rapidez con que se establece y se propaga la reacción en cadena dilataría y haría explotar la masa con extrema violencia antes que todos los núcleos hubiesen podido ser fragmentados.

Si se admite que sólo el 10% de los átomos participa en la reacción, la enorme cantidad de energía liberada equivale a la producida por la explosión de 2000 toneladas de trinitrotolueno.

En la foto de arriba se encuentran compartiendo una información física Albert Einstein y Leo Szilard. El doctor Leo Szilard, fue a quien se le ocurrió mientras esperaba el cambio de un semáforo en la intersección de Southampton Row en Londres, la ideas de producir una reacción nuclear controlada, bombardeando núcleos con neutrones. Por puro juego, y no por ningún impulso agresivo, el físico bajito y gordo, húngaro de nacimiento, visualizó una reacción atómica en cadena mientras deambulada por la ciudad en aquel dorado septiembre de 1933, dedicado a sus pasatiempos favoritos: pensar y pasear.

En forma de calor, mil novecientos millones de grandes calorías estarían disponibles, constituyendo el centro de la volatilización de toda materia presente.

En una fracción infinitesimal de segundo, la temperatura se elevaría a centenares de miles de grados en el lugar de la explosión, engendrando un espantoso vendaval cuyos efectos destructores —merced a la propagación de la onda de compresión— semejarían a la devastadora barrida de una gigantesca marca.

En vísperas de la Segunda Guerra Mundial, todas estas posibilidades no pasaban de ser meras previsiones teóricas, a las cuales, sin embargo, el comienzo del conflicto bélico iba a conferir excepcionales alcances.

Hacia fines de 1940, cuando el secreto militar comenzó a volver impenetrable el velo que cubría las investigaciones sobre la energía nuclear, la utilización de la misma para producir una bomba parecía todavía un objetivo muy lejano e incluso utópico.

Sin duda se sabía que el uranio 235 era particularmente sensible a la “fisión” y que ofrecía una sección eficaz mayor a los neutrones lentos que a los rápidos; se habían desarrollado métodos para producir neutrones lentos; se habían elaborado procedimientos para separar el uranio 235 de su isótopo corriente; se había logrado aislar dos elementos transuránicos, el neptunio y el plutonio, y se reconocía que este último era también “fisionable” en circunstancias semejantes a las del uranio 235.

Además, se habla adquirido la certeza de que en la “fisión”, al menos un neutrón rápido —y en término medio dos o tres— era emitido por el núcleo.

Sin embargo, a pesar del conjunto de tales progresos, todavía nadie había logrado producir una reacción autosustentada.

Algunos investigadores incluso se preguntaban si la naturaleza acepta someterse a las exigencias de los teóricos. Tal vez la reacción en cadena era, en general, irrealizable. Pero las dudas terminaron por disiparse definitivamente el 2 de diciembre de 1942: ENRICO FERMI había realizado en Chicago, por primera vez, una reacción nuclear autosostenida.

El dispositivo construido en Chicago consistía en una pila de ladrillos de grafito puro que incluía trozos de uranio, separados por distancias regulares conforme a un esquema geométrico.

El grafito servía de sustancia moderadora destinada a frenar mediante choques elásticos los neutrones que salen dotados de elevadas velocidades de la ruptura nuclear del uranio 235.

Algunos de los neutrones penetran en el isótopo pesado U-238, otros vuelven a ser capturados por el isótopo liviano U-235, puesto que ambos están presentes en los trozos de metal de la pila.

Los proyectiles que golpean el U-238 provocan su transformación, que termina por dar origen al plutonio, mientras neutrones capturados por núcleos de U-235 producen la “fisión” de éstos, expulsando neutrones que siguen provocando nuevas rupturas.

Así, la pila produce a la vez materia “fisionahle” (plutonio) y libera energía al desintegrar núcleos.

Agreguemos que para el arranque no se necesita detonador ni ningún otro dispositivo especial; los neutrones de origen cósmico existentes en la atmósfera, o neutrones errantes que provienen de la explosión espontánea de un átomo de uranio, son suficientes para iniciar la reacción.

Una condición indispensable para el funcionamiento de la pila es su volumen, que debe superar cierto tamaño crítico.

De lo contrario el número de neutrones que escapan por la superficie de la pila no permite que se establezca la cadena de las reacciones.

Para el autosostenímiento de la cadena es menester, además, que cada neutrón incidente produzca al menos un nuevo neutrón apto para determinar a su vez la ruptura de un núcleo, siendo en este caso el “factor de multiplicación” igual a la unidad.

La cadena se extingue si dicho factor resulta inferior a uno; en cambio, si es considerablemente superior, la liberación continua y lenta de la energía se transforma en un proceso explosivo, convirtiendo a la pila en una bomba.

Tan peligrosa proliferación de neutrones es contrarrestada introduciendo en la masa de grafito láminas de materia absorbente (cadmio) que permiten mantener constante la velocidad de la reacción y “controlar” el nivel energético de la pila mediante un dispositivo automático.

Tales fueron, a grandes rasgos, las fundamentales características de la pila de FERMI, arquetipo de todos los reactores.

Al principio la pila de FERMI engendró, en forma de calor, una potencia de 0,5 vatio; poco después aumentó su nivel de energía hasta llegar a 200 vatios. Con tal reducido poder, una pila debería funcionar varios miles de años para producir la cantidad de plutonio requerida en la fabricación de una sola bomba.

Mas una conquista no puede medirse en vatios.

La posibilidad de liberar energía nuclear en escala macroscópica estaba magníficamente demostrada.

Si bien la distancia que separa la pila experimental de Chicago de la bomba experimental de Alamogordo era muy superior a la existente entre la rudimentaria máquina de vapor de NEWCOMEN y la locomotora de STEPHENSON, el largo camino fue recorrido en el breve intervalo de treinta meses gracias al formidable potencial tecnológico de los Estados Unidos, y al esfuerzo de un verdadero ejército de científicos, técnicos y trabajadores.

El 6 de agosto, la pavorosa explosión que arrasó la ciudad de Hiroshima anunció al mundo que el hombre disponía de nuevas y tremendas fuerzas aprisionadas desde eternidades en las entrañas de la materia.

“En el interior de una bomba de fisión —escribe uno de los principales constructores de la bomba, ROBERT OPPENHEIMER (1904-1967)—, se materializa un lugar con el cual ningún otro puede ser comparado.

Al explotar la bomba se producen temperaturas más elevadas que las que reinan en el centro del Sol; su carga está constituida por materias que normalmente no existen en la naturaleza y se emiten radiaciones (neutrones, rayos gamma, electrones) de una intensidad que no tiene precedentes en la experiencia humana.

El factor de multiplicación es el cociente del número de los nuevos neutrones producidos y el número inicial de los neutrones primitivos.En la pila de FERMI el factor de multiplicación era igual a 1,007.

Las presiones que se obtienen equivalen a billones de veces la presión atmosférica.

En el sentido más primario y más sencillo, es perfectamente cierto que con las armas atómicas el hombre ha creado situaciones nuevas.”

En pilas y bombas de uranio (o plutonio), la energía se produce por la ruptura de un elemento muy pesado en fragmentos menos pesados. Sin embargo, para producir enormes cantidades de energía no es éste el proceso que la naturaleza elige.

Las estrellas prefieren la fusión a la “fisión”; como ya dijimos, transforman en gigantesca escala —por síntesis de elementos livianos— una parte de su materia nuclear en energía radiante.

Tan sólo las prodigiosas reservas energéticas, cuyo depósito son los núcleos, pueden permitir al Sol irradiar en forma de luz y calor, año tras año, tres quintillones (3 x 1030) de grandes calorías.

Este torrente de energía solar fluye por lo menos desde hace cuatrocientos o quinientos millones de años, puesto que las pruebas aportadas por la flora y fauna paleozoicas sugieren que las condiciones climáticas de la Tierra no han cambiado esencialmente desde aquella remotísima era primaria.

Mas ¿cuál es la transformación nuclear capaz de alimentar tan formidable despliegue energético, que equivale por segundo a una pérdida de cuatro millones de toneladas de masa solar?.

No cabe duda de que la transformación del elemento más común del universo, el hidrógeno en helio (el elemento que sigue al hidrógeno en la Tabla Periódica), podría suministrar la fuente energética de la radiación solar.

En efecto, la síntesis del helio a partir de los constituyentes de su núcleo está acompañada —como hemos explicado al tratar la energía de la unión nuclear— por la pérdida de una parte de las masas que intervienen, siendo liberada la masa desaparecida —de acuerdo con la equivalencia einsteniana— en forma de energía radiante. Sin embargo, el mecanismo de la supuesta transmutación no había dejado de ser enigmático hasta que HANS BETHE, hacia 1940, propuso su hipótesis del ciclo del carbono.

Las enormes temperaturas que reinan en el interior del Sol —veinte millones de grados en la región central— confieren a las partículas de la masa solar —y especialmente a los protones a velocidades tan elevadas que éstas pueden penetrar en los núcleos de elementos livianos y transmutarlos.

Así, el núcleo ordinario de carbono, bombardeado por un protón, se transforma al capturarlo en un isótopo del nitrógeno que se desintegra.

En cinco reacciones consecutivas engendran con la emisión de dos electrones positivos varios isótopos de carbono, de nitrógeno y de oxígeno. Bombardeados éstos a su vez por núcleos de hidrógeno, conducen finalmente a la formación del helio.

La excepcional característica de este ciclo, que convierte cuatro núcleos de hidrógeno en un núcleo de helio, es la reaparición del carbono inicial en la última reacción, que se encuentra así regenerado.

Desempeña el papel de catalizador y puede ser utilizado innumerables veces, hasta que todo el hidrógeno solar haya sido transmutado en helio, asegurando así las reservas energéticas del Sol durante miles de millones de años. A idénticas o análogas reacciones termonucleares deben sus caudales de energía también otras estrellas.

No cabe duda de que el ciclo de carbono, productor de la energía solar, representa el primordial proceso físico-químico del universo desde la perspectiva de la historia humana.

Sin las reacciones termonucleares, que se realizan en el interior del Sol, la vida no habría podido surgir sobre la superficie de la Tierra, donde los fenómenos biológicos, desde la fotosíntesis de la clorofila de los vegetales hasta el metabolismo en el organismo de los animales y del hombre, son tributarios de la radiación solar.

Es un hecho realmente notable que el carbono —sustancia básica de la materia viva— desempeñe también el papel de catalizador en el grandioso proceso cósmico que dio origen primario a todas las actividades vitales en la naturaleza terrestre.

La síntesis de elementos livianos a partir del hidrógeno ha dejado de ser privilegio de las masas estelares desde hace algunos años.

Reacciones termonucleares, productoras de la fusión de núcleos, suministran la fuente energética a la novísima arma: la bomba de hidrógeno. Desde luego, el ciclo de BETHE, que genera helio en las profundidades del globo solar es demasiado lento y complicado para el uso militar.

Es probable que la transmutación de una masa de los dos isótopos pesados del hidrógeno, el deuterio y el tritio, en helio, esté en la base de la liberación de energía realizada por la nueva bomba.

Para establecer las formidables temperaturas (varios millones de centígrados) capaces de desencadenar la reacción se utiliza la ruptura del uranio o del plutonio: la bomba de “fisión” sirve de detonador a la superbomba de fusión.

El modelo de ésta, utilizado por los expertos estadounidenses en las pruebas de Enivetock, a fines de 1952, superaba doscientas veces el poder (es decir, la cantidad de energía liberada) de la bomba de Hiroshima, según estimaciones extraoficiales.

No cabe duda de que la posibilidad de borrar de la superficie del globo cualquiera de las grandes metrópolis de la Tierra mediante la explosión de una bomba o a lo sumo de muy pocas bombas está, desde ahora, dentro de los alcances del hombre.

El uso de esta arma en un conflicto bélico significaría la abdicación de la razón humana y equivaldría a una tentativa de suicidio del homo sapiens.

Fuente Consultada: Historia de la Ciencia Desidero Papp

LISTA DE TEMAS TRATADOS EN ESTE SITIO:

1-¿Que es un Atomo? 2-La Energía Nuclear y sus Usos 3-La Física Moderna 4-La Fisión Nuclear 5-Partículas Elementales 6-Vida de Max Planck

El período de semidesintegración, de una sustancia radiactiva es el tiempo necesario para que se desintegre la mitad de los núcleos presentes en una muestra de dicha sustancia.

Es decir, si tenemos una masa m de una sustancia y al cabo de 14 días tenemos la mitad (m/2) de esa sustancia (la otra mitad se ha desintegrado), diremos que su período de semidesintegración es de 14 días.

El período de semidesintegración varía para las distintas sustancias radiactivas desde millones de años a fracciones de segundo Sin embargo, cualquier sustancia radiactiva evoluciona en el tiempo ajustándose a una curva como la que se representa en la figura siguiente:

curva de desintegracion atomica

Curva de desintergración radiactiva

tabla tiempo desintegracion
Períodos de semidesintegración de algunos isótopos

Como el período de desintegración del Radio 223 es de 8 días, tendrán que pasar unos 24 días para que la radioactividad de la muestra de este isótopo se reduzca a la octava parte (1/8)

Energía de Enlace Nuclear

Para calcular la masa de un cierto núcleo se multiplicará el número de protones que contiene por la masa de un protón, se multiplicará el número de neutrones por la masa de un neutrón y se sumarán ambas cantidades.

El núcleo de Li contiene tres protones y tres neutrones.

La masa de un neutrón es de 1,6748 . 10-27 kg y la masa de un protón es de 1,6725 . 10-27 kg.

En consecuencia, cabría esperar que la masa de este núcleo fuera de 10,0419 . 10-27 kg.

Sin embargo, la masa de un núcleo de litio, 9,9846 10-27kg., es menor que la calculada sumando las masas de los tres protones y los tres neutrones que lo constituyen. El defecto de masa es de 0,0573 . 10-27 kg.

energia de un atomo

Defecto de masa en el núcleo de Litio

Este hecho se repite para todos los núcleos atómicos. La masa de un núcleo atómico es menor que la que se obtiene cuando se suman las masas de los protones y los neutrones que lo constituyen.

La diferencia entre ambos valores recibe el nombre de defecto de masa.

El defecto de masa se produce porque parte de la masa de los protones y neutrones se transforma en energía cuando dichas partículas se unen para formar un núcleo atómico.

A partir de este hecho se define una nueva magnitud, la energía total de enlace nuclear, que es la energía que se desprende en la formación de un núcleo a partir de los nucleones que lo forman.

Para el núcleo de litio, dicha energía es de 32 MeV. (nota 1 electronvoltio (eV) es la energía cinética que adquiere un electrón al someterse a una diferecia de potencial de 1 voltio.

Dicha energía es de 1.6 . 10-19 Julio. Un MeV equivale a un millón de eV)

Los procesos en los que se modifican los núcleos de los átomos reciben el nombre de reacciones nucleares.

En las reacciones nucleares, pequeñas cantidades de masa se transforman en grandes cantidades de energía, de acuerdo con la equivalencia establecida por Einstein.

E = m.c2

Donde E es la energía desprendida, m es el defecto de masa y c es la velocidad de propagación de la luz en el vacío.

Debido al elevado valor de c, a partir de una pequeña cantidad de materia es posible obtener una enorme cantidad de energía.

Albert Einstein (1879-1955)
einstein

Ejemplo de Fisión Nuclear:

Determinados núcleos pesados, como, por ejemplo, el núcleo de uranio-235, se rompen en dos núcleos intermedios cuando se bombardean con neutrones.

En este proceso, conocido como fisión nuclear, también se emiten otras partículas, además de radiación y una gran cantidad de energía.

De la fisión de un núcleo de uranio-235 se obtiene un átomo de bario-142, un átomo de criptón-91, 3 neutrones y una energía de 210 MeV que se desprende en forma de calor. La ecuación que describe el proceso es la siguiente:

235U + 1 neutrón —-> 142Ba + 91Kr + 3 neutrones + 210 MeV

La masa del núcleo de uranio-235 sumada con la masa del neutrón es ligeramente superior a la suma de las masas del núcleo de bario- 142, el núcleo de criptón-91 y los tres neutrones. Este pequeño defecto de masa se ha transformado en energía.

Los neutrones que se obtienen en la fisión de un núcleo de uranio-235 pueden utilizarse para bombardear otros núcleos de este isótopo y provocar nuevas fisiones que a su vez producirán nuevos neutrones, y así sucesivamente.

Se origina de este modo una reacción en cadena mediante la cual, en un tiempo muy breve, se consigue la fisión de un gran número de núcleos y se libera una enorme cantidad de radiación y energía.

desintegracion nuclear

Reacción en cadena

La Fusión Nuclear

Una reacción de fusión nuclear es un proceso según el cual se unen núcleos ligeros o intermedios para formar núcleos más pesados, obteniéndose energía.

La fusión de un núcleo de deuterio, 2H, con un núcleo de tritio, 3H, da lugar a la formación de un núcleo de helio-4, 4He, además de un neutrón y una energía dc 17,6 MeV, que se desprende en forma de calor.

Esta es una de las reacciones mediante las que el Sol produce energia. La ecuación que describe el proceso es la siguiente:

2H + 3H —-> 4He+ 1 neutrón +  17,6 MeV

https://historiaybiografias.com/linea_divisoria1.jpg

Los fundamentos de la física atómica DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos.(Ver: Fision Nuclear)

La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones.

fision nuclear

Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

La rapidez con que se establece y se propaga la reacción en cadena dilataría y haría explotar la masa con extrema violencia antes que todos los núcleos hubiesen podido ser fragmentados.

Si se admite que sólo el 10% de los átomos participa en la reacción, la enorme cantidad de energía liberada equivale a la producida por la explosión de 2000 toneladas de trinitrotolueno.

En la foto de arriba se encuentran compartiendo una información física Albert Einstein y Leo Szilard. El doctor Leo Szilard, fue a quien se le ocurrió mientras esperaba el cambio de un semáforo en la intersección de Southampton Row en Londres, la ideas de producir una reacción nuclear controlada, bombardeando núcleos con neutrones. Por puro juego, y no por ningún impulso agresivo, el físico bajito y gordo, húngaro de nacimiento, visualizó una reacción atómica en cadena mientras deambulada por la ciudad en aquel dorado septiembre de 1933, dedicado a sus pasatiempos favoritos: pensar y pasear.

En forma de calor, mil novecientos millones de grandes calorías estarían disponibles, constituyendo el centro de la volatilización de toda materia presente.

En una fracción infinitesimal de segundo, la temperatura se elevaría a centenares de miles de grados en el lugar de la explosión, engendrando un espantoso vendaval cuyos efectos destructores —merced a la propagación de la onda de compresión— semejarían a la devastadora barrida de una gigantesca marca.

En vísperas de la Segunda Guerra Mundial, todas estas posibilidades no pasaban de ser meras previsiones teóricas, a las cuales, sin embargo, el comienzo del conflicto bélico iba a conferir excepcionales alcances.

Hacia fines de 1940, cuando el secreto militar comenzó a volver impenetrable el velo que cubría las investigaciones sobre la energía nuclear, la utilización de la misma para producir una bomba parecía todavía un objetivo muy lejano e incluso utópico.

Sin duda se sabía que el uranio 235 era particularmente sensible a la “fisión” y que ofrecía una sección eficaz mayor a los neutrones lentos que a los rápidos; se habían desarrollado métodos para producir neutrones lentos; se habían elaborado procedimientos para separar el uranio 235 de su isótopo corriente; se había logrado aislar dos elementos transuránicos, el neptunio y el plutonio, y se reconocía que este último era también “fisionable” en circunstancias semejantes a las del uranio 235.

Además, se habla adquirido la certeza de que en la “fisión”, al menos un neutrón rápido —y en término medio dos o tres— era emitido por el núcleo.

Sin embargo, a pesar del conjunto de tales progresos, todavía nadie había logrado producir una reacción autosustentada.

Algunos investigadores incluso se preguntaban si la naturaleza acepta someterse a las exigencias de los teóricos. Tal vez la reacción en cadena era, en general, irrealizable. Pero las dudas terminaron por disiparse definitivamente el 2 de diciembre de 1942: ENRICO FERMI había realizado en Chicago, por primera vez, una reacción nuclear autosostenida.

El dispositivo construido en Chicago consistía en una pila de ladrillos de grafito puro que incluía trozos de uranio, separados por distancias regulares conforme a un esquema geométrico.

El grafito servía de sustancia moderadora destinada a frenar mediante choques elásticos los neutrones que salen dotados de elevadas velocidades de la ruptura nuclear del uranio 235.

Algunos de los neutrones penetran en el isótopo pesado U-238, otros vuelven a ser capturados por el isótopo liviano U-235, puesto que ambos están presentes en los trozos de metal de la pila.

Los proyectiles que golpean el U-238 provocan su transformación, que termina por dar origen al plutonio, mientras neutrones capturados por núcleos de U-235 producen la “fisión” de éstos, expulsando neutrones que siguen provocando nuevas rupturas.

Así, la pila produce a la vez materia “fisionahle” (plutonio) y libera energía al desintegrar núcleos.

Agreguemos que para el arranque no se necesita detonador ni ningún otro dispositivo especial; los neutrones de origen cósmico existentes en la atmósfera, o neutrones errantes que provienen de la explosión espontánea de un átomo de uranio, son suficientes para iniciar la reacción.

Una condición indispensable para el funcionamiento de la pila es su volumen, que debe superar cierto tamaño crítico.

De lo contrario el número de neutrones que escapan por la superficie de la pila no permite que se establezca la cadena de las reacciones.

Para el autosostenímiento de la cadena es menester, además, que cada neutrón incidente produzca al menos un nuevo neutrón apto para determinar a su vez la ruptura de un núcleo, siendo en este caso el “factor de multiplicación” igual a la unidad.

La cadena se extingue si dicho factor resulta inferior a uno; en cambio, si es considerablemente superior, la liberación continua y lenta de la energía se transforma en un proceso explosivo, convirtiendo a la pila en una bomba.

Tan peligrosa proliferación de neutrones es contrarrestada introduciendo en la masa de grafito láminas de materia absorbente (cadmio) que permiten mantener constante la velocidad de la reacción y “controlar” el nivel energético de la pila mediante un dispositivo automático.

Tales fueron, a grandes rasgos, las fundamentales características de la pila de FERMI, arquetipo de todos los reactores.

Al principio la pila de FERMI engendró, en forma de calor, una potencia de 0,5 vatio; poco después aumentó su nivel de energía hasta llegar a 200 vatios. Con tal reducido poder, una pila debería funcionar varios miles de años para producir la cantidad de plutonio requerida en la fabricación de una sola bomba.

Mas una conquista no puede medirse en vatios.

La posibilidad de liberar energía nuclear en escala macroscópica estaba magníficamente demostrada.

Si bien la distancia que separa la pila experimental de Chicago de la bomba experimental de Alamogordo era muy superior a la existente entre la rudimentaria máquina de vapor de NEWCOMEN y la locomotora de STEPHENSON, el largo camino fue recorrido en el breve intervalo de treinta meses gracias al formidable potencial tecnológico de los Estados Unidos, y al esfuerzo de un verdadero ejército de científicos, técnicos y trabajadores.

El 6 de agosto, la pavorosa explosión que arrasó la ciudad de Hiroshima anunció al mundo que el hombre disponía de nuevas y tremendas fuerzas aprisionadas desde eternidades en las entrañas de la materia.

“En el interior de una bomba de fisión —escribe uno de los principales constructores de la bomba, ROBERT OPPENHEIMER (1904-1967)—, se materializa un lugar con el cual ningún otro puede ser comparado.

Al explotar la bomba se producen temperaturas más elevadas que las que reinan en el centro del Sol; su carga está constituida por materias que normalmente no existen en la naturaleza y se emiten radiaciones (neutrones, rayos gamma, electrones) de una intensidad que no tiene precedentes en la experiencia humana.

El factor de multiplicación es el cociente del número de los nuevos neutrones producidos y el número inicial de los neutrones primitivos.En la pila de FERMI el factor de multiplicación era igual a 1,007.

Las presiones que se obtienen equivalen a billones de veces la presión atmosférica.

En el sentido más primario y más sencillo, es perfectamente cierto que con las armas atómicas el hombre ha creado situaciones nuevas.”

En pilas y bombas de uranio (o plutonio), la energía se produce por la ruptura de un elemento muy pesado en fragmentos menos pesados. Sin embargo, para producir enormes cantidades de energía no es éste el proceso que la naturaleza elige.

Las estrellas prefieren la fusión a la “fisión”; como ya dijimos, transforman en gigantesca escala —por síntesis de elementos livianos— una parte de su materia nuclear en energía radiante.

Tan sólo las prodigiosas reservas energéticas, cuyo depósito son los núcleos, pueden permitir al Sol irradiar en forma de luz y calor, año tras año, tres quintillones (3 x 1030) de grandes calorías.

Este torrente de energía solar fluye por lo menos desde hace cuatrocientos o quinientos millones de años, puesto que las pruebas aportadas por la flora y fauna paleozoicas sugieren que las condiciones climáticas de la Tierra no han cambiado esencialmente desde aquella remotísima era primaria.

Mas ¿cuál es la transformación nuclear capaz de alimentar tan formidable despliegue energético, que equivale por segundo a una pérdida de cuatro millones de toneladas de masa solar?.

No cabe duda de que la transformación del elemento más común del universo, el hidrógeno en helio (el elemento que sigue al hidrógeno en la Tabla Periódica), podría suministrar la fuente energética de la radiación solar.

En efecto, la síntesis del helio a partir de los constituyentes de su núcleo está acompañada —como hemos explicado al tratar la energía de la unión nuclear— por la pérdida de una parte de las masas que intervienen, siendo liberada la masa desaparecida —de acuerdo con la equivalencia einsteniana— en forma de energía radiante. Sin embargo, el mecanismo de la supuesta transmutación no había dejado de ser enigmático hasta que HANS BETHE, hacia 1940, propuso su hipótesis del ciclo del carbono.

Las enormes temperaturas que reinan en el interior del Sol —veinte millones de grados en la región central— confieren a las partículas de la masa solar —y especialmente a los protones a velocidades tan elevadas que éstas pueden penetrar en los núcleos de elementos livianos y transmutarlos.

Así, el núcleo ordinario de carbono, bombardeado por un protón, se transforma al capturarlo en un isótopo del nitrógeno que se desintegra.

En cinco reacciones consecutivas engendran con la emisión de dos electrones positivos varios isótopos de carbono, de nitrógeno y de oxígeno. Bombardeados éstos a su vez por núcleos de hidrógeno, conducen finalmente a la formación del helio.

La excepcional característica de este ciclo, que convierte cuatro núcleos de hidrógeno en un núcleo de helio, es la reaparición del carbono inicial en la última reacción, que se encuentra así regenerado.

Desempeña el papel de catalizador y puede ser utilizado innumerables veces, hasta que todo el hidrógeno solar haya sido transmutado en helio, asegurando así las reservas energéticas del Sol durante miles de millones de años. A idénticas o análogas reacciones termonucleares deben sus caudales de energía también otras estrellas.

No cabe duda de que el ciclo de carbono, productor de la energía solar, representa el primordial proceso físico-químico del universo desde la perspectiva de la historia humana.

Sin las reacciones termonucleares, que se realizan en el interior del Sol, la vida no habría podido surgir sobre la superficie de la Tierra, donde los fenómenos biológicos, desde la fotosíntesis de la clorofila de los vegetales hasta el metabolismo en el organismo de los animales y del hombre, son tributarios de la radiación solar.

Es un hecho realmente notable que el carbono —sustancia básica de la materia viva— desempeñe también el papel de catalizador en el grandioso proceso cósmico que dio origen primario a todas las actividades vitales en la naturaleza terrestre.

La síntesis de elementos livianos a partir del hidrógeno ha dejado de ser privilegio de las masas estelares desde hace algunos años.

Reacciones termonucleares, productoras de la fusión de núcleos, suministran la fuente energética a la novísima arma: la bomba de hidrógeno. Desde luego, el ciclo de BETHE, que genera helio en las profundidades del globo solar es demasiado lento y complicado para el uso militar.

Es probable que la transmutación de una masa de los dos isótopos pesados del hidrógeno, el deuterio y el tritio, en helio, esté en la base de la liberación de energía realizada por la nueva bomba.

Para establecer las formidables temperaturas (varios millones de centígrados) capaces de desencadenar la reacción se utiliza la ruptura del uranio o del plutonio: la bomba de “fisión” sirve de detonador a la superbomba de fusión.

El modelo de ésta, utilizado por los expertos estadounidenses en las pruebas de Enivetock, a fines de 1952, superaba doscientas veces el poder (es decir, la cantidad de energía liberada) de la bomba de Hiroshima, según estimaciones extraoficiales.

No cabe duda de que la posibilidad de borrar de la superficie del globo cualquiera de las grandes metrópolis de la Tierra mediante la explosión de una bomba o a lo sumo de muy pocas bombas está, desde ahora, dentro de los alcances del hombre.

El uso de esta arma en un conflicto bélico significaría la abdicación de la razón humana y equivaldría a una tentativa de suicidio del homo sapiens.

Fuente Consultada: Historia de la Ciencia Desidero Papp

LISTA DE TEMAS TRATADOS EN ESTE SITIO:

1-¿Que es un Atomo? 2-La Energía Nuclear y sus Usos 3-La Física Moderna 4-La Fisión Nuclear 5-Partículas Elementales 6-Vida de Max Planck

Toda desintegración natural es un proceso aleatorio, es decir, no se puede predecir exactamente cuándo un núcleo determinado va a desintegrarse.

Ahora bien, es posible calcular la probabilidad de que un núcleo se desintegre en un tiempo determinado. Con este fin se asocia a cada sustancia radiactiva una magnitud característica llamada período de semidesintegración.

El período de semidesintegración, de una sustancia radiactiva es el tiempo necesario para que se desintegre la mitad de los núcleos presentes en una muestra de dicha sustancia.

Es decir, si tenemos una masa m de una sustancia y al cabo de 14 días tenemos la mitad (m/2) de esa sustancia (la otra mitad se ha desintegrado), diremos que su período de semidesintegración es de 14 días.

El período de semidesintegración varía para las distintas sustancias radiactivas desde millones de años a fracciones de segundo Sin embargo, cualquier sustancia radiactiva evoluciona en el tiempo ajustándose a una curva como la que se representa en la figura siguiente:

curva de desintegracion atomica

Curva de desintergración radiactiva

tabla tiempo desintegracion
Períodos de semidesintegración de algunos isótopos

Como el período de desintegración del Radio 223 es de 8 días, tendrán que pasar unos 24 días para que la radioactividad de la muestra de este isótopo se reduzca a la octava parte (1/8)

Energía de Enlace Nuclear

Para calcular la masa de un cierto núcleo se multiplicará el número de protones que contiene por la masa de un protón, se multiplicará el número de neutrones por la masa de un neutrón y se sumarán ambas cantidades.

El núcleo de Li contiene tres protones y tres neutrones.

La masa de un neutrón es de 1,6748 . 10-27 kg y la masa de un protón es de 1,6725 . 10-27 kg.

En consecuencia, cabría esperar que la masa de este núcleo fuera de 10,0419 . 10-27 kg.

Sin embargo, la masa de un núcleo de litio, 9,9846 10-27kg., es menor que la calculada sumando las masas de los tres protones y los tres neutrones que lo constituyen. El defecto de masa es de 0,0573 . 10-27 kg.

energia de un atomo

Defecto de masa en el núcleo de Litio

Este hecho se repite para todos los núcleos atómicos. La masa de un núcleo atómico es menor que la que se obtiene cuando se suman las masas de los protones y los neutrones que lo constituyen.

La diferencia entre ambos valores recibe el nombre de defecto de masa.

El defecto de masa se produce porque parte de la masa de los protones y neutrones se transforma en energía cuando dichas partículas se unen para formar un núcleo atómico.

A partir de este hecho se define una nueva magnitud, la energía total de enlace nuclear, que es la energía que se desprende en la formación de un núcleo a partir de los nucleones que lo forman.

Para el núcleo de litio, dicha energía es de 32 MeV. (nota 1 electronvoltio (eV) es la energía cinética que adquiere un electrón al someterse a una diferecia de potencial de 1 voltio.

Dicha energía es de 1.6 . 10-19 Julio. Un MeV equivale a un millón de eV)

Los procesos en los que se modifican los núcleos de los átomos reciben el nombre de reacciones nucleares.

En las reacciones nucleares, pequeñas cantidades de masa se transforman en grandes cantidades de energía, de acuerdo con la equivalencia establecida por Einstein.

E = m.c2

Donde E es la energía desprendida, m es el defecto de masa y c es la velocidad de propagación de la luz en el vacío.

Debido al elevado valor de c, a partir de una pequeña cantidad de materia es posible obtener una enorme cantidad de energía.

Albert Einstein (1879-1955)
einstein

Ejemplo de Fisión Nuclear:

Determinados núcleos pesados, como, por ejemplo, el núcleo de uranio-235, se rompen en dos núcleos intermedios cuando se bombardean con neutrones.

En este proceso, conocido como fisión nuclear, también se emiten otras partículas, además de radiación y una gran cantidad de energía.

De la fisión de un núcleo de uranio-235 se obtiene un átomo de bario-142, un átomo de criptón-91, 3 neutrones y una energía de 210 MeV que se desprende en forma de calor. La ecuación que describe el proceso es la siguiente:

235U + 1 neutrón —-> 142Ba + 91Kr + 3 neutrones + 210 MeV

La masa del núcleo de uranio-235 sumada con la masa del neutrón es ligeramente superior a la suma de las masas del núcleo de bario- 142, el núcleo de criptón-91 y los tres neutrones. Este pequeño defecto de masa se ha transformado en energía.

Los neutrones que se obtienen en la fisión de un núcleo de uranio-235 pueden utilizarse para bombardear otros núcleos de este isótopo y provocar nuevas fisiones que a su vez producirán nuevos neutrones, y así sucesivamente.

Se origina de este modo una reacción en cadena mediante la cual, en un tiempo muy breve, se consigue la fisión de un gran número de núcleos y se libera una enorme cantidad de radiación y energía.

desintegracion nuclear

Reacción en cadena

La Fusión Nuclear

Una reacción de fusión nuclear es un proceso según el cual se unen núcleos ligeros o intermedios para formar núcleos más pesados, obteniéndose energía.

La fusión de un núcleo de deuterio, 2H, con un núcleo de tritio, 3H, da lugar a la formación de un núcleo de helio-4, 4He, además de un neutrón y una energía dc 17,6 MeV, que se desprende en forma de calor.

Esta es una de las reacciones mediante las que el Sol produce energia. La ecuación que describe el proceso es la siguiente:

2H + 3H —-> 4He+ 1 neutrón +  17,6 MeV

https://historiaybiografias.com/linea_divisoria1.jpg

Los fundamentos de la física atómica DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos.(Ver: Fision Nuclear)

La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones.

fision nuclear

Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

La rapidez con que se establece y se propaga la reacción en cadena dilataría y haría explotar la masa con extrema violencia antes que todos los núcleos hubiesen podido ser fragmentados.

Si se admite que sólo el 10% de los átomos participa en la reacción, la enorme cantidad de energía liberada equivale a la producida por la explosión de 2000 toneladas de trinitrotolueno.

En la foto de arriba se encuentran compartiendo una información física Albert Einstein y Leo Szilard. El doctor Leo Szilard, fue a quien se le ocurrió mientras esperaba el cambio de un semáforo en la intersección de Southampton Row en Londres, la ideas de producir una reacción nuclear controlada, bombardeando núcleos con neutrones. Por puro juego, y no por ningún impulso agresivo, el físico bajito y gordo, húngaro de nacimiento, visualizó una reacción atómica en cadena mientras deambulada por la ciudad en aquel dorado septiembre de 1933, dedicado a sus pasatiempos favoritos: pensar y pasear.

En forma de calor, mil novecientos millones de grandes calorías estarían disponibles, constituyendo el centro de la volatilización de toda materia presente.

En una fracción infinitesimal de segundo, la temperatura se elevaría a centenares de miles de grados en el lugar de la explosión, engendrando un espantoso vendaval cuyos efectos destructores —merced a la propagación de la onda de compresión— semejarían a la devastadora barrida de una gigantesca marca.

En vísperas de la Segunda Guerra Mundial, todas estas posibilidades no pasaban de ser meras previsiones teóricas, a las cuales, sin embargo, el comienzo del conflicto bélico iba a conferir excepcionales alcances.

Hacia fines de 1940, cuando el secreto militar comenzó a volver impenetrable el velo que cubría las investigaciones sobre la energía nuclear, la utilización de la misma para producir una bomba parecía todavía un objetivo muy lejano e incluso utópico.

Sin duda se sabía que el uranio 235 era particularmente sensible a la “fisión” y que ofrecía una sección eficaz mayor a los neutrones lentos que a los rápidos; se habían desarrollado métodos para producir neutrones lentos; se habían elaborado procedimientos para separar el uranio 235 de su isótopo corriente; se había logrado aislar dos elementos transuránicos, el neptunio y el plutonio, y se reconocía que este último era también “fisionable” en circunstancias semejantes a las del uranio 235.

Además, se habla adquirido la certeza de que en la “fisión”, al menos un neutrón rápido —y en término medio dos o tres— era emitido por el núcleo.

Sin embargo, a pesar del conjunto de tales progresos, todavía nadie había logrado producir una reacción autosustentada.

Algunos investigadores incluso se preguntaban si la naturaleza acepta someterse a las exigencias de los teóricos. Tal vez la reacción en cadena era, en general, irrealizable. Pero las dudas terminaron por disiparse definitivamente el 2 de diciembre de 1942: ENRICO FERMI había realizado en Chicago, por primera vez, una reacción nuclear autosostenida.

El dispositivo construido en Chicago consistía en una pila de ladrillos de grafito puro que incluía trozos de uranio, separados por distancias regulares conforme a un esquema geométrico.

El grafito servía de sustancia moderadora destinada a frenar mediante choques elásticos los neutrones que salen dotados de elevadas velocidades de la ruptura nuclear del uranio 235.

Algunos de los neutrones penetran en el isótopo pesado U-238, otros vuelven a ser capturados por el isótopo liviano U-235, puesto que ambos están presentes en los trozos de metal de la pila.

Los proyectiles que golpean el U-238 provocan su transformación, que termina por dar origen al plutonio, mientras neutrones capturados por núcleos de U-235 producen la “fisión” de éstos, expulsando neutrones que siguen provocando nuevas rupturas.

Así, la pila produce a la vez materia “fisionahle” (plutonio) y libera energía al desintegrar núcleos.

Agreguemos que para el arranque no se necesita detonador ni ningún otro dispositivo especial; los neutrones de origen cósmico existentes en la atmósfera, o neutrones errantes que provienen de la explosión espontánea de un átomo de uranio, son suficientes para iniciar la reacción.

Una condición indispensable para el funcionamiento de la pila es su volumen, que debe superar cierto tamaño crítico.

De lo contrario el número de neutrones que escapan por la superficie de la pila no permite que se establezca la cadena de las reacciones.

Para el autosostenímiento de la cadena es menester, además, que cada neutrón incidente produzca al menos un nuevo neutrón apto para determinar a su vez la ruptura de un núcleo, siendo en este caso el “factor de multiplicación” igual a la unidad.

La cadena se extingue si dicho factor resulta inferior a uno; en cambio, si es considerablemente superior, la liberación continua y lenta de la energía se transforma en un proceso explosivo, convirtiendo a la pila en una bomba.

Tan peligrosa proliferación de neutrones es contrarrestada introduciendo en la masa de grafito láminas de materia absorbente (cadmio) que permiten mantener constante la velocidad de la reacción y “controlar” el nivel energético de la pila mediante un dispositivo automático.

Tales fueron, a grandes rasgos, las fundamentales características de la pila de FERMI, arquetipo de todos los reactores.

Al principio la pila de FERMI engendró, en forma de calor, una potencia de 0,5 vatio; poco después aumentó su nivel de energía hasta llegar a 200 vatios. Con tal reducido poder, una pila debería funcionar varios miles de años para producir la cantidad de plutonio requerida en la fabricación de una sola bomba.

Mas una conquista no puede medirse en vatios.

La posibilidad de liberar energía nuclear en escala macroscópica estaba magníficamente demostrada.

Si bien la distancia que separa la pila experimental de Chicago de la bomba experimental de Alamogordo era muy superior a la existente entre la rudimentaria máquina de vapor de NEWCOMEN y la locomotora de STEPHENSON, el largo camino fue recorrido en el breve intervalo de treinta meses gracias al formidable potencial tecnológico de los Estados Unidos, y al esfuerzo de un verdadero ejército de científicos, técnicos y trabajadores.

El 6 de agosto, la pavorosa explosión que arrasó la ciudad de Hiroshima anunció al mundo que el hombre disponía de nuevas y tremendas fuerzas aprisionadas desde eternidades en las entrañas de la materia.

“En el interior de una bomba de fisión —escribe uno de los principales constructores de la bomba, ROBERT OPPENHEIMER (1904-1967)—, se materializa un lugar con el cual ningún otro puede ser comparado.

Al explotar la bomba se producen temperaturas más elevadas que las que reinan en el centro del Sol; su carga está constituida por materias que normalmente no existen en la naturaleza y se emiten radiaciones (neutrones, rayos gamma, electrones) de una intensidad que no tiene precedentes en la experiencia humana.

El factor de multiplicación es el cociente del número de los nuevos neutrones producidos y el número inicial de los neutrones primitivos.En la pila de FERMI el factor de multiplicación era igual a 1,007.

Las presiones que se obtienen equivalen a billones de veces la presión atmosférica.

En el sentido más primario y más sencillo, es perfectamente cierto que con las armas atómicas el hombre ha creado situaciones nuevas.”

En pilas y bombas de uranio (o plutonio), la energía se produce por la ruptura de un elemento muy pesado en fragmentos menos pesados. Sin embargo, para producir enormes cantidades de energía no es éste el proceso que la naturaleza elige.

Las estrellas prefieren la fusión a la “fisión”; como ya dijimos, transforman en gigantesca escala —por síntesis de elementos livianos— una parte de su materia nuclear en energía radiante.

Tan sólo las prodigiosas reservas energéticas, cuyo depósito son los núcleos, pueden permitir al Sol irradiar en forma de luz y calor, año tras año, tres quintillones (3 x 1030) de grandes calorías.

Este torrente de energía solar fluye por lo menos desde hace cuatrocientos o quinientos millones de años, puesto que las pruebas aportadas por la flora y fauna paleozoicas sugieren que las condiciones climáticas de la Tierra no han cambiado esencialmente desde aquella remotísima era primaria.

Mas ¿cuál es la transformación nuclear capaz de alimentar tan formidable despliegue energético, que equivale por segundo a una pérdida de cuatro millones de toneladas de masa solar?.

No cabe duda de que la transformación del elemento más común del universo, el hidrógeno en helio (el elemento que sigue al hidrógeno en la Tabla Periódica), podría suministrar la fuente energética de la radiación solar.

En efecto, la síntesis del helio a partir de los constituyentes de su núcleo está acompañada —como hemos explicado al tratar la energía de la unión nuclear— por la pérdida de una parte de las masas que intervienen, siendo liberada la masa desaparecida —de acuerdo con la equivalencia einsteniana— en forma de energía radiante. Sin embargo, el mecanismo de la supuesta transmutación no había dejado de ser enigmático hasta que HANS BETHE, hacia 1940, propuso su hipótesis del ciclo del carbono.

Las enormes temperaturas que reinan en el interior del Sol —veinte millones de grados en la región central— confieren a las partículas de la masa solar —y especialmente a los protones a velocidades tan elevadas que éstas pueden penetrar en los núcleos de elementos livianos y transmutarlos.

Así, el núcleo ordinario de carbono, bombardeado por un protón, se transforma al capturarlo en un isótopo del nitrógeno que se desintegra.

En cinco reacciones consecutivas engendran con la emisión de dos electrones positivos varios isótopos de carbono, de nitrógeno y de oxígeno. Bombardeados éstos a su vez por núcleos de hidrógeno, conducen finalmente a la formación del helio.

La excepcional característica de este ciclo, que convierte cuatro núcleos de hidrógeno en un núcleo de helio, es la reaparición del carbono inicial en la última reacción, que se encuentra así regenerado.

Desempeña el papel de catalizador y puede ser utilizado innumerables veces, hasta que todo el hidrógeno solar haya sido transmutado en helio, asegurando así las reservas energéticas del Sol durante miles de millones de años. A idénticas o análogas reacciones termonucleares deben sus caudales de energía también otras estrellas.

No cabe duda de que el ciclo de carbono, productor de la energía solar, representa el primordial proceso físico-químico del universo desde la perspectiva de la historia humana.

Sin las reacciones termonucleares, que se realizan en el interior del Sol, la vida no habría podido surgir sobre la superficie de la Tierra, donde los fenómenos biológicos, desde la fotosíntesis de la clorofila de los vegetales hasta el metabolismo en el organismo de los animales y del hombre, son tributarios de la radiación solar.

Es un hecho realmente notable que el carbono —sustancia básica de la materia viva— desempeñe también el papel de catalizador en el grandioso proceso cósmico que dio origen primario a todas las actividades vitales en la naturaleza terrestre.

La síntesis de elementos livianos a partir del hidrógeno ha dejado de ser privilegio de las masas estelares desde hace algunos años.

Reacciones termonucleares, productoras de la fusión de núcleos, suministran la fuente energética a la novísima arma: la bomba de hidrógeno. Desde luego, el ciclo de BETHE, que genera helio en las profundidades del globo solar es demasiado lento y complicado para el uso militar.

Es probable que la transmutación de una masa de los dos isótopos pesados del hidrógeno, el deuterio y el tritio, en helio, esté en la base de la liberación de energía realizada por la nueva bomba.

Para establecer las formidables temperaturas (varios millones de centígrados) capaces de desencadenar la reacción se utiliza la ruptura del uranio o del plutonio: la bomba de “fisión” sirve de detonador a la superbomba de fusión.

El modelo de ésta, utilizado por los expertos estadounidenses en las pruebas de Enivetock, a fines de 1952, superaba doscientas veces el poder (es decir, la cantidad de energía liberada) de la bomba de Hiroshima, según estimaciones extraoficiales.

No cabe duda de que la posibilidad de borrar de la superficie del globo cualquiera de las grandes metrópolis de la Tierra mediante la explosión de una bomba o a lo sumo de muy pocas bombas está, desde ahora, dentro de los alcances del hombre.

El uso de esta arma en un conflicto bélico significaría la abdicación de la razón humana y equivaldría a una tentativa de suicidio del homo sapiens.

Fuente Consultada: Historia de la Ciencia Desidero Papp

LISTA DE TEMAS TRATADOS EN ESTE SITIO:

1-¿Que es un Atomo? 2-La Energía Nuclear y sus Usos 3-La Física Moderna 4-La Fisión Nuclear 5-Partículas Elementales 6-Vida de Max Planck

Período de Semidesintegración

Toda desintegración natural es un proceso aleatorio, es decir, no se puede predecir exactamente cuándo un núcleo determinado va a desintegrarse.

Ahora bien, es posible calcular la probabilidad de que un núcleo se desintegre en un tiempo determinado. Con este fin se asocia a cada sustancia radiactiva una magnitud característica llamada período de semidesintegración.

El período de semidesintegración, de una sustancia radiactiva es el tiempo necesario para que se desintegre la mitad de los núcleos presentes en una muestra de dicha sustancia.

Es decir, si tenemos una masa m de una sustancia y al cabo de 14 días tenemos la mitad (m/2) de esa sustancia (la otra mitad se ha desintegrado), diremos que su período de semidesintegración es de 14 días.

El período de semidesintegración varía para las distintas sustancias radiactivas desde millones de años a fracciones de segundo Sin embargo, cualquier sustancia radiactiva evoluciona en el tiempo ajustándose a una curva como la que se representa en la figura siguiente:

curva de desintegracion atomica

Curva de desintergración radiactiva

tabla tiempo desintegracion
Períodos de semidesintegración de algunos isótopos

Como el período de desintegración del Radio 223 es de 8 días, tendrán que pasar unos 24 días para que la radioactividad de la muestra de este isótopo se reduzca a la octava parte (1/8)

Energía de Enlace Nuclear

Para calcular la masa de un cierto núcleo se multiplicará el número de protones que contiene por la masa de un protón, se multiplicará el número de neutrones por la masa de un neutrón y se sumarán ambas cantidades.

El núcleo de Li contiene tres protones y tres neutrones.

La masa de un neutrón es de 1,6748 . 10-27 kg y la masa de un protón es de 1,6725 . 10-27 kg.

En consecuencia, cabría esperar que la masa de este núcleo fuera de 10,0419 . 10-27 kg.

Sin embargo, la masa de un núcleo de litio, 9,9846 10-27kg., es menor que la calculada sumando las masas de los tres protones y los tres neutrones que lo constituyen. El defecto de masa es de 0,0573 . 10-27 kg.

energia de un atomo

Defecto de masa en el núcleo de Litio

Este hecho se repite para todos los núcleos atómicos. La masa de un núcleo atómico es menor que la que se obtiene cuando se suman las masas de los protones y los neutrones que lo constituyen.

La diferencia entre ambos valores recibe el nombre de defecto de masa.

El defecto de masa se produce porque parte de la masa de los protones y neutrones se transforma en energía cuando dichas partículas se unen para formar un núcleo atómico.

A partir de este hecho se define una nueva magnitud, la energía total de enlace nuclear, que es la energía que se desprende en la formación de un núcleo a partir de los nucleones que lo forman.

Para el núcleo de litio, dicha energía es de 32 MeV. (nota 1 electronvoltio (eV) es la energía cinética que adquiere un electrón al someterse a una diferecia de potencial de 1 voltio.

Dicha energía es de 1.6 . 10-19 Julio. Un MeV equivale a un millón de eV)

Los procesos en los que se modifican los núcleos de los átomos reciben el nombre de reacciones nucleares.

En las reacciones nucleares, pequeñas cantidades de masa se transforman en grandes cantidades de energía, de acuerdo con la equivalencia establecida por Einstein.

E = m.c2

Donde E es la energía desprendida, m es el defecto de masa y c es la velocidad de propagación de la luz en el vacío.

Debido al elevado valor de c, a partir de una pequeña cantidad de materia es posible obtener una enorme cantidad de energía.

Albert Einstein (1879-1955)
einstein

Ejemplo de Fisión Nuclear:

Determinados núcleos pesados, como, por ejemplo, el núcleo de uranio-235, se rompen en dos núcleos intermedios cuando se bombardean con neutrones.

En este proceso, conocido como fisión nuclear, también se emiten otras partículas, además de radiación y una gran cantidad de energía.

De la fisión de un núcleo de uranio-235 se obtiene un átomo de bario-142, un átomo de criptón-91, 3 neutrones y una energía de 210 MeV que se desprende en forma de calor. La ecuación que describe el proceso es la siguiente:

235U + 1 neutrón —-> 142Ba + 91Kr + 3 neutrones + 210 MeV

La masa del núcleo de uranio-235 sumada con la masa del neutrón es ligeramente superior a la suma de las masas del núcleo de bario- 142, el núcleo de criptón-91 y los tres neutrones. Este pequeño defecto de masa se ha transformado en energía.

Los neutrones que se obtienen en la fisión de un núcleo de uranio-235 pueden utilizarse para bombardear otros núcleos de este isótopo y provocar nuevas fisiones que a su vez producirán nuevos neutrones, y así sucesivamente.

Se origina de este modo una reacción en cadena mediante la cual, en un tiempo muy breve, se consigue la fisión de un gran número de núcleos y se libera una enorme cantidad de radiación y energía.

desintegracion nuclear

Reacción en cadena

La Fusión Nuclear

Una reacción de fusión nuclear es un proceso según el cual se unen núcleos ligeros o intermedios para formar núcleos más pesados, obteniéndose energía.

La fusión de un núcleo de deuterio, 2H, con un núcleo de tritio, 3H, da lugar a la formación de un núcleo de helio-4, 4He, además de un neutrón y una energía dc 17,6 MeV, que se desprende en forma de calor.

Esta es una de las reacciones mediante las que el Sol produce energia. La ecuación que describe el proceso es la siguiente:

2H + 3H —-> 4He+ 1 neutrón +  17,6 MeV

https://historiaybiografias.com/linea_divisoria1.jpg

Los fundamentos de la física atómica DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos.(Ver: Fision Nuclear)

La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones.

fision nuclear

Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

La rapidez con que se establece y se propaga la reacción en cadena dilataría y haría explotar la masa con extrema violencia antes que todos los núcleos hubiesen podido ser fragmentados.

Si se admite que sólo el 10% de los átomos participa en la reacción, la enorme cantidad de energía liberada equivale a la producida por la explosión de 2000 toneladas de trinitrotolueno.

En la foto de arriba se encuentran compartiendo una información física Albert Einstein y Leo Szilard. El doctor Leo Szilard, fue a quien se le ocurrió mientras esperaba el cambio de un semáforo en la intersección de Southampton Row en Londres, la ideas de producir una reacción nuclear controlada, bombardeando núcleos con neutrones. Por puro juego, y no por ningún impulso agresivo, el físico bajito y gordo, húngaro de nacimiento, visualizó una reacción atómica en cadena mientras deambulada por la ciudad en aquel dorado septiembre de 1933, dedicado a sus pasatiempos favoritos: pensar y pasear.

En forma de calor, mil novecientos millones de grandes calorías estarían disponibles, constituyendo el centro de la volatilización de toda materia presente.

En una fracción infinitesimal de segundo, la temperatura se elevaría a centenares de miles de grados en el lugar de la explosión, engendrando un espantoso vendaval cuyos efectos destructores —merced a la propagación de la onda de compresión— semejarían a la devastadora barrida de una gigantesca marca.

En vísperas de la Segunda Guerra Mundial, todas estas posibilidades no pasaban de ser meras previsiones teóricas, a las cuales, sin embargo, el comienzo del conflicto bélico iba a conferir excepcionales alcances.

Hacia fines de 1940, cuando el secreto militar comenzó a volver impenetrable el velo que cubría las investigaciones sobre la energía nuclear, la utilización de la misma para producir una bomba parecía todavía un objetivo muy lejano e incluso utópico.

Sin duda se sabía que el uranio 235 era particularmente sensible a la “fisión” y que ofrecía una sección eficaz mayor a los neutrones lentos que a los rápidos; se habían desarrollado métodos para producir neutrones lentos; se habían elaborado procedimientos para separar el uranio 235 de su isótopo corriente; se había logrado aislar dos elementos transuránicos, el neptunio y el plutonio, y se reconocía que este último era también “fisionable” en circunstancias semejantes a las del uranio 235.

Además, se habla adquirido la certeza de que en la “fisión”, al menos un neutrón rápido —y en término medio dos o tres— era emitido por el núcleo.

Sin embargo, a pesar del conjunto de tales progresos, todavía nadie había logrado producir una reacción autosustentada.

Algunos investigadores incluso se preguntaban si la naturaleza acepta someterse a las exigencias de los teóricos. Tal vez la reacción en cadena era, en general, irrealizable. Pero las dudas terminaron por disiparse definitivamente el 2 de diciembre de 1942: ENRICO FERMI había realizado en Chicago, por primera vez, una reacción nuclear autosostenida.

El dispositivo construido en Chicago consistía en una pila de ladrillos de grafito puro que incluía trozos de uranio, separados por distancias regulares conforme a un esquema geométrico.

El grafito servía de sustancia moderadora destinada a frenar mediante choques elásticos los neutrones que salen dotados de elevadas velocidades de la ruptura nuclear del uranio 235.

Algunos de los neutrones penetran en el isótopo pesado U-238, otros vuelven a ser capturados por el isótopo liviano U-235, puesto que ambos están presentes en los trozos de metal de la pila.

Los proyectiles que golpean el U-238 provocan su transformación, que termina por dar origen al plutonio, mientras neutrones capturados por núcleos de U-235 producen la “fisión” de éstos, expulsando neutrones que siguen provocando nuevas rupturas.

Así, la pila produce a la vez materia “fisionahle” (plutonio) y libera energía al desintegrar núcleos.

Agreguemos que para el arranque no se necesita detonador ni ningún otro dispositivo especial; los neutrones de origen cósmico existentes en la atmósfera, o neutrones errantes que provienen de la explosión espontánea de un átomo de uranio, son suficientes para iniciar la reacción.

Una condición indispensable para el funcionamiento de la pila es su volumen, que debe superar cierto tamaño crítico.

De lo contrario el número de neutrones que escapan por la superficie de la pila no permite que se establezca la cadena de las reacciones.

Para el autosostenímiento de la cadena es menester, además, que cada neutrón incidente produzca al menos un nuevo neutrón apto para determinar a su vez la ruptura de un núcleo, siendo en este caso el “factor de multiplicación” igual a la unidad.

La cadena se extingue si dicho factor resulta inferior a uno; en cambio, si es considerablemente superior, la liberación continua y lenta de la energía se transforma en un proceso explosivo, convirtiendo a la pila en una bomba.

Tan peligrosa proliferación de neutrones es contrarrestada introduciendo en la masa de grafito láminas de materia absorbente (cadmio) que permiten mantener constante la velocidad de la reacción y “controlar” el nivel energético de la pila mediante un dispositivo automático.

Tales fueron, a grandes rasgos, las fundamentales características de la pila de FERMI, arquetipo de todos los reactores.

Al principio la pila de FERMI engendró, en forma de calor, una potencia de 0,5 vatio; poco después aumentó su nivel de energía hasta llegar a 200 vatios. Con tal reducido poder, una pila debería funcionar varios miles de años para producir la cantidad de plutonio requerida en la fabricación de una sola bomba.

Mas una conquista no puede medirse en vatios.

La posibilidad de liberar energía nuclear en escala macroscópica estaba magníficamente demostrada.

Si bien la distancia que separa la pila experimental de Chicago de la bomba experimental de Alamogordo era muy superior a la existente entre la rudimentaria máquina de vapor de NEWCOMEN y la locomotora de STEPHENSON, el largo camino fue recorrido en el breve intervalo de treinta meses gracias al formidable potencial tecnológico de los Estados Unidos, y al esfuerzo de un verdadero ejército de científicos, técnicos y trabajadores.

El 6 de agosto, la pavorosa explosión que arrasó la ciudad de Hiroshima anunció al mundo que el hombre disponía de nuevas y tremendas fuerzas aprisionadas desde eternidades en las entrañas de la materia.

“En el interior de una bomba de fisión —escribe uno de los principales constructores de la bomba, ROBERT OPPENHEIMER (1904-1967)—, se materializa un lugar con el cual ningún otro puede ser comparado.

Al explotar la bomba se producen temperaturas más elevadas que las que reinan en el centro del Sol; su carga está constituida por materias que normalmente no existen en la naturaleza y se emiten radiaciones (neutrones, rayos gamma, electrones) de una intensidad que no tiene precedentes en la experiencia humana.

El factor de multiplicación es el cociente del número de los nuevos neutrones producidos y el número inicial de los neutrones primitivos.En la pila de FERMI el factor de multiplicación era igual a 1,007.

Las presiones que se obtienen equivalen a billones de veces la presión atmosférica.

En el sentido más primario y más sencillo, es perfectamente cierto que con las armas atómicas el hombre ha creado situaciones nuevas.”

En pilas y bombas de uranio (o plutonio), la energía se produce por la ruptura de un elemento muy pesado en fragmentos menos pesados. Sin embargo, para producir enormes cantidades de energía no es éste el proceso que la naturaleza elige.

Las estrellas prefieren la fusión a la “fisión”; como ya dijimos, transforman en gigantesca escala —por síntesis de elementos livianos— una parte de su materia nuclear en energía radiante.

Tan sólo las prodigiosas reservas energéticas, cuyo depósito son los núcleos, pueden permitir al Sol irradiar en forma de luz y calor, año tras año, tres quintillones (3 x 1030) de grandes calorías.

Este torrente de energía solar fluye por lo menos desde hace cuatrocientos o quinientos millones de años, puesto que las pruebas aportadas por la flora y fauna paleozoicas sugieren que las condiciones climáticas de la Tierra no han cambiado esencialmente desde aquella remotísima era primaria.

Mas ¿cuál es la transformación nuclear capaz de alimentar tan formidable despliegue energético, que equivale por segundo a una pérdida de cuatro millones de toneladas de masa solar?.

No cabe duda de que la transformación del elemento más común del universo, el hidrógeno en helio (el elemento que sigue al hidrógeno en la Tabla Periódica), podría suministrar la fuente energética de la radiación solar.

En efecto, la síntesis del helio a partir de los constituyentes de su núcleo está acompañada —como hemos explicado al tratar la energía de la unión nuclear— por la pérdida de una parte de las masas que intervienen, siendo liberada la masa desaparecida —de acuerdo con la equivalencia einsteniana— en forma de energía radiante. Sin embargo, el mecanismo de la supuesta transmutación no había dejado de ser enigmático hasta que HANS BETHE, hacia 1940, propuso su hipótesis del ciclo del carbono.

Las enormes temperaturas que reinan en el interior del Sol —veinte millones de grados en la región central— confieren a las partículas de la masa solar —y especialmente a los protones a velocidades tan elevadas que éstas pueden penetrar en los núcleos de elementos livianos y transmutarlos.

Así, el núcleo ordinario de carbono, bombardeado por un protón, se transforma al capturarlo en un isótopo del nitrógeno que se desintegra.

En cinco reacciones consecutivas engendran con la emisión de dos electrones positivos varios isótopos de carbono, de nitrógeno y de oxígeno. Bombardeados éstos a su vez por núcleos de hidrógeno, conducen finalmente a la formación del helio.

La excepcional característica de este ciclo, que convierte cuatro núcleos de hidrógeno en un núcleo de helio, es la reaparición del carbono inicial en la última reacción, que se encuentra así regenerado.

Desempeña el papel de catalizador y puede ser utilizado innumerables veces, hasta que todo el hidrógeno solar haya sido transmutado en helio, asegurando así las reservas energéticas del Sol durante miles de millones de años. A idénticas o análogas reacciones termonucleares deben sus caudales de energía también otras estrellas.

No cabe duda de que el ciclo de carbono, productor de la energía solar, representa el primordial proceso físico-químico del universo desde la perspectiva de la historia humana.

Sin las reacciones termonucleares, que se realizan en el interior del Sol, la vida no habría podido surgir sobre la superficie de la Tierra, donde los fenómenos biológicos, desde la fotosíntesis de la clorofila de los vegetales hasta el metabolismo en el organismo de los animales y del hombre, son tributarios de la radiación solar.

Es un hecho realmente notable que el carbono —sustancia básica de la materia viva— desempeñe también el papel de catalizador en el grandioso proceso cósmico que dio origen primario a todas las actividades vitales en la naturaleza terrestre.

La síntesis de elementos livianos a partir del hidrógeno ha dejado de ser privilegio de las masas estelares desde hace algunos años.

Reacciones termonucleares, productoras de la fusión de núcleos, suministran la fuente energética a la novísima arma: la bomba de hidrógeno. Desde luego, el ciclo de BETHE, que genera helio en las profundidades del globo solar es demasiado lento y complicado para el uso militar.

Es probable que la transmutación de una masa de los dos isótopos pesados del hidrógeno, el deuterio y el tritio, en helio, esté en la base de la liberación de energía realizada por la nueva bomba.

Para establecer las formidables temperaturas (varios millones de centígrados) capaces de desencadenar la reacción se utiliza la ruptura del uranio o del plutonio: la bomba de “fisión” sirve de detonador a la superbomba de fusión.

El modelo de ésta, utilizado por los expertos estadounidenses en las pruebas de Enivetock, a fines de 1952, superaba doscientas veces el poder (es decir, la cantidad de energía liberada) de la bomba de Hiroshima, según estimaciones extraoficiales.

No cabe duda de que la posibilidad de borrar de la superficie del globo cualquiera de las grandes metrópolis de la Tierra mediante la explosión de una bomba o a lo sumo de muy pocas bombas está, desde ahora, dentro de los alcances del hombre.

El uso de esta arma en un conflicto bélico significaría la abdicación de la razón humana y equivaldría a una tentativa de suicidio del homo sapiens.

Fuente Consultada: Historia de la Ciencia Desidero Papp

LISTA DE TEMAS TRATADOS EN ESTE SITIO:

1-¿Que es un Atomo? 2-La Energía Nuclear y sus Usos 3-La Física Moderna 4-La Fisión Nuclear 5-Partículas Elementales 6-Vida de Max Planck

Es posible conseguir que un núcleo estable se transforme en un radioisótopo. Si a un núcleo estable llega una partícula con suficiente energía, el núcleo puede desestabilizarse y volverse radiactivo para recuperar la estabilidad.

Cuando esto sucede, se habla de radiactividad artificial, en oposición a la radiactividad espontánea o radiactividad natural.

Período de Semidesintegración

Toda desintegración natural es un proceso aleatorio, es decir, no se puede predecir exactamente cuándo un núcleo determinado va a desintegrarse.

Ahora bien, es posible calcular la probabilidad de que un núcleo se desintegre en un tiempo determinado. Con este fin se asocia a cada sustancia radiactiva una magnitud característica llamada período de semidesintegración.

El período de semidesintegración, de una sustancia radiactiva es el tiempo necesario para que se desintegre la mitad de los núcleos presentes en una muestra de dicha sustancia.

Es decir, si tenemos una masa m de una sustancia y al cabo de 14 días tenemos la mitad (m/2) de esa sustancia (la otra mitad se ha desintegrado), diremos que su período de semidesintegración es de 14 días.

El período de semidesintegración varía para las distintas sustancias radiactivas desde millones de años a fracciones de segundo Sin embargo, cualquier sustancia radiactiva evoluciona en el tiempo ajustándose a una curva como la que se representa en la figura siguiente:

curva de desintegracion atomica

Curva de desintergración radiactiva

tabla tiempo desintegracion
Períodos de semidesintegración de algunos isótopos

Como el período de desintegración del Radio 223 es de 8 días, tendrán que pasar unos 24 días para que la radioactividad de la muestra de este isótopo se reduzca a la octava parte (1/8)

Energía de Enlace Nuclear

Para calcular la masa de un cierto núcleo se multiplicará el número de protones que contiene por la masa de un protón, se multiplicará el número de neutrones por la masa de un neutrón y se sumarán ambas cantidades.

El núcleo de Li contiene tres protones y tres neutrones.

La masa de un neutrón es de 1,6748 . 10-27 kg y la masa de un protón es de 1,6725 . 10-27 kg.

En consecuencia, cabría esperar que la masa de este núcleo fuera de 10,0419 . 10-27 kg.

Sin embargo, la masa de un núcleo de litio, 9,9846 10-27kg., es menor que la calculada sumando las masas de los tres protones y los tres neutrones que lo constituyen. El defecto de masa es de 0,0573 . 10-27 kg.

energia de un atomo

Defecto de masa en el núcleo de Litio

Este hecho se repite para todos los núcleos atómicos. La masa de un núcleo atómico es menor que la que se obtiene cuando se suman las masas de los protones y los neutrones que lo constituyen.

La diferencia entre ambos valores recibe el nombre de defecto de masa.

El defecto de masa se produce porque parte de la masa de los protones y neutrones se transforma en energía cuando dichas partículas se unen para formar un núcleo atómico.

A partir de este hecho se define una nueva magnitud, la energía total de enlace nuclear, que es la energía que se desprende en la formación de un núcleo a partir de los nucleones que lo forman.

Para el núcleo de litio, dicha energía es de 32 MeV. (nota 1 electronvoltio (eV) es la energía cinética que adquiere un electrón al someterse a una diferecia de potencial de 1 voltio.

Dicha energía es de 1.6 . 10-19 Julio. Un MeV equivale a un millón de eV)

Los procesos en los que se modifican los núcleos de los átomos reciben el nombre de reacciones nucleares.

En las reacciones nucleares, pequeñas cantidades de masa se transforman en grandes cantidades de energía, de acuerdo con la equivalencia establecida por Einstein.

E = m.c2

Donde E es la energía desprendida, m es el defecto de masa y c es la velocidad de propagación de la luz en el vacío.

Debido al elevado valor de c, a partir de una pequeña cantidad de materia es posible obtener una enorme cantidad de energía.

Albert Einstein (1879-1955)
einstein

Ejemplo de Fisión Nuclear:

Determinados núcleos pesados, como, por ejemplo, el núcleo de uranio-235, se rompen en dos núcleos intermedios cuando se bombardean con neutrones.

En este proceso, conocido como fisión nuclear, también se emiten otras partículas, además de radiación y una gran cantidad de energía.

De la fisión de un núcleo de uranio-235 se obtiene un átomo de bario-142, un átomo de criptón-91, 3 neutrones y una energía de 210 MeV que se desprende en forma de calor. La ecuación que describe el proceso es la siguiente:

235U + 1 neutrón —-> 142Ba + 91Kr + 3 neutrones + 210 MeV

La masa del núcleo de uranio-235 sumada con la masa del neutrón es ligeramente superior a la suma de las masas del núcleo de bario- 142, el núcleo de criptón-91 y los tres neutrones. Este pequeño defecto de masa se ha transformado en energía.

Los neutrones que se obtienen en la fisión de un núcleo de uranio-235 pueden utilizarse para bombardear otros núcleos de este isótopo y provocar nuevas fisiones que a su vez producirán nuevos neutrones, y así sucesivamente.

Se origina de este modo una reacción en cadena mediante la cual, en un tiempo muy breve, se consigue la fisión de un gran número de núcleos y se libera una enorme cantidad de radiación y energía.

desintegracion nuclear

Reacción en cadena

La Fusión Nuclear

Una reacción de fusión nuclear es un proceso según el cual se unen núcleos ligeros o intermedios para formar núcleos más pesados, obteniéndose energía.

La fusión de un núcleo de deuterio, 2H, con un núcleo de tritio, 3H, da lugar a la formación de un núcleo de helio-4, 4He, además de un neutrón y una energía dc 17,6 MeV, que se desprende en forma de calor.

Esta es una de las reacciones mediante las que el Sol produce energia. La ecuación que describe el proceso es la siguiente:

2H + 3H —-> 4He+ 1 neutrón +  17,6 MeV

https://historiaybiografias.com/linea_divisoria1.jpg

Los fundamentos de la física atómica DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos.(Ver: Fision Nuclear)

La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones.

fision nuclear

Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

La rapidez con que se establece y se propaga la reacción en cadena dilataría y haría explotar la masa con extrema violencia antes que todos los núcleos hubiesen podido ser fragmentados.

Si se admite que sólo el 10% de los átomos participa en la reacción, la enorme cantidad de energía liberada equivale a la producida por la explosión de 2000 toneladas de trinitrotolueno.

En la foto de arriba se encuentran compartiendo una información física Albert Einstein y Leo Szilard. El doctor Leo Szilard, fue a quien se le ocurrió mientras esperaba el cambio de un semáforo en la intersección de Southampton Row en Londres, la ideas de producir una reacción nuclear controlada, bombardeando núcleos con neutrones. Por puro juego, y no por ningún impulso agresivo, el físico bajito y gordo, húngaro de nacimiento, visualizó una reacción atómica en cadena mientras deambulada por la ciudad en aquel dorado septiembre de 1933, dedicado a sus pasatiempos favoritos: pensar y pasear.

En forma de calor, mil novecientos millones de grandes calorías estarían disponibles, constituyendo el centro de la volatilización de toda materia presente.

En una fracción infinitesimal de segundo, la temperatura se elevaría a centenares de miles de grados en el lugar de la explosión, engendrando un espantoso vendaval cuyos efectos destructores —merced a la propagación de la onda de compresión— semejarían a la devastadora barrida de una gigantesca marca.

En vísperas de la Segunda Guerra Mundial, todas estas posibilidades no pasaban de ser meras previsiones teóricas, a las cuales, sin embargo, el comienzo del conflicto bélico iba a conferir excepcionales alcances.

Hacia fines de 1940, cuando el secreto militar comenzó a volver impenetrable el velo que cubría las investigaciones sobre la energía nuclear, la utilización de la misma para producir una bomba parecía todavía un objetivo muy lejano e incluso utópico.

Sin duda se sabía que el uranio 235 era particularmente sensible a la “fisión” y que ofrecía una sección eficaz mayor a los neutrones lentos que a los rápidos; se habían desarrollado métodos para producir neutrones lentos; se habían elaborado procedimientos para separar el uranio 235 de su isótopo corriente; se había logrado aislar dos elementos transuránicos, el neptunio y el plutonio, y se reconocía que este último era también “fisionable” en circunstancias semejantes a las del uranio 235.

Además, se habla adquirido la certeza de que en la “fisión”, al menos un neutrón rápido —y en término medio dos o tres— era emitido por el núcleo.

Sin embargo, a pesar del conjunto de tales progresos, todavía nadie había logrado producir una reacción autosustentada.

Algunos investigadores incluso se preguntaban si la naturaleza acepta someterse a las exigencias de los teóricos. Tal vez la reacción en cadena era, en general, irrealizable. Pero las dudas terminaron por disiparse definitivamente el 2 de diciembre de 1942: ENRICO FERMI había realizado en Chicago, por primera vez, una reacción nuclear autosostenida.

El dispositivo construido en Chicago consistía en una pila de ladrillos de grafito puro que incluía trozos de uranio, separados por distancias regulares conforme a un esquema geométrico.

El grafito servía de sustancia moderadora destinada a frenar mediante choques elásticos los neutrones que salen dotados de elevadas velocidades de la ruptura nuclear del uranio 235.

Algunos de los neutrones penetran en el isótopo pesado U-238, otros vuelven a ser capturados por el isótopo liviano U-235, puesto que ambos están presentes en los trozos de metal de la pila.

Los proyectiles que golpean el U-238 provocan su transformación, que termina por dar origen al plutonio, mientras neutrones capturados por núcleos de U-235 producen la “fisión” de éstos, expulsando neutrones que siguen provocando nuevas rupturas.

Así, la pila produce a la vez materia “fisionahle” (plutonio) y libera energía al desintegrar núcleos.

Agreguemos que para el arranque no se necesita detonador ni ningún otro dispositivo especial; los neutrones de origen cósmico existentes en la atmósfera, o neutrones errantes que provienen de la explosión espontánea de un átomo de uranio, son suficientes para iniciar la reacción.

Una condición indispensable para el funcionamiento de la pila es su volumen, que debe superar cierto tamaño crítico.

De lo contrario el número de neutrones que escapan por la superficie de la pila no permite que se establezca la cadena de las reacciones.

Para el autosostenímiento de la cadena es menester, además, que cada neutrón incidente produzca al menos un nuevo neutrón apto para determinar a su vez la ruptura de un núcleo, siendo en este caso el “factor de multiplicación” igual a la unidad.

La cadena se extingue si dicho factor resulta inferior a uno; en cambio, si es considerablemente superior, la liberación continua y lenta de la energía se transforma en un proceso explosivo, convirtiendo a la pila en una bomba.

Tan peligrosa proliferación de neutrones es contrarrestada introduciendo en la masa de grafito láminas de materia absorbente (cadmio) que permiten mantener constante la velocidad de la reacción y “controlar” el nivel energético de la pila mediante un dispositivo automático.

Tales fueron, a grandes rasgos, las fundamentales características de la pila de FERMI, arquetipo de todos los reactores.

Al principio la pila de FERMI engendró, en forma de calor, una potencia de 0,5 vatio; poco después aumentó su nivel de energía hasta llegar a 200 vatios. Con tal reducido poder, una pila debería funcionar varios miles de años para producir la cantidad de plutonio requerida en la fabricación de una sola bomba.

Mas una conquista no puede medirse en vatios.

La posibilidad de liberar energía nuclear en escala macroscópica estaba magníficamente demostrada.

Si bien la distancia que separa la pila experimental de Chicago de la bomba experimental de Alamogordo era muy superior a la existente entre la rudimentaria máquina de vapor de NEWCOMEN y la locomotora de STEPHENSON, el largo camino fue recorrido en el breve intervalo de treinta meses gracias al formidable potencial tecnológico de los Estados Unidos, y al esfuerzo de un verdadero ejército de científicos, técnicos y trabajadores.

El 6 de agosto, la pavorosa explosión que arrasó la ciudad de Hiroshima anunció al mundo que el hombre disponía de nuevas y tremendas fuerzas aprisionadas desde eternidades en las entrañas de la materia.

“En el interior de una bomba de fisión —escribe uno de los principales constructores de la bomba, ROBERT OPPENHEIMER (1904-1967)—, se materializa un lugar con el cual ningún otro puede ser comparado.

Al explotar la bomba se producen temperaturas más elevadas que las que reinan en el centro del Sol; su carga está constituida por materias que normalmente no existen en la naturaleza y se emiten radiaciones (neutrones, rayos gamma, electrones) de una intensidad que no tiene precedentes en la experiencia humana.

El factor de multiplicación es el cociente del número de los nuevos neutrones producidos y el número inicial de los neutrones primitivos.En la pila de FERMI el factor de multiplicación era igual a 1,007.

Las presiones que se obtienen equivalen a billones de veces la presión atmosférica.

En el sentido más primario y más sencillo, es perfectamente cierto que con las armas atómicas el hombre ha creado situaciones nuevas.”

En pilas y bombas de uranio (o plutonio), la energía se produce por la ruptura de un elemento muy pesado en fragmentos menos pesados. Sin embargo, para producir enormes cantidades de energía no es éste el proceso que la naturaleza elige.

Las estrellas prefieren la fusión a la “fisión”; como ya dijimos, transforman en gigantesca escala —por síntesis de elementos livianos— una parte de su materia nuclear en energía radiante.

Tan sólo las prodigiosas reservas energéticas, cuyo depósito son los núcleos, pueden permitir al Sol irradiar en forma de luz y calor, año tras año, tres quintillones (3 x 1030) de grandes calorías.

Este torrente de energía solar fluye por lo menos desde hace cuatrocientos o quinientos millones de años, puesto que las pruebas aportadas por la flora y fauna paleozoicas sugieren que las condiciones climáticas de la Tierra no han cambiado esencialmente desde aquella remotísima era primaria.

Mas ¿cuál es la transformación nuclear capaz de alimentar tan formidable despliegue energético, que equivale por segundo a una pérdida de cuatro millones de toneladas de masa solar?.

No cabe duda de que la transformación del elemento más común del universo, el hidrógeno en helio (el elemento que sigue al hidrógeno en la Tabla Periódica), podría suministrar la fuente energética de la radiación solar.

En efecto, la síntesis del helio a partir de los constituyentes de su núcleo está acompañada —como hemos explicado al tratar la energía de la unión nuclear— por la pérdida de una parte de las masas que intervienen, siendo liberada la masa desaparecida —de acuerdo con la equivalencia einsteniana— en forma de energía radiante. Sin embargo, el mecanismo de la supuesta transmutación no había dejado de ser enigmático hasta que HANS BETHE, hacia 1940, propuso su hipótesis del ciclo del carbono.

Las enormes temperaturas que reinan en el interior del Sol —veinte millones de grados en la región central— confieren a las partículas de la masa solar —y especialmente a los protones a velocidades tan elevadas que éstas pueden penetrar en los núcleos de elementos livianos y transmutarlos.

Así, el núcleo ordinario de carbono, bombardeado por un protón, se transforma al capturarlo en un isótopo del nitrógeno que se desintegra.

En cinco reacciones consecutivas engendran con la emisión de dos electrones positivos varios isótopos de carbono, de nitrógeno y de oxígeno. Bombardeados éstos a su vez por núcleos de hidrógeno, conducen finalmente a la formación del helio.

La excepcional característica de este ciclo, que convierte cuatro núcleos de hidrógeno en un núcleo de helio, es la reaparición del carbono inicial en la última reacción, que se encuentra así regenerado.

Desempeña el papel de catalizador y puede ser utilizado innumerables veces, hasta que todo el hidrógeno solar haya sido transmutado en helio, asegurando así las reservas energéticas del Sol durante miles de millones de años. A idénticas o análogas reacciones termonucleares deben sus caudales de energía también otras estrellas.

No cabe duda de que el ciclo de carbono, productor de la energía solar, representa el primordial proceso físico-químico del universo desde la perspectiva de la historia humana.

Sin las reacciones termonucleares, que se realizan en el interior del Sol, la vida no habría podido surgir sobre la superficie de la Tierra, donde los fenómenos biológicos, desde la fotosíntesis de la clorofila de los vegetales hasta el metabolismo en el organismo de los animales y del hombre, son tributarios de la radiación solar.

Es un hecho realmente notable que el carbono —sustancia básica de la materia viva— desempeñe también el papel de catalizador en el grandioso proceso cósmico que dio origen primario a todas las actividades vitales en la naturaleza terrestre.

La síntesis de elementos livianos a partir del hidrógeno ha dejado de ser privilegio de las masas estelares desde hace algunos años.

Reacciones termonucleares, productoras de la fusión de núcleos, suministran la fuente energética a la novísima arma: la bomba de hidrógeno. Desde luego, el ciclo de BETHE, que genera helio en las profundidades del globo solar es demasiado lento y complicado para el uso militar.

Es probable que la transmutación de una masa de los dos isótopos pesados del hidrógeno, el deuterio y el tritio, en helio, esté en la base de la liberación de energía realizada por la nueva bomba.

Para establecer las formidables temperaturas (varios millones de centígrados) capaces de desencadenar la reacción se utiliza la ruptura del uranio o del plutonio: la bomba de “fisión” sirve de detonador a la superbomba de fusión.

El modelo de ésta, utilizado por los expertos estadounidenses en las pruebas de Enivetock, a fines de 1952, superaba doscientas veces el poder (es decir, la cantidad de energía liberada) de la bomba de Hiroshima, según estimaciones extraoficiales.

No cabe duda de que la posibilidad de borrar de la superficie del globo cualquiera de las grandes metrópolis de la Tierra mediante la explosión de una bomba o a lo sumo de muy pocas bombas está, desde ahora, dentro de los alcances del hombre.

El uso de esta arma en un conflicto bélico significaría la abdicación de la razón humana y equivaldría a una tentativa de suicidio del homo sapiens.

Fuente Consultada: Historia de la Ciencia Desidero Papp

LISTA DE TEMAS TRATADOS EN ESTE SITIO:

1-¿Que es un Atomo? 2-La Energía Nuclear y sus Usos 3-La Física Moderna 4-La Fisión Nuclear 5-Partículas Elementales 6-Vida de Max Planck

Se llaman isótopos radiactivos o radioisótopos todos aquellos isótopos que emiten radiaciones.

Muchos elementos químicos tienen isótopos radiactivos cuyos núcleos emiten radiaciones y partículas de forma espontánea, a la vez que se transforman en núcleos de otros elementos.

Así, por ejemplo, uno de los isótopos del carbono, el carbono-14, es radiactivo y se transforma, espontáneamente, en un núcleo de nitrógeno.

Es posible conseguir que un núcleo estable se transforme en un radioisótopo. Si a un núcleo estable llega una partícula con suficiente energía, el núcleo puede desestabilizarse y volverse radiactivo para recuperar la estabilidad.

Cuando esto sucede, se habla de radiactividad artificial, en oposición a la radiactividad espontánea o radiactividad natural.

Período de Semidesintegración

Toda desintegración natural es un proceso aleatorio, es decir, no se puede predecir exactamente cuándo un núcleo determinado va a desintegrarse.

Ahora bien, es posible calcular la probabilidad de que un núcleo se desintegre en un tiempo determinado. Con este fin se asocia a cada sustancia radiactiva una magnitud característica llamada período de semidesintegración.

El período de semidesintegración, de una sustancia radiactiva es el tiempo necesario para que se desintegre la mitad de los núcleos presentes en una muestra de dicha sustancia.

Es decir, si tenemos una masa m de una sustancia y al cabo de 14 días tenemos la mitad (m/2) de esa sustancia (la otra mitad se ha desintegrado), diremos que su período de semidesintegración es de 14 días.

El período de semidesintegración varía para las distintas sustancias radiactivas desde millones de años a fracciones de segundo Sin embargo, cualquier sustancia radiactiva evoluciona en el tiempo ajustándose a una curva como la que se representa en la figura siguiente:

curva de desintegracion atomica

Curva de desintergración radiactiva

tabla tiempo desintegracion
Períodos de semidesintegración de algunos isótopos

Como el período de desintegración del Radio 223 es de 8 días, tendrán que pasar unos 24 días para que la radioactividad de la muestra de este isótopo se reduzca a la octava parte (1/8)

Energía de Enlace Nuclear

Para calcular la masa de un cierto núcleo se multiplicará el número de protones que contiene por la masa de un protón, se multiplicará el número de neutrones por la masa de un neutrón y se sumarán ambas cantidades.

El núcleo de Li contiene tres protones y tres neutrones.

La masa de un neutrón es de 1,6748 . 10-27 kg y la masa de un protón es de 1,6725 . 10-27 kg.

En consecuencia, cabría esperar que la masa de este núcleo fuera de 10,0419 . 10-27 kg.

Sin embargo, la masa de un núcleo de litio, 9,9846 10-27kg., es menor que la calculada sumando las masas de los tres protones y los tres neutrones que lo constituyen. El defecto de masa es de 0,0573 . 10-27 kg.

energia de un atomo

Defecto de masa en el núcleo de Litio

Este hecho se repite para todos los núcleos atómicos. La masa de un núcleo atómico es menor que la que se obtiene cuando se suman las masas de los protones y los neutrones que lo constituyen.

La diferencia entre ambos valores recibe el nombre de defecto de masa.

El defecto de masa se produce porque parte de la masa de los protones y neutrones se transforma en energía cuando dichas partículas se unen para formar un núcleo atómico.

A partir de este hecho se define una nueva magnitud, la energía total de enlace nuclear, que es la energía que se desprende en la formación de un núcleo a partir de los nucleones que lo forman.

Para el núcleo de litio, dicha energía es de 32 MeV. (nota 1 electronvoltio (eV) es la energía cinética que adquiere un electrón al someterse a una diferecia de potencial de 1 voltio.

Dicha energía es de 1.6 . 10-19 Julio. Un MeV equivale a un millón de eV)

Los procesos en los que se modifican los núcleos de los átomos reciben el nombre de reacciones nucleares.

En las reacciones nucleares, pequeñas cantidades de masa se transforman en grandes cantidades de energía, de acuerdo con la equivalencia establecida por Einstein.

E = m.c2

Donde E es la energía desprendida, m es el defecto de masa y c es la velocidad de propagación de la luz en el vacío.

Debido al elevado valor de c, a partir de una pequeña cantidad de materia es posible obtener una enorme cantidad de energía.

Albert Einstein (1879-1955)
einstein

Ejemplo de Fisión Nuclear:

Determinados núcleos pesados, como, por ejemplo, el núcleo de uranio-235, se rompen en dos núcleos intermedios cuando se bombardean con neutrones.

En este proceso, conocido como fisión nuclear, también se emiten otras partículas, además de radiación y una gran cantidad de energía.

De la fisión de un núcleo de uranio-235 se obtiene un átomo de bario-142, un átomo de criptón-91, 3 neutrones y una energía de 210 MeV que se desprende en forma de calor. La ecuación que describe el proceso es la siguiente:

235U + 1 neutrón —-> 142Ba + 91Kr + 3 neutrones + 210 MeV

La masa del núcleo de uranio-235 sumada con la masa del neutrón es ligeramente superior a la suma de las masas del núcleo de bario- 142, el núcleo de criptón-91 y los tres neutrones. Este pequeño defecto de masa se ha transformado en energía.

Los neutrones que se obtienen en la fisión de un núcleo de uranio-235 pueden utilizarse para bombardear otros núcleos de este isótopo y provocar nuevas fisiones que a su vez producirán nuevos neutrones, y así sucesivamente.

Se origina de este modo una reacción en cadena mediante la cual, en un tiempo muy breve, se consigue la fisión de un gran número de núcleos y se libera una enorme cantidad de radiación y energía.

desintegracion nuclear

Reacción en cadena

La Fusión Nuclear

Una reacción de fusión nuclear es un proceso según el cual se unen núcleos ligeros o intermedios para formar núcleos más pesados, obteniéndose energía.

La fusión de un núcleo de deuterio, 2H, con un núcleo de tritio, 3H, da lugar a la formación de un núcleo de helio-4, 4He, además de un neutrón y una energía dc 17,6 MeV, que se desprende en forma de calor.

Esta es una de las reacciones mediante las que el Sol produce energia. La ecuación que describe el proceso es la siguiente:

2H + 3H —-> 4He+ 1 neutrón +  17,6 MeV

https://historiaybiografias.com/linea_divisoria1.jpg

Los fundamentos de la física atómica DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos.(Ver: Fision Nuclear)

La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones.

fision nuclear

Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

La rapidez con que se establece y se propaga la reacción en cadena dilataría y haría explotar la masa con extrema violencia antes que todos los núcleos hubiesen podido ser fragmentados.

Si se admite que sólo el 10% de los átomos participa en la reacción, la enorme cantidad de energía liberada equivale a la producida por la explosión de 2000 toneladas de trinitrotolueno.

En la foto de arriba se encuentran compartiendo una información física Albert Einstein y Leo Szilard. El doctor Leo Szilard, fue a quien se le ocurrió mientras esperaba el cambio de un semáforo en la intersección de Southampton Row en Londres, la ideas de producir una reacción nuclear controlada, bombardeando núcleos con neutrones. Por puro juego, y no por ningún impulso agresivo, el físico bajito y gordo, húngaro de nacimiento, visualizó una reacción atómica en cadena mientras deambulada por la ciudad en aquel dorado septiembre de 1933, dedicado a sus pasatiempos favoritos: pensar y pasear.

En forma de calor, mil novecientos millones de grandes calorías estarían disponibles, constituyendo el centro de la volatilización de toda materia presente.

En una fracción infinitesimal de segundo, la temperatura se elevaría a centenares de miles de grados en el lugar de la explosión, engendrando un espantoso vendaval cuyos efectos destructores —merced a la propagación de la onda de compresión— semejarían a la devastadora barrida de una gigantesca marca.

En vísperas de la Segunda Guerra Mundial, todas estas posibilidades no pasaban de ser meras previsiones teóricas, a las cuales, sin embargo, el comienzo del conflicto bélico iba a conferir excepcionales alcances.

Hacia fines de 1940, cuando el secreto militar comenzó a volver impenetrable el velo que cubría las investigaciones sobre la energía nuclear, la utilización de la misma para producir una bomba parecía todavía un objetivo muy lejano e incluso utópico.

Sin duda se sabía que el uranio 235 era particularmente sensible a la “fisión” y que ofrecía una sección eficaz mayor a los neutrones lentos que a los rápidos; se habían desarrollado métodos para producir neutrones lentos; se habían elaborado procedimientos para separar el uranio 235 de su isótopo corriente; se había logrado aislar dos elementos transuránicos, el neptunio y el plutonio, y se reconocía que este último era también “fisionable” en circunstancias semejantes a las del uranio 235.

Además, se habla adquirido la certeza de que en la “fisión”, al menos un neutrón rápido —y en término medio dos o tres— era emitido por el núcleo.

Sin embargo, a pesar del conjunto de tales progresos, todavía nadie había logrado producir una reacción autosustentada.

Algunos investigadores incluso se preguntaban si la naturaleza acepta someterse a las exigencias de los teóricos. Tal vez la reacción en cadena era, en general, irrealizable. Pero las dudas terminaron por disiparse definitivamente el 2 de diciembre de 1942: ENRICO FERMI había realizado en Chicago, por primera vez, una reacción nuclear autosostenida.

El dispositivo construido en Chicago consistía en una pila de ladrillos de grafito puro que incluía trozos de uranio, separados por distancias regulares conforme a un esquema geométrico.

El grafito servía de sustancia moderadora destinada a frenar mediante choques elásticos los neutrones que salen dotados de elevadas velocidades de la ruptura nuclear del uranio 235.

Algunos de los neutrones penetran en el isótopo pesado U-238, otros vuelven a ser capturados por el isótopo liviano U-235, puesto que ambos están presentes en los trozos de metal de la pila.

Los proyectiles que golpean el U-238 provocan su transformación, que termina por dar origen al plutonio, mientras neutrones capturados por núcleos de U-235 producen la “fisión” de éstos, expulsando neutrones que siguen provocando nuevas rupturas.

Así, la pila produce a la vez materia “fisionahle” (plutonio) y libera energía al desintegrar núcleos.

Agreguemos que para el arranque no se necesita detonador ni ningún otro dispositivo especial; los neutrones de origen cósmico existentes en la atmósfera, o neutrones errantes que provienen de la explosión espontánea de un átomo de uranio, son suficientes para iniciar la reacción.

Una condición indispensable para el funcionamiento de la pila es su volumen, que debe superar cierto tamaño crítico.

De lo contrario el número de neutrones que escapan por la superficie de la pila no permite que se establezca la cadena de las reacciones.

Para el autosostenímiento de la cadena es menester, además, que cada neutrón incidente produzca al menos un nuevo neutrón apto para determinar a su vez la ruptura de un núcleo, siendo en este caso el “factor de multiplicación” igual a la unidad.

La cadena se extingue si dicho factor resulta inferior a uno; en cambio, si es considerablemente superior, la liberación continua y lenta de la energía se transforma en un proceso explosivo, convirtiendo a la pila en una bomba.

Tan peligrosa proliferación de neutrones es contrarrestada introduciendo en la masa de grafito láminas de materia absorbente (cadmio) que permiten mantener constante la velocidad de la reacción y “controlar” el nivel energético de la pila mediante un dispositivo automático.

Tales fueron, a grandes rasgos, las fundamentales características de la pila de FERMI, arquetipo de todos los reactores.

Al principio la pila de FERMI engendró, en forma de calor, una potencia de 0,5 vatio; poco después aumentó su nivel de energía hasta llegar a 200 vatios. Con tal reducido poder, una pila debería funcionar varios miles de años para producir la cantidad de plutonio requerida en la fabricación de una sola bomba.

Mas una conquista no puede medirse en vatios.

La posibilidad de liberar energía nuclear en escala macroscópica estaba magníficamente demostrada.

Si bien la distancia que separa la pila experimental de Chicago de la bomba experimental de Alamogordo era muy superior a la existente entre la rudimentaria máquina de vapor de NEWCOMEN y la locomotora de STEPHENSON, el largo camino fue recorrido en el breve intervalo de treinta meses gracias al formidable potencial tecnológico de los Estados Unidos, y al esfuerzo de un verdadero ejército de científicos, técnicos y trabajadores.

El 6 de agosto, la pavorosa explosión que arrasó la ciudad de Hiroshima anunció al mundo que el hombre disponía de nuevas y tremendas fuerzas aprisionadas desde eternidades en las entrañas de la materia.

“En el interior de una bomba de fisión —escribe uno de los principales constructores de la bomba, ROBERT OPPENHEIMER (1904-1967)—, se materializa un lugar con el cual ningún otro puede ser comparado.

Al explotar la bomba se producen temperaturas más elevadas que las que reinan en el centro del Sol; su carga está constituida por materias que normalmente no existen en la naturaleza y se emiten radiaciones (neutrones, rayos gamma, electrones) de una intensidad que no tiene precedentes en la experiencia humana.

El factor de multiplicación es el cociente del número de los nuevos neutrones producidos y el número inicial de los neutrones primitivos.En la pila de FERMI el factor de multiplicación era igual a 1,007.

Las presiones que se obtienen equivalen a billones de veces la presión atmosférica.

En el sentido más primario y más sencillo, es perfectamente cierto que con las armas atómicas el hombre ha creado situaciones nuevas.”

En pilas y bombas de uranio (o plutonio), la energía se produce por la ruptura de un elemento muy pesado en fragmentos menos pesados. Sin embargo, para producir enormes cantidades de energía no es éste el proceso que la naturaleza elige.

Las estrellas prefieren la fusión a la “fisión”; como ya dijimos, transforman en gigantesca escala —por síntesis de elementos livianos— una parte de su materia nuclear en energía radiante.

Tan sólo las prodigiosas reservas energéticas, cuyo depósito son los núcleos, pueden permitir al Sol irradiar en forma de luz y calor, año tras año, tres quintillones (3 x 1030) de grandes calorías.

Este torrente de energía solar fluye por lo menos desde hace cuatrocientos o quinientos millones de años, puesto que las pruebas aportadas por la flora y fauna paleozoicas sugieren que las condiciones climáticas de la Tierra no han cambiado esencialmente desde aquella remotísima era primaria.

Mas ¿cuál es la transformación nuclear capaz de alimentar tan formidable despliegue energético, que equivale por segundo a una pérdida de cuatro millones de toneladas de masa solar?.

No cabe duda de que la transformación del elemento más común del universo, el hidrógeno en helio (el elemento que sigue al hidrógeno en la Tabla Periódica), podría suministrar la fuente energética de la radiación solar.

En efecto, la síntesis del helio a partir de los constituyentes de su núcleo está acompañada —como hemos explicado al tratar la energía de la unión nuclear— por la pérdida de una parte de las masas que intervienen, siendo liberada la masa desaparecida —de acuerdo con la equivalencia einsteniana— en forma de energía radiante. Sin embargo, el mecanismo de la supuesta transmutación no había dejado de ser enigmático hasta que HANS BETHE, hacia 1940, propuso su hipótesis del ciclo del carbono.

Las enormes temperaturas que reinan en el interior del Sol —veinte millones de grados en la región central— confieren a las partículas de la masa solar —y especialmente a los protones a velocidades tan elevadas que éstas pueden penetrar en los núcleos de elementos livianos y transmutarlos.

Así, el núcleo ordinario de carbono, bombardeado por un protón, se transforma al capturarlo en un isótopo del nitrógeno que se desintegra.

En cinco reacciones consecutivas engendran con la emisión de dos electrones positivos varios isótopos de carbono, de nitrógeno y de oxígeno. Bombardeados éstos a su vez por núcleos de hidrógeno, conducen finalmente a la formación del helio.

La excepcional característica de este ciclo, que convierte cuatro núcleos de hidrógeno en un núcleo de helio, es la reaparición del carbono inicial en la última reacción, que se encuentra así regenerado.

Desempeña el papel de catalizador y puede ser utilizado innumerables veces, hasta que todo el hidrógeno solar haya sido transmutado en helio, asegurando así las reservas energéticas del Sol durante miles de millones de años. A idénticas o análogas reacciones termonucleares deben sus caudales de energía también otras estrellas.

No cabe duda de que el ciclo de carbono, productor de la energía solar, representa el primordial proceso físico-químico del universo desde la perspectiva de la historia humana.

Sin las reacciones termonucleares, que se realizan en el interior del Sol, la vida no habría podido surgir sobre la superficie de la Tierra, donde los fenómenos biológicos, desde la fotosíntesis de la clorofila de los vegetales hasta el metabolismo en el organismo de los animales y del hombre, son tributarios de la radiación solar.

Es un hecho realmente notable que el carbono —sustancia básica de la materia viva— desempeñe también el papel de catalizador en el grandioso proceso cósmico que dio origen primario a todas las actividades vitales en la naturaleza terrestre.

La síntesis de elementos livianos a partir del hidrógeno ha dejado de ser privilegio de las masas estelares desde hace algunos años.

Reacciones termonucleares, productoras de la fusión de núcleos, suministran la fuente energética a la novísima arma: la bomba de hidrógeno. Desde luego, el ciclo de BETHE, que genera helio en las profundidades del globo solar es demasiado lento y complicado para el uso militar.

Es probable que la transmutación de una masa de los dos isótopos pesados del hidrógeno, el deuterio y el tritio, en helio, esté en la base de la liberación de energía realizada por la nueva bomba.

Para establecer las formidables temperaturas (varios millones de centígrados) capaces de desencadenar la reacción se utiliza la ruptura del uranio o del plutonio: la bomba de “fisión” sirve de detonador a la superbomba de fusión.

El modelo de ésta, utilizado por los expertos estadounidenses en las pruebas de Enivetock, a fines de 1952, superaba doscientas veces el poder (es decir, la cantidad de energía liberada) de la bomba de Hiroshima, según estimaciones extraoficiales.

No cabe duda de que la posibilidad de borrar de la superficie del globo cualquiera de las grandes metrópolis de la Tierra mediante la explosión de una bomba o a lo sumo de muy pocas bombas está, desde ahora, dentro de los alcances del hombre.

El uso de esta arma en un conflicto bélico significaría la abdicación de la razón humana y equivaldría a una tentativa de suicidio del homo sapiens.

Fuente Consultada: Historia de la Ciencia Desidero Papp

LISTA DE TEMAS TRATADOS EN ESTE SITIO:

1-¿Que es un Atomo? 2-La Energía Nuclear y sus Usos 3-La Física Moderna 4-La Fisión Nuclear 5-Partículas Elementales 6-Vida de Max Planck

Si el núcleo es estable, el elemento no es radiactivo; pero cuando la relación entre los componentes del núcleo no es la adecuada, éste emite partículas y radiaciones electromagnéticas hasta alcanzar la estabilidad.

Se llaman isótopos radiactivos o radioisótopos todos aquellos isótopos que emiten radiaciones.

Muchos elementos químicos tienen isótopos radiactivos cuyos núcleos emiten radiaciones y partículas de forma espontánea, a la vez que se transforman en núcleos de otros elementos.

Así, por ejemplo, uno de los isótopos del carbono, el carbono-14, es radiactivo y se transforma, espontáneamente, en un núcleo de nitrógeno.

Es posible conseguir que un núcleo estable se transforme en un radioisótopo. Si a un núcleo estable llega una partícula con suficiente energía, el núcleo puede desestabilizarse y volverse radiactivo para recuperar la estabilidad.

Cuando esto sucede, se habla de radiactividad artificial, en oposición a la radiactividad espontánea o radiactividad natural.

Período de Semidesintegración

Toda desintegración natural es un proceso aleatorio, es decir, no se puede predecir exactamente cuándo un núcleo determinado va a desintegrarse.

Ahora bien, es posible calcular la probabilidad de que un núcleo se desintegre en un tiempo determinado. Con este fin se asocia a cada sustancia radiactiva una magnitud característica llamada período de semidesintegración.

El período de semidesintegración, de una sustancia radiactiva es el tiempo necesario para que se desintegre la mitad de los núcleos presentes en una muestra de dicha sustancia.

Es decir, si tenemos una masa m de una sustancia y al cabo de 14 días tenemos la mitad (m/2) de esa sustancia (la otra mitad se ha desintegrado), diremos que su período de semidesintegración es de 14 días.

El período de semidesintegración varía para las distintas sustancias radiactivas desde millones de años a fracciones de segundo Sin embargo, cualquier sustancia radiactiva evoluciona en el tiempo ajustándose a una curva como la que se representa en la figura siguiente:

curva de desintegracion atomica

Curva de desintergración radiactiva

tabla tiempo desintegracion
Períodos de semidesintegración de algunos isótopos

Como el período de desintegración del Radio 223 es de 8 días, tendrán que pasar unos 24 días para que la radioactividad de la muestra de este isótopo se reduzca a la octava parte (1/8)

Energía de Enlace Nuclear

Para calcular la masa de un cierto núcleo se multiplicará el número de protones que contiene por la masa de un protón, se multiplicará el número de neutrones por la masa de un neutrón y se sumarán ambas cantidades.

El núcleo de Li contiene tres protones y tres neutrones.

La masa de un neutrón es de 1,6748 . 10-27 kg y la masa de un protón es de 1,6725 . 10-27 kg.

En consecuencia, cabría esperar que la masa de este núcleo fuera de 10,0419 . 10-27 kg.

Sin embargo, la masa de un núcleo de litio, 9,9846 10-27kg., es menor que la calculada sumando las masas de los tres protones y los tres neutrones que lo constituyen. El defecto de masa es de 0,0573 . 10-27 kg.

energia de un atomo

Defecto de masa en el núcleo de Litio

Este hecho se repite para todos los núcleos atómicos. La masa de un núcleo atómico es menor que la que se obtiene cuando se suman las masas de los protones y los neutrones que lo constituyen.

La diferencia entre ambos valores recibe el nombre de defecto de masa.

El defecto de masa se produce porque parte de la masa de los protones y neutrones se transforma en energía cuando dichas partículas se unen para formar un núcleo atómico.

A partir de este hecho se define una nueva magnitud, la energía total de enlace nuclear, que es la energía que se desprende en la formación de un núcleo a partir de los nucleones que lo forman.

Para el núcleo de litio, dicha energía es de 32 MeV. (nota 1 electronvoltio (eV) es la energía cinética que adquiere un electrón al someterse a una diferecia de potencial de 1 voltio.

Dicha energía es de 1.6 . 10-19 Julio. Un MeV equivale a un millón de eV)

Los procesos en los que se modifican los núcleos de los átomos reciben el nombre de reacciones nucleares.

En las reacciones nucleares, pequeñas cantidades de masa se transforman en grandes cantidades de energía, de acuerdo con la equivalencia establecida por Einstein.

E = m.c2

Donde E es la energía desprendida, m es el defecto de masa y c es la velocidad de propagación de la luz en el vacío.

Debido al elevado valor de c, a partir de una pequeña cantidad de materia es posible obtener una enorme cantidad de energía.

Albert Einstein (1879-1955)
einstein

Ejemplo de Fisión Nuclear:

Determinados núcleos pesados, como, por ejemplo, el núcleo de uranio-235, se rompen en dos núcleos intermedios cuando se bombardean con neutrones.

En este proceso, conocido como fisión nuclear, también se emiten otras partículas, además de radiación y una gran cantidad de energía.

De la fisión de un núcleo de uranio-235 se obtiene un átomo de bario-142, un átomo de criptón-91, 3 neutrones y una energía de 210 MeV que se desprende en forma de calor. La ecuación que describe el proceso es la siguiente:

235U + 1 neutrón —-> 142Ba + 91Kr + 3 neutrones + 210 MeV

La masa del núcleo de uranio-235 sumada con la masa del neutrón es ligeramente superior a la suma de las masas del núcleo de bario- 142, el núcleo de criptón-91 y los tres neutrones. Este pequeño defecto de masa se ha transformado en energía.

Los neutrones que se obtienen en la fisión de un núcleo de uranio-235 pueden utilizarse para bombardear otros núcleos de este isótopo y provocar nuevas fisiones que a su vez producirán nuevos neutrones, y así sucesivamente.

Se origina de este modo una reacción en cadena mediante la cual, en un tiempo muy breve, se consigue la fisión de un gran número de núcleos y se libera una enorme cantidad de radiación y energía.

desintegracion nuclear

Reacción en cadena

La Fusión Nuclear

Una reacción de fusión nuclear es un proceso según el cual se unen núcleos ligeros o intermedios para formar núcleos más pesados, obteniéndose energía.

La fusión de un núcleo de deuterio, 2H, con un núcleo de tritio, 3H, da lugar a la formación de un núcleo de helio-4, 4He, además de un neutrón y una energía dc 17,6 MeV, que se desprende en forma de calor.

Esta es una de las reacciones mediante las que el Sol produce energia. La ecuación que describe el proceso es la siguiente:

2H + 3H —-> 4He+ 1 neutrón +  17,6 MeV

https://historiaybiografias.com/linea_divisoria1.jpg

Los fundamentos de la física atómica DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos.(Ver: Fision Nuclear)

La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones.

fision nuclear

Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

La rapidez con que se establece y se propaga la reacción en cadena dilataría y haría explotar la masa con extrema violencia antes que todos los núcleos hubiesen podido ser fragmentados.

Si se admite que sólo el 10% de los átomos participa en la reacción, la enorme cantidad de energía liberada equivale a la producida por la explosión de 2000 toneladas de trinitrotolueno.

En la foto de arriba se encuentran compartiendo una información física Albert Einstein y Leo Szilard. El doctor Leo Szilard, fue a quien se le ocurrió mientras esperaba el cambio de un semáforo en la intersección de Southampton Row en Londres, la ideas de producir una reacción nuclear controlada, bombardeando núcleos con neutrones. Por puro juego, y no por ningún impulso agresivo, el físico bajito y gordo, húngaro de nacimiento, visualizó una reacción atómica en cadena mientras deambulada por la ciudad en aquel dorado septiembre de 1933, dedicado a sus pasatiempos favoritos: pensar y pasear.

En forma de calor, mil novecientos millones de grandes calorías estarían disponibles, constituyendo el centro de la volatilización de toda materia presente.

En una fracción infinitesimal de segundo, la temperatura se elevaría a centenares de miles de grados en el lugar de la explosión, engendrando un espantoso vendaval cuyos efectos destructores —merced a la propagación de la onda de compresión— semejarían a la devastadora barrida de una gigantesca marca.

En vísperas de la Segunda Guerra Mundial, todas estas posibilidades no pasaban de ser meras previsiones teóricas, a las cuales, sin embargo, el comienzo del conflicto bélico iba a conferir excepcionales alcances.

Hacia fines de 1940, cuando el secreto militar comenzó a volver impenetrable el velo que cubría las investigaciones sobre la energía nuclear, la utilización de la misma para producir una bomba parecía todavía un objetivo muy lejano e incluso utópico.

Sin duda se sabía que el uranio 235 era particularmente sensible a la “fisión” y que ofrecía una sección eficaz mayor a los neutrones lentos que a los rápidos; se habían desarrollado métodos para producir neutrones lentos; se habían elaborado procedimientos para separar el uranio 235 de su isótopo corriente; se había logrado aislar dos elementos transuránicos, el neptunio y el plutonio, y se reconocía que este último era también “fisionable” en circunstancias semejantes a las del uranio 235.

Además, se habla adquirido la certeza de que en la “fisión”, al menos un neutrón rápido —y en término medio dos o tres— era emitido por el núcleo.

Sin embargo, a pesar del conjunto de tales progresos, todavía nadie había logrado producir una reacción autosustentada.

Algunos investigadores incluso se preguntaban si la naturaleza acepta someterse a las exigencias de los teóricos. Tal vez la reacción en cadena era, en general, irrealizable. Pero las dudas terminaron por disiparse definitivamente el 2 de diciembre de 1942: ENRICO FERMI había realizado en Chicago, por primera vez, una reacción nuclear autosostenida.

El dispositivo construido en Chicago consistía en una pila de ladrillos de grafito puro que incluía trozos de uranio, separados por distancias regulares conforme a un esquema geométrico.

El grafito servía de sustancia moderadora destinada a frenar mediante choques elásticos los neutrones que salen dotados de elevadas velocidades de la ruptura nuclear del uranio 235.

Algunos de los neutrones penetran en el isótopo pesado U-238, otros vuelven a ser capturados por el isótopo liviano U-235, puesto que ambos están presentes en los trozos de metal de la pila.

Los proyectiles que golpean el U-238 provocan su transformación, que termina por dar origen al plutonio, mientras neutrones capturados por núcleos de U-235 producen la “fisión” de éstos, expulsando neutrones que siguen provocando nuevas rupturas.

Así, la pila produce a la vez materia “fisionahle” (plutonio) y libera energía al desintegrar núcleos.

Agreguemos que para el arranque no se necesita detonador ni ningún otro dispositivo especial; los neutrones de origen cósmico existentes en la atmósfera, o neutrones errantes que provienen de la explosión espontánea de un átomo de uranio, son suficientes para iniciar la reacción.

Una condición indispensable para el funcionamiento de la pila es su volumen, que debe superar cierto tamaño crítico.

De lo contrario el número de neutrones que escapan por la superficie de la pila no permite que se establezca la cadena de las reacciones.

Para el autosostenímiento de la cadena es menester, además, que cada neutrón incidente produzca al menos un nuevo neutrón apto para determinar a su vez la ruptura de un núcleo, siendo en este caso el “factor de multiplicación” igual a la unidad.

La cadena se extingue si dicho factor resulta inferior a uno; en cambio, si es considerablemente superior, la liberación continua y lenta de la energía se transforma en un proceso explosivo, convirtiendo a la pila en una bomba.

Tan peligrosa proliferación de neutrones es contrarrestada introduciendo en la masa de grafito láminas de materia absorbente (cadmio) que permiten mantener constante la velocidad de la reacción y “controlar” el nivel energético de la pila mediante un dispositivo automático.

Tales fueron, a grandes rasgos, las fundamentales características de la pila de FERMI, arquetipo de todos los reactores.

Al principio la pila de FERMI engendró, en forma de calor, una potencia de 0,5 vatio; poco después aumentó su nivel de energía hasta llegar a 200 vatios. Con tal reducido poder, una pila debería funcionar varios miles de años para producir la cantidad de plutonio requerida en la fabricación de una sola bomba.

Mas una conquista no puede medirse en vatios.

La posibilidad de liberar energía nuclear en escala macroscópica estaba magníficamente demostrada.

Si bien la distancia que separa la pila experimental de Chicago de la bomba experimental de Alamogordo era muy superior a la existente entre la rudimentaria máquina de vapor de NEWCOMEN y la locomotora de STEPHENSON, el largo camino fue recorrido en el breve intervalo de treinta meses gracias al formidable potencial tecnológico de los Estados Unidos, y al esfuerzo de un verdadero ejército de científicos, técnicos y trabajadores.

El 6 de agosto, la pavorosa explosión que arrasó la ciudad de Hiroshima anunció al mundo que el hombre disponía de nuevas y tremendas fuerzas aprisionadas desde eternidades en las entrañas de la materia.

“En el interior de una bomba de fisión —escribe uno de los principales constructores de la bomba, ROBERT OPPENHEIMER (1904-1967)—, se materializa un lugar con el cual ningún otro puede ser comparado.

Al explotar la bomba se producen temperaturas más elevadas que las que reinan en el centro del Sol; su carga está constituida por materias que normalmente no existen en la naturaleza y se emiten radiaciones (neutrones, rayos gamma, electrones) de una intensidad que no tiene precedentes en la experiencia humana.

El factor de multiplicación es el cociente del número de los nuevos neutrones producidos y el número inicial de los neutrones primitivos.En la pila de FERMI el factor de multiplicación era igual a 1,007.

Las presiones que se obtienen equivalen a billones de veces la presión atmosférica.

En el sentido más primario y más sencillo, es perfectamente cierto que con las armas atómicas el hombre ha creado situaciones nuevas.”

En pilas y bombas de uranio (o plutonio), la energía se produce por la ruptura de un elemento muy pesado en fragmentos menos pesados. Sin embargo, para producir enormes cantidades de energía no es éste el proceso que la naturaleza elige.

Las estrellas prefieren la fusión a la “fisión”; como ya dijimos, transforman en gigantesca escala —por síntesis de elementos livianos— una parte de su materia nuclear en energía radiante.

Tan sólo las prodigiosas reservas energéticas, cuyo depósito son los núcleos, pueden permitir al Sol irradiar en forma de luz y calor, año tras año, tres quintillones (3 x 1030) de grandes calorías.

Este torrente de energía solar fluye por lo menos desde hace cuatrocientos o quinientos millones de años, puesto que las pruebas aportadas por la flora y fauna paleozoicas sugieren que las condiciones climáticas de la Tierra no han cambiado esencialmente desde aquella remotísima era primaria.

Mas ¿cuál es la transformación nuclear capaz de alimentar tan formidable despliegue energético, que equivale por segundo a una pérdida de cuatro millones de toneladas de masa solar?.

No cabe duda de que la transformación del elemento más común del universo, el hidrógeno en helio (el elemento que sigue al hidrógeno en la Tabla Periódica), podría suministrar la fuente energética de la radiación solar.

En efecto, la síntesis del helio a partir de los constituyentes de su núcleo está acompañada —como hemos explicado al tratar la energía de la unión nuclear— por la pérdida de una parte de las masas que intervienen, siendo liberada la masa desaparecida —de acuerdo con la equivalencia einsteniana— en forma de energía radiante. Sin embargo, el mecanismo de la supuesta transmutación no había dejado de ser enigmático hasta que HANS BETHE, hacia 1940, propuso su hipótesis del ciclo del carbono.

Las enormes temperaturas que reinan en el interior del Sol —veinte millones de grados en la región central— confieren a las partículas de la masa solar —y especialmente a los protones a velocidades tan elevadas que éstas pueden penetrar en los núcleos de elementos livianos y transmutarlos.

Así, el núcleo ordinario de carbono, bombardeado por un protón, se transforma al capturarlo en un isótopo del nitrógeno que se desintegra.

En cinco reacciones consecutivas engendran con la emisión de dos electrones positivos varios isótopos de carbono, de nitrógeno y de oxígeno. Bombardeados éstos a su vez por núcleos de hidrógeno, conducen finalmente a la formación del helio.

La excepcional característica de este ciclo, que convierte cuatro núcleos de hidrógeno en un núcleo de helio, es la reaparición del carbono inicial en la última reacción, que se encuentra así regenerado.

Desempeña el papel de catalizador y puede ser utilizado innumerables veces, hasta que todo el hidrógeno solar haya sido transmutado en helio, asegurando así las reservas energéticas del Sol durante miles de millones de años. A idénticas o análogas reacciones termonucleares deben sus caudales de energía también otras estrellas.

No cabe duda de que el ciclo de carbono, productor de la energía solar, representa el primordial proceso físico-químico del universo desde la perspectiva de la historia humana.

Sin las reacciones termonucleares, que se realizan en el interior del Sol, la vida no habría podido surgir sobre la superficie de la Tierra, donde los fenómenos biológicos, desde la fotosíntesis de la clorofila de los vegetales hasta el metabolismo en el organismo de los animales y del hombre, son tributarios de la radiación solar.

Es un hecho realmente notable que el carbono —sustancia básica de la materia viva— desempeñe también el papel de catalizador en el grandioso proceso cósmico que dio origen primario a todas las actividades vitales en la naturaleza terrestre.

La síntesis de elementos livianos a partir del hidrógeno ha dejado de ser privilegio de las masas estelares desde hace algunos años.

Reacciones termonucleares, productoras de la fusión de núcleos, suministran la fuente energética a la novísima arma: la bomba de hidrógeno. Desde luego, el ciclo de BETHE, que genera helio en las profundidades del globo solar es demasiado lento y complicado para el uso militar.

Es probable que la transmutación de una masa de los dos isótopos pesados del hidrógeno, el deuterio y el tritio, en helio, esté en la base de la liberación de energía realizada por la nueva bomba.

Para establecer las formidables temperaturas (varios millones de centígrados) capaces de desencadenar la reacción se utiliza la ruptura del uranio o del plutonio: la bomba de “fisión” sirve de detonador a la superbomba de fusión.

El modelo de ésta, utilizado por los expertos estadounidenses en las pruebas de Enivetock, a fines de 1952, superaba doscientas veces el poder (es decir, la cantidad de energía liberada) de la bomba de Hiroshima, según estimaciones extraoficiales.

No cabe duda de que la posibilidad de borrar de la superficie del globo cualquiera de las grandes metrópolis de la Tierra mediante la explosión de una bomba o a lo sumo de muy pocas bombas está, desde ahora, dentro de los alcances del hombre.

El uso de esta arma en un conflicto bélico significaría la abdicación de la razón humana y equivaldría a una tentativa de suicidio del homo sapiens.

Fuente Consultada: Historia de la Ciencia Desidero Papp

LISTA DE TEMAS TRATADOS EN ESTE SITIO:

1-¿Que es un Atomo? 2-La Energía Nuclear y sus Usos 3-La Física Moderna 4-La Fisión Nuclear 5-Partículas Elementales 6-Vida de Max Planck

Según la proporción entre protones y neutrones de un núcleo, éste es estable o no. Actualmente se conocen más de 300 núcleos estables. La radiactividad tiene su origen en la estabilidad nuclear.

Si el núcleo es estable, el elemento no es radiactivo; pero cuando la relación entre los componentes del núcleo no es la adecuada, éste emite partículas y radiaciones electromagnéticas hasta alcanzar la estabilidad.

Se llaman isótopos radiactivos o radioisótopos todos aquellos isótopos que emiten radiaciones.

Muchos elementos químicos tienen isótopos radiactivos cuyos núcleos emiten radiaciones y partículas de forma espontánea, a la vez que se transforman en núcleos de otros elementos.

Así, por ejemplo, uno de los isótopos del carbono, el carbono-14, es radiactivo y se transforma, espontáneamente, en un núcleo de nitrógeno.

Es posible conseguir que un núcleo estable se transforme en un radioisótopo. Si a un núcleo estable llega una partícula con suficiente energía, el núcleo puede desestabilizarse y volverse radiactivo para recuperar la estabilidad.

Cuando esto sucede, se habla de radiactividad artificial, en oposición a la radiactividad espontánea o radiactividad natural.

Período de Semidesintegración

Toda desintegración natural es un proceso aleatorio, es decir, no se puede predecir exactamente cuándo un núcleo determinado va a desintegrarse.

Ahora bien, es posible calcular la probabilidad de que un núcleo se desintegre en un tiempo determinado. Con este fin se asocia a cada sustancia radiactiva una magnitud característica llamada período de semidesintegración.

El período de semidesintegración, de una sustancia radiactiva es el tiempo necesario para que se desintegre la mitad de los núcleos presentes en una muestra de dicha sustancia.

Es decir, si tenemos una masa m de una sustancia y al cabo de 14 días tenemos la mitad (m/2) de esa sustancia (la otra mitad se ha desintegrado), diremos que su período de semidesintegración es de 14 días.

El período de semidesintegración varía para las distintas sustancias radiactivas desde millones de años a fracciones de segundo Sin embargo, cualquier sustancia radiactiva evoluciona en el tiempo ajustándose a una curva como la que se representa en la figura siguiente:

curva de desintegracion atomica

Curva de desintergración radiactiva

tabla tiempo desintegracion
Períodos de semidesintegración de algunos isótopos

Como el período de desintegración del Radio 223 es de 8 días, tendrán que pasar unos 24 días para que la radioactividad de la muestra de este isótopo se reduzca a la octava parte (1/8)

Energía de Enlace Nuclear

Para calcular la masa de un cierto núcleo se multiplicará el número de protones que contiene por la masa de un protón, se multiplicará el número de neutrones por la masa de un neutrón y se sumarán ambas cantidades.

El núcleo de Li contiene tres protones y tres neutrones.

La masa de un neutrón es de 1,6748 . 10-27 kg y la masa de un protón es de 1,6725 . 10-27 kg.

En consecuencia, cabría esperar que la masa de este núcleo fuera de 10,0419 . 10-27 kg.

Sin embargo, la masa de un núcleo de litio, 9,9846 10-27kg., es menor que la calculada sumando las masas de los tres protones y los tres neutrones que lo constituyen. El defecto de masa es de 0,0573 . 10-27 kg.

energia de un atomo

Defecto de masa en el núcleo de Litio

Este hecho se repite para todos los núcleos atómicos. La masa de un núcleo atómico es menor que la que se obtiene cuando se suman las masas de los protones y los neutrones que lo constituyen.

La diferencia entre ambos valores recibe el nombre de defecto de masa.

El defecto de masa se produce porque parte de la masa de los protones y neutrones se transforma en energía cuando dichas partículas se unen para formar un núcleo atómico.

A partir de este hecho se define una nueva magnitud, la energía total de enlace nuclear, que es la energía que se desprende en la formación de un núcleo a partir de los nucleones que lo forman.

Para el núcleo de litio, dicha energía es de 32 MeV. (nota 1 electronvoltio (eV) es la energía cinética que adquiere un electrón al someterse a una diferecia de potencial de 1 voltio.

Dicha energía es de 1.6 . 10-19 Julio. Un MeV equivale a un millón de eV)

Los procesos en los que se modifican los núcleos de los átomos reciben el nombre de reacciones nucleares.

En las reacciones nucleares, pequeñas cantidades de masa se transforman en grandes cantidades de energía, de acuerdo con la equivalencia establecida por Einstein.

E = m.c2

Donde E es la energía desprendida, m es el defecto de masa y c es la velocidad de propagación de la luz en el vacío.

Debido al elevado valor de c, a partir de una pequeña cantidad de materia es posible obtener una enorme cantidad de energía.

Albert Einstein (1879-1955)
einstein

Ejemplo de Fisión Nuclear:

Determinados núcleos pesados, como, por ejemplo, el núcleo de uranio-235, se rompen en dos núcleos intermedios cuando se bombardean con neutrones.

En este proceso, conocido como fisión nuclear, también se emiten otras partículas, además de radiación y una gran cantidad de energía.

De la fisión de un núcleo de uranio-235 se obtiene un átomo de bario-142, un átomo de criptón-91, 3 neutrones y una energía de 210 MeV que se desprende en forma de calor. La ecuación que describe el proceso es la siguiente:

235U + 1 neutrón —-> 142Ba + 91Kr + 3 neutrones + 210 MeV

La masa del núcleo de uranio-235 sumada con la masa del neutrón es ligeramente superior a la suma de las masas del núcleo de bario- 142, el núcleo de criptón-91 y los tres neutrones. Este pequeño defecto de masa se ha transformado en energía.

Los neutrones que se obtienen en la fisión de un núcleo de uranio-235 pueden utilizarse para bombardear otros núcleos de este isótopo y provocar nuevas fisiones que a su vez producirán nuevos neutrones, y así sucesivamente.

Se origina de este modo una reacción en cadena mediante la cual, en un tiempo muy breve, se consigue la fisión de un gran número de núcleos y se libera una enorme cantidad de radiación y energía.

desintegracion nuclear

Reacción en cadena

La Fusión Nuclear

Una reacción de fusión nuclear es un proceso según el cual se unen núcleos ligeros o intermedios para formar núcleos más pesados, obteniéndose energía.

La fusión de un núcleo de deuterio, 2H, con un núcleo de tritio, 3H, da lugar a la formación de un núcleo de helio-4, 4He, además de un neutrón y una energía dc 17,6 MeV, que se desprende en forma de calor.

Esta es una de las reacciones mediante las que el Sol produce energia. La ecuación que describe el proceso es la siguiente:

2H + 3H —-> 4He+ 1 neutrón +  17,6 MeV

https://historiaybiografias.com/linea_divisoria1.jpg

Los fundamentos de la física atómica DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos.(Ver: Fision Nuclear)

La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones.

fision nuclear

Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

La rapidez con que se establece y se propaga la reacción en cadena dilataría y haría explotar la masa con extrema violencia antes que todos los núcleos hubiesen podido ser fragmentados.

Si se admite que sólo el 10% de los átomos participa en la reacción, la enorme cantidad de energía liberada equivale a la producida por la explosión de 2000 toneladas de trinitrotolueno.

En la foto de arriba se encuentran compartiendo una información física Albert Einstein y Leo Szilard. El doctor Leo Szilard, fue a quien se le ocurrió mientras esperaba el cambio de un semáforo en la intersección de Southampton Row en Londres, la ideas de producir una reacción nuclear controlada, bombardeando núcleos con neutrones. Por puro juego, y no por ningún impulso agresivo, el físico bajito y gordo, húngaro de nacimiento, visualizó una reacción atómica en cadena mientras deambulada por la ciudad en aquel dorado septiembre de 1933, dedicado a sus pasatiempos favoritos: pensar y pasear.

En forma de calor, mil novecientos millones de grandes calorías estarían disponibles, constituyendo el centro de la volatilización de toda materia presente.

En una fracción infinitesimal de segundo, la temperatura se elevaría a centenares de miles de grados en el lugar de la explosión, engendrando un espantoso vendaval cuyos efectos destructores —merced a la propagación de la onda de compresión— semejarían a la devastadora barrida de una gigantesca marca.

En vísperas de la Segunda Guerra Mundial, todas estas posibilidades no pasaban de ser meras previsiones teóricas, a las cuales, sin embargo, el comienzo del conflicto bélico iba a conferir excepcionales alcances.

Hacia fines de 1940, cuando el secreto militar comenzó a volver impenetrable el velo que cubría las investigaciones sobre la energía nuclear, la utilización de la misma para producir una bomba parecía todavía un objetivo muy lejano e incluso utópico.

Sin duda se sabía que el uranio 235 era particularmente sensible a la “fisión” y que ofrecía una sección eficaz mayor a los neutrones lentos que a los rápidos; se habían desarrollado métodos para producir neutrones lentos; se habían elaborado procedimientos para separar el uranio 235 de su isótopo corriente; se había logrado aislar dos elementos transuránicos, el neptunio y el plutonio, y se reconocía que este último era también “fisionable” en circunstancias semejantes a las del uranio 235.

Además, se habla adquirido la certeza de que en la “fisión”, al menos un neutrón rápido —y en término medio dos o tres— era emitido por el núcleo.

Sin embargo, a pesar del conjunto de tales progresos, todavía nadie había logrado producir una reacción autosustentada.

Algunos investigadores incluso se preguntaban si la naturaleza acepta someterse a las exigencias de los teóricos. Tal vez la reacción en cadena era, en general, irrealizable. Pero las dudas terminaron por disiparse definitivamente el 2 de diciembre de 1942: ENRICO FERMI había realizado en Chicago, por primera vez, una reacción nuclear autosostenida.

El dispositivo construido en Chicago consistía en una pila de ladrillos de grafito puro que incluía trozos de uranio, separados por distancias regulares conforme a un esquema geométrico.

El grafito servía de sustancia moderadora destinada a frenar mediante choques elásticos los neutrones que salen dotados de elevadas velocidades de la ruptura nuclear del uranio 235.

Algunos de los neutrones penetran en el isótopo pesado U-238, otros vuelven a ser capturados por el isótopo liviano U-235, puesto que ambos están presentes en los trozos de metal de la pila.

Los proyectiles que golpean el U-238 provocan su transformación, que termina por dar origen al plutonio, mientras neutrones capturados por núcleos de U-235 producen la “fisión” de éstos, expulsando neutrones que siguen provocando nuevas rupturas.

Así, la pila produce a la vez materia “fisionahle” (plutonio) y libera energía al desintegrar núcleos.

Agreguemos que para el arranque no se necesita detonador ni ningún otro dispositivo especial; los neutrones de origen cósmico existentes en la atmósfera, o neutrones errantes que provienen de la explosión espontánea de un átomo de uranio, son suficientes para iniciar la reacción.

Una condición indispensable para el funcionamiento de la pila es su volumen, que debe superar cierto tamaño crítico.

De lo contrario el número de neutrones que escapan por la superficie de la pila no permite que se establezca la cadena de las reacciones.