Ingenio: Cuadrados Mágicos

Calculo Superior,Limite,Derivada,Integrales Online Ecuaciones

 CALCULO SUPERIOR ONLINE

RESOLVER EXPRESIONES ALGEBRAICAS
Evaluar Una ExpresiónExpandir Una ExpresiónResolver Una Ecuación
CALCULO SUPERIOR
Hallar Un LimiteDerivarIntegrarSuma de Riemann
GRAFICAR FUNCIONES MATEMÁTICAS
Gráfica Paramétrica 2DGrafica Normal 2DGráfica 3D

 Sistema de Ecuaciones

Geometría Analítica Online

Descargar Software Gratuitos Para Ingeniería Civil

Ponte esta herramienta de cálculo, con capacidad de conversión entre diferentes unidades de medida, bases numéricas, funciones científicas, fórmulas, estadísticas, matrices, números primos, operaciones con fechas, fracciones, números complejos, polinomios, etc.

Formula del Vértice de una Parabola Cuadrática Ejemplo Online

Fórmula del Vértice de una Parábola Cuadrática
Ejemplo Online

La función general de segundo grado y = ax² + bx+c  representa gráficamente en el plano cartesiano una parábola.

Asignando valores reales a la variable independiente x para obtener los valores de la variable dependiente y, podemos graficar sobre un par de ejes coordenados la curca parabólica.

Por Ejemplo:
—    Elaborar el gráfico de la función:      y  =   x² — 2 x — 2.

En donde según la fórmula general, los coefecientes son: a=1, b=-2 , c=-2

Se elabora la siguiente tabla:

x-3-2-10123
y1361-2-3-21

LLevando estos puntos a plano cartesiano, se tiene la siguiente curva:

grafica parábola

Se puede graficar desde aquí

Para calcular el vértice de cualquier parabola, usamos la siguiente fórmula:

formula vertice parabola cuadrática

Fórmula General Vértice Parabola Cuadrática

Para el caso que venimos estudiando es:

Coordenada X=(-(-2)/2.1)=1

Coordenada Y=(-(-2)²/4.1)-2)=-3

Coordenadas del vértice es: V(1,-3)


Grandes Descubrimientos Ciudades Maravillosas Hombres de Ciencia

LAS PÁGINAS MAS VISITADAS DE HISTORIA Y BIOGRAFÍAS

imagen imagen imagen
Grandes TragediasGrandes MasacresGrandes Errores
imagen imagen imagen
Los Desastres NaturalesMalas Noticias en el MundoCuando la Vidas Pega Duro
imagen imagen imagen
Grandes EnigmasVidas EjemplaresGrandes Descubrimientos
imagen imagen imagen
Grandes Ideas de la Ciencia Grandes Mujeres Grandes Inventos
imagen imagen imagen
Grandes Obras de IngenieríaAsesinos en SerieHistoria de los Barcos
imagen imagen imagen
Inventos AccidentalesCiudades MaravillosasLugares Fantásticos
imagen imagen imagen
Horrores del MundoLas Guerras MundialesCrueles Emperadores
imagen imagen imagen
Curiosidades del MundoEl Triángulo de las BermudasPatrimonios de la Humanidad
imagen imagen imagen
Grandes HambrunasPrincipales EpidemiasGrandes Ideologías
imagen imagen imagen
Vida en la Edad MediaReligiones del MundoLos Monasterios
imagen imagen imagen
Aventuras, Viajes y Hazañas Nuestra Identidad Argentina Las Sociedades Secretas
imagen imagen imagen
Países y Regiones del MundoGeografía del MundoGeografía Argentina
imagen imagen imagen
Un Paseo Por El Siglo XIXLas Dinastías ChinasJuegos Online
imagen imagen imagen
Grandes Matemáticos-FísicosBellos PaisajesLos Dioses Griegos
imagen LAS PREGUNTAS
DE LOS NAVEGANTES
Y CURIOSIDADES
imagen
Conceptos De InternetSufridas y Famosas

 

Animaciones Didácticas Para Docentes Ciencia, Lengua, Matematicas

Animaciones Didácticas Para Docentes
Ciencia – Lengua – Matemáticas

Desde hace varios años y casi desde el inicio de la informática con entorno grafico ha permitido construir softwares educativos que ayudan enormemente el aprendizaje de los temas tratados en las escuelas primarias y secundarias , debido a su facilidad para crear elegantes y didacticas simulaciones de los procesos que se deseen estudiar o enseñar. Por ejemplo, en fisica, podemos analizar el movimiento de una pelotita que cae desde un avión y materializar en cada instante a que la altura se encuentra , a que velocidad va descendiendo y en que tiempo llegará al piso.

Creemos que esas herramientas son elemntos modernos y maravillosos para utilizar en el aula, sobre todo con los niños mas pequeños que les puede costar un poco mas hacer abstracciones para imaginar procesos como el del ejemplo.

Estas animaciones, se fueron perfeccionanado a tal punto, que hoy existen verdaderos modelos cientificos-matematicos que pueden simular los efectos de un terremoto sobre un gran edificio de decenas de piso, y estudiar el comportamiento. También se puede reecrear una cirugia determinada para que los futuros médicos puedan aprender de los riesgos de esas cirugias. En fin, podríamos escribir varios post sobre las ventajas del uso de las animaciones y simulaciones, pero en este caso solo queremos indicar una serie de link o enlaces a decenas de simples animaciones gratuitas muy interesantes para quE los docentes puedan mostrar y enseñar jugando a sus alumnos.

Queremos agregar que hace tiempo se realizó un estudio, llamado «La animación como ayuda en el aprendizaje multimedia» que publicaba el “Educational Review Psychology” que mostraba la efectividad de la animación en estudiantes universitarios, a la hora de memorizar, atender, almacenar y recuperar información adquirida. Desde el arte, las ciencias y las matemáticas, la animación en el aula puede promover una mejor comprensión de las materias, si lo comparamos con un formato de presentación verbal (dominante en nuestras aulas) y siempre que se utilice bajo ciertas condiciones, según nos indica este estudio.

VISTA DEL ENTORNO DE TRABAJO DEL SITIO DE LAS ANIMACION EDUCATIVAS

 

animaciones educativas

LISTA DE ENLACES A LAS ANIMACIONES EDUCATIVAS POR MATERIA

Ver También: Lista de Enlaces Para Animaciones del Sistema Respiratorio

Problemas Matemáticos Online Combinacion de Fichas Circulares

Problemas Matemáticos Online
Combinacion de Fichas Circulares

Este ejercicio consiste en distribuir 32 fichas de colores (8 amarillas,8 verdes,8 azules y 8 naranjas), en los pares de círculos blancos, de tal manera que cada par tenga una combinación distinta a los demás.
Tenga en cuenta que una combinación verde-azul es distinta de azul-verde.
No tiene la solución porque es fácil ir probando.

Aprender Ortografia Para Niños Practica de Lenguaje Online Para Chicos

Aprender Ortografia Para Niños Practica de Lenguaje

Un simple juego para los mas chiquitos. Solo de debe hacer clic en el botón que dice «Mostrar Imagen» y  a continuacion escribir en minúscula o mayuscula el nombre de la imagen que aparece. Finalmente se hace clic en el botón «Verificar» para analizar como se ha escrito la palabra. Se sigue luego con mostrar otra imagen hasta el final. Es una aplicación para niños de 5 años que se inicián en la escritura imprenta.

Fuerza de rozamiento Importancia Fuerza Concepto Definicion

CONCEPTO E IMPORTANCIA DE LA FUERZA DE ROZAMIENTO

Si no existiera rozamiento: Ya hemos visto lo diversas e inesperadas que son las formas en que se manifiesta el rozamiento a nuestro alrededor. El rozamiento toma parte muy importante incluso allí donde nosotros ni lo sospechamos. Si el rozamiento desapareciera repentinamente, muchos de los fenómenos ordinarios se desarrollarían de formas completamente distintas.

El papel del rozamiento fue descrito de una manera muy pintoresca por el físico francés Guillaume: «Todos hemos tenido ocasión de salir a la calle cuando ha helado. !Cuánto trabajo nos ha costado evitar las caídas! ¡Cuántos movimientos cómicos tuvimos que hacer para poder seguir en pie! Esto nos obliga a reconocer que, de ordinario, la tierra por que andamos posee una propiedad muy estimable, gracias a la cual podemos conservar el equilibrio sin gran esfuerzo.

vida en condicones extremas

Esta misma idea se nos ocurre cuando vamos en bicicleta por un pavimento resbaladizo o cuando un caballo se escurre en el asfalto y se cae. Estudiando estos fenómenos llegamos a descubrir las consecuencias a que nos conduce el rozamiento.

Los ingenieros procuran evitar el rozamiento en las máquinas, y hacen bien. En la Mecánica aplicada se habla del rozamiento como de un fenómeno muy pernicioso, y esto es cierto, pero solamente dentro de los límites de un estrecho campo especial. En todos los demás casos debemos estar agradecidos al rozamiento.

El nos da la posibilidad de andar, de estar sentados y de trabajar sin temor a que los libros o el tintero se caigan al suelo o de que la mesa resbale hasta toparse con algún rincón o la pluma se nos escurra de entre los dedos.

El rozamiento es un fenómeno tan difundido que, salvo raras excepciones, no hay que pedirle ayuda; él mismo nos la ofrece.

El rozamiento da estabilidad. Los albañiles nivelan el suelo de manera que las mesas y las sillas se quedan allí donde las ponemos. Si sobre una mesa colocamos platos, vasos, etc., podemos estar tranquilos de que no se moverán de sus sitios, a no ser que esto ocurra en un barco cuando hay oleaje.

Imaginémonos que el rozamiento se puede eliminar por completo. En estas condiciones, los cuerpos, tengan las dimensiones de una peña o las de un pequeño granito de arena, no podrán apoyarse unos en otros: todos empezarán a resbalar o rodar y así continuarán hasta que se encuentren a un mismo nivel. Si no hubiera rozamiento, la Tierra sería una esfera sin rugosidades, lo mismo que una gota de agua.»

A esto podemos añadir, que si no existiera el rozamiento los clavos y los tornillos se saldrían de las paredes, no podríamos sujetar nada con las manos, los torbellinos no cesarían nunca, los sonidos no dejarían de oírse jamás y producirían ecos sin fin, que se reflejarían en las paredes sin debilitarse.

Arriba, un trineo cargado sobre un camino de hielo; dos caballos arrastran una carga de 70 toneladas. Abajo, el camino de hielo; A, carril; B, deslizaderas del trineo; C, nieve apisonada; D, fundamento de tierra de la carretera

Las heladas nos dan siempre buenas lecciones de la gran importancia que tiene el rozamiento. En cuanto nos sorprenden en la calle nos sentimos incapaces de dar un paso sin temor a caernos. Como muestra instructiva reproducimos las noticias que publicaba un periódico en una ocasión (en diciembre de 1927):

«Londres, 21. Debido a la fuerte helada, el tráfico urbano y tranviario se ha hecho muy difícil en Londres. Cerca de 1 400 personas han ingresado en los hospitales con fracturas de brazos y piernas».
«Cerca del Hyde Park chocaron tres automóviles y dos vagones del tranvía. Los automóviles resultaron totalmente destruidos por la explosión de la gasolina …»

«París, 21. La helada ha ocasionado en París y sus alrededores numerosos accidentes …»

Y sin embargo, el hecho de que el hielo ofrezca poco rozamiento puede ser útil para fines técnicos. Un ejemplo son los trineos ordinarios. Otra demostración aun más convincente son los llamados caminos de hielo, que se hacían para transportar los leños desde el lugar de la tala hasta el ferrocarril o hasta el punto de lanzamiento a un río para su transporte por flotación. Por estos caminos , que tienen una especie de raíles lisos helados, un par de caballos puede arrastrar un trineo cargado con 70 toneladas de troncos.

Fuente Yakov Perelman
Física Recreativa

Ir al Menú de Cuestiones Físicas

La Fuerza de Gravedad, es Grande? Valor de la Fuerza de Atraccion

LA FUERZA DE GRAVEDAD, ¿CUÁN GRANDE ES?…

¿Es grande la fuerza de la atracción?: «Si la caída de los cuerpos no fuera una cosa que vemos a cada instante, sería para nosotros el fenómeno más asombroso», escribía el célebre astrónomo francés Arago. La costumbre hace que el hecho de que la Tierra atraiga a todos los cuerpos nos parezca un fenómeno natural y ordinario. Pero cuando se nos dice que los cuerpos también se atraen entre sí nos resistimos a creerlo, porque en las condiciones normales de nuestra vida no vemos nada semejante.

Efectivamente, ¿por qué en torno nuestro no se manifiesta constantemente, en las circunstancias normales, la ley de la atracción universal? ¿Por qué no vemos cómo se atraen entre sí las mesas, las sandías, las personas?.

Porque cuando los objetos son pequeños la fuerza de atracción que ejercen es muy pequeña.

Citaré un ejemplo ilustrativo. Dos personas que se encuentren a dos metros de distancia entre sí se atraen mutuamente, pero la fuerza de esta atracción es insignificante. Suponiendo que estas dos personas tienen un peso medio, la atracción será de 1/100 de miligramo.

Esto quiere decir que estas dos personas se atraen mutuamente con la misma fuerza con que una pesita de 1/100.000 de gramo presiona sobre el platillo de una balanza.

Solamente las balanzas de extraordinaria sensibilidad de los laboratorios de investigación pueden apreciar un peso tan insignificante.  


La atracción del Sol hace que se curve la trayectoria de la Tierra E. La inercia hace que el planeta tienda a seguir la línea tangente ER

Claro está que esta fuerza no puede hacer que nos movamos del sitio, puesto que lo impide el rozamiento entre las suelas de nuestros zapatos y el suelo. Para que nos movamos, estando sobre un suelo de madera, por ejemplo (la fuerza de rozamiento entre las suelas de los zapatos y el suelo será en este caso igual al 30% del peso de nuestro cuerpo) hace falta que sobre nosotros actúe una fuerza mínima de 20 kg.

Resulta cómico comparar esta fuerza con la de una centésima de miligramo, que es la que ejerce la atracción. Un miligramo es la milésima parte de un gramo, y un gramo es la milésima parte de un kilogramo; por lo tanto, 0,01 mg. será… ¡la mitad de la mil millonésima parte de la fuerza necesaria para hacer que nos movamos del sitio! Siendo así, ¿qué tiene de particular que, en condiciones normales, no nos demos ni la más leve cuenta de la atracción entre los cuerpos terrestres?

Si no existiera el rozamiento sería otra cosa; entonces nada impediría que hasta la más leve atracción provocara la aproximación de los cuerpos entre sí. Pero en este caso la aproximación mutua de dos personas producida por una fuerza de atracción de 0,01 mg sería también muy lenta, es decir, se realizaría con unavelocidad insignificante.

Por medio de cálculos se puede demostrar que, si no existiera rozamiento, dos personas situadas a 2 m de distancia se aproximarían entre sí (por influjo de la atracción mutua) 3 cm durante la primera hora, 9 cm durante la segunda y 15 cm durante la tercera. El movimiento de aproximación se iría acelerando, pero las dos personas no llegarían a juntarse antes de cinco horas.

La atracción entre los cuerpos terrestres se puede notar en aquellos casos en que la fuerza de rozamiento no es un obstáculo, es decir, cuando los cuerpos no se mueven. Un peso colgado de un hilo se halla sometido a la atracción de la Tierra (por eso el hilo está dirigido verticalmente), pero si cerca de este peso se encuentra un cuerpo cuya masa sea grande, aquél será atraído por éste y el hilo se desviará ligeramente de su posición vertical y tomará la dirección de la resultante entre la atracción de la Tierra y la del cuerpo, que será relativamente muy pequeña.

La desviación de una plomada en las proximidades de una gran montaña fue observada por vez primera en el año 1775 en Escocia, por Maskelyne, quien comparó la dirección de dicha plomada con la del polo celeste, por los dos lados de una misma montaña. Posteriormente se realizaron otros experimentos más perfectos, utilizando balanzas especiales, que permitieron determinar exactamente la fuerza de la atracción.

Como hemos visto, la fuerza de la atracción entre masas pequeñas es insignificante. A medida que aumenten las masas crece la atracción proporcionalmente al producto de éstas. Pero hay algunas personas propensas a exagerar esta fuerza. Hasta un científico, aunque no físico, sino zoólogo, intentó demostrarme en una ocasión que la atracción que suele observarse entre los barcos se debe a la atracción universal.

Por medio de cálculos no es difícil demostrar que la atracción universal no tiene nada que ver con esto. Dos navíos de línea de 25.000 t cada uno que se encuentren a 100 m de distancia entre sí se atraerán mutuamente con una fuerza total de… 1400 g. Lógicamente esta fuerza es incapaz de producir el más mínimo acercamiento entre dichos barcos. La causa verdadera de la misteriosa atracción que existe entre los barcos es otra, que explicaremos en el capítulo dedicado a las propiedades de los líquidos.

Pero la fuerza de atracción, que es tan insignificante entre masas pequeñas, se hace muy sensible cuando se trata de masas tan colosales como las de los cuerpos celestes. Baste decir que incluso un planeta tan alejado de nosotros como Neptuno, que gira casi en el límite del sistema solar, nos manda su «saludo» atrayendo a la Tierra con una fuerza de… ¡18 millones de toneladas! A pesar de la enorme distancia que nos separa del Sol, la Tierra se mantiene en su órbita gracias a su atracción.

Si la atracción que ejerce el Sol desapareciera por cualquier causa, la Tierra, siguiendo una dirección tangencial a su órbita actual, se lanzaría a recorrer eternamente la profundidad insondable del espacio cósmico.  

Fuente Yakov Perelman
Física Recreativa

Ir al Menú de Cuestiones Fisicas

vida en condicones extremas

Variacion de la Presion Con La Altura Formula y Ejemplo

Variacion de la Presion Con La Altura Formula y Ejemplo

atmosfera


En los artículos anteriores hemos viajado mentalmente por las entrañas de la Tierra.

Nos ha ayudado a realizar estos viajes la fórmula que relaciona la presión del aire con la profundidad.

Ahora vamos a tener el valor de remontarnos a las alturas y aplicando esta misma fórmula veremos como varía la presión del aire en ellas.

En este caso la fórmula toma el aspecto siguiente:

p= 0,999 h/8


donde p es la presión en atmósferas y h es la altura en metros.

El número decimal 0,999 ha sustituido al 1,001, porque cuando nos trasladamos hacia arriba 8 m la presión no aumenta en 0,001, sino que disminuye en 0,001.

Para empezar resolvamos el problema siguiente: ¿A qué altura hay que elevarse para que la presión del aire se reduzca a la mitad?.

Para esto haremos p =0,5 en nuestra fórmula y buscaremos la altura h .

Tendremos la ecuación:

0,5 = 0,999 h/8


cuya resolución no presenta dificultades para los lectores que sepan manejar los logaritmos.

La respuesta h =5,6 km determina la altura a la cual la presión del aire debe reducirse a la mitad.

Sigamos subiendo tras los valerosos aeronautas soviéticos que en los estratostatos «URSS» y «OAX – 1» establecieron en 1933 y 1934 respectivamente los records del mundo de altura, el primero con una marca de 19 km y el segundo con la de 22 km. Estas altas regiones de la atmósfera se hallan ya en la llamada «estratosfera».

Por esto, los globos en que se realizaron estas ascensiones no se llaman aeróstatos, sino estratostatos.

Calculemos cuál es la presión atmosférica a esas alturas.

Para la altura de 19 km hallamos que la presión del aire debe ser : 

0,999 19.000/8 = 0,095 atm = 72 mm.


Para los 22 km de altura

0,999 22.000/8 = 0,066 atm = 50 mm.


Pero si leemos las notas de los «estratonautas» veremos que a las alturas antedichas se indican otras presiones. A 19 km de altura la presión era de 50 mm y a la de 22 km, de 45 mm.

¿Por qué no se cumplen los cálculos? ¿En qué consiste nuestro error?

La ley de Mariotte para los gases es perfectamente aplicable a estas presiones tan bajas. Pero cometimos un error al considerar que la temperatura del aire es igual en todo el espesor de los 20 km, cuando en realidad desciende notablemente al aumentar la altura.

Se considera que, por término medio, la temperatura desciende 6,5° por cada kilómetro de elevación.

Así ocurre hasta los 11 km de altura, donde es igual a 56° bajo cero. Después, durante un espacio considerable permanece invariable. Si tenemos en cuenta esta circunstancia (para esto no son suficientes los procedimientos de las matemáticas elementales), se obtiene un resultado que concuerda mucho mejor con la realidad.

Por esta misma razón, los resultados de los cálculos que antes hicimos, relativos a la presión del aire a grandes profundidades, también deben considerarse solamente como aproximados.

Para terminar debemos decir que el «techo» alcanzado por el hombre ahora es mucho más alto. Muchos aviones fabricados en serie vuelan ya a 25-30 kilómetros de altura. Ya en el año 1961 los aviadores soviéticos establecieron el récord del mundo de altura con una marca de 34,7 km.  

Fuente Yakov Perelman Física Recreativa

Ir al Menú de Cuestiones Físicas

 

Como es la vida adentro de una mina profunda Presión y Temperatura

La Vida Adentro de una Mina Profunda-Presión y Temperatura

mina profunda

Ver: Descarga de los Libros de Física y Matemática Curiosa de Perelman

¿Quién ha llegado más cerca del centro de la Tierra? (En realidad, no en las novelas.) Los mineros, naturalmente. Ya sabemos  que la mina más profunda se encuentra en Africa del Sur. Su profundidad es mayor de 3 km.

Al decir esto tenemos en cuenta no la penetración de los taladros de perforación de pozos, que han alcanzado hasta 7,5 km, sino las profundidades a que han penetrado los propios hombres. El escritor francés, doctor Luc Durtain que visitó un pozo de la mina Morro Velho, cuya profundidad es de cerca de 2.300 m, escribía:

«Los célebres yacimientos auríferos de Morro Velho se encuentran a 400 Km. de Río de Janeiro. Después de 16 horas de viaje en tren por sitios montañosos, descendemos a un valle profundo rodeado por la selva. Una compañía inglesa explota aquí filones auríferos a una profundidad a la que antes nunca había descendido el hombre.»

El filón va oblicuamente hacia abajo. La mina lo sigue formando seis pisos. Pozos verticales y galerías horizontales. Un hecho que caracteriza extraordinariamente a la sociedad contemporánea es que la mina más profunda que se ha abierto en la corteza terrestre, el intento más intrépido hecho por el hombre para penetrar en las entrañas de la Tierra, es para buscar oro.
Póngase la ropa de trabajo de lona y la cazadora de cuero. Tenga cuidado; cualquier piedrecita que caiga por el pozo puede herirle. Nos va a acompañar uno de los «capitanes» de la mina. Entra usted en la primera galería. Está bien iluminada. Un viento helado a 4° le hace temblar; es la ventilación para refrigerar las profundidades de la mina.

Después de descender en una estrecha jaula metálica por el primer pozo hasta una profundidad de 700 m, llega usted a la segunda galería. Baja usted por el segundo pozo. El aire está caliente. Ya está usted más bajo que el nivel del mar.

A partir del pozo siguiente el aire quema la cara. Sudando a chorros y agachado, porque el techo es bajo, avanza usted en dirección al ruido de las máquinas perforadoras. Envueltos en un polvo denso trabajan unos hombres semidesnudos; el sudor chorrea por sus cuerpos; las botellas de agua pasan de mano en mano. No toque usted los trozos de mineral recién desprendidos, están a 57° de temperatura.

¿Y para qué esta realidad tan espantosa y abominable?… Cerca de 10 kilogramos de oro al día …»

Al describir las condiciones físicas que existían en el fondo de la mina y el grado de explotación a que estaban sometidos los mineros, el autor francés menciona la alta temperatura pero nada dice de que la presión del aire fuera grande.

Calculemos cuál será esta presión a 2.300 m de profundidad. Si la temperatura fuera la misma que en la superficie de la tierra, de acuerdo con la fórmula que conocemos, la densidad del aire aumentaría en

(1,001) 2.300/8 = 1,33 veces.

Pero en realidad la temperatura no permanece invariable, sino que se eleva. Por esto la densidad del aire no aumenta tanto, sino menos.

En definitiva, tenemos que la diferencia entre la presión del aire en el fondo de la mina y en la superficie de la tierra no es más que un poco mayor que la que existe entre la del aire caliente del verano y la del aire frío del invierno.

Por esto se comprende que esta circunstancia no llamase la atención del visitante de la mina.

En cambio tiene mucha importancia la notable humedad del aire a estas mismas profundidades, que hace que la permanencia en ellas sea insoportable cuando la temperatura es alta.

En una de las minas de Africa del Sur (Johannesburg), de una profundidad de 2.553 m, a 50° de temperatura la humedad llega al 100%; en esta mina se instaló lo que se llama «clima artificial». La acción refrigerante de esta instalación equivale a 2.000 t de hielo.  

Fuente Consultada:
Física Recreativa de Yakov Perelman

Ir al Menú de Cuestiones Físicas

 

El Mar Muerto, donde nadie de ahoga Porque? Caracteristicas

EL MAR MUERTO, DONDE NADIE SE AHOGA,…¿POR QUE?

El Agua Salada del Mar Impide Sumergirse y  No Es Posible Ahogarse
Este mar existe y se encuentra en un país que conoce la humanidad desde los tiempos más remotos. Se trata del célebre Mar Muerto de Palestina. Sus aguas son extraordinariamente saladas, hasta tal punto que en él no puede existir ningún ser vivo. El clima caluroso y seco de Israel hace que se produzca una evaporación muy intensa en la superficie del mar. Pero se evapora agua pura, mientras que la sal se queda en el mar y va aumentando la salinidad de sus aguas.

vida en condicones extremas

Ver: Descarga de los Libros de Física y Matemática Curiosa de Perelman

Esta es la razón de que las aguas del Mar Muerto contengan no un 2 ó 3 por ciento (en peso) de sal, como la mayoría de los mares y océanos, sino un 27 o más por ciento. Esta salinidad aumenta con la profundidad. Por lo tanto, una cuarta parte del contenido del Mar Muerto está formada por la sal que hay disuelta en el agua.

La cantidad total de sal que hay en este mar se calcula en 40 millones de toneladas.

La gran salinidad del Mar Muerto determina una de sus peculiaridades, que consiste en que sus aguas son mucho más pesadas que el agua de mar ordinaria. Hundirse en estas aguas es imposible.

El cuerpo humano es más liviano que ellas.
El peso de nuestro cuerpo es sensiblemente menor que el de un volumen igual de agua muy salada y, por consiguiente, de acuerdo con la ley de la flotación, el hombre no se puede hundir en el Mar Muerto, al contrario, flota en su superficie lo mismo que un huevo en agua salada (aunque en el agua dulce se hunde).

Mark Twain estuvo en este lago-mar y después escribió humorísticamente las extrañas sensaciones que él y sus compañeros experimentaron bañándose en sus aguas:

«Fue un baño muy divertido. No nos podíamos hundir. Se podía uno tumbar a lo largo sobre la espalda y cruzar los brazos sobre el pecho y la mayor parte del cuerpo seguía sobre el agua. En estas condiciones se podía levantar la cabeza por completo.

Se puede estar tumbado cómodamente sobre la espalda, levantar las rodillas hasta el mentón y abrazarlas con las manos. Pero en este caso se da la vuelta, porque la cabeza resulta más pesada. Si se pone uno con la cabeza hundida y los pies para arriba, desde la mitad del pecho hasta la punta de los pies sobresale del agua; claro que en esta posición no se puede estar mucho tiempo.

Si se intenta nadar de espaldas no se avanza casi nada, ya que las piernas no se hunden en el agua y sólo los talones encuentran apoyo en ella. Si se nada boca abajo no se va hacia adelante, sino hacia atrás.

En el Mar Muerto el equilibrio del caballo es muy inestable, no puede ni nadar ni estar derecho, inmediatamente se tumba de costado».

En la figura de abajo se puede ver un bañista que descansa comodísimamente sobre las aguas del Mar Muerto. El gran peso específico del agua le permite estar en esta posición, leer el libro y protegerse con la sombrilla de los ardientes rayos del Sol.

El agua de Kara-Bogas-Gol (golfo del Mar Caspio) tiene estas mismas propiedades y las del lago Eltón no son menos saladas, puesto que contienen un 27% de sal.

Un bañista en el Mar Muerto.  Mar Muerto, lago salino situado entre Israel, Cisjordania y Jordania. Con una profundidad oficial que alcanza los 408 m bajo el nivel del mar (según unas mediciones realizadas en 2006, alcanzaría los 418 m), se considera el lugar más bajo de la tierra emergida, sin tener en cuenta la sima antártica Bentley, cubierta hoy día por hielo.

Algo parecido sienten los enfermos que toman baños salinos. Cuando la salinidad del agua es muy grande, como ocurre, por ejemplo, con las aguas minerales de Staraia Russa, los enfermos tienen que hacer no pocos esfuerzos para mantenerse en el fondo del baño.

Yo he oído como una señora que tomó los baños de Staraia Russa se quejaba de que el agua «la echaba materialmente fuera del baño». Según ella la culpa de esto la tenía … la administración del balneario.

El grado de salinidad de las aguas de los distintos mares oscila un poco y a esto se debe que los barcos no se sumerjan en ellas hasta un mismo sitio. Algunos de nuestros lectores habrán visto el signo que llevan los barcos cerca de la línea de flotación, llamado «marca de Lloyd», que sirve para indicar el nivel límite de la línea de flotación en aguas de distinta densidad.

Por ejemplo, la marca representada en la fig. 52 indica los niveles límite de la línea de flotación siguientes:  

en agua dulce (Fresh Water)

FW

en el Océano Indico (India Summer)

IS

en agua salada en verano (Summer)

S

en agua salada en invierno (Winter)

W

en el Atlántico del norte en invierno (Winter North Atlantik)

WNA

Antes de terminar este artículo quiero advertir que existe una variedad de agua que aún estando pura, es decir, sin contener otros cuerpos, es sensiblemente más pesada que la ordinaria. Este agua tiene un peso específico de 1,1, es decir, es un 10% más pesada que la común, por consiguiente, en una piscina con agua de este tipo lo más probable es que no se ahogue nadie, aunque los que se bañen no sepan nadar.

Este agua se llama agua «pesada» y su fórmula química es D 2 0 (el hidrógeno que entra en su composición está formado por átomos dos veces más pesados que los del hidrógeno ordinario. Este hidrógeno se designa con la letra D). El agua «pesada» se encuentra disuelta en el agua común en cantidades muy pequeñas. Un cubo de agua potable contiene cerca de 8 g de agua «pesada».  

Disco de carga máxima en el costado de un buque. Las marcas se hacen al nivel de la línea de flotación. Para que se vean mejor se muestran aparte aumentadas. El significado de las letras se explica en el texto.

El agua pesada de fórmula D 2 O (hay 17 tipos de agua pesada, cuyas composiciones son distintas) se obtiene actualmente casi pura, puesto que la cantidad de agua ordinaria que hay en ella constituye aproximadamente un 0,05%. Este agua se emplea mucho en la técnica atómica, especialmente en los reactores atómicos. Se obtiene en grandes cantidades del agua ordinaria por procedimientos industriales

Fuente Yakov Perelman
Física Recreativa

Ir al Menú de Cuestiones Físicas

 

Calculo de Esfuerzos en Porticos Online Armaduras Isostáticas

Calculo Online de Esfuerzos en Pórticos
Armaduras Isostáticas

Para Trabajar Online

NOTA: Esta no es una aplicación profesional, solo fue pensada para ejercitación de los estudiantes y funciona correctamente. Solo debe hacer una mínima práctica de ejemplo para entender su funcionamiento y el orden del ingreso de las coordenadas y de cargas, ya que de lo contrario dará error, en tal caso debe reiniciar esta página.

Vidas de Cientificos Grandes Hombres de Ciencia Biografias Historias

Vidas de Grandes Científicos de la Historia

Los primeros intentos de estudiar el mundo desde un punto de vista científico datan del antiguo Egipto y Babilonia. Sin embargo es a los griegos a quienes debemos las bases de muchos de nuestros pensamientos científicos; la geometría, la astronomía y la química fueron estudiadas frecuentemente de una manera amplia aunque, a veces, las conclusiones a que llegaron fueron desacertadas. Aristóteles creía (erróneamente) que la Tierra era el centro del Universo y que toda la materia estaba formada de cuatro elementos:  tierra, aire, fuego y agua.

Durante la edad media la química se hizo importante aunque no se la conocía por tal nombre. Los alquimistas, dedicados a cosas tales como producir oro de otros metales, realizaron individualmente muchos descubrimientos importantes, aunque poco contribuyeron a nuestro conocimiento de la naturaleza de la materia. La visión del Universo fue alterada radicalmente por las ideas de Copérnico (quien demostró que el centro del sistema solar era el Sol).

El siglo XVII vió un gran florecimiento de la investigación científica. Newton formuló sus leyes del movimiento y de la gravitación universal; en 1662 se fundó en Londres la Royal Society y se crearon en Europa muchos otros cuerpos de científicos organizados, los cuales allanaron el camino para el acercamiento a la ciencia moderna. Ésta ha evolucionado rápidamente a través de los siglos XVIII y XIX, hasta llegar al profesionalismo especializado de hoy. A continuación figuran muchos de los más grandes científicos.

Ver Una Lista de los Más Grandes Científicos de la Historia

LISTA DE LOS TEMAS TRATADOS

grandes ideas de la ciencia
Grandes Ideas de la Ciencia
personalidades del siglo xx
Personalidades del Siglo XX
mujeres cientificas
Diez Mujeres Científicas
cientificos olvidados
Grandes Científicos Olvidados
grandes iconoclatas
Grandes Iconoclastas
mujeres astronomas
Mujeres Astrónomas
mujeres matematicas
Mujeres Matemáticas
grandes observadores del universo
Observadores del Universo
victimas de sus investigaciones
Víctimas de sus Propias Investigaciones
matematicos y fisicos
Grandes Matemáticos-Físicos
hombres mas influyentes
Las Personas Mas Influyentes del Siglo
las teorias mas importantes
Las Más Destacadas Teorías Científicas de la Historia

 

Los Científicos Investigan
1-1 La observación conduce a la investigación.
En la Universidad de Wurzburgo en Baviera, había un profesor de Física llamado Wilhelm Roentgen (figura abajo), que en la tarde del 8 de noviembre de 1895, se encontraba en su laboratorio haciendo experimentos con un tubo de vacío.

Los tubos de vacío de esa época eran más sencillos que los que se utilizan actualmente en los aparatos de radio. Dentro de una ampolla de vidrio había dos pequeñas placas metálicas separadas varios centímetros; un alambre partía de cada placa atravesando el vidrio del tubo. Cuando las terminales de estos alambres se conectaban a una fuente de electricidad, una carga eléctrica cruzaba el vacío del tubo desde una placa a la otra. Ninguna luz era visible dentro de la ampolla, pero el vidrio adquiría brillantez cerca de una de las placas.

Mientras trabajaba ese día, Roentgen miró casualmente un estante colocado en el otro extremo del laboratorio, notando que una sustancia química contenida en uno de los frascos brillaba débilmente. Años después, cuando Roentgen era famoso, alguien le preguntó qué había pensado al observar aquel brillo en el frasco; después de meditar, contestó: «No pensé, investigué».

La investigación indicó que el frasco contenía un producto químico con el difícil nombre de platinocianuro de bario. Este es uno de los compuestos que brillan siempre cuando un rayo luminoso incide directamente sobre ellos; dichos compuestos se llaman fluorescentes.
El frasco en el laboratorio de Roentgen no se encontraba expuesto a la luz directa, así que el brillo estaba aparentemente relacionado con la corriente eléctrica dentro del tubo, ya que cesaba poco después de cortar la corriente. Como Roentgen pronto aprendió con experimentos, la corriente en el tubo hacía relucir el compuesto químico, aun cuando el tubo estuviese cubierto completamente con un cartón negro. Parecía que había algo, similar a la luz, pero sin efecto sobre el ojo, que era producido cuando la corriente atravesaba el tubo y que podía cruzar el cartón negro.

1-2 De la investigación surgen preguntas.
El «algo» descubierto por Roentgen (el agente como lo llamó al principio) podía penetrar a través del vidrio, el cartón negro y el aire. ¿Atravesará también otras substancias? ¿Cuáles de éstas serán transparentes y cuáles opacas? ¿Podrá medirse el grado de transparencia? ¿Qué relación habrá entre la transparencia y las propiedades químicas de la substancia?

El agente actuaba como la luz en un aspecto: hacía brillar un compuesto fluorescente. ¿Actuará también como la luz en otros aspectos? Por ejemplo, ¿se propagará en línea recta?, ¿podrá utilizarse para tomar fotografías?

1-3 Una búsqueda para encontrar las respuestas exige ingenio y experimentación.
Durante las pocas semanas siguientes, Roentgen contestó tantas de estas preguntas como le permitió el tiempo. No intentó encontrar respuestas completas. Sus experimentos eran por completo preliminares. Exploraba buscando respuestas provisionales que sirvieran de guía para un estudio posterior más completo y sistemático. Necesitaba hacer comparaciones y quería idear el modo de hacer medidas.

Su primer paso fue construir una pantalla de papel pintada con una solución de platino-cianuro de bario y colocarla en varias posiciones cerca del tubo de vacío. Siempre que la corriente atravesaba la ampolla la pantalla brillaba, con mayor intensidad cuando la superficie pintada estaba vuelta hacia la región fluorescente del vidrio. Parecía como si los rayos salieran de esa región y alcanzaran la pantalla. Como Roentgen suponía que el agente eran rayos de una naturaleza desconocida les puso el nombre de rayos X-

El segundo paso fue colocar varios objetos entre el tubo y la pantalla y observar el brillo de ésta al pasar la corriente por aquél. Más tarde, Roentgen tuvo gran esmero en medir el espesor y otras propiedades de los objetos usados, pero en su trabajo preliminar estaba demasiado impaciente para llevarlo a cabo.

En lugar de ello, escogió varios objetos que le rodeaban en el laboratorio para colocarlos delante de la pantalla: un libro de mil páginas, un doble paquete de cartas de baraja, un grueso trozo de madera, un pedazo de ebonita . . . , todo resultó transparente a los rayos X. Pero cuando Roentgen puso su mano entre el tubo y la pantalla vio «. . . la sombra más obscura de los huesos destacándose dentro de la sombra, sólo ligeramente menos obscura, de la mano». La carne, por tanto, no era completamente transparente a los rayos X y los huesos lo eran aún menos. Por entonces, Roentgen había dejado de observar simplemente si los rayos X atravesaban un material; comenzaba a medir el grado en que penetraban.

Roentgen también usó técnicas fotográficas en su investigación. Sin embargo, no empleóuna cámara, sino sólo placas sensibilizadas (placas de vidrio cubiertas con una emulsión fotográfica eran las usadas en los albores de la fotografía, en lugar de películas como ahora). De nuevo, Roentgen utilizó los objetos que tenía a su alcance. Colocó primero una placa sensible dentro de una caja de madera, después puso sobre la caja la llave de una puerta e hizo pasar una corriente por el tubo de vacío. Cuando reveló la placa, encontró en ella la imagen de la llave. Después, puso su monedero en lugar de la llave y obtuvo la impresión de las monedas que estaban dentro. A continuación, fotografió los huesos de su mano.

1-4 El informe de los resultados estimula el interés ulterior.
Durante todas estas investigaciones, el Profesor Roentgen tomó notas de sus observaciones.

No comprendía entonces todo lo que había visto y no quería que sólo por ese motivo se perdiera alguna observación. Además, había demasiados detalles para recordar. Como hacen muchos otros científicos, una gran parte de lo anotado por Roentgen trataba de descripciones y opiniones sobre lo que observaba. Ciertamente, eran abundantes sus comentarios en aquel tiempo.

Lo que realizó el Profesor Roentgen durante aquellas semanas de noviembre de 1895, se conoce ahora, en parte, debido a que escribió cuidadosas notas de sus experimentos y observaciones. Pero esto no era suficiente. Roentgen también deseaba compartir su entusiasmo y sus hallazgos iniciales con otras personas interesadas, que podrían unirse a sus investigaciones para explicar estos nuevos fenómenos. En consecuencia, redactó sus notas de laboratorio con el fin de preparar un informe.

Este informe lo leyó en la sesión de diciembre de la sociedad científica local, la Asociación Físico-Médica de Wurzburgo. Como indica su nombre, la Asociación incluía físicos y médicos.

La disertación del Profesor Roentgen tuvo gran significado para ambos grupos. Los físicos vieron el descubrimiento de los rayos X como un paso hacia un mejor conocimiento del comportamiento de la energía y de la estructura de la materia. Los médicos, como un acontecimiento de gran valor práctico para su profesión, especialmente en cirugía.

Las noticias de la animada reunión de Wurzburgo se esparcieron rápidamente, pero no todos se impresionaron. Hubo gente, como siempre la hay, que menospreció la importancia del trabajo de Roentgen (¡como poco científico por haber usado barajas!). Otras personas, aunque interesadas en el nuevo campo de estudio, estaban tan absorbidas en sus propios problemas científicos, que no podían apreciar toda su importancia, ni dedicarle algún tiempo. Aún así, cuando el trabajo del Profesor Roentgen apareció impreso, había científicos en todo el mundo ansiosos de repetir los experimentos y llevarlos más lejos.

En Francia, en el lapso de un año, el trabajo precursor de Roentgen condujo al descubrimiento de la radiactividad. Con esta base, los estudios hechos por científicos de muchas naciones, llevaron, después de cincuenta años, a la liberación de la energía nuclear.

Fuente Consultada: Física, Fundamentos y Fronteras – Stollberg/Hill

Ver También: 10-10-10 Todo de a 10…    Vidas Para Reflexionar!

Explicación de la Tabla Periodica de los Elementos Quimicos

Explicación de la Tabla Periódica de los Elementos Químicos
Tabla de Mendeleiev

El estudio del átomo llevó a establecer algunas propiedades de los elementos químicos, que al ser comparadas con las de otros elementos, observaban similitudes, ofreciendo posibilidad de clasificación. Durante el siglo XIX Se acrecentó el interés por encontrar la manera de clasificar los elementos.

En 1869 el profesor de química de la universidad de San Petersburgo Dmitri Ivánovich Mendeléiev —un hombre liberal, feminista y excéntrico (sólo se cortaba el cabello una vez al año)— tuvo bastantes altercados con el gobierno zarista. Y el «memorándum» que distribuyó entre sus colegas en 1869 no impidió que el gobierno lo enviara varias veces al extranjero.

Se trataba sólo de un pequeño cuadro en el que los 63 elementos químicos conocidos aparecían ordenados por sus pesos atómicos, en orden creciente, y colocados de manera que los que tenían propiedades químicas parecidas estuvieran en una misma columna. La extraña periodicidad que esta disposición revelaba parecía totalmente arbitraria, máxime cuando Mendeléiev había hecho algunos apaños, corrigiendo ciertos pesos atómicos para que cuadraran o dejando huecos poco verosímiles.

En 1869 el químico ruso Dimitri Mendeleyev ideó un ingenioso catálogo de los elementos, la tabla periódica. Observó que los elementos parecen distribuirse en familias, que se repiten periódicamente, con propiedades químicas semejantes.

Siguiendo este criterio, anotó el símbolo químico y el peso atómico de todos los elementos conocidos y los ordenó, según su peso, en orden de menor a mayor; también colocó los elementos con propiedades semejantes en columnas verticales. De este modo formó un esquema, una especie de mapa donde los elementos aparecen ordenados en familias verticales y en períodos horizontales.

El hidrógeno, el más ligero de los elementos, ocupa un lugar algo apartado del conjunto, debido a sus propiedades especiales. En tiempo de Mendeleiev se creía que el átomo era indivisible, pero el descubrimiento de los rayos X y de la radiactividad provocaron la primera duda. Actualmente sabemos que el átomo está constituido por tres clases principales de partículas: protones, neutrones y electrones.

Protones y neutrones constituyen el núcleo del átomo. Los electrones, que giran en órbita alrededor del núcleo, determinan las propiedades químicas y, en consecuencia, la situación de los elementos en la tabla periódica.

A la izquierda de la tabla aparecen representaciones simplificadas de los átomos de los elementos pertenecientes a la familia de los metales alcalinos; sobre la misma se hallan los elementos del segundo período. Adviértase que todos los metales alcalinos poseen un solo electrón en la órbita externa; precisamente esta estructura similar es causa de su semejanza en las propiedades químicas.

En el segundo período la situación es completamente diferente. Aunque cada átomo tiene dos órbitas, varía el número de electrones de la exterior. La diferencia de estructura provoca la diferencia de propiedades. Según crece el número de electrones de la órbita exterior, las propiedades varían de izquierda a derecha, es decir, de los metales a los metaloides.

Cuando se completan los ocho electrones posibles de la órbita exterior (neón), concluye el segundo período. El sodio, que inicia el tercer período, posee una órbita más con un electrón. Los períodos aumentan y se hacen más complejos a medida que crece el número de órbitas.

También aumenta el número de electrones en las órbitas sucesivas. Los átomos pesados son los menos estables: todos los elementos posteriores al bismuto, cuyo número atómico es 83, son radiactivos.

Los elementos reciben un nombre que responde en algún:; casos a raíces latinas, y en otro en honor a la persona que los descubre. Éstos se abrevian en símbolos, si tiene una sola letras deberá, ser mayúscula y si lo componen dos, la primera mayúscula y la segunda minúscula por ejemplo nitrógeno (N) y  sodio (Na), respectivamente.

PRIMERAS CLASIFICACIONES DE LOS ELEMENTOS QUÍMICOS:

Las tríadas de Dobereiner: En 1829, Dobereiner, químico alemán, clasificó los elementos conocidos. Agrupaba tres elementos con características observables similares. La clave de esta forma de organización era el hecho de que para uno de los elementos que formaban el grupo, la masa era el valor promedio de las masas de los tres elementos, por ejemplo (Li, Na, K) cuyas masas son 7, 23, y 39 gramos respectivamente. Si sumas los tres datos y los divides entre el número de elementos (3) te da exactamente el valor de la masa del Na, el cual se ubica en la mitad. Clasificación dispendiosa y no muy exacta para nuevos elementos.

Octavas de Newlands: En 1864, Newlands, químico inglés, clasificó los elementos en grupos de ocho, por lo que se conocen como octavas de Newlands. Esta clasificación hacía alusión al término de periodicidad, ya que según la teoría, las propiedades de algunos elementos conocidos se repetían cada ocho elementos y básicamente las organizó en orden ascendente de sus pesos atómicos.

Mendeleiev y Meyer: la tabla periódica: En 1869 Dimitri Mendeleiev, químico ruso, retoma los estudios realizados anteriormente y basándose también en propiedades periódicas de los elementos, los organiza por orden de pesos atómicos ascendentes y, con algunas propiedades más, agrupó los elementos por familias en las que incluyó a los elementos con mayor cantidad de similitudes. Paralelamente Meyer, físico alemán, realizaba estudios basado en los mismos principios, pero añadió estudios de algunas propiedades físicas, que también resultaron ser periódicas, tales como el radio atómico. El gran aporte de Mendeleiev es la base de la tabla periódica actual, ya que dejó los espacios para elementos aún no descubiertos, que respondían a sitios vacíos en la tabla periódica.

REGIONES DE LA TABLA PERIÓDICA
La tabla periódica esta dividida a nivel general en metales y no metales. Sin embargo, hay otra diferenciación, que la divide en regiones, división basada en los subniveles energéticos que ocupan los electrones del ultimo nivel. Así la tabla periódica está dividida en la región s, la región p, la región d y la región f. Por ejemplo, en la región s se ubican los elementos cuyos e- finalicen su distribución en el subnivel s. En esta sección nos ocuparemos de las regiones d y f de la tabla periódica, correspondientes a los elementos de transición.

Elementos de transición
Los átomos de los elementos siempre tienden a ser estables energéticamente, por lo cual ceden, comparten o pierden electrones. Esta estructura estable coincide cuando en su último nivel hay ocho electrones, pero en el caso de este grupo particular de elementos, se suspende el llenado del último nivel para completar primero el penúltimo nivel. Por esta razón aunque los demás elementos de la tabla periódica tiendan a realizar sus enlaces utilizando los electrones del último nivel de energía, éstos lo hacen tanto con los electrones del último nivel, como con los del penúltimo. Se caracterizan además, por poseer gran cantidad de estados de oxidación, es decir, que involucran diferentes cantidades de electrones para intervenir en un enlace, lo que hace que formen varios compuestos. Los elementos que pertenecen a este grupo especial, son los pertenecientes a los lantánidos, actínidos y tierras raras.

Electronegatividad
Si se analizan las propiedades de los elementos químicos, también se puede establecer que hay periodicidad teniendo en cuenta la electronegatividad de los elementos químicos, que básicamente es la tendencia que tienen los átomos de atraer o captar electrones; son ejemplo de ello el oxígeno y el cloro, ya que la electronegatividad aumenta en un periodo de izquierda a derecha y en un grupo de abajo hacia arriba. Y si localizas estos dos elementos se ubican en los lugares más electronegativos de la tabla periódica. Este concepto fue establecido por L. Pauling, quien determinó valores de electronegatividad para cada uno de los elementos; algunos ejemplos se muestran en la tabla que sigue:

NaMgAlPClFBrIAtFr
0.91.21.52.13.04.02.82.52.20.7

Por otra parte y como compensación, existe otro grupo de átomos que tiende a perder los elec-trones, siendo estos los electropositivos. Por ejemplo el sodio y el calcio al poseer solamente 1 y 2 electrones, respectivamente, en su último nivel tienden a cederlos. De esta manera empieza también a evidenciarse la afinidad entre ellos, dado que el átomo que tiende a capturar se complementaría en un enlace químico con uno que tienda a ceder o perder electrones.

Valencia
Para establecer de qué manera los átomos se relacionan, es necesario saber la cantidad de electrones que un átomo puede atraer (ganar), ceder (perder) o compartir con otro átomo, concepto que se conoce con el nombre de valencia. La ilustración 3.16, muestra la forma como se relacionan dos átomos de dos elementos, para formar un compuesto: el átomo de sodio pierde un electrón, es decir su valencia es 1 y el átomo de cloro gana 1 electrón, entonces su valencia también es 1. En síntesis, la valencia es el poder de combinación de un elemento con otro, dado por los electrones del último nivel.

Enlace
La unión entre los átomos se denomina enlace, que es una fuerza de atracción lo suficientemente intensa como para permitir que los átomos involucrados funcionen como una unidad. Se realiza básicamente entre los electrones del ultimo nivel de energía y se produce cuando .las fuerzas de atracción superan las de repulsión, clasificándose, según la manera de establecer la unión. Así pues:

Enlace iónico: se origina cuando un átomo cede y otro captura los electrones.
Enlace covalente: se origina cuando los átomos involucrados comparten sus electrones, dado que tienen la misma fuerza de atracción.

tabla periodica de mendeleiv

Ver Una Tabla Periódica Con Mas Datos

TABLA ACTUAL CON PESOS ATÓMICOS APROXIMADOS

N° AtómicoNombre ElementoSímboloN° ProtonesN° ElectronesPeso Atómico
1hidrógenoH101,0
2helioHe224,0
3litioU346,9
4berilioBe459,0
5boro65610,8
6carbonoC6612,0
7nitrógenoN7714,0
8oxígeno08816,0
9flúorF91019,0
10neónNe101020,2
11sodioNa111223,0
12magnesioMg121224,3
13aluminioAl131427,0
14silicioSi141428,1
15fósforoP151631,0
16azufreS161632,1
17cloroCl171835,5
18argónA182239,9
19potasioK192039,1
20calcioCa202040,1
21escandioSe212445,0
22titanioTi222647,9
23vanadioV232850,9
24cromoCr242852,0
25manganesoMu253054,9
26hierroFe263055,8
27cobaltoCo273258,9
28níquelNi283058,7
29cobreCu293463,5
30cincXn303465,4
31galioGa313869,7
32germanioSe324272,6
33arsénicoAs334274,9
34seienioSe344679,0
35bromoBr354479,9
36criptónKr364883,8
37rubidioRb374885,5
38estroncioSr385087,6
39itrioY395088,9
40zirconioZr405091,2
41niobioNb415292,9
42tnolibdenoMo425695,9
43tecnecioTe4356(99)
44rurenic-Ru4458101,1
45rodioRh4558102,9
46paíadioPd4660106,4
47plataAg4760107,9
; 48cadmioCd4866112,4
49indioIn4966114,8
50estañoSn5070118,7
51antimonioSb5170121,8
52teluroTe5278127,6
53yodo15374126,9
54xenónXe5478131,3
55cesioCs5578132,9
56barioBaS682137,3
57laura noLa5782138,9
58ceñoCem82140,1
59 praseodimioPr5982140,9
60neodimioNd6082144,2
61prometióPm6186(147)
62samarloSm6290150,4
63europioEu6390152,0
64gadolinioGd6494157,3
65terbioTb6594158,9
66disprosíoDy6698162,5
67holmioHo6798164,9
68erbioEr6898167,3
69tuiioTm69100168,9
70iterbioYb104173,0
71lutecioLu71104175,0
72hafnioHf72108178,5
73tantalioTa73108180,9
74volframioW74110183,9
75renioRe75112186,2
76osmioOs76116190,2
77iridioIr77116192,2
78platinoPt78117195,1
79oroÁu79118197,0
80mercurioH980122200,6
81íalioTI81124204,4
82plomoPb82126207,2
83bismutoBi83126209,0
84pofonioPo84125(299)
85astatinoAt85125(210)
86radónRn86136(222)
87francioFr87136(223!
88radíoRa88138(226,0)
89actinioAc89138(227)
90torioTh90142(232,0)
91protactinioPa91140(231)
92uranioU92146(238,0)
93neptunioNp93144(237)
94plutonioPu94150(244)
95americioAm95148(243)
96curioCm96151(247)
97berkelioBle97152(249)
98californioCf?8151(249)
99einstenioEs99155(254)
100fermioFm100153(253)
101mendelevioMd101155(256)
102nobelioNo102152(254)
103laurencioLw103154(257)

ALGO MAS…
EL GENIO  INTRÉPIDO
A fines del siglo pasado flotaba ya en la atmósfera científica la idea de que al ordenar los elementos por peso atómico creciente aquellos de propiedades químicas comparables reaparecían en forma periódica. Por ejemplo, la serie alcalina litio-sodio-potasio-rubidio-cesio, o los halógenos flúor-cloro-bromo-yodo (algunos fueron descubiertos después).

Pero, a pesar de que en los más livianos dicha repetición tenía lugar de ocho en ocho y en los más pesados cada dieciocho elementos, había muchas lagunas y contradicciones.

Dimitri Mendeleiev elaboró una tabla en cuyas casillas se ordenaban en forma horizontal los pesos atómicos y vertical las «familias» de elementos químicamente similares.

Mendeleiev

Pero en su época se conocían menos de 45 cuerpos simples de los 103 que hoy forman la tabla periódica. El mérito capital del sabio ruso consistió en considerar que las fallas y vacíos del cuadro no eran imputables a éste, sino a los químicos que aún no habían descubierto el elemento destinado a intercalarse en el lugar que se le reservaba.

Así Mendeleiev vaticinó sin errores el peso atómico probable de varios elementos desconocidos, sus propiedades químicas esenciales y hasta las probables combinaciones naturales en cuyo interior se ocultaban.

Hubo dificultades. Fue necesario invertir, sin razón plausible, el potasio y el argón (hoy sabemos que una variedad de este último posee un neutrón más en su núcleo). Tampoco se sabía que la primera órbita periférica del átomo se satura con dos electrones (hidrógeno-helio), la siguiente con ocho,  etc.

Pero a pesar de su carácter empírico y sus enormes carencias, lo tabla de Mendeleiev resultó un armo prodigiosa para lo investigación científica y fue inmenso su buen éxito.

Fuente Consultada: Enciclopedia NUEVO Investiguemos Ciencia Integrada  Tomo 3

Ver: Naturaleza de la Materia

Pesos y Medidas de Alimentos Tablas de Pesos de Alimentos Dieta

Pesos y Medidas de Alimentos

TABLA DE PESOS Y MEDIDAS APROXIMADAS DE ALIMENTOS

 Líquidos
1 plato sopero250 c3
1 taza grande 250 c3
1 taza de té150 a 200 c3
1 pocillo grande100 c3
1 pocillo chico50 c3
1 cucharada sopera15 gr.
1 cucharadita de té5 gr.
1 vaso grande 250 c3
 Sólidos
Carnes:
1 rebanada fina de fiambre 10-20 gr.
1 salchicha de Viena30 gr.
1 filet de pescado de 10 cm.100 gr.
1 trozo de carne vacuna similar a una hamburguesa100 gr.
1 taza desayuno de carne molida250 gr.
1/4 de pollo mediano150 gr.
Quesos
1 rebanada fina y pequeña de queso de máquina10 gr.
1 cucharada sopera de queso rallado (colmada)15 gr.
1 trozo de queso de 5 cmx5cmxlcmdeespesor50 gr.
1 cucharada de postre de queso blanco untable20 gr.
Hortalizas y Frutas
Volumen de hortalizas y frutas similar a una pelota de tenis100 gr.
10 a 12 chauchas medianas100 gr.
2 choclos de 15 cm de largo100 gr.
1 taza de té de choclo desgranado, zanahoria rallada o remolacha rallada100 gr.
3 damascos o ciruelas100 gr.
5 quinotos100 gr.
1/2 pomelo de 10cm. de diámetro100 gr.
6 higos medianos100 gr.
Pan y Galletitas
1 grisin largo5 gr.
1 golletita de salvado livianita5 gr.
1 galletita de agua (Mayco, Ser, etc.)5 gr.
1 rebanada de pan tipo lactal o integral de grosor común, un pan migñon15 gr.
1 pan de panchos. pebetes, hamburguesa50 gr.
1 pan francés tipo Felipe60 gr.
1 pan flauta pequeño80 g.
Cereales, harinas, legumbres crudas , azúcar y polvos
1 cucharada de té de azúcar o sal5 gr.
1 cucharada sopera al ras de leche en polvo12 gr.
1 cucharada sopera colmada de harina de trigo, arroz, maíz, azúcar15 gr.
1 cucharada sopera colmada de arroz, garbanzos, lentejas25 gr.
1 taza de desayuno de harina60 gr.
1 taza de desayuno de arroz240 gr.
1 cucharada sopera de arroz cocido30 gr.
1 taza de té de fideos, arroz o pastas cocidas100 gr.
15 ravioles cocidos100 gr.
2 canelones100 gr.
Sustancias Grasas y mermeladas
1 cucharada sopera de mayonesa y crema de leche15 gr.
1 cucharada sopera de aceite10 gr.
1 rulo de manteca5 gr.
1 cucharada de postre de mermelada30 gr.