1905-El Año de Eisntein

Conceptos Básicos de Electrostática Cargas Eléctricas

Conceptos Básicos de Electrostática

EXPERIMENTO CON CARGAS ELÉCTRICAS EN LA ELECTROSTÁTICA

La palabra electricidad, empleada para designar la causa desconocida que daba a los cuerpos frotados la propiedad de atraer a otros, deriva, justamente, de elektron, nombre que en griego significa ámbar.

Pero la voz electricidad, no usada por los griegos, fue introducida por Guillermo Gilbert (1540-1603), médico de cámara de la reina Isabel de Inglaterra. La soberana le acordó una pensión permanente para que se dedicara a la investigación científica sin preocupaciones económicas.

Gilbert Guillermo

Gilbert Guillermo, Médico

William Gilbert (1544-1603), físico y médico inglés conocido sobre todo por sus experimentos originales sobre la naturaleza de la electricidad y el magnetismo. Nació en Colchester, Essex, y estudió en el Saint John’s College de la Universidad de Cambridge. Comenzó a practicar la medicina en Londres en 1573 y en 1601 fue nombrado médico de Isabel I.

El doctor Gilbert, que fue el primero en estudiar sistemáticamente los fenómenos eléctricos, descubrió que otras substancias, entre ellas el vidrio, también adquirían por frotamiento la propiedad de atraer trocitos de cuerpos muy livianos.

Esto puede comprobarse acercando pedacitos de papel a los dientes de un peine de material resinoso, seco, después de peinarse con él repetidas veces.

Si a una esferita de corcho, de médula de saúco o de girasol, suspendida de un hilo de seda, se acerca una barra de vidrio frotada, la esferita, por ebfenómeno de inducción electrostática, es atraída por la barra y repelida después del contacto.

Lo mismo ocurre si se hace el experimento con una barra de ebonita.

Si se carga la esferita de un péndulo eléctrico o electrostático, así se llama el aparatito descripto más arriba, tocándolo con una barra de vidrio electrizada, y otro con una de ebonita en las mismas condiciones, se comnrobará. al acercarlas, aue se atraen; pero si ambas se tocan únicamente con la barra de vidrio, o con la de ebonita, en lugar de atraerse, al acercarlas se repelen.

pendulo electrostático

De estos hechos y otros análogos se sacaron las siguientes conclusiones:

a) Existen dos estados eléctricos opuestos, o como se dice ordinariamente, dos clases de electricidad, que se ha convenido en denominar vitrea o positiva y resinosa o negativa;

b) Electricidades de distinto nombre, o de signo contrario, se atraen; y del mismo nombre, o de igual signo, se rechazan y

c) Un cuerpo que no manifiesta acciones eléctricas se dice que está en estado neutro.

La electrización de un cuerpo por frotamiento, vidrio por ejemplo, y los dos estados eléctricos o las dos clases de electricidad se explican así: el vidrio se electriza positivamente cuando se frota con una franela porque pierde electrones que los gana ésta, que se carga por ello negativamente.

Como los electrones que pierde un cuerpo los gana el otro, se comprende por qué la carga eléctrica que aparece en ambos es igual; pero de nombre contrario.

Los cuerpos que como el vidrio, la ebonita, el lacre, la porcelana, etc., se electrizan por frotamiento y conservan durante bastante tiempo su estado eléctrico, son malos conductores de la electricidad; los que no se electrizan por frotamiento como, por ejemplo, los metales y el carbono, son buenos conductores de la electricidad. A los malos conductores se les denomina también aisladores.

cargas electricas

cuadro electoestática

En realidad, todos los cuerpos se electrizan por frotamiento, como se comprueba frotando un cuerpo conductor que se sostiene con un mango aislador. Lo que ocurre en ambos casos es lo siguiente: en un cuerpo mal conductor o aislador, el vidrio por ejemplo, las cargas eléctricas quedan localizadas en el lugar frotado; en un buen conductor no, pues deja pasar el estado eléctrico o la electricidad de un modo instantáneo a través del mismo y a otros conductores o lugares vecinos que estén en comunicación con él.

Conviene tener presente que la primera condición que se requiere para que un cuerpo sea mal conductor de la electricidad aislador de la misma, es que esté muy seco.

Los electricistas no tienen miedo de tocar los cables que conducen la electricidad si están situados sobre madera bien seca, que es un aislador; en cambio no los tocan si están colocados sobre metales otro material conductor; inclusive la madera húmeda, pues b electricidad pasaría a tierra a rravés del cuerpo humano, que es un buen conductor, produciendo trastornos que pueden ocasionar la muerte.

Existen máquinas eléctricas que producen electricidad por frotamiento, que actualmente sólo tienen interés histórico y didáctico.

Ellas se fundan en el hecho, ya explicado, según el cual cuando dos cuerpos se frotan entre sí, uno de ellos se electriza positivamente y el otro negativamente.

La primera máquina electrostática de frotamiento fue inventada por Otto de Guericke. Consistía en una esfera de azufre que giraba alrededor de uno de sus diámetros y se electrizaba frotándola con la mano. En la obscuridad despedía cierta luz acompañada de ruido.

El término electrostática se emplea para designar la parte de la física que estudia la electricidad estática, es decir, la que está en estado de equilibrio sobre los cuerpos —que se ha tratado en este artículo— para diferenciarla de la electricidad en movimiento, es decir, de la corriente eléctrica.

Historia del Progreso Tecnológico En El Uso de la Energía

Historia del Progreso Tecnológico En El Uso de la Energía

El dominio del hombre sobre la materia creció en proporción directa con el control que adquirió sobre la energía. El proceso fue larguísimo. Durante siglos y siglos la humanidad sólo dispuso de la energía muscular, primero la suya propia y luego la de los animales domésticos.

Llegó a depender en tal forma de su ganado que cuando éste era muy especializado y el clima lo obligaba a emigrar, el hombre iba tras él; al final de la edad glacial, cuando el reno siguió los hielos en su retroceso, el hombre marchó a su zaga. Lo mismo ocurrió con el camello.

Cuando la actividad era medianamente inteligente, la ejecutaban casi exclusivamente los hombres: la pirámide de Keops se edificó en base a la técnica de las multitudes y costó, probablemente, cien mil vidas. Desde hace casi dos siglos, el hombre aprendió a disponer de cantidades abundantes de energía, e inició una era industrial muy diferente a las otras épocas históricas.

He aquí la lista de los pasos más importantes hacia el dominio de la energía:

CRONOLOGÍA DE LOS AVANCES TECNOLÓGICOS

domesticacion del caballo

4000 a. C. (aprox.): El hombre domestica al caballo.

la rueda

3500 a.  C.  (aprox.) Primeros   vehículos   con   ruedas,   en   Mesopotamia. 3000  a.  C.   (aprox.):   Arado   liviano   para   trabajo   continuo.

27  a.  C.  (aprox.):  Vitrubio   describe   molinos   de   agua,   ruedas a   vapor y  algunas  máquinas. 900  (aprox.):   Los persas utilizan molinos de viento. 1638:   Galileo   publica   sus  estudios  sobre  el   péndulo  y  loe   proyectiles.

1686:   Newton publica   sus  “Principia”,   en   los  que   formula   las leyes  de   la   mecánica   celeste. 1693:   Leibniz  establece  la   ley  de  conservación  y transformación de  la   energía   cinética   en   energía   potencial  y  viceversa.

maquina a vapor

1775:   Máquina de vapor de Watt.

lavoisier

1777: Lavoisier atribuye la energía animal a procesos químicos y compara   la   respiración  con   una   combustión   lenta,

1824:   Carnot  funda   la  termodinámica.

1831:  Faraday descubre  la  inducción  electromagnética.

1843/50: Joule determina   el  equivalente   mecánico  del   calor.

1847: Helmholtz incluye el calor en la ley de conservación de la energía.

1850 a 1854: Kelvin y Clausius formulan la primera y segunda ley de la  termodinámica y descubren  la  entropía.

maxwell electromagnetismo

1860/61: Maxwell y Boltzmann calculan la distribución estadística   de  la  energía  en  los  conjuntos  de  moléculas.

1866:   Primer   cable   eléctrico   submarino   a   través   del   Atlántico.

1876: Otto construye el primer motor de combustión interna a base  de  petróleo.

1879/80: Lámpara eléctrica de filamento carbónico de Edison y  Swan.

1884:  Turbina de vapor de Parsons.

becquerel radioactividad

1896:   Becquerel descubre  la  radiactividad.

albert einstein

1905: Einstein asimila la masa a la energía en una célebre ecuación   que  luego   permitirá   la   transmutación   de   una   en   otra.

1932: Chadwick descubre el neutrón, la partícula más eficaz para el  bombardeo  de  núcleos atómicos.

fision nuclear

1945: Primera reacción de fisión nuclear, con uranio (punto de partida de las centrales electroatómicas y de la propulsión atómica).

1951: Primera reacción de fusión nuclear, con hidrógeno pesado (reacciones termonucleares).

1956:   Primera   turbina   atómica,   en   Calder   Hall   (Gran   Bretaña!.

Naturaleza Ondulatoria de la Materia Resumen Descriptivo

Naturaleza Ondulatoria de la Materia

RESUMEN DESCRIPTIVO DE LA FÍSICA CUÁNTICA APLICADA A LA MATERIA: Durante los últimos 300 años, los científicos han invertido mucho tiempo en discutir e investigar la naturaleza de la luz. En el siglo XVII, Isaac Newton sostenía que los rayos luminosos consistían en flujos de partículas muy pequeñas. Esta teoría corpuscular prevaleció durante muchos años, aunque Christian Huygens, contemporáneo de Newton, tenía el convencimiento de que la luz era trasmitida mediante vibraciones (es decir, ondas) en el éter.

Isaac Newton

HUYGENS Christian (1629-1695

En los primeros años del siglo XIX, Thomas Young realizó sus famosos experimentos sobre las interferencias luminosas. Estos fenómenos podían explicarse muy bien con sólo suponer que la luz es un conjunto de ondas y no un flujo de partículas.

Por consiguiente, la teoría ondulatoria parecía explicar satisfactoriamente todas las observaciones experimentales hechas hasta la época, por lo que se pensaba que remplazaría para siempre a la teoría corpuscular. Después, a fines del siglo XIX, se descubrió que, en ciertas condiciones, se liberaban electrones cuando incidía un rayo luminoso sobre una superficie.

Al incidir un haz de luz sobre ciertos materiales se desprenden electrones, creando una corriente electrica, medida por el galvanómetro.

La teoría ondulatoria no podía explicar este fenómeno, que conocemos con el nombre de efecto fotoeléctrico. Este nuevo descubrimiento planteó a los físicos un serio dilema. El efecto fotoeléctrico era más fácilmente explicable acudiendo a la teoría corpuscular, aunque casi todos los otros fenómenos luminosos se explicaban mejor a partir de la teoría ondulatoria.

Éstos eran algunos de los problemas teóricos que tenían planteados los físicos cuando apareció en escena el joven aristócrata francés Luis de Broglie. En una tesis publicada en 1922, cuando sólo tenía 30 años, sugirió que la luz presentaba un comportamiento a veces ondulatorio y a veces corpuscular, aunque no ambos al mismo tiempo.

Científico Luis De Broglie

LOUIS DE BROGLIE (1892-1960): Físico nacido en Francia el año 1892. Sus trabajos de investigación le permitieron descubrir la naturaleza ondulatoria de los electrones. Fue galardonado con el Premio Nobel de Física en 1929.

De Broglie supuso que, así como la luz, normalmente de naturaleza ondulatoria, podía, en ciertos fenómenos, comportarse corpuscularmente, las partículas pequeñas, tales como los electrones, podían presentar características ondulatorias. Pero tuvo que esperar 5 años para que se descubriera la evidencia de este fenómeno.

Fue en 1927 cuando los estadounidenses Clinton G. Davisson y L. H. Germer, trabajando en los laboratorios de la Bell Telephone, consiguieron producir fenómenos de  difracción  con un flujo de electrones, usando un cristal como red de difracción.

La teoría dualista de De Broglie puede aplicarse a todas las partículas en movimiento, cualquiera que sea su naturaleza.

La longitud de onda de esta onda De Broglie (la onda asociada con la partícula) se averigua dividiendo la constante de Planck por la cantidad de movimiento de la partícula. Luis Víctor de Broglie nació en Dieppe (Francia), en 1892. Su hermano mayor, Maurice, el sexto duque De Broglie, fue también un físico de cierta importancia.

Luis se interesó, primero, por la historia y la literatura, pero después, sirviendo en el ejército francés durante la primera guerra mundial, se dedicó a la física. En reconocimiento a su contribución al avance de la física teórica, Luis de Broglie fue galardonado, en 1929, con el premio Nobel. Desde 1928 fue profesor de física teórica en la Universidad de París, donde había cursado sus estudios.

PARA SABER MAS…

La teoría cuántica puso una bomba bajo la visión de física clásica y, al final, la derrocó. Uno de los pasos críticos de esta rebelión se dio cuando Erwin Schrodinger formuló su teoría de la mecánica de ondas, en la que sugería que un electrón, en un átomo, se comporta como una onda. Se guiaba por la belleza, por su principio básico de que si una solución no era matemáticamente hermosa, casi seguro era incorrecta. El trabajo de Schrodinger recibió un estímulo vital cuando leyó la tesis doctoral en Filosofía de Louis de Broglie, y fue oficialmente reconocido cuando, en 1933, Schrodinger compartió el Premio Nobel de Física con Paul Dirac.

El saludo de la onda de electrones
En 1900, Max Planck había sugerido por primera vez que la energía venía en conglomerados. Esto llevó a pensar que la luz — que es una forma de energía— también estaba compuesta de partículas. Al principio no parecía probable, pero Einstein había desarrollado el concepto hasta el punto de tener una credibilidad considerable, y las partículas de la luz se conocieron como fotones.

A pesar de que la luz era claramente una partícula, :ambién tenía propiedades de onda. El trabajo de Planck había demostrado que distintas luces se transformaban en diferentes colores porque los fotones tenían distintas cantidades de energía. Sin embargo, si se divide la energía por la frecuencia a la que ese color oscila, siempre resulta el mismo valor, la llamada constante de Planck.

Eso para la luz. ¿Pero qué hay de las partículas de materia? la pregunta empezó a tener respuesta cuando Louis de 3roglie, un aristocrático físico francés del siglo XX, sugirió c¡ue las partículas de los materiales parecían ser :onglomerados localizados porque no éramos capaces de verlas más de cerca. Una mejor observación, creía, revelaría que ellas también tienen propiedades de onda.

Buscando soporte para sus ideas sobre la teoría de la relatividad de Einstein, de Broglie demostró que, con las ecuaciones Je Einstein, podía representar el movimiento de la materia :omo ondas. Presentó sus descubrimientos en 1924, en su :esis doctoral Recherches sur la Théorie des Quanta (Investigación sobre la Teoría Cuántica).

Se demostró experimentalmente gracias al trabajo con electrones llevado a cabo por los físicos americanos Clinton Joseph Davisson y Lester Hallbert Germer en 1927, quienes demostraron que los electrones, aun siendo partículas, se comportan como ondas. Planck había cambiado nuestra visión de la luz, Broglie cambió la de la materia.

La aportación de Schrodinger en esta revelación, fue tomar .as observaciones de Broglie y desarrollar una ecuación que describía el comportamiento de los electrones. Usó la ecuación para definir los modos de movimiento de los electrones en los átomos, y descubrió que las ecuaciones sólo funcionaban cuando su componente de energía era múltiplo de la constante de Planck.

En 1933, Schrodinger recogió el Premio Nobel de Física, aero, al hacerlo, pagó tributo a Fritz Hasenhórl, el profesor de Esica que había estimulado su imaginación cuando era estudiante en la Universidad de Viena. Hasenhórl había sido asesinado en la Primera Guerra Mundial, pero durante su aiscurso de recepción, Schrodinger remarcó que de no haber ;:do por la guerra, habría sido Hasenhórl, y no él, quien recibiera el honor.

Fuente Consultada:
Las Grandes Ideas que Formaron Nuestro Mundo Pete Moore
TECNIRAMA Enciclopedia de la Ciencia y la Tecnología

Funcionamiento de Olla a Presión Historia de Papin Denis

Funcionamiento de Olla a Presión
Historia de Papin Denis

FUNCIONAMIENTO: Las ollas a presión suponen un enorme ahorro de tiempo en la cocina, ya que, permiten cocer los alimentos en un plazo mucho menor del requerido normalmente. El tiempo necesario para la cocción depende mucho de la temperatura del alimento y del ambiente que lo rodea. Por ejemplo, un trozo de carne tarda mucho más en asarse en un horno a fuego lento que si se aumenta la temperatura. Sin embargo, si ésta se aumenta demasiado, la carne se quema, en vez de cocerse como es debido.

Lo mismo ocurre cuando los alimentos se cuecen en agua. Por ejemplo, un huevo metido en agua a 80°C, tarda mucho más en cocerse que si el agua está hirviendo. Así, pues, el tiempo de cocción depende de la temperatura. Si se mide la temperatura a intervalos durante la cocción del huevo, se ve que aquélla aumenta, hasta que el agua comienza a hervir, y entonces permanece constante a 100°C

El proporcionarle mas calor no altera la temperatura: lo único que ocurre es que el agua hierve más vigorosamente. Bajo condiciones atmosféricas normales, el agua pura hierve a 100°C. Sin embargo, el punto de ebuffieión del agua varía con la presión. En la cumbre de una montaña elevada, donde el aire está enrarecido y la presión es inferior a la normal, el agua hierve a una temperatura más baja. Si por algún procedimiento se aumenta la presión del gas sobre el agua, su punto de ebullición sube.

Esto es exactamente lo que ocurre en las ollas a presión. Aumenta la presión del gas dentro de ellas y, por lo tanto, el punto de ebullición del agua que contienen, con lo cual los alimentos se cuecen más rápidamente a temperaturas más altas.

El agua hierve a 100 °C, a la presión atmosférica normal (1,03 kg. por centímetro cuadrado) . Si se aumenta la presión a 1,4 kg./cm2., hierve a 108 °C; si se incrementa a 1,75 kg./cm., lo hará a 115°C., y así sucesivamente. De hecho, algunas ollas trabajan a una presiones dos veces mayor que la atmosférica.

Las ollas a presión tienen que ser lo bastante sólidas para soportar las fuertes presiones, y la tapa ha de cerrar herméticamente, para que la presión interior se mantenga sin que se produzcan fugas.

La tapa lleva un punto débil, colocado deliberadamente para que actúe como dispositivo de seguridad, ya que, en caso de que se obstruyera la válvula de seguridad a través de la cual escapa normalmente el vapor, la olla podría convertirse en una bomba, de no existir dicho dispositivo, pues a medida que se siguiera aplicando calor la presión iría aumentando, hasta que, finalmente, explotaría.

Pero la olla no es tal arma mortífera y no ocurre eso, ya que, cuando la presión aumenta demasiado, la válvula de seguridad se abre y escapa el exceso de gas. En el centro de la tapa, hay un orificio en el que se asienta un manómetro de aguja, que lleva un peso. Se comienza la cocción sin colocar la válvula.

corte de una olla a presión

Corte de una olla a presión

El agua hierve a la presión atmosférica y la olla va llenándose de vapor, hasta que, por fin, brota un chorro de éste por el orificio. Entonces, se coloca el manómetro y el orificio queda bloqueado.

Esto impide que escape el vapor y, con ello, aumenta la presión. A medida que esto ocurre, el vapor acciona sobre el dispositivo, hasta que brota una nube que indica que la presión deseada se ha alcanzado. En este momento, debe regularse el gas o la electricidad, para mantener la presión.

Cuando se ha acabado la cocción, hay que enfriar la olla bajo la canilla de agua. El agua fría elimina calor de aquélla, y una parte del vapor interior se condensa en forma de gotitas acuosas. Con lo cual, al reducirse la cantidad de vapor, la presión disminuye. Entonces se puede abrir la olla.

Fuente Consultada: Enciclopedia de la Ciencia y la Tecnología TECNIRAMA N°126

SOBRE LA VIDA Y OBRA DE DENIS PAPIN: Uno de los trece hijos de un burgués protestante de Blois, llamado Denis Papin se orienta primero hacia la medicina, mostrando en la facultad de Angers un interés precoz por la mecánica y la cuestión de la conservación de los cadáveres. Su habilidad manual hace que repare en él un abate muy conocido, que lo recomienda a Christiaan Huygens, “inventor del reloj de péndulo”, como se lo presentaba entonces.

Retrato de Denis Papin (1647-1714). Trabajó con Robert Boyle en la investigación sobre el aire. Es recordado por sus inventos y es considerado uno de los grandes pioneros de la máquina de vapor moderna. La máquina de vapor de Papin se compone de un cilindro con un pistón que es levantado por la presión del vapor, y es descendente produciendo el trabajo.

Pilar de la Academia Real de Ciencias, dotado por el Rey de 1.200 libras de renta, el sabio holandés se instaló en la Biblioteca real, donde procedió a realizar múltiples experiencias. Es allí donde el joven Papin, brillante posdoctorado estilo siglo XVII, se inicia en la tecnología de la “bomba al vacío”, al tiempo que lleva a cabo investigaciones inéditas sobre la conservación de los alimentos. Para el gran asombro de Huygens, logra mantener una manzana en condiciones, bajo vacío, ¡durante cinco meses!.

Como los laboratorios de física no eran muy numerosos en 1675, no es nada sorprendente encontrar al joven oriundo de Blois en Londres, en casa de Robert Boyle, aristócrata de fortuna apasionado por la mecánica.

Provisto de un contrato bastante ventajoso pero que estipula el secreto, Papin construye para su amo bombas de un nuevo género (dos cilindros hermanados conducidos por una palanca común que permite una aspiración continua), con las cuales termina por efectuar las experiencias él mismo. Boyle nunca ocultará lo que le debe a su técnico francés, a quien cita con abundancia en sus publicaciones pero cuyos textos, aclara, reescribe sistemáticamente.

Es en ese laboratorio donde la gloria viene a coronar la doble obsesión, mecánica y culinaria, de Papin. Al adaptar una sopapa de seguridad, que inventa para la ocasión, sobre un recipiente metálico herméticamente cerrado con dos tornillos, crea el “digestor”, o “baño maría de rosca”, que se convertirá en la olla a presión, cuyo vapor pronto silba en las cocinas del Rey de Inglaterra y en la sala de sesiones de la Academia real de París.

Dice Denis: “Por medio de esta máquina , la vaca más vieja y más dura puede volverse tan tierna y de tan buen gusto como la carne mejor escogida”, y en la actualidad no se concibe adecuadamente el impacto que podía tener una declaración semejante: en 1680, a los treinta y tres años, Papin es elegido miembro de la Royal Society, como igual de sus famosos empleadores, incluso si su nivel de vida sigue siendo el de un técnico.

Aunque en 1617 se haya instalado en Inglaterra un sistema de patentes, a Papin no le parece de ninguna utilidad interesarse en eso. Mientras los artesanos ingleses hacen fortuna fabricando su marmita, él solicita a Colbert una renta vitalicia… que le es negada.

De todos modos, ahí lo tenemos, lanzado en el jet set intelectual de la época. Lo vemos disertando sobre la circulación de la sangre en casa de Ambrose Sarotti, en Venecia, experimentando con Huygens en París sobre la bomba balística (un pesado pistón puesto en movimiento por una carga de pólvora) y lanzando en Londres su candidatura al secretariado de la Royal Society.Por desgracia, el elegido será Halley.

Fatigado, sin dinero, Papin agobia a la Royal Society con candidos pedidos, antes de desaparecer definitivamente en 1712.

Fuente Consultada: Una Historia Sentimental de las Ciencias Nicolas Witkowski

Feymann Richard Fisico Premio Nobel Teoría Electrodinámica Cuántica

Feymann Richard Físico Premio Nobel
Teoría Electrodinámica Cuántica

El físico norteamericano Richard Phillips Feynman mereció el Premio Nobel en 1965  por sus estudios en el campo de la electrodinámica cuántica. Fue uno de los teóricos  más originales de la posguerra, ya que contribuyó de manera fundamental en muchos campos de la física.

Su genial visión de fabricar productos en base a un  reordenamiento de átomos y moléculas dio pie al nacimiento de una de disciplinas científicas más prometedoras de la era moderna: la nanotecnología

Feymann Richard Físico

“Para la existencia de la ciencia son necesarias mentes que no acepten que
la naturaleza debe seguir ciertas condiciones preconcebidas.”

NUEVAS FRONTERAS
Con una curiosidad ilimitada ante los fenómenos de la naturaleza, Richard Feynman hizo contribuciones relevantes en diversos campos de la física y también fue un excelente divulgador, capaz de transmitir su pasión por la ciencia.

De una intuición extraordinaria, buscaba siempre abordar los problemas de la física de manera diferente de la de sus colegas, quería presentar las cuestiones conocidas fuera de los caminos ya trillados.

La historia cuenta que durante una reunión de la Sociedad Americana de Física de la división de la Costa Oeste, en 1959, Feynman ofreció por primera vez una visión de la tecnología totalmente nueva, imaginando enciclopedias escritas en la cabeza de un pin.

“Hay mucho sitio al fondo”, dijo en aquella célebre conferencia. Pero el fondo al que se refería no era el de la abarrotada sala de actos. Hablaba de otro fondo: el de las fronteras de la física, el mundo que existe a escala molecular, atómica y subatómica.

Un Visionario: Por primera vez, alguien pedía investigación para hacer cosas como escribir todos los libros de la Biblioteca del Congreso en una pieza plástica del tamaño de una mota de polvo, miniaturizar las computadoras, construir maquinarias de tamaño molecular y herramientas de cirugía capaces de introducirse en el cuerpo del paciente y operar desde el interior de sus tejidos.

La conferencia de Feynman está considerada como una de las más importantes y famosas de la historia de la física, que hoy cobra una vigencia no prevista en aquel entonces.

Por eso muchos científicos consideran que Richard Feynman marca de algún modo el nacimiento de la nanotecnología, ciencia que se aplica a un nivel de nanoescala, esto es, unas medidas extremadamente pequeñas, “nanos”, que permiten trabajar y manipular las estructuras moleculares y sus átomos. (ver: nanotecnologia)

El futuro es impredecible: A pesar de que Feynman ignoraba en aquel entonces la capacidad de los átomos y las moléculas de unirse en estructuras complejas guiadas por sus interacciones físicas y químicas (algo muy presente hoy en día a escala nanométrica), queda su impresionante clarividencia en saber identificar en la naturaleza un abundante depósito de recursos, poniendo de manifiesto al mismo tiempo su confianza en el carácter ilimitado de la creatividad humana.

PORQUE SE LO RECUERDA:

    1. Es considerado una de las figuras pioneras de la nanotecnología, y una de las primeras personas en proponer la realización futura de las computadoras cuánticas.
    1. Su forma apasionada de hablar de física lo convirtió en un conferencista popular; muchas de sus charlas han sido publicadas en forma de libro, e incluso grabadas para la televisión.
    1. Feynman fue asignado al comité de investigación de la explosión en vuelo del transbordador de la NASA Challenger, en 1986. Demostró que el problema había sido un equipo defectuoso y no un error de un astronauta.
  1. Entre sus trabajos se destaca la elaboración de los diagramas de Feynman, una forma intuitiva de visualizar las interacciones de partículas atómicas en electrodinámica cuántica mediante aproximaciones gráficas en el tiempo.

Cronología:
NACIMIENTO: Richard Feymann nació el 11 de mayo en Nueva York. Descendiente cíe judíos rusos y polacos, estudiu física cu el Instituto Tecnológico de Massa-chusetts v se doctoró en la Universidad de Priiiceton.

PROYECTO MANHATTAN Participó en el proyecto Manhattan, que dio origen a la primera bomba atómica. Posteriormente, en 1950, fue nombrado titular de la cátedra de física teórica en el California Institute of Technology (foto).

PREMIO NOBEL: Recibió el Nobel de Física junto con J. Schwinger y S. Tomonaga, por sus trabajos en electrodinámica cuántica. Se mostró cómo abordar el estudio cuántico y relativista de sistemas con cargas eléctricas.

INTRODUCCIÓN AL CONCEPTO DEL QUARK: Trabajó en el acelerador de partículas de Stanford, período en el que introdujo la teoría de I partones, hipotéticas partículas localizadas en el núcleo atómico que daría pie más tarde al concepto de quark.

MUERTE: Tras luchar denodadamente durante cinco años con un cáncer abdominal, Feynman falleció el 15 de febrero, dos semanas después de dictar su última exposición como docente: su última clase versó sobre la curvatura espacio-temporal.

Fuente Consultada:Gran Atlas de la Ciencia La Materia National Geographic – Edición Clarín –

Historia de Ciencia Tecnica Tecnologia y Sus Avances

Historia de la Ciencia ,Técnica y Tecnología
Curiosidades y Avances Científicos

INTROUDUCCIÓN: Si consideramos la ciencia como la investigación sistemática de la realidad a través de la observación, la experimentación y la inducción (conocido como método cientí

Sin duda, se realizaron descubrimientos, pero de forma fragmentaria. La mitología y la religión dominaron como formas de explicar el mundo.

Esto empezó a cambiar con las especulaciones de los primeros filósofos griegos, que excluían las causas sobrenaturales de sus explicaciones sobre la realidad.

Al llegar el s. III a.C. la ciencia griega era muy elaborada y producía modelos teóricos que han dado forma desde entonces al desarrollo de la ciencia.

Con la caída de Grecia ante el imperio Romano, la ciencia perdió su estado de gracia. Se lograron pocos avances importantes, salvo en medicina, y el trabajo realizado estaba firmemente enraizado en las tradiciones y los marcos conceptuales griegos.

Durante varios siglos, desde la caída del imperio Romano en el s. V d.C, la ciencia fue prácticamente desconocida en Europa occidental. Sólo la civilización islámica conservó los conocimientos griegos , y los transmitió más tarde de nuevo a Occidente.

Entre los s. XIII y XV se lograron algunos avances en el campo de la mecánica y la óptica, mientras que algunos hombres como Roger Bacon insistieron en la importancia de la experiencia y de la observación personal.

El s. XVI señaló la llegada de la llamada “revolución científica”, un período de progreso científico que empezó con Copérnico y culminó con Isaac Newton.

La ciencia no sólo logró descubrimientos conceptuales sino que consiguió también un enorme prestigio.

La ciencia y todo lo que la rodeaba llegaron a estar muy de moda a finales del s. XVII, y atrajeron una gran cantidad de patrocinios reales y gubernamentales.

Dos hitos de esta nueva moda fueron la fundación de la Académie de Sciences por Luis XIV en Francia y de la Royal Society por Carlos II en Inglaterra.

En el curso del s. XIX la ciencia se profesionalizó y se estructuró en carreras y jerarquías emergentes, centradas en universidades, departamentos de gobierno y organizaciones comerciales.

Esta tendencia no se interrumpió con la llegada del s. XX, que ha visto cómo la ciencia dependía cada vez más de los avances tecnológicos, avances que no han escaseado.

La ciencia moderna es inmensa y extremadamente compleja. Es virtualmente imposible llegar a tener una visión global consistente de lo que ocurre en la ciencia.

Por este motivo, mucha gente la ve con algo de suspicacia. Sin embargo, la civilización occidental está completamente sometida a la creencia de que el progreso científico es un valor positivo y una fuerza que contribuye al bien de la humanidad.

Aunque algunos de los mayores peligros y horrores del mundo tienen sus raíces en el esfuerzo científico, también existe la esperanza de que, con el tiempo, la ciencia proporcionará soluciones viables para ellos.

Marie Curie (1867-1934) cientifica

Ejemplo de científico abnegado y apasionado por el descubrimiento y estudio de la naturaleza. Marie Curie (1867-1934). La científica polaca que, con su marido francés Pierre (1859-1906) y Henri Becquerel (1852-1908), recibió el premio Nobel de física de 1903 por el descubrimiento de la radioactividad. También recibió el de química de 1911 por el descubrimiento de dos elementos, el radio y el polonio.

MENU DE LOS PRINCIPALES TEMAS CIENTÍFICOS TRATADOS EN EL SITIO

bullet-historia1 Teoría Especial de la Relatividad
bullet-historia1Concepto de Palanca y Máquinas Simples
bullet-historia1 Concepto de Cantidad de Calor-Caloría-Equilibrio Termico
bullet-historia1 Anécdotas Matemáticas
bullet-historia1Las Radiaciones de un Núcleo Atómico
bullet-historia1 Tres Grandes Matemáticos
bullet-historia1 Ideas Geniales De Las Ciencias
bullet-historia1 Inventos Geniales
bullet-historia1 Medición Radio Terrestre En La Antigüedad
bullet-historia1 El Número Pi
bullet-historia1 El Átomo
bullet-historia1 La Partículas Elementales del la Materia
bullet-historia1 El Sistema Solar
bullet-historia1 Astronomía Para Principiantes
bullet-historia1 Conceptos Informáticos
bullet-historia1 La Vida de las Estrellas
bullet-historia1 El Genoma Humano
bullet-historia1 Estudio del Cuerpo Humano
bullet-historia1 Seres Humanos en el Espacio
bullet-historia1 Humanos en el Fondo del Mar
bullet-historia1 Los Tres Problemas Griegos
bullet-historia1 La Misión Apolo XI
bullet-historia1 El Big Bang
bullet-historia1 SQL Para Bases de Datos
bullet-historia1 Los Efectos de Una Explosión Nuclear
bullet-historia1 El Agua Potable
bullet-historia1 Hidrógeno: El Combustible del Futuro
bullet-historia1 El Planeta Sedna o Planetoide Sedna?
bullet-historia1La Energía Nuclear y Sus Usos
bullet-historia1El Petróleo:Una Noble Sustancia
bullet-historia1El Movimiento De Los Satélites Artificiales
bullet-historia1Porque hay rozamiento entre dos superficies?
bullet-historia1Consultas En Un Diccionario Medico Etimológico
bullet-historia1 Internet y la WEB
bullet-historia1La Inteligencia Humana (Con Un Test)
bullet-historia1Dos Bellos Teoremas (La Raíz de 2 y Los 5 Sólidos Pitagóricos)
bullet-historia1Tres Conceptos Físicos Modernos
Efecto Fotoeléctrico-Radiación Cuerpo Negro-El Cuanto de Energía
bullet-historia1Conceptos Básicos de Cohetería Moderna
bullet-historia1 Curiosas Cuestiones Físicas Explicadas Por Yakov Perelman
bullet-historia1 Tres Principios Físicos Básicos
Pascal-Arquímedes-Bernoulli
bullet-historia1 Hormigones y Morteros-Cálculo de Materiales por m3
bullet-historia1 Centrales Generadoras de Energía
bullet-historia1 Los Combustibles Fósiles
bullet-historia1 La Célula y La Clonación
bullet-historia1 Experimento De Las Esferas de Maldemburgo
bullet-historia1 Teoría del Campo Unificado
bullet-historia1 La Presión Atmosférica y La Experiencia de Torricelli
bullet-historia1 La Teoría Cinética de los Gases
bullet-historia1Fórmula Matemática de la belleza Universal
bullet-historia1Método Gráfico (árabe) Para Resolver Una Ecuación de 2° Grado
bullet-historia1 La Inteligencia Artificial
bullet-historia1 La Inmunidad Humana
bullet-historia1Motores de Combustión Interna y Eléctricos
bullet-historia1 Pilas y Baterías – Principio Físico de Funcionamiento
bullet-historia1Bell o Meucci Quien inventó el teléfono?
bullet-historia1 Las Vacunas
bullet-historia1Las Vitaminas
bullet-historia1 La Poliomielitis
bullet-historia1La Leyes de Kepler
bullet-historia1 Eclipses de Sol y de Luna
bullet-historia1 La Medición del la velocidad de la Luz
bullet-historia1 Nuestra Querida Estrella: El Sol
bullet-historia1 Las Leyes de la Mecánica Clásica de Newton
bullet-historia1 Las Leyes del Péndulo Físico
bullet-historia1 La Matemática en el Siglo XX – Desafíos Sin Resolver
bullet-historia1 Aprende a Resolver Una Ecuación de 2do. Grado
bullet-historia1 A que llamamos el pensamiento lateral? Problemas
bullet-historia1 Desalinizar El Agua de Mar
bullet-historia1 La Economía Como Ciencia
bullet-historia1 Conceptos Básicos Sobre La Ciencia
bullet-historia1 Teoría de la Deriva de los Continentes
bullet-historia1 La Lucha contra las infecciones: los antibióticos
bullet-historia1 Últimos avances científicos en medicina (2007)
bullet-historia1 La Era Espacial: Las Misiones Espaciales
bullet-historia1 Teorías Físicas Que Fracasaron
bullet-historia1 Descubriendo Nuevos Metales en el Siglo XVII
bullet-historia1 El Experimento del Siglo XXI: “La Máquina de Dios”
bullet-historia1 Enanas Blancas, Neutrones y Agujeros Negros

Biografía de TESLA Nikola Vida e Inventos – Resumen

Resumen de la Biografía de TESLA NIKOLA – Vida y Sus Inventos

VIDA E INVENTOS DE TESLA NIKOLA – CIENTÍFICO: Nikola Tesla (1856-1943) En la pequeña ciudad de Smiljan en la provincia servia de Lika, llamada entonces Croacia (Yugoslavia), tuvo lugar un hecho aparentemente sin importancia —la muerte de un caniche francés—, pero éste fue un hecho que desencadenaría una serie de acontecimientos relacionados con el futuro del Mundo.

Nikola Tesla tenía cinco años de edad cuando encontró el pequeño caniche negro de su hermano Dane muerto bajo un matorral al lado de la carretera. Su hermano acusó a Nikki de la muerte del perro.

biografia de nikola tesla

Poco después encontraron a Dane inconsciente al pie de la escalera de piedra del sótano.

Dane murió a consecuencia de sus heridas, y hasta el fin de sus días Nikki Tesla cre

Al cabo de poco tiempo, Nikki oyó que su madre, cansada de batir huevos, se quejaba de dolor de muñeca.

Deseoso de congraciarse, Nikki se puso inmediatamente en acción con la idea de aprovechar la fuerza de un cercano riachuelo de montaña para hacer girar el batidor. «Voy a capturar la fuerza del agua» anunció Nikki confidencialmente.

Cuando su padre dijo inadvertidamente que Dane era diferente de Nikki, porque «Dane era un genio», Nikki se propuso demostrar que él también lo era. Decidió en aquel momento que inventaría algo que asombraría al mundo.

Nikki emprendió experimentos para aprovechar la fuerza del agua, pero a los nueve años abandonó de momento su trabajo para dedicarse al estudio de la fuerza del viento.

Deseaba desesperadamente inventar algo que impresionara a los mayores, especialmente a sus padres.

Cuando tenía 10 años, Nikki ingresó en el Gimnasio real de Gospic, una institución con cursos de cuatro años equivalente a la escuela secundaria. Le gustaban especialmente las matemáticas y cuando demostró por primera vez sus dotes en la utilización de fórmulas y la solución de ecuaciones, incluso sus profesores se asombraron.

Fue acusado de «copiar» y tuvo que pasar un «juicio» escolar ante sus padres y profesores. A pesar de la atmósfera de desconfianza y hostilidad pasó el examen fácilmente, pero con una sensación de desgracia y confusión.

La infancia de Tesla estuvo llena de ideas excéntricas y experimentos con aparatos; continuó su formación en el Instituto politécnico de Graz, donde se especializó en física y matemáticas.

Finalizó sus estudios en la Universidad de Praga, en 1880. Un año después, inventó un amplificador para teléfono que ampliaba el sonido de la voz reduciendo al mismo tiempo los ruidos molestos, es decir, la estática.

El aparato completo, su primer invento, que no patentó nunca, fue llamado «repetidor telefónico». Hoy en día lo llamaríais altavoz.

En un año, Tesla empezó a desarrollar la teoría de la corriente alterna. Tesla explicó a su ayudante: “Voy a producir un campo de fuerza que gire a gran velocidad. Rodeará y abrazará una armadura que no precisará conexiones eléctricas.

El campo rotatorio transferirá su energía, sin cables, a través del espacio dando energía a través de sus líneas de fuerza a las bobinas cortocircuitadas de la armadura que formará su propio campo magnético siguiendo el remolino magnético rotatorio producido por las bobinas del campo. No habrá necesidad de cables, ni de conexiones defectuosas, ni de conmutador”.

Tesla fue a Budapest y luego a París para encontrar un patrocinador de su sistema de energía de corriente alterna.

Trabajó una temporada con la compañía Continental Edison, de París.

Le aconsejaron que buscara un empleo en la Compañía Edison de Nueva York, y Tesla, cuatro años después de haber obtenido su título en la Universidad de Praga, partió de París para América.

Tesla dijo a Thomas Edison que había perfeccionado —por lo menos en teoría— un sistema de energía de corriente alterna. Edison trató con desdén las ideas de Tesla y le dijo que «jugar con corrientes alternas era perder el tiempo. Nadie va a utilizarlas jamás, es demasiado peligroso.

Un cable de corriente alterna a alto voltaje puede matar a una persona con la misma rapidez que un rayo.

La corriente continua es segura». Pero Edison contrató a Tesla y el joven europeo hizo exactamente lo mismo que hacía en la Continental Edison de París: presentó un plan que permitiría ahorrar muchos miles de dólares, tanto en la construcción como en el uso de las dínamos y motores de Edison.

Trabajaba desde las diez de la mañana hasta las cinco de la mañana siguiente, siete días a la semana.

Pero Tesla dejó pronto a Edison y tras uno cuantos empleos misceláneos, encontró a gente dispuesta a invertir en su persona; de este modo se formó la Compañía eléctrica Tesla La labor de Tesla para desarrollar la corriente alterna en sus aplicaciones prácticas empezó en serio, y logró su objetivo.

Todos los elementos complicados y de difícil ejecución de la Feria mundial de Chicago de 1893, iban alimentados con la corriente alterna de los motores y dínamos Westinghouse, inventados por Tesla.

Sus equipos se utilizaron después en las instalaciones generadoras de las cataratas  del Niágara. Tesla, instalado ahora en un laboratorio de Nueva York, dedicó todo su tiempo a investigar.

El gran científico fue haciéndose más paranoico con la edad, una evolución que podía seguirse desde los traumas de su infancia.

Al informársele, en 1917, que seria invitado de honor en una cena ofrecida por el Instituto americano de Ingenieros eléctricos, donde recibiría la medalla Edison del Mérito, Tesla rechazó la invitación diciendo: «Cada vez que el Instituto concede una medalla Edison, la gloria va más a Edison que al homenajeado. Si tuviese dinero para gastar para estas tonterías, me lo gastaría gustosamente para que se concediera una medalla Tesla al señor Edison».

Le convencieron para que aceptara el honor, pero no se presentó en la cena. Sus amigos lo encontraron dando de comer a las palomas detrás de la Biblioteca pública de Nueva York.

Tesla pasó los últimos años de su vida como un egoísta solitario e incomunicativo, absorbido en pensamientos y sentimientos que le separaban tanto del mundo como de las demás personas.

No quería dar la mano por miedo a los microbios de los demás; las superficies redondas como las bolas de billar o los collares de perlas le asustaban; siguió teniendo celos de Edison y sólo quería a las palomas, que alimentaba diariamente.

Su gran talento se esfumaba intentando inventar rayos de la muerte y aparatos para fotografiar pensamientos en la retina del ojo. Tesla falleció en 1943 de un ataque al corazón.

Las instituciones científicas del mundo conmemoraron el centenario de su nacimiento en 1956. Como un tributo final se dio el nombre de tesla a la unidad electromagnética de densidad de flujo en el sistema MKS.

Ciencia y tecnologia en la Sociedad Su influencia en la vida diaria

Ciencia y Tecnología en la Sociedad
Su influencia en la vida diaria

La vida será sofisticada y eficiente. ¿Cuáles serán los chiches de la nueva era? Valerie, el androide doméstico dotado de inteligencia artificial —y buenas piernas—, será uno. Nos dará una mano con la limpieza y llamará a la policía ante urgencias.

Otra aliada de las tareas será Scooba, la aspiradora de iRobot, que con sólo apretar un botón fregará los pisos hasta los rincones más recónditos. Asimismo, la Polara de Whirlpool nos facilitará las cosas.

Combina las cualidades de una cocina convencional y una heladera: será posible dejar un pollo en el horno para que se ase en el horario programado.

El gatito Cat de Philips habitará el hogar del mañana. Genera expresiones faciales— felicidad, sorpresa, enojo, tristeza— y será compinche de los chicos.

¿Qué habrá de nuevo a la hora de comer? “Se elegirán alimentos que hagan bien a la piel y al organismo. De todas formas, no faltará quien ingiera por elección o comodidad, comida chatarra mientras lea una revista de salud y se prometa: “mañana empiezo el régimen”, opina la cocinera Alicia Berger. “Además, la gente se preocupará por el origen y calidad de los alimentos, y se revalorizará lo casero”, revela.

Ciencia y tecnologia en la Sociedad Su influencia en la vida diariaY al irse a la cama, será posible introducirse en una que soporta ataques terroristas o desastres naturales —de Quantum Sleeper— o portar un reloj pulsera Sleeptracker (foto izquierda) que vía sensores, detecta

nuestro sueño superficial y justo ahí hace sonar la alarma para que el despertar sea lo menos fastidioso posible.

¿Y el sexo para cuándo? Mal que nos pese, cada vez tendremos menos ganas, tiempo y pasión. “Vamos hacia el sexo virtual por sobre el real al menos en las grandes ciudades del mundo”, confirma el doctor Juan Carlos Kusnetzoff, director del programa de Sexología Clínica del Hospital de Clínicas, quien adelanta que para levantar el ánimo —y algo más— se desarrollarán nuevas píldoras. “La industria farmacéutica desea lograrlo a toda costa”, agrega.

Ocio y tiempo libre para todos los gustos

En el campo de las nuevas tecnologías, la convergencia de la telefonía móvil y el hogar será un hecho. “El móvil podría permitir el acceso a los diferentes elementos que se quieran controlar, como un control remoto universal. Además se crearían nuevos sensores para avisarnos de situaciones que requieran nuestra atención y cámaras de seguridad para ver desde el teléfono lo que sucede en otro lugar”, cuenta Axel Meyer, argentino que desde el 2000 trabaja en el centro de diseño de Nokia Desing, en Finlandia.

Y agrega “Los teléfonos con doble cámara ya permiten hacer videollamadas. Y también podremos ver la emoción del otro mientras miramos la misma película o un gol de nuestro equipo”, explica.

Ciencia y tecnologia en la Sociedad Su influencia en la vida diariaEn robótica, los avances irán a gran velocidad. Ya se está desarrollando en la Universidad de Tokio la piel de robot que permitirá a estas criaturas adquirir el sentido del tacto. Y eso no es todo.

Se podrá bailar con ellos. El Dance Partner Robot es la compañera de baile ideal. Predice los movimientos de su coequipper y no le pisa los pies!

Para momentos de ocio, el turismo estará preparado para el disfrute. Pero, ¿se podría pensar en la pérdida de vigencia del agente de viajes tradicional? “Internet agiliza muchos aspectos de la gestión.

Hay un antes y un después en la forma de hacer turismo, pero, ¿quién se atreve a viajar con su familia a destinos exóticos o países desconocidos sin un asesoramiento de confianza?”, se pregunta Ricardo Sánchez Sañudo, director de la revista Tiempo de Aventura, quien sostiene que ante la coyuntura mundial —terrorismo, inseguridad y desastres climáticos, entre otros—, la Argentina crecerá como destino.

“Cuanto, más expuesto a estas amenazas esté el resto del mundo, tendremos ventajas comparativas que podremos aprovechar al máximo si conseguimos mantener esas amenazas fuera de nuestras fronteras, o al menos, razonablemente controladas”, manifiesta.

Por otra parte, la vida al aire libre será la estrella. “Vida sana, naturaleza viva y desarrollo sustentable son principios insoslayables cuando se mira hacia adelante, y tanto deporte como turismo aventura son dos de sus mejores herramientas”, analiza.

Ciencia y tecnologia en la Sociedad Su influencia en la vida diariaLos amantes del deporte encontrarán aliados perfectos para seguir ganando. El de los tenistas es la raqueta Magnetic Speed de Fischer, que permite mejores movimientos y mayor velocidad en los tiros.

Los que prefieren la música se sorprenderán con instrumentos como el Hand Roll Piano de Yama-no Music, con teclado de silicona flexible.

Trasladarnos será más simple, cómodo y ecológico. Y ya hay algunos adelantos. Tweel de Michelin es una llanta sin aire. Así es que… la despedirse de las gomas pinchadas!

Ciencia y tecnologia en la Sociedad Su influencia en la vida diaria

Por otro lado, acaso debido al tránsito en las ciudades, los transportes individuales serán protagonistas. Como la bicicleta Shift, ideal para los chicos. Les permite adquirir estabilidad gradual sin necesidad de las dos rueditas.

Ciencia y tecnologia en la Sociedad Su influencia en la vida diaria

Futuro saludable:

Que la salud avanza a pasos agigantados, no es una novedad. La noticia es que estará al alcance de todos en los próximos años.

Las cirugías estéticas, se popularizarán y masificarán. La lipoescultura será la más pedida, según el doctor Raúl Banegas, cirujano plástico, miembro titular de la Sociedad de Cirugía Plástica de Buenos Aires, debido a que “La demanda social de ser cada vez más lindos, delgados y jóvenes, se acrecienta”. Por otro lado, serán comunes las inyecciones de líquidos —fosfatidil colina— tendientes a disolver la grasa corporal, sin cirugía. En cuanto a rellenos, la toxina botulínica es irremplazable aunque sí se espera que se sintetice de manera tal que dure más tiempo —hoy, de 3 a 6 meses—.

“En cuanto a rellenos definitivos habrá infinidad de sintéticos. Lo que sí parece ser prometedor, aún en fase de investigación, es el cultivo del propio colágeno. En sólo unos meses se podrían obtener en laboratorio, varias jeringas, lo que descartaría toda posibilidad de reacción”, adelanta.

En Neurociencias, será posible el neuromarketing a partir de tomografías PET —por emisión de positrones—, aunque “en lo inmediato son técnicas caras y requieren de un sofisticado análisis de los datos”, anticipa el doctor Facundo Manes, director del Instituto de Neurología Cognitiva —INECO—. En lo que a neuroplastieidad se refiere, ya no diremos más aquello de que “neurona que se muere, se pierde”, viejo postulado que paralizó casi completamente durante décadas la investigación en esta área, según el especialista. Y el conocer acerca de qué pasa en la cabeza de un adicto u obeso permitirá complementar con medicamentos aquello que químicamente requiera cada cerebro.

“Conocer las bases cerebrales de un trastorno neuropsiquiátrico ayuda a localizar los neurotransmisores —mensajeros entre las neuronas— involucrados en una enfermedad; de esta manera se podría investigar una posible solución farmacológica a esa determinada condición médica”, comenta. En el campo de la reproducción asistida, las novedades son infinitas. “Cada vez se podrán hacer más y mejores cosas en pos de mejorar las chances de tener un chico en brazos y no un embarazo que no pudo ser”, adelanta la doctora Ester Polak de Fried, presidente de CER Instituto Médico, directora del departamento de medicina reproductiva de la institución.

“Los estudios genéticos, tanto de gametas como de óvulos fertilizados —preembriones—, que permiten transferir al útero materno únicamente los sanos, se convertirán en técnicas habituales para aquellas mujeres que sufren abortos a repetición, por ejemplo. En el área de la biología molecular, será posible encontrar marcadores génicos —detectan chances de reproducción—, tanto en los óvulos como en los espermatozoides para poder elegir los que tienen capacidades evolutivas, y así disminuir la cantidad de óvulos a poner a fertilizar y la problemática de tener gran cantidad de embriones criopreservados”, especifica quien es officer de la International Federation of Fertility Societies —IFFS—, que nuclea a 54 países.

Construcción, arte y moda

Uno de los cambios en lo que respecta a la construcción, al menos en Argentina, será la creciente conciencia ecológica y de cuidado del medio ambiente. “El futuro de La arquitectura está definido en su responsabilidad ecológica tanto con eL medio ambiente como con el medio social. No hay que explicar de qué manera el proyecto arquitectónico influye en el medio ambiente. La decisión de su tecnología y su consecuencia en el futuro mantenimiento conforman una huella ecológica que deberá ser cada vez más analizada y respetada”, analiza el arquitecto Flavio Janches.

En cuanto a los materiales, “al menos en nuestro país, el ladrillo y la piedra, el hormigón y el revoque son materiales que no creo que se dejen de utilizar”, opina. La moda tendrá sus cambios, aunque más bien tendrán que ver con el cosechar la siembra, al menos para los diseñadores argentinos. “La gente va a reivindicar el diseño y pagarlo por lo que vale. Hoy por hoy, no existe esa conciencia, como en Estados Unidos, Europa o Japón”, asegura la diseñadora Jessica Trosman.

En cuanto al arte, en el futuro abandonará un poco los museos y las galerías para darse una vuelta por las calles. Uno de los referentes de este movimiento es Julian Beever, artista inglés conocido por su trabajo en 3D, en veredas y pavimentos de Inglaterra, Francia, Alemania, Australia, Estados Unidos y Bélgica.

Y mientras se espera el futuro que se viene, a brindar por este 2006 que sí es inminente!

Fuente Consultada: Revista NUEVA Por Laura Zavoyovski (31-12-2005)
Ir a su sitio web

Principio de Bernoulli Teorema de la Hidrodinamica Resumen Teoria

Principio de Bernoulli – Teorema de la Hidrodinámica

INTRODUCCIÓN GENERAL:
Se denominan fluidos aquellos cuerpos cuyas moléculas tienen entre sí poca o ninguna coherencia y toman la forma de la vasija que los contiene, como los líquidos y los gases. Muchos de dichos cuerpos fluyen con bastante facilidad y raramente permanecen en reposo. La rama de la ciencia que trata de los fluidos en movimiento se conoce con el nombre de Hidrodinámica.

Como ejemplo, se puede citar el agua que circula por una tubería, o la corriente de aire que se origina sobre las alas de un avión en vuelo. El comportamiento de un fluido en movimiento es, naturalmente, más complicado que el de un fluido en reposo.

En Hidrostática (rama que trata de los fluidos en reposo), lo más importante de conocer, acerca del fluido, es la presión que actúa sobre el mismo. Un buzo experimenta tanto mayor aumento de presión cuanto mayor es la profundidad a la que está sumergido en el agua; la presión que soporta a una determinada profundidad es, simplemente, la suma del peso del agua por encima de él, y la presión del aire sobre la superficie del agua. Cuando el agua se pone en movimiento, la presión se modifica.

Es casi imposible predecir cuál es la presión y la velocidad del agua, por lo que el estudio de los fluidos en movimiento es muchísimo más complicado que el de los fluidos en reposo. Un buzo que se mueve a lo largo, y en el mismo sentido que una corriente submarina, probablemente no nota que la presión alrededor de él cambia. Pero, de hecho, al ponerse el agua en movimiento, la presión disminuye y, cuanto mayor es la velocidad, mayor es la caída de presión. Esto, en principio, sorprende, pues parece que un movimiento rápido ha de ejercer una presión mayor que un movimiento lento.

El hecho real, totalmente opuesto, fue primeramente expresado por el matemático suizo Daniel Bernoulli (1700-1782). Si un fluido comienza a moverse, originando una corriente continua, debe existir alguna causa que origine dicho movimiento. Este algo es una presión. Una vez el fluido en movimiento, la presión cambia, bien sea aumentando o disminuyendo. Supongamos que aumenta. Al aumentar la presión, crece la velocidad del fluido, que origina un nuevo aumento en la presión; este aumento hace crecer el valor de la velocidad, y así sucesivamente.

PRINCIPIO DE LA HIDRODINÁMICA: EXPLICACIÓN RESUMIDA DE LA TEORÍA:

A continuación estudiaremos la circulación de fluidos incompresibles, de manera que podremos explicar fenómenos tan distintos como el vuelo de un avión o la circulación del humo por una chimenea. El estudio de la dinámica de los fluidos fue bautizada hidrodinámica por el físico suizo Daniel Bernoulli, quien en 1738 encontró la relación fundamental entre la presión, la altura y la velocidad de un fluido ideal.

El teorema de Bernoulli demuestra que estas variables no pueden modificarse independientemente una de la otra, sino que están determinadas por la energía mecánica del sistema.

Supongamos que un fluido ideal circula por una cañería como la que muestra la figura. Concentremos nuestra atención en una pequeña porción de fluido V (coloreada con celeste): al cabo de cierto intervalo de tiempo Dt (delta t) , el fluido ocupará una nueva posición (coloreada con rojo) dentro de la Al cañería. ¿Cuál es la fuerza “exterior” a la porción V que la impulsa por la cañería?

Sobre el extremo inferior de esa porción, el fluido “que viene de atrás” ejerce una fuerza que, en términos de la presiónp1, puede expresarse corno p1 . A1, y está aplicada en el sentido del flujo. Análogamente, en el extremo superior, el fluido “que está adelante” ejerce una fuerza sobre la porción V que puede expresarse como P2 . A2, y está aplicada en sentido contrario al flujo. Es decir que el trabajo (T) de las fuerzas no conservativas que están actuando sobre la porción de fluido puede expresarse en la forma:

T=F1 . Dx1– F2. Dx2 = p1. A1. Dx1-p2. A2. Ax2

Si tenemos en cuenta que el fluido es ideal, el volumen que pasa por el punto 1 en un tiempo Dt (delta t) es el mismo que pasa por el punto 2 en el mismo intervalo de tiempo (conservación de caudal). Por lo tanto:

V=A1 . Dx1= A2. Dx2 entonces T= p1 . V – p2. V

El trabajo del fluido sobre esta porción particular se “invierte” en cambiar la velocidad del fluido y en levantar el agua en contra de la fuerza gravitatoria. En otras palabras, el trabajo de las fuerzas no conservativas que actúan sobre la porción del fluido es igual a la variación de su energía mecánica Tenemos entonces que:

T = DEcinética + AEpotencial = (Ec2 — Ec1) + (Ep2 — Ep1)

p1 . V — P2 . V = (1/2 .m . V2² — 1/2 . m. V1²) + (m . g . h2 — m . g . h1)

Considerando que la densidad del fluido está dada por d=m/V podemos acomodar la expresión anterior para demostrar que:

P1 + 1/2 . d. V1² + d . g. h1= P2 + 1/2 . d. V2² + d . g . h2

Noten que, como los puntos 1 y 2 son puntos cualesquiera dentro de la tubería, Bernoulli pudo demostrar que la presión, la velocidad y la altura de un fluido que circula varian siempre manteniendo una cierta cantidad constante, dada por:

p + 1/2. d . V² + d. g. h = constante

Veremos la cantidad de aplicaciones que pueden explicarse gracias a este teorema.

Fluido humano. Una multitud de espectadores pretende salir de una gran sala de proyecciones al término de la función de cine. El salón es muy ancho, pero tiene abierta al fondo sólo una pequeña puerta que franquea el paso a una galería estrecha que conduce hasta la calle. La gente, impaciente dentro de la sala, se agIomera contra la puerta, abriéndose paso a empujones y codazos. La velocidad con que avanza este “fluido humano” antes de cruzar la puerta es pequeña y la presión es grande. Cuando las personas acceden a la galería, el tránsito se hace más rápido y la presión se alivia. Si bien este fluido no es ideal, puesto que es compresible y viscoso (incluso podría ser turbulento), constituye un buen modelo de circulación dentro de un tubo que se estrecha. Observamos que en la zona angosta la velocidad de la corriente es mayor y la presión es menor.

APLICACIONES:

EL TEOREMA DE TORRICELLI

Consideremos un depósito ancho con un tubo de desagote angosto como el de la figura. Si destapamos el caño, el agua circula. ¿Con qué velocidad? ¿Cuál será el caudal? En A y en B la presión es la atmosférica PA=PB=Patm. Como el diámetro del depósito es muy grande respecto del diámetro del caño, la velocidad con que desciende la superficie libre del agua del depósito es muy lenta comparada con la velocidad de salida, por lo tanto podemos considerarla igual a cero, VA = 0

La ecuación de Bernoulli queda entonces:

d. g. hA + pA= 1/2 . d. hB + pB

entonces es:

g . hA = 1/2 . vB² + g. hB de donde VB²= 2. .g . (hA-hB)

de donde se deduce que:

VB² = 2. g(hA – hB)

Este resultado que se puede deducir de la ecuación de Bernoulli, se conoce como el teorema de Torricelli, quien lo enunció casi un siglo antes de que Bernoulli realizara sus estudios hidrodinámicos. La velocidad con que sale el agua por el desagote es la misma que hubiera adquirido en caída libre desde una altura hA, lo que no debería sorprendernos, ya que ejemplifica la transformación de la energía potencial del líquido en energía cinética.

EL GOL OLÍMPICO

A: Una pelota que rota sobre si misma arrastra consigo una fina capa de aire por efecto dei rozamiento.

B: Cuando una pelota se traslada, el flujo de aire es en sentido contrario al movimiento de la pelota.

C: Si la pelota, a la vez que avanza en el sentido del lanzamiento, gira sobre sí misma, se superponen los mapas de las situaciones A y B. El mapa de líneas de corrientes resulta de sumar en cada punto los vectores VA y VB. En consecuencia, a un lado de la pelota, los módulos de las velocidades se suman y, al otro, se restan. La velocidad del aire respecto de la pelota es mayor de un lado que del otro.

D: En la región de mayor velocidad, la presión (de acuerdo con el teorema de Bernoulli) resulta menor que la que hay en la región de menor velocidad. Por consiguiente, aparece una fuerza de una zona hacia la otra, que desvía la pelota de su trayectoria. Éste es el secreto del gol olímpico.

EL AERÓGRAFO

Las pistolas pulverizadoras de pintura funcionan con aire comprimido. Se dispara aire a gran velocidad por un tubo fino, justo por encima de otro tubito sumergido en un depósito de pintura. De acuerdo con el teorema de Bernoulli, se crea una zona de baja presión sobre el tubo de suministro de pintura y, en consecuencia, sube un chorro que se fragmenta en pequeñas gotas en forma de fina niebla.

FUERZA DE SUSTENTACIÓN: Cualquier cuerpo que se mueve a través del aire experimenta una fuerza que proviene de la resistencia del aire. Ésta puede dividirse en dos componentes que forman entre sí un ángulo recto. A uno se lo llama sustentación y se dirige verticalmente hacia arriba. El otro, llamado resistencia, actúa horizontalmente y en sentido opuesto a la dirección de desplazamiento del cuerpo. La fuerza de sustentación se opone al peso y la resistencia se opone al movimiento del
cuerpo. Para que un cuerpo pueda volar la fuerza de sustentación debe superar al peso y la resistencia debe ser tan reducida que no impida el movimiento.

Para obtener un resultado óptimo necesitamos un cuerpo con una alta relación entre la fuerza de sustentación y la resistencia. El índice más elevado se obtiene mediante un cuerpo diseñado especialmente que se denomina “perfil aerodinámico”. Por razones prácticas no es posible obtener un perfil aerodinámico perfecto en un aeroplano pero las alas se diseñan siempre de modo que suministren la sustentación que sostiene a la máquina en el aire. En un corte transversal un perfil aerodinámico exhibe una nariz redondeada, una superficie superior fuertemente curvada, la inferior más achatada y una cola aguzada.

El perfil se inclina formando un ligero ángulo con la dirección del flujo de aire. La fuerza ascendente se obtiene de dos modos: por encima del perfil aerodinámico el aire se mueve más rápido a causa de su forma curva. Por el principio descubierto por Bernoulli y resumido en una ecuación matemática, la presión de un fluido disminuye en relación con el aumento de su velocidad y viceversa.

De ese modo, la presión del aire que se mueve en la parte superior del perfil decrece creando una especie de succión que provoca el ascenso del perfil aerodinámico. Por otra parte el aire que fluye bajo el perfil angulado aminora su velocidad de manera que la presión aumenta. Esta acción eleva el perfil aerodinámico, dándole mayor poder de sustentación. La fuerza de sustentación total depende del tipo de perfil, de la superficie de las alas, de la velocidad del flujo y de la densidad del aire.

La fuerza ascensional disminuye con la altitud, donde el aire es menos denso, y aumenta con el cuadrado de la velocidad del aeroplano y también con la mayor superficie de las alas. El ángulo que forma el perfil aerodinámico con el flujo de aire se llama ángulo de incidencia. A mayor ángulo, mayor fuerza ascensorial hasta llegar a un punto crítico, después del cual la fuerza ascensorial diminuye bruscamente. El flujo de aire que hasta el momento había sido suave, se descompone repentinamente en forma de remolinos. Cuando ello ocurre se dice que el avión se ha desacelerado, y de ser así el avión comienza a caer, pues las alas ya no lo pueden sostener. Es muy peligroso en caso que al avión se encuentre cerca de la tierra.

diagrama fuerza ascensorial

El diagrama muestra una sección en corte del ala de un aeroplano, según un diseño aerodinámico. El aire fluye por encima y por debajo del ala, pero fluye más rápido por encima de la parte superior porque está más curvada, presentando un largo mayor. El flujo de aire más rápido ejerce menos presión; además, se produce otra presión hacia arriba, resultante de la menor velocidad del aire por debajo del ala, que la proveerá de fuerza ascensional. Ésta es la base del vuelo del aeroplano.

Fuente Consultada: Enciclopedia NATURCIENCIA Tomo 1

Teorema Fundamental de la Hidrostática Demostración del Principio

Teorema de la Hidrostática
Demostración del Principio de Arquímedes

El teorema fundamental de la hidrostática

¿Por qué las paredes de un dique van aumentando su espesor hacia el fondo del lago? ¿Por qué aparecen las várices en las piernas?

Es un hecho experimental conocido que la presión en el seno de un líquido aumenta con la profundidad. Busquemos una expresión matemática que nos permita calcularla. Para ello, consideremos una superficie imaginaria horizontal S, ubicada a una profundidad h como se muestra en la figura de la derecha.

La presión que ejerce la columna de líquido sobre la superficie amarilla será:

p = Peso del líquido/Area de la base

Con matemática se escribe: p = P/S = (d . V)/S=(d . S . h)/S= d . h (porque la S se simplifican)

donde p es el peso específico del líquido y V es el volumen de la columna de fluido que descansa sobre la superficie S.

Es decir que la presión que ejerce un líquido en reposo depende del peso específico (p) del líquido y de la distancia (h) a la superficie libre de éste.

Si ahora consideramos dos puntos A y B a diferentes profundidades de una columna de líquido en equilibrio, el mismo razonamiento nos permite afirmar que la diferencia de presión será:

PA —PB = p . hA— d . hB

 Este resultado constituye el llamado teorema fundamental de la hidrostática:

La diferencia de presión entre dos puntos dentro de una misma masa líquida es el producto del peso específico del líquido por la distancia vertical que los separa.

Ésta es la razón por la cual dos puntos de un fluido a igual profundidad estarán a igual presión. Por el contrario, si la presión en ambos puntos no fuera la misma, existiría una fuerza horizontal desequilibrada y el líquido fluiría hasta hacer que la presión se igualara, alcanzando una situación de equilibrio.

Hasta aquí sólo hemos encontrado la expresión de la presión que ejerce el líquido sobre un cuerpo —imaginario o no— sumergido en una determinada profundidad h. Ahora bien, ¿cuál es la presión total ejercida en el cuerpo? Si tenemos en cuenta que, probablemente, por encima del líquido hay aire (que también es un fluido), podemos afirmar que la presión total ejercida sobre el cuerpo es debida a la presión de la columna del líquido más la presión que ejerce el aire sobre la columna. Es decir:

P = Paire + Plíquido = Patmosférica +  d . h

Este resultado tiene generalidad y puede ser deducido del teorema fundamental de la hidrostática. Veamos cómo. Si consideramos que el punto B se encuentra exactamente en la superficie del líquido, la presión en A es:

PA= PB+ d . Ah = Psuperficie + P. (hA-hB) = Patmosférica + d . h

Los vasos comunicantes son recipientes comunicados entre sí, generalmente por su base. No importa cuál sea la forma y el tamaño de los recipientes; en todos ellos, el líquido alcanza la misma altura.

Cuando tenemos un recipiente vertical conteniendo un liquido y le hacemos perforaciones en sus paredes, las emisiones del liquido de los agujeros de la base tendrán mayor alcance que las emisiones de arriba, ya que a mayor profundidad hay mayor presión.

EL EMPUJE: PRINCIPIO DE ARQUIMEDES  (Ver Su Biografía)

Resulta evidente que cada vez que un cuerpo se sumerge en un líquido es empujado de alguna manera por el fluido. A veces esa fuerza es capaz de sacarlo a flote y otras sólo logra provocar una aparente pérdida de peso. Pero, ¿cuál es el origen de esa fuerza de empuje? ¿De qué depende su intensidad?

Sabemos que la presión hidrostática aumenta con la profundidad y conocemos también que se manifiesta mediante fuerzas perpendiculares a las superficies sólidas que contacta. Esas fuerzas no sólo se ejercen sobre las paredes del contenedor del líquido sino también sobre las paredes de cualquier cuerpo sumergido en él.

Distribución de las fuerzas sobre un cuerpo sumergido

Imaginemos diferentes cuerpos sumergidos en agua y representemos la distribución de fuerzas sobre sus superficies teniendo en cuenta el teorema general de la hidrostática. La simetría de la distribución de las fuerzas permite deducir que la resultante de todas ellas en la dirección horizontal será cero. Pero en la dirección vertical las fuerzas no se compensan: sobre la parte superior de los cuerpos actúa una fuerza neta hacia abajo, mientras que sobre la parte inferior, una fuerza neta hacia arriba. Como la presión crece con la profundidad, resulta más intensa la fuerza sobre la superficie inferior. Concluimos entonces que: sobre el cuerpo actúa una resultante vertical hacia arriba que llamamos empuje.

¿Cuál es el valor de dicho empuje?

Tomemos el caso del cubo: la fuerza es el peso de la columna de agua ubicada por arriba de la cara superior (de altura h1). Análogamente, F2 corresponde al peso de la columna que va hasta la cara inferior del cubo (h2). El empuje resulta ser la diferencia de peso entre estas dos columnas, es decir el peso de una columna de líquido idéntica en volumen al cubo sumergido. Concluimos entonces que el módulo del empuje es igual al peso del líquido desplazado por el cuerpo sumergido.

Con un ejercicio de abstracción podremos generalizar este concepto para un cuerpo cualquiera. Concentremos nuestra atención en una porción de agua en reposo dentro de una pileta llena. ¿Por qué nuestra porción de agua no cae al fondo de la pileta bajo la acción de su propio peso? Evidentemente su entorno la está sosteniendo ejerciéndole una fuerza equilibrante hacia arriba igual a su propio peso (el empuje).

Ahora imaginemos que “sacamos” nuestra porción de agua para hacerle lugar a un cuerpo sólido que ocupa exactamente el mismo volumen. El entorno no se ha modificado en absoluto, por lo tanto, ejercerá sobre el cuerpo intruso la misma fuerza que recibía la porción de agua desalojada. Es decir:

Un cuerpo sumergido recibe un empuje vertical y hacia arriba igual al peso del volumen de líquido desplazado.

E = Peso del líquido desplazado = dlíq . g . Vliq desplazado = dliq . g . Vcuerpo

Es importante señalar que es el volumen del cuerpo, y no su peso, lo que determina el empuje cuando está totalmente sumergido. Un cuerpo grande sumergido recibirá un gran empuje; un cuerpo pequeño, un empuje pequeño.

Como hace un barco para flotar?
Pues bien, el mismo está diseñado de tal manera para que la parte sumergida  desplace un volumen de agua igual al peso del barco, a la vez, el barco es hueco (no macizo), por lo que se logra una densidad media pequeña. En el caso de los submarinos, tienen un sistema que le permite incorporar agua y de esta manera consiguen regular a sus necesidades la densidad media de la nave.

Él agua, el alcohol y el mercurio son líquidos, pero el principio de Arquímedes se aplica a todos los fluidos, es decir, también a los gases. Los gases fluidos son mucho menos densos y producen empujes mucho menores. Con todo, los objetos pesan menos en el aire de lo que pesarían en el vacío. Un globo lleno de hidrógeno puede flotar en el aire porque su peso —que tiende a arrastrarlo hacia la Tierra— está exactamente equilibrado por el empuje del aire. Este empuje es también igual al peso de aire desplazado.

El conocimiento del principio de Arquímedes es de gran importancia para todo aquél que se ocupe del proyecto de barcos y submarinos, cuyo empuje debe ser calculado. Es absolutamente esencial saber cuánto se hundirá un barco al ser botado, o cuál será el empuje de un submarino.

LA FLOTABILIDAD Y EL PRINCIPIO DE Arquímedes. El objeto pesa menos en agua que en aire. La pérdida aparente de peso se debe al empuje del agua sobre el objeto. Pesa aún menos en agua salada. Como el agua salada es más pesada que el agua dulce, el peso del líquido desplazado es mayor. El empuje sobre el objeto es mayor porque es igual al peso de agua salada desalojada. Debido a este mayor empuje es más fácil flotar en agua salada que en agua dulce. Cuanto más denso el líquido, tanto más fácil será flotar en él.

EL PROBLEMA DE LA CORONA DEL REY

El rey Hierón le entregó 2,5 kg de oro a su joyero para la construcción de la corona real. Si bien ése fue el peso de la corona terminada, el rey sospechó que el artesano lo había estafado sustituyendo oro por plata en el oculto interior de la corona. Le encomendó entonces a Arquímedes que dilucidara la cuestión sin dañar la corona.

Con sólo tres experiencias el sabio pudo determinar que al monarca le habían robado casi un kilo de oro. Veamos cómo lo hizo.

En primer lugar, Arquímedes sumergió una barra de medio kilo de oro puro y comprobó que desplazaba 25,9 cm3. Por lo tanto, el peso específico del oro es:

Poro = 500 gr/25.3 cm3 =19.3 gr/cm3 

Si el joyero hubiera hecho las cosas como le habían indicado, el volumen de líquido desplazado por la corona real, que pesaba 2,5 kilogramos, debería haber sido:

Vcorona = 2.500 gr/19.3 gr/cm3=129.5 cm3

A continuación, sumergió la corona real y midió que el volumen de agua desplazado era de 166 cm3, o sea, mayor del esperado. ¡Hierón había sido estafado! ¿En cuánto? Para saber qué cantidad de oro había sido reemplazado por plata, Arquímedes repitió la primera experiencia sumergiendo una barra de un kilo de plata para conocer su peso específico. Como el volumen desplazado resultó 95,2 cm3, se tiene que:

Pplata=1000 gr/95.2 gr/cm3=10.5 gr/cm3

Sabemos que el peso total de la corona es 2.500 gr. (el joyero tuvo la precaución de que así fuera) y su volumen total, de 166 cm3. Entonces:

Vcorona=Voro+Vplata=166 cm3

Vplata=166-Voro

Pcorona=Poro+Pplata=2500 gr.

Si reescribimos la última ecuación en función del peso específico y el volumen, nos queda que:

19.3 gr/cm3 . Voro + 10.5 gr/cm3 . Vplata = 2500 gr

Tenemos dos ecuaciones con dos incógnitas (Voro y Vplata). Sustituyendo una ecuación con la otra, se tiene que:

19,3 gr/cm3. Voro + 10.5 gr/cm3. (166 cm3-Voro) = 2.500 g

de donde se despeja la incógnita:

Voro =86cm3

con lo que se deduce que:

Poro =Poro Voro = 19,3 gr/cm3 .  86 cm3 = 1.660 gr

Pplata=Pcorona – Poro =2.500gr -1.660 gr =840 gr

De esta manera, Arquímedes pudo comprobar que al rey le habían cambiado 840 gr. de oro por plata. Cuenta la leyenda que el joyero no pudo disfrutar del oro mal habido.

 

Experimento de Michelson Morley Resumen Explicación Buscando el Eter

Resumen del Experimento de Michelson Morley
Explicación de la Búsqueda del Éter

Todos oímos hablar alguna vez de Einstein y su teoría de la relatividad, que E=mc², que la velocidad de la luz es constante, y un montón de otras cosas que suenan lindo pero no significan nada. Para poder entender por qué estos términos siguen vigentes luego de casi 100 años de inventados, primero hay que hacer un poco de historia.

El año 1905 quedará como el annus mirabilis (año prodigioso) de Einstein, el año en que este físico de 26 años irrumpió en el mundo de la física, literalmente desde la nada, publicando cuatro importantísimos artículos científicos, cada uno de los cuales podría considerarse como un gran descubrimiento científico.

Estos artículos, de los que el más significativo fue el que exponía la teoría especial de la relatividad, aparecieron todos en Annalen der Physik, la principal revista de física de Alemania.

Todos los artículos que se enviaban debían ser evaluados antes de publicarse; puesto que las credenciales de Einstein como físico estaban en orden y como utilizaba el lenguaje de las matemáticas y la física para expresar sus ideas, los físicos que evaluaron su trabajo lo consideraron adecuado para su publicación, aunque algunos de ellos tuvieran dificultades para comprenderlo, y realmente creyeron que la teoría de la relatividad no era correcta.

Ver Biografía de Albert Einstein

Introducción Histórica:

La física clásica comenzó allá por el año 1688 con un libro publicado por el británico Isaac Newton (llamado Principia Mathematica o algo así), en el cual especificaba 3 leyes de movimiento (todo cuerpo se mueve en línea recta y a velocidad constante cuando no es afectado por ninguna fuerza, cuando se aplica una fuerza sobre un cuerpo este ejerce la misma fuerza pero en dirección contraria, y que la aceleración producida por una fuerza neta en un objeto es directamente proporcional a la magnitud de la fuerza e inversamente proporcional a la masa) y que también contenía la ley de gravitación de Newton (dos cuerpos son atraídos entre sí en proporción inversa al cuadrado de la distancia).

Esto que puede sonar complicado en realidad se puede resumir en unas pocas ecuaciones.

Con estas cuatro simples leyes se pudo explicar por primera vez hechos aparentemente tan variados como el por qué las manzanas se caen de los árboles y por qué la Luna gira alrededor de la Tierra.

Newton también realizó observaciones sobre la naturaleza de la luz, alegando que la misma estaba compuesta de partículas (“corpúsculos”) y rechazando la idea de que la luz estaba compuesta de ondas, ya que las ondas necesitan un medio por el cual desplazarse (por ejemplo, el sonido se desplaza por el aire, o cuando tiramos una piedra al agua se ve que se generan ondas en el agua justo en el lugar donde tiramos una piedra) y la luz se desplaza por el vacío del espacio.

Si deseas puedes continuar hacia abajo con las conclusiones de la teoría  

El experimento Michelson-Morley

Pero la ciencia fue avanzando, y los instrumentos de medición fueron mejorando. Los datos obtenidos por los científicos demostraban que la luz se comportaba como una onda, ero si esto ocurría, entonces debería haber una “cosa” no detectada hasta el momento, que cubre todo el universo, por la cual se desplaza la luz.

A esta cosa indetectable hasta entonces se la denominó éter lumínico. La tierra y todos los objetos, incluyendo la luz, se deberían desplazar a través del éter.

Un día de 1881, un señor llamado Michelson realizó un experimento con el fin de calcular la velocidad de la tierra cuando se mueve a través del éter (experimento de Michelson-Morley).

Para calcular esto, disparó varios rayos de luz en varias direcciones y calculó el tiempo que tardaban en regresar con un aparato inventado por él llamado interferómetro.

Teóricamente, los rayos de luz que menos tardaran en regresar indicarían la dirección en la que se mueve la tierra dentro del éter (o sea, indicarían el “adelante”), mientras que los que más tardaran en llegar indicarían el “arriba”.

Grande fue la sorpresa de este tipo cuando no descubrió ninguna diferencia en los tiempos de recorrido de la luz: la velocidad de la luz era constante midiera como se la midiera.

Esto significaba una cosa: la luz se movía a una velocidad constante… ¿pero con respecto a qué? Según la teoría de newton, si yo voy corriendo a 20 km/h, la velocidad de la luz que yo emito sería 20km/h mayor de la luz que emitiría si estoy quieto. Pero no, la luz parecía tener siempre la velocidad de 299.792,458 km/s, independientemente de la velocidad de la tierra.

ESQUEMA DEL EXPERIMENTO: Demostrada ya la existencia de las ondas, quedaba pendiente el delicado problema del éter: el medio en el que, según Maxwell, se propagaban dichas ondas.

Como, por definición, era un medio inmaterial, no había forma de observarlo directamente. Fue entonces cuando se le ocurrió al físico norteamericano Albert Abraham Michelson (1852-1931) una idea realmente «cósmica»: puesto que la Tierra se halla en movimiento con relación a las estrellas (su velocidad orbital es de 30 km/s), este desplazamiento debería traducirse en la existencia de un «viento de éter», esto es, en

esquema experimento de michelson morley

Esquema del Experimento de Michelson-Morley.
Un rayo luminoso incide sobre un espejo semitransparente. El rayo reflejado va a parar a un segundo espejo; el que lo atraviesa sigue su trayecto rectilíneo y va a reflejarse en un tercer espejo. Ambos rayos, superpuestos, alcanzan el ojo del observador. Éste ve, en general, unas franjas de interferencias, alternativamente claras y oscuras. Como los dos brazos del dispositivo tienen la misma longitud, se puede utilizar el eventual desplazamiento de las franjas para detectar diferencias entre las velocidades de la luz en las dos direcciones. Michelson y Morley confiaban en que podrían medir alguna diferencia entre la velocidad de la luz propagándose en dirección norte-sur y la de la luz propagándose en dirección este-oeste. Pero no hallaron ninguna diferencia.

Teoría de la relatividad

Acá apareció un simple profesor alemán que trabajaba en una oficina de patentes en Suiza. En el año 1905 publicó un ensayo titulado “Sobre la electrodinámica de los cuerpos en movimiento” en el cual suponía que la velocidad de la luz es la misma desde donde se la mida: la velocidad de la luz es igual si la mido cuando estoy parado o cuando estoy yendo a una velocidad de 100.000 km/seg o a cualquier otra velocidad, un hecho que puede parecer antinatural. Decir esto contradecía las leyes de Newton, que estaban vigentes desde hacía más de doscientos años.

Esta es la base de la teoría de la relatividad: todos los fenómenos físicos se producen del mismo modo en un marco de referencia inerte (por “inerte” se quiere decir “a velocidad constante”). O sea, suponiendo que esté en una habitación sin ventanas ni otro contacto con el exterior, sería imposible determinar si estoy en movimiento o no, ya que cualquier experimento que realice dará el mismo resultado independientemente del movimiento. Obviamente asumir esto les costó a los científicos, la mayoría hasta se rehusaba a aceptar la teoría.

Pero Einsten no se inmutó, y en 1915 publicó una extensión a su teoría de la relatividad (conocida como la teoría general de la relatividad) en la que tomaba en cuenta los efectos de la gravedad y otras yerbas. Hasta ahí las teorías de Einstein eran sólo eso: teorías.

Las manzanas se seguían cayendo de los árboles, la luna seguía girando sobre la Tierra, lo demás poco importaba. Pero en 1919 un eclipse solar permitió comprobar que la luz era desviada por campos gravitatorios fuertes (en este caso el del Sol), justo como la teoría de Einstein y no la de Newton había predicho. El nombre Albert Einstein se volvió famoso de la noche a la mañana. Su teoría había logrado explicar la realidad mejor que la teoría de Newton.

Algunas consecuencias de la teoría de la relatividad

Para aceptar que la velocidad de la luz es constante desde donde se la mida, Einstein se vio obligado a aceptar algunas otras cosas raras, como por ejemplo:

     Nada puede viajar más rápido que la luz: La velocidad de la luz es el límite de velocidad del Universo.

A mayor velocidad, el tiempo pasa más lento: Si, esto suena muy extraño. Si tengo dos relojes perfectamente sincronizados, y pongo uno en un cohete supersónico, cuando el reloj vuelva a mis manos se notará que la hora que marca este reloj será inferior a la hora que marca el reloj que no se movió. Pero este paso más lento del tiempo es sólo aparente, si una persona viajara junto con el reloj no le sería posible percibir ninguna alteración en el paso del tiempo (el paso del tiempo en este caso es “relativo” al observador). El paso del tiempo se hace cada vez más lento a medida que uno se acerca a la velocidad de la luz, hasta hacerse 0 justo cuando se alcanza dicha velocidad. Por esto, se puede decir que la luz no envejeció ni un segundo desde el Big Bang.

A mayor velocidad, se produce un encogimiento en la dirección del movimiento: Por ej., si yo tengo una regla de 30 cm y de algún modo logro que viaje a 260.000 km/s (0,866 veces la velocidad de la luz) veré que la regla tiene ahora una longitud de… ¡15 cm!. De nuevo, este cambio es aparente: si yo pudiera propulsarme hasta alcanzar la misma velocidad de la regla, vería que vuelve a tener 30 cm.

e=mc2: Probablemente la ecuación más famosa de la física moderna. Esto quiere decir nada más y nada menos que la materia es una forma de energía y viceversa, donde e = energía, m = masa, c = velocidad de la luz. La masa y la energía se pueden transformar libremente. Este fue el principio de la reacción nuclear y la bomba atómica. Por ejemplo, si se convierte un gramo de masa en energía de acuerdo a la famosa ecuación, se estaría obteniendo suficiente energía como para darle a una familia entera electricidad suficiente por 10 años.   

Bueno, esta es una introducción a este interesante tema. Si algunas partes suenan confusas, entiéndanme, algunas cosas son realmente difíciles de explicar :

 Si quieren más información, acá les tiro un par de lugares donde pueden consultar:

– El libro “Nueva Guía para la Ciencia” de Isaac Asimov tiene una demostración de  e=mc2 que se entiende con conocimientos básicos de álgebra.

Esta es sola una de las miles que se encuentran explicando el tema, una gran mayoría son     muy buenas  y hacen que estos revolucionarios conceptos sean “digeridos” por los más profanos.

albert einstein

1905:Año Maravilloso El Efecto Fotoeléctrico El Movimiento Browiano Antecedentes de la Física – Implicancias de la Teoría  –  Explicación de la Teoría

Pilas y Baterias Acumuladores de Energía Electrica Funcionamiento

Pilas y Baterias Acumuladores de Energía Eléctrica
Química de su Funcionamiento

Alessandro Giuseppe Antonio Anastasio Volta, físico italiano, hijo de una madre procedente de la nobleza y de un padre de la alta burguesía, recibió una educación básica y media de características humanista, pero al llegar a la enseñanza superior optó por una formación científica. En el año 1774, es nombrado profesor de física de la Escuela Real de Como. Justamente, un año después Volta realiza su primer invento de un aparato relacionado con la electricidad.

Con dos discos metálicos, separados por un conductor húmedo, pero unidos con un circuito exterior logra, por primera vez, producir corriente eléctrica continua, se inventa el electróforo perpetuo, un dispositivo que una vez que se encuentra cargado puede transferir electricidad a otros objetos.

Entre los años 1776 y 1778 se dedica a la química y descubre y aísla el gas de metano. Un año más tarde, en 1779, es nombrado profesor titular de la cátedra de física experimental en la Universidad de Pavia. Voltio, la unidad de potencia eléctrica, se denomina así en honor a este portentoso –en el buen sentido- de las ciencias. Sus trabajos fueron publicados en cinco volúmenes en el año 1816, en Florencia. Sus últimos años de vida los pasó en su hacienda en Camnago cerca de Como, donde fallece el 5 de marzo de 1827.

El fundamento de las pilas y acumuladores es la transformación de la energía química en eléctrica, mediante reacciones de oxidación-reducción producidas en los electrodos, que generan una corriente de electrones.

Cuando se unen mediante un hilo metálico dos cuerpos entre los cuales existe una diferencia de potencial, se produce un paso de corriente que provoca la disminución gradual de dicha diferencia. Al final, cuando el potencial se iguala, el paso de corriente eléctrica cesa. Para que la corriente siga circulando debe mantenerse constante la diferencia de potencial.

En 1800, Alejandro Volta inventó un aparato generador de corriente. La pila de Volta (que él llamó «aparato electromotor de columna»> estaba constituida por un conjunto de pares de discos, unos de cobre y otros de cinc, con un disco de tela impregnada en agua salada —o en cualquier otro líquido conductor— intercalado entre dos pares sucesivos. Se trataba de un dispositivo muy cómodo y manejable, que funcionaba de modo continuo, y que posibilitó la aparición de nuevos descubrimientos sobre electricidad.

esquema pila de volta

Funcionamiento de una pila electroquímica

El funcionamiento de una pila es sencillo, consiste básicamente en introducir electrones en uno de los extremos de un alambre y extraerlos por el otro. La circulación de los electrones a lo largo del alambre constituye la corriente eléctrica. Para que se produzca, hay que conectar cada extremo del alambre a una placa o varilla metálica sumergida en un electrolito que suele ser una solución química de algún compuesto iónico.

Cuando ese compuesto se disuelve, las moléculas se dividen en iones positivos y negativos, que se mantienen separados entre sí por efecto de las moléculas del líquido. El electrolito que utilizó Volta era ácido sulfúrico; cada una de sus moléculas, al disolverse en agua, se descompone en dos protones H+ (iones positivos) y un ion sulfatoSO4– (ion negativo).

Las varillas metálicas de cobre y cinc constituyen los electrodos, que deben ser sumergidos en el electrolito sin que lleguen a entrar en contacto. La placa de cobre es el electrodo positivo o ánodo y la placa de cinc el electrodo negativo o cátodo.

Al reaccionar el electrolito con las varillas se produce una transmisión de electrones, que han sido extraídos de la placa de cinc, hacia la placa de cobre, con lo que los átomos de cinc son oxidados e incorporados a la disolución, según la reacción:

Zn —> Zn2++ 2e

Esto ocurre así y no al revés, del cobre al cinc, porque los átomos de cinc tienen más tendencia que los de cobre a ceder electrones.

En la varilla de cobre se produce una reducción de los iones hidrógeno H+ de la disolución, ya que los electrones liberados por los átomos de cinc recorren el hilo conductor hacia la placa de cobre y son captados por los H+, que se convierten en átomos de hidrógeno y escapan en forma de gas. Estos electrones en movimiento son los que originan la corriente eléctrica.

Por su parte, los iones SO4 reaccionan con los cationes Zn2+ y se convierten en moléculas de sulfato de cinc.

2 H~+2e —> H2

Zn2+ + SO42– —> ZnSO4

Cuando se corta la conexión exterior entre las placas, los electrones no pueden desplazarse a lo largo del hilo de una placa a la otra, con lo que se interrumpe la reacción.

El dispositivo funciona mientras existan átomos de cinc para formar el sulfato correspondiente. Cuando la placa de cinc se ha desintegrado por completo ya no puede producirse la reacción, por lo que la pila ya no tiene uso. Por este motivo, las pilas de este tipo reciben el nombre de pilas primarias.

Baterías

Las pilas secundarias o acumuladores son aquellas que pueden recargarse, es decir pueden reiniciar el proceso mediante el aporte de energía de una fuente exterior normal mente un generador, que hace que los compuestos químicos se transformen en los compuestos de partida, al hacer pasar corriente a través de ellos en sentido opuesto

Un acumulador es, por tanto, un aparato capaz de retener cierta cantidad de energía en su interior, suministrada externamente, para emplearla cuando la necesite.

Así, una batería está formada por varios acumuladores, y puede ser ácida o calina en función’de la naturaleza del electrolito. Por ejemplo, las baterías de los coches son ácidas, porque contienen un electrolito de ácido sulfúrico en el que se sumergen una placa de plomo metálico y otra de dióxido de plomo. Las reacciones en este caso son las siguientes:

H2SO4 —> 2H+ + SQ42-

Cátodo:……………   Pb + S042 —->  PbSO4 + 2e

Ánodo: …….. PbO2 + S042- +4 H30+ +  2 e- —>  PbSO4 + 6 H20

Cuando se agota el plomo o el dióxido de plomo la batería está gastada y para recargarla se hace pasar una corriente eléctrica de la placa positiva a la negativa mediante un alternador o dinamo, de manera que el sulfato de plomo se vuelve a des componer en plomo en la placa negativa, y en la positiva en dióxido de plomo

En las baterías alcalinas el electrolito suele ser hidróxido potásico, y las placas son habitualmente, de níquel y de hierro.

Pilas de combustible

Para solucionar el problema del agotamiento definitivo de las baterías y acumuladores, Francis Bacon inventó en 1959 la llamada pila de combustible, en la que las sustancias que generan la corriente eléctrica no están contenidas en la propia pila, sino que se van aportando a medida que se necesitan.

La primera pila de combustible, también llamada pila Bacon, era alimentada por hidrógeno y oxígeno gaseosos. Contiene un electrolito de hidróxido potásico disuelto en agua, entre dos placas metálicas porosas que no permiten el paso del electrolito a través de ellas, pero sí su penetración parcial.

Uno de los electrodos es alimentado con el gas hidrógeno y el otro con el oxígeno, a presiones determinadas para que sólo pueda penetrar una parte de la placa. Es a través de los poros de los metales de las placas por donde entran en contacto los gases con el electrolito. En la placa negativa se produce una combinación de las moléculas de hidrógeno con los iones hidroxilo del electrolito, suministrando electrones. En la placa positiva los átomos de oxígeno capturan los electrones y se combinan con moléculas de agua para formar iones hidroxilo, que se disuelven en el electrolito.

Las reacciones continúan y la corriente eléctrica se mantiene mientras los electrodos estén conectados exteriormente y se produzca el aporte de oxígeno e hidrógeno. A veces es necesario utilizar un metal que actúe como catalizador de la reacción. El idóneo es el platino, pero debido a su elevado coste suele emplearse níquel.

Este tipo de pilas son ideales para el suministro de energía en estaciones espaciales o submarinas, por ejemplo, donde no es fácil el montaje de equipos generadores de tipo convencional. Sin embargo, no son válidas para sustituir a la batería de los automóviles, ya que se necesita un equipo auxiliar que caliente la pila y elimine el exceso de agua —en el caso de la pila Bacon— o de dióxido de carbono —en otros tipos similares que emplean carbonatos como electrolitos.

ALGO MAS..

LA CORRIENTE ELÉCTRICA NO ES ALMACENABLE
La electricidad usual nos llega por cables desde la central eléctrica. Pero la corriente no puede almacenarse en “tanques” del mismo modo que el agua, pues no es más que el movimiento de los electrones bajo la influencia de una “presión” o diferencia de tensión, o “voltaje”, o “fuerza electromotriz”. Por eso, cuando necesitamos accionar pequeños aparatos, como linternas o radiorreceptores no conectados con la central eléctrica, empleamos pilas secas y acumuladores. En éstos la electricidad se produce químicamente.

LA PILA DE VOLTA
Si colocamos dos placas de metales diferentes en un recipiente con agua acidulada (puede ser una placa metálica y otra de carbono), el ácido ataca al metal y se produce una serie de complicadas reacciones químicas. El ácido toma átomos de una de las placas metálicas y en cambio libera ios átomos de hidrógeno que ¡o constituían., pero los electrones del hidrógeno quedan en la placa, que por eso se sobrecarga negativamente.

Los átomos de hidrógeno sin electrón (iones hidrógeno) recuperan sus electrones a costa de la segunda placa, que entonces queda cargada positivamente. En conjunto sucede como si los electrones de la segunda placa pasaran a !a primera. Si están unidas a un circuito exterior, circulará una corriente eléctrica de la primera a la segunda.

Hay un inconveniente en este fenómeno. Los átomos de hidrógeno (ya completos) se adhieren a la segunda placa formando una capa aislante y en cuestión de segundos impiden el acercamiento de nuevos iones, deteniéndose completamente la reacción. Para evitarlo, en la práctica se agrega una sustancia química que se combina fácilmente con el hidrógeno y lo elimina dé la placa. También se suele reemplazar el ácido sulfúrico por cloruro de amonio, sustancia de manipulación mucho menos peligrosa.

Existen otras pilas húmedas: la de Weston, de cadmio y mercurio, muy constante y estable a temperatura fija: suele ser de vidrio y se la emplea para comparar voltajes. La pila de Lalande no usa ácido, sino sosa cáustica, zinc y óxido de cobre.   Trabaja bien en frío.   Su densidad es baja.

LA PILA SECA
La pila seca consiste en un receptáculo de zinc (“placa” negativa de la pila) en cuyo interior hay una varilla de carbón rodeada de una mezcla de polvo de carbón, bióxido de manganeso (MnOa), cloruro de amonio y cloruro de zinc en agua. La reacción química entre el cloruro de amonio (CINHJ y el zinc deja a éste con un exceso de electrones mientras la varilla de carbón, que actúa como segunda “placa”, queda con escasez de electrones, es decir, cargada positivamente.

El bióxido de manganeso actúa como despolarizador: elimina el hidrógeno adherido al carbón. La diferencia entre la pila seca y la húmeda consiste en que en la primera el electrólito, absorbido por un medio poroso, no fluye, no se escurre. El uso ha reservado este nombre a las pilas Leclanché, pero existen otras. La varilla de carbón no suele ser de grafito, sino de negro de humo proveniente de la combustión de acetileno. La pasta gelatinosa que contiene el electrólito puede ser de almidón y harina, o una bobina de papel: las pilas modernas usan metilcelulosa  con  mejores resultados.    El  voltaje  obtenido es 1,6; por cada amperio se consume  1,2 gramos de zinc.

ACUMULADORES
La pila voltaica y la pila seca se llaman primarias o irreversibles porque las reacciones químicas no pueden invertirse, ni volver a emplearse los materiales gastados. Una pila secundaria o reversible (por ejemplo, una batería de automóvil) puede cargarse nuevamente y emplearse otra vez haciendo pasar en sentido opuesto una corriente continua. Así se invierten las reacciones químicas que tuvieron lugar durante la generación de electricidad y los materiales vuelven a su estado original.

El acumulador de plomo es un ejemplo de pila secundaria. En lugar de placas se compone de rejillas para aumentar la superficie de contacto con la solución de ácido sulfúrico en agua destilada. Los huecos de una placa están llenas de plomo esponjoso y ios de la otra de bióxido de plomo (PbCW. La placa de plomo metálico (negativa) corresponde al  zinc y  la  de  bióxido de plomo equivale  ai carbón de la pila seca (positiva).

Ambas placas reaccionan con el ácido sulfúrico y se forma sulfato de plomo. El acumulador se agota cuando ambas placas quedan recubiertas con un depósito blanco de sulfato de plomo y paralelamente disminuye la concentración del ácido sulfúrico.

La corriente eléctrica de recarga regenera en una placa el plomo esponjoso, en la otra el bióxido de plomo, y restituye el ácido sulfúrico al agua. La “batería” completa consta de varios acumuladores conectados  entre  sí  para  aumentar  la  tensión  eléctrica   o voltaje del conjunto.

Los acumuladores convienen para descargas breves de alto nivel (estaciones telefónicas, locomotoras, automóviles). Los nuevos plásticos les confieren menor peso. En autos y aviones las placas delgadas permiten reducir peso y espacio y proporcionar mejor rendimiento a bajas temperaturas. Pero las placas gruesas son sinónimo de larga vida, más o menos 1.000.000 de ciclos cortos.

Riesgos del Uso de Uranio en la Centrales Atomicas Ventajas Riesgos

Riesgos del Uso de Uranio en la Centrales Atómicas

DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe Un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos. La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones. Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

El funcionamiento normal de las centrales nucleares esparce por todo el mundo un repugnante espectro de substancias letales que no podrán nunca ser contenidas de modo seguro y que el ambiente natural no puede absorber de modo seguro. Por fortuna, la energía nuclear es tan innecesaria como injustificada: podemos satisfacer las necesidades de electricidad del mundo sin una sola central nuclear de fisión, si atemperamos de modo razonable nuestra demandas de energía.

Las únicas centrales que existen actualmente utilizan la fisión. La fusión, una tecnología que podría revolucionar la vida sobre la Tierra si se logran superar a un coste competitivo las barreras científicas que lo impiden, no existirá, suponiendo que así sea, hasta finales de siglo.

La energía de la fisión se debe a la liberación de calor que se produce cuando los átomos de uranio, bombardeados por partícula» atómicas llamadas neutrones, absorben un neutrón y se dividen dando elementos más ligeros, como estroncio y yodo. La división de los átomos de uranio libera también otros neutrones que repiten el pro ceso, en una reacción en cadena.

Se crean también elementos mas pesados cuando algunos de los átomos de uranio 238 en lugar de dividirse se transforman en plutonio 239, absorbiendo un neutrón. Muchos de los elementos creados a consecuencia de la fisión son inestables, es decir, que pierden energía rápidamente emitiendo partícula», Estas emisiones, llamadas radioactividad, son peligrosas para lo» seres vivos porque pueden desorganizar los genes y los tejidos.

La energía de fisión tiene la característica única entre todos los sistemas de obtención de energía, de añadir a los niveles del fondo natural cantidades de radiación equivalente, lo que no hace ninguna otra tecnología. El calor liberado en la fisión, se utiliza para convertir agua en vapor, que una vez proyectado sobre las paletas de una turbina eléctrica crea electricidad por la rotación de una bobina dentro de un campo magnético.

Este proceso ha fascinado a los científicos, los ingenieros y burócratas, debido principalmente a un hecho asombroso: la fisión de unos 30 gramos de uranio libera la misma energía aproximadamente que la combustión de 100 toneladas de carbón. Muchas personas a la caza de esta milagrosa cornucopia de energía, han cernido los ojos a los problemas y consecuencias que la fisión trae para nuestro ambiente.

Los partidarios de la fisión nuclear aseguran que es asegura, barata y limpia con respecto al medio ambiente», y que sus riesgos son aceptables. Mantienen que la fisión es una tecnología probada, disponible, y «en producción», mientras que otras energías de recambio no producirán energía con la rapidez necesaria para satisfacer nuestras necesidades.

La Energía Nuclear aporta un 33% de la energía consumida en Europa, de manera limpia, sin emisiones de gases de efecto invernadero y causantes de la lluvia ácida y sin perjudicar la capa de ozono. Además las centrales nucleares producen cantidades muy pequeñas de residuos sólidos en proporción a las grandes cantidades de electricidad que producen y el efecto de las emisiones líquidas y gaseosas en el medio ambiente es inapreciable. Otro problema distinto, es donde almacenar los residuos que se producen, residuos con vidas media muy largas.

Por otro lado la Energía Nuclear no está sujeta a cambios en las condiciones climáticas, sino que las centrales nucleares operan 24 horas al día durante los 365 días del año, lo que supone una gran garantía de suministro. Además no sufre fluctuaciones imprevisibles en los costes y no depende de suministros del extranjero, lo que produce precios estables a medio y largo plazo.

Los que defienden energías de recambio están en total desacuerdo y aseguran que si se dispusiera de sólo una pequeña fracción de los fondos dedicados actualmente a la fisión nuclear, se podrían crear en unos pocos años industrias energéticas de recambio seguras, industrias que proporcionarían tanta energía como la que se obtiene de la fisión. Señalan especialmente que el desarrollo de «energías menos duras» ha sido perjudicado por la enorme sangría de recursos que la fisión nuclear ha impuesto a los fondos de investigación energética de los EE.UU.

Los problemas más serios de la fisión se deben a que una sola central nuclear de fisión de gran tamaño produce tanta radioactividad de vida prolongada como la explosión de 1.000 bombas atómicas de Hiroshima. Y se cree que la exposición de las personas a la radiación aumenta el riesgo de cáncer, de daños genéticos, enfermedades del corazón y muchas otras dolencias. Parece ser que en los niños que todavía no han nacido, la radiación aumenta los riesgos de defectos congénitos y retraso mental. Pero a pesar de esto, la Comisión de energía atómica (AEC), ha anunciado planes para autorizar la instalación de 1.000 centrales nucleares en los próximos 25 años.

El contaminante radioactivo más peligroso de los muchos que producen los reactores, es el plutonio. Se trata de una sustancia artificial, que no existe de modo natural en la Tierra, y que es el ingrediente explosivo de las armas nucleares. Es tan mortal, que tres cucharadas de plutonio contienen suficiente radioactividad para inducir el cáncer en más de 500 millones de personas, según el Dr. John W. Gofman, codescubridor del uranio 233.

En su opinión se trata de la sustancia más tóxica de la Tierra, y una mota infinitesimal, más pequeña que un grano de polen, produce cáncer si se respira o se traga con el agua. Y, sin embargo, el funciona-miento de 2.000 reactores producirá 400.000 kilos de este material cada año: un desecho para el cual no existen sistemas de recolección. Hay que guardar el plutonio en depósitos con una vigilancia sin falla por los menos durante 250.000 años, más de 125 veces la duración de toda la era cristiana, a no ser que se dé un gran paso en la tecnología de los deshechos radioactivos.

Hay que guardar también el plutonio para evitar que sea robado con fines terroristas. Se necesitan sólo unos pocos kilos de plutonio para fabricar una bomba que borraría del mapa ciudades como San Francisco, Nueva York o Moscú. Estas destrucciones pueden llevarse a cabo con una facilidad escandalosa. Un estudio secreto de la AEC informó que dos físicos que acababan de finalizar su carrera fueron capaces de diseñar una bomba atómica recurriendo únicamente a las obras accesibles al público.

Vivimos una época en la que casi cualquier país o grupo de presión con unos pocos científicos capacitados, puede convertirse en potencia nuclear, creando un riesgo terrible de guerra o accidente nuclear Si éstos fuesen los únicos peligros que presenta la energía de fisión, constituirían motivo suficiente para abandonarla.

Entre otros problemas están la falta de técnicas seguras de almacenamiento para los deshechos nucleares de alto nivel, la posibilidad de que se produzcan fugas catastróficas de radioactividad de las centrales nucleares, y emisiones normales radioactivas.

— Cuando sus recipientes sufren alteraciones normales escapan al medio ambiente deshechos de alto nivel, y los que critican el sistema aseguran que parte de los deshechos se ha incorporado al agua del suelo. Los deshechos se ven expuestos dentro de sus tanques a la acción de saboteadores, terremotos, guerras o accidentes; una sola de estas causas, bastaría para dejar sueltas de golpe cantidades colosales de radioactividad.

— Las medidas de protección destinadas a proteger al público contra accidentes nucleares serios, no se han puesto nunca a prueba de modo completo y en condiciones reales de funciona miento. La explosión de una central podría causar miles de muertos y daños por valor de 17.000 millones de dólares, según la AEC. (caso de Chernobyl en 1986 y Japón en 2010)

— La fuga de sólo un mínimo por ciento de la radioactividad del núcleo de un reactor, podría convertir en inhabitable una zona del tamaño de California.

— Aparte de los accidentes, las centrales de fisión emiten de modo normal radioactividad por los gases de sus chimeneas y por el agua de deshecho. Según cálculos realizados por eminentes cien tíficos, los límites federales legales para este tipo de radiación son tan altos que si cada persona en el país se viera expuesta a los límites de radiación permitidos, se producirían cada año, 32.000 fallecimientos más por cáncer y leucemia y de 150.000 a 1.500.000 fallecimientos genéticos adicionales. El coste-anual para la seguridad social de las enfermedades inducidas genéticamente ha sido calculado por el especialista en genética, premio Nobel, Joshua Lederberg, en 10.000 millones de dólares.

cuadro central nuclear

Cuadro funcionamiento de una central nuclear

Central Nuclear Atucha I

La Fision o Desintegracion Nuclear La Energia del Atomo de Uranio

TEORÍA ATÓMICA: FISIÓN NUCLEAR O ATÓMICA

https://historiaybiografias.com/linea_divisoria1.jpg

LISTA DE TEMAS TRATADOS:

1-¿Que es un Atomo?
2-La Energía Nuclear y sus Usos
3-La Física Moderna
4-La Fisión Nuclear
5-Partículas Elementales
6-Vida de Max Planck

https://historiaybiografias.com/linea_divisoria1.jpg

Los fundamentos de la física atómica
DESCRIPCIÓN DEL PROCESO DE LIBERACIÓN DE ENERGÍA POR UN ÁTOMO:

La liberación de la energía nuclear: En un trozo de uranio 235, un neutrón rompe un núcleo y expulsa, por ejemplo, dos neutrones. Estos, al romper dos núcleos, producen en la segunda generación cuatro neutrones, los que a su vez liberan ocho neutrones en la tercera generación tras desintegrar cuatro núcleos.(Ver: Fision Nuclear)

La cuarta generación origina dieciséis, la décima mil veinticuatro, la vigésima más de un millón, la trigésima mil millones.

Así, cual un alud, el número de los proyectiles crece en progresión geométrica. Como una generación de neutrones sólo dura un pequeñísimo intervalo de tiempo —una fracción infinitesimal de un segundo— todos los núcleos (2,5 x 1024) presentes en un kilogramo de uranio estarían casi instantáneamente desintegrados.

La rapidez con que se establece y se propaga la reacción en cadena dilataría y haría explotar la masa con extrema violencia antes que todos los núcleos hubiesen podido ser fragmentados. Si se admite que sólo el 10% de los átomos participa en la reacción, la enorme cantidad de energía liberada equivale a la producida por la explosión de 2000 toneladas de trinitrotolueno.

En la foto de arriba se encuentran compartiendo una información física Albert Einstein y Leo Szilard.
El doctor Leo Szilard, fue a quien se le ocurrió mientras esperaba el cambio de un semáforo en la intersección de Southampton Row en Londres, la ideas de producir una reacción nuclear controlada, bombardeando núcleos con neutrones. Por puro juego, y no por ningún impulso agresivo, el físico bajito y gordo, húngaro de nacimiento, visualizó una reacción atómica en cadena mientras deambulada por la ciudad en aquel dorado septiembre de 1933, dedicado a sus pasatiempos favoritos: pensar y pasear.

En forma de calor, mil novecientos millones de grandes calorías estarían disponibles, constituyendo el centro de la volatilización de toda materia presente. En una fracción infinitesimal de segundo, la temperatura se elevaría a centenares de miles de grados en el lugar de la explosión, engendrando un espantoso vendaval cuyos efectos destructores —merced a la propagación de la onda de compresión— semejarían a la devastadora barrida de una gigantesca marca.

En vísperas de la Segunda Guerra Mundial, todas estas posibilidades no pasaban de ser meras previsiones teóricas, a las cuales, sin embargo, el comienzo del conflicto bélico iba a conferir excepcionales alcances. Hacia fines de 1940, cuando el secreto militar comenzó a volver impenetrable el velo que cubría las investigaciones sobre la energía nuclear, la utilización de la misma para producir una bomba parecía todavía un objetivo muy lejano e incluso utópico.

Sin duda se sabía que el uranio 235 era particularmente sensible a la “fisión” y que ofrecía una sección eficaz mayor a los neutrones lentos que a los rápidos; se habían desarrollado métodos para producir neutrones lentos; se habían elaborado procedimientos para separar el uranio 235 de su isótopo corriente; se había logrado aislar dos elementos transuránicos, el neptunio y el plutonio, y se reconocía que este último era también “fisionable” en circunstancias semejantes a las del uranio 235.

Además, se habla adquirido la certeza de que en la “fisión”, al menos un neutrón rápido —y en término medio dos o tres— era emitido por el núcleo. Sin embargo, a pesar del conjunto de tales progresos, todavía nadie había logrado producir una reacción autosustentada. Algunos investigadores incluso se preguntaban si la naturaleza acepta someterse a las exigencias de los teóricos. Tal vez la reacción en cadena era, en general, irrealizable. Pero las dudas terminaron por disiparse definitivamente el 2 de diciembre de 1942: ENRICO FERMI había realizado en Chicago, por primera vez, una reacción nuclear autosostenida.

El dispositivo construido en Chicago consistía en una pila de ladrillos de grafito puro que incluía trozos de uranio, separados por distancias regulares conforme a un esquema geométrico. El grafito servía de sustancia moderadora destinada a frenar mediante choques elásticos los neutrones que salen dotados de elevadas velocidades de la ruptura nuclear del uranio 235. Algunos de los neutrones penetran en el isótopo pesado U-238, otros vuelven a ser capturados por el isótopo liviano U-235, puesto que ambos están presentes en los trozos de metal de la pila.

Los proyectiles que golpean el U-238 provocan su transformación, que termina por dar origen al plutonio, mientras neutrones capturados por núcleos de U-235 producen la “fisión” de éstos, expulsando neutrones que siguen provocando nuevas rupturas.

Así, la pila produce a la vez materia “fisionahle” (plutonio) y libera energía al desintegrar núcleos. Agreguemos que para el arranque no se necesita detonador ni ningún otro dispositivo especial; los neutrones de origen cósmico existentes en la atmósfera, o neutrones errantes que provienen de la explosión espontánea de un átomo de uranio, son suficientes para iniciar la reacción.

Una condición indispensable para el funcionamiento de la pila es su volumen, que debe superar cierto tamaño crítico. De lo contrario el número de neutrones que escapan por la superficie de la pila no permite que se establezca la cadena de las reacciones. Para el autosostenímiento de la cadena es menester, además, que cada neutrón incidente produzca al menos un nuevo neutrón apto para determinar a su vez la ruptura de un núcleo, siendo en este caso el “factor de multiplicación” igual a la unidad.

La cadena se extingue si dicho factor resulta inferior a uno; en cambio, si es considerablemente superior, la liberación continua y lenta de la energía se transforma en un proceso explosivo, convirtiendo a la pila en una bomba. Tan peligrosa proliferación de neutrones es contrarrestada introduciendo en la masa de grafito láminas de materia absorbente (cadmio) que permiten mantener constante la velocidad de la reacción y “controlar” el nivel energético de la pila mediante un dispositivo automático. Tales fueron, a grandes rasgos, las fundamentales características de la pila de FERMI, arquetipo de todos los reactores.

Al principio la pila de FERMI engendró, en forma de calor, una potencia de 0,5 vatio; poco después aumentó su nivel de energía hasta llegar a 200 vatios. Con tal reducido poder, una pila debería funcionar varios miles de años para producir la cantidad de plutonio requerida en la fabricación de una sola bomba. Mas una conquista no puede medirse en vatios. La posibilidad de liberar energía nuclear en escala macroscópica estaba magníficamente demostrada. Si bien la distancia que separa la pila experimental de Chicago de la bomba experimental de Alamogordo era muy superior a la existente entre la rudimentaria máquina de vapor de NEWCOMEN y la locomotora de STEPHENSON, el largo camino fue recorrido en el breve intervalo de treinta meses gracias al formidable potencial tecnológico de los Estados Unidos, y al esfuerzo de un verdadero ejército de científicos, técnicos y trabajadores. El 6 de agosto, la pavorosa explosión que arrasó la ciudad de Hiroshima anunció al mundo que el hombre disponía de nuevas y tremendas fuerzas aprisionadas desde eternidades en las entrañas de la materia.

“En el interior de una bomba de fisión —escribe uno de los principales constructores de la bomba, ROBERT OPPENHEIMER (1904-1967)—, se materializa un lugar con el cual ningún otro

El factor de multiplicación es el cociente del número de los nuevos neutrones producidos y el número inicial de los neutrones primitivos.
En la pila de FERMI el factor de multiplicación era igual a 1,007.

puede ser comparado. Al explotar la bomba se producen temperaturas más elevadas que las que reinan en el centro del Sol; su carga está constituida por materias que normalmente no existen en la naturaleza y se emiten radiaciones (neutrones, rayos gamma, electrones) de una intensidad que no tiene precedentes en la experiencia humana. Las presiones que se obtienen equivalen a billones de veces la presión atmosférica. En el sentido más primario y más sencillo, es perfectamente cierto que con las armas atómicas el hombre ha creado situaciones nuevas.”

En pilas y bombas de uranio (o plutonio), la energía se produce por la ruptura de un elemento muy pesado en fragmentos menos pesados. Sin embargo, para producir enormes cantidades de energía no es éste el proceso que la naturaleza elige. Las estrellas prefieren la fusión a la “fisión”; como ya dijimos, transforman en gigantesca escala —por síntesis de elementos livianos— una parte de su materia nuclear en energía radiante. Tan sólo las prodigiosas reservas energéticas, cuyo depósito son los núcleos, pueden permitir al Sol irradiar en forma de luz y calor, año tras año, tres quintillones (3 x 1030) de grandes calorías.

Este torrente de energía solar fluye por lo menos desde hace cuatrocientos o quinientos millones de años, puesto que las pruebas aportadas por la flora y fauna paleozoicas sugieren que las condiciones climáticas de la Tierra no han cambiado esencialmente desde aquella remotísima era primaria. Mas ¿cuál es la transformación nuclear capaz de alimentar tan formidable despliegue energético, que equivale por segundo a una pérdida de cuatro millones de toneladas de masa solar? No cabe duda de que la transformación del elemento más común del universo, el hidrógeno en helio (el elemento que sigue al hidrógeno en la Tabla Periódica), podría suministrar la fuente energética de la radiación solar.

En efecto, la síntesis del helio a partir de los constituyentes de su núcleo está acompañada —como hemos explicado al tratar la energía de la unión nuclear— por la pérdida de una parte de las masas que intervienen, siendo liberada la masa desaparecida —de acuerdo con la equivalencia einsteniana— en forma de energía radiante. Sin embargo, el mecanismo de la supuesta transmutación no había dejado de ser enigmático hasta que HANS BETHE, hacia 1940, propuso su hipótesis del ciclo del carbono.

Las enormes temperaturas que reinan en el interior del Sol —veinte millones de grados en la región central— confieren a las partículas de la masa solar —y especialmente a los protones a velocidades tan elevadas que éstas pueden penetrar en los núcleos de elementos livianos y transmutarlos. Así, el núcleo ordinario de carbono, bombardeado por un protón, se transforma al capturarlo en un isótopo del nitrógeno que se desintegra. En cinco reacciones consecutivas engendran con la emisión de dos electrones positivos varios isótopos de carbono, de nitrógeno y de oxígeno. Bombardeados éstos a su vez por núcleos de hidrógeno, conducen finalmente a la formación del helio.

La excepcional característica de este ciclo, que convierte cuatro núcleos de hidrógeno en un núcleo de helio, es la reaparición del carbono inicial en la última reacción, que se encuentra así regenerado. Desempeña el papel de catalizador y puede ser utilizado innumerables veces, hasta que todo el hidrógeno solar haya sido transmutado en helio, asegurando así las reservas energéticas del Sol durante miles de millones de años. A idénticas o análogas reacciones termonucleares deben sus caudales de energía también otras estrellas.

No cabe duda de que el ciclo de carbono, productor de la energía solar, representa el primordial proceso físico-químico del universo desde la perspectiva de la historia humana. Sin las reacciones termonucleares, que se realizan en el interior del Sol, la vida no habría podido surgir sobre la superficie de la Tierra, donde los fenómenos biológicos, desde la fotosíntesis de la clorofila de los vegetales hasta el metabolismo en el organismo de los animales y del hombre, son tributarios de la radiación solar. Es un hecho realmente notable que el carbono —sustancia básica de la materia viva— desempeñe también el papel de catalizador en el grandioso proceso cósmico que dio origen primario a todas las actividades vitales en la naturaleza terrestre.

La síntesis de elementos livianos a partir del hidrógeno ha dejado de ser privilegio de las masas estelares desde hace algunos años. Reacciones termonucleares, productoras de la fusión de núcleos, suministran la fuente energética a la novísima arma: la bomba de hidrógeno. Desde luego, el ciclo de BETHE, que genera helio en las profundidades del globo solar es demasiado lento y complicado para el uso militar.

Es probable que la transmutación de una masa de los dos isótopos pesados del hidrógeno, el deuterio y el tritio, en helio, esté en la base de la liberación de energía realizada por la nueva bomba. Para establecer las formidables temperaturas (varios millones de centígrados) capaces de desencadenar la reacción se utiliza la ruptura del uranio o del plutonio: la bomba de “fisión” sirve de detonador a la superbomba de fusión. El modelo de ésta, utilizado por los expertos estadounidenses en las pruebas de Enivetock, a fines de 1952, superaba doscientas veces el poder (es decir, la cantidad de energía liberada) de la bomba de Hiroshima, según estimaciones extraoficiales.

No cabe duda de que la posibilidad de borrar de la superficie del globo cualquiera de las grandes metrópolis de la Tierra mediante la explosión de una bomba o a lo sumo de muy pocas bombas está, desde ahora, dentro de los alcances del hombre. El uso de esta arma en un conflicto bélico significaría la abdicación de la razón humana y equivaldría a una tentativa de suicidio del homo sapiens.

PARA SABER MAS…
1938:SE DESCUBRE LA FISIÓN NUCLEAR

A mediados de los anos treinta, físicos de Alemania, Francia e Italia competían por ser los primeros en conseguir romper un átomo. El físico francés Frédéric Joliot-Curie había iniciado la carrera al declarar que «las reacciones nucleares en cadena» conducían a la «liberación de enormes cantidades de energía aprovechable».

En 1935 había sido galardonado con el Premio Nobel (junto con su mujer, Irene Joliot-Curie) por el descubrimiento de la radiactividad artificial. En Berlín, un equipo de investigación compuesto por Otto Hahn, Fritz Strassmann y Lise Meitner empezó a bombardear átomos de uranio con neutrones. Los científicos esperaban que el proceso diera lugar a elementos radiactivos más pesados similares al uranio. En vez de esto, a finales de 1938, Hahn y Strassmann (Meitner, judía austríaca, había huido a Suecia después de que Hitler invadiera Austria en marzo) se sorprendieron al descubrir que su bombardeo sobre el uranio había dado lugar a un elemento mucho más ligero que el uranio, llamado bario.

Hahn y Strassmann enviaron sus resultados a Meitner, a Estocolmo, donde ella y su sobrino, el físico Otto Frisen, investigaron el misterio. Llegaron a la conclusión de que el núcleo del uranio, en vez de emitir una partícula o un pequeño grupo de partículas, como se suponía, desarrollaba una «cadena» y luego se rompía en dos fragmentos ligeros prácticamente iguales, cuyas masas, unidas, pesaban menos que el núcleo original del uranio. La diferencia de peso se convertía en energía.

Meitner dio el nombre de «fisión» al proceso. Joliot-Curie descubrió que la fisión del uranio producía la liberación de neutrones adicionales que, a su vez, podían ser utilizados para romper otros átomos de uranio. Se habían establecido las condiciones para el tipo de reacción en cadena que daría lugar a la bomba atómica.

Durante la guerra, Hahn y Strassmann permanecieron en Alemania. Hahn fue capturado por los aliados en la primavera de 1945 y, mientras se hallaba detenido en Inglaterra, se enteró de que había ganado el Nobel de Química de 1944. Cuando aceptó el premio, el sentimiento de que había realizado un gran descubrimiento científico estaba empañado a causa de que la fisión había hecho posible la destrucción de Hiroshima y Nagasaki. Después de la guerra, Hahn defendió con gran pasión el control de las armas nucleares.

Fuente Consultada: Historia de la Ciencia Desidero Papp

Pasos del Metodo Cientifico Etapas Metodo Experimental Caracteristicas

Pasos del Método Científico o Experimental

El método científico o experimental es una secuencia lógica de pasos que se siguen para que el trabajo del químico tenga validez. Luego de una observación exhaustiva y reiterada del fenómeno, surge el planteo del problema a investigar. El científico enuncia, según el análisis “a priori” del problema, cuál sería, a su criterio, la hipótesis, es decir, la respuesta más probable a la cuestión.

Antes efectúa una recopilación de datos, por ejemplo de trabajos de otros investigadores relacionados con el tema. A partir de allí, comienza a diseñar y comprobar la veracidad de la hipótesis. Si la hipótesis se cumple, el científico puede arribar a conclusiones de valor predictivo. Es decir que frente al mismo planteo puede anticipar cuál será la respuesta.

Muchas veces ocurre que la hipótesis no se cumple y debe reformularse. La validez de una o varias hipótesis permite, en muchos casos, enunciar leyes o teorías universales.

En la actualidad, el planteo de un problema científico surge a veces del análisis de trabajos anteriores referidos al tema. Éstos dejan casi siempre algún punto sin resolver, que es observado y tomado como punto de partida de una nueva investigación.

La ciencia sólo es posible cuando existe la libertad de cuestionar y de dudar de lo que siempre se ha considerado verdadero, y cuando ella misma es capaz de abandonar viejas creencias si contrarían los nuevos descubrimientos.

A modo de sintesis antes de entrar a explicar el método, vamos a indicar la secuencia ordenada de pasos para lograr el estudio científico de un fenómeno determinado. Podemos decir que hay 10 pasos fundamentales, y que mas abajo se explicarán, a saber:

PASO 1. LA OBSERVACIÓN DEL FENÓMENO,

PASO 2. LA BÚSQUEDA DE INFORMACIÓN,

PASO 3. LA FORMULACIÓN DE HIPÓTESIS,

PASO 4. LA COMPROBACIÓN EXPERIMENTAL,

PASO 5. EL TRABAJO EN EL LABORATORIO,

PASO 6. EL TRATAMIENTO DE LOS DATOS,

PASO 7. EL ANÁLISIS DE LOS FACTORES,

PASO 8. LA CONSTRUCCIÓN DE TABLAS Y DE GRÁFICOS,

PASO 9. LAS CONCLUSIONES Y LA COMUNICACIÓN DE RESULTADOS,

PASO 10. LA ELABORACIÓN DE LEYES Y TEORÍAS

INTRODUCCIÓN: OBSERVACIÓN Y EXPERIMENTACIÓN

La ciencia comienza por observar, observación realizada con la máxima exactitud y la mayor frecuencia posible. Sólo así pueden discernirse claramente las características del problema que se estudia y ponerse en evidencia las incógnitas que plantea.

Luego de hacer las observaciones adecuadas, el paso siguiente es desarrollar alguna explicación de lo que se ha visto. Cada explicación recibe el nombre de hipótesis y por tanta es normal que haya varias hipótesis aparentemente encuadradas en los hechos observados. Todas ellas surgen por un proceso mental de deducción que, en cierto sentido no sería más que un ejercicio de imaginación.

En la vida diaria la gente muy a menudo se conforma con suposiciones ¡sólo porque las hace ella! En la ciencia es necesario suponer todas las explicaciones aceptables de los hechos, para luego seleccionar las mejor orientadas hacia la investigación propuesta.

Esta selección se efectúa de acuerdo con otro proceso mental estudiado por la Lógica, conocido por deducción. Cada hipótesis se examina por turno para ver qué consecuencias implicaría en caso de ser cierta, qué ocurriría si fuera correcta. Es como obligar a la hipótesis a que se pronuncie.

metodo experimetal

Luego, una etapa crítica del método científico: la verificación, o sea la comprobación de las diversas hipótesis mediante nuevas observaciones. Éste es un proceso real y concreto, manual y sensorio.

Siempre que sea posible, las comprobaciones se hacen en forma de experimentos, es decir, siempre por control del investigador. Si la hipótesis que se intenta probar no nos anticipa los acontecimientos registrados por la experimentación se la considera inútil y se la descarta. Si, en cambio, resultara correcta, sólo provisionalmente se la consideraría verdadera, esto es, mientras no aparezca algún hecho nuevo que obligue a modificarla.

Cuando las hipótesis no pueden ser comprobadas en las estrictas condiciones de un experimento habrá que esperar el resultado de nuevas experiencias cuando la evolución de los fenómenos naturales lo permita. En astronomía, por ejemplo, no es posible obligar a los cuerpos celestes a moverse y a ubicarse en situación de demostrar alguna hipótesis particular. pero, cuando se dan esas exposiciones, es posible controlar la efectividad de las hipótesis que se habían formulado.

A medida que se acumulan observaciones, sea durante experimentos o no, pueden aparecer casos que muestren la debilidad de la hipótesis anteriormente aceptada. Entonces resulta necesaria la formulación de otra hipótesis y se repite todo el procedimiento de nuestro método científico como si se tratara de un círculo, quizás una espiral, pues este nuevo ciclo se desarrolla en un nivel de mayor conocimiento.

Esto nos introduce en la idea de que la “verdad” científica es sólo relativa; es una aproximación y será abandonada y reemplazada por otra “verdad” nueva y mejor, cada vez que resulte necesario. Esto explica lo que para algunos es el obstáculo más grande referente a la ciencia: que sus conclusiones ¡no son definitivas! Los científicos están siempre dispuestos y aun entusiastas para aceptar nuevas explicaciones si éstas se acercan más a los hechos conocidos.

La verdad científica, entonces, no es definitiva. Representa las etapas alcanzadas en cada oportunidad en la búsqueda del conocimiento. El nivel de éxito obtenido en esta búsqueda se medirá siempre por el grado de correlación que exista entre teoría y realidad. La verdad científica representa lo mejor que pudo hacerse en un momento determinado. No tiene autoridad para juzgar futuras investigaciones en el campo en que se aplica.

La aceptación de una hipótesis científica como cierta no surge de su elegancia ni de la sinceridad o entusiasmo con que ha sido presentada; tampoco reposa en factor personal alguno, como podría ser respecto de nuestra propia hipótesis o de la de alguien a quien respetamos.

La única razón válida para aceptar una hipótesis como cierta es que apoyada en hechos conocidos, pueda anticipar otros. Esto es bastante distinto de la idea de verdad que se aplica en otros órdenes de la vida, y es una de las características distintivas de la actitud científica.

https://historiaybiografias.com/linea_divisoria5.jpg

LOS PASOS DEL MÉTODO CIENTÍFICO-EXPERIMENTAL:

PASO 1. LA OBSERVACIÓN DEL FENÓMENO
Una vez planteado el fenómeno que se quiere estudiar, lo primero que hay que hacer es observar su aparición, las circunstancias en las que se produce y sus características. Esta observación ha de ser reiterada (se debe realizar varias veces), minuciosa (se debe intentar apreciar el mayor número posible de detalles), rigurosa (se debe realizar con la mayor precisión posible) y sistemática (se debe efectuar de forma ordenada).

PASO 2. LA BÚSQUEDA DE INFORMACIÓN
Como paso siguiente, y con objeto de reafirmar las observaciones efectuadas, deben consultarse libros, enciclopedias o revistas científicas en los que se describa el fenómeno que se está estudiando, ya que en los libros se encuentra e conocimiento científico acumulado a través de la historia. Por este motivo, la búsqueda de información } la utilización de los conocimientos existentes son imprescindibles en todo trabajo científico.

PASO 3. LA FORMULACIÓN DE HIPÓTESIS
Después de haber observado el fenómeno y de haberse documentado suficientemente sobre el mismo, el científico debe buscar una explicación que permita explicar todas y cada una de las características de dicho fenómeno.

Como primer paso de esta fase, el científico suele efectuar varias conjeturas o suposiciones, de las que posteriormente, mediante una serie de comprobaciones experimentales, elegirá como explicación del fenómeno la más completa y sencilla, y la que mejor se ajuste a los conocimientos generales de la ciencia en ese momento. Esta explicación razonable y suficiente se denomina hipótesis científica.

PASO 4. LA COMPROBACIÓN EXPERIMENTAL
Una vez formulada la hipótesis, el científico ha de comprobar que ésta es válida en todos los casos, para lo cual debe realizar experiencias en las que se reproduzcan lo más fielmente posible las condiciones naturales en las que se produce el fenómeno estudiado. Si bajo dichas condiciones el fenómeno tiene lugar, la hipótesis tendrá validez.

instrumentos de presley cientifico

Lámina de «Observations on differents kinds of air» del gran científico Joseph Priestley, mostrando uno de sus experimentos para demostrar los efectos de la combustión, putrefacción y respiración en una planta de menta  y en ratones.

PASO 5. EL TRABAJO EN EL LABORATORIO

Una de las principales actividades del trabajo científico es la de realizar medidas sobre las diversas variables que intervienen en el fenómeno que se estudia y que son susceptibles de poder medirse. Si te fijas, en el experimento anterior no se ha podido tomar ninguna medida, por lo cual es conveniente repetir la experiencia en un lugar donde pueda tomarse, es decir, en el laboratorio.

Estas experiencias realizadas en los laboratorios se denominan experiencias científicas, y deben cumplir estos requisitos:

a) Deben permitir realizar una observación en la que puedan tomarse datos.

b) Deben permitir que los distintos factores que intervienen en el fenómeno (luminosidad, temperatura, etc.) puedan ser controlados.

c) Deben permitir que se puedan realizar tantas veces como se quiera y por distintos operadores.Habitualmente, en ciencias experimentales, los trabajos de laboratorio permiten establecer modelos, que son situaciones o supuestos teóricos mediante los que se efectúa una analogía entre el fenómeno que ocurre en la Naturaleza y el experimento que realizamos.

PASO 6. EL TRATAMIENTO DE LOS DATOS
Las medidas que se efectúan sobre los factores que intervienen en un determinado fenómeno deben permitirnos encontrar algún tipo de relación matemática entre las magnitudes físicas que caracterizan el fenómeno que se estudia. Para llegar a esa relación matemática, los científicos suelen seguir dos pasos previos: el análisis de los factores y la construcción de tablas y de gráficos.

PASO 7. EL ANÁLISIS DE LOS FACTORES
El estudio en profundidad de un fenómeno requiere en primer lugar la determinación de todos los factores que intervienen en él. Para que ese estudio se realice en la forma más sencilla, se fija una serie de magnitudes que no varían (variables controladas) y se estudia la forma en que varía una magnitud (variable dependiente) cuando se produce una variación de otra magnitud (variable independiente).

Así, por ejemplo, si lo que queremos es estudiar el alargamiento que experimenta un resorte cuando colgamos diversas pesas de uno de sus extremos, hay un conjunto de magnitudes que podemos considerar invariables (la temperatura del recinto donde hacemos el experimento, la presión atmosférica dentro del mismo, la humedad relativa del aire, etc.), que corresponden a las variables controladas. En este caso, la longitud del alargamiento del resorte será la variable dependiente, y el peso que colgamos de su extremo será la variable independiente.

PASO 8. LA CONSTRUCCIÓN DE TABLAS Y DE GRÁFICOS
La construcción de tablas consiste en ordenar los datos numéricos obtenidos sobre las variables independiente y dependiente. Siempre se han de especificar las unidades en las que se miden dichas variables, para lo cual se utilizan los paréntesis a continuación de sus nombres.

En el caso del resorte, la tabla podría ser así:
La representación gráfica consiste en representar los datos de las medidas en un sistema de ejes cartesianos, donde normalmente la variable independiente se hace corresponder con el eje X, mientras que la variable dependiente se hace corresponder con el eje Y.

Se llama ajuste de la gráfica al procedimiento mediante el cual se determina la línea que pasa por los puntos que se han representado o la más cercana a ellos.

En la mayoría de los casos, las gráficas que se obtienen son líneas rectas, lo que indica que la relación entre las magnitudes físicas representadas es de la forma y = k • x. donde k es una constante. En otros casos, la relación entre ambas magnitudes es de tipo parabólico, lo que matemáticamente representa que y = k • x2; o de tipo hiperbólico, cuya formulación es de la forma x • y = k.

PASO 9. LAS CONCLUSIONES Y LA COMUNICACIÓN DE RESULTADOS
El análisis de los datos y la comprobación de las hipótesis lleva a los científicos a emitir sus conclusiones, que pueden ser empíricas, es decir, basadas en la experiencia, o deductivas, es decir, obtenidas tras un proceso de razonamiento en el que se parte de una verdad conocida hasta llegar a la explicación del fenómeno.
Una vez obtenidas dichas conclusiones, éstas deben ser comunicadas y divulgadas al resto de la comunidad científica para que así sirvan como punto de arranque de otros descubrimientos, o como fundamento de una aplicación tecnológica práctica .

PASO 10. LA ELABORACIÓN DE LEYES Y TEORÍAS
El estudio científico de todos los aspectos de un fenómeno  natural lleva a la elaboración de leyes y teorías.

Una ley científica es una hipótesis que se ha comprobado que se verifica.

Una teoría científica es un conjunto de leyes que explican un determinado fenómeno.

Así, por ejemplo, la hipótesis comprobada de que el are iris se forma debido a la refracción que experimenta la li al atravesar las gotas de agua de la lluvia, es una ley que s enmarca dentro de un conjunto de leyes que rigen otros fenómenos luminosos (reflexión, dispersión, etc.). Este con junto se conoce como teoría sobre la luz.

Tanto las leyes como las teorías deben cumplir los siguientes requisitos:

1. Deben ser generales, es decir, no sólo deben explica casos particulares de un fenómeno.
2. Deben estar comprobadas, es decir, deben estar avaladas por la experiencia.
3. Deben estar matematizadas, es decir, deben pode expresarse mediante funciones matemáticas.

Las teorías científicas tienen validez hasta que son incapaces de explicar determinados hechos o fenómenos, o hasta que algún descubrimiento nuevo se contradice con ellas, a partir de ese momento, los científicos empiezan a plantearse la elaboración de otra teoría que pueda explicar eso; nuevos descubrimientos.

Rene Descartes

René Descartes creó la geometría analítica, también denominada «geometría cartesiana», en la que los problemas geométricos pueden traducirse a forma algebraica. Se trataba de un método extremadamente poderoso para resolver problemas geométricos y, a la postre, también dinámicos (el problema del movimiento de cuerpos), un método que conservamos más de tres siglos después.En más de un sentido la contribución de Descartes preparó el camino para el gran descubrimiento de Newton y Leibniz: el del cálculo diferencial (o infinitesimal) e integral, el universo de las derivadas y las integrales; un instrumento  incomparable para la indagación matemática y física.

Instrumentos de Boyle
Lámina donde se muestran los instrumentos del laboratorio de Boyle

La divulgación científica: Al científico no le basta con ver, debe convencer. Un descubrimiento científico sólo adquiere importancia si es comunicado en fomia inteligible. Las primeras publicaciones que se registran referidas a la Química provienen de los alquimistas.

Estos químicos de la Edad Media, que procuraban transmutar (convertir) cualquier metal en oro, escribieron dos tipos de manuscritos: míos, puramente prácticos, y otros, donde intentaban aplicar las teorías de la naturaleza de la materia a los problemas alquímicos. Aunque en ambos casos apelaron a una mezcla de magia y ciencia como metodología para sus investigaciones, muchas técnicas allí descriptas siguen utilizándose en la actualidad.

En 1597 un alquimista alemán, Andreas Libau (1540-1616), conocido como Libavius, escribió el que se considera el primer libro de Química, Alchemia, que resumía los hallazgos medievales en esta materia sin caer en el misticismo.

Recién a partir del siglo XVIII las publicaciones de libros y revistas se convirtieron en el vehículo usual para la transmisión científica.

La primera revista del mundo dedicada exclusivamente a la Química fue Annales de Chimie, de 1789. La versión española se publicó dos años después, en Segovia, y fue dirigida por Joseph Proust.

Entre los libros de la época cabe destacar el famoso Traite Élementaire, escrito por Lavoisier en 1789, en el que puede advertirse hasta qué punto Lavoisier se había adelantado a la ley de los volúmenes de combinación, enunciada veinte años después por Gay-Lussac.

En sus páginas se puede leer con claridad que la reacción para la formación de agua requiere exactamente dos volúmenes de hidrógeno para reaccionar por completo con un volumen de oxígeno. Sólo después de veinte años Gay-Lussac retoma estas ideas y, mediante el estudio de la reacción entre el cloro y el hidrógeno, deduce su ley. ¿Pero por qué Lavoisier no llegó a enunciar la ley de los volúmenes de combinación?.

Las respuestas probables a esta pregunta son dos. Primero, Lavoisier fue guillotinado apenas cinco años después de la publicación de su libro; segúndo, hasta el momento de su muerte el cloro no había sido identificado como tal.

En la actualidad, las publicaciones científicas son muy numerosas y se renuevan constantemente. Y, además, resulta fundamental el aporte de los medios informáticos. Gracias a ellos se ha logrado integrar textos, imágenes, sonidos y movimientos, y también es posible el intercambio de trabajos y opiniones científicas de grupos procedentes de todas partes del mundo.

https://historiaybiografias.com/linea_divisoria5.jpg

CONOCIMIENTO CIENTÍFICO: La ciencia puede extender enormemente el alcance de los sentidos humanos, como podemos ver en las páginas de este libro, que se ocupan de algunos de los extraordinarios instrumentos científicos disponibles hoy.

También puede aumentar su capacidad de prever los acontecimientos. Esto es de gran utilidad para el hombre porque le evita eventuales dificultades y porque le permite obtener los resultados previstos. De este modo la ciencia aumenta enormemente los medios a disposición del hombre para la consecución de sus fines, sean éstos constructivos o destructivos.

La ciencia, empero, no puede ocuparse de lo inobservable. Puede ocuparse de los electrones, que no son visibles directamente, porque éstos dejan huellas observables en la cámara de Wilson.

Pero aunque la ciencia se interese por los electrones no puede ocuparse de proposiciones sobre ángeles aunque se diera el caso de que fueran ángeles guardianes quienes orientaran nuestra conducta individual. Como por definición los ángeles no pertenecen al mundo natural, es evidente que no pueden ser estudiados por el método científico.

Tampoco reemplaza la ciencia a la sabiduría. No puede juzgar entre los distintos fines que nos fijamos individual o colectivamente, aunque puede darnos los medios para llegar a ellos con mayor facilidad. Por lo menos hasta el presente la ciencia no está en condiciones de decirle al hombre qué es lo mejor para ver, lo mejor para gustar. Algunos piensan que jamás podrá hacerlo aunque el conocimiento científico a menudo nos predispone a las consecuencias de nuestras elecciones.

La ciencia no es una mera acumulación de conocimientos enciclopédicos. Tampoco es exactamente sentido común —por lo menos en lo que se refiere a algunas de sus conclusiones— como nos habremos percatado luego de leer los artículos sobre la naturaleza física del mundo en que vivimos.

Es, sin embargo, completa y totalmente “sensata” en su dependencia del método de ensayo y error. No es un cuerpo de doctrina que se apoye en la autoridad de personas. No es la mera búsqueda de ingeniosos aparatos aunque éstos resulten una consecuencia del avance del conocimiento científico.

La ciencia es una manera de preguntar. Es un método para avanzar en el conocimiento de fenómenos que pueden ser observados y medidos. Es una aventura en lo desconocido, en pos de la comprensión buscada, comprensión a la que llegaremos mediante ensayos y errores, operando siempre que sea posible en las condiciones controladas de un experimento.

https://historiaybiografias.com/linea_divisoria5.jpg

PARA SABER MAS…
EXPERIMENTO CIENTÍFICO

Un buen ejemplo de investigación científica mediante experiencias sensatas  es el modo en que Galileo estudió la fuerza de gravedad, llegando a descubrir la ley del movimiento uniformemente acelerado de los graves: un mentís clamoroso a la teoría de Aristóteles, que consideraba la velocidad de la caída proporcional al peso.

El plano inclinado que construyó para el estudio del movimiento gravitacional es relativamente simple desde el punto de vista tecnológico: consiste en una viga de seis metros de largo, de buena madera (para impedir que se combe) y que puede inclinarse a voluntad, dotada de una acanaladura cuidadosamente alisada para reducir al mínimo la fricción de las bolas.

Este aparato tan sencillo tiene ya las características de un moderno instrumento científico, porque permite modular a voluntad cualquier parámetro notable de la experiencia. La inclinación, por ejemplo, puede reducirse haciendo más lentos los tiempos de caída, o bien aumentarse hasta rozar la verticalidad (de este modo, la caída libre se convierte en un simple caso límite).

metodo cientifico

El primer plano inclinado de Galileo estaba provisto de campanillas
para señalar los tiempos de caída de la bola.

Al principio, el científico afrontó el problema central (es decir, la comprobación exacta de los tiempos de caída) situando en el plano inclinado a intervalos regulares unas campanillas, de modo que sonasen al paso de la bola. Galileo, además de haber estudiado música, era también un avezado intérprete y contaba con la sensibilidad de su oído, muy entrenado para percibir ritmos e intervalos sonoros. Pero se trataba evidentemente de una solución aún primitiva, insuficiente para llegar a una cuantificación precisa de los tiempos.

El ingenio de Galileo resolvió brillantemente el problema con la construcción de un reloj de agua. Hacía coincidir el comienzo de la caída del grávido con la apertura de un grifo colocado bajo un tanque (mantenido a presión constante en todas las mediciones).

Al final de la caída, bastaba con cerrar el grifo y ocuparse de pesar el líquido almacenado; de este modo transformaba las cantidades de tiempo en cantidades de peso, mensurables y cotejables con gran precisión. Galileo descubrió así que, aunque una mayor inclinación del plano hacía aumentar la velocidad de caída, la relación entre espacios recorridos y tiempos empleados se mantenía constante para cualquier inclinación (por lo tanto, también en el caso límite de la caída libre).

Descubrió sobre todo que esta aceleración no depende del peso, en contra de lo que afirmaba Aristóteles.

Revolucion cientifica Trabajo de Galvani

Grabado mostrando diferentes experimentos de Luigi Galvani (Viribus Electricitatis in Motu Musculari Commentarius [Comentarios relativos a los efectos de la electricidad sobre el movimiento muscular] 1791) acerca de los efectos de la electricidad en ranas y pollos.

La observación, la experimentación y la construcción de teorías y modelos

La recolección de datos es una empresa importante para sostener cualquier trabajo científico. Estos datos pueden ser obtenidos por la observación sistemática de situaciones espontáneas o por la experimentación, que consiste en provocar el fenómeno que se quiere estudiar. Lo importante es ver cómo estos datos se utilizan para formular teorías o modelos.

En la actualidad, casi todos los filósofos de la ciencia están de acuerdo en que los datos por sí solos no explican nada, e incluso hay muchos que ponen en duda que existan datos puros, ya que la observación, sea espontánea o provocada, está siempre condicionada por el conocimiento del observador.

Así, por ejemplo, si un químico se encuentra cerca de una industria que produce acero, olerá dióxido de azufre y podrá inferir qué le puede ocurrir a su cuerpo o al ambiente ante la presencia de esta sustancia. En cambio, un niño que pase por el mismo lugar solo percibirá olor a huevo podrido. Como se puede notar, tanto uno como otro participan de la misma situación, pero la interpretación varía enormemente en función de los conocimientos que cada uno posee acerca del fenómeno que observan.

Además del papel decisivo que tienen los conocimientos del observador, no se debe olvidar que muchas de las observaciones que se realizan se hacen en forma indirecta, es decir, a través de la utilización de instrumentos, indicadores, etcétera, que, en muchos casos, distorsionan el fenómeno.

En la experimentación, el fenómeno es preparado por el mismo investigador, quien fija las condiciones, el sitio y el momento de su realización y, además, puede repetirlo numerosas veces.

Dentro de las ciencias de la vida, la mejor manera de poner a prueba las teorías que se relacionan con el funcionamiento de los organismos es con la ayuda de experimentos. Pero hay ciencias en las que los experimentos no son posibles, como es el caso de las ciencias que estudian la historia de los seres vivos (evolución, Paleontología), en las cuales es preciso hacer observaciones adicionales para corroborar una hipótesis.

Otra forma de comprobar una teoría en Biología consiste en utilizar datos provenientes de fuentes distintas; por ejemplo: si para establecer relaciones filogenéticas en distintos grupos de organismos se utilizan evidencias morfológicas, se pueden buscar pruebas adicionales para validar esa hipótesis recurriendo a evidencias bioquímicas, biogeográficas, etcétera.

Hay que destacar que, si bien el surgimiento del método experimental fue fundamental para el avance de la ciencia moderna, este no es el único método utilizado por los científicos. Las metodologías que se utilizan en las investigaciones son variadas, con lo que se descarta la existencia de un único método científico universal.

Laboratorio de Lavoisier

Lavoisier en su laboratorio, experimentando sobre la respiración de un hombre en reposo (dibujo de Marie Anne Lavoisier).

RESPECTO A LA HIPÓTESIS DE INVESTIGACIÓN

El paso que sigue a la formulación del problema de investigación es enunciar las hipótesis que guiarán la investigación. Sin embargo, antes de dar este paso, será necesario fijar algunos criterios que permitan enunciar hipótesis adecuadas.

Como ya saben, una hipótesis es una respuesta posible aun interrogante planteado, que aún no ha sido puesta a prueba. Sin embargo, no todas las respuestas posibles para un problema de investigación son hipótesis.

Requisitos de una hipótesis
Para ser una hipótesis, la respuesta al problema debe reunir determinadas condiciones. Éstas son algunas de ellas. * Ser formulada en un lenguaje preciso y claro. Supongamos, por ejemplo, que alguien enuncia la siguiente hipótesis: “Los científicos que violan el código de ética profesional de la ciencia tienden a mostrar comportamientos amorales en otros ámbitos sociales”. Así formulada, la hipótesis tiene dos problemas: por un lado, no es evidente a qué se llama comportamientos amorales, ya que la expresión no está definida y puede tener más de una interpretación; por otro lado, no es muy claro el sentido de la expresión tienden a (¿cuántos comportamientos amorales tendría que manifestar un científico para que se configure una tendencia?).

* Ser coherente con el conjunto de los conocimientos disponibles sobre el problema de investigación. Por ejemplo, no seria muy interesante formular la hipótesis de que “La ciencia no se enfrenta con ningún problema ético” cuando son conocidos los debates que se plantean continuamente en torno de cuestiones éticas en el ámbito científico. i Hacer avanzar el conocimiento existente. Una hipótesis que reprodujera una afirmación unánimemente aceptada y comprobada en la comunidad científica no sería muy útil para saber más sobre el tema.
Por ejemplo, hoy no tendría sentido indagar la hipótesis de que “La Tierra gira alrededor del Sol”.

* Ser coherente con los objetivos del proyecto de investigación y, por lo tanto, con el tipo de proyecto de que se trate. Por ejemplo, si el proyecto es de naturaleza exploratoria -es decir que sus objetivos también lo son-, no se puede construir una hipótesis explicativa para ese proyecto y esos objetivos.

* Poder ser corroborada o refutada por los datos que se reúnen durante el proceso de investigación. Éste es un requisito muy importante, que los filósofos de la ciencia han debatido y fundamentado extensamente. En el apartado que sigue, se analiza con mayor profundidad.

DIFUSIÓN: Cuando el científico ha comunicado un resultado, su conocimiento permite a los tecnólogos imaginar aplicaciones a distintos sectores de la técnica. Otras veces marcha adelante el tecnólogo y descubre una propiedad desconocida; y es trabajo del científico explicar esa propiedad elaborando una teoría. En espectroscopia hay ejemplos de situaciones como ésas: primero se observaron las líneas espectrales y más tarde se desarrolló la teoría que las explica.

En el campo de la Metalurgia hay innumerables ejemplos: desde hace siglos se conoce y se usa la operación de templar un acero; pero la teoría del fenómeno sólo se conoce desde apenas unas décadas.

Otras veces el tecnólogo presenta sus requerimientos al científico, y éste investiga hasta determinar las condiciones que deben cumplirse para satisfacer aquellos requerimientos.

Esto ha ocurrido con frecuencia en los últimos tiempos, por ejemplo en la resolución del problema de la reentrada en la atmósfera de una cápsula espacial: la alta temperatura desarrollada por la fricción con el aire funde cualquier material ordinario, y fue necesario desarrollar nuevos materiales con las propiedades adecuadas. Algunas veces los científicos responden satisfactoriamente a las demandas de los tecnólogos; otras, no. Los problemas y dificultades se renuevan continuamente: nunca estará todo resuelto, pues cada solución abre nuevos caminos, y recorrerlos crea a su vez nuevos problemas.

Experimento con plantas

Grabado reproduciendo un experimento sobre la respiración de plantas y animales, incluido en
Legons sur les phénoménes de la vie communs aux animaux et aux végétaux de Claude Bernard (1878).

¿Qué es cultura científica?
Cada persona que quiere ser útil a su país y a sus semejantes tiene, entre otras cosas, la responsabilidad de adquirir una educación en ciencia (en nuestro caso, a través de la Física y de la Química) que la transforma en una persona capaz de:

• conocer los principios, las leyes y las teorías más generales y sus aplicaciones prácticas más difundidas;

• interpretar fenómenos naturales frecuentes;

• advertir y comprender la incidencia del desarrollo científico y tecnológico sobre las estructuras económicas y sociales en todo el mundo;

• reconocer la universalidad de la ciencia, que por una parte no reconoce fronteras nacionales, y por otra constituye el medio necesario para que la comunidad que forma la nación atienda y resuelva problemas propios;

• detectar, en su región o en su país, problemas susceptibles de ser tratados científicamente, y reconocer la propia responsabilidad en su planteamiento y en la búsqueda de soluciones;

• distinguir entre una simple creencia o una opinión, o una superstición, y una verdad científica;

• comprender que una verdad científica no es una verdad inmutable sino modificable por avances científicos que elaboren una nueva verdad científica más general, que puede abarcar a la anterior;

• gustar del placer intelectual de advertir un fenómeno natural, hacer coherentes partes aparentemente inconexas, plantear una hipótesis plausible y verificarla experimental o teóricamente;

• gustar del placer intelectual de difundir conocimientos y actitudes científicas entre las personas que lo rodean;

• adquirir el amor por la verdad que caracteriza al auténtico pensamiento científico;

• relacionar las explicaciones científicas con otras manifestaciones de la cultura, tales como la filosofía o el arte.

El desarrollo científico y técnico de los últimos tiempos ha ampliado el concepto y las exigencias de “persona culta”, que ya no se limitan al campo de la literatura, las artes o las humanidades exclusivamente.

Fuente Consultada:
Atlas Universal de la Filosofía – Manual Didáctico de Autores, Textos y Escuelas
Biología y Ciencias de la Tierra Estructura – Ecología – Evolución Polimodal
Formación Ética y Ciudadana Ética, Ley y Derechos Humanos 3° EGB
Elementos de Física y Química Maiztegui-Sabato

Las radiaciones de un nucleo atomico Tipos alfa, beta y gamma

LAS RADIACIONES DE UN NÚCLEO DE UN ÁTOMO

1-Radiaciones Alfa
2-Radiaciones Beta
3-Radiaciones Gamma

atomo orbitasÁtomo, la unidad más pequeña posible de un elemento químico. En la filosofía de la antigua Grecia, la palabra “átomo” se empleaba para referirse a la parte de materia más pequeño que podía concebirse. Esa “partícula fundamental”, por emplear el término moderno para ese concepto, se consideraba indestructible.

De hecho, átomo significa en griego “no divisible”. El conocimiento del tamaño y la naturaleza del átomo avanzó muy lentamente a lo largo de los siglos ya que la gente se limitaba a especular sobre él.

Con la llegada de la ciencia experimental en los siglos XVI y XVII  los avances en la teoría atómica se hicieron más rápidos. Los químicos se dieron cuenta muy pronto de que todos los líquidos, gases y sólidos pueden descomponerse en sus constituyentes últimos, o elementos.

Por ejemplo, se descubrió que la sal se componía de dos elementos diferentes, el sodio y el cloro, ligados en una unión íntima conocida como compuesto químico. El aire, en cambio, resultó ser una mezcla de los gases nitrógeno y oxígeno.

Todos sabemos que el átomo constituye una especie de sistema planetario en miniatura; el núcleo equivale al Sol, y los electrones a los planetas. Una de las primeras preguntas que se nos pueden ocurrir a este respecto, es la siguiente: ¿cómo está hecho el núcleo, ese sol de un universo infinitamente pequeño?

Sabemos que el núcleo atómico se compone, fundamentalmente, de dos tipos de partículas materiales: los protones, cargados de electricidad positiva, y los neutrones, desprovistos de carga eléctrica. En cambio, poco es lo que se sabe acerca de la disposición y movimiento de estas partículas. A diferencia de lo que sucede con los electrones (los “planetas”), que giran alrededor del núcleo, no existe un modelo que ilustre de manera intuitiva cómo los protones y neutrones se mueven y disponen en el interior del mismo núcleo.

Sin embargo, los estudios y las experiencias de física nuclear han permitido obtener algunas conclusiones y datos significativos. Por ejemplo, el núcleo del átomo del hierro, contiene 26 protones (en amarillo en la ilustración) o, lo que es lo mismo, 26 partículas provistas de una carga elemental positiva.

Estas 26 cargas positivas pueden sostener, en torno al núcleo, otras tantas cargas de signo opuesto. Así, en el átomo neutro de hierro, 26 electrones —es decir 26 partículas provistas de una carga elemental negativa— giran alrededor del núcleo, en órbitas distintas. Y, precisamente, es el número de protones (llamado “número atómico”), igual en el átomo neutro al número de electrones, lo que hace que el hierro sea hierro, con todas las propiedades químicas que lo distinguen. Cada elemento químico, en consecuencia, tiene un número atómico propio.

Pero si las propiedades químicas de un átomo dependen, exclusivamente, del número atómico, otras propiedades no menos importantes dependen, además, del llamado “número de masa”. Se trata de propiedades que no pueden observarse a simple vista, pero que se revelan de modo muy espectacular en las “reacciones nucleares” (pensemos, por ejemplo, en la bomba atómica).

Ya hemos dicho que en el núcleo, además de los protones, se encuentran los neutrones, o partículas desprovistas de carga eléctrica, que pesan, aproximadamente, igual que los protones. Pues bien: la suma del número de protones y de neutrones da el “número de masa”.

Los átomos de igual número atómico, pero de distinto “número de masa”, son llamados “isótopos”: tienen idénticas propiedades químicas (puesto que idéntico es el número atómico), pero distintas propiedades nucleares, porque distinto es el número de masa o, lo que es lo mismo, el número de neutrones.

Tal como aparecen en la naturaleza, casi todos los elementos son mezclas de isótopos diferentes: el hierro, por ejemplo, además de átomos de 26 protones y 30 neutrones (que se hallan en franca mayoría, ya que constituyen el 91,68% de su materia), contiene también átomos de 28, 31 y 32 neutrones. Éstos son, precisamente, los isótopos del hierro (cuyos protones continúan siendo 26), todos ellos estables, es decir, existentes en la naturaleza, sin ninguna tendencia a transformarse espontáneamente en otra cosa.

En cambio, un átomo de hierro que, junto a los 26 protones habituales tuviese en el núcleo 33 neutrones, ya no sería estable, es decir, tendería a transformarse. Lo mismo puede decirse de los átomos de hierro con 27 ó 26 neutrones.

Se trata de un hecho muy importante, cuya significación es la siguiente: para que en un núcleo con un determinado número de protones (26 en el caso del hierro) haya estabilidad, los electrones no deben superar una cantidad determinada (28, 30, 31 y 32, en el caso del hierro).

En otras palabras: del número de neutrones depende la estabilidad del núcleo. Y ahora podemos dar otro paso y preguntarnos qué es lo que mantiene a protones y neutrones en el núcleo. Salta a la vista que el problema es más complejo que el que presentan los electrones girando alrededor del núcleo: en este caso se trata, simplemente, de partículas cargadas negativamente (electrones), que, en virtud de las fuerzas electrostáticas, son atraídas por cargas positivas de ciertos elementos del núcleo (protones).

En el interior del núcleo, en cambio, los neutrones, desprovistos de carga, y los protones, que la tienen positiva, deberían repelerse, si sólo actuaran las fuerzas electrostáticas.

Como no sucede así, forzosamente tenemos que pensar en fuerzas de otra naturaleza; y éstas, llamadas por los científicos “fuerzas nucleares”, son aún muy misteriosas. Parece que los protones y neutrones se atraen independientemente de su carga; es decir, un protón atrae indiferentemente a otro protón, o a un neutrón, y lo mismo puede decirse de los neutrones. En el caso, sin embargo, de dos protones, la fuerza electrostática de repulsión es más potente que la fuerza nuclear de atracción.

Debido al complejo juego de estas fuerzas, la estabilidad del núcleo depende de las relaciones entre el número de protones y de neutrones, tal como hemos explicado.

Cuando la relación protones-neutrones no asegura la estabilidad del núcleo, éste tiende a modificar la relación, emitiendo radiaciones alfa o beta, y transformándose espontáneamente en un núcleo estable.

En las radiaciones alfa, el núcleo emite las “partículas alfa”, constituidas por dos protones y dos neutrones.
En las radiaciones beta, el núcleo sólo emite electrones, que no existían previamente en su interior, sino que se producen simultáneamente con la emisión, cuando un neutrón del núcleo se transforma en protón para establecer el necesario equilibrio numérico entre neutrones y protones.

PARTÍCULA ALFA:

Determinadas combinaciones de protones y neutrones pueden llegar a formar un núcleo durante algún tiempo; pero el núcleo no es estable y el átomo es radiactivo. Esta clase de átomos intenta variar la proporción de protones y neutrones en el núcleo, para formar una combinación más estable, y entonces el núcleo emite una radiación. El átomo se trasforma en el átomo de un elemento distinto y se dice que se trasmutó.

cargas electricasDos protones no pueden permanecer juntos, porque ambos tienen carga positiva (cargas del mismo signo se repelen). Los núcleos que tienen protones en exceso se estabilizan por trasmutación.

cargas electricas
El núcleo de helio, con dos protones y dos neutrones, es la combinación de protones y
neutrones más estable que se conoce. Es la “partícula alfa”.

Por ejemplo, si un núcleo contiene demasiados protones y neutrones para ser estable, puede expulsar algunas de estas partículas y alcanzar una mayor estabilidad. Para ello emite dos protones y dos neutrones firmemente unidos (el núcleo, muy estable, del átomo de helio), formando una partícula única, que se conoce con el nombre de partícula alfa. La partícula alfa lleva, por consiguiente, dos cargas positivas y tiene un peso atómico igual a cuatro, mientras que el átomo que ha emitido esta partícula alfa disminuye su número atómico en dos unidades, y su peso atómico en cuatro unidades.

Por ejemplo, los átomos de radio que se encuentran en la naturaleza (número atómico 88, peso atómico 226) emiten partículas alfa, y entonces se- trasforman en radón, un gas radiactivo (número atómico 86, peso atómico 222)

formula quimica

El radón mismo se trasmuta emitiendo partículas alfa. Las partículas alfa, que se emiten durante la trasmutación de los átomos, se desplazan en línea recta a través del aire, y pierden su energía a medida que van entrando en colisión con las moléculas de aire, deteniéndose, generalmente, al cabo de unos cuantos centímetros.

Todas las partículas alfa, emitidas por un isótopo determinado, suelen recorrer la misma distancia en el aire, ya que tienen la misma energía cinética, la cual van perdiendo en los choques; basta, sin embargo, interponer en su camino una hoja de papel para detener una partícula alfa.

cargas electricas

LA PARTÍCULA BETA
Si un núcleo contiene demasiados neutrones, para ser estable puede convertir alguno de ellos en un protón. En realidad, el protón y el neutrón son partículas muy similares. Para que un neutrón se trasforme en protón basta con que emita un electrón. El neutrón pierde, entonces, una carga negativa y se trasforma en un protón cargado positivamente:

formula

El electrón es emitido por el núcleo con una gran velocidad; recibe el nombre de partícula beta.

El átomo conserva el mismo peso molecular después de la trasmutación, ya que la suma de protones y neutrones en el núcleo permanece constante; pero el número atómico aumenta por existir un protón suplementario. Un ejemplo de trasmutación por emisión de partículas beta lo tenemos en el comportamiento del carbono radiactivo. Los átomos del carbono 14 (número atómico 6, peso atómico 14), que es un radioisótopo natural del carbono 12, se trasmutan, por emisión de partículas beta, en nitrógeno 14 (número atómico 7, peso atómico 14). que tiene un núcleo estable.

Aproximadamente, la mitad de los radioisótopos naturales se puede trasmutar por emisión de partículas beta. También muchos radioisótopos artificiales presentan una trasmutación de este tipo.

Las partículas beta son muy ligeras y se desvían muy fácilmente en su trayectoria. Por ello, no se desplazan en línea recta como las partículas alfa. Sin embargo, suelen recorrer un espacio superior. En el aire, una partícula beta puede alcanzar más de un metro o, incluso, atravesar una lámina de aluminio de algunos milímetros de espesor.

EL POSITRÓN
Además de las partículas alfa y beta, que emiten los radioisótopos naturales, los radioisótopos artificiales pueden emitir también una partícula, que tiene la misma masa que el electrón, pero con una carga positiva igual a la del protón. Esta partícula se llama positrón, y puede considerarse como un electrón con una carga positiva igual, pero de signo opuesto a la del electrón.

EMISIÓN DE POSITRONES
Se ha visto que la emisión de partículas beta puede tener lugar cuando el núcleo contiene demasiados neutrones para ser estable. Si la relación entre protones y neutrones es la correspondiente al núcleo estable, no hay radiactividad. Si, por el contrario, el núcleo contiene demasiados protones para ser estable, puede convertir uno de sus protones en un neutrón, emitiendo un positrón que, al no poder permanecer en el núcleo, es expulsado

formula

El átomo conserva el mismo peso atómico, pero el número atómico disminuye por haberse convertido un protón en neutrón. En 1934, Irene Joliot-Curie formó átomos de nitrógeno 13 (número atómico 7, peso atómico 13) al bombardear boro 10 con partículas alfa. El nitrógeno 13 se trasmutaba, por emisión de positrones, en carbono 13 (número atómico 6, peso atómico 13), y la presencia de la radiación, debida a los positrones (éstos fueron descubiertos en 1932), le permitió anunciar el descubrimiento de la radiactividad artificial:

formula

Hay, además, un tercer tipo de radiación nuclear, que siempre se presenta en compañía de una de las dos recién explicadas. Se trata de la radiación gamma, que es de naturaleza electromagnética, como la luz y los rayos X, de los que sólo difiere por el origen (la luz y los rayos X se originan en el exterior del núcleo, como consecuencia del paso de electrones de una órbita a otra de menor energía; las radiaciones gamma, en cambio, se originan en el interior del núcleo, como consecuencia de una sucesiva estabilización de éste, sin que se modifique la relación protones-neutrones).

Las radiaciones nucleares alfa, beta y gamma constituyen, pues, el instrumento que un núcleo inestable tiene a su disposición para alcanzar la estabilidad. En algunos elementos, tal como se encuentran en la naturaleza, la emisión de las radiaciones nucleares se verifica espontáneamente. Se trata de los famosos elementos radiactivos, como el radio y el uranio.

Pero fenómenos de este género pueden provocarse también en el laboratorio. Y, durante el transcurso de estas investigaciones, el hombre ha conseguido asomarse a los más profundos misterios del átomo, construir núcleos inexistentes en la naturaleza, liberar las energías encerradas dentro de los núcleos, e incluso, como veremos en otro artículo, transformar unos elementos en otros.

esposos curie

En 1934, Irene Joilot-Curie (hija de la famosa María Curie) y su marido, descubrieron que un isótopo estable natural (el boro 10) puede trasformarse en un elemento radiactivo distinto, por bombardeo con “partículas alfa”. La radiactividad de los átomos producidos artificialmente se llama “radiactividad artificial”.

 

Particulas elementales de la Materia quarks, bosones La antimateria

PARTÍCULAS ELEMENTALES DE LA MATERIA

Los fundamentos de la física atómica

La materia está constituida por un reducido número de las denominadas partículas elementales, cuyas propiedades pueden explicar la mayor parte de los fenómenos físicos que aquélla experimenta.

Las primeras partículas elementales halladas por el hombre fueron las moléculas que integran los distintos compuestos químicos existentes en la naturaleza. Después se descubrió que más elementales aún que las moléculas son los átomos que las constituyen, a su vez compuestos por un núcleo y unas partículas cargadas negativamente, los electrones, que se mueven en torno a él.

Más adelante las investigaciones revelaron que el núcleo de los átomos está formado por dos tipos de partículas, los neutrones, que no poseen carga, y los protones, de carga positiva.

Si bien hasta hace relativamente poco se pensó que protones y neutrones eran las partículas más pequeñas de la naturaleza, desde 1933 se han descubierto más de 200 partículas diferentes, todavía más elementales, más simples y de tamaño más reducido que el protón, el neutrón y el electrón.

Cada una de ellas, distintas entre si, está compuesta por cuatro subpartícutas básicas, denominadas quarks.

Actualmente, se sabe que ni los átomos, ni los electrones, ni los protones ni los neutrones son indivisibles. La duda está en identificar cuáles son las verdaderas partículas elementales. Dado que la longitud de onda de la luz es mucho mayor que el tamaño de un átomo, no es posible emplear la luz como instrumento para ver las partes que lo constituyen.

https://historiaybiografias.com/linea_divisoria1.jpg

LISTA DE TEMAS TRATADOS:

1-¿Que es un Atomo?
2-La Energía Nuclear y sus Usos
3-La Física Moderna
4-La Fisión Nuclear
5-Partículas Elementales
6-Vida de Max Planck
https://historiaybiografias.com/linea_divisoria1.jpg

Las partículas elementales

Mediante la dualidad onda-partícula de la luz se puede describir todo en el Universo en términos de partículas; éstas poseen una propiedad, llamada espín, que establece su dirección. Todas las partículas se pueden dividir en dos grupos: las que poseen espín 1/2, que constituyen la materia, y las de espín 0, 1 y 2, que dan lugar a las fuerzas entre partículas materiales.

La teoría formulada por Dirac, en 1928, estableció a relación entre la mecánica cuántica y la relatividad propuesta por Einstein. Dirac explicó matemáticamente la razón por la cual el electrón posee espín 1/2, y predijo, además, que el electrón debía tener una pareja o antipartícula, el positrón. El descubrimiento del positrón, en 1932, motivó la concesión del premio Nobel al científico..

Imagen de un acelerador de partículas

Fuerzas de interacción entre partículas

En mecánica cuántica las partículas experimentan fuerzas de interacción entre ellas. Cada partícula elemental, como un electrón o un quark, emite una partícula portadora de fuerza, que colisiona con otra partícula material y es absorbida por ella. Si en la emisión de la partícula portadora de fuerza la partícula material que la emite cambia de velocidad por el retroceso experimentado en la emisión, también la partícula que la absorbe ve modificada su velocidad.

Dado que las partículas portadoras de fuerza no obedecen al principio de exclusión de Pauli, puede existir un número enorme de partículas intercambiables, con lo que se podrían producir una serie de fuerzas de interacción muy potentes.

Según la intensidad de la fuerza y del tipo de partículas implicadas, cabe distinguir cuatro tipos:

Fuerza gravitatoria

Es la fuerza experimentada por las partículas y, en general, por todos los cuerpos, por el simple hecho de poseer masa o energía. Es la más débil de las cuatro y se caracteriza por su gran alcance y porque siempre es atractiva. En mecánica cuántica se representa por una partícula de espín 2, que se llama gravitrón, y que no posee masa propia. Así, por ejemplo, la fuerza gravitatoria entre la Tierra y el Sol se entiende como un intercambio de gravitrones entre los dos cuerpos, más concretamente entre las partículas que los forman.

Fuerza electromagnética

Es la experimentada por las partículas cargadas eléctricamente y resulta muchísimo más intensa que la gravitatoria. Como la fuerza eléctrica entre dos cuerpos se traduce en mecánica cuántica en la atracción o repulsión entre las partículas que los componen, en general se anulan las fuerzas atractivas con las repulsivas, y el efecto es un  cuerpo en estado neutro. Si no se anulan por completo, casi llegan a hacerlo, por lo que el resultado es una fuerza electromagnética neta muy débil. No obstante, dominan a distancias muy pequeñas, como es el caso de los átomos y moléculas.

La fuerza de atracción eléctrica entre los protones del núcleo y los electrones de la corteza hace que éstos giren describiendo órbitas alrededor del núcleo del átomo.

El fotón es la partícula elemental que representa este tipo de fuerza, que se entiende como un intercambio de esta clase de partículas.

Fuerza nuclear fuerte

Es la que mantiene unidos a los quarks en el protón y el neutrón, y a éstos en el núcleo del átomo. Se piensa que es transmitida por otra partícula, llamada gluón, que sólo interacciona con los quarks y consigo misma. Para energías normales esta fuerza es muy inténsa, pero a altas energías se debilita, de manera que los quarks y los gluones se comportan como partículas casi libres.

Fuerza nuclear débil

Es la causante de la radiactividad, y actúa sobre todas las partículas materiales de espín 1/2, pero no sobre los fotones o los gravitrones, es decir, partículas de espín 0, 1 y 2.

En 1967 Salam y Weimberg propusieron una teoría para unificar esta fuerza con la electromagnética, y sugirieron la existencia de otras tres partículas de espín 1 además del fotón: los denominados bosones. Según esta hipótesis, para grandes energías (superiores a 100 GeV) los tres bosones y el fotón se comportarían de forma similar1 pero a energías más bajas los bosones adquirirían una gran masa y la fuerza que transmitirían sería de corto alcance. Esta teoría fue comprobada y ratificada más tarde, cuando se construyeron potentes aceleradores de partículas, capaces de alcanzar energías tan grandes. Las tres partículas compañeras del fotón fueron definitivamente identificadas en 1983, en el Centro Europeo para la Investigación Nuclear (CERN).

Antimateria

En la actualidad, se sabe que para cada tipo de partícula existen también antipartículas, y que si interacciona una partícula con su correspondiente antipartícula pueden aniquilarse. Pero no existe el mismo número de unas que de otras; en realidad, en condiciones normales no hay antiprotones ni antineutrones, éstos sólo se producen en los grandes aceleradores de partículas. Tampoco en el espacio hay más que unos pocos antiprotones y antineutrones en comparación con la cantidad de protones y neutrones existentes.

Si existiera una gran cantidad de antimateria en comparación con la materia, se producirían múltiples colisiones en el espacio, que provocarían la emisión de una gran cantidad de radiación; así, las partículas se aniquilarían con las antipartículas, desapareciendo la mayor parte de la materia existente.

En general, se acepta que todo el espacio está formado por quarks, no por antiquarks, porque las leyes de la física son diferentes para las partículas y las antipartículas. Siempre se había creído que las leyes de la física poseían tres simetrías:

C, P y 1. La simetría C supone que las leyes son las mismas para partículas y antipartículas; la simetría P, que las leyes son idénticas para, una situación cualquiera y su imagen especular, y la simetría 1 supone que el movimiento de un sistema no se altera si se invierte la dirección del movimiento de todas las partículas y antipartículas. Sin embargo, se ha demostrado que la interacción débil no cumple la simetría P, es decir, el efecto de la interacción débil hace que evolucionen de forma diferente las partículas de las antipartículas. Tampoco posee simetría C, ni simetría combinada PC.

Ver: Dualidad de la Materia, Onda o Partícula?

Ver: Los Estados de la Materia

Ver Tambien:

Las Particulas Subatomicas del Universo
El Polvo Cosmico y Sus Componentes

Derretimiento Casquetes Polares Hielo de los Polos
Geometria No Euclidiana El Espacio Curvado de Einstein
La Vida Media de un Isotopo Quimico
El Efecto Coriolis en el Planeta Tierra
Los gases nobles Gases Inertes Argon Neon Helio

Consecuencias Políticas de la Bomba Atómica

Consecuencias Políticas de la Bomba Atómica

* Puedes Bajar Una Biografía Completa de Albert Einstein

La liberación de la energía atómica no ha creado un problema nuevo. Simplemente ha tomado más urgente la necesidad de resolver el ya existente. Podríamos decir que nos ha afectado cuantitativa y no cualitativamente.

Mientras haya naciones soberanas que posean gran poderío, la guerra será inevitable. Este aserto no es una tentativa tendiente a decir cuándo llegará la guerra, sino simplemente que es seguro que llegue.

El hecho era cierto antes que se fabricara la bomba atómica. Lo que se ha modificado es la destructividad de la guerra.

No creo que la civilización haya de ser borrada en una guerra librada con la bomba atómica. Tal vez dos terceras partes de la población de la Tierra pudiera ser muerta; pero quedaría un número suficiente de hombres capaces de pensar y libros suficientes para empezar de nuevo, y se restablecería la civilización.

El secreto de la bomba debiera serle confiado a un gobierno mundial. Dicho gobierno sería fundado por los Estados Unidos, la Unión Soviética y Gran Bretaña: las tres únicas potencias con gran poderío militar. ¿Que si temo la tiranía de un gobierno mundial? Claro está que sí. Pero temo todavía más la llegada de otra u otras guerras.

No me considero el padre del desencadenamiento de la energía atómica. Mi papel en ese terreno fue del todo indirecto. En realidad yo no preví que habría de ser liberada en momento alguno. Sólo pensé que tal liberación era teóricamente posible. Se volvió práctica por el descubrimiento accidental de las reacciones cadenarias, y eso es algo que yo no pude haber predicho. Fue descubierto por Hahn en Berlín, y él mismo interpretó equivocadamente su descubrimiento. Liso Meitner fue quien nos brindó la interpretación correcta, y huyó de Alemania para poner la información en manos de Niels Bohr.

No creo que haya de asegurarse una grande era de ciencia atómica con sólo organizar las ciencias en la forma en que se organizan las grandes empresas. Uno puede organizase para aplicar un descubrimiento que ya haya sido hecho; pero no hacer uno. Únicamente un individuo libre puede efectuar un descubrimiento.

Puede haber cierto tipo de organización por la cual a los hombres de ciencia se les asegure su libertad y las condiciones adecuadas para el trabajo. Por ejemplo, profesores de ciencias en las universidades debieran quedar libres de una parte de su enseñanza para disponer de tiempo que dedicar a más investigaciones. ¿Cabe imaginar una organización de estudiosos que realizara los descubrimientos de Carlos Darwin?

Tampoco creo que las vastas corporaciones particulares de los Estados Unidos sean adecuadas para las necesidades de estos tiempos. Si un visitante hubiera de venir a los Estados Unidos procedente de otro planeta, ¿no le extrañaría que en este país se otorgue tanto poderío a las corporaciones, sin que afronten una responsabilidad de igual grado? Digo esto para señalar que el gobierno tiene que mantener el control sobe la energía atómica, no porque el socialismo sea necesariamente deseable, sino porque la energía atómica fue desarrollada por el gobierno y sería inconcebible que dicha propiedad del pueblo fuera entregada a cualquier individuo.

En cuanto al socialismo, a menos que sea internacional hasta el grado de producir un gobierno mundial que domine a la totalidad del poderío militar, podría conducir a guerras más fácilmente que el capitalismo, porque representa una concentración de poderes todavía mayor.

Hacer un cálculo acerca del momento en que la energía atómica habrá de poderse aplicar a los fines constructivos es algo imposible. Lo único que sabemos es cómo utilizar una cantidad relativamente grande de uranio. Por el momento es imposible emplear cantidad suficientemente reducida como para mover, pongamos por caso, un automóvil o un aeroplano. Es indudable, que se logrará, pero nadie puede decir cuándo.

Tampoco se puede predecir cuando se logrará utilizar materiales más comunes que el uranio para proveer la energía atómica. Es probable que todos los materiales empleados con ese fin figurarán entre los elementos más pesados de elevado peso atómico.

Tales elementos son relativamente escasos, porque su estabilidad es menor. La mayoría de esos materiales quizás haya desaparecido ya por desintegración radioactiva. De ahí que si bien es posible que la liberación de la energía atómica pueda ser, e indudablemente será, una bendición para la humanidad, no se llegue a eso durante algún tiempo.

Como no preveo que la energía atómica haya de ser una bendición hasta dentro de mucho tiempo, debo manifestar que por el momento es una amenaza. Tal vez sea mejor que así ocurra. Podrá intimidar al género humano y hacerlo imponer el orden en los asuntos internacionales cosa que no haría sin la presión del temor.

Fuente Consultada: La Nación 135 Años Testimonios de Tres Siglos

Biografia de Einstein Albert Obra Cientifica y Vida

Biografía de Albert Einstein
Vida y Obra Científica del Físico

Albert Einstein (1879-1955) fue un físico alemán de origen judío, nacionalizado después suizo, austríaco y estadounidense. En 1905  publicó su teoría de la relatividad especial, para generalizarla  a partir de 1915.

Premio Nobel de Física por la explicación del efecto fotoeléctrico.Una de las consecuencias fue el surgimiento del estudio científico del origen y la evolución del Universo por la rama de la física denominada cosmología.

Albert Einstein es, de un modo indiscutible, una de las figuras más importantes de nuestro siglo. La genialidad de sus concepciones ha trascendido hasta la vida misma.

C

Si no hubiera existido, otros físicos habrían realizado ese trabajo con el paso del tiempo. Algunos descubrimientos habrían aparecido pocos años después, otros se habrían demorado décadas.

La teoría general, su más grande logro y el de mayores implicaciones, no estaba en la mente de nadie en los tiempos en que Einstein la desarrolló.

Hoy por hoy, ¿la habrían descubierto ya los científicos? Nadie lo sabe.

La nueva visión del universo con sus teorías revolucionarias comenzó hace un siglo en una siemple oficina de patentes en la ciudad de Berna (Suiza), donde en sus ratos libres empezó a deducir sus primeras fórmula, que con el tiempo tanto dolores de cabeza daría  resolverlas a los matemáticos de la época.

Transformando el legado científico de las ciencias físicas, llegó a establecer la relatividad de las nociones de espacio y de tiempo, la inercia y la energía y, de un modo geométrico, interpretó las fuerzas de gravitación.

Como expresó Louis de Broglie, la obra de Einstein es «admirable, comparable a las más grandes que se puedan encontrar en la historia de la ciencia, como por ejemplo la de Newton…»

albert einstein

Desde que Einstein lanzó los fundamentos de la teoría de la relatividad, los cimientos de la ciencia parecieron conmoverse: contracción de Lorentz-Fitzgerald, enlentecimiento aparente de los relojes en movimiento, variación de la masa con la velocidad en el movimiento de las partículas rápidas, fórmulas nuevas conteniendo los términos suplementarios para la aberración y el efecto Doppler, nuevas fórmulas para la composición de las velocidades permitiendo encontrar de nuevo y directamente como una simple consecuencia de la cinemática relativista la célebre fórmula de Fresnel —verificada por Fizeau— dando el arrebato de las ondas luminosas por los cuerpos refringentes en movimiento, etc.

En suma, sólo enunciando las aportaciones de Einstein, ya es factible decir que la primera mitad del siglo XX se vio favorecido por un extraordinario despliegue de la física, uno de los más brillantes de la historia de la ciencia en general.

En muy pocos años, la ciencia obtuvo dos logros fuera de toda ponderación: la teoría de la relatividad y la de los quanta o teoría cuántica ; veamos, pues, el primero, obra de Albert Einstein, este espíritu del que la humanidad siempre tendrá que enorgullecerse, y que será contemplado desde todos los ángulos que puede ofrecer el hombre.

*********** 00000 ***********

 MENU DE OPCIONES DE TEMAS RELACIONADOS

albert einstein

1905:Año Maravilloso El Efecto Fotoeléctrico El Movimiento Browiano Antecedentes de la Física – Implicancias de la Teoría  –  Explicación de la Teoría

BIOGRAFÍA DEL FÍSICO ALBERT EINSTEIN

Albert Einstein nació el 14 de marzo de 1879 en Ulm, la ciudad sobre el Danubio, que según es sabido se sitúa en el término de Wurtemberg. Pero esta ciudad prácticamente sólo le vio nacer. Un año después la familia se trasladó a Munich, donde  consumará la primera etapa de su formación.

En Munich, cumplida la edad escolar, fue inscrito en una escuela católica, en la que sabrá ver sus profundas semejanzas con la judía.Sus primeros pasos como escolar no fueron brillantes.

Incluso se llegó a pensar que no estaba dotado para el estudio, debido a su carácter taciturno, lentitud para aprender las cosas y dificultades en el lenguaje.

Albert y Maja (que había nacido a fines de 1881) eran muy apegados de niños, y de adultos mantuvieron una cariñosa relación.

La mayor parte de lo que sabemos hoy sobre la niñez de Einstein se le debe a Maja, quien años después escribió un librito sobre los primeros años de su hermano.

En su libro, Maja describe a Albert a la edad de cuatro años como un niño tranquilo, aislado, que no disfrutaba jugando con otros niños. Escribió que sus padres temían que Albert fuera retrasado pues aprendió a hablar muy tarde. Einstein recordaría después que sus padres lo llevaron donde el médico para saber si su lento desarrollo del lenguaje indicaba que algo iba mal.

La demora de Albert pudo haberse debido a timidez y orgullo; incluso a los dos años de edad quería hacer las cosas bien y evitar las faltas. Albert dijo más tarde que cuando joven había tomado la decisión da hablar sólo con frases completas.

Ensayaba la frase entera en su mente, a veces moviendo los labios, y cuando pensaba que la tenía lista la decía en voz alta.

El niño era realmente diferente de sus pares.

albert einstein y su hemana majaAlbert Einsten y su hemana Maja

Las ciencias pedagógicas en aquel tiempo no estaban muy avanzadas, al menos en el terreno para percibir sus posibles resultados, y en el caso de Einstein no supieron ver que aborrecía los ejercicios memorísticos y se encariñaba con la agradable sensación de pensar las cosas.

El propio Einstein, recordando este período poco feliz, recordaba con agrado la brújula de marinero que le regaló su padre cuando cumplió cuatro años, brújula en la que a través del imán creyó ver el primer misterio del universo: «Sólo la brújula quedaba en mi memoria de todo cuanto había hecho durante el día.»

Cumplidos los quince anos, una serie de acontecimientos tenían que cambiar algunos aspectos de su vida. En efecto, a raíz de unos reveses económicos, su padre Hermann decidió abandonar Munich y probar fortuna en Italia.

Se trasladó a Milán, donde tenía familia, dejando a su hijo en Munich en la pensión de una vieja amiga con el objeto de que terminara sus estudios.

Pero recibe unas cartas entusiastas de su madre y, de un modo brusco, abandonó Munich para instalarse en Italia; Einstein contaba dieciséis años y tenía unos infinitos deseos de libertad intelectual.

Los primeros contactos con la península italiana el propio Einstein los califica como de ensueño. La luz, el arte, especialmente Miguel Ángel, le lanzan a los ratos de ocio que encontraba a faltar.

pauline einstein madre de albert

Pauline, la madre de Einstein, pianista consumada, deseaba que sus hijos entraran en contacto con la música desdetemprana edad. Matriculó a Einstein en clases de violín y a su hermana en clases de piano. Las clases de Einstein comenzaron cuando tenía seis años y terminaron cuando tenía catorce. La mayor parte del tiempo detestaba las clases porque no le gustaban los métodos mecánicosy rutinarios de los profesores. Con todo, a los trece años se enamoró de las sonatas de Mozart y su
interés en la interpretación de la música se centró en ellas. Desde ese momento en adelante procuró mejorar su técnica para ser capaz de reproducir la belleza y el donaire de la música de Mozart.
Más tarde estudió piano en forma autodidacta e improvisaba en ocasiones. El violín lo acompañó toda la vida: se convirtió en un buen violinista aficionado y le gustaba tocar las sonatas de Mozart y Beethoven.

Empezó a visitar, en ocasiones a pie, las ciudades de Padua, Florencia, Siena, Perusa y Genova. Pero las presiones familiares, inflexibles en lo tocante al término de sus estudios, le obligaron a regresar a Munich, donde sufrió el primer tropiezo al no poder ingresar, debido a unas pruebas juzgadas insuficientes, en la universidad.

rostros de einstein

Paradójicamente, obtuvo unas calificaciones muy bajas en física y matemáticas. Uno de los examinadores le aconsejó trasladarse a Aarau, para perfeccionar lenguas, y de esta estancia en Argovia no guardó otra cosa que la sensación de vivir en el oasis de Suiza, además de su preparación que esta vez sí le permitió entrar en la Escuela Politécnica helvética.

Los primeros tiempos después de doctorarse en la Escuela Politécnica fueron realmente penosos. Debido a que no era suizo se le negó un lugar de asistente y, por primera vez, Einstein conoció el hambre.

Uno de sus condiscípulos, Marcelo Grossmann, que más tarde sería uno de sus mejores amigos, se compadeció de su situación y logró comunicar con el padre de Einstein.

Éste, por su parte, agobiado, sólo consiguió recomendarle al doctor Haller, que en Berna dirigía un despacho de patentes de invención.

Afortunadamente, Haller era un hombre inteligente que supo comprender el carácter callado y taciturno de Einstein; vencidas las primeras dificultades, logró colocarle y Einstein aseguró su subsistencia.

albert y mileva

Terminados sus estudios, con un empleo sólido y suficiente, obtenida ya la nacionalidad helvética, Einstein se casó con una joven matemática servia, Mileva Maric, que había conocido en la Escuela Politécnica.

De este primer matrimonio nacieron dos hijos, Alberto y Eduardo, por los que se ha sabido que fue un padre cariñoso y preocupado. Pero nada más. Einstein siempre separó su vida familiar de la profesional y es debido a este recato que su existencia íntima ha quedado prácticamente oculta.

Estos años transcurridos en Berna, al lado de su esposa Mileva, son unos de los más fecundos en la vida de Einstein. Es decir, mientras estaba empleado en el despacho de patentes de invención escribió su teorías de la relatividad.

La ejecución de dicho trabajo le colocó en la cima de la ciencia. Primeramente fue invitado por la universidad de Salzburgo para que diese una conferencia.

A continuación, Lorentz, uno de los científicos más reconocidos, le rogó que hablara en la universidad de Leyden. Einstein siempre recordó con emoción y ternura esta estancia en Leyden, sentado ante Lorentz «como un alumno ante su profesor».

EXPERIMENTOS MENTALES: Einstein desarrolló  un método para pensar de manera lógica en una idea científica, que consistía en seguir paso a paso las etapas de un experimento imaginario. De aquí salieron sus famosos “experimentos mentales”, que le fueron tan útiles cuando más tarde desarrolló sus teorías. Su primer experimento sembró la semilla que se convertiría en la teoría especial de la relatividad. Einstein quería saber qué ocurriría si pudiera viajar junto a un rayo de luz. ¿Podría ver el frente de la onda luminosa? El joven Einstein comprendió que en este caso la onda desaparecería; no habría oscilaciones.

LA SOCIEDAD OLIMPICA:  Einstein Para incrementar sus ingresos puso un anuncio en el diario para ofrecer sus servicios como tutor de matemáticas y física.

Dos personas respondieron: Maurice Solovine y Conrad Habicht. Solovine estudiaba filosofía y física en la Universidad de Berna. Habicht era un viejo amigo de Einstein que había estudiado física y matemáticas, y por entonces preparaba su doctorado en matemáticas en la Universidad de Berna.

SOCIEDAD olimpia

Einstein no les dictaba clases. En cambio, los tres discutían; Solovine y Habicht hacían preguntas que Einstein respondía y explicaba. Hablaban además de libros de filosofía y física.

Se volvieron muy amigos; intercambiaban opiniones mientras caminaban hasta una aldea vecina, escalaban una montaña o iban de paseo a un lago. Resolvieron bautizar su grupo con el nombre de “Academia Olímpica”, en parte en broma, pero además porque se daban cuenta de que aprendían en sus discusiones más de lo que nunca habían aprendido en las clases formales.

Las discusiones con sus dos amigos ayudaron a Einstein a pensar. Solovine y Habicht (al igual que otros amigos de Einstein) eran cajas de resonancia de las ideas que estaba desarrollando.

Las reuniones de la Academia Olímpica continuaron incluso después de la boda de Einstein con Mileva Maric. Mileva participaba pero, según Solovine, no era muy activa y nunca los acompañó cuando las discusiones tenían lugar al aire libre.

eisntein amante de la musica

La Academia Olímpica sobrevivió unos cuantos años, hasta que Soloviney Habicht aceptaron ofertas detrabajo. Pero su amistad con Einstein duró toda la vida.

1905: EL MILAGRO DE EISNTEIN: En 1905, que ahora se conoce como su año milagroso, Einstein tenía 26 años y trabajaba como experto técnico en la Oficina Federal Suiza de Patentes; llevaba dos años casado con Mileva Maric y tenía un niño de un año. En sus horas libres investigaba en física.

Einstein hizo su trabajo científico en la casa o en la biblioteca de la oficina de patentes, no en una universidad o en un laboratorio de investigación. Era lo que llamaríamos hoy un científico aficionado.

Pero ese año publicó cinco artículos, tres de los cuales iniciaron las dos revoluciones más importantes en la física desde que Newton formulara su ley de la gravitación universal. Con uno de los otros dos obtuvo su doctorado. Además, recibió después el premio Nobel de física por uno de estos artículos.

1. 17 de marzo: “Sobre un punto de vista heurístico en relación con la producción y transformación de la luz”. Este artículo sentó las bases de la teoría cuántica con la introducción del concepto de cuantos de energía, o fotones.

2. 30 de abril: “Nueva determinación de las dimensiones moleculares”. Ésta fue la disertación de Einstein para el doctorado, que la Universidad de Zurich aceptó en julio. Aunque su contenido no era revolucionario, este artículo ayudó a establecer la existencia de las moléculas.

3. 11 de mayo: “Sobre el movimiento de pequeñas partículas suspendidas en un líquido estacionario”. Este artículo no sólo explicaba el movimiento en zigzag de una mota en un líquido (llamado movimiento brownianó), que había intrigado a los científicos durante mucho tiempo; demostró también la existencia de las moléculas.

4. 30 de junio: “Sobre la electrodinámica de los cuerpos en movimiento”. Éste fue el primer artículo de Einstein sobre la teoría de la relatividad.

5. 27 de septiembre: “¿Depende la inercia de un objeto de su contenido de energía?” Este segundo artículo sobre la teoría de la relatividad contenia la famosa fórmula: E=mc²

Después de estas primeras conferencias científicas, la universidad de Zurich le ofreció una cátedra, que dudó en aceptar, hasta que las necesidades económicas le decidieron.

La docencia queda muy al margen de sus intereses reales. Einstein estaba sumido en un trabajo creador.

Tras la publicación de sus Anales de física, una serie de artículos empiezan a profundizar la brecha que había abierto en la física tradicional. Su reputación mundial crece día a día.

max planck

Max Planck propone trabajo a Einstein en Berlín

Al poco tiempo de residir en Zurich, recibió la visita de Max Planck y Walter Nernst, quienes le propucieron de parte del emperador Guillermo II, una cátedra sin la obligación de enseñar en la Universidad de Berlín, propuesta que no acpetó.

Einstein partió a Alemania poco menos de un año antes del primer gran conflicto mundial, abandonando a Mileva y a sus dos hijos; había terminado una etapa.

En 1919 en Berlín se instaló en casa de un tío. Allí conoció a Elsa, una prima que había prácticamente olvidado. Ambos, en trance de divorcio, cuando obtuvieron la separación contrajeron matrimonio. Einstein había dejado a sus dos hijos y, en este nuevo compromiso, aceptó las dos hijas de Elsa.

elsa y eisntein

Elsa y Albert Einstein

1916: TEORIA GENERAL DE LA RELATIVIDAD: La teoría especial de la relatividad se aplica cuando nos movemos con velocidad constante en línea recta. Si giramos o aceleramos, la relatividad especial deja de aplicarse. Einstein quería extender su teoría a toda clase de movimientos, acelerados o no.

Esto resultó ser difícil.

Mientras que para desarrollar la teoría especial de la relatividad Einstein trabajó unas cuantas semanas, necesitó cuatro años para extender la teoría a toda clase de movimientos. Por el camino tuvo que aprender un nuevo campo de las matemáticas. Cuando terminó, había producido la que se considera la más hermosa teoría científica de todos los tiempos. Einstein la llamó teoría general de la relatividad.

La relatividad general afirma que un objeto grande, como la Tierra o el Sol, deforma el espacio a su alrededor, y que la gravedad no es más que el resultado de esa deformación. La Tierra por sí misma no nos mantiene firmemente pegados al suelo. Por el contrario, el espacio a su alrededor se deforma y es el declive de esa deformación lo que nos mantiene sobre el suelo.

Como el Sol deforma el espacio que lo rodea, un rayo de luz que pase cerca se curvará. La relatividad general afirma también que un reloj marcha más lentamente en presencia de un campo gravitacional más intenso.

Por ejemplo, un reloj es más lento en el sótano de nuestra casa que en el desván (con todo, la diferencia es tan insignificante que no podríamos medirla ni con el más preciso reloj atómico y el equipo más exacto).

Aun antes de terminarla, Einstein deseaba comprobar su teoría para estar seguro de que iba por el camino correcto. Sabía que el movimiento del planeta Mercurio no había sido explicado por completo y que los astrónomos andaban intrigados con el problema.

Einstein empleó su teoría para calcular la órbita correcta de Mercurio, y explicó que la pequeña discrepancia con las observaciones era el resultado de la deformación del espacio alrededor del Sol.

Una vez publicada la teoría el astrónomo inglés Arthur Eddington organizó una expedición a África para medir la curvatura de la luz de una estrella durante un eclipse total de Sol (única oportunidad en que las estrellas y el Sol son visibles simultáneamente).

El resultado de las medidas confirmó la predicción de Einstein. Tal comprobación estremeció al mundo, y Einstein se convirtió en una celebridad casi de inmediato.

einstein una celebridad

En noviembre de  1922 recibió el Premio Nobel de Física; ello le decidió a hacer un viaje a París con el propósito de encontrar a sus amigos, entre los que se contaban Marie Curie, Paul Painlevé y, de un modo especial, Paul Langevin.

También en 1922 Einstein termina su primer artículo sobre la Teoría del Campo Unificado.

En 1929, cuando Einstein celebraba su cincuenta aniversario, la figura de Hitler empezaba a cobrar un vigor siniestro. Ante el nazismo instaurado, Einstein reaccionó presentando la dimisión de la Academia de Ciencias de Prusia y solicitó la nacionalización belga, pero mas tarde se trasladó a Princeton (EE.UU).

En 1933 los nazis toman el poder en Alemania

Einstein no ganó el premio Nobel por su teoría de la relatividad, que completó en 1921. No obstante, el comité del Nobel pensó que la relatividad era todavía demasiado extraña y polémica. El comité temía que la relatividad pudiera considerarse más tarde incorrecta, y no deseaba equivocarse. Entonces decidieron que entre todos los trabajos realizados por Einstein hasta 1921, su primer artículo de 1905, que contenía la idea del cuanto de luz, era merecedor del premio Nobel. En vista de que este artículo condujo con el tiempo a la teoría cuántica, la decisión del comité fue correcta.

En Princeton, en una casa a cincuenta kilómetros de Nueva York, en medio de una soledad que invitaba a la reflexión, Einstein pasó los últimos veinte años de su vida. Su esposa Elsa la acondicionó con sumo cuidado, como en tantas ocasiones había hecho ya.

Pero en 1936 falleció y, desde entonces, Einstein vivió solo, es decir, acompañado de su fiel secretaria, colaboradores íntimos y a temporadas de su hija Margot. Y durante estos años puso a punto su teoría unitaria del campo.

SUS ULTIMOS AÑOS:

1939. Maja, hermana de Einstein, llega a Princeton para vivir con Einstein el resto de sus días.

1939. Einstein firma una carta dirigida al presidente Franklin Delano Roosevelt en la que menciona la posibilidad de construir una bomba atómica y da la voz de alerta sobre sus implicaciones militares.

1940, 1º de octubre. Einstein se convierte en ciudadano estadounidense.
1943, 31 de mayo. Einstein es consultor de grandes explosivos de la marina de Estados Unidos.

1944, 3 de febrero. Una copia de su artículo de 1905 sobre la relatividad especial, escrita a mano por Einstein para la ocasión, es subastada por 6 millones de dólares como contribución al esfuerzo bélico.

1948, 4 de agosto. Mileva muere en Zurich.

1951, junio. Maja, hermana de Einstein, muere en Princeton.

1952, noviembre. Le proponen a Einstein la presidencia de Israel, oferta que rechaza.

1955. En la última carta firmada de su puño y letra, dirigida a Ber-trand Russell, acepta firmar un manifiesto apremiando a todas las naciones a renunciar a las armas nucleares.

1955, 18 de abril. Einstein muere en Princeton a la 1:15 de la madrugada. Su cuerpo es cremado y sus cenizas son esparcidas en un lugar desconocido.

muerte de einstein

https://historiaybiografias.com/linea_divisoria3.jpg

albert einstein informa sobre la energia nuclear

“Cuando me preguntaron que arma podría contrarrestar la energía nuclear, respondí que la unica arma es la paz”

Los Estados Unidos comenzaron a realizar estudios para desarrollar la bomba atómica a raíz de una carta de Albert Einstein al presidente Roosevelt, en la que detallaba que a través de la fisión nuclear se podía generar una bomba de inédito poderío, y a la vez se mostraba preocupado por la posibilidad de que Alemania llegara primero a alcanzar esa tecnología.

Años más tarde, pocos meses antes de que la primera bomba fuera lanzada sobre Hiroshima, volvió a escribir a Roosevelt manifestándole su preocupación dado que tenía información de que Estados Unidos había alcanzado la tecnología nuclear, pero poseía indicios de que los militares del Pentágono pensaban lanzarla, tal como ocurrió, sobre objetivos civiles. Einstein no tuvo respuesta de Roosevelt, quien poco después murió.

Su sucesor, Harry Truman, prominente miembro de la masonería norteamericana (al igual que Roosevelt) no dudó en lanzar dos bombas atómicas sobre ciudades japonesas con el pretexto de acortar la duración de la guerra y salvar vidas.

Una reciente investigación del autor japonés Tsuyoahi Hasegawa demuestra que el real objetivo de lanzar las bombas atómicas no fue salvar vidas sino impedir que Japón se rindiera ante la Unión Soviética y lo hiciera ante los Estados Unidos.

Tras terminar su guerra con Alemania los soviéticos se aprestaban a invadir Japón, y los Estados Unidos consideraban que Japón no debía quedar —ni total ni parcialmente— bajo el área de influencia soviética.

Las bombas de Hiroshima y Nagasaki cumplieron entonces ese objetivo geopolítico que prescindís totalmente de consideraciones humanitarias.

El gobierno japonés tampoco estuvo a la altura de las circunstancias tras las bombas atómicas, dado que sólo accedió a rendirse una vez que le fue asegurado que el emperador Hirohito no sería removido de su cargo, lo que tuvo aún más efecto para terminar la guerra en el Pacifico que las propias bombas atómicas.

Fuente Consultada: Nadie Vió Matrix de Walter Graziano

https://historiaybiografias.com/linea_divisoria3.jpg

Carta De Albert Einstein al Presidente Roosevelt Carta Histórica

Albert Einstein Old Grove Rd. Nassau Point Peconic, Long Island

2 de Agosto de 1939

F. R. Roosevelt President of the United States White House Washington, D.C.

carta de albert einsteinSeñor; Algunos recientes trabajos de E. Fermi y L. Szilard, quienes me han sido comunicados mediante manuscritos, me llevan a esperar, que en el futuro inmediato, el elemento uranio puede ser convertido en una nueva e importante fuente de energía.

Algunos aspectos de la situación que se han producido parecen requerir mucha atención y, si fuera necesario, inmediata acción de parte de la Administración. Por ello creo que es mi deber llevar a su atención los siguientes hechos y recomendaciones.

En el curso de los últimos cuatro meses se ha hecho probable -a través del trabajo de Loiot en Francia así como también de Fermi y Szilard en Estados Unidos- que podría ser posible el iniciar una reacción nuclear en cadena en una

 gran masa de uranio, por medio de la cual se generarían enormes cantidades de potencia y grandes cantidades de nuevos elementos parecidos al uranio. Ahora parece casi seguro que esto podría ser logrado en el futuro inmediato.

Este nuevo fenómeno podría utilizado para la construcción de bombas, y es concebible -pienso que inevitable- que pueden ser construidas bombas de un nuevo tipo extremadamente poderosas.

Una sola bomba de ese tipo, llevada por un barco y explotada en un puerto, podría muy bien destruir el puerto por completo, conjuntamente con el territorio que lo rodea. Sin embargo, tales bombas podrían ser demasiado pesadas para ser transportadas por aire.

Los Estados Unidos tiene muy pocas minas de uranio, con vetas de poco valor y en cantidades moderadas. Hay muy buenas vetas en Canadá y en la ex-Checoslovaquia, mientras que la fuente más importante de uranio está en el Congo Belga.

En vista de esta situación usted podría considerar que es deseable tener algún tipo de contacto permanente entre la Administración y el grupo de físicos que están trabajando en reacciones en cadena en los Estados Unidos.

Una forma posible de lograrlo podría ser comprometer en esta función a una persona de su entera confianza quien podría tal vez servir de manera extra oficial. Sus funciones serían las siguientes:

a) Estar en contacto con el Departamento de Gobierno, manteniéndolos informados de los próximos desarrollos, y hacer recomendaciones para las acciones de Gobierno, poniendo particular atención en los problemas de asegurar el suministro de mineral de uranio para los Estados Unidos.

b) acelerar el trabajo experimental, que en estos momentos se efectúa con los presupuestos limitados de los laboratorios de las universidades, con el suministro de fondos. Si esos fondos fueran necesarios con contactos con personas privadas que estuvieran dispuestas a hacer contribuciones para esta causa, y tal vez obteniendo cooperación de laboratorios industriales que tuvieran el equipo necesario.

Tengo entendido que Alemania actualmente ha detenido la venta de uranio de las minas de Checoslovaquia, las cuales han sido tomadas. Puede pensarse que Alemania ha hecho tan claras acciones, porque el hijo del Sub Secretario de Estado Alemán, von Weizacker, está asignado al Instituto Kaiser Wilheln de Berlín, donde algunos de los trabajos americanos están siendo duplicados.

Su Seguro Servidor, A. Einstein

https://historiaybiografias.com/linea_divisoria3.jpg

La Carta del Padre de Albert Einstein

CARTA DESPERADA DE UN PADRE AFLIGIDO: Luego de graduado, a Einstein le costó cierto tiempo conseguir un empleo, situación que preocupaba al flamante científico. Su padre, percibiendo sin duda su estado de ánimo (Einstein se encontraba entonces con su familia en Milán), sé atrevió a escribir (el 13 de abril de 1901) una carta a Ostwald, un reconocido profesor académico. Estas fueron sus palabras….

Estimado Herr Professor:
Por favor perdone a un padre que es tan atrevido como para dirigirse a usted, estimado Herr Professor, en el interés de su hijo.

Comenzaré por decirle que mi hijo Albert tiene 22 años, que estudió en el Politécnico de Zúrich durante cuatro años, y que pasó sus exámenes para el diploma en matemáticas y física con magníficas notas el verano pasado. Desde entonces ha estado intentando, sin éxito, obtener un puesto de asistente, que le permitiera continuar su educación en física teórica y experimental. Todos aquellos en situación de dar su opinión al respecto elogian sus talentos; en cualquier caso, puedo asegurarle que es extraordinariamente estudioso y diligente y se apega con gran amor a su ciencia.

Mi hijo se halla, por consiguiente, profundamente infeliz con su actual falta de un puesto, y su idea de que ahora se encuentra fuera de órbita hace que se sienta cada día más arrinconado. Además, se siente oprimido por el pensamiento de que es una carga para nosotros, gente de medios modestos.

Como es a usted, altamente respetado Herr Professor, a quien mi hijo parece admirar y respetar más que a cualquier otro investigador de los activos actualmente en la física, es a usted a quien me tomo la libertad de recurrir con la humilde petición de que lea su artículo publicado en el Annalen Physik y que le escriba, si es posible, unas pocas palabras de ánimo, de forma que pueda recobrar su alegría de vivir y trabajar.

Si, además, pudiese procurarle un puesto de assistent para ahora o para el próximo otoño, mi gratitud no conocería límites.
Le pido una vez más que perdone mi imprudencia al escribirle, y también me tomo la libertad de mencionar que mi hijo no sabe nada acerca de este inusual paso.

Por lo que se sabe hasta hoy, la respuesta que obtuvo Hermann Einstein de Ostwald fue la misma que tuvo su hijo: ninguna.

En esta situación, algunos de sus amigos intentaron ayudarle.Michele Angelo Besso (1873-1898), un ingeniero suizo a quien Einstein había conocido en una velada musical celebrada en Zúrich en 1896, y la única persona a quien Einstein agradeció su colaboración en su artículo de la relatividad especial (que no contiene ninguna referencia a otros trabajos), buscó la ayuda de un tío suyo, profesor en Italia.

El 15 de abril de 1901. Einstein tenía buenas noticias que contar a su novia Maric. Por un lado, que el profesor Jakob Rebstein, del Politécnico de Winterthur, le había escrito preguntándole si quería sustituirlo del 15 de mayo al 15 de julio, fechas en las que tenía que cumplir con su servicio militar. «Puedes imaginarte con qué gusto hago esto! Tengo que dar unas 30 horas semanales, entre ellas incluso geometría descriptiva, pero el valiente suabo no se asusta». escribía a Mileva.

Por otra parte, acababa de recibir una carta de su amigo y compañero de estudios Marcel Grossmann (1878-1936), con quien en 1912-1913, siendo ambos profesores en la ETH, aprendió y desarrolló el aparato matemático (la geometríariemanniana) necesario para la relatividad general, en la que éste le comunicaba que probablemente recibiría pronto, con la ayuda del padre de Marcel, un puesto estable en la Oficina de Protección de la Propiedad Intelectual de Berna.

https://historiaybiografias.com/linea_divisoria3.jpg

Fuente Consultadas:
Forjadores del Mundo Tomo III Albert Einstein Editorial Planeta
Einstein y su Teoria de la relatividad Dr. Donald Goldsmith y Robert Libbon
Einstein Para Dummies Carlos I. Calle Editorial Norma
Las Grandes Ideas Que Formaron Nuestro Mundo Peter Moore
El Universo Para Curiosos Nancy Hathawy
Biografías –  Hicieron Historia

Teorias Fisicas Que Fracasaron Errores de la Fisica Erroneas

Teorias Fisicas Que Fracasaron Errores de la Física Erroneas

menu

1-Teoría Geocéntrica del Sistema Solar

2-Teoría de Aristóteles Sobre Los Cuatro Elementos de la Materia

3-Teoría de la Cuatro Humores

4-Teoría del Flogisto

5-Teoría del Eter

6-Teoría de la Caída de los Cuerpos

7-Teoría de la Generación Espontánea

8-Teoría de la Homunculo

PRIMERAS TEORÍAS FALSAS: Platón reconocía que el peso de los cuerpos no es más que el efecto de una fuerza que se ejerce sobre ellos de arriba a abajo, lo que equivale a una forma peculiar de concebir la gravedad.

El autor del Timeo conoce también la capilaridad y refiere algunos experimentos realizados sobre este particular. En cinemática, distingue el movimiento progresivo y el movimiento rotativo, reconoce la ley de conservación del plano de rotación en el movimiento de la peonza, apuntando así hacia la invención del giróscopo.

Hay que insistir también en el hecho de que Platón recomienda repetidas veces la investigación experimental a la que concede una gran importancia.La física de Aristótelesde Estagira (384-322) supone, por el contrario, una regresión bastante perjudicial en el terreno científico.

El Estagirita rechaza formalmente el atomismo y sustituye la explicación cuantitativa de las cosas por una explicación cualitativa particularmente infantil.

Mal matemático, pretende no querer fiarse más que de los datos de los sentidos. y como para él el tacto es el más fundamental de todos, hace dimanar todas las cosas complejas de una simple superposición de lo cálido, de lo frío, de lo seco y de lo húmedo a una hipotética materia prima sin atributo ni cualidad, lo que inevitablemente nos hace pensar en el famoso “cuchillo sin hoja al que le falta el mango” de que habla Rabelais.

Para Aristóteles hay cuerpos pesados y cuerpos ligeros: los primeros tienden hacia abajo y los segundos hacia arriba. Ya no hay ni fuerza centrífuga ni fuerza centrípeta, sino simplemente cualidades contrarias.

Además, Aristóteles ha prestado un lamentable servicio a la física con su introducción de la quintaesencia y del éter que de aquí en adelante encontraremos como punto de partida de buen número de teorías, incluso en nuestros mismos días.

Añadamos que la virtud de la quintaesencia es la de estar animada de un movimiento rotativo que contrasta con los movimientos ascendentes y descendentes de los cuerpos ligeros o pesados y tendremos una idea de toda la cinemática de Aristóteles.

El movimiento, según el Estagirita. se explica metafísicamente mediante el paso de la potencia al acto, concepto cuya claridad no es precisamente deslumbrante. Como contrapartida, la mecánica aristotélica admite, lo mismo que la de Pitágoras y la de Platón, que sólo el contacto puede explicar las acciones de unos cuerpos sobre otros.

Quizá conozca el lector la extraña balística de Aristóteles según la cual toda trayectoria se divide en tres partes. En la primera aparece el movimiento forzado, en la segunda el movimiento mixto y en la tercera el movimiento natural, lo que produce una curva ascendente, una parte mixta horizontal y una curva descendente. Hubo que esperar hasta 1537 después de Jesucristo para ver esta teoría contraria a toda observación refutada por Tartaglia.

La física de Aristóteles perjudicó a la ciencia en el curso de la Edad Media cuando sus conceptos fueron asimilados e impuestos a todo el mundo cristiano por Santo Tomás de Aquino.

Durante los doscientos cincuenta años que siguieron a su muerte, Aristóteles fue ignorado por los grandes físicos del mundo antiguo:Arquímedes. Ctesibios y Herón de Alejandría.

En efecto, estos tres genios fueron más hombres prácticos que soñadores, y puede decirse que el primero y mayor de todos ellos ha consagrado definitivamente la ruptura entre la metafísica y la física.