Ecuación de 2do. Grado

Concepto de Probabilidad Matematica Resumen y Ejemplos Simples

Resumen Concepto de Probabilidad Matemática:
Ejemplos Simples Para Principiantes

Los resultados de las acciones y acontecimientos no son siempre absolutamente predecibles.

A menudo sabemos que sólo existe un espectro limitado de posibles resultados, pero no sabemos con certidumbre el resultado que cabe prever.

La teoría de la probabilidad nos permite describir con rigor matemático la posibilidad de que una acción o acontecimiento tenga un resultado determinado.

Es posible, no obstante, que nuestra elección sea errónea, pero al menos será una elección justificable.

Probabilidad y frecuencia:

Cuando lanzamos una moneda al aire o echamos un dado, no podemos predecir la cara que caerá hacia arriba, siendo éste, al fin y al cabo, el motivo por el cual se lanza una moneda y se echan los dados.

Suponiendo que aceptamos la imparcialidad de la moneda y de la forma de lanzarla, sabemos que es tan probable que salga cara como cruz, y que no existe ningún otro resultado posible.

Así también, con un dado no trucado, es igualmente probable que caiga con cualquiera de los números, de 1 a 6, de cara hacia arriba, y no existe ningún otro resultado posible.

El Caso de los Dados

Describimos estos ejemplos diciendo que todos los posibles resultados son equiprobables, y que la probabilidad a priori (es decir, la probabilidad teórica) de que una moneda salga cara es de 1 de 2 o 1/2, y la de sacar un 6 con un solo dado es de 1 de 6 o 1/6.

Por otro lado, la probabilidad empírica (que suele denominarse probabilidad a posteriori) se basa en la observación y el experimento.

En este caso, la probabilidad de un resultado determinado se calcula a partir de la proporción de veces en que se ha observado antes bajo las mismas condiciones, es decir, su frecuencia relativa.

Por consiguiente, si se lanza la moneda 10 veces y ésta cae en cara 3 veces, la probabilidad empírica de que uno de estos lanzamientos salga cara es de 3/10.

dados probabilidad matematica

La escala de probabilidades:

Cuando un resultado es seguro, ocurre todas las veces: 1 de 1, 2 de 2, etc.

Expresado como fracción, decimos que la probabilidad es de 1/1, es decir, uno.

Cuando un resultado es imposible, no ocurre en ninguna ocasión en cualquier cantidad de ensayos, por lo que decimos que la probabilidad es de cero.

Por ejemplo, cuando se echa un dado, la probabilidad de sacar un número mayor que 6 es de cero, y la probabilidad de sacar un número entre 1 y 6 es de uno.

Las probabilidades que yacen entre la certeza y la imposibilidad se expresan en fracciones.

Así, por ejemplo, si sabemos que las 6 caras del dado son equiprobables, y que la probabilidad de sacar cualquiera de ellas es de 1, la probabilidad de cada una debe ser de 1/6.

Es más, si consideramos únicamente dos posibles resultados, un número par o impar, la probabilidad de cada uno debe ser de 1/2.

El hecho de que existen tres resultados impares, cada cual con una probabilidad de 1/6, y que 1/6 + 1/6 + 1/6 = 1/2, demuestra, muy sencillamente, la ley del cálculo: se puede sumar las probabilidades individuales de los distintos resultados posibles en un ensayo determinado para conseguir la probabilidad combinada.

Sobre todo en el juego y las apuestas vemos que se utilizan las probabilidades como escala para medir el azar.

La proporción de probabilidades, como se conoce más formalmente, significa la proporción de posibilidades favorables frente a las no favorables, y constituye otra forma de expresar la probabilidad.

Como hemos visto, la probabilidad de sacar, digamos, un 4 con un dado es de 1/6. Por consiguiente, la probabilidad de no sacar un 4 es de 5/6.

El proporción de probabilidades se expresa, por tanto, de 1 a 5 para sacar un 4 (o de 5 a 1 en contra de sacar un 4).

juegos y probabilidad

Los juegos de cartas ofrecen muchas más combinaciones de posibilidades que lanzar una moneda o echar los dados.

La posibilidades son impresionantes. Por ejemplo, las posibilidades en contra de repartir 13 cartas de un solo palo son de 158.753.389.899 a 1, mientras que las posibilidades de que un jugador determinado reciba una «mano perfecta» de 13 picas son de 653.013.559.599 a 1.

La posibilidades en contra de que cuatro jugadores reciban un palo completo («una mano perfecta») son superiores a 2x 10 elevado a 27 a 1.

La ley de los grandes números:

Supongamos que lanzamos una moneda 10 veces y que el resultado es de sólo 3 caras. La probabilidad de que salga cara es de 1/2, así que, ¿por que no sacamos 5 caras?.

Probamos un total de 100 lanzamientos de la moneda y el resultado será, digamos, de 40 caras, siendo las últimas 6 todas cara.

Un jugador apostaría por la posibilidad de que el lanzamiento número 101 salga cruz, porque antes ha salido más veces cruz que cara. Otro jugador apostaría por cara, porque parece haber una «racha de caras», que estaría en consonancia con la deno minada «ley de promedios».

Sin embargo, sabemos que la probabilidad de cara o cruz en cualquier lanzamiento es de 1/2, y que una moneda es incapaz de recordar, por lo que no puede verse influida por lo que ha sucedido con anterioridad.

Ambos apostadores se apoyan en la probabilidad empírica cuando lo que importa es la probabilidad teórica. Ambos, por tanto, apuestan en base a la esperanza.

No existe una «ley de promedios».

La probabilidad experimental y teórica sólo se combinan a través de la ley de grandes números, que afirma que a medida que aumenta el número de ensayos, la probabilidad empírica observada se acerca catín vez más al valor teórico.

Por consiguiente, en eslc ejemplo, sólo significa que, a muy largo plazo, la frecuencia relativa se establece en torno al 1/2.

Leyes de probabilidad:

Si deseamos encontrar la probabilidad combinada de dos ensayos independientes, utilizamos la ley de la multiplicación.

Cuando echamos un par de dados, consideramos que se trata de dos ensayos independientes, porque el modo en que cae un dado no afecta al otro.

Independientemente de lo que indique el primer dado, el segundo mostrará cualquiera de sus seis caras y el primero caerá de seis maneras.

Por lo tanto, hay 6 x 6 = 36 resultados posibles para el par ordenado. Puesto que son equiprobables, la probabilidad de un resultado determinado, digamos que un 1 con el primer dado y un 4 con el segundo, es de 1/36, que es 1/6 x 1/6.

Es decir, multiplicamos las probabilidades individuales para conseguir la probabilidad de un resultado ordenado determinado utilizando los dos dados.

Puesto que hay seis formas de sacar un doble, la probabilidad de que salga el mismo número con los dos dados es de 6/36 = 1/6, mientras que la probabilidad de que salgan números diferentes es de 1 – 1/6 = 5/6.

Al echar un tercer dado, existen sólo cuatro caras disponibles que difieren de los de los dos primeros dados, de manera que la probabilidad de que esto dé lugar a un tercer número diferente es de 4/6.

Así, la probabilidad de sacar tres números diferentes con tres dados es de 5/6 x 4/6. Al echar seis dados, la probabilidad de un resultado de seis números diferentes es de 5/6 x 4/6 x 3/6 x 2/6 x 1/6, que equivale a 5/324, o aproximadamente 0,015. Así, sólo cabe esperar este resultado una o dos veces por cada cien ensayos.

Sin embargo, si pretendemos especificar el orden de antemano (digamos, 1,2,3,4,5,6 o 6,4,2,5,3,1, por ejemplo), la probabilidad es de 1/6 para el primer lanzamiento, multiplicado por 1/6 para el segundo lanzamiento, y así sucesivamente.

Con los seis dados, la probabilidad será, por lo tanto, de (1/6)6, que equivale a 1/46656, o aproximadamente 0,000021.

Por lo que cabe esperar este resultado sólo unas dos veces por cada 100.000 ensayos.

Es muy importante definir correctamente el problema antes de aplicar la ley del cálculo o de la multiplicación. De hecho, muchos problemas requieren ambas leyes.

Supongamos, por ejemplo, que deseamos sacar un total de 8 con dos dados. Podría salir con un 6 y un 2, con un 5 y un 3, o con un 4 y un 4. Pero existen otras dos posibilidades: un 2 y un 6, y un 3 y un 5.

Es decir, hay dos formas de sacar un par de números distintos, de manera que la probabilidad de que uno de los dados muestre un 6 y el otro un 2 es de 2/36.

Así también, para un 5 y 3.

Pero sólo hay una forma de sacar un doble, de manera que la probabilidad de un 4 doble es sólo de 1/36. La probabilidad de un resultado de un total de 8 es la suma de estas probabilidades, es decir, de 5/36.

La toma de decisiones:

A menudo nos vemos obligados a tomar decisiones basadas en unos conocimientos mínimos de las circunstancias probables.

Un ejemplo sería un médico que tiene que elegir entre distintos tratamientos para un paciente apoyándose en pruebas experimentales relativamente escasas sobre su éxito.

Otro ejemplo sería los directivos de una empresa que tienen que elegir entre distintas estrategias publicitarias basados en las afirmaciones de la competencia sobre la eficacia de los diferentes medios.

En estos casos, los responsables de la toma de decisiones necesitan formas de medir las estrategias enfrentadas.

Una forma de hacerlo implica el cálculo del valor previsto.

Una forma sencilla de explicarlo es tomando la tabla de una liga de hockey o de fútbol, en la que se otorga 2 puntos para una victoria, 1 punto para un empate y 0 para una derrota.

Supongamos que un equipo determinado de la liga decide, al principio de la temporada, que, basándose en todas las pruebas disponibles, la probabilidad de ganar un partido cualquiera es de 1/4 y de empatar es de 1/3. Por lo que la probabilidad de que pierda es de 1 -1/4 -1/3 = 5/12.

En una serie de 12 partidos, el equipo tendría previsto ganar 3, empatar 4 y perder 5.

Los puntos que tendría previsto conseguir en 12 partidos serían (3 x 2) + (4 x 1) + (5 x 0) = 10 puntos.

Por consiguiente, el promedio de puntos que cabe esperar en cada partido es de 10/12. Este es el valor previsto.

Calculando un valor previsto para cada tipo de acción a nuestro alcance, podemos elegir el que tiene el mejor resultado probable.

Sobre la base de un conocimiento parcial, tenemos la posibilidad de tomar una decisión racional, aunque no sea la que ofrece la mayor probabilidad (ver ejemplo en el recuadro).

COINCIDENCIA DE CUMPLEAÑOS:

Supongamos que buscamos un par de personas que tengan el mismo cumpleaños.

¿Cuál es el número de personas elegidas al azar, para el que exista una mayor posabilidad del que existan dos personas con el mismo cumpleaños?.

Ya que teniendo en cuenta los años bisiestos, son 366 cumpleaños posibles, por lo que mucha gente se aventuraría a pensar que es 183, pero en realidad la respuesta es 23.

probabilidad matematica de cumpleaños

La posibilidad que la segunda persona no tenga la coincidencia de cumpleaños con la primera es 365/366.

La posibilidad que la tercera persona no tenga coincidencia es ahora:364/366, y por lo tanto la posibilidad que tres personas no compartan la coincidencia es igual a:365/366 x364/366. Si ampliamos para n personas, las posibilidad que todos tenga cumpleaños  distintos son, por tanto, de 365/366 x 364/366 x 363/366 x ….hasta n – 1 términos.

Hemos de saber cuántos términos de esta secuencia necesitamos multiplicar antes de que su producto sea menos de 1/2.

Es decir, antes de que haya un mínimo de posibilidades de que este número de personas no incluya a dos con el mismo cumpleaños.

Si hacemos el cálculo, descubrimos que la probabilidad de que 22 personas tengan distintos cumpleaños es de 0,5252, y para 23 personas es de 0,494.

Por lo tanto, 23 es el número más bajo de personas para las que existe una mayor posibilidad de al menos un cumpleaños compartido. Por otro lado, necesitamos 367 para estar seguros de que dos de ellos tienen el mismo cumpleaños.

DECISIONES RACIONALES:

Cuando se me estropea el coche, el mecánico me informa de que la causa se encuentra bien en la caja de cambios bien en el mecanismo de transmisión, con probabilidades de 3 a 2 de que el problema esté en la caja de cambios.

auto chocado ejemplo de probabilidad matematica

El coste de reparar la caja de cambios será de 200 dólares y el mecanismo de transmisión de 150 dólares, incluyendo en ambos casos los gastos de desmontar y volver a montar.

Sin embargo, si el componente que primero se examina no está dañado, el coste de desmontar y volver a montar es de 60 dólares para la caja de cambios y 30 dólares para el mecanismo de transmisión, además del coste de la reparación. ¿Por dónde habría que empezar?

(3/5 x 200 $) + (2/5 x 210 $) = 204 $

Supongamos, no obstante, que deciden primero examinar el mecanismo de transmisión. A la larga, no se detectaría avería alguna en 3 veces de 5, lo que significaría un coste de 30 $ por inspeccionar la transmisión, además de 200 $ para reparar la caja de cambios.

En las 2 veces de 5 en que la avería se detecta efectivamente en el mecanismo de transmisión, el coste subirá a sólo a 150 $. Así, el coste previsto para esta estrategia es de:

(3/5 x 230 $) + (2/5 x 150 $) = 198 $

Por consiguiente, sería mejor que el mecánico revisara primero el mecanismo de transmisión, aunque es más probable que la avería se encuentre en la caja de cambios.

Esta estrategia tiene el coste previsto más bajo.

Claro que no me servirá de consuelo si la avería está en la caja de cambios y tengo que pagar 230 $.

El mecánico, por su parte, podría fijar una tarifa fija general de 230 $ por el trabajo.

Para éste, sería preferible examinar primero el mecanismo de transmisión, ya que sobre toda una serie de reparaciones, conseguiría una ganancia media de 32 $, mientras que si primero investigara la causa más probable, su ganancia media sería de sólo 26 $.

SOBRE LA ESTADISTICA: LA LEY DE LOS GRANDES NUMEROS

Hasta mediados del siglo XIX el término estadística se utilizó para denominarla infonnación sobre los asuntos propios del Estado, entendido éste en su doble sentido territorial y político; dicha información era, en su mayor parte, numérica y, al crecer su volumen y su alcance con el desarrollo económico y social de los Estados, empezó a recogerse en forma de cuadros y gráficos.

Sin embargo, que un estudio de este tipo haya acabado por formar parte de las matemáticas no se debe solamente al hecho de que implique, el uso de cálculos y de representaciones gráficas; en realidad, depende del hecho de que muchos fenómenos sociales y económicos, aun siendo variables, presentan una cierta regularidad en su variabilidad que hace posible enunciar leyes estadísticas relativas a ellos.

Esta circunstancia deriva de la llamada ley de los grandes números: la frecuencia con que se observan determinados sucesos, o la proporción en que un cierto atribulo está presente entre los elementos de un conjunto, es tanto más estable cuanto mayores el número de observaciones realizadas o de elementos considerados.

Ello tiene como consecuencia que muchas predicciones sociológicas y económicas puedan formularse sobre una base estrictamente dependiente del cálculo de probabilidades, con independencia de las explicaciones que la sociología o la economía puedan proporcionar de los fenómenos a que dichas predicciones se refieran.

Es el caso, por ejemplo, de los índices de natalidad y mortalidad en una zona concreta y durante un período determinado; o de la tasa de desempleo, susceptible de ser determinada a partir de estudios realizados sobre una muestra (y teniendo en cuenta diversos índices económicos).

Fuente Consultada:
Enciclopedia Temática Guinnes – Capitulo Nº72 – La Naturaleza del Universo – La Probabilidad – Editorial La Nación

Enlace Externo: Cálculo de Probabilidades

Calculo Superior,Limite,Derivada,Integrales Online Ecuaciones

 CALCULO SUPERIOR ONLINE

RESOLVER EXPRESIONES ALGEBRAICAS
Evaluar Una ExpresiónExpandir Una ExpresiónResolver Una Ecuación
CALCULO SUPERIOR
Hallar Un LimiteDerivarIntegrarSuma de Riemann
GRAFICAR FUNCIONES MATEMÁTICAS
Gráfica Paramétrica 2DGrafica Normal 2DGráfica 3D

 Sistema de Ecuaciones

Geometría Analítica Online

Descargar Software Gratuitos Para Ingeniería Civil

Ponte esta herramienta de cálculo, con capacidad de conversión entre diferentes unidades de medida, bases numéricas, funciones científicas, fórmulas, estadísticas, matrices, números primos, operaciones con fechas, fracciones, números complejos, polinomios, etc.

Formula del Vértice de una Parabola Cuadrática Ejemplo Online

Fórmula del Vértice de una Parábola Cuadrática
Ejemplo Online

La función general de segundo grado y = ax² + bx+c  representa gráficamente en el plano cartesiano una parábola.

Asignando valores reales a la variable independiente x para obtener los valores de la variable dependiente y, podemos graficar sobre un par de ejes coordenados la curca parabólica.

Por Ejemplo:
—    Elaborar el gráfico de la función:      y  =   x² — 2 x — 2.

En donde según la fórmula general, los coefecientes son: a=1, b=-2 , c=-2

Se elabora la siguiente tabla:

x-3-2-10123
y1361-2-3-21

LLevando estos puntos a plano cartesiano, se tiene la siguiente curva:

grafica parábola

Se puede graficar desde aquí

Para calcular el vértice de cualquier parabola, usamos la siguiente fórmula:

formula vertice parabola cuadrática

Fórmula General Vértice Parabola Cuadrática

Para el caso que venimos estudiando es:

Coordenada X=(-(-2)/2.1)=1

Coordenada Y=(-(-2)²/4.1)-2)=-3

Coordenadas del vértice es: V(1,-3)


Software Gratuito Para Ingeniería Civil Esfuerzos en Estructuras

Software Gratuito Para Ingeniería Civil

ACLARACIÓN: SON TODOS EXCELENTES SOFTWARES Y PROBADOS,
LAMENTABLEMENTE
FUNCIONAN CON 32 BITS, POR LO QUE SE DEBER UTILIZAR VIRTUAL-BOX, QUE CREA UNA PC VIRTUAL CON EL SISTEMA OPERATIVO QUE TE INTERESA (Más Abajo se puede descargar)

LISTADO DE SOFTWARE IDEAL PARA LOS ESTUDIANTES DE INGENIERIA

ingenieria civilingenieria civilingenieria civil
Método de Cross para
estructuras aporticadas de n pisos
por n tramos.(Para n>1)
Software Cálculo de esfuerzos en armaduras metálicasisostáticas e hiperestáticas (además podrás determinarcorrimientos de los nudos)Software Para Calculo de Esfuerzos en arcos biarticulados con un cálculo de una estructura parabólica.
ingenieria civilingenieria civilingenieria civil
Sumatoria de fuerzas concurrentes.
(para estudiantes principiantes)
Software Para Resolver Sistema de ecuaciones
lineales para n ecuaciones con n incógnitas.
Software Para Calcular de centro de gravedad y momentosde inercia de secciones formadas con lacombinación de figuras planas.
ingenieria civilingenieria civilingenieria civil
Software Para Calcular de centro de gravedad ymomentos de inercia de secciones formadas con la combinación de figuras planas.Software Para La Determinación de centro de gravedad y momentos de inercia de secciones formadas con perfiles doble T ,Z, U y otros. Software para graficar funciones matemáticas:
debes escribir la función que te interesa estudiar y listo. Muy bueno y completo.
ingenieria civil ingenieria civilingenieria civil
Software para calcular tubos de hormigón armado.
(ATENCIÓN: Fuera de servicio)
Conversor de Medidas De Longitud,
Superficie, Presión, Energía, Temperatura, Tiempo, Potencia, Ángulos, Iluminación, Monedas, etc.
Espectacular Software
Software Para Que Al Dosificar Hormigones y
Morteros Determines Los Materiales
Y El Costo Por m3-Basado en el libro
El Calculista de S. Goldenhorn
SOFTWARE: Método de Cross Para Vigas Continuas
Hallar Online Los
Esfuerzos en un Pórtico
30 Tablas Online Para Determinar Áreas, Momentos de Inercia, Módulos Resistente y Radio de Giro Para Piezas de Sección Plana Hallar Online Los
Esfuerzos en una Viga Simplemente Apoyada (M.F. y E.C.)
ACCASOFTWARE: DESCARGA DE TRES SOFTWARE PARA INGENIERÍA CIVIL
software 1software 2 software 3
Descargar Descargar Descargar
https://www.accasoftware.com/es/descargas
Para Mas Información ver este video

Tabla de Perfiles
Laminados

También en: PDF

Importante: Todos estos programas de deben colocar adentro de una misma carpeta acompañados por otros tres archivos (del Visual Basic) que son: threed.vbx, grid.vbx y vbrun300.dlll. A estos archivos los debes bajar picando en el texto en blanco acá arriba.
Luego te diriges al software que te interesa bajar y pica sobre su portada.

Tablas de Esfuerzos En Vigas Isostáticas. Reacciones
en Apoyos, Mto. Flector
y Esfuerzo de Corte

ATENCIÓN: Recuerda Bajar Los 3 Archivos Indispensables Para La Corrida de Estos Últimos Programas

Ideal Para Estudiantes:
Decenas de Problemas Resueltos de Resistencia de Materiales-Estructuras Metálicas y Hormigón Armado

CalcMAT

Potente herramienta de cálculo, con capacidad de conversión entre diferentes unidades de medida, bases numéricas, funciones científicas, fórmulas, estadísticas, matrices, números primos, operaciones con fechas, fracciones, números complejos, polinomios, etc.

  • Armado rápido de pilares y vigas a partir de la sección y el área de acero.
  • Reparto de cargas entre pilotes.
  • Cálculo de zapatas rígidas.
  • Diseño de cables de pretensado con salida a Excel y Autocad del trazado. Incluye manual y ejemplo.

CalcMat
Ver Las Características Del Software

PARA ESTUDIANTES
Descargar Un Excelente Software Para Determinar Los Esfuerzos en Diversas Piezas Cargadas

ingenieria civil

Una Maravillosa Herramienta Online Para Hacer Todo Tipo de Cálculos Matemáticos Desde Algebra Básica hasta Cálculo Superior Ideal Para Todos Los Niveles De Estudio

ingenieria civil

Sistema de Ecuaciones Lineales Online Para Resolver Tus Problemas De Cálculo

ingenieria civil

Tabla de Constantes Físicas Tabla de Constantes Físicas

Conversión de Unidades Online

Curso de Hormigón Armado

Medidas de Perfiles Online

CREAR UNA PC VIRTUAL PARA CORRER SOFTWARE DE 32 BITS

//historiaybiografias.com/archivos_varios5/virtual_box.jpg

Haz «clic» para descargar VirtualBox en forma gratuita, luego se instala y configura como una máquina virtual

Origen de la Geometría Historia y Sus Matematicos Curso Basico

Origen de la Geometría-Historia y Sus Matematicos Curso Basico

GEOMETRÍA. Parte de las matemáticas que trata de las propiedades y medida de la extensión.

En su origen, la geometría tuvo una finalidad eminentemente práctica, como lo revela la etimología griega (de geo, tierra; metrein, medir).

La necesidad de medir la tierra para repartir los campos con exactitud dio nacimiento a esta ciencia.

El término latino agrimensura tiene la misma significación, pero el desarrollo posterior de la geometría, como ciencia teórica, obligó a reservar el concepto de agrimensura a la técnica que se ocupa de la medición de los terrenos.

Los más antiguos estudios de geometría fueron hechos por los antiguos caldeos y egipcios.

Los primeros, aunque no sistematizaron sus estudios, obtuvieron algunos resultados correctos, y los segundos hicieron grandes, progresos, como lo demuestra la construcción de las pirámides consideradas hoy como una de las maravillas del mundo.

Los egipcios fueron los primeros que usaron la geometría para medir los terrenos.

El Nilo, río que atraviesa su territorio, se desborda todos los años provocando grandes inundacio nes, que son aprovechadas en la fertilización de los campos.

Los egipcios se veían obligados después de cada inundación a efectuar mediciones para delimitar los campos y terrenos.

Era muy importante para ellos marcar las esquinas de los terrenos en ángulo recto y conocieron prácticamente algunas de las relaciones entre los lados de los triángulos rectángulos.

La verdadera fundación de la geometría como ciencia independiente, sobre bases rigurosas, corresponde a los griegos Pitágoras, Euclides, Arquímedes y Apolonio.

Una imagen de una obra de Durero explicando la proyección geométrica, aplicada en los dibujos y obras de arte

Pitágoras, nacido en el siglo VI antes de Jesucristo, de extraordinario talento matemático, descubrió la relación existente entre los lados de un triángulo rectángulo cualquiera, aunque el teorema que lleva su nombre ya era conocido de los chinos y egipcios.

Dicho teorema se enuncia así: «En un triángulo rectángulo, el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los otros dos lados».

Euclides escribió un libro llamado Elementos, en el que da las bases de un sistema geométrico que se mantuvo en vigencia durante veinte siglos y que todavía constituye el fundamento de la geometría en la enseñanza media.

Partiendo de ciertas proposiciones indemostrables, llamadas postulados, Euclides funda todas las demostraciones posteriores.

De todos los postulados, el más famoso es el V, llamado de las paralelas, pues todo su sistema descansa sobre la evidencia del mismo.

Dicho postulado ha sido la preocupación de todos los matemáticos, quienes en un tiempo, negando que pudiese ser aceptado sin demostración, lo discutieron,ya en el sentido de negarlo, ya en el de probarlo, hasta que la labor crítica del siglo XIX estableció que era indemostrable.

Otro pilar de la matemática griega, Arquímedes, de la ciudad de Siracusa, muerto por los soldados romanos cuando ocuparon esta ciudad en el 212 antes de Jesucristo, planteó nuevos problemas, determinó, con mayor exactitud que la obtenida hasta entonces, la relación existente entre la circunferencia y el diámetro, estableció el volumen de los cuerpos limitados por superficies curvas, inventó la espiral que lleva su nombre y sentó las bases del cálculo integral.

Arquímedes fue un verdadero genio de la matemática; famoso además por la cantidad de aparatos que inventó para la defensa de Siracusa.

Fue muerto por un soldado al no recibir respuesta a preguntas que éste le dirigía, por estar absorto en sus meditaciones.

El general romano Marcelo, que había dado orden de respetar las vidas de los siracusanos, sintió profundamente la pérdida del gran geómetra y ordenó le diesen digna sepultura e hizo grabar sobre su tumba una esfera inscrita en un cilindro, en memoria de uno de sus más famosos descubrimientos.

El cuarto gran geómetra griego es Apolonio de Pérgamo, que floreció a fines del siglo n antes de Jesucristo.

No sistematizó los conocimientos anteriores a él, como Euclides, ni abarcó tanta diversidad de temas como Arquímedes, sino que orientó sus esfuerzos en una dirección única, dedicándose exclusivamente al estudio de las secciones cónicas, con tal profundidad, que sólo en tiempos muy recientes se ha podido añadir algo a lo descubierto por él.

Debían pasar más de 1900 años para que la geometría tomara otro gran impulso. Descartes, filósofo y matemático francés del siglo XVII, estudia las figuras geométricas refiriéndolas a un par de coordenadas.

Herramientas basicas para estudiar geometría en el plano: regla, escuadra y compás.

La geometría analítica desarrollada por Descartes es, en síntesis, la reducción de la geometría al álgebra; por ejemplo, la posición de un lugar cualquiera de la superficie terrestre queda determinada por su longitud y su latitud, o sea, por su distancia al Ecuador y a un meridiano.

Análogamente se fija la posición de un punto en un plano por sus distancias a un par de ejes perpendiculares entre sí, llamados eje de las abscisas el horizontal, y de las ordenada el vertical.

En la geometría analítica los puntos quedan determinados en el plano por una pareja de números —sus coordenadas,— y las figuras geométricas se pueden estudiar por medio de ecuaciones.

El siglo XVIII señala el nacimiento de la geometría descriptiva con Monge, matemático francés que perfecciona ensayos anteriores de otros geómetras y da los fundamentos básicos de esta disciplina.

La geometría descriptiva es la representación, sobre superficies planas, de cuerpos que ocupan un lugar en e) espacio; esta representación se efectúa mediante operaciones gráficas regidas por leyes que Monge dedujo.

Dos grandes matemáticos del siglo XIX, el ruso Lobachewski y el húngaro Bolyai, trabajando independientemente, publicaron al mismo tiempo el resultado de sus trabajos de investigación, en los que llegan a las mismas conclusiones.

Estos resultados fueron un acontecimiento de importancia extraordinaria en la historia de la geometría, pues dieron origen a las geometrías no euclidianas, que prescinden del postulado V y llegan a construir un encadenamiento lógico tan riguroso como el del genio griego.

Gracias a ellos fue posible resolver problemas desconocidos para Euclides.

La aparición de las geometrías no euclidianas. dio como resultado un enorme progreso no sólo en la matemática, sino también en la física. E

n ellas se basan algunas de las conclusiones de la teoría de la relatividad de Einstein.

Algunos términos usados en geometría. La geometría trabaja con hipótesis, definiciones y teoremas.

No podemos iniciar un razonamiento en tanto no tengamos ciertas verdades sobre las cuales basarlo; Euclides llamó axiomas a ideas o razones tan evidentes que no necesitan demostración, tales como «una cosa es igual a sí misma»; y postulados, a verdades no tan evidentes como los axiomas, pero que también se aceptan sin demostrar («por un punto pasan infinitas rectas», y «entre dos puntos puede trazarse una sola recta«).

Las hipótesis son proposiciones que se pueden considerar como verdades que es necesario demostrar: la hipótesis puede ser falsa y entonces nos lleva a falsas conclusiones.

La hipótesis y las consecuencias que se derivan de ella perduran hasta que se demuestre su inexactitud.

Así, la hipótesis de que la Tierra era plana, generalizada desde hacía siglos hasta los tiempos de Colón, no fue definitivamente abandonada hasta que los viajes y descubrimientos efectuados por portugueses y españoles, en los siglos XV y XVI, la desvirtuaron, y el arribo de Elcano a España, después de haber sido el primero que dio la vuelta al mundo, estableció irrefutablemente la redondez del planeta.

Las definiciones sirven para caracterizar las figuras que se van a estudiar; deben ser precisas, para poder basar nuestro razonamiento sobre ellas y no deben contener más que lo que se quiere definir.

No podemos estudiar, por ejemplo, los triángulos, si previamente no hemos definido con exactitud qué entendemos por un triángulo.

Si examinamos una definición como: «un paralelogramo es un cuadrilátero cuyos lados opuestos son paralelos», vemos que comienza por separar todo lo que no se refiera a una figura de cuatro lados, luego a todas aquellas cuyos lados no son paralelos, lográndose así que la definición se refiera a un paralelogramo y nada más que a él.

El teorema es una exposición formal, que hay que demostrar mediante su mecanismo lógico y consta de dos partes; la hipótesis, que establece lo que va a ser probado como verdad, y la tesis, que es la consecuencia del razonamiento lógico que se ha seguido para demostrar la hipótesis.

Elementos.

En la geometría hay ciertos elementos fundamentales: el punto, la recta y el plano.

El punto no tiene dimensiones y puede ser representado por la señal que deja la punta de un lápiz sobre el papel o por una cruz, en la que la intersección de las líneas marca el lugar del punto.

La recta tiene una sola dimensión, longitud; el hilo tenso de la plomada da una idea de ella.

El plano tiene dos dimensiones, largo y ancho. La superficie de una mesa, las aguas en reposo, nos dan una representación del plino.

Con estos elementos se construyen las figuras —triángulos, cuadriláteros, círculos—, que son rectilíneas si sus lados son rectas, o curvilíneas si son curvas.

La geometría plana se refiere a estas figuras de dos dimensiones: la geometría del espacio se refiere a los sólidos que tienen tres dimensiones —ancho, alto y profundidad—, como cubos, esferas, conos, naralelepínedos, etcétera.

La geometría, considerada desde un punto de vista estrictamente matemático, es la ciencia que se ocupa de las relaciones entre cuatro magnitudes simples: longitud, latitud, profundidad y abertura angular, y dos compuestas: superficie y volumen. Véanse Abscisa; Ordena-

UN COMPLETO CURSO DE GEOMETRIA ELEMENTAL PARA LOS PRINCIPIANTES

bton-geometria1-Elementos de Geometría Plana

bton-geometria

bton-geometria2-Triángulosbton-geometria
bton-geometria3-Cuadriláterosbton-geometria
bton-geometria4-Polígonosbton-geometria
bton-geometria5-Circunferencia y Círculobton-geometria
bton-geometria6-Perímetros y Áreasbton-geometria
bton-geometria7-Semejanzasbton-geometria
bton-geometria8-Geometría del Espaciobton-geometria
bton-geometria9-Poliedrosbton-geometria
bton-geometria10-Cuerpos de Revoluciónbton-geometria
bton-geometria11-Áreas y Volúmenesbton-geometria
bton-geometria12-Movimientos en el Planobton-geometria
bton-geometria13-Trigonometríabton-geometria
bton-geometria14-Geometría Analíticabton-geometria

Temas Enlazados al Sitio Oficial: CNICE (Ministerio de Educación y Ciencias)

Parábola, Recta y Circunferencia Online

Los Trece Sólidos de Arquímedes – Los Sólidos Platónicos

Los Trece Sólidos de Arquímedes

Los cinco sólidos platónicos eran «puros» y contenían un único tipo de polígono. Arquímedes (287-212 aC.) describió otros trece sólidos adicionales que contienen dos o más tipos diferentes de polígonos

Ver Una Tabla de los Sólidos

LOS 13 SÓLIDOS DE ARQUÍMEDES

solidos-regulares
Tretraedro
Truncado
solidos-regularessolidos-regularessolidos-regularessolidos-regularessolidos-regulares
Cubo
Truncado
CuboctaedroRombicuboctaedro
Menor
Rombicuboctaedro
Mayor
Cubo
Romo
solidos-regulares
Octaedro
Truncado
solidos-regularessolidos-regularessolidos-regularessolidos-regularessolidos-regulares
Dodecaedro
Truncado
IcosidodecaedroRombicosidodecaedro
Menor
Rombicosidodecaedro
Menor
Dodecaedro
Romo
solidos-regulares
Icosaedro
Truncado

Densidad de un Sólido

Hypatia de Alejandría

Grandes Matemáticos

Pasos Método Científico

 

Software para calcular esfuerzos en armaduras aporticadas

Software para calcular esfuerzos en armaduras aporticadas

USO DEL SOFTWARE GALILEO
(solo para versiones de windows de 32 bits)

  1. Ingresa las cantidad de barras teniendo en cuenta las 3 barras que reemplazan a los vínculos externos (dos del apoyo fijo + una del móvil) – Ver Ejemplo Mas Abajo
  2. SIEMPRE las tres barras de los apoyos debes ingresarse ultima con numero de  nudo cero
  3. Ingresas los datos de cada barra indicando las coordenadas del nudo  inicial y final (la armadura se irà dibujando en la pizarra)
  4. Ingresas las cargas verticales y horizontales
  5. Calculas los esfuerzos en cada barra con solo picar en un botón
  6. Puede luego determinar corrimiento en cada nudo
  7. Puedes agregar las barras hiperestaticas en el caso que las hubiera
  8. Puede visualizar e imprimir los datos obtenidos

El programa tiene un mini manual de uso para consulta Para empezar haz el pórtico del ejemplo de abajo

tipos de armaduras

 esfuerzos de porticos alma calada

ejemplo de calculo de esfuerzos en porticos

software para calculo de esfuerzos

Los Archivos de Ambas Descargas Se Deben Colocar Adentro de una Misma Carpeta
Descargar SoftwareDescargar Complementos

Ver También: Resolver Un Pórtico Online

Volver a Ingeniería Civil