El Efecto fotoelectrico

Descubrimiento de Coulomb Charles:Vida y Obra Cientifica-Descripcion

Descubrimiento de Coulomb Charles Vida y Obra Cientifica

Un joven científico hace en 1785 un descubrimiento asombroso: las fuerzas electrostáticas están regidas por la misma ley de la gravedad enunciada por Isaac Newton.

El ingeniero militar francés Charles Augustin Coulomb nacido en 1736, fue el descubridor de la ley que lleva su nombre, para lo cual había ideado en 1777 una ingeniosa balanza de torsión, que permitía medir las cargas eléctricas.

Además, descubrió la existencia de fuerzas magnéticas, al comprobar la acción del campo terrestre sobre una aguja imantada, y desarrolló las leyes que las rigen.

COULOMB, Charles Augustin de: (Angulema, 1736-París, 1806.) Físico francés. Fue ingeniero militar y superintendente de Aguas y Fuentes, pero en 1789 se retiró a las actividades científicas privadas.

Durante la Revolución fue miembro del comité de pesas y medidas que estudió la adopción del sistema métrico decimal.

En 1802 desempeñó el cargo de inspector de educación.

Entre las investigaciones de Coulomb destacan sus estudios de la fricción (el rozamiento) en la maquinaria, y la elasticidad y torsión de los materiales, que le sirvieron para inventar balanzas de torsión muy sensibles, utilizándolas en sus experimentos sobre la electricidad y el magnetis mo, que le dieron fama.

Biografia de Coulomb Vida y Obra Cientifica Su Descubrimiento
El físico francés Charles de Coulomb destacó por sus trabajos realizados en el campo de la electricidad. En 1785 confirmó experimentalmente la ley que lleva su nombre, y que permite calcular la fuerza entre las cargas eléctricas.

Partiendo de los descubrimientos de Joseph Priestley sóbrela electricidad, formuló la ley de las fuerzas electrostáticas (hoy llamada ley de Coulomb), que dice que dos cargas eléctricas del mismo signo (de signo contrario) se repelen (se atraen) con una fuerza directamente proporcional al producto de sus cargas e inversamente proporcional al cuadrado de la distancia que las separa.

También descubrió que en un conductor cargado la carga está situada en la superficie.

Estudiando el magnetismo, halló la ley de las fuerzas magnéticas (también llamada ley de Coulomb), que dice que dos polos magnéticos de la misma polaridad (de polaridad contraria, uno norte, el otro sur) se repelen (se atraen) con una fuerza directamente proporcional al producto de sus cargas magnéticas e inversamente proporcional al cuadrado de la distancia que los separa.

Coulomb fue nombrado en 1781 miembro de la Academia Francesa.

En su honor, la unidad de carga eléctrica ha recibido el nombre de culombio, que se define como la cantidad de carga transportada en un segundo por una corriente de un amperio.

Entre sus obras, destacan las siguientes: Teoría de las máquinas simples (1779) y Sobre la electricidad y el magnetismo.

OBRA CIENTIFICA: LA LEY DE COULOMB

Coulomb comprobó en 1785 que la fuerza eléctrica de atracción o rechazo respondía a los mismos principios mecánicos que las leyes de gravitación descubiertas por Newton y según las cuales la Tierra y todos los planetas y cuerpos celestes se atraen y mueven en el espacio.

Desarrolló entonces su famosa ley, que permitió en el siglo siguiente desarrollar la industria eléctrica.

En honor de Charles Augustin Coulomb, la unidad de medida de la electricidad fue llamada culombio.

Las fuerzas electrostáticas o magnéticas pueden ser positivas (+) o negativas (-), como se observa en las pilas.

Un imán posee una fuerza magnética positiva en un extremo o polo y una fuerza negativa en el otro.

Si se colocan dos imanes juntos, se comprueba que los polos opuestos se atraen y los polos iguales se repelen.

Acá se observan dos cargas electricas opuesta, que se atraen segun una fuerza F.

ley de coulomb sobre la atraccion de las cargas electricas
Ley de Coulomb sobre la atraccion o repulsión de las cargas electricas

La ley de Coulomb afirma que la fuerza con que se atraen o repelen dos cargas eléctricas determinadas es directamente proporcional al producto de las cargas e inversamente proporcional al cuadrado de la distancia que ¡as separa. El tiempo le dió la razón.

ANTECEDENTES DE LA EPOCA:

Entre las nuevas disciplinas físicas que se desarrollan a partir del siglo XVIII encontramos la electricidad, cuyas manifestaciones habían sido observadas por lo griegos.

Al frotar un trozo de ámbar (en griego elektron) se comprobaba que era capaz de atraer pequeños objetos. A esta fuerza misteriosa se la llamó eléctrica.

En 1600, Gilbert observó también las propiedades de la piedra imán, que se encuentra en la Naturaleza, y distinguió entre atracción eléctrica y magnética.

Ya en el siglo XVIII aparecen los primeros instrumentos para producir carga eléctrica, que serán utilizados por Benjamín Franklin para demostrar que el rayo es de naturaleza eléctrica.

En esta idea se basará su invención del pararrayos, tras observar la semejanza entre la chispa eléctrica y los rayos producidos en una tormenta y verificar que la propiedad de ser atraída por las puntas también se da en el rayo.

La cosmovisión newtoniana imperante en este siglo también dejará huella en las ideas de Franklin, quien introducirá el concepto de electricidad «positiva» y «negativa» para explicar la atracción y repulsión de los cuerpos electrizados.

Para entonces los intentos de esclarecer la naturaleza de la electricidad se habían convertido en una cuestión prioritaria.

Galvani y Volta investigaron los efectos de la misma sobre los seres vivos: observaron cómo una pata de rana se contraía al ser conectada a dos metales distintos, y la consideraron como un detector de la electricidad existente entre los dos metales.

Volta observó en sus experimentos que la electricidad puede producirse mediante la acción química de un metal disolviéndose en un ácido. Este sería el principio de la pila voltaica.

El proceso inverso, mediante el cual a partir de la electricidad se puede producir una acción química, se denominará electrólisis y su descubrimiento será fundamental para el desarrollo de la Química.

En 1800 Nicholson y Carlisle fueron los primeros en efectuar este proceso, al hacer pasar electricidad a través del agua mediante dos cables inmersos en ella, hallando así que el agua se descomponía en sus elementos, hidrógeno y oxígeno.

La síntesis química condujo al intento de crear compuestos en el laboratorio: Cavendish logrará la síntesis del agua, y en el siglo XIX se realizará la síntesis de los primeros compuestos orgánicos, como el benceno.

Fuente Consultada:
Grandes Cientificos de la Humanidad Tomo I – Diccionario Biografico de Espasa Manuel Alfonseca
El Jardín de Newton José Manuel Sánchez Ron.
Enciclopedia Electrónica ENCARTA de Microsoft

Enlace Externo: Ley de Coulomb

Biografía de Pauli Wolfgang: El Principio de Exclusión

BIOGRAFÍA DE PAULI, WOLFGANG
Físico austríaco-estadounidense

Wolfgang Pauli (1900-1958), físico estadounidense de origen austríaco, premiado con el Nobel y conocido por su definición del principio de exclusión en mecánica cuántica.

Además su hipótesis, en 1931, de la existencia del neutrino, una partícula subátomica, constituyó una contribución fundamental al desarrollo de la teoría mesónica.

Fisico Pauli Wolfgang

Pauli formuló el principio de exclusión, que establece que dos electrones no pueden ocupar el mismo estado energético de forma simultánea en un átomo. Por este descubrimiento recibió, en 1945, el Premio Nobel de Física.

Se doctoró en 1921 en la Universidad de Munich y fue asistente en la Universidad de Gotinga. Continuó su formación en Copenhague, bajo la tutela de Niels Bohr.

Trabajó inicialmente en la Universidad de Hamburgo y, luego, se mantuvo por espacio de veinticinco años como profesor de física teórica en la Escuela Politécnica Federal de Zurich.

Se le distingue como uno de los fundadores de la mecánica cuántica, junto con Heisenberg y Planck; adquirió gran prestigio por su principio de exclusión, enunciado en 1924, conocido también como principio de Pauli, según el cual dos partículas similares no pueden existir en el mismo estado, es decir, que ambas no pueden tener la misma posición y la misma velocidad, dentro de los límites fijados por el principio de incertidumbre de Heisenberg.

En otros términos, en un mismo átomo no pueden existir dos electrones con el mismo conjunto de números cuánticos –sabiendo que cada átomo queda descrito por completo una vez se han especificado sus cuatro números cuánticos– de donde resulta que al menos uno de ellos debe ser diferente.

Mediante el Principio de Pauli se logró interpretar las propiedades químicas de los elementos cuando se agrupan ordenadamente por su número atómico creciente.

Pauli recibió el premio Nobel de física a la edad de 45 años, en 1945, «por el descubrimiento del principio de exclusión». Al año siguiente, recibió la nacionalidad norteamericana y trabajó a partir de ese momento en el Instituto de Estudios Avanzados de Princeton, regresando posteriormente a Zurich.

DESCRIPCIÓN DE LA UBICACIÓN DE LOS LOS ELECTRONES EN UN ÁTOMO:

El núcleo y la disposición de los electrones a su alrededor, son los componentes cruciales que dictan la forma como se comporta un elemento.

Si pudiésemos tomar millones de fotografías de los electrones que orbitan alrededor del núcleo de un átomo, éstos aparecerían cada vez en una posición ligeramente diferente.

Las distintas posiciones forman series de hasta 7 anillos de nubes u «órbitas» alrededor del núcleo, donde las posibilidades de encontrar un electrón son altas.

En los átomos más pequeños, hidrógeno y helio, existe sólo una pequeña órbita cercana al núcleo.

Los átomos del helio tienen dos electrones y los del hidrógeno uno, por lo que la opción de hallar un electrón en un punto determinado de esta órbita es dos veces mayor en el átomo de helio que en el de hidrógeno.

Existe siempre un límite al número de electrones que cada órbita puede albergar.

En la órbita interior hay espacio sólo para dos, por lo cual, si un átomo tiene más electrones, éstos se desplazan a una segunda órbita, más retirada del núcleo. Esta segunda órbita puede albergar hasta 8 electrones.

La tercera también puede mantener 8 electrones, e incluso más -hasta 18-,si existe otra órbita. Sólo excepcionalmente la órbita externa presenta más de 8 electrones.

//historiaybiografias.com/archivos_varios5/atomo_pauli.jpg

Los átomos con 8 electrones en su órbita externa son muy estables y lentos para reaccionar con otros elementos, debido a que se requiere mucha energía para adicionar un electrón o para desplazarlo.

Los átomos con un solo electrón en su órbita externa, como los del hidrógeno, sodio y potasio, son muy reactivos debido a que su electrón se remueve con facilidad.

de igual modo, los átomos a los que les falta uno de los 8 electrones son muy reactivos, pues aceptan con rapidez otro electrón en su órbita externa.

El fluoruro (un átomo de flúor con un electrón obtenido de otro átomo) que encontramos en la crema dental protege los dientes al eliminar y remplazar un componente del esmalte dental que es afectado por los ácidos en los alimentos.

Puede Ampliar Este Tema Aquí

Fuente Consultada:
Historia Universal de la Civilización  Editorial Ramón Sopena Tomo II del Renacimiento a la Era Atómica

Temas Relacionados:

Leyes de la Teoría Atómica: Masa Atomica, Mol y Numero de Avogadro
La Vida Media de un Isotopo Quimico
La Maquina de Dios: Acelerador de Particulas
Teoría de Desintegración Nuclear del Átomo
El movimiento browniano estudiado por Albert Einstein
Cálculo del Radio de la Orbita en el Átomo de Hidrógeno
Nanociencia y Nanotecnologia:Que es la Nanociencia

Enlace Externo:• Wolfgang Pauli – Escuelapedia

Biografía de Eddington Arthur y Sus Trabajos Cientificos

Biografía de Eddington Arthur  y Sus Trabajo Científico

BIOGRAFÍA DE EDDINGTON, Sir ARTHUR STANLEY (1882-1944): Astrónomo y físico británico, que realizó un importante trabajo en el campo de la relatividad y de la astronomía.

Eddington nació en Kendal, por entonces en Westmorland (actualmente Cumbria) y estudió en el Owens College (actualmente Universidad de Manchester) y en el Trinity College de la Universidad de Cambridge.

Fue ayudante jefe en el Real observatorio de Greenwich desde 1906 a 1913, año en que fue catedrático de astronomía en Cambridge.

En la década de los años veinte, este astrofísico inglés demostró que el interior del Sol era mucho más caliente de lo que se había pensado hasta entonces.

Supuso al astro como una enorme y extremadamente caliente esfera de gas, con características similares a las de los gases estudiados en la Tierra.

Eddigton Arthur Stanley

Arthur Eddihton: famoso físico del siglo XX, cuyo trabajo mas destacado fue sobre la evolución y la constitución de las estrellas. Su trabajo en astronomía quedó reflejado en su clásico libro La constitución interna de las estrellas, que se publicó en 1926.

Sometido a la acción de la gravedad, su materia tendría que estar atraída hacia el centro y, por tratarse solamente de gas, no tardaría en colapsarse en un cuerpo mucho más pequeño.

Ya que el Sol no entra en colapso e inclusive conserva medidas superiores a las establecidas para esa gravedad, debería existir alguna fuerza que impulse la expansión de la sustancia solar y resista a la tendencia de contracción.

El único fenómeno que podría explicar esta situación, según Eddington, sería el calor, ya que si se aumenta la temperatura, los gases se expanden y aumentan de volumen.

Por lo tanto, el Sol permanece en un estado de equilibrio, con un calor interior tal que tiende a expandirlo, pero con una fuerza gravitatoria que lo induce a contraerse.

Fue unastrónomo y físico británico, que realizó un importante trabajo en el campo de la relatividad y de la astronomía.

Concluyó que cuanto mayor es la masa de una estrella, mayor es la cantidad de calor que debe producir para no entrar en colapso, y que la cantidad de calor debe crecer con mayor rapidez que la masa.

Eddington se opuso a las teorías de su discípulo, Chandrasekhar, sobre la posibilidad de que existiera una estrella cuya masa alcanzara cierto límite y dejara de contraerse hasta llegar a un estado final como las estrellas enanas blancas.

Sus principales obras son: Espacio, Tiempo y Gravitación; Estrellas y Átomos; La Naturaleza del Mundo Físico; El Universo en Expansión y Nuevos Senderos de la Ciencia.

Fuente Consultada:
Historia Universal de la Civilización  Editorial Ramón Sopena Tomo II del Renacimiento a la Era Atómica

Temas Relacionados

• Implicancias de Teoria de la Relatividad
• Experimento de Michelson Morley Resumen Explicación
• El Principio de Equivalencia Teoría de la Relatividad General
• El Espacio Curvo Teoría de Relatividad Curvatura Espacial
• ¿Por que es Famoso Einstein?

Enlace Externo:• Origen y evolución del Universo

Biografía de Doppler Christian:Resumen Descriptivo del Efecto

Biografía de Doppler Christian
Breve Explicación del Efecto Doppler

Christian Doppler (1803-1853), físico y matemático austriaco, nacido en Salzburgo.

Estudió en dicha ciudad y posteriormente en Viena.

Fue profesor en el Instituto técnico de Praga (Checoslovaquia) y en el Instituto politécnico de Viena, y ocupó el cargo de director del Instituto de Física de la Universidad de Viena en 1850.

Describió el fenómeno físico que se conoce hoy como efecto Doppler en su artículo monográfico sobre los colores de la luz de las estrellas dobles, Acerca de la luz coloreada de las estrellas dobles (1842).

Doppler cientifico

Recibió su primera educación en Salzburgo y Viena, en donde llegó a ser profesor de física experimental. En 1850, fue nombrado director del Instituto de Física.

Doppler se preguntó por qué razón el sonido se percibía  de modo distinto, según la fuente se alejara o se acercara al receptor; en su época ya se sabía que el sonido está compuesto por una serie de ondas que se desplazaban en un medio determinado, y el físico encontró que, por ejemplo, cuando una locomotora se acercaba al punto donde estaba situado un observador, cada onda sónica sucesiva se captaba casi superpuesta a la anterior (un sonido agudo), de modo que el oído la captaba con frecuencia creciente; al alejarse, por el contrario, la frecuencia se espaciaba cada vez más (un sonido grave).

Doppler había relacionado matemáticamente la velocidad y la tonalidad del sonido y, para probar su teoría, consiguió que una locomotora arrastrase un vagón cargado con trompetistas hacia el punto de observación y luego se alejara de él, a velocidades diferentes.

En el punto de observación ubicó un grupo de músicos de fino oído, encargados de registrar los cambios que se producían en el diapasón a medida que el tren iba o venía.

La medición de dichos cambios en la tonalidad, en realidad en la intensidad aparente del ruido (la relación entre frecuencia y velocidad), es lo que hoy se conoce como efecto Doppler, divulgado por primera vez en 1842.

Doppler también dejó planteada la analogía entre el sonido que emite una fuente móvil y la luz que proviene de una estrella en movimiento, ya que la luz también se transmite por medio de ondas, si bien mucho más finas que las sónicas.

El físico francés Armand Fizeau (1819-1896), hizo notar que el llamado efecto Doppler tendría que funcionar en el desplazamiento de todo tipo de ondas en movimiento, incluyendo las de la luz.

Gracias a los experimentos de Doppler sabemos que si una estrella se mantuviera estática con respecto a la Tierra, las líneas oscuras de su espectro luminoso deberían permanecer en un mismo sitio, pero que si se está alejando de nosotros, la luz que emite va alargando su longitud de onda (algo equivalente al sonido grave en el experimento del tren) y las líneas oscuras se desplazarían hacia el extremo rojo del espectro.

Entre más grande sea ese desplazamiento, mayor es la rapidez con que la estrella se aleja. Por el contrario, si se estuviera acercando, la luz emitiría ondas cada vez más cortas (el tono agudo) y las líneas del espectro estarían acercándose al violeta.

DESCRIPCIÓN DEL EFECTO DOPPLER:

El efecto Doppler es el cambio en la frecuencia percibida de cualquier movimiento ondulatorio cuando el emisor, o foco de ondas, y el receptor, u observador, se desplazan uno respecto a otro.

efecto doppler

El móvil (auto) de la imagen superior se desplaza hacia la derecha. Cuando se acerca al niño se observa que la onda del sonido se «comprime», la longitud de onda se corta y la frecuencia es alta, es decir un sonido agudo. A su vez para el caso del niño de la izquierda la situación es inversa, es decir la frecuencia del sonido será mas baja y el sonido que reciba sera grave.

//historiaybiografias.com/archivos_varios5/efecto_dopler1.jpg

Explicación del Foco en reposo y observador en movimiento: La separación entre dos frentes de onda permanece constante en todo momento. Aunque la velocidad de las ondas en el medio v también es constante, la velocidad relativa vrel. percibida por el observador que viaja a una velocidad vR depende de si este se aleja o se acerca al foco. Cuando el foco se mueve y el observador está detenido el caso es el mismo. La velocidad del sonido en el aire es de 340 m/s.

Fuente Consultada:
Historia Universal de la Civilización  Editorial Ramón Sopena Tomo II del Renacimiento a la Era Atómica

Temas Relacionados:

Biografía de Pauli Wolfgang: El Principio de Exclusión
Biografía de Eddington Arthur y Sus Trabajos Cientificos
Pasos del Metodo Cientifico Etapas
El Científico Más Grande de la Historia
Biografía de Cientificos Argentinos

Enlace Externo:Christian Andreas Doppler

Historia de la Evolución del Uso De La Energía, Desde el Fuego

HISTORIA DEL DESCUBRIMIENTO Y EVOLUCIÓN DEL USO DE LA ENERGÍA DESDE EL FUEGO A LA ENERGÍA ATÓMICA

LAS ENERGIA PRIMARIAS:

Una fuente de energía primaria es toda forma de energía disponible en la naturaleza antes de ser convertida o transformada, y ellas son: el petróleo, gas natural, el carbón, la madera o leña, caída de agua, la del sol o solar, la eólica, mareomotriz y nuclear.

Observa el siguiente cuadro, donde se indica la clasificación de las fuentes de energía:

cuadro clasificacion de las fuentes  de energía

PRIMEROS USOS DEL FUEGO:

Una fuente de energía —el combustible al arder—- tiene un lugar muy especial en la historia del hombre.

Efectivamente, muchos antiguos pueblos consideraron que el fuego era sagrado, y algunos, como los griegos, tenían leyendas que contaban cómo los hombres habían arrancado a los dioses el secreto del fuego. Según la leyenda griega, Prometeo robó fuego de la forja del dios Hefestos (Vulcano) y lo escondió en un tallo hueco de heno.

uso del fuego por el hombre

Si nos detenemos a pensar por un momento acerca de las otras fuentes de energía que usaron los hombres primitivos, podremos comprender por qué se consideró el fuego de este modo.

Los hombres de la Edad de Piedra podían advertir la energía muscular de los animales en acción cada vez que iban de caza; no podían menos de observar la energía del viento, que lo mismo meneaba las hojas de los árboles que desgajaba sus ramas, y ellos deben haberse dado cuenta muchas veces de la energía del agua en movimiento al arremolinar pesados troncos corriente abajo.

Pero la energía dejada en libertad cuando el fuego arde es mucho más difícil de notar.

Los primeros hombres que vieron en un bosque un incendio causado por el rayo, probablemente pensaron en el fuego sólo como un elemento destructor y deben haber pasado muchas generaciones hasta que el hombre se diera cuenta de que el fuego podía usarse para realizar trabajo útil.

Además, la energía del viento y la del agua estaban allí a disposición del hombre para que las usara. Pero antes de que él pudiera usar el fuego tuvo que aprender a producirlo.

Durante miles de años la única manera de hacer fuego era golpeando dos piedras o pedernales para producir una chispa.

Ése es el método que aún emplean ciertas tribus primitivas de Australia y de Sudamérica, y es muy parecido al que usaba la gente cuando se valía de cajas de yesca, hasta que se inventaron los fósforos, hace poco más de un siglo.

Efectivamente, aún utilizamos pedernales para encender cigarrillos o picos de gas.

Con el tiempo la gente aprendió a producir fuego haciendo girar dos palitos juntos encima de algún combustible seco, en polvo, hasta hacer saltar una chispa.

Una vez que el hombre tuvo el fuego, pronto descubrió que le podía prestar dos servicios para los que era insustituible.

Sobre todo, le suministró calor y luz, y aún hoy el fuego es nuestra mayor fuente de calor y de iluminación.

Aun teniendo casas donde todo está electrificado, casi seguramente la electricidad que nos proporciona luz y calor proviene de generadores movidos por el vapor que produce la combustión del carbón.

También el fuego podía realizar cosas que el viento, la energía muscular y el agua no eran capaces de hacer.

Podía producir cambios físicos y químicos en muchas clases de substancias. Aunque el hombre primitivo no se diese cuenta, el fuego en el cual él cocía su pan contribuía a transformar varias substancias químicas en la masa del almidón y a producir el anhídrido carbónico que hacía fermentar el pan.

El fuego con que cocía sus vasijas cambiaba las propiedades físicas de la arcilla y la hacía dura y frágil, en vez de blanda y moldeable.

Aún hoy usamos el fuego para cambiar las propiedades físicas de las materias primas: al extraer el metal de sus minerales, en la fabricación del vidrio y del ladrillo y en otras muchas.

También lo usamos para provocar cambios químicos: en la cocina, en la destilería, en el horneado y en infinito número de procesos industriales.

También hemos aprendido a hacer uso del poder devastador del fuego. Empleamos su tremendo calor destructivo, concentrado en un rayo del grosor de un lápiz, para perforar duros metales.

Usamos la fuerza de poderosos explosivos, encendidos por una pequeña chispa, para despejar montañas de escombros, que de otro modo llevaría semanas de trabajo el acarrear, y frecuentemente utilizamos el fuego para destruir residuos que deben ser eliminados si queremos mantener sanos nuestros pueblos y ciudades.

HISTORIA DEL CALOR COMO ENERGÍA:

El hombre dejó, al fin, de considerar el fuego como objeto sagrado, mas durante cientos de años siguió mirándolo como a cosa muy misteriosa.

La mayoría creía que el fuego quitaba algo de toda materia que quemaba.

Veían que las llamas reducían sólidos troncos a un puñado de blandas cenizas y unas volutas de humo.

Llenaban una lámpara de aceite, la encendían y descubrían que el aceite también se consumía.

Encendían una larga vela y en pocas horas apenas quedaba un cabo.

Solamente hace 200 años un gran francés, Lavoisier, demostró que el fuego, en realidad, agrega algo a aquello que quema.

Hay un experimento muy simple para demostrar que esto es así. Tomamos una balanza sensible y colocamos una vela en un platillo, con un tubo de vidrio repleto de lana de vidrio, puesto justamente encima de aquélla para recoger el humo.

En el otro platillo colocamos suficiente peso para equilibrar exactamente la vela, el tubo y la lana de vidrio.

Biografia de Lavoisier Antoine Descubrimientos en la Quimica Trabajos

Si ahora prendemos la vela y la dejamos arder, descubrimos que el platillo de la balanza sobre la cual se apoya desciende gradualmente.

Esto significa que lo que queda de vela y los gases que ha producido durante su combustión pesan más que la vela íntegra.

Lavoisier pudo ir más allá y demostrar qué es lo que se añade a las substancias cuando arden.

Descubrió que es oxígeno del aire. Efectivamente, si colocamos un recipiente boca abajo sobre una vela prendida, la llama se apaga tan pronto como el oxígeno del recipiente ha sido consumido.

Del mismo modo, el carbón no puede arder en una estufa, ni el petróleo dentro de un cilindro del motor de un auto, sin una provisión de oxígeno del aire.

calor como energia

Al calentar agua, el vapor puede generar trabajo, es decir movimiento

Pero muchas substancias se combinan muy lentamente con el oxígeno y sin producir ninguna llama.

Una es el hierro.

Si se expone el hierro al aire húmedo, aunque sólo sea por un día o dos, una fina capa de óxido se forma sobre su superficie, y es que el hierro se ha combinado con el oxígeno.

En algunas partes del mundo, también los compuestos de hierro se combinan con el oxígeno, bajo el suelo, produciendo depósitos de color castaño rojizo.

Cuando las substancias se combinan con el oxígeno no siempre producen fuego, pero casi siempre originan calor.

Y es el calor producido de este modo el que da a los hombres y animales toda su energía física, toda su fuerza muscular.

En nuestros pulmones el oxígeno del aire pasa al torrente sanguíneo y es llevado por la sangre a las células de todas las partes del cuerpo, donde se combina con las partículas alimenticias para originar calor y energía.

También produce anhídrido carbónico que expelemos al aire.

El peso del alimento que tomamos en un día no es muy grande ciertamente, y, por lo tanto, la cantidad de calor que producimos en un día tampoco lo es.

Y no todo este calor lo convertimos en energía para el trabajo, porque parte de él lo consumimos en el propio cuerpo, para mantener nuestra temperatura y en otros procesos fisiológicos.

Cuando pensamos cuánto trabajo puede realizar un hombre en un día, pronto nos damos cuenta de que una pequeña cantidad de calor puede transformarse en una gran cantidad de trabajo.

Así podríamos elevar un peso de 1 tonelada a 30 metros de altura, si transformáramos en trabajo todo el calor necesario para poner en ebullición 1 litro de agua.

A grandes alturas, los aviadores no pueden obtener suficiente oxígeno del aire que los rodea, para que sus cuerpos produzcan el calor y la energía que necesitan.

Entonces se colocan una máscara de oxígeno y el ritmo de producción de calor y energía se acelera inmediatamente.

De manera similar, en la soldadura, que requiere intenso calor, a menudo se mezcla oxígeno puro con el combustible, en lugar de utilizar el aire común.

► LA ENERGIA EÓLICA:

Energía eólica, energía producida por el viento. La primera utilización de la capacidad energética del viento la constituye la navegación a vela . En ella, la fuerza del viento se utiliza para impulsar un barco.

La utilización de la energía eólica no es una tecnología nueva, se basa en el redescubrimiento de una larga tradición de sistemas eólicos empíricos.

No es posible establecer con toda claridad el desarrollo histórico de los «sistemas de conversión de energía eólica», sólo es posible identificar los importantes papeles que desempeña la energía eólica en el pasado.

La utilización de la energía del viento resulta muy antigua.

La historia se remonta al año 3 500 a.C, cuando los sumerios armaron las primeras embarcaciones de vela, los egipcios construyeron barcos hace al menos cinco mil años para navegar por el Nilo y más tarde por el Mediterráneo.

Después, los griegos construyeron máquinas que funcionaban con el viento.

Así, desde la antigüedad éste ha sido el motor de las embarcaciones.

Algunos historiadores sugieren que hace más de 3,000 años la fuerza del viento se empleaba en Egipto cerca de Alejandría para la molienda de granos.

Sin embargo, la información más fehaciente de la utilización de la energía eólica en la molienda apunta a Persia en la frontera Afgana en el año 640 D.C.

balsa a vela energia eolica

Barcos con velas aparecían ya en los grabados egipcios más antiguos (3000 a.C.). Los egipcios, los fenicios y más tarde los romanos tenían que utilizar también los remos para contrarrestar una característica esencial de la energía eólica, su discontinuidad.

molino de viento

Uno de los grandes inventos a finale de la Edad Media, el molino de viento, muy usado en el campo argentino para extraer agua de la napa freática y darle de beber a los animales.

parque eolico

Actualidad: Parque Eólico: Los generadores de turbina de los parques eólicos aprovechan la fuerza del viento para producir electricidad. Estos generadores dañan menos el medio ambiente que otras fuentes, aunque no siempre son prácticos, porque requieren al menos 21 km/h de velocidad media del viento.

► ENERGÍA GAS NATURAL:

Como gas natural se define la mezcla de hidrocarburos livianos en estado gaseoso, donde la mayor proporción corresponde al metano (CH4) en un valor que oscila entre el 80 al 95 %.

El porcentaje restante está constituido por etano (C2H6), propano, butano y superiores, pudiendo contener asimismo en proporciones mínimas, vapor de agua, anhídrido carbónico, nitrógeno, hidrógeno sulfurado, etc.

El gas natural proviene de yacimientos subterráneos que pueden ser de gas propiamente dicho o de petróleo y gas, según que en su origen se encuentre o no asociado al petróleo.

El gas natural procede generalmente de las perforaciones que se realizan en los yacimientos petrolíferos, de la descomposición de la materia orgánica con el tiempo.

En dichos yacimientos, el petróleo más liviano que el agua, suele flotar sobre lagos subterráneos de agua salada. En la parte superior se encuentra el gas, que ejerce enormes presiones, con lo cual hace fluir el petróleo hacia la superficie.

Ampliar: Gas Natural

► LA ENERGÍA ELÉCTRICA:

El fuego fue muy importante para el hombre primitivo, porque le capacitó para hacer cosas que con la energía del viento, del agua o del músculo no podía realizar.

La humanidad no logró descubrir otra forma de energía capaz de realizar cosas completamente nuevas hasta hace 200 años, cuando comenzó a dominar la electricidad, la fuerza poderosa escondida en el rayo.

energia electrica

Hoy, con la radio, podemos oír a una persona que habla desde comarcas remotas; con la televisión podemos ver sucesos que ocurren a muchas millas de distancia; con cerebros electrónicos o computadoras podemos encontrar en pocos segundos las respuestas a complicadísimos problemas matemáticos.

El viento, los músculos, el agua y el fuego no nos podrían ayudar a hacer ninguna de estas cosas; sólo la electricidad.

Varios siglos antes de Cristo, los griegos sabían que el ámbar, al cual llamaban elektron, atraía el polvo y trocitos de plumas después de frotarlo con lana seca, piel o paño.

En tiempos de Shakespeare, muchos hombres de ciencia europeos sé interesaron en ésta extraña fuerza de atracción, y un inglés, Guillermo Gilbert, la llamó electricidad.

Alrededor de un siglo más tarde, otro investigador, llamado Guericke, descubrió que la electricidad originada rotando una bola de azufre contra la palma de su mano hacía saltar una chispita con un ruido marcado de chisporroteo.

En realidad él había producido un relámpago y un trueno en miniatura.

La electricidad que parece estar contenida, en reposo, en una substancia y es súbitamente liberada, por contacto con otra substancia, se llama electricidad estática.

Antes de que los hombres pudieran hacer uso de la electricidad, necesitaban que ésta fluyera de un modo constante y que se lograse controlar, es decir, obtener lo que hoy llamamos una corriente eléctrica.

El primer paso para descubrirla se dio por casualidad.

Más o menos a mediados del siglo xvin, un anatomista italiano, Luis Galvani, dejó las patas de unas ranas recién muertas en contacto con dos alambres, uno de bronce y otro de hierro.

Notó que las patas de las ranas comenzaban a estremecerse y pensó que cierta energía animal quedaba en ellas todavía.

Pero otro científico italiano, Volta, demostró que el estremecimiento se debía a que estos dos diferentes metales tomaban parte en la producción de electricidad.

volta cientifico creador de la pila

Volta, inventor de la pila eléctrica

Pronto Volta hizo la primera batería, apilando planchas de cobre y de cinc alternadamente una sobre la otra, y separadas sólo por paños empapados en una mezcla débil de ácido y agua.

Dos alambres, uno conectado a la plancha de cobre de un extremo y el otro a la plancha de cinc del otro extremo, daban paso a una continua corriente de electricidad.

Las baterías generan electricidad por medio de cambios químicos y aun las más poderosas no producen corrientes lo bastante grandes para muchas necesidades actuales.

Los modernos generadores en gran escala producen electricidad por medio de imanes que rotan rápidamente.

Oersted, un danés, y Ampére, un francés, hicieron la mayor parte del trabajo que llevó a descubrir las relaciones entre la electricidad y el magnetismo; pero fue un inglés, Miguel Faraday, quien primero usó un imán en movimiento para producir una corriente eléctrica. Esto ocurrió hace más de un siglo.

Pronto nuevos inventos dé un físico belga, llamado Gramme, y un hombre de ciencia nacido en Alemania, sir Guillermo Siemens, abrieron la nueva era de la energía eléctrica en abundancia. Tomás Edison, un inventor norteamericano, fabricó las primeras bombillas eléctricas y así dio difusión a los beneficios de la electricidad en la vida diaria.

Medimos la fuerza de un generador —la fuerza que pone a una corriente en movimiento— en unidades llamadas voltios, en honor de Volta.

Medimos la intensidad de la corriente en amperios, en honor de Ampére.

Los voltios, multiplicados por los amperios, nos indican cuánto trabajo puede realizar una corriente, y medimos éste en vatios, en honor de Jacobo Watt, famoso por su invento de la máquina de vapor.

Ampliar Sobre el Descubrimiento de la Electricidad

LA ENERGÍA ATÓMICA:

Miles de años transcurrieron desde que se dominó el fuego hasta que se empezó a utilizar la electricidad.

Sin embargo, solamente se necesitaron tres generaciones para que surgiese el uso de la energía atómica.

Los más grandes hombres de ciencia tardaron más de un siglo en descubrir los secretos del átomo, y no podemos pretender abarcar esa historia completa en una página.

Pero podemos dar una rápida ojeada y ver cómo algunos de ellos se lanzaron a esa labor.

Ya en la antigua Grecia había ciertos filósofos que creían que toda la materia está constituida por partículas tan pequeñas que no se pueden dividir.

Dieron a estas partículas el nombre de átomos, de dos palabras griegas que significan «no susceptible de ser dividido».

Pero hasta hace poco más de 150 años había pocas pruebas, o ninguna, que apoyasen esta creencia.

Antes de 1800 los químicos conocían pocas substancias simples y puras, de la clase que ahora se llaman elementos, y no sabían mucho acerca de cómo combinar los elementos para formar compuestos.

Pero en ese año, dos químicos ingleses, Carlisle y Nicholson, usaron una corriente eléctrica para descomponer el agua en dos elementos: hidrógeno y oxígeno.

Con la electricidad pronto consiguieron los químicos una cantidad de otros elementos y pronto aprendieron que los elementos se combinan invariablemente en proporciones fijas según el peso.

centrales atomicas

Esto hizo que un químico inglés, Dalton, reviviera la teoría de los átomos.

Él creía que cada elemento diferente está constituido por átomos distintos, y que cada uno de éstos tiene un peso especial.

Pero poco después de que la gente comenzara a creer en la existencia de los átomos, o partículas indivisibles de materia, los hechos demostraron que los átomos pueden en realidad dividirse en partículas aún más pequeñas.

Primero Róntgen, un científico alemán, advirtió que ciertas substancias químicas pueden obscurecer una placa fotográfica aun cuando esté bien protegida. Había descubierto los rayos X, rayos hechos de partículas que no son átomos enteros. Más tarde, Madame Curie analizó un mineral llamado pechblenda, que emite rayos similares, y descubrió el elemento altamente radiactivo llamado radio.

Las sales de radio emiten rayos sin desintegrarse aparentemente.

Marie Curie

Varios científicos, incluyendo a Rutherford y Soddy, estudiaron estos rayos y lograron descomponerlos en tres partes: rayos alfa, que poseen carga eléctrica positiva; rayos beta, o rayos de electrones, que conducen una carga negativa, y rayos gamma, o rayos X.

Más tarde, Rutherford bombardeó una lámina de oro con partículas alfa. Casi todas ellas atravesaron el oro, pero algunas rebotaron.

Esto le hizo suponer que los átomos de la lámina de oro no estaban contiguos, sino muy espaciados, como las estrellas en el cielo. También advirtió que hay gran espacio vacío dentro de cada átomo.

Madame Curie en el Laboratorio

Un danés llamado Niels Bohr encontró que en el centro de cada átomo hay partículas cargadas positivamente (protones) y partículas no cargadas (neutrones), apretadas para formar el centro o núcleo. A distancia del núcleo hay partículas mucho más pequeñas todavía, llamadas electrones, que poseen una carga de electricidad negativa. Estos electrones giran alrededor del núcleo, como los planetas alrededor del Sol.

Otón Hahn, un físico alemán, fue uno de los primeros en descubrir cómo liberar energía de los átomos por reacción en cadena, en la cual los neutrones de un átomo chocan con el núcleo de otro átomo y lo destruyen, liberando así más neutrones, que golpean a su vez los núcleos de otros átomos. Otro alemán, Max Planck, ya había descubierto cómo calcular la cantidad de energía liberada cuando se fisiona un átomo.

Planck y Borh

Los Físicos Planck y Ruthenford

Actualmente obtenemos energía no sólo dividiendo átomos pesados (fisión nuclear), sino también combinando átomos livianos (fusión nuclear).

————-  00000 ————

CUADRO EVOLUCIÓN DEL CONSUMO A LO LARGO DE LA HISTORIA:

cuadro consumo de energia en la historia

Se observa que el consumo de energía va vinculado directamente con el desarrollo de las sociedades, y se pueden diferenciar dos fases: 1) preindustrial donde la energía utilizada era la propia muscular, mas la generada por el carbón, desechos orgánicos. hidraúlica y eólica y 2) la actual a partir de la energía del vapor de agua, la electricidad y el petróleo.

Historia de la Evolución del Uso De La Energía Desde el Fuego

Ampliar: La Energía Atómica
Ampliar: Energía Mareomotriz
Ampliar: Energía Geotérmica

Fuente Consultada: La Técnica en el Mundo Tomo I CODEX – Globerama – Editorial Cuántica

Temas Relacionados:

Historia de la Evolución del Uso De La Energía, Desde el Fuego
Usos de la Energia Nuclear Aplicaciones y Beneficios
Nuevas Fuentes de Energia en el siglo XIX Petroleo y Electricidad
El Cuanto de Energia:Fisica Cuantica, La Constante de Planck
Fuentes de Energía No Renovables: Carbón y Petroleo-Reservas
Historia de la Energia Nuclear Resumen del Descubrimento
Concepto Físico de Energia: Tipos,Transformaciones y Ejemplos
Historia del Progreso Tecnológico En El Uso de la Energía
Explicación Simple del Principio de la Conservación de la Energía

Enlace Externo: Historia de la Electricidad

Conceptos Básicos de Electrostática:Cargas Eléctricas y Efectos

Conceptos Básicos de Electrostática

EXPERIMENTO CON CARGAS ELÉCTRICAS EN LA ELECTROSTÁTICA

La palabra electricidad, empleada para designar la causa desconocida que daba a los cuerpos frotados la propiedad de atraer a otros, deriva, justamente, de elektron, nombre que en griego significa ámbar.

Pero la voz electricidad, no usada por los griegos, fue introducida por Guillermo Gilbert (1540-1603), médico de cámara de la reina Isabel de Inglaterra.

La soberana le acordó una pensión permanente para que se dedicara a la investigación científica sin preocupaciones económicas.

Gilbert Guillermo

Gilbert Guillermo, Médico

William Gilbert (1544-1603), físico y médico inglés conocido sobre todo por sus experimentos originales sobre la naturaleza de la electricidad y el magnetismo. Nació en Colchester, Essex, y estudió en el Saint John’s College de la Universidad de Cambridge. Comenzó a practicar la medicina en Londres en 1573 y en 1601 fue nombrado médico de Isabel I.

Primeros Experimentos

El doctor Gilbert, que fue el primero en estudiar sistemáticamente los fenómenos eléctricos, descubrió que otras substancias, entre ellas el vidrio, también adquirían por frotamiento la propiedad de atraer trocitos de cuerpos muy livianos.

Esto puede comprobarse acercando pedacitos de papel a los dientes de un peine de material resinoso, seco, después de peinarse con él repetidas veces.

Si a una esferita de corcho, de médula de saúco o de girasol, suspendida de un hilo de seda, se acerca una barra de vidrio frotada, la esferita, por ebfenómeno de inducción electrostática, es atraída por la barra y repelida después del contacto.

Lo mismo ocurre si se hace el experimento con una barra de ebonita.

Si se carga la esferita de un péndulo eléctrico o electrostático, así se llama el aparatito descripto más arriba, tocándolo con una barra de vidrio electrizada, y otro con una de ebonita en las mismas condiciones, se comprobará al acercarlas, aue se atraen; pero si ambas se tocan únicamente con la barra de vidrio, o con la de ebonita, en lugar de atraerse, al acercarlas se repelen.

Pendulo Electrostático

pendulo electrostático

De estos hechos y otros análogos se sacaron las siguientes conclusiones:

a) Existen dos estados eléctricos opuestos, o como se dice ordinariamente, dos clases de electricidad, que se ha convenido en denominar vitrea o positiva y resinosa o negativa;

b) Electricidades de distinto nombre, o de signo contrario, se atraen; y del mismo nombre, o de igual signo, se rechazan y

c) Un cuerpo que no manifiesta acciones eléctricas se dice que está en estado neutro.

La electrización de un cuerpo por frotamiento, vidrio por ejemplo, y los dos estados eléctricos o las dos clases de electricidad se explican así: el vidrio se electriza positivamente cuando se frota con una franela porque pierde electrones que los gana ésta, que se carga por ello negativamente.

Como los electrones que pierde un cuerpo los gana el otro, se comprende por qué la carga eléctrica que aparece en ambos es igual; pero de nombre contrario.

Los cuerpos que como el vidrio, la ebonita, el lacre, la porcelana, etc., se electrizan por frotamiento y conservan durante bastante tiempo su estado eléctrico, son malos conductores de la electricidad; los que no se electrizan por frotamiento como, por ejemplo, los metales y el carbono, son buenos conductores de la electricidad.

A los malos conductores se les denomina también aisladores.

Cargas electricas

cargas electricas

Cuadro Sobre Electoestática

cuadro electoestática

En realidad, todos los cuerpos se electrizan por frotamiento, como se comprueba frotando un cuerpo conductor que se sostiene con un mango aislador.

Lo que ocurre en ambos casos es lo siguiente: en un cuerpo mal conductor o aislador, el vidrio por ejemplo, las cargas eléctricas quedan localizadas en el lugar frotado; en un buen conductor no, pues deja pasar el estado eléctrico o la electricidad de un modo instantáneo a través del mismo y a otros conductores o lugares vecinos que estén en comunicación con él.

Conviene tener presente que la primera condición que se requiere para que un cuerpo sea mal conductor de la electricidad aislador de la misma, es que esté muy seco.

Los electricistas no tienen miedo de tocar los cables que conducen la electricidad si están situados sobre madera bien seca, que es un aislador; en cambio no los tocan si están colocados sobre metales otro material conductor; inclusive la madera húmeda, pues b electricidad pasaría a tierra a rravés del cuerpo humano, que es un buen conductor, produciendo trastornos que pueden ocasionar la muerte.

Existen máquinas eléctricas que producen electricidad por frotamiento, que actualmente sólo tienen interés histórico y didáctico.

Ellas se fundan en el hecho, ya explicado, según el cual cuando dos cuerpos se frotan entre sí, uno de ellos se electriza positivamente y el otro negativamente.

La primera máquina electrostática de frotamiento fue inventada por Otto de Guericke.

Consistía en una esfera de azufre que giraba alrededor de uno de sus diámetros y se electrizaba frotándola con la mano.

En la obscuridad despedía cierta luz acompañada de ruido.

El término electrostática se emplea para designar la parte de la física que estudia la electricidad estática, es decir, la que está en estado de equilibrio sobre los cuerpos —que se ha tratado en este artículo— para diferenciarla de la electricidad en movimiento, es decir, de la corriente eléctrica.

 

 

Temas Relacionados:

Carga Electrica del Electrón Experimento de Millikan
Descubrimiento de Coulomb Charles Vida y Obra Cientifica
Biografia de Volta Inventor de la Pila Electrica
Las radiaciones de un nucleo atomico Tipos alfa, beta y gamma
Biografia de Carlo Rubbia El Fisico de los Bosones
Calor Producido Por la Corriente Electrica Aplicaciones

Enlace Externo:Electrostática – Concepto y fenómenos electrostáticos

Naturaleza Ondulatoria de la Materia- Resumen Descriptivo

Naturaleza Ondulatoria de la Materia

RESUMEN DESCRIPTIVO DE LA FÍSICA CUÁNTICA APLICADA A LA MATERIA:

Durante los últimos 300 años, los científicos han invertido mucho tiempo en discutir e investigar la naturaleza de la luz.

En el siglo XVII, Isaac Newton sostenía que los rayos luminosos consistían en flujos de partículas muy pequeñas.

Esta teoría corpuscular prevaleció durante muchos años, aunque Christian Huygens, contemporáneo de Newton, tenía el convencimiento de que la luz era trasmitida mediante vibraciones (es decir, ondas) en el éter.

Isaac Newton

HUYGENS Christian (1629-1695

En los primeros años del siglo XIX, Thomas Young realizó sus famosos experimentos sobre las interferencias luminosas. Estos fenómenos podían explicarse muy bien con sólo suponer que la luz es un conjunto de ondas y no un flujo de partículas.

Por consiguiente, la teoría ondulatoria parecía explicar satisfactoriamente todas las observaciones experimentales hechas hasta la época, por lo que se pensaba que remplazaría para siempre a la teoría corpuscular.

Después, a fines del siglo XIX, se descubrió que, en ciertas condiciones, se liberaban electrones cuando incidía un rayo luminoso sobre una superficie.

Al incidir un haz de luz sobre ciertos materiales se desprenden electrones, creando una corriente electrica, medida por el galvanómetro.

La teoría ondulatoria no podía explicar este fenómeno, que conocemos con el nombre de efecto fotoeléctrico.

Este nuevo descubrimiento planteó a los físicos un serio dilema.

El efecto fotoeléctrico era más fácilmente explicable acudiendo a la teoría corpuscular, aunque casi todos los otros fenómenos luminosos se explicaban mejor a partir de la teoría ondulatoria.

Éstos eran algunos de los problemas teóricos que tenían planteados los físicos cuando apareció en escena el joven aristócrata francés Luis de Broglie.

En una tesis publicada en 1922, cuando sólo tenía 30 años, sugirió que la luz presentaba un comportamiento a veces ondulatorio y a veces corpuscular, aunque no ambos al mismo tiempo.

Científico Luis De Broglie

LOUIS DE BROGLIE (1892-1960): Físico nacido en Francia el año 1892. Sus trabajos de investigación le permitieron descubrir la naturaleza ondulatoria de los electrones. Fue galardonado con el Premio Nobel de Física en 1929.

De Broglie supuso que, así como la luz, normalmente de naturaleza ondulatoria, podía, en ciertos fenómenos, comportarse corpuscularmente, las partículas pequeñas, tales como los electrones, podían presentar características ondulatorias.

Pero tuvo que esperar 5 años para que se descubriera la evidencia de este fenómeno.

Fue en 1927 cuando los estadounidenses Clinton G. Davisson y L. H. Germer, trabajando en los laboratorios de la Bell Telephone, consiguieron producir fenómenos de  difracción  con un flujo de electrones, usando un cristal como red de difracción.

La teoría dualista de De Broglie puede aplicarse a todas las partículas en movimiento, cualquiera que sea su naturaleza.

La longitud de onda de esta onda De Broglie (la onda asociada con la partícula) se averigua dividiendo la constante de Planck por la cantidad de movimiento de la partícula.

Luis Víctor de Broglie nació en Dieppe (Francia), en 1892.

Su hermano mayor, Maurice, el sexto duque De Broglie, fue también un físico de cierta importancia.

Luis se interesó, primero, por la historia y la literatura, pero después, sirviendo en el ejército francés durante la primera guerra mundial, se dedicó a la física.

En reconocimiento a su contribución al avance de la física teórica, Luis de Broglie fue galardonado, en 1929, con el premio Nobel.

Desde 1928 fue profesor de física teórica en la Universidad de París, donde había cursado sus estudios.

PARA SABER MAS…

La teoría cuántica puso una bomba bajo la visión de física clásica y, al final, la derrocó.

Uno de los pasos críticos de esta rebelión se dio cuando Erwin Schrodinger formuló su teoría de la mecánica de ondas, en la que sugería que un electrón, en un átomo, se comporta como una onda.

Se guiaba por la belleza, por su principio básico de que si una solución no era matemáticamente hermosa, casi seguro era incorrecta.

El trabajo de Schrodinger recibió un estímulo vital cuando leyó la tesis doctoral en Filosofía de Louis de Broglie, y fue oficialmente reconocido cuando, en 1933, Schrodinger compartió el Premio Nobel de Física con Paul Dirac.

El saludo de la onda de electrones

En 1900, Max Planck había sugerido por primera vez que la energía venía en conglomerados.

Esto llevó a pensar que la luz — que es una forma de energía— también estaba compuesta de partículas.

Al principio no parecía probable, pero Einstein había desarrollado el concepto hasta el punto de tener una credibilidad considerable, y las partículas de la luz se conocieron como fotones.

A pesar de que la luz era claramente una partícula, :ambién tenía propiedades de onda.

Mentes Brillantes del Mundo Grandes Mentes del Arte Creadores Musica

El trabajo de Planck había demostrado que distintas luces se transformaban en diferentes colores porque los fotones tenían distintas cantidades de energía.

Sin embargo, si se divide la energía por la frecuencia a la que ese color oscila, siempre resulta el mismo valor, la llamada constante de Planck.

Eso para la luz.

¿Pero qué hay de las partículas de materia?

la pregunta empezó a tener respuesta cuando Louis de Broglie, un aristocrático físico francés del siglo XX, sugirió c¡ue las partículas de los materiales parecían ser conglomerados localizados porque no éramos capaces de verlas más de cerca.

Una mejor observación, creía, revelaría que ellas también tienen propiedades de onda.

Buscando soporte para sus ideas sobre la teoría de la relatividad de Einstein, de Broglie demostró que, con las ecuaciones de Einstein, podía representar el movimiento de la materia :omo ondas.

Presentó sus descubrimientos en 1924, en su :esis doctoral Recherches sur la Théorie des Quanta (Investigación sobre la Teoría Cuántica).

Se demostró experimentalmente gracias al trabajo con electrones llevado a cabo por los físicos americanos Clinton Joseph Davisson y Lester Hallbert Germer en 1927, quienes demostraron que los electrones, aun siendo partículas, se comportan como ondas. Planck había cambiado nuestra visión de la luz, Broglie cambió la de la materia.

La aportación de Schrodinger en esta revelación, fue tomar .as observaciones de Broglie y desarrollar una ecuación que describía el comportamiento de los electrones.

Usó la ecuación para definir los modos de movimiento de los electrones en los átomos, y descubrió que las ecuaciones sólo funcionaban cuando su componente de energía era múltiplo de la constante de Planck.

En 1933, Schrodinger recogió el Premio Nobel de Física, aero, al hacerlo, pagó tributo a Fritz Hasenhórl, el profesor de Física que había estimulado su imaginación cuando era estudiante en la Universidad de Viena.

Hasenhórl había sido asesinado en la Primera Guerra Mundial, pero durante su aiscurso de recepción, Schrodinger remarcó que de no haber sido por la guerra, habría sido Hasenhórl, y no él, quien recibiera el honor.

Fuente Consultada:
Las Grandes Ideas que Formaron Nuestro Mundo Pete Moore
TECNIRAMA Enciclopedia de la Ciencia y la Tecnología

Enlace Externo: Naturaleza de la Materia

Energía Mareomotriz: Produccion de Electricidad Con Las Mareas

Energía Mareomotriz Producir Electricidad Con Las Mareas

USINAS ELECTRICAS QUE USAN LA FUERZAS DE LAS MAREAS

Hasta ahora, el hombre ha hecho muy poco para aprovechar la energía de los mares y utilizarla convenientemente.

La central mareomotriz francesa de la Ranee, fue la primera en su estilo en el mundo, que produzcía electricidad a partir del regular flujo y reflujo de las mareas.

Ocurre que, en este lugar particular de la costa francesa, la diferencia entre pleamar y bajamar es lo suficientemente grande para poder hacer funcionar una planta eficaz.

Ver:Las Mareas

En realidad, hay pocos sitios en el globo terrestre donde el nivel del agua sube y baja lo suficiente como para que valga la pena llevar a cabo la operación.

El desnivel entre la pleamar y la bajamar en el estuario de la Rance tiene un valor medio de 11,4 metros y, por otra parte, la electricidad producida puede consumirse inmediatamente en la región.

Por estas circunstancias, el proyecto resulta práctico.

Dos veces en cada día lunar (24 horas y 50 minutos), una «ola astronómica» llega del Atlántico y penetra en el Canal de la Mancha

Su potencia bruta se ha estimado en  56 millones de caballos vapor.

Aproximadamente, una mitad de esta potencia se pierde en el Canal, al romper las olas y al rozar con el fondo del mar y a lo largo de la costa.

Lo que los ingenieros intentan aprovechar con sus centrales mareomotrices es una parte de esta energía perdida.

El principio de la operación, en su conjunto, es sencillo.

El hombre lo ha utilizado desde la antigüedad, con ruedas de molino impulsadas por la marea.

Un canal, con una compuerta abierta cuando sube la marea, se llenará de agua.

Ésta podrá ser retenida cerrando la compuerta y, posteriormente, se utilizará para producir trabajo o para hacer funcionar algún tipo de planta generadora, cuando la marea baje.

Desgraciadamente, esta teoría tan sencilla fallará en la práctica, porque esto significa que sólo se puede producir electricidad cuando la marea está bajando, y una generación momentánea de electricidad en la madrugada no es útil a nadie.

Se necesita una producción regular, para suministrar energía en el tiempo preciso, y esto exige una organización mucho más compleja.

En realidad, pura poder armonizar la producción de electricidad con la demanda se necesita una calculadora que dirija las operaciones de abrir y cerrar las compuertas.

VEINTICUATRO CENTRALES ELÉCTRICAS EN  UNA

La central de la Rance organiza su producción de electricidad por medio de veinticuatro elementos, que, para el espectador, aparecen como veinticuatro canales que corren a lo largo de una gran presa, construida a través del extremo del estuario de la Rance.

El conjunto tiene una longitud total de 750 m, y consta de Oeste a Este de:

-Una esclusa que permite la navegación entre la parte embalsada y la parte de mar de la bahía, de 65 metros de largo por 13 metros de ancho.

-Una planta mareomotriz de 390 metros de largo por 33 de ancho, formada por 24 turbinas «tipo bulbo», de 10 MW cada una.

-Un dique de entronque de 163 metros de largo que completa el cierre del estuario entre la planta y el islote de Chalibert.

-Una pesa movil de 115 metros de largo, provista de 6 válvulas de tipo «wagon», capaces de funcionar a una diferencia de altura de la columna de agua de 10 metros; siendo su ancho de 15 metros cada una.

-Una carretera de doble sentido que une Dinard con St-Malo, la cual se ve sometida al paso de 26.000 coches diarios, siendo 60.000 en verano.

Represa Mareomotriz en Francia Dos veces al día pasan 184 millones de metros cúbicos a través de la presa, cayendo de una altura de 11,4 metros y proporcionando energía.

Se eligen los momentos del día en que se necesita más electricidad, las horas de máximo consumo.

La energía básica de una central eléctrica mareomotriz depende de dos factores: la superficie del canal en el que se retiene el agua y la diferencia entre la pleamar y la bajamar.

Por tanto, conviene elegir un lugar en el que este valor sea el más grande posible.

El estuario de la Ronce tiene una superficie de 22 kilómetros cuadrados y el nivel del agua varía 11,4 metros, como valor medio, en cada marea, lo que significa una cantidad de agua de 184 millones de metros cúbicos que entra y sale dos veces al día.

El Mediterráneo no podría utilizarse nunca para producir energía eléctrica, ya que la marea sólo hace variar el nivel del mar en pocos decímetros.

————-  00000 ————

Cuando la marea sube, el agua se precipita dentro de los canales, impulsando las turbinas a su paso.

Así se produce mucha menos energía que cuando las presas están vaciándose; pero, a pesar de todo, todavía resulta conveniente.

Al final de la marea se utiliza energía de la red ordinaria, para que la turbina siga girando y llene la presa por encima del nivel exterior durante esta operación.

Este aumento extra de nivel es un métodopara obtener algo a partir de nada.

Cuesta muy poco tomar electricidad del sistema para hacer subir, artificialmente, el nivel del agua, digamos 50 centímetros más.

Pero tres horas después, cuando el nivel del agua en el exterior haya bajado unos 6 metros, esta misma agua tendrá una caída de 6 metros y, en la práctica, podrá proporcionar una energía 12 veces mayor que la empleada para subirla a su posición inicial.

El tiempo en que se almacena el agua a este nivel artificial depende de la demanda de electricidad.

En el momento oportuno, el agua puede salir hacia el mar y proporcionar así la electricidad a la red.

La turbina que convierte el flujo de agua en   una   corriente   eléctrica   utilizable   está sumergida y se encuentra en el paso de la corriente de agua.

Está rodeada de agua por todas partes y posee una gran hélice, que es impulsada por la corriente.

La hélice es de láminas ajustables, que pueden orientarse de modo que se adapte a las condiciones imperantes.

Se puede llegar a la turbina sumergida por medio de un túnel con una escalera.

Cuando una presa se ha vaciado y alcanzó el nivel de la marea que la rodea, se toma otra vez un poco de energía de la red para producir un sobrevaciado.

Entonces, el ciclo completo puede empezar nuevamente.

Cada pequeña central funciona independientemente de las demás, para responder a las distintas necesidades de corriente, según las diferentes mareas.

El número de ciclos diversos que se pueden utilizar en el curso de un mes es variable, permitiendo, así, una adaptación a las más diversas demandas de electricidad y el mejor aprovechamiento de toda clase de mareas.

Es necesario tener en cuenta el hecho de que las mareas se retrasan 50 minutos cada día y no tienen siempre la misma amplitud.

Se calcula que la producción anual de la central será de unos 540 millones de kilovatios-hora por año, producción muy pequeña para una central eléctrica.

Pero el combustible no faltará nunca y la planta será una experiencia útil para decidir si se puede emplear el mismo principio en otro lugar del globo terráqueo.

Imagenes Mostrando Esquema de un Represa

esquema represa mareomotriz

La turbina, que está sumergida y se encuentra en el paso de la corriente de agua, gira, proporcionando   una   pequeña   cantidad   de   electricidad.

corte de una represa mareamotriz

Se toma de la red una pequeña cantidad de electricidad,
para elevar artificialmente el nivel del agua  en el estuario.

Represa mareomotriz

A medida que se vacía el embalse, la turbina produce una
gran cantidad de electricidad en el sistema.

corte de una represa mareamotriz

Cuando el embalse está vacio, se toma un poco do electricidad para hacer
girar la turbina y vaciar todavía más la presa.

FUENTES DE ENERGÍA ELÉCTRICA

Casi toda la energía eléctrica producida actualmente prosede de combustible! extraídos de la Tierra, que pueden encontrarse en una u otra forma.

Estos combustibles —carbón, petróleo y uranio— se extraen, retiran y trasporte?; antes de utilizarlos para trasformar el agua en el vapor que hará funcionar los generadores eléctricos.

Además de estas fuentes de energía, existen otras —ríos de corriente rápida y el calor procedente del Sol.

En todos los métodos convencionales, la energía encerrada en el combustible se convierte, primero, en energía calorífica.

En el carbón y en el petróleo, lo que se convierte es energía química; en el caso del uranio se utiliza la energía desprendida en la fisión controlada de los núcleos de uranio.

En la instalación de la Ranee, la energía mecánica de la marea se convertirá directamente en energía eléctrica.

El procedimiento es similar, en principio, a las centrales hidroeléctricas que funcionan en todo el mundo, mediante la energía mecánica que libera el agua al caer de un nivel a otro.

Esta energía se convierte directamente en electricidad.

Este proyecto de la Ranee también se parece mucho a otros de almacenamiento por bombeo, ya en servicio en Luxemburgo (en Vianden) y en el país de Gales (en Festinlog).

En ambos proyectos, como en el de la Ranee, sólo se pers fluir el agua a través de los equipos generadores cuando se requiere, es decir, cuando hay una demanda en el circuito eléctrico.

En los proyectos de almacenamiento por bombeo, el agua se hace subir a una colina desde una reserva hasta otra más elevada, en los momentos del día en que no hay una gran demanda de electricidad.

Se guarda hasta que la demanda alcanza un máximo y entonces se libera, dejándosela fluir a través de los equipos generadores, para producir un suplemento de energía eléctrica, muy necesario.

Otro ejemplo de conversión de una energía natural es la utilización de la energía solar.

Una gran cantidad de energía radiante procedente del Sol alcanza la superficie de la Tierra durante el día y puede utilizarse para trasformar agua en vapor.

Este vapor puede hacer funcionar turbinas generadoras.

Tales proyectos se han puesto en marcha en Rusia a partir de la década del 60´.

Fuente Consultada
Enciclopedia TECNIRAMA Fasc. N° 118 Electricidad Producida Por Las Mareas

Temas Relacionados:

Principales Obras Civiles Argentinas:Puentes,Represas y Centrales
Represa de Salto Grande Hidroelectrica: Caracteristicas y Datos
Represa Hidroelectrica Yacireta:Historia y Caracteristicas
La Represa Hoover Historia y Características Obras Civiles EE.UU
La Lucha de los Paises Bajos Contra el Mar:Diques y Represa
Chocon-Cerros Colorados: Represa Hidroelectrica en Argentina
Represa de Itaipú Mayor Represa Hidroeléctrica del Mundo
Ganar Tierra al Mar Polders y Diques Obras en Holanda
Importancia de los Canales Marítimos

Enlace Externo:La energía mareomotriz, la energía del mar

Naturaleza de la Luz Onda o Partícula- Teorías Fisicas

FÍSICA: TEORÍA ONDULATORIA Y CORPUSCULAR

La Naturaleza de la Luz

LA CURIOSIDAD DEL HOMBRE: Un hombre de ciencia destina una buena parte de su tiempo en pensar «qué pasaría si …».

¿ … si alguien inventara algo para bloquear nuestra gravedad?.

¿ … si la luz fuera a la vez una partícula y una onda?.

¿ … si hubiera un mundo de antimateria?.

¿ … si el Universo que ahora parece expandirse, se contrajera en el futuro?

El investigador científico plantea la pregunta fundamental:

¿Qué clase de Universo es éste donde yo vivo?

Es muy improbable que alguna vez llegue el tiempo en que ios humanos agoten sus preguntas respecto a la naturaleza del Universo.

Recordemos que Newton se comparaba a sí mismo con un niño jugando con guijarros y conchas en una playa, mientras el «gran océano de la verdad estaba sin ser descubierto» delante de él.

El científico siempre trabaja en las orillas del «gran océano de la verdad», esforzándose en descubrirle cada vez más.

Biografia de Isaac Newton Vida y Obra Cientifica del Fisico ...

A principios del siglo XX, algunos de los que se preguntaba:

«qué pasaría si . . .» expusieron ideas que, al principio, se veían tan imposibles como la afirmación de que la gente viviría felizmente en el centro de la Tierra.

Al investigar estas ideas aprendieron mucho sobre la orilla del océano de la verdad.

Una de las preguntas más importantes fue estimulada por el estudio de la luz, en particular, de los espectros:

¿Es posible que la luz sea a la vez una onda y una partícula?.

Las consecuencias de esta pregunta han mantenido ocupados a los científicos por más de cincuenta años.

Otras preguntas, relacionadas algunas con el problema de la onda-partícula y otras muy diferentes, han surgido en la actualidad.

La Física no está completa.

El hombre está aún en la playa de Newton, tratando de comprender el océano que está delante de él.

Ahora analizaremos lo relativo a la onda-partícula y también introduciremos algunas otras preguntas para las que están buscando respuestas los científicos actuales.

Como las teorías modernas con relación a la luz no son completas, se van agregando nuevas ideas.

Sin embargo, una piedra angular de la teoría moderna es que la luz se propaga como ondas, que tienen muy corta longitud de onda.

• PRIMERAS INTERPRETACIONES:

El hombre es capaz de ver los objetos que lo rodean debido a la luz que, procedente de ellos, llega a sus ojos.

Los objetos brillantes, tales como el Sol o una llama luminosa, emiten su propia luz.

Todos los demás son visibles a causa de la luz que reflejan.

Un grupo de filósofos griegos del siglo IV a. de J. C. interpretó este hecho diciendo que la luz estaba formada por diminutos corpúsculos, emitidos por los objetos visibles y recibidos por el ojo humano.

Esta hipótesis estaba en contradicción con las ideas postuladas por otra escuela del pensamiento griego, que interpretaba el mecanismo de la visión como productos de unos invisibles rayos, emitidos por el propio ojo para sondear sus alrededores.

Los rayos de luz obedecen a reglas muy simples, algunas de las cuales eran ya conocidas por los antiguos griegos.

Así, por ejemplo, sabían que la luz sigue siempre trayectorias rectilíneas, empleando el menor tiempo posible en recorrer la distancia existente entre dos puntos.

Del mismo modo, se sabía entonces que la luz era reflejada por la superficie del agua, o por una superficie metálica pulimentada, y se interpretó el fenómeno diciendo que los rayos luminosos, al llegar a estas superficies, sufrían un brusco cambio de dirección.

Hooke observa las ondas en un lago

También era conocida en aquella época la ley de la reflexión, es decir, que el ángulo, respecto a la normal, con que el rayo luminoso incide en la superficie, es igual al ángulo que forma, con dicha normal, el rayo reflejado.

Las lentes de vidrio y cuarzo eran también conocidas, así como las desviaciones que producían en los rayos de luz que las atravesaban.

En este sentido, los griegos utilizaron el poder que poseen las lentes de concentrar la luz, y el calor a que ésta da lugar, par» encender fuego, por ejemplo.

Nada nuevo fue descubierto en este campo hasta la Edad Media, en que se construyeron lentes especiales para ser utilizadas como lupas.

Un siglo después empezaron a emplearse las lentes para corregir los defectos de la visión humana, así como en la construcción de los telescopios astronómicos que utilizaron Galileo, Kepler y otros astrónomos. Leeuwenhoek las usó también para construir el primer microscopio.

Científicos del Espacio

Astronomos del Renacimiento Y Sus Descubrimientos – BIOGRAFÍAS e ...

En todos estos instrumentos, los rayos de luz sufren una desviación al pasar del aire al vidrio, o viceversa.

La ley que gobierna esta desviación, propuesta primeramente por Willebrord Snell, en 1621, es la ley de la refracción.

LA LUZ COMO ONDA O COMO PARTÍCULA:

Las leyes de la reflexión y de la refracción son las dos leyes básicas por las que se rigen los rayos luminosos.

Una vez descubiertas, faltaba una teoría, acerca de la naturaleza de la luz, que las explicase.

Surgieron entonces dos distintas: la ondulatoria y la corpuscular.

Los principios de la teoría ondulatoria fueron expuestos por Robert Hooke en 1607; éste comparó las ondas formadas en la superficie del agua cuando una piedra cae en ella, con el tipo de perturbación que se origina en un cuerpo emisor de luz.

robert hooke
Robert Hooke, concluyó que la luz se comporta como una onda

Ésta debía tener su origen en algún tipo de vibración producida en el interior del cuerpo emisor y, consecuentemente, se propagaría en forma de ondas.

Hooke formuló estas ideas después de haber descubierto el fenómeno de la difracción, que hace aparecer iluminadas ciertas zonas que deberían ser oscuras.

Encontró la explicación observando detenidamente el comportamiento de las ondas formadas en la superficie del agua.

En 1676, Olaus Roemer, considerando el carácter ondulatorio de la luz, pensó que ésta no podía tener una velocidad infinita, y se dispuso a medir la velocidad de las ondas luminosas.

Observando los eclipses de las lunas de Júpiter notó que, cuando la Tierra se encontraba a la máxima distancia de dicho planeta, estos eclipses se retrasaban unos 15 minutos.

Ello quería decir que la luz empleaba este tiempo en recorrer la distancia adicional. Según este método, Roemer obtuvo para la velocidad de la luz un valor de 3.100.000 Km./seg., muy cercano al valor actual aceptado, que es de 2,990.000 Km./seg.

• TEORÍA ONDULATORIA:

Las leyes de la óptica se pueden deducir a partir de una teoría de la luz más sencilla pero de menores alcances propuesta en 1678 por el físico holandés Christian Huygens.

Christian Huygens
HUYGENS Christian (1629-1695)

Esta teoría supone simplemente que la luz es un fenómeno ondulatorio y no una corriente de partículas, pongamos por caso.

No dice nada de la naturaleza de las ondas y, en particular —puesto que la teoría del electromagnetismo de Maxwell no apareció sino un siglo más tarde— no da ninguna idea del carácter electromagnético de la luz.

Huygens no supo si la luz era una onda transversal o longitudinal; no supo las longitudes de onda de la luz visible, sabía poco de la velocidad de la luz.

No obstante, su teoría fue una guía útil para los experimentos durante muchos años y sigue siendo útil en la actualidad para fines pedagógicos y ciertos otros fines prácticos.

No debemos esperar que rinda la misma riqueza de información detallada que da la teoría electromagnética más completa de Maxwell.

Mentes Brillantes del Mundo Grandes Mentes del Arte Creadores ...

La teoría de Huygens está fundada en una construcción geométrica, llamada principio de Huygens que nos permite saber dónde está un frente de onda en un momento cualquiera en el futuro si conocemos su posición actual; es:

Todos los puntos de un frente de onda se pueden considerar como centros emisores de ondas esféricassecundarias.

Después de un tiempo t, la nueva posición del frente de onda será la superficie tangencial a esas ondas secundarias.

Ilustraremos lo anterior con un ejemplo muy sencillo:

Dado un frente de onda en una onda plana en el espacio libre, ¿en dónde estará el frente de onda al cabo de un tiempo t?.

De acuerdo con el principio de Huygens, consideremos varios puntos en este plano (véanse los puntos) como centros emisores de pequeñas ondas secundarias que avanzan como ondas esféricas.

En un tiempo t, el radio de estas ondas esféricas es ct, siendo c la velocidad de la luz en el espacio libre.

El plano tangente a estas esferas al cabo del tiempo t está representado por de. Como era de esperarse, es paralelo al plano ab y está a una distancia ct perpendicularmente a él.

Así pues, los frentes de onda planos se propagan como planos y con una velocidad c.

Nótese que el método de Huygens implica una construcción tridimensional y que la figura es la intersección de esta construcción con el plano de la misma.

frente de onda de luz
Frente de Onda de Luz
Primera Ley de la Óptica
Primera Ley de la Óptica

«En la reflexión el ángulo de incidencia de una onda o rayo es igual al ángulo de reflexión, ósea en este caso i=r.

Ambos rayos siempre se encuentran contenidos en un mismo plano.»

Llamamos refracción de la luz al fenómeno físico que consiste en la desviación de un rayo de luz al pasar de un medio transparente a otro medio también transparente.

Un ejemplo diario es cuando miramos un lapiz dentro de un vaso de agua.

Difracción de la luz
Difracción de la luz
Segunda Ley de la Óptica
Segunda Ley de la Óptica

«El cociente entre el seno del ángulo de incidencia y el seno del ángulo de refracción es constante para todos los rayos reflactados. Todos los rayos, incidentes y reflactados se encuentran en un mismo plano»

NACE LA TEORÍA CORPUSCULAR:

La teoría de Hooke se vio pronto derrotada por las ideas de Isaac Newton, quien propuso otra teoría corpuscular corregida.

En su famoso libro titulado «Óptica», éste describió un gran número de experimentos dirigidos a explicar el comportamiento de la luzen todos sus aspectos, entre los que se destacaba la descomposición de la luz en sus distintos colores, al atravesar un prisma.

De acuerdo con la teoría corpuscular, Newton explicó los diferentes colores del espectro, mediante la existencia de distintos corpúsculos.

En el curso de sus elaborados experimentos, Newton descubrió el fenómeno de la difracción y el de la interferencia.

Dos rayos de luz, ambos procedentes del Sol, y convenientemente separados para que sus recorridos fuesen diferentes, producían anillos luminosos, oscuros y coloreados (llamados anillos de Newton), cuando se los hacía pasar a través de la lente de un telescopio.

Hooke había descrito antes la formación de irisaciones en las pompas de jabón, pero fue incapaz de explicar el fenómeno.

Tanto la debían a la interferencia de dos ondas luminosas, de recorridos ligeramente distintos.

El fenómeno de la difracción casi destruyó la ingeniosa interpretación corpuscular.

Newton había llegado a los mismos resultados que Hooke, tras llevar a cabo experimentos muy cuidadosos: una pequeña porción de luz se extendía por una región que, seguía teoría corpuscular, debía permanecer totalmente a oscuras.

Este hecho era, exactamente, lo que había predicho la teoría ondulatoria de la luz debida a Hooke.

El físico holandés Christian Huygens sentó las bases más generales de esta teoría, al explicar con todo detalle la propagación de los movimientos ondulatorios.

Huygens Chistiaan Inventor del Reloj a Pendulo Biografia y Obra ...

Se estableció entonces una agitada controversia entre los partidarios de una y otra teoría, que quedó de momento sin resolver, debido a la carencia de aparatos lo suficientemente exactos que proporcionasen datos experimentales decisivos.

En 1801, Thomas Young asestó un terrible golpe a la teoría corpuscular con su experimento acerca de las interferencias; según éste, se producían franjas luminosas y oscuras que sólo podían ser explicadas aceptando que la luz tenía un carácter ondulatorio.

El descubrimiento del fenómeno de la polarización, debido a Augustín Fresnel, en 1816, significó un nuevo apoyo en favor de la teoría ondulatoria. Según ella, la luz polarizada estaba compuesta por ondas que vibraban en un solo plano.

Tanto las ondas sonoras como las que se forman en el agua necesitan un medio para poder propagarse.

Durante todo el siglo xix se consideró que las ondas luminosas eran perturbaciones producidas en el éter, sustancia invisible que lo invadía todo, incluso el espacio «vacío».

Clerk Maxwell llevó a cabo un tratamiento matemático de las ondas luminosas, demostrando que éstas eran un tipo dé radiación electromagnética, y similares, por tanto, a las ondas de radio. Una pregunta quedaba por hacer: ¿era necesaria la existencia del éter para la propagación de las radiaciones electromagnéticas?.

En seguida se pusieron en acción numerosos dispositivos experimentales, para tratar de demostrar su existencia; entre ellos puede señalarse el de Oliver Lodge —que constaba de dos discos que giraban muy próximos—, con el que trató de verificar si el éter ejercía algún tipo de fricción.

Las observaciones astronómicas sugerían que si, de verdad, existía el éter y éste envolvía la Tierra, no debía de girar con ella, pues, de otro modo, su rotación habría afectado las observaciones de los telescopios.

Los estadounidenses Michelson y Morley realizaron una serie de experimentos para determinar el retraso de la rotación del éter con respecto a la de la Tierra, encontrando que era igual a cero.

El éter, por tanto, permanecía estacionario, o no existía, o la luz se comportaba de un modo peculiar.

De esta forma se llegó a la conclusión de que esta sustancia tan tenue, que tanta resistencia había opuesto a ser detectada, no era más que un ente hipotético.

El éter era una complicación innecesaria.

La luz se comportaba de un modo peculiar cuando se trataba de medir su velocidad, ya que mantenía una propagación siempre igual.

Este resultado condujo a Albert Einstein a formular su teoría de la relatividad, basada en la constancia de la velocidad de la luz.

La idea corpuscular es quizá la mejor forma de representarnos un rayo de luz. Los corpúsculos viajan en línea recta, ya que tienden siempre a desplazarse entre dos puntos por el camino más corto posible.

Los cuerpos muy calientes, como el Sol o el filamento de una lampina eléctrica, emitirían un chorro de diminutas partícula.

Los demás cuepos se ven debido a que reflejan algunos de los corpúsculos que los golpean.

Biografia de Einstein Albert Obra Cientifica y Vida – BIOGRAFÍAS e ...

El cuerpo humano no emite corpúsculos luminosos propios, pero se hace visible cuando refleja los corpúsculos en los ojos de las personas que están mirándolo.

De acuerdo con la teoría corpuscular, toda la energía luminosa que llega a la Tierra, procedente del Sol, es transportada por corpúsculos.

Las teorías modernas sobre la naturaleza de la luz sugieren que es, en realidad, un conjunto de diminutas partículas emitidas por cuerpos calientes, como el Sol.

Pero existe una sutil diferencia entre la moderna partícula luminosa, llamada fotón, y la versión antigua, el corpúsculo, consistente en que el fotón no transporta energía, sino que es energía.

Podemos pensar en un fotón como en un paquete de energía.

Es diferente a todas las demás clases de energía, ya que existe sólo en movimiento.

Cuando se desplaza a sus velocidades normales, aproximadamente 300.000 kilómetros por segundo, los fotones se comportan como un trozo ordinario de materia.

Pueden entrar en colisión con partículas, tales como electrones y protones, y desviarlos, del mismo modo que si fueran partículas normales.

En los fotómetros fotoeléctricos, empleados en fotografía;, los fotones que golpean un trozo de metal sensible a la luz liberan electrones de él.

Estos electrones forman una corriente eléctrica que mueve una aguja, indicando la intensidad de la luz.

Se ha descubierto que un fotón libera un electrón.

Los electrones son partículas y se liberan por los fotones que se comportan como partículas. Isaac Newton fue defensor de la vieja teoría corpuscular, la cual, debido a su influencia, dominó durante el siglo XVIII.

La teoría moderna de los fotones fue consecuencia del trabajo de Alberto Einstein sobre el efecto fotoeléctrico, en el año 1905.

Sigamos ahora con esta nueva visión física del fenómeno.

NUEVA VISIÓN CORPUSCULAR: EINSTEIN Y LOS CUANTOS DE LUZ (los fotones)

Cuando la luz choca con una superficie metálica sensible provoca un desprendimiento de electrones.

En 1905, Alberto Einstein, examinando ese efecto (efecto fotoeléctrico), llegó a la conclusión de que las cosas sucedían como si la luz estuviese compuesta de pequeñas partículas (posteriormente denominadas cuantos).

albert einstein

Cada cuanto de luz provocaba la liberación de un electrón. Con ello se volvía de nuevo a los postulados de la teoría corpuscular.

En el segundo decenio de nuestro siglo, Louis de Broglie propuso una arriesgada teoría: la luz posee una doble personalidad: unas veces se comporta como ondas y otras como partículas.

Broglie Louis
Broglie Louis

La teoría actualmente aceptada sugiere que la luz es algo aún más indefinido.

Su comportamiento es regido por leyes estadísticas (mecánica ondulatoria).

Para demostrarlo, podemos, por ejemplo, utilizar el experimento de Young sobre la formación de las interferencias, sólo que, en este caso, se emplea un haz luminoso de intensidad muy débil.

Haciéndolo pasar a través de dos aberturas convenientemente situadas, se hace llegar la luz a una placa fotográfica.

En principio, hemos de esperar que cada cuanto de luz que llegue a la placa ennegrecerá una molécula de la emulsión que la recubre.

Si el haz luminoso es lo suficientemente débil, al comienzo de la operación parece como si los electrones que llegan a la placa pudieran chocar con cualquier parte de ella; pero esto es algo muy fortuito.

A medida que pasa el tiempo, sin embargo, puede verse como las partes mas ennegredecidas van concentrándose gradualmente.

Estas zonas son, precisamente, aquellas donde nan de producirse las franjas luminosas de interferencia.

Según las modernas teorías, estas zonas son las que tienen mayor probabilidad de ser alcanzadas por la luz, de manera que sólo cuando el número de cuantos que llegan a la placa es suficientemente grande, las teorías estadísticas alcanzan el mismo resultado que las teorías clásicas.

Fuente Consultada:
FISICA I Resnick-Holliday
TECNIRAMA Enciclopedia de la Ciencia y la Tecnología

Enlace Externo: Huygens y la Naturaleza de la Luz

Funcionamiento de Olla a Presión e Historia de Papin Denis

Funcionamiento de Olla a Presión
Historia de Papin Denis

FUNCIONAMIENTO: Las ollas a presión suponen un enorme ahorro de tiempo en la cocina, ya que, permiten cocer los alimentos en un plazo mucho menor del requerido normalmente.

El tiempo necesario para la cocción depende mucho de la temperatura del alimento y del ambiente que lo rodea.

Por ejemplo, un trozo de carne tarda mucho más en asarse en un horno a fuego lento que si se aumenta la temperatura. Sin embargo, si ésta se aumenta demasiado, la carne se quema, en vez de cocerse como es debido.

https://historiaybiografias.com/archivos_varios6/olla-presion.jpg

Lo mismo ocurre cuando los alimentos se cuecen en agua.

Por ejemplo, un huevo metido en agua a 80°C, tarda mucho más en cocerse que si el agua está hirviendo.

Así, pues, el tiempo de cocción depende de la temperatura.

Si se mide la temperatura a intervalos durante la cocción del huevo, se ve que aquélla aumenta, hasta que el agua comienza a hervir, y entonces permanece constante a 100°C

El proporcionarle mas calor no altera la temperatura: lo único que ocurre es que el agua hierve más vigorosamente.

Bajo condiciones atmosféricas normales, el agua pura hierve a 100°C.

Sin embargo, el punto de ebullición del agua varía con la presión.

En la cumbre de una montaña elevada, donde el aire está enrarecido y la presión es inferior a la normal, el agua hierve a una temperatura más baja.

Si por algún procedimiento se aumenta la presión del gas sobre el agua, su punto de ebullición sube.

Esto es exactamente lo que ocurre en las ollas a presión.

Aumenta la presión del gas dentro de ellas y, por lo tanto, el punto de ebullición del agua que contienen, con lo cual los alimentos se cuecen más rápidamente a temperaturas más altas.

El agua hierve a 100 °C, a la presión atmosférica normal (1,03 kg. por centímetro cuadrado) .

Si se aumenta la presión a 1,4 kg./cm2., hierve a 108 °C; si se incrementa a 1,75 kg./cm., lo hará a 115°C., y así sucesivamente.

De hecho, algunas ollas trabajan a una presiones dos veces mayor que la atmosférica.

Las ollas a presión tienen que ser lo bastante sólidas para soportar las fuertes presiones, y la tapa ha de cerrar herméticamente, para que la presión interior se mantenga sin que se produzcan fugas.

La tapa lleva un punto débil, colocado deliberadamente para que actúe como dispositivo de seguridad, ya que, en caso de que se obstruyera la válvula de seguridad a través de la cual escapa normalmente el vapor, la olla podría convertirse en una bomba, de no existir dicho dispositivo, pues a medida que se siguiera aplicando calor la presión iría aumentando, hasta que, finalmente, explotaría.

Pero la olla no es tal arma mortífera y no ocurre eso, ya que, cuando la presión aumenta demasiado, la válvula de seguridad se abre y escapa el exceso de gas.

En el centro de la tapa, hay un orificio en el que se asienta un manómetro de aguja, que lleva un peso. Se comienza la cocción sin colocar la válvula.

corte de una olla a presión

El agua hierve a la presión atmosférica y la olla va llenándose de vapor, hasta que, por fin, brota un chorro de éste por el orificio.

Entonces, se coloca el manómetro y el orificio queda bloqueado.

Esto impide que escape el vapor y, con ello, aumenta la presión.

A medida que esto ocurre, el vapor acciona sobre el dispositivo, hasta que brota una nube que indica que la presión deseada se ha alcanzado.

En este momento, debe regularse el gas o la electricidad, para mantener la presión.

Cuando se ha acabado la cocción, hay que enfriar la olla bajo la canilla de agua.

El agua fría elimina calor de aquélla, y una parte del vapor interior se condensa en forma de gotitas acuosas.

Con lo cual, al reducirse la cantidad de vapor, la presión disminuye.

Entonces se puede abrir la olla.

Fuente Consultada: Enciclopedia de la Ciencia y la Tecnología TECNIRAMA N°126

SOBRE LA VIDA Y OBRA DE DENIS PAPIN:

Uno de los trece hijos de un burgués protestante de Blois, llamado Denis Papin se orienta primero hacia la medicina, mostrando en la facultad de Angers un interés precoz por la mecánica y la cuestión de la conservación de los cadáveres.

Su habilidad manual hace que repare en él un abate muy conocido, que lo recomienda a Christiaan Huygens, «inventor del reloj de péndulo», como se lo presentaba entonces.

Retrato de Denis Papin (1647-1714). Trabajó con Robert Boyle en la investigación sobre el aire. Es recordado por sus inventos y es considerado uno de los grandes pioneros de la máquina de vapor moderna.

La máquina de vapor de Papin se compone de un cilindro con un pistón que es levantado por la presión del vapor, y es descendente produciendo el trabajo.

Pilar de la Academia Real de Ciencias, dotado por el Rey de 1.200 libras de renta, el sabio holandés se instaló en la Biblioteca real, donde procedió a realizar múltiples experiencias.

Es allí donde el joven Papin, brillante posdoctorado estilo siglo XVII, se inicia en la tecnología de la «bomba al vacío», al tiempo que lleva a cabo investigaciones inéditas sobre la conservación de los alimentos.

Para el gran asombro de Huygens, logra mantener una manzana en condiciones, bajo vacío, ¡durante cinco meses!.

Como los laboratorios de física no eran muy numerosos en 1675, no es nada sorprendente encontrar al joven oriundo de Blois en Londres, en casa de Robert Boyle, aristócrata de fortuna apasionado por la mecánica.

Provisto de un contrato bastante ventajoso pero que estipula el secreto, Papin construye para su amo bombas de un nuevo género (dos cilindros hermanados conducidos por una palanca común que permite una aspiración continua), con las cuales termina por efectuar las experiencias él mismo.

Boyle nunca ocultará lo que le debe a su técnico francés, a quien cita con abundancia en sus publicaciones pero cuyos textos, aclara, reescribe sistemáticamente.

Es en ese laboratorio donde la gloria viene a coronar la doble obsesión, mecánica y culinaria, de Papin.

Al adaptar una sopapa de seguridad, que inventa para la ocasión, sobre un recipiente metálico herméticamente cerrado con dos tornillos, crea el «digestor», o «baño maría de rosca», que se convertirá en la olla a presión, cuyo vapor pronto silba en las cocinas del Rey de Inglaterra y en la sala de sesiones de la Academia real de París.

Dice Denis:

«Por medio de esta máquina , la vaca más vieja y más dura puede volverse tan tierna y de tan buen gusto como la carne mejor escogida», y en la actualidad no se concibe adecuadamente el impacto que podía tener una declaración semejante: en 1680, a los treinta y tres años, Papin es elegido miembro de la Royal Society, como igual de sus famosos empleadores, incluso si su nivel de vida sigue siendo el de un técnico.

Aunque en 1617 se haya instalado en Inglaterra un sistema de patentes, a Papin no le parece de ninguna utilidad interesarse en eso.

Mientras los artesanos ingleses hacen fortuna fabricando su marmita, él solicita a Colbert una renta vitalicia… que le es negada.

De todos modos, ahí lo tenemos, lanzado en el jet set intelectual de la época. Lo vemos disertando sobre la circulación de la sangre en casa de Ambrose Sarotti, en Venecia, experimentando con Huygens en París sobre la bomba balística (un pesado pistón puesto en movimiento por una carga de pólvora) y lanzando en Londres su candidatura al secretariado de la Royal Society.Por desgracia, el elegido será Halley.

Fatigado, sin dinero, Papin agobia a la Royal Society con candidos pedidos, antes de desaparecer definitivamente en 1712.

Fuente Consultada: Una Historia Sentimental de las Ciencias Nicolas Witkowski

Temas Relacionados

Leyes de los Gases Ideales Ley de Boyle, Lussac y Ecuacion
Teoría Cinética de los Gases Ideales: Modelo Molecular, Resúmen
La Presion Atmosférica y La Experiencia de Torricelli
Dilatacion de un Gas a Presion Constante:Leyes y Ejemplos
La presión de un buzo bajo el agua
Biografia y Obra Científica de Robert Boyle-Leyes y Experimentos
Principio de Pascal:Presion de los Fluidos: Resumen Descriptivo

Enlace Externo:Cómo Funciona Una Olla A Presión?

Concepto de Calor Latente:La Investigación de Black Joseph

CONCEPTO DE CALOR LATENTE

CALOR LATENTE:  Cuando calentamos una substancia esperamos que su temperatura ascienda. Un termómetro colocado en una olla con agua sobre un calentador registrará un aumento gradual de la temperatura hasta llegar a los 100°C, en que el agua entra en ebullición.

No hay más cambios de temperatura hasta que toda el agua se evapora, aunque el calentador siga suministrando calor. Este calor, que no se pone en evidencia por el aumento de temperatura, se denomina calor latente de vaporización del agua.

Latente quiere decir «oculto».

Todo el calor que pasa al agua hirviendo se emplea en proveerla de la energía necesaria para transformarse en vapor.

Las moléculas de vapor están mucho más alejadas entre sí que las del agua, y para separarlas es necesaria una cantidad de energía, que venza las fuerzas de atracción molecular.

Del mismo modo, todo el calor entregado al hielo se consume en transformarlo en agua, de modo que no queda calor disponible para elevar su temperatura.

Cada sustancia requiere calor «latente» para permitirle cambiar de estado sólido a estado líquido, o de líquido a gas.

Si el cambio de estado es de gas a líquido o de líquido a sólido, el calor «latente» es liberado.

Hablando en forma estricta, el calor latente se refiere a un gramo de substancia.

Así el calor latente de vaporización del agua (calor latente del vapor) es la cantidad de calor necesaria para convertir un gramo de agua en vapor, sin cambio de temperatura.

Su valor es de casi 540 calorías.

El calor latente de fusión del hielo es la cantidad de calor necesaria para convertir un gramo de hielo en agua, sin cambio de temperatura, y vale 80 calorías.

La nevera o heladera se basa en el calor latente de algún gas fácilmente licuable, como el amoníaco.

Se comprime el gas y se lo convierte en un líquido.

En este proceso el gas entrega su calor latente.

El líquido se envía por tubos al gabinete.

Como en estos tubos la presión es menor, el líquido se gasifica nuevamente, tomando el calor necesario para este cambio de estado del gabinete y su contenido, y así hace bajar la temperatura del mismo.

La nafta volcada, sobre la piel da sensación de frío, porque se evapora rápidamente y absorbe calor latente.

Del mismo modo, la evaporación del sudor en los climas cálidos es el procedimiento que emplea la naturaleza para que mantengamos frescos nuestros cuerpos.

Por otra parte, el calor latente liberado cuando se forma hielo en los grandes lagos de Estados Unidos es de gran utilidad para los fruticultores de la zona, porque evita las heladas.

//historiaybiografias.com/linea_divisoria2.jpg

PRIMERAS INVESTIGACIONES EN CALORIMETRÍA

Una de las formas de energía más familiar para nosotros es el calor.

Diariamente hacemos uso de él para calentar nuestra casa, para preparar la comida, etc.

La energía calorífica es debida al movimiento de las moléculas y de los átomos.

La experiencia nos enseña que la energía de un cuerpo puede transformarse en calor, siendo también posible que la energía térmica se convierta en trabajo, como sucede en los motores de explosión o en las máquinas térmicas. Por todo ello decimos que el calor es una forma de energía.

DIFERENCIA ENTRE CALOR Y TEMPERATURA:

Actualmente, está muy bien determinada la diferencia entre calor y temperatura, a pesar de que algunos estudiantes puedan confundir estos dos conceptos. Calor es la energia necesaria para calentar un cuerpo y temperatura es una medida de su grado de calor.

Cuanto mas energía entreguemos mas temperatura tendrá el cuerpo.

Para pensar este tema, imaginemos que debemos calentar 1 litro de agua de 10°C a 20°C, es decir , elevarla 10°C mas.

Para lograrlo debemos entregar energía a esa masa de agua, por ejemplo colocarla sobre la hornalla de una cocina.

Observaremos que a medida que pasa el tiempo el agua se pone mas caliente, por lo que podemos concluir que a medida que entregamos energía el agua aumenta su temperatura.

Vemos que hay dos conceptos definidos por un lado la cantidad de energía o calor entregado y por otro la medida de su temperatura.

Si por ejemplo ahora tenemos que calentar 2 litros de agua de 10°C a 20°C, entonces necesitaremos el doble de energia entregada, para lograr la misma temperatura.

Para medir la energia entregada en forma de calor, se define la caloría que es la cantidad de calor necesaria para calentar de 14°C a 15 °C un gramo de agua. La unidad así definida corresponde a una cantidad de calor muy pequeña, por lo que, generalmente, en la práctica se utiliza la kilocaloría, que corresponde a 1.000 calorías.

Se usa por definción de  14 a 15°C solo como una medida de referencia, en realidad lo que
objetivamente se quiere indicar, es que el aumento sea de 1°C.

Para medir temperaturas utilizamos un termómetro con diversas escalas, pero la mas popular es grados centígrados o Celsius, creador de esta escala, que comienza a O° cuando el hielo se congela y finaliza en 100°C cuando el agua entra en ebullición.

La temperatura (la intensidad de calor) puede medirse fácilmente usando un termómetro.  Por el contrario, para la medida del calor (cantidad de energía entregada para calentar la materia) se usa la caloría.

————-  00000 ————

Investigaciones de Joseph Black:

Hace unos 200 años, Joseph Black llevó a cabo una serie de experimentos muy importantes sobre la medida del calor y las relaciones entre el calor y la temperatura.

Joseph Black fisico

Demostró que el hielo en fusión y el agua hirviendo, que produce vapor, absorben grandes cantidades de calor, a pesar de que no hay cambios de temperatura. Introdujo el concepto de calor latente, con el que designó el calor necesario para producir esos cambios de estado.

grafica calor latente

Observe por ejemplo que cuando la temperatura llega a B, por mas que se sigua agregando calor, la temperatura
permanece constante hasta que no haya mas sustancia sólida. Lo mismo ocurre para que la sustancia
cambie de líquida a gaseosa.

La energía necesaria para que una sustancia cambie de estado es: Q = m. L
Donde m es la masa de la sustancia considerada y L es una propiedad característica de cada sustancia, llamada calor latente. El calor latente se mide en Joule/kg en unidades del SI.

Black también descubrió que se necesitan distintas cantidades de calor para producir las mismas elevaciones de temperatura en masas iguales de sustancias diferentes.

Por ejemplo, para aumentar la temperatura del agua de 15° a 25° hace falta aplicar 1,7 veces más calor que para producir el mismo cambio de temperatura en una masa igual de alcohol.

Para explicar esta variación entre las diferentes sustancias, Black introdujo la idea de calor específico.

Al realizar este trabajo, sentó las bases de la medida del calor —la calorimetría—, que sigue teniendo vigencia aún.

Durante los 100 años anteriores, o más, los avances de la química habían estado obstaculizados por la teoría del flogisto. Sin embargo, como Black no aceptaba las teorías que no estuviesen apoyadas por pruebas experimentales, hizo varias aportaciones valiosas a la ciencia química.

calor latente

Black definió el «calor latente» como la cantidad de calor para cambiar de estado una sustancia

Hasta mediados del siglo XVIII, se sabía muy poco acerca de los gases y, de hecho, muchas personas aseguraban que sólo existía un gas (el aire).

Un siglo antes (en 1640, para precisar más), van Helmont había descubierto el gas que hoy llamamos anhídrido carbónico; pero, a causa del incremento de la teoría del flogisto, no se llegó a comprender la importancia de este hallazgo.

Black redescubrió el anhídrido carbónico en 1754, haciendo experimentos con dos álcalis débiles: los carbonatas de magnesio y de calcio.

Comprobó que cuando estas sustancias se calientan, cada una de ellas produce un álcali más fuerte, liberando, al mismo tiempo, aire fijo (o sea, el anhídrido carbónico). El peso del álcali fuerte es menor que el del álcali débil del que procede.

Joseph Black nació en 1728, en Burdeos (Francia), de padres que descendían de escoceses.

Después de pasar seis años en la escuela en Belfast, en 1746, ingresó a la Universidad de Glasgow, para estudiar química y medicina.

En 1756, llegó a ser profesor de anatomía y de química en Glasgow.

Al cabo de 10 años pasó a la cátedra de medicina y química de la Universidad de Edimburgo.

Black era muy popular entre los estudiantes porque preparaba concienzudamente los cursos y sus clases estaban ilustradas con muchos experimentos.

Al mismo tiempo que hacía notables aportaciones a la química y a la física, encontró tiempo suficiente para ejercer la medicina.

Murió apaciblemente, todavía ocupando su cátedra, a la edad de 71 años.

Calor especifico

También definió el calor especifico, para tener en cuenta las diferentes cantidades de calor necesarias para producir un mismo aumento de temperatura en masas iguales de distintas sustancias.

No todos los materiales cambian su temperatura con la misma facilidad, ya que las partículas que los forman y las uniones entre ellas son diferentes. El calor específico Informa sobre la mayor o menor facilidad de las sustancias para aumentar su temperatura. El calor específico de una sustancia, ce, es la cantidad de calor necesaria para elevar un grado la temperatura de un kilogramo de dicha sustancia.

Algunos valores de calor específico expresado en: (Joule/Kg. °K)

Agua    4.180
Alcohol etílico    2.400
Hielo    2.090
Vapor de agua    1.920
Aire    1.000
Aceite    1.670
Aluminio    878
Vidrio    812
Arena    800
Hierro    460
Cobre    375
Mercurio    140
Plomo    125

Fuente Consultada:
Enciclopedia TECNIRAMA de la Ciencia y la Tecnología Fasc. N°112 Sabio Ilustre Joseph Black
Enciclopedia del Estudiante Tomo N°7 Física y Química

Temas Relacionados:

Primeros Descubrimientos Sobre el Calor Historia de los Estudios
Calor Producido Por la Corriente Electrica Aplicaciones
Cantidad de Calor:Concepto de Caloria, Equivalente Mecanico de
Thompson, Conde de Rumford Vida y Obra Científica Sobre el Calor
Los Termometros:Principio de Funcionamiento, Tipos y Errores
La Dilatacion Termica de los Materiales
Uso de las Fuerzas Naturales:Aplicaciones del Viento, Calor y Agua

Enlace Externo:•Principios de la Termodinámica

El Principio de Equivalencia – Teoría de la Relatividad General

El Principio de Equivalencia – Teoría de la Relatividad General

La teoría general de la relatividad constituye la culminación de los logros de Einstein.

Fue el resultado exitoso de un denodado esfuerzo de cuatro años para extender su teoría especial de la relatividad.

En esta parte se explica el significado de la teoría y se discute su influencia sobre nuestra concepción del universo.

La teoría general demuestra que la luz puede quedar atrapada en un hueco negro. Se describen aquí esos extraños objetos y lo que sería un viaje a su interior.

Cuando estudiamos física, observamos que existen varios tipos de movimientos, normalmente usamos los rectilineos, como por ejemplo cuando viajamos de una ciudad a otra, o cuando caminamos de nuestra casa a la escuela.

También están los circulares, es decir que el objeto sigui una trayectoria curva, como cuando «revoleamos» una piedra atada a un hilo.

También dentro de estos tipos de trayectorias, tenemos aquellos en donde la velocidad es constante, es decir no varia, por ejemplo cuando viajamos en un tren a 70 Km./h y  siempre esa velocidad es la misma al paso del tiempo, son movimiento de velocidad uniforme.

Y también hay otro movimiento llamado acelerados que es cuando nuestra velocidad va cambiando a traves del tiempo y podríamos decir que es el caso mas normal de nuestra vida.

Cuando salimos en nuestro auto, la velocidad pasa de  0 Km/h , cuando está denido a otra velocidad mas alta.

Luego cuando llegamos a destino apretamos el freno y la velocidad llega a cero (cuando nos detenomos) en algunos segundos.

Cuánto mas grande sea esa aceleración mas rápido vamos a avanzar o a detenernos, y viceversa, si la aceleración es nula o ceo, la velocidad será siempre uniforme y no aumentará ni disminuirá, podemos decir que el movimiento uniforme es una caso especial del movimiento acelerado, cuando la aceleración es cero.

Albert Einstein comprendió desde el comienzo que la teoría especial de la relatividad quedaba restringida a una clase particular de movimiento: el movimiento uniforme, es decir, el movimiento sin aceleración. Buscó entonces durante más de una década una teoría más general de la relatividad y finalmente logró su objetivo, en 1917.

Einstein  en su principio de relatividad afirma que las leyes de la física son las mismas para todos los observadores que se mueven con movimiento uniforme.

Como todas las cosas se comportan de la misma manera para un observador en reposo y para otro que se mueve con movimiento uniforme con respecto al primero, es imposible detectar el movimiento uniforme.

Siguiendo con su espíritu investigativo, Einstein comenzó a reflexionar sobre las limitaciones de la relatividad especial, porque la velocidad constante o uniforme es un caso de un movimiento mas general, que como vimos antes, del movimiento acelerado.

Einstein pensaba, y estaba en lo ciento que la aceleración es fácil de detectar.

Nunca dudamos cuando viajamos en un automovil, y este acelera, pues no sentimos apretados o «empujados» contra nuestro asiento. Lo mismo cuando frena bruscamente , nos vamos hacia adelnate y sentimos el efecto de la aceleración y del movimiento.

Albert, estuvo con este problema (que parece tan simple para nosotros) mucho tiempo en su cabeza sin lograr un modelo que le permita seguir avanzando con su novedosa teoría.

En una conferencia dictada en Kyoto en diciembre de 1922, relató al auditorio que un día, estando sentado en su silla de la oficina de patentes de Berna, se le ocurrió de súbito una idea: si alguien se cayera del techo de la casa, no sentiría su propio peso.

No sentiría la gravedad. Ésa fue «la idea más feliz de mi vida«, dijo.

La mencionada idea puso a Einstein en la vía que conducía a la teoría general de la relatividad, extensión de su teoría especial, que debería incluir toda clase de movimientos, no sólo el movimiento uniforme.

Al desarrollarla, inventó una nueva teoría de la gravedad que reemplazó a la ley de gravitación universal de Isaac Newton.

EXPLICACIÓN DE SU IDEA:

La respuesta a los problemas de Einstein era, literalmente, tan simple como caer de un tejado.

La idea de Einstein surgió al darse cuenta de que alguien que cayera hacia la tierra no sentiría el efecto de la gravedad.

Como es difícil imaginar una caída libre desde un tejado, imaginemos un hombre que cae desde un avión.

Según cae, todo lo que lleva consigo cae a la misma velocidad (la ley de la gravitación universal de Newton, que dice que la fuerza gravitatoria es proporcional a la masa de los objetos).

Si se da la vuelta, las monedas no se le saldrán del bolsillo, ya que están aceleradas hacia la tierra al igual que él.

Si se mete la mano en el bolsillo, saca unas cuantas monedas y las deja caer (si las arrojara con fuerza sería distinto), seguirían cayendo con él.

Todo esto demuestra una cosa: la caída libre ha cancelado la gravitación. En otras palabras, aceleración es equivalente a gravitación.

Para ilustrarlo, imaginemos un ascensor en el último piso de un rascacielos muy alto.

Dentro, duerme plácidamente un físico, junto a su despertador. Un segundo antes de que suene el despertador, cortamos los cables que sostienen el ascensor.

El ascensor empieza a caer con un movimiento acelerado hacia el suelo, suena el despertador, y el físico se despierta. Al despertar, se siente ligero, sin peso.

El despertador flota a su lado. Saca las llaves del bolsillo, las deja caer y también flotan.

El físico se divierte, no está asustado,porque cree que alguien le ha colocado en una nave y se encuentra en el espacio.

Incapaz de pensar que alguien le haya colocado en el ascensor, no imagina que lo que está experimentando es una caída libre, y se vuelve a dormir.

Ahora, imaginemos el mismo ascensor enganchado a una nave que le traslada al espacio y ascelera hacia arriba. Dentro del ascensor hemos vuelto a colocar a nuestro físico y su despertador. Justo antes de que suene el despertador, ponemos en marcha la nave y el ascensor se desplaza a 9,8 m por segundo cada segundo (9,8 m/s2, la aceleración que sentimos debido a la fuerza de gravedad de la Tierra).

El físico ve el reloj en el suelo, y siente su propio peso sobre el suelo del ascensor.

Saca las llaves de su bolsillo, las tira y caen al suelo, cerca de él, describiendo una perfecta parábola en su caída.

El físico está cada vez más divertido, porque piensa que quien fuera que le había puesto en el espacio, le ha llevado ahora de regreso a la Tierra.

Incapaz de pensar que alguien se lo está llevando del planeta, no se da cuenta de que lo que está experimentando no es la gravedad, sino una aceleración.

Así que se vuelve a dormir.

Einstein demostró por lo tanto que el movimiento no-uniforme, de la misma forma que el uniforme, es relativo.

Sin un sistema de referencia, es imposible saber diferenciar entre la fuerza de una aceleración y la fuerza de gravedad.

ingravidez, astronautas en sus practicas

Su equivalencia permite a la NASA entrenar a sus astronautas en condiciones de ingravidez, en un avión en caída acelerada que iguala la aceleración gravitacional de la tierra.

Durante unos minutos, los que van dentro del avión están en la misma situación que nuestro físico en el ascensor que caía desde lo alto del rascacielos.

Los astronautas en sus entrenamientos recrean las condiciones de gravedad cero del espacio de este modo, volando en un avión a reacción (adecuadamente apodado el Vomit Comet —o Cometa del Vómito—) en una trayectoria propia de una montaña rusa.

Cuando el avión vuela hacia arriba, los pasajeros se quedan pegados a sus asientos porque experimentan fuerzas mayores que la gravedad. Cuando después se inclina hacia delante y cae en picado hacia abajo, son liberados del tirón de la gravedad y pueden flotar dentro del aparato.

————-  00000 ————

EQUIVALENCIA ENTRE  GRAVEDAD Y ACELERACIÓN:

En su artículo del Annual Review, Einstein explicó mediante su experimento mental que es imposible distinguir una aceleración constante de los efectos de la gravedad.

Llamó a esta idea principio de equivalencia, porque mostraba la equivalencia entre aceleración y gravedad.

Según Einstein, la gravedad es relativa. Existe sólo cuando hay aceleración.

Cuando los científicos dejan caer la bola en la nave espacial acelerada, la bola es libre y no está acelerada.

La bola está en movimiento uniforme y la nave acelera hacia ella.

Los científicos sienten la aceleración de la nave.

Si uno de los astronautas salta fuera de la nave, quedará liberado de la aceleración del vehículo y no sentirá ninguna aceleración.

No sentirá ningún movimiento, porque el movimiento sin aceleración (movimiento uniforme) no puede identificarse.

principio de equivalencia

Newton había explicado la gravitación por la fuerza de atracción universal;  Einstein la explicó en 1916 por la geometría del espacio-tiempo…

Transcurridos casi ochenta años, la audacia de aquel salto conceptual sigue suscitando la admiración de los físicos.

Einstein construyó la relatividad general intuitivamente, a partir de «las sensaciones que experimentaría un hombre al caerse de un tejado», en un intento de explicar los fenómenos gravitacionales sin la intervención de fuerza alguna.

El personaje en estado de ingravidez imaginado por Einstein no tiene motivo para pensar que está cayendo, puesto que los objetos que lo acompañan caen a la misma velocidad que él, sin estar sometidos aparentemente a ninguna fuerza. Debe seguir, pues, una trayectoria «natural», una línea de máxima pendiente en el espacio-tiempo.

Esto implica que los cuerpos responsables de la gravitación (la Tierra, en este caso) crean una curvatura del espacio-tiempo, tanto más pronunciada cuanto mayor es su masa. Los planetas, por ejemplo, caen con trayectorias prácticamente circulares en la depresión (de cuatro dimensiones…) creada por la masa del Sol.

————-  00000 ————

El mismo principio es válido cuando la nave está de vuelta en la Tierra.

Cuando el astronauta deja caer la bola, ésta no siente ninguna aceleración.

Como la aceleración de la bola se debe a la atracción gravitacional de la Tierra, la bola no siente ninguna gravedad.

La bola que el astronauta deja caer flota ahora en el espacio, como los astronautas de la lanzadera espacial. Es el suelo, la Tierra, que sube para encontrar la bola y chocar con ella.

¿Cómo puede ser esto?… La Tierra está en completa sincronía con los demás planetas, moviéndose con la Luna alrededor del Sol en una órbita precisa.

La Tierra no puede moverse hacia arriba para chocar con la bola; tendría que arrastrar consigo a todo el sistema solar.

Esto es realmente lo que ocurre, según Einstein. Al saltar de un trampolín quedamos sin peso, flotando en el espacio, mientras la

Tierra con todo el sistema solar aceleran en nuestra dirección.

No estamos acelerados. Es la Tierra la que lo está. No sentimos la gravedad porque para nosotros no existe.

De acuerdo con Einstein, gravedad es equivalente a movimiento acelerado.

Los astronautas de la nave espacial acelerada, lejos del sistema solar, sienten una gravedad real, no una mera simulación de gravedad.

Y el astronauta que salta de la nave y la ve acelerar alejándose de él está en la misma situación que nosotros cuando saltamos del trampolín y vemos que la Tierra acelera hacia nosotros.

El principio de equivalencia de Einstein dice: «La gravedad es equivalente al movimiento acelerado. Es imposible distinguir los efectos de una aceleración constante de los efectos de la gravedad».

Fuente Consultada:
Revista Tecnirama Fascículo N°120 Enciclopedia de la Ciencia y la Tecnología
50 Cosas que debe saber sobre el Universo Joanne Bajer
Einstein Para Dummie s Carlo I. Calle
Einstein y su Teoría de la Relatividad Byron Preiss (ANAYA)

Temas Relacionados:

El movimiento browniano estudiado por Albert Einstein
1905: Año Maravilloso Trabajos y Descubrimientos de Einstein
Geometria No Euclidiana El Espacio Curvado de Einstein
El Espacio Curvo:Teoría de Relatividad y la Curvatura Espacial
Experimento de Michelson Morley Resumen Explicación
Implicancias de Teoria de la Relatividad
El Efecto Fotoelectrico Formulas Explicacion de la Teoría

Enlace Externo:Relatividad general, la equivalencia por principio

Feynman Richard:Fisico Premio Nobel,Teoría Electrodinámica Cuántica

Feymann Richard Físico Premio Nobel
Teoría Electrodinámica Cuántica

El físico norteamericano Richard Phillips Feynman mereció el Premio Nobel en 1965  por sus estudios en el campo de la electrodinámica cuántica. Fue uno de los teóricos  más originales de la posguerra, ya que contribuyó de manera fundamental en muchos campos de la física.

Su genial visión de fabricar productos en base a un  reordenamiento de átomos y moléculas dio pie al nacimiento de una de disciplinas científicas más prometedoras de la era moderna: la nanotecnología

Feymann Richard Físico

«Para la existencia de la ciencia son necesarias mentes que no acepten que
la naturaleza debe seguir ciertas condiciones preconcebidas.»

NUEVAS FRONTERAS
Con una curiosidad ilimitada ante los fenómenos de la naturaleza, Richard Feynman hizo contribuciones relevantes en diversos campos de la física y también fue un excelente divulgador, capaz de transmitir su pasión por la ciencia.

De una intuición extraordinaria, buscaba siempre abordar los problemas de la física de manera diferente de la de sus colegas, quería presentar las cuestiones conocidas fuera de los caminos ya trillados.

La historia cuenta que durante una reunión de la Sociedad Americana de Física de la división de la Costa Oeste, en 1959, Feynman ofreció por primera vez una visión de la tecnología totalmente nueva, imaginando enciclopedias escritas en la cabeza de un pin.

«Hay mucho sitio al fondo», dijo en aquella célebre conferencia. Pero el fondo al que se refería no era el de la abarrotada sala de actos. Hablaba de otro fondo: el de las fronteras de la física, el mundo que existe a escala molecular, atómica y subatómica.

Un Visionario: Por primera vez, alguien pedía investigación para hacer cosas como escribir todos los libros de la Biblioteca del Congreso en una pieza plástica del tamaño de una mota de polvo, miniaturizar las computadoras, construir maquinarias de tamaño molecular y herramientas de cirugía capaces de introducirse en el cuerpo del paciente y operar desde el interior de sus tejidos.

La conferencia de Feynman está considerada como una de las más importantes y famosas de la historia de la física, que hoy cobra una vigencia no prevista en aquel entonces.

Por eso muchos científicos consideran que Richard Feynman marca de algún modo el nacimiento de la nanotecnología, ciencia que se aplica a un nivel de nanoescala, esto es, unas medidas extremadamente pequeñas, «nanos», que permiten trabajar y manipular las estructuras moleculares y sus átomos. (ver: nanotecnologia)

El futuro es impredecible: A pesar de que Feynman ignoraba en aquel entonces la capacidad de los átomos y las moléculas de unirse en estructuras complejas guiadas por sus interacciones físicas y químicas (algo muy presente hoy en día a escala nanométrica), queda su impresionante clarividencia en saber identificar en la naturaleza un abundante depósito de recursos, poniendo de manifiesto al mismo tiempo su confianza en el carácter ilimitado de la creatividad humana.

PORQUE SE LO RECUERDA:

    1. Es considerado una de las figuras pioneras de la nanotecnología, y una de las primeras personas en proponer la realización futura de las computadoras cuánticas.
    1. Su forma apasionada de hablar de física lo convirtió en un conferencista popular; muchas de sus charlas han sido publicadas en forma de libro, e incluso grabadas para la televisión.
    1. Feynman fue asignado al comité de investigación de la explosión en vuelo del transbordador de la NASA Challenger, en 1986. Demostró que el problema había sido un equipo defectuoso y no un error de un astronauta.
  1. Entre sus trabajos se destaca la elaboración de los diagramas de Feynman, una forma intuitiva de visualizar las interacciones de partículas atómicas en electrodinámica cuántica mediante aproximaciones gráficas en el tiempo.

Cronología:
NACIMIENTO: Richard Feymann nació el 11 de mayo en Nueva York. Descendiente cíe judíos rusos y polacos, estudiu física cu el Instituto Tecnológico de Massa-chusetts v se doctoró en la Universidad de Priiiceton.

PROYECTO MANHATTAN Participó en el proyecto Manhattan, que dio origen a la primera bomba atómica. Posteriormente, en 1950, fue nombrado titular de la cátedra de física teórica en el California Institute of Technology (foto).

PREMIO NOBEL: Recibió el Nobel de Física junto con J. Schwinger y S. Tomonaga, por sus trabajos en electrodinámica cuántica. Se mostró cómo abordar el estudio cuántico y relativista de sistemas con cargas eléctricas.

INTRODUCCIÓN AL CONCEPTO DEL QUARK: Trabajó en el acelerador de partículas de Stanford, período en el que introdujo la teoría de I partones, hipotéticas partículas localizadas en el núcleo atómico que daría pie más tarde al concepto de quark.

MUERTE: Tras luchar denodadamente durante cinco años con un cáncer abdominal, Feynman falleció el 15 de febrero, dos semanas después de dictar su última exposición como docente: su última clase versó sobre la curvatura espacio-temporal.

Fuente Consultada:Gran Atlas de la Ciencia La Materia National Geographic – Edición Clarín –

Biografia de John Nash-Matematico,Premio Nobel Por Teoría de Juegos

Biografia de John Nash Matemático Premio Nobel

La verdadera vida de John Forbes Nash, Jr.: John Forbes Nash (Virginia Occidental, 13 de junio de 1928 – Monroe, Nueva Jersey, 23 de mayo de 2015)​ fue un matemático estadounidense, especialista en teoría de juegos,​ geometría diferencial​ y ecuaciones en derivadas parciales,​ que recibió el Premio Nobel de Economía en 19945​ por sus aportes a la teoría de juegos y los procesos de negociación, junto a Reinhard Selten y John Harsanyi,6​ y el Premio Abel en 2015.

Biografia de John Nash-Matematico,Premio Nobel Por Teoría de Juegos

 «Una mente maravillosa», «A beautiful Mind» es un magnífico producto de Hollywood inspirado en la vida de John Nash pero que no pretende ser su biografía.

En realidad son muy pocos los hechos o situaciones de la vida real de Nash que son contados en la película.

El padre se llamaba también John Forbes Nash por lo que distinguiremos al padre del hijo al estilo americano, añadiéndoles el calificativo «Senior» o «Junior» (Jr.).

Nash Senior nació en Texas en 1892 y estudió ingeniería eléctrica.

Después de luchar en Francia en la primera guerra mundial, fue durante un año profesor de ingeniería eléctrica en la Universidad de Texas tras lo que se incorporó a la empresa Appalachian Power Company en Bluefield, West Virginia.

La madre de Nash Jr., Margaret Virginia Martin, estudió idiomas en las universidades Martha Washington College y West Virginia University.

Fue profesora durante diez años antes de casarse con Nash Senior, el 6 de septiembre de 1924.

Johnny Nash, así le llamaba su familia, nació en Bluefield Sanatorium el 13 de junio de 1928 y fue bautizado en la iglesia Episcopaliana.

Sus biógrafos dicen que fue un niño solitario e introvertido aunque estaba rodeado de una familia cariñosa y atenta.

Parece que le gustaban mucho los libros y muy poco jugar con otros niños.

Su madre le estimuló en los estudios enseñándole directamente y  llevándole a buenos colegios.

Sin embargo, no destacó por su brillantez en el colegio.

Por el contrario, debido a su torpeza en las relaciones sociales, era considerado como un poco atrasado.

Sin embargo, a los doce años dedicaba mucho tiempo en su casa a hacer experimentos científicos en su habitación.

Su hermana Martha, dos años más joven que él, era una chica muy normal.

Dice de su hermano:

«Johnny era siempre diferente. Mis padres sabían que era diferente y también sabían que era brillante. Él siempre quería hacer las cosas a su manera. Mamá insistía en que yo le ayudase, que lo introdujera entre mis amistades… pero a mí no me entusiasmaba lucir a un hermano tan raro».

A los catorce años Nash empezó a mostrar interés por las matemáticas. Parece ser que influyó la lectura del libro de Eric Temple Bell,  «Men of Mathematics» (1937).

Entró en el Bluefield College en 1941.

Comenzó a mostrarse hábil en matemáticas, pero su interés principal era la química.

Parece ser que tuvo alguna relación con la fabricación de unos explosivos que produjeron la muerte a uno de sus compañeros de colegio.

Nash ganó una beca en el concurso George Westinghouse y entró en junio de 1945 en el Carnegie Institute of Technology (hoy llamado Carnegie-Mellon University) para estudiar ingeniería química.

Sin embargo empezó a destacar en matemáticas cuyo departamento estaba dirigido entonces por John Synge, que reconoció el especial talento de Nash y le convenció para que se especializara en matemáticas.

Se licenció en matemáticas en 1948. Lo aceptaron para estudios de postgrado en las universidades de Harvard, Princeton, Chicago y Michigan.

Nash consideraba que la mejor era Harvard, pero Princeton le ofreció una beca mejor por lo que decidió estudiar allí, donde entró en septiembre de 1948.

En 1949, mientras se preparaba para el doctorado, escribió el artículo por el que sería premiado cinco décadas después con el Premio Nobel.

En 1950 obtiene el grado de doctor con una tesis llamada «Juegos No-Cooperativos«. Obsérvese que el libro inicial de la teoría de juegos, «Theory of Games and Economic Behavior» de von Neumann y Oskar Morgenstern,  había sido publicado muy poco antes, en 1944.

En 1950 empieza a trabajar para la RAND Corporation, una institución que canalizaba fondos del gobierno de los Estados Unidos para estudios científicos relacionados con la guerra fría y en la que se estaba intentando aplicar los recientes avances en la teoría de juegos para el análisis de estrategias diplomáticas y militares.

Simultáneamente seguía trabajando en Princeton.

En 1952 entró como profesor en el Massachusetts Institute of Technology. Parece que sus clases eran muy poco ortodoxas y no fue un profesor popular entre los alumnos, que también se quejaban de sus métodos de examen.

En este tiempo empezó a tener problemas personales graves que añadidos a las dificultades que seguía experimentando en sus relaciones sociales.

Conoció a Eleanor Stier con la que tuvo un hijo, John David Stier, nacido el 19 de junio de 1953.

A pesar de que ella trató de convencerlo, Nash no quiso casarse con ella. Sus padres solo se enteraron de este asunto en 1956.

Nash Senior murió poco después de enterarse del escándalo y parece que John Nash, Jr. se sintió culpable de ello.

En el verano de 1954, John Nash fue arrestado en una redada de  la policía para cazar homosexuales.

Como consecuencia de ello fue expulsado de la RAND Corporation.

Una de las alumnas de Nash en el MIT, Alicia Larde, entabló una fuerte amistad con él.

Había nacido en El Salvador, pero su familia había emigrado a USA cuando ella era pequeña y habían obtenido la nacionalidad hacía tiempo.

El padre de Alicia era médico en un hopital federal en Maryland.

En el verano de 1955 John Nash y Alicia salían juntos.

En febrero de 1957 se casaron.

En el otoño de 1958 Alicia quedó embarazada, pero antes de que naciera su hijo, la grave enfermedad de Nash ya era muy manifiesta y había sido detectada.

Alicia se divorció de él más adelante, pero siempre le ayudó mucho.

En el discurso de aceptación del Nobel, en 1994, John Nash tuvo palabras de agradecimiento para ella.

En 1959, tras estar internado durante 50 días en el McLean Hospital, viaja a Europa donde intentó conseguir el estatus de refugiado político.

Creía que era perseguido por criptocomunistas.

En los años siguientes estaría hospitalizado en varias ocasiones por períodos de cinco a ocho meses en centros psiquiátricos de New Jersey.

Unos años después, Nash escribió un artículo para una revista de psiquiatría en el que describió sus pensamientos de aquella época:

«.. el personal de mi universidad, el Massachusetts Institute of Technology, y más tarde todo Boston, se comportaba conmigo de una forma muy extraña.  (…) Empecé a ver criptocomunistas por todas partes (…)

Empecé a pensar que yo era una persona de gran importancia religiosa y a oir voces continuamente.

Empecé a oir algo así como llamadas telefónicas que sonaban en mi cerebro, de gente opuesta a mis ideas.  (…) El delirio era como un sueño del que parecía que no me despertaba.»

A finales de los sesenta tuvo una nueva recaída, de la que finalmente comenzó a recuperarse.

En su discurso de aceptación del Premio Nobel describe su recuperación así:

«Pasó más tiempo. Después, gradualmente, comencé a rechazar intelectualmente algunas de las delirantes líneas de pensamiento que habían sido características de mi orientación.

Esto comenzó, de forma más clara, con el rechazo del pensamiento orientado políticamente como una pérdida inútil de esfuerzo intelectual».

En la actualidad sigue trabajando en el Departamento de Matemáticas de la Universidad de Princeton.

Su página web oficial es: http://www.math.princeton.edu/jfnj/

Su dirección electrónica: [email protected]  (hasta el 05-10-2002)

Temas Relacionados

• Matemáticos Geniales de la Historia
• Grandes Matematicos Griegos y sus Aportes
• Famosos Matematicos de la Historia Wiles Teorema de Fermat
• Problemas Simples Para Aprender Conceptos Prácticos Matematicos
• Biografia de Gauss Carl-Vida y Obra Cientifica

Enlace Externo:Qué le deben las matemáticas a John Nash?

Teoría Especial de la Relatividad:Explicacion Sencilla y Breve

La Teoría Relatividad Especial
Explicación Sencilla y Breve

Trataré de explicarte la Teoría de Einstein como a un principiante  que no tiene ni la menor idea de conceptos físicos.

Supongo que sabes algo de matemática elemental y que sólo tienes un gran interés por las ciencias y que estás dispuesto a leer con pasión estas páginas para entender someramente lo que pensó este genio hace 100 años y que revolucionó todo el saber científico de aquella época. ¡Cuando estés listo puedes empezar!

TEORÍA DE LA RELATIVIDAD ESPECIAL: 

A finales del siglo XIX la comunidad científica sabía que había mucho por crear e inventar, aplicando los diversos principios  físicos descubiertos, tales como la electricidad, magnetismo y mecánica, pero estaban convencidos de que ya casi no quedaba nada nuevo por explicar, la naturaleza había sido descubierta en su totalidad y ahora sólo tenía que comenzar a aplicarse esos conocimientos a las  actividades del ser humano para su propio beneficio y bienestar. 

Hasta ese momento los cimientos de la física eran dos grandes columnas construidas por dos de los científicos más grandiosos de la ciencia.

Una, la teoría de la mecánica, donde todos los conocimientos de cinemática y dinámica desde Aristóteles hasta Galileo, fueron condensados en una sola teoría, conocida hoy como la Mecánica Clásica, o Mecánica Newtoniana.

La otra columna sustentaba la otra mitad de la física, referente a los efectos magnéticos y eléctricos conocidos desde los griegos hasta los últimos avances de Oersted, Faraday y Lenz.

Toda esta información técnica fue unificada en la Teoría del Electromagnetismo del genial científico inglés James Maxwell.

Pero en realidad algo andaba mal, pues fueron apareciendo algunos nuevos cuestionamientos o efectos físicos desconocidos, y se pensó que “puliendo” un poco los conceptos del momento podrían explicarlos fácilmente, así que  casi fueron subestimados por gran parte de los investigadores de esa época.

Esos nuevos fenómenos y cuestiones fueron:

  1. a)El efecto fotoeléctrico
  2. b)La fórmula de la radiación de un cuerpo caliente
  3. c)Las rayas en los espectros de emisión del Hidrógeno

(Nota: esos efectos los puedes estudiar en este sitio)

Amigo, sigamos con lo nuestro….

► Velocidades Relativas

El concepto de relatividad ya existía y se conocía como la Relatividad de Galileo, y prácticamente consistía en la suma algebraica  de velocidades según sea el sistema de referencia que se adopte.

Por ejemplo, suponte que estás parado en el andén de una estación de trenes y en un instante pasa moviéndose hacia la derecha un vagón de pasajeros a la velocidad de 60 km/h con respecto a ti, que te encuentras detenido al costado de las vías.

Para un pasajero sentado adentro del mismo vagón dicho tren se mueve a 0 Km/h, es decir, se encuentra detenido con respecto a ÉL, pues ambos se mueven juntos.

Ese pasajero con respecto a TI, a qué velocidad de desplaza?… no hay dudas, pasa a la misma velocidad que el vagón, o sea a 60 km/h.

Supongamos ahora que un segundo pasajero se levanta de su asiento y comienza a caminar hacia la derecha a 10 km/h respecto del vagón.

A qué velocidad se mueve éste respecto del pasajero sentado, creo que tampoco hay dudas, y es de 10 km./h. pues vagón-pasajero sentado pertenecen al mismo sistema.

Bien, pero ahora ese pasajero a qué velocidad se desplaza respecto a TI que te encuentras sobre  el andén?.

Para este caso, la velocidad del pasajero será de 70 Km./h, es decir, que como ambos tienen el mismo sentido de desplazamiento dichas velocidades se suman: 60+10=70.

Si otro pasajero se levanta pero camina hacia la izquierda a 15 km/h, ahora la velocidad del mismo respecto a tu posición, será de: 60-15=45, porque tienen sentidos contrarios.

Si se quiere determinar la velocidad del primer pasajero que se paró, respecto del segundo, es de: 10+15=25 Km/h.

Es como si se estuvieran alejando uno del otro a razón de 25 km/h adentro del mismo vagón.

En el supuesto caso que ambos ahora se acercaran hacia sus asientos nuevamente a la misma velocidad, también la velocidad de uno respecto del otro será de 10+15=25 Km./h., pero ahora acercándose uno al otro.

Se puede usar el signo (-) para indicar que se alejan y el signo (+) para indicar que se acercan, solo es una convención.

Qué pasa si uno de ellos, mientras camina hacia la izquierda a 15 km./h, saca una pelotita y la lanza hacia la derecha a razón de 50 km/h hacia la derecha?.

Cuál será la velocidad de la pelotita respecto a TI, que sigues detenido en el andén? Bien, ahora (será) el cálculo es así: 60+50-15=95 Km./h.

60 del vagón hacia la derecha + 50 de la pelota hacia la derecha – 15 del pasajero hacia la izquierda=95

… Amigo, me sigues el conceptoEstás de acuerdo?.

Es tal como indicaba al inicio, la relatividad de Galileo, solo consiste en sumar velocidades usando el signo (+) o (-) según sea el sentido de las mismas (en realidad la suma es vectorial, pero para el alcance de esta explicación alcanza con este definición)

Si se invierte la situación y ahora el pasajero  desea determinar tu velocidad (que estás sobre el andén) respecto a su posición.

En este caso la situación es  exactamente la misma, para el pasajero, es él quien se encuentra detenido y es el andén quien se mueve acercándose hacia él a la velocidad de 60 km/h, es decir son dos situaciones totalmente equivalentes, cada observador tiene su propia visión de la situación, y cada uno tomará los mismos valores antes calculados.

Para comenzar a darle propiedades a estos conceptos, en física se dice que cada objeto en movimiento o detenido, tiene su propio marco de medición o de coordenadas, es decir, que cada observador estudia y mensura  la situación desde su propio sistema de referencia.

Se puede decir que cada pasajero tiene un sistema de referencia, la pelotita tiene otro, y tú que te encuentras detenido también tienes el tuyo.

En el caso del pasajero sentado, el sistema será el mismo que el del vagón, porque ambos se mueven simultáneamente.

Cada uno observa al resto desde su propia ubicación, y sumará o restará las velocidades según sea el sentido del movimiento de los diversos objetos estudiados. Cuando todos los sistemas de referencia se mueven respecto de los demás a velocidades uniformes, se dice que esos sistemas son inerciales.

Resumiendo todo lo antedicho, significa que cada observador tiene su propio y único sistema de referencia.

Por ejemplo tú que estás en este momento leyendo este apunte, te encuentras en reposo con respecto al sistema de referencia Tierra, es decir, que tú con respecto al piso estás a cero de velocidad. Pero imagina ahora que alguien te está mirando desde la Luna.

Este observador va a  concluir que túestás girando sobre un eje a la velocidad de 1vuelta/día.

Si seguimos alejándonos, y alguien se detiene en el Sol, dirá que tienes dos movimientos, uno sobre tu eje y otro alrededor del sol, con una velocidad que tarda 365 días en recorrer toda la órbita.

Como puedes observar, cada observador desde su propio marco de referencia tiene sus propias conclusiones.

Unas líneas más arriba cuando hablábamos de los sistemas inerciales, es importante destacar, una de sus principales características, y consiste en que cada uno de esos sistemas las leyes de la física, como la conservación de la energía, de la cantidad de movimiento lineal y angular, etc. se cumplen para cualquier observador que esté dentro o fuera del sistema de referencia en estudio.

Por ejemplo, si adentro del vagón armo un laboratorio y realizo una serie de investigaciones de principios físicos, TODOS ELLOS SE VERIFICARÁN TAL COMO SI LOS ESTUVIESE HACIENDO SOBRE LA TIERRA.

Lo mismo ocurre con la pelotita, si armo sobre ella otro laboratorio y realizo más experiencias, las mismas responderán a los principios físicos conocidos.

Y así sobre cualquier sistema de referencia inercial que utilice, siempre en cada uno de ellos se verificarán las leyes de la mecánica y del electromagnetismo.

Si nos ponemos a pensar esto no tiene nada raro, pues nuestro laboratorio de la Tierra, no es más que otro laboratorio armado sobre «una pelotita» en movimiento en algún rincón del universo.

Seguramente  si pasa alguna nave espacial cerca del planeta, y nos observa y mide nuestros experimentos obtendrá otros valores numéricos distintos a los nuestros, pero sus conclusiones físicas serán exactamente iguales a las nuestras.

De todo lo antedicho, se puede concluir que no existe ningún sistema de referencia ideal, que en física se llama sistema absoluto.

Es decir no existe un sistema que se encuentre totalmente en reposo y podamos referenciar todas las mediciones a ese sistema especial.

No hay en el universo un sistema que sea dueño de la verdad absoluta de todas las mediciones, pues todos están en movimiento y cada uno tiene su propia realidad.

Volviendo ahora al inicio de este apunte, por allá en los primeros años del siglo XX, los científicos estaban muy concentrados tratando de determinar las diversas propiedades de la luz, tales como su velocidad exacta, su naturaleza, su energía, su medio de propagación, etc.

En realidad nadie sabíacómohacía para llegar de un lugar a otro.

Así como el sonido usa el aire para desplazarse, la luz qué medio usa para moverse?.

La primera respuesta fue que utiliza un medio que se encuentra en todo el universo, que es transparente, de baja densidad e inunda todos los huecos del espacio, este medio se llamo: ÉTER

Desde su propuesta, los físicos se pusieron a tratar de encontrarlo, porque seria fantástico encontrar algo que se encuentre fijo en todo el universo para tener una  referencia fija.

Los primeros encargados de buscar este medio fueron dos grandes físicos experimentales, conocidos como Michelson-Morley, y así se conoce hasta nuestros días al experimento realizado.

► El Fin del Eter

Básicamente el experimento consistía en emitir un rayo de luz en un sentido, por ejemplo, en dirección al movimiento de la tierra, y otro en sentido contrario, de tal manera que en un sentido la velocidad de la tierra se sume a la de la luz  y para el otro caso se reste (el primer rayo es mas veloz que el segundo).

Esos haces de luz, luego de recorrer una misma distancia, se hacen reflejar en unos espejos para que retornen al punto de partida. Como un rayo es más rápido que otro, y deben recorrer la misma distancia, entonces llegarán al punto de partida con un retardo de tiempo, pues uno demorará más que otro en recorrer ese mismo espacio.

El experimento se hizo de diversas formas, perfeccionando los métodos de medición del sistema. Se efectuaron distintas mediciones durantes varios años, JAMÁS SE PUDO MEDIR UNA DIFERENCIA, los haces siempre llegaban al mismo tiempo, la velocidad de la tierra no les influenciaba para nada.

Conclusión: EL ÉTER NO EXISTÍA, y entonces en qué se apoyaba la luz para trasladarse?. (En este sitio: El Fin de Eter)

Es aquí donde entra en escena un jovencito alemán, estudiante avanzado de ciencias físicas en Zurich, dotado de una genialidad especial, que le permitió dar una explicación clara y correcta de lo que realmente pasaba con la luz, y los objetos que se mueven a velocidad cercanas.

Ese genial hombrecito, fue Albert Einstein, que en los momentos libres que tenia en su trabajo en una  oficina de patentes,  reformuló toda la física clásica de Newton conocida hasta ese momento.

De aquí en más la mecánica clásica sería solo un caso particular de una mecánica más amplia y general, llamada más tarde Física Relativista, y que se aplica a las partículas que se mueven a grandes velocidades.

A partir de ese momento Albert Eisntein pasaría a ser el físico más grande de la comunidad científica de todos los tiempos.

Einstein partió para su teoría física desde dos postulados que parecen inofensivos pero tienen todo el poder para explicar la naturaleza del universo (los postulados son afirmaciones sin demostración)

Más tarde dichos postulados fueron demostrados con la experiencia.

Ellos son: 

1-La luz se mueve siempre a velocidad constante de 300.000 Km/seg, independientemente de la velocidad de la fuente emisor. 

2-No existe ningún experimento posible en una nave que nos permita saber si nos estamos moviendo.

Observa que el primer postulado ignora la relatividad de Galileo, donde se suman las velocidades. Por ejemplo, si sobre el tren un pasajero saca una linterna y envía un haz de luz, cuál será la velocidad del haz respecto a ti que estás detenido en el andén?. Según Galileo seria: 300000+ la velocidad del tren.

Pues bien, Albert , pidiendo perdón a Newton, niega toda esa teoría y propone una nueva a partir de estos postulados.

A partir de los postulados que Einstein había formulado, la velocidad de la luz siempre seria constante de 300.000 Km/s  “salga a la velocidad que salga”, no interesa la velocidad de la fuente.

Además la luz no necesita de un medio material para transportarse, se mueve a través del vacío.

Si la velocidad de la luz dependiera de la velocidad del emisor, se tendría una forma de determinar el movimiento uniforme, experiencia que negaría al segundo postulado.

Por ejemplo, si hacemos un ejercicio mental, que tanto le gustaba a Albert, suponte que vas sobre una nave que va aumentando rápidamente su velocidad y tú tienes un espejo en la mano donde te puedes ver reflejado.

Resulta que cuando viajes a una velocidad superior a la de la luz, tu cara desaparecerá del espejo porque ya la luz que tu rostro irradia no lo alcanzará.

Otra situación similar para reflexionar es la siguiente: suponte parado al fondo de una calle desde donde puedes observar la siguiente bocacalle a una cuadra de distancia.

Hacia ti viene un auto a gran velocidad y por la calle perpendicular se le acerca una motocicleta en el mismo instante de cruzarse, de tal manera que el auto debe hacer una “S” para evitar la colisión.

En este caso, si las velocidades se sumaran, la velocidad de la luz que emite el auto te llegaría antes que la de la moto ya que éste se dirige hacia ti.

Por lo tanto verías al automóvil hacer una “S en el aire” si saber por qué, ya que la luz de la moto aún no te ha llegado.

Estos últimos ejemplos son creaciones mentales, pero hay casos reales en el universo, como el moviendo de estrellas,  donde se ha determinado fehacientemente que los postulados anteriores se cumplen y que la velocidad de una onda es siempre constante independiente del centro emisor.

En 1905, Einstein, que años mas tarde recordaría que pasó por  uno de los momentos másduros y pesados de su vida científica, tuvo que aceptar que cada sistema de referencia tiene su propio espacio-tiempo, y que la idea de un tiempo absoluto como lo había planteado dos siglos antes Newton estaba errada.

Matemáticamente la velocidad es igual al espacio recorrido sobre el tiempo empleado.

Pero ahora bien, si la velocidad de la luz siempre debía ser la misma, no quedaba duda que el núcleo de la cuestión estaba en esos dos rígidos conceptos,  y que el sentido común no nos dejaba analizarlos, porque eran obvios.

Cómo la hora sería distinta, según  la mida detenido en la vereda o subido a una carreta?. No es eso ridículo, sin sentido.

Ahora bien apliquemos esos nuevos conceptos nacidos de los postulados de Albert, a otro ejercicio mental.

Nuevamente recurriremos a dos naves espaciales en el medio del oscuro vacío en un rinconcito del universo, a miles de kilómetros de nuestra querida Tierra.

Suponte que una nave tiene un reloj de luz, una especie de linterna que emite un rayo de luz hacia arriba y al llegar al techo se refleja en un espejo, para volver al punto de partida.

Supongamos que el tiempo transcurrido desde la salida del rayo hasta su regreso es de 1 segundo.

Para un astronauta adentro de esa nave, observará que la luz sale verticalmente hacia arriba, llega al espejo y regresa al origen, es decir, recorre dos veces la altura de la nave en un segundo. Ese astronauta puedes ser tú es este mismo momento, donde ves subir y bajar un rayo de luz, a razón de 1 seg. por ciclo.

Ahora la segunda nave también tiene instalado exactamente el mismo sistema de reloj, con igual tiempo por ciclo y ella pasa a tu costado a una velocidad v de por ejemplo 10.000 km/h.  

Mi pregunta es la siguiente: cómo ves la trayectoria del rayo de luz desde tu nave?.

No crees que así como ves subir o bajar al rayo, también lo ves , simultáneamente, avanzar con la nave?.

Qué crees,… no tengo razón?. Realmente es así, el rayo sube y se desplaza horizontalmente, de tal forma que es movimiento compuesto es una línea inclinada hacia arriba que nace en el reloj.

Para el astronauta de la nave la luz sólo sube y baja, pero para ti “que estás fuera de su sistema de referencia” el rayo hace otro recorrido.

Por lo antedicho, el rayo recorre “para ti que estás afuera” una distancia mayor que la doble altura que observa el astronauta interior a la nave.

Si ahora aplicas el primer postulado de Einstein, donde afirma que la velocidad de la luz es siempre la misma, podrás concluir que  el tiempo que tarda la luz desde que sale del reloj hasta que regresa es mayor que el que tú mides en tu propia nave que sólo sube y baja verticalmente.

Por lo tanto, cuando mides el tiempo en una nave que se mueve con respecto a ti podrás observar que dicho tiempo se hace más lento, porque cuando en tu nave mides un segundo en la otra pasa una fracción más. Resumiendo, el tiempo trascurrido en un sistema (nave) que se mueve es siempre más lento, es decir, los relojes atrasan.

Si analizas la situación, pero ahora invertida, notarás que el segundo astronauta, el que se mueve en el caso anterior, observará exactamente lo mismo que tú.

Él observará que su rayo sólo baja y sube en un segundo, y que es el de la otra nave el que recorre más distancia, por lo tanto concluirá que es  su reloj el que anda bien, pero el de la otra nave está atrasando.

Algo parecido ocurre con la toma de mediciones de distancias, que es consecuencia del atraso del tiempo.

Si el espacio recorrido es igual a la velocidad por el tiempo empleado, notarás fácilmente que cuando calculamos la distacia recorrida por un móvil, el espacio será distinto según se tome el tiempo de un sistema de referencia u otro. 

Si estoy detenido y observo pasar la nave a cierta velocidad v, el espacio en mi sistema será igual a dicha velocidad por el tiempo t.

Pero resulta que ese tiempo t es menor en el sistema en movimiento, por lo tanto la nave recorrerá menos distancia en su sistema, que el calculado para el nuestro.

Resumiendo, se dice que las distancias se acortan.

Explicacion Matemática de la Teoría:

Es sólo una consideración intuítiva, en realidad Albert inició sus deducciones apoyandosé en las transformaciones de Lorentz.

La Teoría Relatividad Especial

Sino entiendes las fórmulas y deducciones enviame un mail que recibirás mas explicaciones.

Nota que el tiempo Delta_t es mayor a Delta_t’ en un factor gamma.

Qué significa?

Que cuando la luz en tu reloj, demore por ejemplo 1seg. entre subir y bajar, tu observarás que la luz en la otra nave demorará más en recorrer esa trayectoria triangular.

Cuando haces los cálculos observarás que ese tiempo se amplía en un factor gamma (que es mayor que 1) respecto a tu tiempo propio.

Este factor será cada vez mayor cuanto mayor sea la velocidad de la nave.

Suponiendo que v=0.8c (80% de c), el tiempo en la otra nave se incrementará en un 66%, respecto del tuyo, por lo tanto, medirás: 1.66 seg.

Cuando la velocidad llegue a la velocidad de la luz, gamma será infinito.

Un Caso Real:

En la atmósfera, a unos 10.000 m. aproximadamente de altura, aparecen partículas elementales llamada muones que se desplazan a una velocidad muy cercana a la de luz, a unos 0.998 de c. Esa partículas son muy inestables y en reposo tienen un tiempo de vida de 0,00000002 s. (2×10-8), es decir sumamente corto.

Bien, si se calcula sin tener en cuenta la física relativista, se observara que al multiplicar el tiempo de vida por su velocidad, los muones sólo recorrerían unos 600 metros, antes de desaparecer,  por lo que ninguno podría llegar a la superficie de la Tierra.

Experiencias realizadas en tierra, han confirmado la aparición de millones de ellos, contrariando a los cálculos físicos  aplicados.

Justamente ahí surge el error, porque en el sistema del muon, a esa velocidad, el tiempo en el sistema Tierra es unas 15 veces superior, y ese es el tiempo que hay tomar para efectuar los cálculos (15 x 2 microsegundos=30).

Con ese nuevo tiempo los 600 m iniciales se transformarían en 9000 m. y explicaría por qué llegan a la superficie.

Esos 9000 en el sistema Tierra, se reducen a 600 m. en el sistema muon, porque ahora se debe usar el tiempo del muon.

Como se puede observar las diferencias de tiempo y espacio están directamente relacionadas con la velocidad del sistema. A mayor velocidad mayores diferencias, pero sólo notables cuando la velocidad se aproxima a la de la luz.

Cuando la velocidad es baja, inclusive, por ejemplo, la velocidad de un cohete al salir del planeta, es de unos 40.000 km/h se la considera baja y los efectos relativistas no pueden considerarse, porque prácticamente no existen.

Para estas velocidades la teoría de Newton se aplica con total eficacia, sin dudar en que podamos caer en errores.

Las fórmulas que más abajo vamos a determinar cuando se aplican para ejemplos con bajas velocidades, se transforman automáticamente en las fórmulas obtenidas de la Mecánica de Newton, por lo que esta última pasa a ser un caso especial de unamás general, conocida hoy como la Teoría Especial de la Relatividad.

Matemáticamente, las fórmulas de Tiempo y Espacio se pueden obtener usando el ejemplo anterior de las naves en el espacio.

Lógicamente Einstein no las obtuvo así, para ello se valió de unas transformadas conocidas como de Lorentz, que fue otro científico contemporáneo que estaba estudiando el tema.

La matemática utilizada por el científico no fue tan elemental, pero tampoco se apoyó en la más avanzada matemática conocida en esa época.

No fue así para la resolución de las ecuaciones que explican la Teoría General de Relatividad, cuando el movimiento es acelerado, donde tuvo que auxiliarse de herramientas actualizadas del análisis matemático.

Aplicar dichas ecuaciones a distintas situaciones físicas genera más de un dolor de cabeza a los avanzados estudiantes de ciencias exactas, cuando deben realizar sus prácticas.

Como te he dicho, Einstein encontró que la teoría de Newton «estaba mal» y eso no significó que las cosas comenzaran a caerse para arriba.

Incluso si decimos que la teoría de Newton es «incorrecta», da la impresión de que entonces la teoría de Einstein es la «correcta». 

Mañana mismo o dentro de algunos años, un hipotético físico, por ejemplo Jacob Newenstein, puede descubrir que la teoría de Einstein «está mal» en serio. Pero aunque eso pase, las cosas no van a empezar a caerse contra el techo, ni a moverse más rápido que la luz.  

Einstein simplemente elaboró una descripción de la naturaleza más precisa que la de Newton, y es posible que alguien halle una aún mejor.

Pero la naturaleza no va a modificar su comportamiento para satisfacer la teoría de algún físico: es el científico quien deberá exprimir sus sesos para que su teoría describa a la naturaleza mejor que todas las teorías anteriores.

Corrección de Textos y Ortografía: Ernesto Eracher.

Temas Relacionados:

Biografia de Einstein Albert Obra Cientifica y Vida
1905: Año Maravilloso Trabajos y Descubrimientos de Einstein
Geometria No Euclidiana El Espacio Curvado de Einstein
El Espacio Curvo:Teoría de Relatividad y la Curvatura Espacial
Experimento de Michelson Morley Resumen Explicación
Implicancias de Teoria de la Relatividad
El Efecto Fotoelectrico Formulas Explicacion de la Teoría

Enlace Externo:• Teoría de la Relatividad

Un Video: Teoría de la relatividad especial

Biografia de Max Planck: Científico Creador de la Teoría Cuántica

Biografía de Max Planck
Científico Creador de la Teoría Cuántica

Max Planck (1858-1947) es el autor de la célebre teoría de los quanta o quantos. Planck admitió que la energía está formada por corpúsculos, llamados quanta, del mismo modo que la materia está formada de átomos.

La energía W contenida en cada átomo quantum es, por otra parte, proporcional a su frecuencia N, de donde estableció la fórmula w = h.N, donde h designa la constante de Planck.

La obra de Planck es tan fundamental para el porvenir de la física moderna como, si se nos permite la comparación, lo fue la de Newton.

La personalidad de Max Planck domina además la totalidad de la ciencia moderna. Su larga vida se extiende desde mitades del XIX hasta mediados de nuestro siglo.

Físico y pensador, interesado por múltiples problemas, según Einstein era «un hombre a quien le fue dado dar al mundo una gran idea creadora» que, completando el juicio de dicho autor contenido en Concepciones científicas, morales y sociales, «devino básica en toda la búsqueda de la física del siglo XIX».

Max Planck Cientifico Teoria Cuantica

PLANCK, MAX (1858-1947)
Físico alemán, realizó estudios en las universidades de Berlín y Munich.

Obtuvo el doctorado con una tesis sobre el principio de la termodinámica, en 1879. A partir de 1885, fue profesor en Kiel y de 1889, en Berlín.

Se dedicó al estudio de la física teórica y, en particular, ab problema de la termodinámica.

https://historiaybiografias.com/linea_divisoria1.jpg

BREVE FICHA BIOGRAFICA DEL FISICO:

Planckl Premio Nobel Fisica Por El Efecto Fotoeléctrico

•  Nació el 23 de abril de 1858, en Kiel (Alemania).

• A los nueve años se trasladó junto con su familia a Munich (Alemania), donde recibió educación primaria.

• A los diecisiete años inició los estudios de Física en la Universidad de Munich.

• En 1879, luego de especializarse durante un año en Berlín (Alemania), retornó a Munich y se doctoró en Física y Matemática.

• En 1885 fue nombrado profesor de Física en la Universidad de Kiel.

• Desde 1899 hasta 1928 ocupó el mismo cargo en la Universidad de Berlín.

• En 1900 expuso en la Sociedad Física de Berlín la teoría que le dio fama universal y formula que la energía se radia en unidades pequeñas y separadas, denominadas cuantos. Más tarde, avanzó aun más en el estudio de los cuantos.

Premios y honores

• Entre 1912 y 1938 fue secretario de las secciones de Física y Matemática de la Academia Prusiana de Ciencias.

• En 1918 recibió el premio Nobel de Física por sus trabajos.

• En 1930 se convirtió en presidente de la Sociedad Kaiser Guillermo para el Progreso de la Ciencia, la principal asociación de científicos alemanes de Berlín. En su honor, después de la Segunda Guerra Mundial, dicho centro cambió su nombre por el de Instituto Max Planck.

• Murió el 4 de octubre de 1947, en Gotinga (Alemania).

Antes de que Max Planck descubriera que el átomo absorbía y desprendía energía en pequeñas partículas o cuantos, se creía que aquel radiaba energía de forma continua y uniforme.

Los descubrimientos del físico alemán permitieron el nacimiento de un campo nuevo de la física, conocido como mecánica cuántica, y proporcionaron los cimientos para la investigación en otros de la energía atómica.

https://historiaybiografias.com/linea_divisoria1.jpg

BIOGRAFÍA DE Max Planck (1858-1947)

Max Planck nació en Kiel, la ciudad alemana con puerto en el mar Báltico, el 23 de abril de 1858.

Fue el sexto hijo de una familia acomodada, de la alta burguesía de entonces, en la que abundaban los clérigos y juristas.

El padre de Planck, Wilhelm, había sido profesor de derecho en la universidad de Munich y por estas fechas ocupaba la misma plaza en la de Kiel.

Tuvo, pues, todas las ventajas que proporciona una cuna sin preocupaciones económicas y por añadidura cultivada.

Desde los estudios primarios Max Planck sintió una decidida inclinación por la música, inclinación que en principio compartió con la filología.

Este hecho es muy curioso, a tan corta edad, y evidentemente demuestra que estaba sumido en un ambiente intelectual.

Como veremos, esta temprana inclinación pronto quedó suplantada por el decidido propósito de estudiar física.

Pero la música constituyó una de sus pasiones.

Es más, durante la época de estudiante llegó a ser director de una orquesta juvenil, de unos coros, que alternaba con conciertos de piano; sus biógrafos —Max von Laue, Hart, Hartmann, George, entre otros— señalan que sentía una pasión por los románticos alemanes, especialmente por Schubert, Schumann y Brahms.

La carrera universitaria de Max Planck fue rutilante.

Es uno de los casos sin duda más prodigiosos de la historia de la Ciencia contemporánea.

Graduado como doctor a los veintiún años, inmediatamente pasó a ser profesor adjunto de la universidad de Munich, digamos de paso donde había efectuado los estudios superiores, y a contiuación de la de Kiel.

El trabajo desplegado por Max Planck fue enorme, tanto en el dominio de la investigación como en el de la docencia.

Pero biográficamente no existen datos de interés, como en la mayoría de estos hombres, cuya vida es la inmensa aventura de un silencio.

En Kiel llevó a cabo las teorías que revolucionarían el campo de las ciencias físicas, y por ellas le fue concedido el Premio Nobel en 1919.

Nada cambió en su vida tras la concesión del Nobel.

Siguió viviendo en Kiel hasta que, al producirse la muerte del gran físico Kirchhoff, se trasladó a Berlín para sucederle en su cátedra de física teórica.

Allí permaneció hasta el año 1926, fecha en la que cumplidos sesenta y ocho años decidió solicitar la jubilación universitaria; aunque dicha inactividad la compensó al suceder a Harnack, en 1930, en la dirección del «Institut Kaiser-Wilhelm».

————-  00000 ————

Planck entró a estudiar física en la Universidad de Munich pero no congenió con su profesor, Philipp von Jolly Von Jolly le dijo que no había en física nada nuevo que descubrir.

Descontento con la universidad, decidió trasladarse a la Universidad de Berlín, donde enseñaban los célebres físicos Hermann von Helmholtz y Gustav Kirchhoff.

————-  00000 ————

Como Einstein años después, Planck se interesó en temas que no se enseñaban en los cursos; estudió el trabajo de Rudolf Clausius sobre termodinámica en los artículos originales.

Luego de graduarse, Planckescribió una tesis sobre la segunda ley de la termodinámica y la presentó a la Universidad de Munich para obtener el título de doctor.

La tesis fue aprobada y Planck obtuvo su doctorado en física a los 21 años.

Como muchos doctores en física de la época, Planck estaba interesado en una carrera académica.

En esa época en Alemania, si uno quería ser profesor debía comenzar como instructor, o Privatdozent, cargo con responsabilidades docentes pero sin salario.

Los Privatdozent recibían pequeños honorarios de los estudiantes por la administración de exámenes.

Pero se necesitaba otro trabajo para sobrevivir.

Planck fue Privatdozent en Munich de 1880 a 1885.

En 1885 fue promovido a la categoría de profesor asociado, lo que significaba tener finalmente un salario regular por enseñar.

Con ingresos estables, se casó con su novia de la niñez, Marie Merck.

En 1889 se trasladó a la Universidad de Berlín como profesor de tiempo completo, en reemplazo de Kirchhoff, quien se jubilaba.

Planck fue también un pianista dotado; antes de decidirse por la física, había pensado seriamente en una carrera musical.

Se convirtió en uno de los científicos más importantes de su tiempo, y se hizo acreedor en 1918 al premio Nobel de física por su descubrimiento del cuanto de energía.

Planck y Borh

Las dos figuras centrales de la nueva fisica del siglo XX: Bohr y Planck.Las teorías cuánticas de Planck fueron desarrolladas e incluso modificadas por muchos científicos, pero se constituyeron en la base fundamental de toda la física cuántica actual.

Fue uno de los primeros en entender y aceptar Ja teoría de la relatividad, la que divulgó y desarrolló desde su exposición. Así mismo, trabajó con éxito en los campos de la mecánica y la electricidad.

En 1918, recibió el premio Nobel de física en reconocimiento su labor en la cuantificación de la energía.

————-  00000 ————

• OBRA CIENTÍFICA:

Cuando el siglo XIX llegaba a su fin, muchos físicos se hacían preguntas sobre la tan honrada mecánica de Newton.

En macular, ¿seguía describiendo toda la naturaleza? En su búsqueda, los científicos empezaron a agruparse en dos campos.

Unos buscaba la respuesta estudiando lo que se llamaba «electrodinámica», la relación entre la mecánica y la electricidad. Los otros buscaban en la termodinámica y sus dos leyes básicas.

La primera ley reconocía que la energía ni se crea ni se destruye, sino que siempre se conservaba, y la segunda ley se basaba en la idea de que el calor no pasaría de un cuerpo más frío a uno más caliente.

El estudio de la termodinámica se basaba en suponer que la materia estaba compuesta de partículas.

Sin embargo, esto suponía un problema, ya que los átomos no habían sido descubiertos.

En su lugar, la visión tradicional era que la  atería era continua, no compuesta de discretos bloques de construcción.

A mediados de los 1870, Ludwig Boltzmann había propuesto una explicación termodinámica en la que la energía contenida en un sistema es el resultado colectivo del movimiento de muchas moléculas diminutas.

Creía que la segunda ley sólo era válida en sentido estadístico, sólo funcionaba si le añadían todos los trocitos de energía a todas as pequeñas partículas.

Boltzmann tenía respaldo, pero había muchos que dudaban.

Entre los detractores estaba Max Karl Ernst Ludwig Planck. 

Estaba fascinado con la segunda ley de la Termodinámica, pero rechazaba la versión estadística de Boltzmann porque dudaba de la hipótesis atómica sobre la que descansaba.

En 1882 afirmó falsamente: «a pesar del gran éxito de la teoría atómica en el pasado, finalmente vamos a tener que renunciar a ella, y decidir en favor de la suposición de que la materia es continua».

Durante los años 1890, Planck empezó a ver que la hipótesis atómica tenía el potencial de unificar distintos fenómenos físicos y químicos, pero su propia investigación estaba dirigida a encontrar una solución no atómica.

————-  00000 ————

En su famosa ley de radiación (1901), asegura que la radiación energética no puede ser emitida en cantidades arbitrarias, sino en ciertos paquetes que él llamó cuantos.

Cada cuanto debe poseer cierta cantidad de energía, que va en aumento mientras la frecuencia oscilatoria de los electrones sea mayor, de modo que para frecuencias muy altas, la emisión de un único cuanto requeriría más energía de la que es posible obtener.

De esta forma, la radiación de altas frecuencias se reduce y el ritmo con que el cuerpo pierde energía es, por consiguiente, finito.

En su teoría cuántica, el físico alemán consigue explicar muy bien la emisión de radiación por cuerpos calientes, y además indica de qué manera se distribuye la energía en el espectro de radiación de cuerpos negros.

————-  00000 ————

• De los cuerpos negros a los quanta

Planck y sus contemporáneos miraban a las teorías electrodinámicas del físico escocés James Clerk Maxwell para encontrar respuestas, pero fueron un fracaso.

En su lugar, un nuevo entendimiento emergió cuando volvieron su atención hacia la radiación de cuerpos negros.

Un cuerpo negro es un objeto teórico que absorbe toda la radiación que lo golpea.

Dado que no refleja nada, es negro.

Mientras que un cuerpo negro no refleja radiación, sigue radiando calor.

De otro modo, seguiría absorbiendo y su temperatura se elevaría indefinidamente.

La cosa más parecida que existe hoy es el avión espía americano Blackbird, que está cubierto con un pigmento absorbente que intenta absorber toda la radiación.

La primera persona en pensar sobre los cuerpos negros había sido el predecesor de Planck como profesor de física en Berlín, Robert Kirchhoff que afirmó que semejante radiación era de una naturaleza fundamental.

Para los 1890, varios físicos estaban investigando la distribución espectral de la radiación.

En 1896, Wilhelm Wien pronunció una ley de radiación que cuadraba con las observaciones experimentales, pero que, según Planck, era teóricamente débil, así que la rechazó.

En 1899, Planck procuró una nueva versión, que incorporaba algunas de las ideas de Boltzmann, a la que a veces se denomina la ley de Wien-Planck.

Planck estaba satisfecho.

En ese punto sentía que la ley se ajustaba a los datos experimentales y tenía unas bases teóricas sólidas.

Lamentablemente para Planck, se convirtió en una bella teoría destruida por los crudos hechos.

Los experimentos realizados en Berlín mostraron que no funcionaba con la radiación de baja frecuencia.

Después de revisar sus ideas, apareció con un nuevo concepto que incluía un valor para una constante llamada «b» y lo presentó en una reunión en la Sociedad Alemana de Física el 19 de octubre de 1900.

Si embargo, la nueva teoría aún no tenía ninguna noción de partículas o energía cuántica.

A posteriori, podemos ver que la respuesta real estaba justo delante de su cara, pero estaba tan seguro de la continuidad de la materia que no podía verlo.

Dos meses después, y como «un acto de despecho», renunció a la física clásica y abrazó la cuántica.

La gota final había sido un concepto desarrollado por John Rayleigh y James Jeans que se conocería como la teoría de la «catástrofe ultravioleta».

En junio de 1900, Rayleigh indicó que la mecánica clásica, cuando se aplica a los osciladores de cuerpos negros, lleva a una distribución de energía que aumenta en proporción al cuadrado de la frecuencia.

Esto entraba en conflicto con todo lo conocido.

La desesperación de Planck lo llevó a introducir lo que llamó «elementos de energía» o quanta.

En su presentación a la Sociedad Alemana de Física el 14 de Diciembre de 1900, Planck dijo que la energía «está hecha de un número completamente determinado de finitas partes iguales, y para ese propósito usó la constante de la naturaleza h = 6.55 x 10-(erg sec)».

Había nacido la teoría cuántica, aunque llevaría dos o tres décadas más y muchas mentes con talento darse cuenta de las implicaciones de la nueva era.

Composicion Básica de un Atomo

El Atomo Composicion Energia Nuclear Electrones y Protones Particulas –  BIOGRAFÍAS e HISTORIA UNIVERSAL,ARGENTINA y de la CIENCIA

• ►Cronología

1858: Nace en Kiel, Alemania, en una familia académica. Su padre era profesor de derecho constitucional en Kiel, y tanto su abuelo como su bisabuelo fueron profesores de teología en Gottingen

1867: Se muda a Munich, donde va a la escuela

1874: Estudia en Munich con Gustav Kirchhoff. Antes de empezar, discutió el prospecto de investigación física con el profesor de física Philipp von JolLy, quién se supone le dijo que la física era esencialmente una ciencia completa, con pocas posibilidades  de desarrollo. Afortunadamente parece que ignoró los comentarios, antes de mudarse a Berlín para estudiar con Hermann von Helmholtz

1889-1926: Profesor de física, Berlín

1900: Anuncia su Teoría Cuántica

1914-1918: Su hijo mayor muere en la Primera Guerra Mundial

1918: Recibe el Premio Nobel

1926: Elegido miembro Extranjero de la Royal Society

1944: Su hijo menor, Erwin, es ejecutado cuando lo declaran culpable de estar envuelto en un complot para asesinar a Hitler

1947: Muere en Gottingen el 3 de octubre. Después de saber de su muerte, Albert Einstein escribió: «Qué diferente y cuánto mejor sería la humanidad si hubiera más como él… Parece que los personajes buenos de todas las edades y continentes tienen que permanecer aparte del mundo, incapaces de influir en los eventos».

————-  00000 ————

PARA SABER MAS…:

Durante más de dos siglos la física newtoniana resultó válida para describir todos los fenómenos concernientes a materia y energía.

Después, en el siglo XIX, la teoría electromagnética reveló que la energía podía existir con cierta independencia de la materia, en forma de radiaciones de muy diferentes longitudes de onda y frecuencias.

Al mismo tiempo, el estudio de la termodinámica abordó problemas suscitados  por la energía calorífica y su distribución en sistemas como los gases, cuyas partículas resultaban demasiado pequeñas para ser medidas u observadas.

Era imposible —y afortunadamente innecesario— predecir el comportamiento de cada molécula o de cada átomo, pero las leyes estadísticas de la probabilidad podían aplicarse a grandes conjuntos de partículas, dentro de una reducida muestra o sistema.

En un gas, a determinada temperatura, unas moléculas se mueven muy lentamente y otras con gran celeridad: sin embargo, la energía media de todas las moléculas en movimiento depende exclusivamente de la temperatura y de la presión a que dicho gas esté sometido si el volumen es constante.

Max Planck fue uno de los muchos científicos que trataron de aplicar los principios de la termodinámica a las radiaciones.

Teóricamente, un sistema que contiene radiaciones de diversas frecuencias distribuye su energía del mismo modo que un sistema que contiene moléculas de gas de muy diversas velocidades.

Pero existe una diferencia capital: la velocidad de las moléculas de un gas posee un límite superior irrebasable y, en cambio, la frecuencia de las posibles radiaciones es incomparablemente superior.

El sistema de radiaciones se asemejaría al sistema acústico de un piano con un número ilimitado de cuerdas, cada vez más reducidas.

Al pulsar cualquier nota, el piano resonaría con frecuencias cada vez más elevadas, mientras la energía de la nota original se transmitiría por la escala musical hasta el infinito.

Planck trató de explicar por qué este resultado, previsto teóricamente, no se producía en la práctica.

Al fin tuvo que adoptar unos supuestos totalmente distintos.

En diciembre de 1900 propuso en una conferencia científica que la energía radiante se producía y recibía en lotes discontinuos e indivisibles que denominó cuantos, término procedente del latín (quantum significa «porción»).

La energía de estos cuantos es directamente proporcional a la frecuencia de la radiación.

Es decir, se obtiene multiplicando dicha frecuencia por una cifra que hoy denominamos «constante de Planck».

Planck había descubierto que la energía no podía dividirse hasta el infinito, como hasta entonces se había supuesto.

Existía un «impulso» de energía mínimo, por debajo del cual no se producía intercambio energético alguno.

Para una radiación, cuya frecuencia sea la unidad, se obtiene precisamente el valor de ese cuanto mínimo de energía o constante de Planck.

Se representa por la letra h, y su valor en unidades cegesimales es 6,547 x 10-27 ergios por segundo, cifra realmente insignificante pero que, a escala atómica, posee decisiva importancia.

A partir de 1905, Albert Einstein comenzó a desarrollar las ideas de Planck, mientras éste prosiguió durante muchos años realizando importantes contribuciones en los campos de la termodinámica y de la teoría de los cuantos.

Fuente Consultadas:
Einstein Para Dummies Carlos I. Calle
Las Grandes Ideas Que Formaron Nuestro Mundo Peter Moore – Max Planck

Temas Relacionados:

Principales Cambios Científicos
Gran experimento La Máquina de Dios
Las Nuevas Ciencias De Lo Diminuto
La Historia de la Energía Nuclear
La Ciencia AtómicaEn el Siglo XX

Enlace Externo:• Biografía de Max Planck

La Gran Ciencia:Los Grandes Proyectos Cientificos del Mundo

La Gran Ciencia – Grandes Proyectos Científicos del Mundo

¿QUE ES LA GRAN CIENCIA?

Tipo de práctica científica que se inició y desarrolló durante el siglo XX y que requiere de grandes recursos de infraestructura y personal, y, por consiguiente, económicos.

Por este motivo, es necesario tomar decisiones políticas de cierta envergadura para iniciar o mantener proyectos de Gran Ciencia.

No estaría de más, por consiguiente, que todos —científicos, políticos o simples ciudadanos— deberíamos conocer no sólo la existencia e importancia de este tipo de ciencia, sino sus mecanismos más notorios.

Para contribuir a esta labor de educación social, en una era en la que la ciencia es cuestión de Estado, incluyo aquí este concepto.

El nacimiento de la Gran Ciencia tiene que ver especialmente con la física de las partículas elementales (ahora denominada de altas energías).

Buscando instrumentos que fuesen capaces de suministrar cada vez mayor energía a partículas atómicas, para que éstas pudiesen chocar con el núcleo atómico, lo que a su vez debería permitir ahondar en su estructura y en la de los elementos que lo forman —esto es lo que había hecho Ernest Rutherford (1871-1937) en 1911 cuando propuso su modelo atómico: lanzó núcleos de helio sobre láminas delgadas de oro—, físicos británicos primero, y estadounidenses después abrieron la puerta de la Gran Ciencia.

Biografía Rutherford: Modelo Atomico de la Configuración del Atomo

En 1932, John Cockcroft (1897-1967) y Ernest Walton (1903-1995), del Laboratorio Cavendish en Cambridge, utilizaban un multiplicador voltaico que alcanzaba los 125.000 voltios para observar la desintegración de átomos de litio.

En realidad no era una gran energía: cuatro años antes Merle Tuve (1901-1982) había utilizado un transformador inventado por Nikola Tesla (1856-1943) para alcanzar, en el Departamento de Magnetismo Terrestre de la Carnegie Institution de Washington, los tres millones de voltios.

En 1937, Robert Van de Graaff (1901-1967) logró construir generadores de cerca de cinco metros de altura, que producían energías de cinco millones de voltios.

Fue, sin embargo, Ernest O. Lawrence (1901-1958) el principal promotor de la Gran Ciencia en la física de partículas elementales.

A partir de 1932, Lawrence comenzó a construir ciclotrones, máquinas circulares en las que las denominadas partículas elementales iban ganando energía durante cada revolución, lo que les permitía acumular suficiente energía.

El primer ciclotrón medía apenas treinta centímetros de diámetro.

Pero aquello sólo era el comienzo: en 1939 Berkeley ya contaba con un ciclotrón de metro y medio de diámetro, en el que los electrones podían alcanzar una energía equivalente a dieciséis millones de voltios (16 Mev).

Y en septiembre de ese año Lawrence anunciaba planes para construir uno nuevo que llegase a los 100 MeV.

Imagen del Acelerador de Partículas del CERN

En abril de 1940, la Fundación Rockefeller donaba 1,4 millones de dólares para la construcción de aquella máquina, el último de sus ciclotrones, que iba a tener más de cuatro metros y medio de diámetro.

En la actualidad los grandes aceleradores tienen kilómetros de radio, y cuestan miles de millones de dólares.

Aquí tenemos una de las características que con mayor frecuencia se encuentra en la Gran Ciencia: mayor tamaño, mayor potencia, mayor costo económico. No sólo es el tamaño de las máquinas implicadas lo que caracteriza a la Gran Ciencia.

Alrededor de los ciclotrones de Lawrence se agrupaban físicos, químicos, ingenieros, médicos y técnicos de todo tipo.

En varios sentidos el laboratorio de Berkeley se parecía más a una factoría que a los gabinetes y laboratorios de otras épocas, el de Lavoisier (1743-1794) en París, el de Liebig (1803-1873) en Giessen o el de Maxwell (183 1-1879) en Cambridge.

La segunda guerra mundial dio un nuevo impulso a este modo, «gigantesco», de organización de la investigación científica.

Para llevar adelante proyectos como el del radar o el Manhattan se necesitaban científicos, por supuesto, pero no bastaba sólo con ellos.

Era imprescindible también disponer, además de otros profesionales (ingenieros, muy en particular), de una estructura organizativa compleja, en la que no faltase el modo de producción industrial.

Un Proyecto Especial en la Historia de la Ciencia y Tecnología Fue El Envío de Astronautas a la Luna

Los grandes recursos económicos que requiere la Gran Ciencia no siempre están a disposición de naciones aisladas.

En la Europa posterior a la segunda guerra mundial, la construcción de grandes aceleradores de partículas era demasiado costosa como para que cualquier nación pudiese permitirse el lujo de construir uno lo suficientemente potente como para poder aspirar a producir resultados científicos de interés.

Así nació el Centre Européen de Recherches Nucléaires (CERN) de Ginebra, fundado en 1952 por doce naciones europeas. La Gran Ciencia fomentaba en este caso la internacionalización.

De hecho, el CERN sirvió de experiencia de asociación política europea; el ambiente político estaba listo para este tipo de experiencias, que culminarían años más tarde en la creación de la Comunidad Económica Europea, que con el tiempo se convertiría en la actual Unión Europea.

La Gran Ciencia puede llegar a ser tan grande que incluso naciones del potencial económico e industrial de Estados Unidos se vean obligadas a abrir algunos de sus proyectos científicos a otros países.

Esto ha ocurrido, por ejemplo, con el telescopio espacial Hubble construido por la National Aeronautics and Space Administration (NASA).

El telescopio Hubble fue lanzado el 24 de abril de 1990, utilizando para ello una de las aeronaves Discovery, pero la idea de poner un gran telescopio en órbita alrededor de la Tierra para evitar la pantalla de radiaciones que es la atmósfera terrestre había surgido cuatro décadas antes.

En esos cuarenta años hubo que vencer muchas dificultades; algunas de carácter técnico, por supuesto, pero otras de orden financiero y político.

En 1974, por ejemplo, la Cámara de Representantes estadounidense eliminó del presupuesto el proyecto del telescopio, a pesar de que ya había sido aprobado en 1972. El motivo es que era demasiado caro.

Tras muchas gestiones se llegó al compromiso de que el proyecto saldría adelante únicamente si se internacionalizaba, involucrando a la Agencia Espacial Europea (European Space Agency; ESA).

GRAN CIENCIA, APOLO

Transbordadores Espaciales y Una Estación Espacial en Orbita Otra de las Grandes Obras Tecnológicas de la Historia

Por supuesto, no se dio este paso por un repentino ataque de fervor ecuménico de los representantes estadounidenses, sino porque la ESA se debería hacer cargo del quince por ciento del presupuesto, con lo que éste se abarataría sustancialmente para Estados Unidos.

Finalmente la agencia europea, formada por un consorcio de naciones entre las que se encuentra España, participó en el proyecto, encargándose en particular de la construcción de una cámara para fotografiar objetos que emiten una radiación débil.

En más de un sentido se puede decir que el mundo de las naciones individuales se está quedando demasiado pequeño para la Gran Ciencia.

Una muestra más de esa tendencia, la globalización, que parece estar caracterizando al mundo de finales del siglo XX.

Temas Relacionados:

Las Ciencias en Grecia Antigua:Cientificos Griegos
Los cientificos del siglo XIX:Descubrimientos y Avances de la ciencia
Orígenes de la Ciencia Moderna y La Filosofía Renacentista
Desarrollo de la Ciencia en Argentina:Primera Universidad Cientifica
La Ciencia Árabe Medieval: Logros Cientificos del Islam
Pensamiento Renacentista: La Ciencia en el Renacimiento
La Ciencia en el Siglo XVIII :Descubrimientos y Cientificos

Enlace Externo:El camino al gran descubrimiento