Enanas Blancas

La Luna Características Generales Información Científica

INFORMACIÓN GENERAL Y CIENTÍFICA DE LA LUNA, SATÉLITE TERRESTRE

De todos los cuerpos celestes, la Luna es posiblemente el más conocido. Fue objeto de muchas antiguas creencias y es aún llamada poéticamente Selene, el viejo nombre de la diosa Luna. La ciencia que la estudia se denomina selenografía, y a pesar de que este cuerpo celeste no ha revelado aún todos sus secretos, se conoce bastante sobre él, pues  el hombre ha alunizado en varias oportunidades y ha conseguido centenares de muestras de su superficie para futuras  investigaciones en la NASA.

MAPA DE LA LUNA CON NOMBRES DE SUS MARES Y CRÁTERES

satelite de la Tierra, Luna

(Para Ver Nombres de Cráteres y Mares)

LA LUNA EN NÚMEROS:

Edad: 4.600 millones de ños
Distancia máxima a la Tierra: 405.000 km
Distancia mínima a la Tierra: 363.000 km
Diámetro real de la Luna: 3.473 km
Circunferencia: 10.927 Km.
Superficie: 0,075 de la Terrestre
Volumen: 0,02 de la Terrestre
Peso: 0,012 de la Terrestre
Densidad: 0,6 de la Terrestre
Velocidad de Escape: 2,4 Km/s.
Revolución sobre su eje: 27 d. 7 hs. 43′
Distancia media a la Tierra: 384.403 km
Tiempo de su traslación: 27 d. 43′ 11″
Temperatura de su superficie: De 100°C a -184°C (noche lunar)
Altura máxima de sus montañas: 9.000 m.
Duración del día: 14 dias terrestres
Duración del la noche: 14 dias terrestres

Sobre su formación: Hace unos 5000 millones de años cuando el sistema solar se estaba formando, y definiendo su constitución actual, en nuestro planeta una capa de lava volcánica semiderretida burbujeaba por toda la superficie como un dulce hirviendo. No había tierra sólida, ni agua, ni vida. La Tierra, completamente inestable, giraba tan deprisa sobre su eje que cada día duraba sólo unas cuatro horas.

Ocurrió entonces fue algo inesperado. Los expertos creen que dos planetas jóvenes coincidieron en la misma órbita alrededor del Sol, aunque moviéndose a distintas velocidades. Uno era la Tierra; el otro, el planeta llamado Theia. Unos cincuenta millones de años más tarde, el Sol comenzó a brillar, y aquellos dos jóvenes planetas chocaron uno con otro. Con la sacudida, la Tierra giró sobre su costado, fuera de control.

Miles de volcanes entraron en erupción tras el impacto. Enormes cantidades de gas, antes atrapadas en el núcleo de la Tierra, salían ahora a borbotones a través de la superficie, y creaban así la primera atmósfera del planeta. Las capas más exteriores de Theia se vaporizaron en miles de millones de pequeñas partículas. Los restos volaron en todas direcciones y rodearon la Tierra con una gruesa capa de polvo, rocas y granito a elevada temperatura.

Atrapada por la gravedad terrestre, esta bruma de escombros se arremolinó en el cielo, y todo se oscureció. Durante meses ni siquiera el rayo más brillante de sol podía penetrar las capas de polvo que en un tiempo habían constituido el planeta Theia. Su núcleo de hierro fundido alcanzó el centro de la Tierra, y produjo la fusión de los dos núcleos en una única bola metálica, compacta, con una temperatura de miles de grados, que se hundió en el centro del globo, destrozado por la fuerza del impacto.

En la actualidad, no hay pruebas físicas en el planeta del impacto de la colisión con Theia, ya que tuvo tal fuerza que todo el material exterior se vaporizó y explotó en el espacio. Pero la evidencia no está muy lejos. El polvo y el granito que envolvieron la Tierra pronto se reagruparon, y se convirtieron en una enorme bola de polvo. Aproximadamente sólo un año después del impacto, la Tierra tenía una nueva compañera, nuestra grande, brillante y cristalina Luna.

Aldrin astronauta de la NASA tomando muestras

El astronauta estadounidense Neil Alden Armstrong, como comandante de la misión lunar Apolo 11, es la primera persona que pisa la Luna. Su compañero Edwin E. Aldrin es el segundo hombre en poner un pie en la Luna. Aquí lo vemos tomando muestras del suelo lunar. También participa en la misión el astronauta Michael Collins, que pilota el módulo de control

INFORMACIÓN GENERAL: La Luna da una vuelta completa alrededor de la Tierra en 27 días, 7 horas, 43 minutos, 7 segundos; pero a causa del movimiento de la Tierra alrededor del Sol, el mes lunar —o sea el período que va desde una nueva luna hasta la siguiente— es levemente mayor de 29,5 días.

El diámetro de la Luna es de 3.474km.; pero como la distancia que la separa de la Tierra varía, debido a que su trayectoria es elíptica, su tamaño parece cambiar levemente. La distancia mínima entre la Tierra y la Luna es de 364.300 km. y la máxima es de 408.000 km.

Sólo la mitad de su superficie está siempre iluminada por la luz del Sol. Durante la luna nueva, la cara iluminada está oculta para nosotros; pero a medida que va rodeando a nuestro planeta, vamos viendo cada vez más esta faz, hasta que se muestra totalmente en luna llena. Por varias razones, parece inclinarse levemente, de manera que podemos ver un 59 % de su superficie, en diferentes períodos de su trayectoria; pero no vemos jamás toda la cara posterior.

Cuando fue inventado el telescopio, en 1609, observó Galileo que la superficie lunar es muy rugosa, con picos y cadenas montañosas, con círculos como cráteres volcánicos y llanuras, que confundió con mares. Muy pronto se dibujaron mapas de la Luna y se están haciendo cada vez más perfectos, con ayuda de la fotografía. Un mapa simple de la Luna se muestra en la ilustración superior.

Galileo observando la Luna

1610: Galileo Galilei Observando los astros celestes

La palabra latina mare (mar) señala los desiertos; dos de ellos se muestran abajo, en escala mayor. A la izquierda está el llamado Mare Imbrium (Mar de las Lluvias), que es un vasto desierto, con algunas montañas y cráteres diseminados. Junto a éste, están los Apeninos (la mayoría de las cadenas montañosas de la Luna lleva el mismo nombre que algunas cordilleras terráqueas, mientras que los picos montañosos se conocen con el nombre de algún famoso sabio). En la lámina de la izquierda está el Mare Nubium (Mar de las Nubes), bordeado por una región de cráteres próxima al polo sur de la Luna.

Su peso es mucho menor que el de la Tierra y así también su fuerza de gravedad, de manera que nosotros pesaríamos allí sólo un sexto de nuestro peso en. la Tierra y nuestra fuerza muscular nos permitiría realizar saltos espectaculares.

En la Luna no hay atmósfera en la Luna, de modo que no puede escucharse sonido alguno en su superficie. La ausencia de aire debe hacer que el cielo se vea negro aun en plena luz del día, pero las estrellas se destacarán marcadamente. Desde un lado de la Luna la Tierra está siempre visible y aparece mucho más grande de lo que la Luna se ve desde la Tierra; además, visto desde la Luna, nuestro planeta nunca se oculta, pero sí se mueve de un lado al otro en el cielo. Desde la cara posterior de la Luna nunca sería posible ver la Tierra.

El día y la noche lunares son aproximadamente 14 veces más largos que los nuestros. No se han observado jamás señales de vida allí y sólo cambios muy leves y dudosos. Se han intentado muchas teorías para explicar la causa de su superficie rugosa; a pesar de sus nombres, los cráteres lunares no pueden haber sido producidos por volcanes, sino quizá por la caída de meteoritos, cuyos efectos habrían sido muy destructores, debido a la falta de atmósfera.

Comparar la Tierra con la Luna es como comparar un organismo viviente con uno muerto. Sabemos que en la Tierra se desarrolla una infinita variedad de seres vivos, que han alcanzado su presente estado de desenvolvimiento por un continuo proceso de evolución. Cambios han ocurrido y ocurren constantemente.

Contrariamente a lo que ocurre en nuestro planeta, palpitante de vida en todas sus formas, con climas que varían enormemente, desde el calor tropical al frío polar, y con sólo una parte comparativamente muy pequeña de su superficie total incapaz de mantener cualquier clase de ser viviente. En 2015 la NASA ha encontrado señales de presencia de agua en la Luna, pero hasta hoy es completamente inepta para toda forma de vida. Es un mundo absolutamente muerto.

Ningún otro cuerpo celeste está tan cerca de la Tierra como la Luna y ningún otro cuerpo puede ser observado, estudiado e investigado tan detalladamente: montañas y llanuras pueden verse con mucha claridad con un simple telescopio casero. Si existiera la vida, lo sería en alguna forma que escaparía a nuestra observación, y ésta parece ser una posibilidad bastante remota.

Un argumento de peso que sostiene la teoría de la imposibilidad de la existencia de vida en la Luna, parte del hecho de que no hay agua ni atmósfera en ésta. Todo ser vivo que visitara la Luna debería llevar consigo los medios para poder respirar, beber y comer. Todos los datos coinciden en afirmar que en la Luna no puede haber vida.

Si la Luna en algún estadio de su existencia poseyó atmósfera, no pudo haberla mantenido por mucho tiempo, pues como su tamaño no es lo suficientemente grande, su fuerza de atracción es insuficiente para impedir que los gases envolventes escapen al espacio. La ausencia de una atmósfera da como resultado temperaturas muy extremas en el día; desde 82° cuando brilla el Sol hasta muy por debajo del punto de congelación cuando aquél se ha ido. La superficie no está nunca, por supuesto, oscurecida por nubes.

Negro y blanco son los colores que hay en la Luna, con algunos toques de amarillo, que son aportados por la luz del Sol. Como no hay atmósfera que pueda captar la luz, el cielo lunar es profundamente oscuro. A pesar de que el Sol esté brillando, las estrellas permanecen siempre visibles.

También la ausencia de aire, según hemos dicho, hace que la Luna sea un lugar de absoluto silencio; aun el disparar de un cañón no produciría el menor sonido.

La Luna ejerce una gran influencia sobre la Tierra, aparte de reflejar la luz del Sol sobre nuestro planeta durante la noche. Océanos y mares están sometidos al movimiento regular de las mareas; éstas resultan de la atracción entre la Tierra y la Luna y el Sol. El Sol es infinitamente más grande que la Luna, pero está tan alejado de la Tierra, que su influencia sobre las mareas es menor.

Durante la luna nueva y el plenilunio, Tierra, Luna y Sol están en una misma línea recta y así la influencia de la Luna sobre las mareas está reforzada por la del Sol. De esta manera se producen pleamares y bajamares extremas.

Cuando la Luna está en cuarto creciente o menguante, la atracción lunar forma un ángulo recto con la del Sol; los efectos de la Luna y del Sol son opuestos entre sí y el resultado es la marea muerta, con movimientos muy excepcionales de subida y bajada. Las mareas están influidas por la posición de las masas continentales, y los mares cerrados, como el Mediterráneo, tienen rara vez mareas.

inclinación entre orbita lunar y la Tierra

El plano de la órbita de la Luna forma un ángulo de 5° con el terrestre. Desde la Tierra se descubre un ancho de 6° 30′ del suelo lunar más allá de cada polo: del Polo Norte si la Luna está en la parte sur de su órbita, y del sur cuando se halla en su parte norte. Este fenómeno recibe el nombre de libración en latitud. Las dos libraciones citadas y u na tercera llamada diurna, que solamente alcanza un grado, dan origen a que se reconozca el 59% de la superficie lunar en lugar de la mitad exacta que se vería si aquéllas no existiesen.

LA FASES DE LA LUNA:

FASES DE LA LUNA

Dijimos que la Luna como la Tierra carecen de luz propia y reflejan la que reciben del Sol. Por ello hay siempre en ellas una cara iluminada que en la Tierra denominamos día, y otra obscura, que llamamos noche. Combinados los movimientos lunar y terrestre se produce el ocultamiento permanente de una cara del satélite. Hasta octubre de 1959 ningún terrícola había podido ver la parte oculta. Pero en esa fecha fue fotografiada mediante un satélite artificial lanzado por la Unión Soviética.

Las variaciones que experimenta la Luna se denominan fases: en ocasiones vemos el disco lunar completo, en otras sólo una especie de hoz, y a veces nos resulta totalmente invisible. (Cuando se halla en conjunción con el Sol decimos que se halla en fase de Luna nueva. Al otro día surge por occidente cual un delgado creciente luminoso cuya convexidad está siempre del lado del Sol en el ocaso.

El ancho creciente va aumentando hasta que, transcurridos seis días, aparece en forma de semicírculo cuya parte luminosaterminaen una línea recta. En tal situación se dice que está en cuarto creciente. Se la observa con facilidad durante la tarde y en el anochecer. A medida que sigue su camino y se va alejando del Sol adquiere figura oval y su brillo va en aumento, hasta que al cabo de siete u ocho días se torna completamente circular.

Esta fase se llama de Luna llena, después de la cual la parte iluminada comienza a disminuir y las mismas fases se van repitiendo en sentido inverso. Es decir que, primeramente, toma la forma oval y después la de semicírculo en que llega al cuarto menguante, fácilmente observable al alba.

Por último, tras haber dado una vuelta completa al cielo, sale por la mañana un poco antes que el Sol, y ya cerca de éste, se pierde entre sus rayos y vuelve a la posición original de Luna nueva. Esta posición oculta se denomina conjunción, porque en ella se encuentra entre la Tierra y el Sol. De manera similar, las épocas de la Luna llena reciben el nombre de sicigias y las de los cuartos creciente y menguante, cuadraturas.

GRAN MAPA DE LA LUNA CON CRÁTERES Y MARES:

Ver También: Los Eclipses

Fuente Consultada:
Biblioteca Temática UTEHA Tomo 10 El Mundo Que Nos Rodea – La Luna, satélite terrestre-
Cielo y Tierra Nuestro Mundo en el Tiempo y el Espacio Globerama Edit. CODEX
Enciclopedia Electrónica ENCARTA Microsoft

Que es un Radiotelescopio? Función de la Radioastronomia

FUNCIÓN DE LA RADIOASTRONOMIA

La palabra “radioastronomía” data de mediados del siglo XX, por lo que podríamos decir que un rama de la astronomía, relativamente joven, pensemos que las primeras observaciones con telescopio fueron las de Galilei en el siglo XVI. La primera identificación de ondas de radio de origen extraterrestre tuvo lugar hace ochenta años; pero la colaboración sistemática con los observatorios ópticos sólo comenzó después de la segunda guerra mundial. Entretanto progresaron otras formas de escudriñamiento mediante cohetes o globos-sonda capaces de analizar las vibraciones que nuestra atmósfera intercepta o perturba, como por ejemplo los rayos X.

La radioastronomía depende por completo de los telescopios ópticos; sin ellos carecería de sentido y valor porque es incapaz de calcular la distancia de las fuentes emisoras. La comparación de los resultados de ambas disciplinas es interesante pues las ondas radioeléctricas más intensas suelen provenir de los objetos celestes menos visibles y aún, aparentemente, de ninguna materia identificable.

También los registros históricos son muy útiles. Gracias a los astrónomos chinos que en el año 1054 señalaron el súbito estallido de una estrella (“supernova”) podemos reconstruir la historia de la actual nebulosa del Cangrejo, que pertenece a nuestra galaxia, la vía Láctea . Otras supernovas, indicadas por Tycho Brahe en 1572 y Kepler en 1604, son ahora débiles radioestrellas.

Esta última categoría de astros, la más inesperada de la nueva ciencia, parece incluir los cuerpos más distantes que conoce la astronomía. Su conocimiento contribuyó notablemente a la dilucidación de uno de los problemas capitales de todos los tiempos: el del origen del universo.

Grupo de Radiotelescopios Trabajando en Paralelo

LA RADIOASTRONOMIA Y LOS RADIOTELESCOPIOS:

Las Ondas Electromagnéticas Que Emiten Las Estrellas: Cuando una estrella explota, formando una nova o supernova, irradia una enorme cantidad de energía luminosa. Los átomos componentes de la estrella reciben gran cantidad de energía, se calientan extraordinariamente y, como todos los cuerpos muy calientes, irradian la mayor parte de su energía en forma de luz.

La estrella se presenta mucho más brillante. Pero, además de la luz visible, la estrella emite otras clases de radiaciones: rayos infrarrojos invisibles, rayos ultravioletas y ondas de radio. Todas estas clases de radiaciones se hacen mucho más intensas en el momento de la formación de una supernova. La radioastronomía se ocupa de la última clase de radiación citada, o sea, de las ondas de radio.

La fuerza de la explosión acelera y ex-. pulsa de la estrella nubes de partículas cargadas eléctricamente. Asociada con ellas, hay una serie de campos magnéticos turbulentos que cambian rápidamente. Cuando las partículas cargadas se mueven por los campos magnéticos, ganan energía, irradiándola en forma de ondas electromagnéticas.

Una de las ondas corrientes emitidas por los átomos de hidrógeno cargados tiene una longitud de onda de 21 centímetros. Las ondas electromagnéticas de esta longitud de onda son ondas de radio. Se propagan, a partir de su origen, en todas direcciones, viajando con la velocidad de la luz.

Las ondas luminosas son también un tipo de radiación electromagnética, pero de longitud de onda mucho más pequeña. Todas las galaxias y muchas estrellas, incluso el Sol, emiten ondas de radio. El Sol no es una estrella que se caracterice especialmente por enviar ondas de radio; pero, durante los períodos de actividad de sus manchas, la emisión de ondas de radio aumenta.

Las fuentes que emiten ondas de radio con gran intensidad no coinciden necesariamente con los objetos que a nuestros ojos aparecen brillantes, como las estrellas. De hecho, las ondas de radio provienen de regiones oscuras del cielo, de oscuras nubes de polvo y de hidrógeno, en las que éste (según ciertas teorías) está concentrándose para formar nuevas estrellas; sus átomos irradian la energía que ganan al acelerarse en los campos magnéticos del espacio.

Las ondas de radio son invisibles y no pueden detectarse con los telescopios ópticos. Pero, de la misma forma que las emitidas por una estación de radio, pueden ser recogidas por una antena receptora. Estas ondas producen la circulación de débiles corrientes eléctricas en la antena.

Estas corrientes pueden amplificarse, seleccionarse y convertirse en sonidos audibles, tal como acontece con un receptor de radio corriente. Pero es más frecuente utilizar un receptor especialmente concebido, para recoger las ondas de radio del espacio. En él, las corrientes fluctuantes de la antena se registran automáticamente en una gráfica. Al mismo tiempo, se conducen directamente a un cerebro electrónico, para su análisis.

Gigate Radiotelescopio de Arecibo

Los radiotelescopios son grandes antenas diseñadas para interceptar toda la emisión de radio posible de una estrella o de una galaxia. Para ello, las ondas se recogen juntas y se concentran de forma que las corrientes fluctuantes que producen en la antena sean lo suficientemente grandes para ser detectadas.

Las ondas de radio se dispersan en todas direcciones a partir de su fuente. Sólo una pequeñísima fracción de la radiación total de una estrella es interceptada por la Tierra, y esta radiación ha recorrido distancias tan enormes que sus ondas son prácticamente paralelas unas a otras. El radiotelescopio intercepta los rayos paralelos en la mayor superficie posible y los concentra enfocándolos en la antena. Cuanto mayor sea la superficie, más sensible será el radiotelescopio, ya que recogerá más cantidad de radiación de la estrella lejana. Los mayores telescopios ópticos son gigantescos reflectores formados por espejos parabólicos.

Los rayos que llegan a la cuenca del espejo parabólico se reflejan en un pequeño espejo colocado en el foco, y son enviados a una pequeña película fotográfica. El enorme espejo parabólico recoge todos los rayos luminosos que llegan a susuperficie.

Algunos de los grande radiotelescopios son muy parecidos a ese dispositivo. El radiotelescopio es también un paraboloide que puede tener cientos de metros de diámetro.

El pequeño espejo colocado en el foco del telescopio óptico está reemplazado en el radiotelescopio por la antena, a la que se enfoca toda la radiación recibida. Hay un inconveniente importante en los radiotelescopios. Incluso si existen dos o tres fuentes de ondas de radio separadas en el campo de detección es imposible distinguirlas unas de otras.

Las corrientes fluctuantes son el resultado de todas las ondas de radio recibidas en el radiotelescopio. La placa fotográfica del telescopio óptico es un medio más eficiente para detectar la imagen, pues los rayos de luz que llegan al espejo con distintos ángulos se concentran en puntos ligeramente diferentes en el espejo pequeño, y se reflejan para ennegrecer puntos distintos en la placa sensible.

El radiotelescopio ideal debe ser lo más grande posible, para recoger el mayor número de rayos, pero también debe ser manuable, de forma que pueda dirigirse _ a cualquier parte del cielo. Cuando el diámetro sobrepasa los 80 metros, el telescopio no puede ser lo suficientemente rígido para resistir el viento sin doblarse y distorsionar la “imagen”. Además, no es fácil manejarlo. Se está construyendo en Puerto Rico un radiotelescopio de más de 300 metros de diámetro, forrando con aluminio pulimentado las paredes de un cráter que presenta una forma conveniente. Pero este radiotelescopio no puede ser enfocado arbitrariamente, puesto que es fijo.

Los radiotelescopios reflectores simples son de construcción difícil y costosa. Sin embargo, puede fabricarse otra clase de radiotelescopio formado por varios reflectores pequeños y antenas, dirigidos hacia diferentes partes del cielo y que se mueven conjuntamente, cubriendo una distancia mucho mayor de la que puede abarcar un solo reflector. De esta forma, la “imagen” puede componerse a partir de fragmentos parciales. Para localizar de manera más precisa las fuentes de ondas intensas, se usan unas largas hileras de reflectores y antenas idénticas, colocados exactamente a la misma distancia unos de otros.

Estos dispositivos tienen un excelente poder de resolución y resultan mejores para separar dos fuentes de ondas próximas. A pesar de que los rayos procedentes de una fuente emisora puntual son paralelos, si llegan al radiotelescopio formando un ángulo, alcanzarán la antena de un extremo de la línea antes de llegar a la del otro extremo. Al llegar a las antenas en instantes diferentes, las ondas de cada extremo lo harán en distintas fases de su vibración.

Al sumar todas las corrientes de las antenas, las de un extremo pueden estar en una fase opuesta a las del otro, eliminándose parcialmente una a otra. El efecto producido es hacer más nítida la imagen de radio de la estrella. Este tipo de radiotelescopio se llama radiointerjerómetro, debido a que la eliminación de una serie de ondas por otra es una interferencia. Generalmente, el interferómetro se compone de dos líneas de antenas que forman ángulos rectos. La nitidez de la imagen o poder de resolución puede aumentarse de varias maneras, sumando o restando las señales de las distintas antenas.

Los radiotelescopios pueden penetrar mucho más profundamente en el universo que los telescopios ópticos. Las galaxias más lejanas que se conocen son también los transmisores de radio más potentes, y fueron descubiertas precisamente a causa de esta poderosa emisión de ondas de radio, que emiten probablemente por ser galaxias en colisión. El telescopio óptico de Monte Palomar investigó con mucho cuidado en esa dirección, y encontró la tenue nube de galaxias causantes de las ondas de radio.

La atmósfera terrestre es un inconveniente para la radioastronomía, dado que absorbe grandes cantidades de la radiación electromagnética que llega a la Tierra. Sólo un pequeño margen de ondas puede atravesar la atmósfera. Las ondas de radio de pequeña longitud son absorbidas por las moléculas de la atmósfera, y las de onda larga se distorsionan a causa de las capas cargadas eléctricamente de la ionosfera.

Una solución sería la de colocar un radiotelescopio en un satélite artificial, y una idea todavía más prometedora es la de construirlo en la Luna, donde no hay atmósfera que pueda interrumpir la radiación. En la Luna se podrían construir radiotelescopios mayores, ya que siendo menor la fuerza de la gravedad, la estructura de los aparatos podría manejarse con menor esfuerzo y una menor deformación del reflector.

ALGUNAS FUENTES INTENSAS DE ONDAS DE RADIO

Sol 8 minutos Desde algunos milímetros a varios metros, emitidas por la corona y la cromosfera
Júpiter 40 minutos Unos 15 metros
Gas hidrógeno en ios brazos espirales de una galaxia De 1.500 a 80.000 años
21,1 cm„ emitida por el gas hidrógeno ionizado
Nebulosa de la constelación de Cáncer (su pernova) 3.000 años De 1 cm. a 10 m. Ondas de electrones acelerados
Supernova de la constelación de Casiopea 10.000 años De un centímetro a 10 metros; proceden de hidrógeno ionizado, oxígeno y neón
Centro de nuestra galaxia 30.000 años
Nubes de Magallanes (las galaxias más próximas) 200.000 años 21,1 centímetros
Nebulosa de la constelación de Andrómeda (la galaxia espiral más próxima) 2 millones de años 21,1 cm. Es un emisor tan potente como nuestra propia galaxia
Galaxia elíptica de la constelación de Virgo (Virgo A), nebulosa del chorro azul 33 millones de años Ondas de electrones acelerados
Dos galaxias espirales en colisión de la constelación del Cisne (Cisne A) 50 millones de años
Nebulosa de radio lejana, de la constelación de Hércules 750 millones de años

Fuente Consultada:
Revista TECNIRAMA N°90 Enciclopedia de la Ciencia y La Tecnología – La Radioastronomia –

Historia de la Medición del El Tiempo Desarrollo del Reloj Medir

Historia de la Medición del El Tiempo

INTRODUCCIÓN:  Las cuatro dimensiones conocidas hasta el momento, las conforman el tiempo y las tres que describen un espacio en sus tres coordenadas X, Y, y Z, en donde se encuentra el Universo.  Especulaciones se han dado, buscando una quinta dimensión, donde podría existir la antimateria o un Universo paralelo al nuestro, pero sin una comprobación científica valedera.

Refiriéndonos a la primera dimensión, el tiempo, cualquier persona que por un momento  haya pensado sobre él, estará de acuerdo con San Agustín (354-430 d. de C.). San Agustín en sus ”Confesiones” (XI, 14)(1) escribió: “Que es el tiempo? Como nadie me pregunta, siento que yo lo sé. Pero si tengo que explicarlo, no lo sé.” Es decir una definición concluyente del tiempo parece imposible darla. Cuando empezamos a definirlo ya se nos ha escapado y si lo reducimos a un concepto se mueve aun más lejano de nuestro alcance.

Tratando de estar de acuerdo con la concepción del tiempo dado por la lengua alemana en el sentido de que el tiempo es derivado de sucesos de ayer, hoy y mañana, podemos concluir que cuando pensamos en el tiempo estamos pensando en la vida, el nacer y morir, porque tenemos conciencia de esa realidad.

Por otra parte el Universo ocupa las otras tres dimensiones, encerrando aún grandes misterios para los científicos que incansablemente tratan de resolver. Ya desde los inicios de los primeros cosmólogos Sócrates, Platón, Aristarco de Samos, y Arquímedes que contemplaron el Sol, la luna y las estrellas, se preguntaban: ¿Qué somos, de dónde  venimos, a dónde vamos?; pasando por Aristóteles, Tolomeo, Copérnico, Kepler, Lemaitre,  quienes descubrieron las primeras leyes que rigen el movimiento de nuestro sistema solar, hasta Newton, Einstein, Hubble, Sandage, Zeidovich, Hawking y otros que han contribuido con sus teorías y descubrimientos para determinar que el Universo está en expansión,  continuamente el hombre ha querido encontrar el origen del Universo, si pertenecemos a un sistema cerrado o abierto y si este Universo algún día, dentro de miles de millones de años, lanzará su último suspiro, para dejar de existir.

El Universo sigue siendo inquietante,  misterioso. ¿Cuánta vida y atractivos esconde ese espacio tan infinito como desconocido?  ¿Qué hay más allá de nuestra vista, o de nuestro entendimiento? ¿Cuánto nos queda por aprender o descubrir de él? ¿Podremos algún día tener la capacidad para navegar a través de él?

Por ejemplo Aristarco de Samos (III a. de C.), sabio griego, ubicó al Sol en el centro del Universo y los demás astros girando alrededor de él. Arquímedes publicó estos trabajos en su libro “El Arenario”. Claudio Tolomeo (II d. de C.), elaboró otra teoría, donde la Tierra era el centro del Universo y estaba quieta. La Luna, Mercurio, Venus y el Sol los colocaba  casi en línea recta y a medida que se iba alejando, colocaba a Marte, Júpiter, Saturno a los que él llamaba estrellas inmóviles.

Nicolás Copérnico en 1543, en su libro “La revolución de las Esferas Terrestres”, publicó que el Sol estaba en el centro y los planetas a su alrededor, girando en movimientos circulares uniformes, lo cual fue confirmado por el  italiano Galileo Galilei, al estudiar las fases del planeta Venus, descubriendo experimentalmente que este giraba alrededor del Sol. Isaac Newton en el siglo XIX,  formuló las leyes de gravitación universal y dio explicación a las leyes del movimiento formuladas por Kepler. En 1928 el belga Georges Lamaitre, construyó un modelo en 2 expansión, mediante el cual era posible predecir lo descubierto por Hubble , al observar que las galaxias se alejaban entre sí al verificar el corrimiento al rojo de sus velocidades  relativas y que confirmaba la teoría de un universo en expansión.

Como puede verse, teorías, se han escrito muchas, algunas ya han desaparecido, otras han resistido las críticas y análisis de la comunidad científica, o cuentan con adeptos y las teorías más audaces persisten aun, aunque el único seguidor, sea su expositor. Bueno al fin  de cuentas todo el mundo tiene derecho a exponer sus ideas. Cuando Einstein, con su  pensamiento puro y visionario, expuso la Teoría de la Relatividad, nadie se lo creyó, solo el tiempo y comprobaciones científicas le dieron la razón.

En la figura No. 1, el telescopio Espacial Hubble, muestra una de las fotografías más interesantes del universo profundo visible jamás obtenido por la Humanidad. Este ha recibido el nombre de Campo Ultra profundo y el Hubble para su realización empleó una exposición de más de un millón de segundos, lo cual represento 400 órbitas del telescopio  espacial en torno a la Tierra. La imagen revela las primeras galaxias que emergieron de las llamadas “edades oscuras”, los cuerpos que comenzaron a calentar el frío y oscuro Universo poco tiempo después del Big Bang. Ante esa inmensidad del Universo los científicos se  vieron obligados a inventar una magnitud de medida: el «año luz», esto es, la distancia que recorre la luz en un año (9.463.000.000.000 kilómetros).

Otro de los misterios que se vienen estudiando dentro del Universo son los llamados Agujeros Negros. A partir de la década del 60 del siglo pasado, comenzaron a descubrirse  cuerpos celestes que venían a corroborar apreciaciones teóricas anteriores de hace más de dos siglos.

El concepto de un cuerpo tan denso que ni la luz pudiese escapar descrito en un artículo  enviado en 1783 a la “Royal Society ” por un geólogo inglés llamado John Michell quien calculó que un cuerpo con un radio 500 veces el del Sol y la misma densidad, tendría, en su superficie, una velocidad de escape igual a la de la luz y sería invisible. Posteriormente  Laplace en 1796 en Exposition du Systeme du Monde, cuando demostraba su teorema que la fuerza de atracción de un cuerpo muy pesado puede ser tan grande, que la luz no pueda fluir fuera de él, lo confirmó matemáticamente. Con el avance de la ciencia  astronómica este concepto ha ido tomando mayor fuerza y ciertas observaciones hechas en   el cosmos, confirman su existencia, habiéndose bautizado dichos cuerpos como agujeros negros.

El hecho de que se hayan detectado y observado ciertas singularidades en el cosmos donde aparentemente no hay emisión de ninguna clase de energía, se ha relacionado con los cálculos teóricos que demuestran que cualquier objeto que emita energía desde un agujero negro, aparecerá indetectable desde el exterior ya que será tal la fuerza gravitacional generada por él, que impedirá que la luz (fotón portador de luz) salga y solo por su influencia gravitacional enorme a su alrededor se conoce su existencia.

Desde que el hombre comenzó a estudiar y comprender el tiempo y el Universo, como uno estaba ligado al otro, la raza humana empezó a progresar. Nuestros ancestros empezaron por estudiar las variaciones del día, como había un periodo de claridad seguido de un periodo de obscuridad, después comenzaron a observar ciclos regulares de las fases de la  luna, determinando que entre uno y otro cambio igual transcurrían aproximadamente 29,5días, después pudieron determinar las estaciones y como éstas tenían también un siclo regular pero mucho más largo que el ciclo lunar, así pudieron llegar al año, que es el periodo de rotación de la tierra alrededor del Sol y debido a la inclinación del eje de la tierra con relación a su órbita, da lugar a que la luz del Sol llegue a la Tierra en diferente ángulo a medida que ésta rota alrededor de él.

Después observando las noches pudieron determinar que las posiciones de los astros y las estrellas también tenían un significado en el transcurso del tiempo. Las civilizaciones pasadas, plasmaron estas observaciones a través de inmensas construcciones y monumentos en diferentes partes del mundo y que hoy en día nos permite entender como el conocimiento sobre el tiempo y el cosmos les permitió desarrollarse. Las civilizaciones que tenían más conocimiento sobre el tiempo y el Universo se desarrollaban mucho más rápido que las que no lo poseían.

En esta introducción no se puede terminar sin mencionar a Carl Edward Sagan (1934- 1996), venía de una familia pobre de emigrantes rusa, desde muy temprana edad, se interesó por el Cosmos y el porqué de todas las cosas que más tarde le llevarían a ser un pionero y un popular astrónomo, exobiólogo y divulgador científico en todo el mundo. Fue pionero también en campos como la exobiología y promotor del proyecto SETI (“Search of ExtraTerrestreal Inteligence” literalmente: Búsqueda de inteligencia extraterrestre).

Se dio a conocer públicamente en la serie para la televisión de Cosmos: Un viaje personal, presentada por él mismo entre 1977 a 1980, escrita y producida para la KCTE deCalifornia. Fue titular de la cátedra David Duncan de Astronomía y Ciencias del Espacio de la Universidad de Cornell y director del Laboratorio de Estudios Planetarios de dicha universidad. Decía Sagan: “Somos el medio para que el Cosmos se conozca a sí mismo”.

Toda una realidad que me motivo a elaborar este libro.

UNIVERSO

Figura No. 1. El Universo Profundo o Campo Ultra profundo(3)

 CAPITULO PRIMERO EL TIEMPO:

LA MEDIDA DEL TIEMPO

El segundo es la unidad base de medición del tiempo  Pero que tanto es un segundo? Normalmente lo relacionamos con un suceso instantáneo. Pero que tan lejos estamos de la realidad.

Realmente en un segundo, un montón de cosas pueden pasar y verdaderamente pasan: La luz atraviesa aproximadamente una distancia de 300.000 Km., el hombre más veloz recorre 10 metros y así sucesivamente podríamos enumerar diferente eventos que ocurren en la unidad del tiempo.

La primera definición oficial del segundo data de 1875, cuando el Comité Internacional de  Pesos y Medidas, estableció el Sistema Estándar de Referencia Métrico, cerca de Paris. El segundo fue definido como 1/86400 parte de la medida de un día solar, computado sobre un número suficiente de años para reducir el error. Esta definición fue reemplazada en 1956  por la siguiente: “El segundo es igual a 1/31.556`925.947 parte del año tropical calculado a las 12:00 del día primero de enero de 1.900 en Greenwich.

En 1956, sin embargo, se fundó un Comité Internacional para revisar y definir el segundo, conduciendo a la dada en 1967 y que permanece inalterable hasta el momento: “El segundo es la duración de 9.162`631.700 periodos de radiación correspondiente a la transición entre los dos niveles híper finos del estado fundamental del átomo de Cesio 133.”

Ahora Ud. Sabe que está diciendo cuando promete: “Regreso en un segundo”, o “Espere un segundo”, expresiones usuales a cada segundo.

¿CÓMO SE MIDE EL TIEMPO?

En la antigüedad, el tiempo fue medido por la variación de la longitud de la sombra proyectada por una varilla al recibir el Sol. También fue medido notando que tanto se tomaba en pasar cierta cantidad de agua de un recipiente a otro, a través de una tubería delgada. Esta era la forma empleada por los romanos de la antigüedad para medir el tiempo permitido en los discursos frente a la corte. No solo el agua fue empleada como elemento, otros como la arena o el quemado de cierta cantidad de cera, también se usaron como medio para medir el tiempo.

Pero no fue sino hasta la edad media que se visualizó que la exacta medición del tiempo,  solo era posible con la ayuda de procesos periódicos. El péndulo con su movimiento oscilante, es la representación obvia de este principio.

Se ha afirmado que el astrónomo Árabe Ibn Junis uso el péndulo en sus estudios  astronómicos como elemento para medir el tiempo en el siglo XV. En los años recientes se ha descubierto en los manuscritos y planos de Leonardo Da Vinci, el uso del péndulo como elemento primario para medir el tiempo.

En realidad el uso de un elemento regulado por el péndulo vino a mediados del siglo XVII mucho después de estarse usando primero una corona no balanceada y después reemplazada por una rueda balanceada , como medio para medir el tiempo y al cual se le denominó reloj.

DESARROLLO DEL RELOJ

El reloj como mecanismo para medir el tiempo tuvo un periodo relativamente lento de  evolución.  En 1270 se manifestaba primero en iglesias y más tarde en edificios públicos al comienzo  del siglo XIV.

El siguiente desarrollo consistió en el empleo en modelos planetarios complicados,  operados por un sistema de reloj que tuvo su aparición en el siglo XIV, siendo refinados durante los dos siglos siguientes. El ejemplo más antiguo conocido es el gran reloj planetario construido por el Astrónomo y Matemático ingles Abbot Richard Wallingford, para el Monasterio Benedictino de San Albán al comienzo del siglo XIV. Este fue seguido por una producción independiente entre 1348 y 1364 por el Profesor de Astronomía, Medicina, Astrología, Filosofía y Física de la Universidad de Padua, Giovanni De Dondi.

La tradición de estos modelos planetarios continuó hasta el siglo XVI con ejemplos aun  más sofisticados. Juanelo Turriano, mecánico al servicio del Emperador Carlos V, desarrolló un gran modelo astronómico, donde gasto 20 años en su diseño y tres años y medio en su construcción. No pudo terminarlo antes de la muerte del Emperador en 1558 y  fue modificado por Turriano posteriormente de acuerdo con la reforma del calendario.

La preocupación científica durante el siglo XVII en las áreas de Astronomía, Navegación y Mecánica y la necesidad de demostraciones científicas, hicieron que se pensara en el reloj y su adaptación real para propósitos científicos, particularmente en Astronomía. Fue en este siglo donde apareció el péndulo, siendo sus principios estudiados por Galileo Galilei, quien visualizó su potencial aplicación al reloj y su empleo en la navegación para determinar la longitud en el mar. Los grandes viajes hechos por España y Portugal durante el siglo XVI,  después del descubrimiento de América por Colón, determinaron la gran necesidad de hallar la longitud en el mar. En 1530 Gemma Frisius, propuso que esto era posible  utilizando alguna forma de medir el tiempo, efectuándose numerosos intentos para su logro.

En 1598, el Rey de España ofreció un premio de 1.000 coronas por la solución práctica del problema, siendo adicionada otra oferta hecha por el Estado General de Holanda por 10.000 florines. Estos premios no fueron ganados y no precisamente porque no se hubiese hecho un gran esfuerzo para conseguir la solución.

En 1612 Galileo comenzó sus primeros estudios serios sobre la solución del problema. En  1636 propuso que la longitud podría determinarse, graficando los satélites de Júpiter, descubiertos por él, durante sus observaciones astronómicas. Sin embargo se requería un telescopio muy exacto a bordo, lo que dificultaba el objetivo, además del empleo de un reloj de tan aprobada exactitud imposible de construir para la época. En 1641 Galileo  traspasó a su hijo Vincenzio Galilei, el concepto del reloj regulado por un péndulo.

Vincenzio trató de realizarlo pero no pudo completarlo antes de su muerte, en 1649. El proyecto fue realizado finalmente por el mecánico Johann Phillip Trefler al Príncipe Leopoldo De Medici, algunos años mas tarde. Si Galileo hubiese terminado su proyecto, indiscutiblemente su reloj regulado por un péndulo hubiese sido superior al patentado por  Christian Huggens en 1657. Sin embargo, Galileo logró el desarrollo de la rueda volante para relojes, que solo vino a ser superado en exactitud a mediados del siglo XVIII.

Los experimentos con diferentes métodos para determinar la longitud en el mar continuaron a través del siglo XVII, Huggens desarrolló un reloj marino, que utilizó el resorte balanceado inventado por él, pero no tuvo uso práctico. Los hermanos Campani de Roma, propusieron varias soluciones al Rey Luís XIV y Archiduque Ferdinando De Medici, pero  ninguno de ellos tampoco tuvo uso práctico. Los premios ofrecidos por España y Holanda,  fueron reemplazados al comienzo del siglo XVIII (1704), por el ofrecido por el Parlamento Inglés (20.000 Libras esterlinas). Aunque se hicieron grandes esfuerzos, solo en 1764 se logró con el invento del cronometro por John Harrison, quien gasto la mayor parte de su  vida para conseguirlo.

El siguiente desarrollo importante, fue el de lograr un reloj de pulsera, para lo cual se hizo necesario realizar un gran trabajo en muchos campos hasta llegar al perfeccionamiento del mecanismo minutero. Fue necesario encontrar el material que ofreciera la suficiente fortaleza en dimensiones muy pequeñas. El péndulo eléctrico fue introducido en el siglo  XIX y el primer reloj eléctrico de pulsera fue hecho en Suiza en 1952. El circuito eléctrico consistía en un micro-contacto, una batería y una bobina.

La necesidad de medir el tiempo cada vez más exactamente, llevó al desarrollo del reloj  electrónico controlado por un oscilador de cristal de cuarzo hecho en 1928 y tenía el tamaño de una maleta. En 1934 la técnica electrónica desarrollada fue capaz de registrar la desviación anual de la velocidad de rotación de la tierra con la ayuda del reloj de cristal de  cuarzo. Esta desviación no fue conocida por los astrónomos sino hasta 1951. El primer reloj  de pulsera de cristal de cuarzo fue desarrollado entre 1967-1970. Este reloj aparte del cristal de cuarzo, pila y circuito electrónico, tenía las mismas partes que el reloj mecánico.

Su principio se basa en el efecto piezo-eléctrico del cuarzo cuando se aplica un voltaje alterno,  el cual produce oscilaciones a altas frecuencias, siendo reducidas a un impulso por segundo  para controlar un motor de paso. De esta forma se consigue exactitudes mayores que con los relojes mecánicos. Hoy en día se han mejorados en forma increíble este tipo de relojes de cuarzo, habiéndose introducido innovaciones en la presentación del tiempo en forma numérica con el despliegue de cristal liquido (LCD) y en el uso de pilas, incluyendo  recargables con energía solar o lumínica. Los últimos avances de la ciencia llevaron al desarrollo del reloj atómico, como el empleado para la definición del segundo, empleando el átomo de Cesio 133, que introduce un error de un segundo en 30.000 años, y el más  reciente desarrollado en Estados Unidos en 1999, con un error de un segundo en 20 millones de años.

RELOJ SOLAR


Figura No. 2. Reloj solar hecho en St. Rémy de Provence (6)

Desde el desarrollo de los primeros relojes empleando diferentes medios físicos como el  Sol, agua, arena, pasando por medios mecánicos utilizados en torres, iglesias y por monarcas y reyes por sus costos, hasta los hechos hoy en día y al alcance de cualquier persona, el reloj ha conservado su símbolo majestuoso de poderío, donde el mundo, incluyendo al hombre, gira alrededor de él, como magnetizado por el pequeño tic-tac que inexorablemente va marcando el tiempo, indicándonos no solo cuanto tiempo el universo ha existido, sino cuanto tiempo de vida nos queda por vivir.

EL CALENDARIO

La voz calendario⁸ procede de calendas y según Pérez Millán “es la combinación de  elementos cronológicos y consiguiente distribución del tiempo, usada en cada país para regular la actividad humana, señalando los días y épocas laborales y las festividades  religiosas y civiles”. Históricamente el desarrollo del calendario tuvo su dependencia de las  observaciones astronómicas. El día es medido de la rotación de la tierra sobre su eje, la semana se aproxima al cambio de fase de la luna, el mes es medido de la revolución de la luna alrededor de la Tierra y el año de la revolución de la Tierra alrededor del Sol.

Nuestros antepasados, particularmente los babilonios, basaron su calendario en el ciclo de  la luna y la medida lunar de los años ha sido preservada en el calendario moderno por los judíos, chinos y musulmanes. En contraste, los egipcios basaron su calendario en el Sol, siendo figura prominente en su religión. La civilización egipcia dependía del crecimiento
estacional del Nilo, el que fue asociado en forma muy cercana al ciclo solar. En la  antigüedad algunas civilizaciones determinaban el año solar observando una estrella brillante después de que se hacía invisible por la proximidad del Sol.

A menudo Sirius fue utilizada con este propósito. Promediado estas observaciones se  encontró que el año solar daba cerca de 365 días. Los sumerios fueron los primeros en dividir el año en 12 unidades, fueron ellos también los primeros en dividir el día, y lo hicieron siguiendo el mismo patrón de divisiones. Así como su año constaba de 12 meses y  cada uno de ellos de 30 días, sus días consistían en doce “danna” de 30 “ges” cada uno, sin embargo fueron los egipcios los que introdujeron el día de 24 horas.

En la Roma antigua, los meses se basaron en el ciclo lunar. Los Pontífices observaban la aparición de la luna creciente después de la luna nueva, para poder declarar el comienzo de un nuevo mes. Este primer día era llamado “Kalendae”, que significa llamamiento. Nuestra palabra calendario se deriva de este término.

Desafortunadamente para nuestra medida de tiempo, el ciclo lunar no corresponde a un  número exacto de días, ni la Tierra efectúa una órbita completa alrededor del sol, en un número exacto de días. El ciclo lunar es de 29.53059 días, la órbita terrestre alrededor del Sol toma 365.242196… días. De esta manera 12 meses son demasiados cortos para un año
y trece demasiado largo. Nuestra semana de siete días (basados en la religión), aunque muy  cercanos a la fase lunar, tampoco es un factor de periodo lunar, mes o año.

Cuando los romanos adoptaron el año solar Egipcio en la época de Julio Cesar, su propio calendario lunar-solar tenía demasiado error. Introducido a Roma por un Astrónomo Sosígenes de Alejandría, el calendario Egipcio fue ordenado para su uso oficial Romano por Julio Cesar en el año 45 A.C. y fue llamado calendario Juliano y se basaba en el año  solar de 365.25 días. El año fue dividido en meses, de los cuales once contenían 30 o 31 días y el doceavo solo 28 días.

El primer mes era marzo y el último febrero. Julio recibió su nombre después de Julio Cesar y Agosto después de Augusto Cesar. Ambos meses  recibieron 31 días en honor de los dos Cesares. El séptimo mes fue llamado septiembre, el  octavo octubre, el noveno noviembre y el décimo diciembre, derivados del latín septem, octo, novel y decem, que significan siete, ocho, nueve y diez respectivamente.

El calendario Juliano, perdía aproximadamente un cuarto de día por año. Esta pérdida era  corregida agregando un día extra al doceavo mes (febrero), cada cuatro años, llamada año bisiesto. Sin embargo este calendario gradualmente iba moviéndose con respecto a la  posición estacionaria del Sol con relación a las estrellas. El año Juliano esta desfasado once  minutos cuatro segundos más del tiempo aparente tomado por el Sol en aparecer en la  misma posición después de la órbita de la tierra alrededor de él.

En el año 1500 D.C., el error era aproximadamente de once días. Las festividades religiosas cristianas basadas en la semana santa, asumían fijo el Equinoccio de Vernal, el 21 de marzo y en consecuencia iban  quedando desfasados con el paso de los años con la realidad. Por consiguiente, el Papa  Gregorio XIII dio instrucciones para corregir la situación anterior, al Padre Jesuita Alemán Cristopher Schlussel, cuyo nombre latín era Clavius. (Clavius está inmortalizado por el nombre de un gran cráter lunar cerca al polo sur de la luna).

Clavius utilizó un esquema
ideado por el Astrónomo Napolitano Aloysius Lilius, en el cual los siglos no tendrían años  bisiestos a menos que fuesen divisibles por 400. Para corregir el calendario, el Papa Gregorio ordenó que el día 15 de octubre de 1582, fuese el 4 de octubre. A pesar de las grandes protestas de la gente por haberles robado 11 días de su vida, la corrección se  efectuó y el nuevo calendario fue llamada Gregoriano. El nuevo calendario Gregoriano  también movió el comienzo del año de marzo 25 a enero 1⁰, así que realmente se perdieron aparentemente más de 3 meses de vida.

El calendario Gregoriano, fue adoptado por casi todos los países Romanos Católicos y por  Dinamarca y Holanda en 1582. Pero fue solo después de dos siglos que finalmente fue aceptado en forma general. Durante ese tiempo se podía salir de Inglaterra en febrero 1679 y hallarse en febrero de 1680 en algunos países europeos y Escocia. Los días del mes  también eran diferentes entre Inglaterra y algunas partes de Europa.

Finalmente otros países comenzaron a aceptar el nuevo calendario. Los protestantes en  Alemania y Suiza lo adoptaron en 1700 omitiendo 11 días antes entre septiembre 2 y 14. Prusia lo adopto en 1778. Otros países lo siguieron como Irlanda en 1782 y Rusia en 1902. Después de la revolución francesa, un nuevo calendario fue adoptado por Francia, el primer  día del año comenzó en septiembre 22 de 1792. Este calendario fue utilizado hasta  diciembre 31 de 1805, cuando Francia aceptó nuevamente el calendario Gregoriano.

Existen otros calendarios en uso, particularmente siguiendo los eventos religiosos. El calendario judío usa el siclo lunar y solar. Los meses son meses lunares, pero son alrededor de 11 días menos del año solar. Un treceavo mes periódicamente debe ser intercalado para mantener algún sincronismo con el ciclo solar. El calendario Musulmán ignora el ciclo  solar completamente y sigue únicamente el siclo lunar, alternan meses de 30 y 29 días. Los  años comienzan en diferentes estaciones sobre un ciclo de 32.5 años. Antes de la Segunda Guerra Mundial, se trató de introducir un calendario de negocios de 13 meses, en el cual todos los meses tendrían cuatro semanas. Este calendario de negocios permitía un mejor  significado financiero, pero no recibió mayor aceptación.

En la siguiente tabla como referencia8 se enuncian los principales acontecimientos  relacionados con el desarrollo de medios y/o sistemas para medir el tiempo, desde la antigüedad hasta nuestros días.

FECHA ACONTECIMIENTO

1300 a. de C. Descripción del primer reloj solar en Abydos.

1200 a. de C. Descripción de un ortostilo (Proto reloj solar) en China hecho por el Astrónomo Tscheu-Kang.

520 a. de C. Anaximenes de Mileto es el primero en analizar el cómputo geométrico de  la proyección de la sombra.

293 a. de C. Primer reloj de sol de la civilización romana instalado en Roma en el  templo de Júpiter por Lucio Papiro Cursor.

270 a. de C. Se construye un reloj de agua por Cesibio.

50 a. de C. Se construye la famosa torre ortogonal de los vientos en Atenas por  Andronicus de Kyrrhos. Cada cara contenía un reloj solar orientado a cada una de las direcciones de los vientos.

46 a. de C. Se crea el calendario solar con años bisiestos por Julio Cesar y Sosígenes  en el imperio Romano.

1000 Los vikingos utilizan un sistema basado en el ángulo de la luz solar para  calcular la latitud. Igualmente comienzan los diseños de grandes relojes en torres e iglesias en Europa.

1295 Raimundo Lullus construye un reloj mecánico conocido como Horologium  Noctis.

1330 El ingeniero Richard Wallingford empieza la construcción de un reloj  planetario y lo termina 30 años después.

1335 Construcción del primer reloj mecánico conocido en Milán.

1400 El Astrónomo Jhon Slape diseñó un reloj de sol portátil universal llamado  Navicela Italiana o Navicula de Venteéis.

Construcción del primer reloj mecánico con campana en la iglesia de Santa  María en Sevilla España.

1502 Johan Stabius construye el primer reloj solar estilo axial y lo ubica en la Iglesia de San Lorenz en Numberg Alemania.

1582 Introducción del Calendario Gregoriano por el Papa Gregorio XIII

1656 Christian Huygens construye el primer reloj de péndulo.

1737 John Harrison construye el primer cronometro náutico para precisar la  longitud en el mar.

1884 Adopción del meridiano de Greenwich como referencia horaria mundial en  honor de Nevil Maskelyne.

1928 Construcción del primer reloj de cuarzo por Joseph Horton y Warren  Morrison.

1949 Construcción del primer reloj atómico basado en la vibración molecular de  la mecánica quántica.

2008 Lanzamiento del primer reloj atómico al espacio.

Tabla No. 1. Desarrollo de medios y/o sistemas para medir el tiempo

El lector, después de haber leído esta breve reseña histórica del tiempo y de cómo el  hombre lo ha visualizado y medido, entenderá que para nosotros el tiempo es relativo a las  posiciones espaciales de nuestro sistema solar, sin embargo, existirán otros sistemas de  referencia relativos, donde es posible que el tiempo no transcurra con la misma rapidez que
en nuestro sistema solar, es decir un siglo nuestro podría significar un día en otro sistema
espacial o viceversa.

Como bien lo supo describir Einstein(9) en su teoría “El Significado de la Relatividad” todo  es relativo y el espacio y el tiempo se encuentran íntimamente ligados entre sí y su tiempo relativo con respecto a otro observador, depende de la velocidad relativa entre ellos. En singularidades como los agujeros negros y la ergoesfera los físicos teóricos proponen, que  en sus inmediaciones el tiempo transcurre más lentamente e inclusive se podría viajar al  pasado al alcanzarse velocidades superiores a la de la luz.

En conclusión, el tiempo es tan intangible que no puede ser tocado, sin embargo está  presente, dejando una huella imborrable de su presencia en nuestras vidas, y como dice algunos proverbios en latín (10): “Collige, virgo, rosas dum flos novas et nova pubes et menor esto aevumsic properare tuum” y que significa: “Coge, niña, las rosas mientras  exista la flor fresca y la nueva juventud y recuerda que así corre tu tiempo”, o mejor aun “Neque dimisi tempus” es decir “Y no deje pasar la ocasión”, y uno de los más representativos de acuerdo al estado de ánimo: “lentiores tristibus, laetissimis  velocissimae discurrunt” y que significa “Para quien está triste, las horas pasan bastante lentas, veloces para quien está feliz”.

1 San Agustín. “Confesiones“ (XI, 14) 400 d. de C.

2 Edwin Powell Hubble (Noviembre 20, 1889 – Septiembre 28, 1953) Astrónomo norteamericano que cambió profundamente el entendimiento de nuestro Universo.

3 Página web: www.xtec.es/~rmolins1/univers/es/

4 Albert Ziegler. “Thoughts on time and its measurement”. Swissair Gazette., 1/1984.

5 Silvio A. Bedini. “The mechanical clock and the scientific revolution”. Swissair Gazette., 1/1984.

6  Página web: Enciclopedia virtual Wilkipedia.

7  Fabienne Xavier Sturm. “Le cadran d’une montre image de’une heure visage de’un temps”. Swissair
Gazette., 1/1984.

8  Enciclopedia virtual Wilkipedia.

9 Albert Einstein. “El significado de la Relatividad”. Espasa Calpe S.A., 1980.

10 Página web: El tiempo y la humanidad – La medida del tiempo.

Tiempo Astronomico Concepto Definición y Explicación

Tiempo Astronómico Concepto y Explicación

EL TIEMPO ASTRONÓMICO: La idea del tiempo fue una consecuencia de la observación del cielo durante el día y la noche. Los HOMBRES de las antiguas civilizaciones observaron que después del amanecer comenzaba un lapso que duraba hasta el amanecer siguiente. También notaron que otro período, aproximadamente regular, transcurría entre cada aparición en el cielo de la LUNA nueva y la Luna llena.

En un análisis posterior, se dieron cuenta de que había un ciclo que duraba más tiempo aún. Observaron, quizá, que existía una época de días fríos y húmedos que se sucedía durante varias lunas, seguida por un período de días calurosos y secos. Eventualmente advirtieron que un ciclo completo de días húmedos y fríos y secos y calurosos, transcurría cada 300 ó 400 días. Días, meses y años en dicho orden fueron los primeros períodos de tiempo conocidos.

Los conocimientos sobre los movimientos de los astros, eran muy útiles para la medición del tiempo y la construcción de calendarios.

Alrededor de 6.000 años atrás, los egipcios establecieron su año de 365 días. Fueron, probablemente, los primeros en hacerlo. La relación entre meses y años confundía al hombre, debido a que el período de 291,5 días que pasan entre cada ciclo de la Luna no tiene relación exacta con los 365 días del año. Los árabes resolvieron el problema dividiendo el año lunar en doce meses, que duran alternativamente 29 y 30 días, lo que dio por resultado un año de 354 días. El año árabe, que se extendió por todos los países musulmanes es, por lo tanto, cerca de 11,25 días más breve que el año lunar.

Dos mil años atrás, los romanos idearon el CALENDARIO Juliano, llamado así en honor de Julio César. Denominaron seis de los doce meses con los nombres de sus dioses y dos con los de sus Césares. Nosotros aún usamos la forma castellana de dichos nombres. En 1582, el calendario Juliano fue mejorado; y a su forma corregida se le dio el nombre de Gregoriano, en honor de su promotor, Gregorio XIII.

Este calendario fue adoptado por Inglaterra y las colonias americanas en 1752; y por Rusia, en 1917. Por medio de su uso se alcanzó una acertada apreciación del tiempo basada en el movimiento de la TIERRA en relación con el SOL. Al avanzar la civilización y establecerse comunidades sedentarias, se necesitó una unidad más práctica y breve que el día. El hombre prehistórico debe haber notado que los árboles y otros objetos proyectaban una sombra móvil entre amanecer y amanecer de cada día. De la posición de dicha sombra fue posible inferir aproximadamente qué fracción del día había transcurrido. El RELOJ de sol se basó en I este método para establecer la hora.

I Hasta los más precisos relojes de Sol no eran lo suficientemente eficientes debido que funcionaban sólo cuando brillaba el Ia Astro Rey. La necesidad de saber la hora en los interiores de las casas motivó la INVENCIÓN de otro tipo de relojes. Uno de ellos consistía en una vela con muescas en su costado. Éstas indicaban horas a medida que se consumía la vela. Otro reloj fue la clepsidra, reloj de AGUA usado en Egipto, Grecia, Roma y China.

Los relojes de arena que semejaban enormes huevos, fueron usados en los barcos hace aproximadamente 200 años. La arena se filtraba desde la sección superior hacia la inferior a través de un “cuello de botella”. Tardaba media hora en vaciarse; entonces, un marino debía invertirlo para que el proceso comenzara nuevamente.

Los primeros relojes mecánicos fueron usados en templos y monasterios alrededor del año 1300. El primer reloj exacto, que trabajaba con un péndulo fue inventado por Christian Huygens en 1657. Además de la división del día, se necesitaba algún período de tiempo que vinculara el día con el mes.

Los babilonios dividieron un período lunar en cuatro de 7 días. Esta subdivisión de 7 días (semana) fue adoptada por los judíos y difundida luego en Europa. V. CALENDARIO. Hacia 1970, la diferencia entre tiempo solar y el tiempo del calendario era alrededor de 26,3 segundos. Aumentará unos 0,53 segundos cada 100 años, pues el año solar es cada vez más breve. La creciente necesidad de precisión ha hecho que el tiempo astronómico resulte inadecuado.

Entre la finalización de 1971 y el comienzo de 1972, se comenzó a medir el tiempo por medio de las vibraciones de ciertos átomos por la rigurosa constancia de ellas, que solamente se adelantan o retrasan un segundo al cabo de un siglo

10 Página web: El tiempo y la humanidad – La medida del tiempo.

Nacimiento, vida y muerte del Sol Evolucion de una estrella comun

LA VIDA DEL SOL: NACIMIENTO Y EVOLUCIÓN ESTELAR

Las estrellas como el Sol permanecen en fase de protoestrella (durante la cual su temperatura no es todavía suficiente para encender las reacciones nucleares en el centro) por algunos millones de años, hasta que comienzan las reacciones nucleares. Luego alcanzan la secuencia principal donde comienzan a quemar hidrógeno.

Los cálculos indican que en el Sol esta fase comenzó hace 4,5 mil millones de años y durará otros 5 mil millones.

Una vez que agote el suplemento de hidrógeno, el núcleo solar contendrá sólo helio.

La fusión del H continuará en la capa que rodea al núcleo, el cual va creciendo. Su propio peso provoca su contracción, la temperatura central aumenta y comienza la fusión del He. Los núcleos de He se combinan entre sí para formar elementos más pesados: C, N y O, son las llamadas reacciones CNO. (H: Hidrógeno, O: Oxigeno, C: Carbono, He: Helio)

En este proceso se entrega calor a la estrella, el cual se suma al producido por la fusión de H en He, que todavía continúa realizándose en las capas exteriores. Este calor provoca la expansión de la superficie, mucho más allá que en las estrellas normales (de secuencia principal).

El Sol abandonará aquí la secuencia principal y entra en la fase de gigante roja, durante la cual su radio aumentará hasta la órbita de Marte y perderá mucha masa. Por entonces la Tierra ya habrá desaparecido pues a medida que la estrella se expande, se enfría.

Cuando el Sol alcance el final de la fase de gigante roja habrán pasado uno o dos millones de años desde que dejó la secuencia principal. La fusión del He proporciona menos energía que la del H, es decir que la reserva de He se agota mucho más rápido que la de H.

Por eso esta fase es corta respecto de toda la vida de la estrella y se observan pocas gigantes rojas: sólo 1% de las estrellas de nuestra galaxia están en esta etapa, es decir unos 2.500 millones de estrellas.

La figura  muestra la evolución del Sol en el diagrama H-R desde su nacimiento sobre la ZAMS hasta la fase de gigante roja.

A medida que continúa la contracción del núcleo, hacia el final de su vida como gigante roja, su temperatura central será mayor de 100 millones de grados y por lo tanto la presión central será enorme. Esta presión será tan grande que la materia en el centro adquirirá propiedades cuánticas especiales, debido a la gran concentración de electrones. Este tipo de materia se denomina degenerada.

La densidad actual del Sol es semejante a la del agua. La materia degenerada tiene una densidad 100.000 veces mayor.

¿Qué sucederá cuando siga creciendo la temperatura central? La evolución post-secuencia principal del Sol es mucho más incierta que la presente y, por lo tanto, sólo se puede hacer una rápida estimación de su agonía luego del llamado “flash de helio”: una explosión gigante en su centro.

Codiagramamo resultado de este flash el núcleo se expande rápidamente y comienza a oscilar.

Este movimiento es frenado por la envoltura que en la gigante roja aparece muy extendida. El centro, donde el He se transforma en C y el C en O está rodeado por una capa de H que se quema.

Luego del flash de He la estrella se mueve sobre la rama horizontal, zigzaguea horizontalmente a través del diagrama H-R, aumentando su luminosidad. Esta fase dura solo unos cientos de millones de años.

Evolución del Sol en el diagrama H-R, desde su nacimiento sobre la ZAMS ra sólo unos cientos de hasta la fase de gigante roja. 

Lo que sigue es muy difícil de predecir. Las etapas que transitará el Sol en su agonía se describen en detalle más adelante. Se supone que eyectará una envoltura de gas para transformarse en nebulosa planetaria.

El núcleo remanente de las estrellas está formado principalmente por materia degenerada de electrones.

En consecuencia no se puede contraer más y las estrella se enfrían lentamente transformándose en enanas blancas. Se estima que el Sol se transformará en una enana blanca con lo la mitad de su masa actual.

El resto se habrá perdido en forma de vientos violentos y la eyección de sus capas superficiales durante la evolución post-secuencia principal. Las estrellas enfrían rápidamente al principio y luego lentamente , durante miles de millones de años.

Las enanas blancas dejan de brillar y se transforman  en enanas negras: una masa fría de materia degenerada. Este es el ultimo suspiro del SOL.

diagram estelar de rousell

EL COLOR Y LA MATERIA
A la luz de los nuevos datos de la ciencia referentes a la masa, el brillo y ol color, se ha clasificado a las estrellas según un diagrama llamado, en honor a sus autores, de Hertzsprung*Russell, De acuerdo con el mismo, la mayoría de las estrellas se disponen en una diagonal, llamada “serie principal”. Las más brillantes y grandes están arriba y las más pequeñas y opacas, abajo. El color pasa, de izquierda a derecha, del azul hasta el rojo oscuro, teniendo como intermedios al blanco, ni amarillo y el anaranjado. La serie principal comienza con los brillantes azules y se traslada hasta las débiles rojas. El Sol, por ejemplo, está en el centro del diagrama. Un caso atípico, es decir, fuera de la serie principal, es el de las gigantes y supergigan-tes rojas, que se ubican a la derecho y arriba del diagrama. La otra familia especial es la de las enanas blancas, que se encuentran abajo y a la izquierda: En esta nota se explicaja incidencia que tienen todas estas características en el material interno de las estrellas

evolucion estelar desde la nube de gas hasta agujero negro

AMPLIACIÓN DEL TEMA…

Cuando transcurran unos 5.000 o 6000 millones de años, el proceso de fusión en el interior del sol se apagará. Sabemos que adentro del Sol hay una especie de central nuclear, quemando millones de toneladas de hidrógeno cada segundo y tiene una capacidad de funcionamiento de unos diez mil millones de años, de los cuales ya han transcurrido la mitad.

Agotado el hidrógeno, podrá iniciarse un nuevo ciclo de combustión, gracias a las cenizas del anterior, que habrá producido abundante cantidad de helio. La fusión del helio generará a su vez cenizas de carbono y nitrógeno que también servirán de combustible nuclear para que el Sol siga brillando durante un tiempo adicional, aunque ya tendrá sus milenios contados.

Las estrellas se parecen un poco al Ave Fénix de la mitología: pueden renacer varias veces de sus propias cenizas antes de apagarse definitivamente.

En todo caso, cuando alrededor de la octava parte del núcleo central del Sol se haya convertido en helio, por el proceso de fusión nuclear, el astro comenzará a experimentar transformaciones irreversibles. En primer lugar se hinchará y, al disminuir en unos dos mil grados la temperatura de su superficie, adquirirá un tono rojizo, crepuscular.

El proceso de expansión continuará y al celebrar su cumpleaños número diez mil millones, el astro rey tendrá cerca del doble del diámetro actual. De ahí en adelante la evolución hacia el gigantismo rojo y hacia la muerte se irán acelerando. En los mil millones de años siguiente el Sol habrá duplicado su tamaño nuevamente. Después, en sólo cien millones de años se hará cincuenta veces más grande y su potencia se multiplicaría por quinientos.

Este proceso de inflación solar terminará por calcinar y engullir a todos los planetas interiores del sistema. La mitología azteca predice que un día la Tierra se habrá cansado y entonces el Sol caerá del firmamento. La leyenda griega de Cronos que devora a sus hijos, terminará así por cumplirse. El Sol, deidad mitológica superior y paterna, de la que derivan los planetas, los devorará finalmente, o los bañará con el aliento de su radiación letal.

Así, llegará para la Tierra un último día perfecto, en que la naturaleza lucirá todo su esplendor y las múltiples criaturas vivas retozarán en los continentes y los océanos del planeta. Luego la biosfera comenzará a destruirse a medida que el Sol vaya hinchándose en el firmamento.

Los casquetes de hielo de los polos se fundirán inundando las costas. Después, el aumento de la temperatura producirá gran evaporación de agua y al engrosar la atmósfera protegerá aun la vida terrestre del exceso de radiación, retrasando un poco el final inexorable.

Pero llegará el día en que los océanos hervirán y nuestro hermoso planeta azul quedará convertido en un desierto, asolado por la radiación e incapaz ya de albergar a ningún tipo de vida.

Todo esto ocurrirá siempre y cuando el hombre no decida, cualquiera de estos días, adelantar el proceso en varios miles de millones de años, detonando sus arsenales nucleares. En ese caso el Sol, al expandirse encontrará a una Tierra tan desnuda y muerta como Mercurio, Marte y Venus.

Si la especie humana sobrevive para ver la muerte del Sol, es posible que adquiera la capacidad tecnológica suficiente como para controlar o al menos modular el proceso de evolución estelar, de manera de no perecer en esta catástrofe. Una solución más viable sería tal vez la de emigrar hacia otros mundos como Titán, el gigantesco satélite de Saturno, o incluso a otros sistemas planetarios.

Esta masiva emigración a las estrellas podría hacerse en naves espaciales que en algún tipo de supercomputadoras llevaran la información genética necesarias como para reproducir en otros soportes planetarios todas las formas de vida originadas en la Tierra. Serían verdaderas Arcas de Noé que salvarían la vida del diluvio de radiación que cundirá por el sistema solar.

Entretanto el Sol, una vez agotado el helio que mantenía encendidos sus motores nucleares, entrará en una agonía de milenios, reciclando las últimas cenizas utilizables como combustible. En esta etapa terminal se contraerá y expandirá alternativamente como un gigantesco corazón, y con cada pulso irá inundando el espacio de radiaciones ultravioletas.

Una hermosa luminosidad roja y azulada se extenderá hasta más allá de la órbita de Plutón. Ese será el ocaso de los planetas o, si se quiere llamarlo de otra forma, el crepúsculo de los dioses.

Más de la mitad de la masa solar se disipará en el espacio. El resto, comprimido en un pequeño núcleo, formará una de esas estrellas superdensas a las que se conoce como “enanas blancas”. Estas son verdaderos cadáveres estelares que aun cuando tienen sus hornos termonucleares apagados, siguen emitiendo, durante un tiempo, la radiación remanente.

Si es que la atmósfera terrestre no se evapora en el espacio, durante las fase de gigantismo solar, las vacías cuencas oceánicas de nuestro planeta volverán a llenarse de agua. Después, una nevazón de dióxido de carbono cubrirá los continentes. El frío se hará cada vez más intenso, los océanos se congelarán y una edad glacial permanente y definitiva se iniciará en nuestro planeta oscuro, ya sin Sol.

Fuente Consultada:
Notas Celestes de Carmen Nuñez

Hechos, Sucesos que estremecen el siglo XX El Universo en Explosión Tomo N°18

La Energia Solar Como Alternativa a las Energias Convencionales

El Sol Como Fuente de Energía
Ejemplos de Uso Como Alternativa a las Energías Solares

EL SOL: Si bien el Sol, en cuanto objeto astronómico, no es más que una estrella promedio, relativamente débil y fría, para nosotros, habitantes de uno de sus satélites, resulta indispensable conocerlo en detalle, pero además nuestra ubicación privilegiada, nos brinda la posibilidad, a través suyo, de conocer muy bien una estrella y, en base a ello, construir y probar las teorías sobre la naturaleza de las estrellas en general.

Lo que sucede en el Sol concierne a mucha gente y no sólo a los astrónomos. Las erupciones solares pueden callar las comunicaciones de radio de largo rango, interrumpir sistemas de potencia y cambiar las órbitas de los satélites.

Muchas actividades espaciales y terrestres requieren un buen conocimiento de las condiciones presentes en el Sol y de su comportamiento en el futuro. Hasta se ha desarrollado una organización internacional para monitorear la actividad solar de hora en hora y transmitir informes a todo el mundo.

Durante los últimos años se han acumulado pruebas que indican claramente que el ritmo intenso a que se están quemando los combustibles fósiles está contaminando seriamente la atmósfera de la Tierra con su principal producto de combustión el anhídrido carbónico.

Los efectos a largo plazo de tal contaminación podrían conducir a cambios ecológicos y climatológicos de mucha importancia, puesto que el anhídrido carbónico es uno de los gases más importantes en la regulación térmica de la atmósfera. Del mismo modo, a menudo se ha expresado la preocupación de que la eliminación de los productos de desecho de las reacciones de fisión, que son fuertemente radiactivos y mortales, constituyan una dificultad para el amplio desarrollo de estas fuentes de energía.

La mayor fuente de energía, no del todo aprovechada, es la energía de la radiación solar que cae sobre la Tierra. Muchos expertos la consideran como una fuente de energía a largo plazo a la cual el hombre, al final, tendrá que recurrir; en la actualidad es una fuente de energía potencial cuya explotación será más bien problemática en el orden tecnológico que en el de la abundancia.

Los métodos que aprovechan la energía solar se fundamentan en dos principios importantes: concentración de los rayos solares en un punto por medio de espejos parabólicos y absorción de los rayos solares por medio de superficies absorbentes, que suelen ser grandes placas ennegrecidas.

Los hornos solares funcionan por medio de un espejo; el más importante es el instalado en Mont Louis, en Francia, que tiene 11 metros de diámetro; en su foco se han logrado temperaturas de 3.000 ºC, lo que ha permitido la fusión de materiales muy refractarios. Existen instalaciones semejantes en Argel y en California. Los denominados motores solares actúan a partir de espejos parabólicos.

En Los Angeles existe un motor solar que consta de un espejo de 10 metros de diámetro y produce vapor a 12 atmósferas que acciona un alternador, lo mismo que en las centrales térmicas. En Egipto se han instalado motores solares para accionar bombas de riego. Algunos de estos motores solares funcionan por medio de placas planas, pues lo que se necesita no es mucha temperatura, sino mucha cantidad de calor repartida en una gran superficie; con ellos, en Italia, se vaporiza anhídrido sulfuroso.

También las necesidades más ordinarias en la vida del hombre, y no únicamente los fines técnicos, han creado medios para aprovechar la energía solar. Tal vez el más curioso fue el instalado en Monte Wilson a base de un espejo accionado por un aparato de relojería en cuyo foco había un tubo ennegrecido por el interior del cual circulaba aceite de un termosifón que alimentaba un recipiente de 200 litros. La temperatura lograda fue de 1750º.

En la India se montan hornillos de uso doméstico en una especie de espejo parabólico orientado de cara al Sol, en cuyo foco se dispone la olla que se quiere calentar. Sin gasto alguno de combustible se obtienen resultados como si se tratara de una cocina eléctrica de 300 vatios.

Sin embargo, los estudios más recientes se aplican al uso de la energía solar en la calefacción doméstica. El tejado se recubre con hojas de metal ennegrecido, encima de las cuales va dispuesto un haz tubular, llamado base, y los puntos en que se apoyan, insolador, por el que circula agua calentada por el sol entre los tubos y un depósito del que parten las conducciones para la distribución del agua por la casa. A veces se usan colectores verticales situados en la fachada de mediodía.

Otros usos más peculiares son los de destilación de agua, muy útil para países como Túnez y Argelia, donde se han instalado aparatos similares a los construidos en Mónaco por J. Richard. Constan de madera ennegrecida y vidrio delgado, que pueden dar 3,5 litros de agua destilada por metro cuadrado y por día en junio y 0,5 en diciembre.

En Turquestán se han instalado aparatos para refrigerar enviando los rayos concentrados del Sol hacia un frigorífico de amoníaco. Con estos sistemas se han logrado temperaturas de 60 bajo cero.

Aprovechando el principio físico de las corrientes de convección, debidas a diferencias de densidad, ocasionadas, en este caso, por las diversas temperaturas existentes en los dos conductos de aceite que parten del depósito superior, se puede lograr un transporte de ca. br desde los espejos exteriores, calentados por el sol, al interior de las habitaciones.

El Sol La estrella del sistema solar Informacion y Características

El Sol:La estrella del sistema solar
Información y Características

EL SOL: Si bien el Sol, en cuanto objeto astronómico, no es más que una estrella promedio, relativamente débil y fría, para nosotros, habitantes de uno de sus satélites, resulta indispensable conocerlo en detalle, pero además nuestra ubicación privilegiada, nos brinda la posibilidad, a través suyo, de conocer muy bien una estrella y, en base a ello, construir y probar las teorías sobre la naturaleza de las estrellas en general.

Lo que sucede en el Sol concierne a mucha gente y no sólo a los astrónomos. Las erupciones solares pueden callar las comunicaciones de radio de largo rango, interrumpir sistemas de potencia y cambiar las órbitas de los satélites. Muchas actividades espaciales y terrestres requieren un buen conocimiento de las condiciones presentes en el Sol y de su comportamiento en el futuro. Hasta se ha desarrollado una organización internacional para monitorear la actividad solar de hora en hora y transmitir informes a todo el mundo.

EL SOLExisten geoalertas de dos categorías: la primera incluye la radiación electromagnética del Sol, principalmente rayos x, radiación ultravioleta y ondas de radio, que llegan a la velocidad de la luz.

El brillo del Sol en rayos x puede aumentar 10.000 veces o más en un período muy breve durante las explosiones conocidas como “fiares” solares . Este baño de rayos x afecta la ionosfera terrestre hasta tal punto que puede llegar a cortar virtualmente las comunicaciones de radio de onda corta en la parte del planeta en que es de día.

La segunda concierne a la actividad geomagnética (recordemos que un campo eléctrico variable genera un campo magnético). La misma está causada por el viento solar, nubes tenues de protones, electrones y iones del Sol que se encuentran con el campo magnético terrestre. Cuando el Sol está calmo, estas partículas cargadas fluyen de manera continua, uniforme a unos 400 km/seg.

Un aumento de actividad solar puede transformar al viento en violento huracán. Sus ráfagas se abaten sobre el campo geomagnético, afectando la ionosfera y la superficie de la Tierra de varias formas, entre otras induciendo corrientes eléctricas en conductores largos como líneas de potencia y cables de teléfono. Durante su paso el viento solar barre gases evaporados de planetas y cometas, finas partículas de polvo meteorítico y rayos cósmicos de origen galáctico. Su influencia se extiende a ‘través del espacio interplanetario y provoca las auroras polares y las tormentas magnéticas en la Tierra.

También estas tormentas geomagnéticas, causadas por perturbaciones abruptas del campo magnético terrestre interfieren con las comunicaciones de radio y teléfono. Una serie de observaciones solares y geomagnéticas revelaron una correlación entre la aparición de estas tormentas y la aparición, uno o dos días antes, de erupciones solares.

Pero además de estos efectos perniciosos para las actividades terrestres, el Sol, siendo la estrella más cercana, presenta enormes ventajas astrofísicas. Su estudio nos ayuda a elucidar detalles de otras estrellas mucho más lejanas e inaccesibles incluso para el moderno instrumental astronómico y nos permite verificar teorías de evolución estelar.

El Sol emite, continua o esporádicamente todo el espectro de radiación electromagnética, desde rayos X, a través del ultravioleta, visible e infrarrojo, hasta radio ondas. La radiación de distintas longitudes de onda proviene de capas situadas a distintas profundidades en la atmósfera solar. Las características del fotón que atraviesa el gas solar y llega hasta nosotros están determinadas por las propiedades del gas, que varían con la altura. Variar la longitud de onda de la observación equivale a realizar un barrido de la atmósfera solar.

Además de la radiación hemos dicho que el Sol emite partículas como protones, electrones y núcleos de helio, a los que acelera a velocidades de unos pocos cientos a miles de kilómetros por segundo en el viento solar, y de unas decenas de miles de kilómetros por segundo en los rayos cósmicos solares.

Mediante el análisis de estos mensajeros de luz y materia podemos describir las propiedades del Sol en las regiones de donde fueron emitidos. Las observaciones solares, como las de todos los objetos celestes, requieren técnicas muy diferentes, dependiendo de la región del espectro en consideración; también requieren el uso de instrumentos especiales, como radio heliogramas, torres solares y coronógrafos ya que, a diferencia de lo que sucede con el resto de los cuerpos celestes, en el caso del Sol es necesario adecuar los instrumentos de observación a la gran cantidad de luz que nos llega de él. En la actualidad la tecnología de las observaciones solares ha avanzado enormemente.

El más grande de los observatorios solares orbitales, la estación tripulada Skylab, tenía 8 telescopios grandes, incluyendo uno corono-gráfico. Desde mayo de 1973 hasta febrero de 1974 los astronautas trajeron a Tierra miles de fotografías reveladoras de las maravillas de la atmósfera solar. El satélite más reciente, el SMM (Solar Maximum Mission) fue puesto en órbita en 1980 para examinar el Sol en el máximo de su ciclo de actividad y regresó a la Tierra en diciembre de 1989.

Hasta el momento, el Sol es la única estrella con dimensiones, masa, luminosidad y edad conocidas. Para los astrofísicos esto es lo único, pero a su vez lo más importante, que lo distingue de otras estrellas. Ya nos hemos referido en el capítulo 2 a la distancia Tierra-Sol y a los métodos utilizados para medirla. El diámetro del Sol se determina igual que el de la Luna: su disco subtiende un ángulo de aproximadamente medio grado que, a una unidad astronómica de distancia, equivale a 1.393.000 km la órbita de la Luna cabría cómodamente dentro del Sol!

La masa del Sol se calcula a partir de la órbita de la Tierra y de acuerdo a las leyes de Newton. Si la Tierra se detuviera en su movimiento orbital cae-ría hacia el Sol a razón de 2,8 mm./seg. La curvatura de la órbita terrestre es precisamente una consecuencia de esa desviación con respecto al movimiento rectilíneo. Usando las leyes de la mecánica resulta que la masa del Sol es de 1,992 x 1030 Koligramos.

El valor de la gravedad en la superficie de un cuerpo es proporcional a su masa dividida por el cuadrado de su radio, tal como vimos al enunciar las leyes de Newton. En la superficie del Sol entonces, la gravedad es unas 28 veces mayor que sobre la Tierra y un objeto que pesara aquí 10 kg en el Sol pesaría unos 279 kg. Este valor tiene interés para determinar la velocidad con que un cuerpo podría escapar de la atracción gravitatoria solar y lanzarse al espacio. En particular determina la capacidad del Sol para retener su atmósfera.

Ya a mediados del siglo pasado se había indicado que el Sol es una esfera de materia, especialmente hidrógeno, en estado gaseoso. Por lo tanto, para comprenderlo debemos estudiar

Algunas propiedades de los gases

Los átomos o moléculas de cualquier cuerpo están en continuo movimiento y chocando entre sí. Imaginemos por ejemplo, las moléculas de una gota de agua. Las fuerzas intermoleculares impiden que la gota se rompa o desaparezca y mantienen a las moléculas relativamente juntas, por eso, cuando una gota de lluvia se desplaza sobre la ventana, se deforma pero sigue siendo una gota de agua. Al aumentar la temperatura del agua, el movimiento de las moléculas aumenta y también el volumen entre ellas. Calentando el liquido aún más, llega un momento en que la fuerza entre las moléculas no es suficiente para mantenerlas juntas y comienzan a separarse. En esta fase se forma el vapor de agua y las moléculas están muy alejadas unas de otras.

Imaginemos ahora el vapor de agua, o cualquier otro gas, en un recipiente. Las moléculas chocarán contra las paredes y ejercerán así una fuerza contra ellas. Si el recipiente tiene un pistón, será necesario aplicar una fuerza sobre él para mantenerlo en la misma posición: esta fuerza se llama presión (en realidad la fuerza es la presión por el área). Obviamente la fuerza es proporcional al área ya que si aumentamos el área manteniendo el número de moléculas por cm3 aumenta el número de colisiones con el pistón en la misma proporción en que se aumentó el área.

Dupliquemos ahora el número de moléculas en el recipiente, de manera de duplicar la densidad, y mantengamos sus velocidades, es decir la temperatura. Entonces, en buena aproximación el número de colisiones se duplicará. Así la presión resulta proporcional a la densidad.

Si se aumenta la temperatura sin cambiar la densidad del gas, es decir si se aumenta la velocidad de los átomos, ¿qué pasará con la presión? Los átomos golpean más fuerte, porque se mueven más ligero, y además golpea  mas seguido, en consecuencia la presión aumenta. Este mismo principio se utiliza en el termómetro de mercurio: el aumento de la temperatura dilata el contenido del tubo y lo hace subir ya que en este caso no hay pistón.

Consideremos otra situación. Supongamos que el pistón se mueve hacia abajo, comprimiendo el gas. Cuando un átomo golpea el pistón en movimiento su velocidad aumenta y entonces los átomos se calientan. Por lo tanto, bajo compresión lenta, un gas aumenta su temperatura mientras que, bajo expansión lenta, la disminuye.

Si la temperatura disminuye mucho, los átomos se mueven más lentamente y forman, en el caso del agua, hielo. Se alcanza, entonces, la fase sólida.

El Sol, que es una pelota de gas, obedece estas mismas leyes. En él, todo elemento de volumen está sometido, por un lado a la fuerza de gravedad que tiende a llevarlo hacia el centro (donde está concentrada la mayor parte de su masa) y por otro, soporta la presión del gas que tiende a llevarlo hacia la superficie . Cuando ambas fuerzas son iguales se dice que el gas está en equilibrio hidrostático.

Siendo gaseoso, el Sol no presenta abruptas discontinuidades como las que separan el aire, el agua y los continentes en la Tierra, aunque sí se lo puede considerar como compuesto de varias capas concéntricas, de características diversas, de distinta densidad y temperatura. La fotosfera, la cromosfera y la corona son capas del Sol superpuestas como cáscaras de cebolla. Estas capas no son homogéneas y contienen estructuras difusas cuyo carácter variable es la base del concepto de actividad solar. Los ciclos, las manchas y erupciones son manifestaciones de esta actividad.

Las manchas solares, parecen oscuras porque son frías, 1.700°K más frías que las regiones circundantes de 6.0000K. La temperatura en la región central de las manchas puede caer a 3.000°K.

En 1908, G. Hale notó que algunas líneas espectrales aparecían dobles en las regiones con manchas. Este fenómeno, conocido como efecto Zeeman, permite medir la intensidad del campo magnético que resulta proporcional a la separación de las líneas. En la superficie del Sol, este campo alcanzó unos 2.500 a 3.000 gauss, un valor 6.000 veces mayor que el terrestre.

El mapa magnético de una región activa indica que estos campos tan fuertes no están restringidos a las manchas, sino que también aparecen en las regiones brillantes llamadas fáculas. El brillo de estas zonas se puede explicar por las altas temperaturas presentes, pero resulta difícil entender que campos magnéticos igualmente intensos puedan producir regiones calientes y brillantes como las fáculas y otras frías y oscuras como las manchas.

Además de los rasgos propios de la superficie solar, debemos mencionar las nubes luminosas de gas situadas a gran altura, algunas casi estacionarias y otras que se proyectan hacia arriba como erupciones sobre la corona que luego se precipitan en caída. Son las “protuberancias”, llenas de información sobre las condiciones reinantes cerca de la superficie solar. Su temperatura (8 0000K) es mucho menor que la de la corona, que alcanza un millón de grados. Esta diferencia puede ser explicada nuevamente debido a los fuertes campos magnéticos. Las protuberancias pueden alcanzar alturas de hasta un radio solar y velocidades cercanas a los 100 km/seg.

La atmósfera solar se ve sacudida periódicamente por erupciones, fenómenos violentos cuyos efectos, como hemos dicho, se pueden sentir hasta en la Tierra. Una erupción se caracteriza por un gran aumento de brillo en la cromosfera. Hay varios tipos de eventos eruptivos, que se clasifican de acuerdo al área de emisión, pero su característica común es lo abrupto del fenómeno (en menos de un minuto las intensidades de las líneas aumentan unas 10 veces). Luego, en un período que varía entre 10 minutos y una pocas horas, la emisión vuelve a su nivel normal.

El Sol se comporta como un dínamo gigante. Su campo magnético aumenta a medida que subimos en su atmósfera y es el responsable del encendido de las erupciones. Dicho campo surge a partir de una corriente eléctrica originada en el corazón de esta enorme esfera de gas rotante, por el movimiento de los electrones y protones.

Como todos los cuerpos gaseosos rotantes, el Sol no es exactamente esférico, pero como su velocidad de rotación es tan pequeña (el período rotacional varía de 25 días en la región ecuatorial a cerca de 35 en los polos) el achatamiento ecuatorial resultante es un tema de controversia. El período de rotación se determina fácilmente en las regiones donde hay manchas solares y la diferencia entre las velocidades de rotación polares y ecuatoriales se debe a que no rota como un cuerpo sólido.

La fuente de energía solar

Todos los intentos realizados en la primera mitad del siglo XIX para comprender cual era la fuente de energía del Sol —problema que hasta ese entonces no había sido considerado— resultaban insatisfactorios. En 1854, el físico alemán H. Von Helmholtz propuso que la única fuente de energía conocida que podía alimentar al Sol y que no provocaba complicaciones era su propia contracción. Según esta teoría, la masa solar cae lentamente hacia adentro por su propio peso y la energía producida por esta caída se convierte en radiación suficiente para alimentar al Sol durante muchos milenios.

Sin embargo, si el Sol se ha estado contrayendo durante millones de años, su tamaño inicial debió ser tan grande que habría llegado hasta la órbita de la Tierra. Nuestro planeta sólo podía haberse formado una vez que el Sol se hubiera contraído suficientemente y entonces su edad no podía ser mayor de algunas decenas de millones de años. Pero los geólogos y biólogos tenían fundadas sospechas, ya en esa época, de que la Tierra debía tener por lo menos algunos centenares de millones de años y, tal vez, mil millones o más. Ambas observaciones resultaban incompatibles.

A fines de siglo se descubrió una fuente de energía que resultó de gran importancia en la resolución de este problema: la radiactividad. Casi todos los elementos conocidos en la Tierra son estables, pero algunos de ellos (los de número atómico 43,61 o superiores a 83) no pueden existir indefinidamente. Tarde o temprano se desintegran en átomos estables. Esto no sucede necesariamente de manera instantánea y un elemento inestable puede llegar a durar mucho tiempo. El todo y el uranio, de número atómico 90 y92 respectivamente, sobreviven miles de millones de años antes de desintegrarse en plomo (de número atómico 82). De hecho en los 4 mil millones de años de vida de la Tierra sólo el 20% del tono y el 50% del uranio originales se han desintegrado.

En 1901 el físico francés P. Curie (1859-1906) demostró que la radiactividad iba acompañada de pequeñas cantidades de calor. Como las desintegraciones radiactivas podían prolongarse por miles de millones de años, la cantidad total de calor producida de esta manera podía ser enorme. La parte del átomo que se desintegra y libera energía por radiactividad es el núcleo. Por lo tanto esta nueva fuente de energía se llamó energía nuclear. Pero el Sol es de hidrógeno (ii) (de número atómico 1), no de uranio o tono. Entonces éste no puede ser el suministro de la energía solar;elemento muy estable; el más estable después del H1, inclusive a temperaturas muy elevadas. Los elementos que siguen a éstos en complejidad son muy inestables e inevitablemente decaen en alguno de ellos. Por lo tanto cuando el universo se expandió y enfrió hasta el punto en que no fue posible la formación de núcleos más complicados, sólo existían cantidades apreciables de H1 y He4. La teoría del big-bang explica de manera satisfactoria las cantidades actuales de 1-1 y He en el universo y éste es otro de sus éxitos observacionales. Esto explica también la composición del Sol. Pero ¿cómo se forman los elementos más pesados, aquellos de los que nosotros mismos estamos formados?

Para responder esta pregunta debemos comprender los procesos que tienen lugar en el centro de las estrellas. Igualmente, para comprender la historia del Sol, desde su nacimiento hasta su muerte, un período de unos 10 mil millones de años, es necesario estudiar otras estrellas en distintas etapas evolutivas. Abordaremos este problema en el próximo capítulo.

El enigma de los neutrinos del Sol

El análisis de la luz que nos llega de las estrellas devela solamente las condiciones que reman en sus superficies: temperatura, composición química, la agitación o rotación de su parte más externa. Para comprenderlas totalmente habrá que penetrar debajo de esa piel, adentrarse en las profundidades donde nace la energía de las reacciones nucleares e inicia su largo camino hacia la superficie.

Para penetrar de esta manera en el corazón de las estrellas se usó durante mucho tiempo el análisis teórico. El método consistía en construir modelos de estrellas de las que se daba la composición química inicial y seguir, mediante cálculos dictados por la física, su estructura y evolución. A partir de 1950 este tipo de análisis ha alcanzado gran refinamiento debido al avance de la física nuclear, el desarrollo de grandes computadoras, el aumento del número de astrofísicos y la acumulación de observaciones más precisas y sistemáticas.

Pero en principio es posible observar otra radiación procedente de las estrellas: los neutrinos. Estas pequeñas partículas, sin carga y mucho más livianas que los electrones, se producen en las reacciones nucleares que ocurren en el corazón de las estrellas.

El neutrino fue predicho por W. Pauli y E. Fermi en 1930 para explicar ciertas propiedades de la radiactividad, pero su existencia fue confirmada experimentalmente recién en 1958. Su característica más importante es poder atravesar enormes cantidades de materia sin sufrir interacciones, recorriendo así todo el espesor de la estrella sin aminorar su velocidad ni ser difundidos como ocurre con los fotones de la radiación óptica. Si se los puede observar, contemplaremos directamente lo que sucede en la región central de la estrella. Los neutrinos desempeñarán, entonces, un papel análogo al de los rayos x, que permiten ver el interior de un ser vivo.

Si bien el Sol pierde energía emitiendo neutrinos (se estima que un 3% de su energía se emite de esta forma), la escasez de interacciones con la materia implica también una desventaja: del flujo de neutrinos que atraviesa un detector, sólo una fracción muy pequeña interactuará con él y podrá ser develada. Este fenómeno obliga, por lo tanto, a utilizar detectores enormes y sólo se pueden registrar, incluso en las mejores condiciones, flujos de neutrinos muy intensos. En la práctica con esta técnica sólo podemos observar el Sol, pues las demás estrellas, demasiado alejadas, dan lugar a flujos de neutrinos muy débiles.

Los resultados de los experimentos de detección de neutrinos solares han conmovido los cimientos de la astrofísica, pues el flujo observado es dos veces más pequeño que el predicho por la teoría.

Los modelos del interior solar pasan todas las pruebas a que han sido sometidos y durante 20 años los científicos no han logrado elaborar una alternativa factible. Es decir que no parece posible modificar las predicciones teóricas. La hipótesis más interesante es que los detectores sólo reaccionan ante un tipo de neutrinos, el llamado neutrino-electrón. Sin embargo existen otros dos tipos: el neutrinomuón y el neutrino-tauón.

Los neutrinos solares, que viajan a la velocidad de la luz, tardan 8 minutos en llegar a la Tierra. Si en ese lapso los neutrinos-electrones se convirtieran en muones o tauones no podrían ser detectados. Esto significaría que los neutrinos deberían tener una pequeña masa, diferente para cada tipo, lo que a su vez tendría consecuencias importantes para los modelos sobre el origen y evolución del universo.

Todavía no hay una explicación convincente; esto deja a los astrofísicos la sensación de que hay procesos más complicados en el centro solar que aún no conocemos.

PARA SABER MAS…
El Sol y las estrellas
El Sol es 110 veces mayor que la Tierra. Harían falta alrededor de un millón de Tierras para rellenar el interior del Sol.
Según la Enciclopedia estudiantil Rand McNally’s, «Para obtener una imagen rudimentaria del tamaño y distancia del Sol en relación a la Tierra, piénsese en la Tierra como si tuviese el tamaño de un guisante. A esta escala, el Sol tendría el tamaño de una pelota de playa situada a unos 40 m de distancia».

El calor en la superficie solar es de 5.500° C. Las perturbaciones magnéticas ocasionan a veces manchas oscuras en el Sol, y entonces su superficie se enfría hasta los 2.500° C. Se cree que el núcleo del Sol está a unos 15 millones de grados centígrados.

El brillo del Sol se produce al quemarse combustible nuclear. En el interior del Sol tiene lugar una fusión nuclear, y durante este proceso se pierde una pequeña cantidad de materia. La pérdida de esta masa origina la energía solar.

Para producir su energía, el Sol consume alrededor de 22 mil millones de toneladas de hidrógeno cada año. A pesar de esto, según las predicciones científicas, el Sol contiene suficiente hidrógeno para continuar brillando con la actual intensidad durante otros 5 mil millones de años.

La luz solar emplea sólo ocho minutos en alcanzar la Tierra.

Si el Sol cesase de brillar —y a pesar de los restantes hilillos de luz provenientes de otras estrellas— toda vida humana, animal y vegetal se congelaría hasta la muerte, los trópicos serían tan fríos como los polos, y los siete mares se convertirían en hielo.

Puesto que el Sol no es sólido, no todas sus partes giran del mismo modo. El período de rotación en los polos es de 33 días, mientras que en el ecuador dura 25 días.

En nuestra galaxia hay 100 mil millones de estrellas. Desde la Tierra, únicamente unas 6.000 se pueden ver a simple vista, y el Sol es una de ellas.

La estrella más cercana a la Tierra se encuentra a 4 años-luz, o sea 38 mil millones de kilómetros, de distancia.
Rigel, en el extremo de la constelación llamada Orion, es una de las estrellas más brillantes. Es 18.000 veces más brillante que el Sol. La luz de Rigel, viajando hacia nosotros a 300.000 Km. por segundo, tarda 500 años en alcanzar la Tierra. Cuando esta noche miramos hacia el cielo y reconocemos Rigel, la luz que nos llega de ella empezó a brillar 20 años antes de que las naves de Colón navegaran hacia el Nuevo Mundo.

Fuente Consultada: Notas Celestes de Carmen Nuñez

Foto Panorámica de la Luna con Nombres de Crateres y Mares

Foto Panorámica de la Luna con Nombres de Crateres y Mares
(Ideal Para Observar con el Telescopio)

ALGUNOS DATOS DE LA LUNA
A diferencia de la Tierra, la Luna no está achatada en los polos, y su forma es muy parecida a la de una esfera. El eje mayor difiere del menor en 1,5 Km. aproximadamente, y el eje más largo es el que está vuelto hacia la Tierra. De todas las lunas del sistema solar, la nuestra y Garante (de Plutón) son proporcionalmente las mayores respecto al planeta en torno al cual giran.

En términos absolutos, Io, Ganímedes y Calisto (de Júpiter), Titán (de Saturno) y Tritón (de Neptuno) tienen un diámetro mayor, pero todas orbitan alrededor de gigantes gaseosos mucho mayores que la Tierra. El centro de masas del sistema Tierra-Luna se encuentra en el interior de la Tierra, a 4.635 Km. del centro. Por tanto, sería más correcto en un mes lunar hablar de rotación de ambos cuerpos alrededor de un centro común.

Ver: Información General y Datos Científicos de la Luna

Resumen de la Vida de las Estrellas Evolucion Estelar

Resumen de la Vida de las Estrellas y Su Evolución Estelar

LA VIDA DE UNA ESTRELLA: Las estrellas tienen una fuente interna de energía. Pero, al igual que todo tipo de combustible, sus reservas son limitadas. A medida que consumen su suministro de energía las estrellas van cambiando y cuando se les acaba, mueren. El tiempo de vida de las estrellas, aunque muy largo comparado con las escalas de tiempo humanas, es, por lo tanto, finito.

A medida que envejecen sufren profundos cambios en sus tamaños, colores y luminosidades, siempre como consecuencia de la disminución de sus reservas. Para aumentar su expectativa de vida, la estrella lucha continuamente contra la fuerza gravitatoria que intenta contraerla. Las distintas etapas evolutivas son sucesiones de contracciones que terminan cuando la estrella comienza a quemar otros combustibles que mantenía en reserva y logra establecer una nueva situación de equilibrio.

Galaxias y estrellas del universo

El factor más importante en el desarrollo de una estrella es su masa inicial. Las estrellas más masivas tienen mayores temperaturas centrales y, en consecuencia, producen energía y consumen combustible a un ritmo creciente. Este hecho fue determinado observacionalmente y se llama relación masa-luminosidad.

Podría parecer que las estrellas más masivas, las que tienen más combustible, deberían tener vidas más largas.

Pero en realidad sucede exactamente lo contrario. Al igual que con el dinero o la comida, la duración del combustible estelar depende tanto de la cantidad disponible como del ritmo de consumo. Por ejemplo, la vida del Sol será de 10 mil millones de años.

Una estrella de masa 10 veces mayor tiene 10 veces más combustible, pero lo quema a un ritmo tan grande (de acuerdo a la relación masa-luminosidad) que termina de consumirlo en 30 millones de años. En el otro extremo, una estrella de 0,1 M0 brillará durante 3 billones de años antes de morir.

¿Cómo se mide la masa, esa propiedad fundamental que determina completamente la estructura y evolución de una estrella?

El único método de determinación directa de masas es el estudio del movimiento de estrellas binarias. Las estrellas dobles o binarias están muy próximas entre sí y cada estrella gira alrededor del centro de gravedad del par.

Aplicando a estos sistemas las leyes de Newton es posible deducir su masa. Sin embargo, la masa de cada estrella del sistema se puede determinar sólo en el caso de que el sistema binario sea ecipsante (es decir cuando una de las estrellas eclipsa a la otra).

Estas mediciones, aunque pocas en número, son interesantes porque a partir de ellas se han podido establecer algunos resultados que dieron la clave para comprender la evolución estelar.

Una manera indirecta de determinar la masa estelar es usando la relación masa-luminosidad que pudo ser establecida cuando se desarrolló una de las herramientas más poderosas con que cuentan los astrofísicos, el diagrama R-R que consideraremos a continuación.

Se han observado estrellas muy masivas, hasta 120 M0, pero ¿hay una masa mínima para las estrellas? La respuesta a esta pregunta está todavía en estudio. Las estrellas de menor masa observadas son Ross 614B, de 0,08 M0 y Luyten 726-8B con 0,04 M0, pero la mayoría de las estrellas tienen masas de entre 0,3 y3 M0.

EL DIAGRAMA H-R  

En el año 1911 el astrónomo danés E. Hertzsprung comparó la magnitud absoluta y la luminosidad de estrellas pertenecientes a varios cúmulos.

Trazó la curva de variación de uno de estos parámetros en función del otro y observó que los puntos no estaban esparcidos al azar en el diagrama, sino que se distribuían a lo largo de una línea bien definida.

En 1913, el astrónomo norteamericano H. Russell llegó a la misma conclusión con datos de otras estrellas. Mostró empíricamente la existencia de una relación entre la luminosidad y temperatura estelares.

El diagranta resultante se llama diagrama Hertzprung-Russell (H-R), y está representado en la figura.

La posición de unaa estrella en el diagrama H-R depende de su estado de evolución, y por eso la estructura y la historia de nuestra galaxia se pueden estudiar con este instrumento básico.

Así como los botánicos pueden estimar la edad de un árbol a partir de la cantidad de anillos de su tronco, los astrónomos encuentran en el H-R la herramienta que les permite estimar la edad de una estrella.

Diagrama estelar E. Hertzsprung

El diagrama Herzprung-Russell. Cada estrella se representa según su magnitud absoluta, que mide su brillo intrínseco, y su tipo espectral, que refleja su color y su temperatura. Esta última aumenta hacia la izquierda

Un examen en el diagrama H-R de las estrellas con distancias conocidas muestra que no están distribuidas al azar, sino que muchas (entre ellas el Sol) están agrupadas en una banda angosta sobre la diagonal, llamada secuencia principal.

Otro grupo de estrellas, la rama de las gigantes, se extiende horizontalmente sobre la secuencia principal. Las estrellas con luminosidades mayores que las gigantes se llaman supergigantes, mientras las estrellas sobre la secuencia principal se llaman enanas.

Estudiando los sistemas binarios se pudo establecer que la luminosidad de una estrella de secuencia principal es proporcional a su masa elevada a la potencia 3,5. Es decir que una estrella 2 veces más masiva que el Sol será 11 veces más 1 luminosa.

Esta relación masa-luminosidad es una forma de estimar la masa de una estrella que no pertenece a un sistema binario a partir de su luminosidad, con la condición de que pertenezca a la secuencia principal, lo que se puede determinar, como veremos, con criterios espectroscópicos.

Las cantidades fundamentales que definen este diagrama se pueden medir con distintos parámetros, dándole así distintas formas. El H-R clásico usa dos cantidades: el tipo espectral (que es una determinación cualitativa de la temperatura) y la magnitud absoluta.

El tipo espectral

La única fuente de información sobre la naturaleza de las atmósferas estelares es el análisis de su espectro, del que se pueden hacer dos tipos de aproximaciones: cuantitativas y cualitativas.

Como hemos visto en el capítulo anterior, el análisis cuantitativo pernúte determinar los parámetros físicos que describen la atmósfera estelar. El análisis cualitativo descansa en la simple observación de que los espectros pueden agruparse en familias: esta clasificación espectral considera sólo la apariencia del espectro en el visible.

Según ella, las estrellas se ordenan en 7 clases principales (de acuerdo a su temperatura) a las que se designa con las letras O, B, A, F, G, K y M. Para tener en cuenta las diferencias de apariencia entre espectros de la misma clase fue necesario establecer una subdivisión decimal, y entonces el tipo espectral se representa por BO, B1, B2, …, B9, AO, A1…

La clasificación espectral se basa en la presencia o ausencia de líneas de ciertos elementos, lo que no refleja una composición química diferente de las atmósferas sino sólo las diferencias de temperatura atmosférica.

Así el H, que es el elemento más abundante del universo y del que todas las estrellas tienen casi la misma abundancia, predomina en las líneas espectrales de estrellas con temperaturas cercanas a lO.0000K, porque la excitación del átomo de H es máxima a esta temperatura.

En las atmósferas de las estrellas más calientes, de tipo espectral o, el H está casi todo ionizado y entonces no produce un espectro significativo de líneas de absorción.

En las atmósferas de estrellas frías (por ejemplo de tipo espectral K) los átomos de H son neutros (no ionizados) y prácticamente todos están en el estado fundamental, no excitado. El espectro de líneas así producido pertenece principalmente al rango ultravioleta, no observable desde la Tierra, mientras que las líneas de H observadas en el visible son muy débiles.

Las estrellas de tipo o que son las más calientes, muestran en sus espectros líneas de He ionizado, pero no líneas de H. Yendo a tipo BO hasta AO la intensidad de las líneas de He también decrece cuando las condiciones de temperatura no son favorables y la de los metales (elementos más pesados que el He) crece para tipos espectrales correspondientes a temperaturas más bajas.

En las estrellas más frías, las líneas de metales neutros se hacen más y más intensas y aparecen bandas características de moléculas.

Las clasificación en “gigantes” y “enanas”, tiene sentido sólo para un dado tipo espectral. Si se consideran dos estrellas del mismo tipo espectral, una de la secuencia principal y la otra de la rama de las gigantes, las dos muestran gran diferencia en luminosidad.

Como son del mismo tipo espectral, tienen la misma temperatura.

La diferencia de luminosidad se origina entonces en la diferencia de tamaño. Comparemos, por ejemplo, dos estrellas de clase M. La luminosidad de la gigante es 10.000 veces mayor que la de la enana (o de secuencia principal).

Por lo tanto su área superficial debe ser 10.000 veces mayor y entonces el radio de la gigante será 100 veces mayor que el de la enana. (La ley de Stefan-Boltzmann dice que:  L es proporcional a R2.T4).

Las estrellas que aparecen por debajo de la secuencia principal son las enanas blancas, cuyos radios son muy pequeños.

NACE UNA ESTRELLA

Como ya hemos dicho la vida estelar es una sucesión de contracciones. La primera gran contracción es la de la nube interestelar que crea la estrella. La cuna de las nuevas generaciones de estrellas en nuestra galaxia parece estar en las nubes interestelares de átomos y moléculas. La densidad promedio del medio interestelar en la galaxia es de cerca de un átomo por cm3.

La formación de una estrella requiere una densidad 1024 veces mayor. El único mecanismo capaz de actuar a grandes distancias y de originar tal factor de compresión es la fuerza de la gravedad, que juega aquí un papel esencial.

Por otro lado el movimiento térmico de las moléculas y el movimiento turbulento del gas interestelar producen una presión que impide una contracción abrupta impuesta por el campo gravitatorio.

Cuando la gravedad rompe este equilibrio se puede formar una estrella o un grupo de estrellas. En términos muy generales, esto sucede cuando la masa de la nube sobrepasa una cierta masa crítica.

Una nube colapsará si, por ejemplo, su masa aumenta por colisiones con nubes más pequeñas, pero su temperatura promedio sólo aumenta ligeramente, o si la masa de una nube permanece constante, pero su temperatura disminuye, de manera que la presión no puede frenar el colapso. Estas dos situaciones podrían ocurrir simultáneamente.

Los cálculos indican que en nubes con masas mayores que unas 2.000 M0 la gravedad gana sobre las fuerzas de presión. La nube se hace gravitatoriamente inestable y se contrae más y más rápido. Como la masa de una estrella típica es unas 1.000 veces menor, hay que concluir que la nube se fragmenta.

Los complejos moleculares gigantes muy fríos, con temperaturas de unos 10 a 90 0K, son los lugares reconocidos de formación estelar. Sus masas son muy grandes; alcanzan hasta 1.000.000 M0. El polvo de la nube oculta las nuevas estrellas al astrónomo óptico, pero éstas se pueden detectar en el infrarrojo.

Hay un tipo de nubes moleculares pequeñas, llamadas “glóbulos de Bok”, algunos de los cuales se han observado en contracción gravitatoria. Su velocidad de colapso es de aproximadamente medio km/seg, y su radio es del orden de 2 años luz.

Si nada frena su colapso, estos glóbulos se condensaran en estrellas dentro de 1.000.000 años, lo cual, en términos de la vida total de la estrella, es un período muy breve.

Estos objetos aislados (que se ven como zonas negras contra el fondo de la Vía Láctea) ilustran los modelos teóricos de formación estelar. La región central, altamente comprimida y mucho más densa que la periferia, atrae a la materia que la rodea. La temperatura aumenta progresivamente y la presión se hace suficientemente alta como para parar momentáneamente el colapso del núcleo.

Poco a poco toda la materia en la envoltura cae hacia la protoestrella. Cuando su temperatura pasa los 10 millones de °K, comienzan las reacciones termonucleares, es decir el autoabastecimiento de energía.

En este momento la estrella entra en la secuencia principal y comienza su vida normal. En las galaxias espirales, como la nuestra, las estrellas se forman en los brazos espirales, donde se encuentran el polvo y el gas interestelares.

La observación de estrellas en formación o estrellas muy jóvenes junto con su ambiente provee importantes contribuciones a la teoría de formación estelar. En el esquema presentado la formación de estrellas está directamente relacionada a la evolución de las nubes moleculares, pero aunque es el caso más estudiado, no es el único. Una forma de aprender más sobre formación estelar es investigar galaxias vecinas.

La formación estelar en la Gran Nube de Magallanes presenta algunos problemas para este esquema: en una región llamada 30 Dorado se observan unas 50 estrellas O y B asociadas con una nube de 50 millones de M0 de hidrógeno neutro.

No hay polvo en esta región ni se ha detectado ninguna nube molecular. Esto muestra claramente que la teoría de formación estelar basada en nubes moleculares no explica todos los nacimientos estelares. Este es un tema de gran actualidad en astrofísica que todavía no está resuelto.

La protoestrella entra al diagrama H-R por la derecha (la parte roja o fría), en el momento en que la temperatura central se hace suficientemente alta (recordemos que bajo compresión la temperatura de un gas aumenta) y la estrella comienza a convertir H en He.

La posición inicial de la estrella en el H-R define la llamada secuencia principal de edad cero (ZAMs). Cuanto más masiva nace una estrella más arriba comienza su vida de secuencia principal y más luminosa es.

La posición de la ZAMS sobre el diagrama H-R depende de las composiciones químicas de las estrellas que se forman. La abundancia de metales (elementos más pesados que el He) aumenta de generación a generación, a medida que las estrellas más viejas evolucionan y enriquecen el medio interestelar con elementos pesados.

En consecuencia la ZAMS se desplaza cada vez más hacia la derecha sobre el H-R a medida que la galaxia envejece, y este corrimiento permite estimar la edad de la galaxia.

La secuencia principal representa la primera pausa y la más larga en la inexorable contracción de la estrella. Durante este intervalo las estrellas son hornos nucleares estables y a esta estabilidad debemos nuestras propias vidas, ya que el Sol se encuentra en esta etapa. A medida que la estrella envejece se hace un poco más brillante, se expande y se calienta. Se mueve lentamente hacia arriba y a la izquierda de su posición inicial ZAMS.

Evolución de las Estrellas

Para una persona, incluso para una toda generación de seres humanos resultaimposible observar una única estrella para descubrir todo lo que le sucede en el transcurso de su existencia, ya que la vida estelar media es del orden de los miles de millones de años.

Identificar y ordenar las distintas etapas en la vida de las estrellas, puede compararse con obtener una fotografía en conjunto de todos los habitantes de una ciudad; en la foto se tendría una visión de las posibles fases o estadios de la vida humana: habrían recién nacidos, niños, adultos, ancianos, etc.

Al analizar la imagen obtenida de cada persona y clasificándola de acuerdo a cierto carácter, podría establecerse el ciclo de la vida humana con bastante precisión; se podría estimar el ciclo completo, captado en un único instante de tiempo en la fotografía de conjunto.

Debido a la cantidad y a la gran variedad de estrellas existentes, se logra tener una idea de su evolución observando estrellas en las diversas fases (o etapas) de su existencia: desde su formación hasta su desaparición.

Al respecto se debe tener en cuenta que, efectivamente, se han visto desaparecer estrellas (por ejemplo, la supernova de 1987) como también se han hallado evidencias de la formación de otras nuevas (como en el profundo interior de la Nebulosa de Orión, por ejemplo).

Ya mencionamos que en el estudio de las estrellas, se utilizan parámetros físicos como la temperatura o la masa, entre otros. Pero debe señalarse también otra de las técnicas usuales en Astronomía, denominada Espectroscopía.

La luz estelar se descompone en su gama intrínseca de colores, llamándose “espectro” al resultado de esa descomposición cromática (la palabra espectro que significa “aparición”, fue introducida por I. Newton, quien fue el primero es descubrir el fenómeno). En el espectro de las estrellas, además de los colores, aparecen ciertas líneas o rayas bien nítidas.

Esas líneas o mejor dicho, cada una de las series de líneas, se corresponde, según su posición en el espectro, por una parte con la T de la superficie estelar y por otra, con los elementos químicos presentes en la atmósfera de la estrella.

Diferentes elementos químicos absorben o emiten luz según la temperatura a que se encuentren; de esta manera la presencia (o ausencia) de ciertos elementos en la atmósfera de la estrella, indica su temperatura.

Los astrónomos han diseñado un sistema de clasificación de estrellas, de acuerdo a las características que presentan sus respectivos espectros. En ese esquema, las estrella s se ordenan desde las más calientes a las más frías, en tipos espectrales que se identifican según el siguiente patrón de letras: O B A F G K M

Las estrellas más calientes (O) tienen temperaturas de unos 40.000 ºC; en el otro extremo, las más frías (M), alcanzan sólo 2.500 ºC; en este esquema, el Sol, con una temperatura superficial de 6.000 ºC, resulta una estrella de tipo espectral intermedio entre las más calientes y las más frías: es una estrella tipo G.

Este sistema de clasificación se corresponde además con los colores de las estrellas: las de tipo (O) son azules-violáceas y las de tipo M, rojas; el Sol (tipo G) es amarillo. Los colores observados también se relacionan con la temperatura, ya que las estrellas más calientes emiten la mayor parte de su luz en la zona azul del espectro electromagnético, mientras que las más frías lo hacen en la zona roja.

En las estrellas más calientes, las distintas capas interiores deben vencer mayor atracción gravitacional que las capas más externas, y por lo tanto la presión del gas debe ser mayor para mantener el equilibrio; como consecuencia, mayor es la temperatura interna.

Implica que la estrella debe “quemar” combustible a gran velocidad, lo que produce una ingente cantidad de energía. Esta clase de estrellas sólo puede tener una vida limitada: unos pocos millones de años.

Las estrellas frías (generalmente pequeñas y con una fuerza de gravedad débil) sólo producen una modesta cantidad de energía; en consecuencia aparecen brillando tenuemente. Así, estas estrellas pueden existir como tales sólo algunas decenas de miles de millones de años.

En la siguiente Tabla se indican la temperatura característica (en grados centígrados, ºC) de cada tipo espectral (T.E.).

Tipo EspectralTemperatura (ºC)
O40.000
B25.000
A11.000
F7.600
G6.000
K5.100
M2.500

Ahora bien, la temperatura y consecuentemente, la cantidad de energía que emite una estrella, depende de su masa: cuanto mayor es su masa, mayor es la temperatura y por consiguiente mayor es la cantidad de energía que irradia. Pero hasta que en su núcleola temperatura no alcance un valor de algunos millones de grados, no se producirán transformaciones nucleares (del tipo de transmutación de hidrógeno en helio) y, por lo tanto, mientras eso no ocurra, la cantidad de energía que emiten será bastante pequeña (objetos de esta clase son denominados protoestrellas). Cuando se inicia la vida de una estrella, el calor de su interior procede de la energía gravitacional, es decir, de la nube de gas que se comprime sobre sí misma (colapso).

La etapa de protoestrella se corresponde con grandes inestabilidades en su estructura interna, las que acaban cuando la temperatura de su núcleo alcanza los 10 millones de grados, iniciándose entonces la transmutación del hidrógeno en helio y, por lo tanto, la generación de energía desde su núcleo: en esa etapa el astro se considera ya una estrella.

Las estrellas contienen suficiente hidrógeno como para que la fusión en su núcleo dure un largo tiempo, aunque no para siempre. La velocidad de combustión del hidrógeno depende de la masa, o sea de la cantidad de materia que compone la estrella.

Llegará un momento en que se acabará todo el hidrógeno disponible y sólo quede helio. En esas condiciones la estrella sufrirá diversos tipos de transformaciones: aumentará de tamaño y el helio acumulado se transmutará en elementos más pesados como el carbono, el nitrógeno, el oxígeno, etc, mediante otras reacciones nucleares. Entonces la estrella dejará de ser estable: sufrirá cambios de volumen y expulsará al espacio parte de su material. Las capas mas externas serán las primeras en alejarse.

Después de cinco a diez mil millones de años, una estrella como el Sol evoluciona a un estado denominado de gigante roja: un objeto de gran tamaño (de dimensiones mayores que las originales), mucho más fría y de una coloración rojiza. Su temperatura superficial disminuye y por lo tanto toma color rojizo. La gigante roja brillará hasta que su núcleo genere cada vez menos energía y calor. En esas condiciones la estrella empieza a contraerse: disminuye su diámetro y al mismo tiempo aumenta su temperatura superficial.

Si la estrella, al formarse, tiene una masa cuarenta veces mayor que la masa del Sol, pasará al estado de gigante roja en sólo unas pocas decenas de millones de años. Luego irá disminuyendo de tamaño y perderá rápidamente una cantidad significativa de su masa expulsando materia hacia el espacio.

Otra modo de expulsar materia es lentamente, a través de fuertes vientos estelares; de esta forma los astrónomos han observado que se forma una envoltura gaseosa que circunda la estrella y que puede llegar a ser bastante densa; si ese proceso continúa puede dar lugar a un objeto denominado nebulosa planetaria.

Con el nombre de nebulosas planetarias, se define a una estrella muy caliente y pequeña, rodeada por una esfera de gas fluorescente en lenta expansión; algunas fotografiadas con potentes telescopios, muestran que esas nebulosas tienen forma de anillo, razón por la cual se le ha dado ese nombre, ya que su aspecto observada en el telescopio es similar al disco de un planeta.

Finalmente, hacia el término de su existencia, esas estrellas se convierten en objetos de pequeñas dimensiones (del tamaño de la Tierra o aún menor), calientes y de color blanco: son las enanas blancas. La materia de estos objetos se halla extremadamente comprimida: 1 centímetro cúbico de la misma puede pesar varias toneladas. En otras palabras, en un volumen similar al de nuestro planeta se halla condensada la misma cantidad de materia que hay en un volumen comparable al del Sol.

Pero no todas las estrellas acaban como enanas blancas. Cada estrella termina su vida de un modo que depende mucho de su masa inicial, aquella que tuvo cuando comenzó su existencia. Una estrella de gran masa (varias veces la del Sol) y que no pierde mucha materia durante su evolución termina su vida en una explosión muy violenta que se denomina supernova; cuando esto ocurre la estrella brillará tanto como toda la galaxia en la cual se encuentra, aunque su brillo será efímero: la estrella ya está condenada a extinguirse como tal.

En el siguiente cuadro se muestran los distintos estados evolutivos finales para estrellas de diferente masa inicial (M). La masa está expresada en masas solares (Msol = 1).

Masa InicialEstado evolutivo final
M < 0,01Planeta
0,01 < M < 0,08Enana marrón
0,08 < M < 12Enana blanca
12 < M < 40Supernova + estrella de neutrones
40 < MSupernova + agujero negro

Distintos estados evolutivos finales para estrellas de diferente masa inicial <M>. La masa está expresada en masas solares (Msol = 1).

Los restos gaseosos de una supernova (que se denominan remanentes) se esparcen cubriendo una extensa zona del espacio, formando una nube en permanente expansión que se aleja a varios miles de kilómetros por segundo y cuyas características son bastante peculiares (por ejemplo, aparecen campos magnéticos sumamente intensos).

El gas que compone un remanente de supernova es bastante diferente al gas de la nube que formó a la estrella. La nube de origen estuvo compuesta casi exclusivamente por helio y helio, mientras que en el remanente existe una gran variedad de elementos químicos, restos de la fusión nuclear que ocurriera en la estrella desaparecida y también otros formados durante la explosión que se produce en la fase de supernova.

En el siguiente cuadro se muestran algunas estrellas con sus características físicas más importantes.

Estrella Magnitud
aparente (m)
Magnitud
Absoluta
Temperatura
(en ºC)
Radio
(en radios solares)
Características
Centauri 0,6-5,021.00011gigante
Aurigae 0,1-0,15.50012gigante
Orion 0,4-5,93.100290supergigante
Scorpi 0,9-4,73.100480supergigante
Sirio B 8,711,57.5000,054enana blanca

 De este modo se recicla el material estelar: las estrellas que se formen con el gas expulsado en una explosión de supernova, serán menos ricas en hidrógeno y helio, pero más ricas en los elementos químicos más pesados, que las estrellas de su generación anterior.

Pero sucede que luego de la explosión de una supernova, lo que queda del astro, además de sus remanentes, es un cuerpo de apenas algunos kilómetros de diámetro, conformado por él núcleo de la estrella original.

En la explosión de supernova se produce un catastrófico colapso de la estrella; debido a su gran masa, la enorme fuerza de gravedad comprime la materia con mucha más intensidad que en el proceso que genera a una enana blanca .

En estas condiciones toda la masa de una estrella ordinaria (como el Sol) se comprime en una pequeña esfera de apenas 15 Km. de diámetro; a estos diminutos astros se los ha bautizado estrellas de neutrones (su denominación se debe a que se trata de objetos compuestos básicamente de neutrones). La materia en estos objetos se ha comprimido a tal extremo y su densidad alcanza a valores tan grandes, que los electrones se combinan con los protones dando lugar a la formación de nuevos neutrones.

evolucion estelar desde la nube de gas hasta agujero negro

Fuente Consultada: Astronomía Elemental de Alejandro Feinstein y Notas Celestes de Carmen Nuñez

SÍNTESIS DEL TEMA…

Ningún astrónomo ha podido contemplar, hasta ahora, el interior de las estrellas, pero todos los científicos conocen ya los fenómenos que se producen en el centro de éstas y en los estratos que lo cubren hasta llegar a la superficie visible.

Las estrellas son enormes esferas de gas, de un diámetro medio, equivalente a cien veces el de la Tierra. El gas que las compone contiene, aproximadamente, un 80 % de hidrógeno y un 18 % de helio. La mayor parte de los elementos se hallan presentes en ellas, aunque en cantidades insignificantes.

La superficie de las estrellas está incandescente: su temperatura oscila, según el tipo de estrella, entre miles y decenas de millares de grados centígrados. Pero, a medida que se penetra en su interior, esa temperatura va haciéndose cada vez más alta, hasta alcanzar, en el centro, decenas de millones de grados, lo cual pone a los átomos en un estado de “agitación” tan violenta, que los lleva a chocar entre sí, perdiendo electrones y formando iones (átomos que han perdido, por lo menos, uno de sus electrones). El gas de los iones y electrones se ve sometido a presiones tan altas, que en ocasiones alcanza una densidad miles de veces superior a la del agua.

¿Qué es lo que comprime el gas en el interior de las estrellas? El peso de los estratos superiores. Todo el mundo ha oído hablar de las elevadas presiones existentes en el fondo del mar o en el centro de la Tierra (éstas, particularmente, alcanzan cifras asombrosas). Pero, en el centro de una estrella, a una profundidad cien veces mayor, las presiones son tan enormes, que bastan para comprimir toda la materia estelar en un reducidísimo espacio. Los átomos, chocando entre sí, perdiendo y, a veces, adquiriendo electrones, emiten una gran cantidad de luz, comparada con la cual la superficie del Sol parecería oscura.

Llegados a este punto, conviene explicar que la luz ejerce presión sobre los cuerpos que ilumina: poca presión, cuando su intensidad es débil, y mucha, cuando es fuerte. Esta propiedad de la luz se encuentra, naturalmente, fuera de los límites de nuestra experiencia, ya que la Tierra, por fortuna, nunca se ve expuesta a radiaciones luminosas de tanta intensidad. Pero éstas son lo suficientemente intensas, en el interior de las estrellas, como para ejercer, sobre los estratos superficiales, presiones que llegan al millón de toneladas por centímetro cuadrado. Es decir: equilibran, en parte, la presión hacia el interior de estos estratos y evitan que la estrella se convierta en un pequeño y densísimo núcleo.

A las temperaturas descritas, los átomos chocan en forma tan violenta que, cuando los núcleos de hidrógeno entran en colisión entre si, o con núcleos de otros elementos (carbono y nitrógeno), se funden y originan núcleos de helio. Este proceso de fusión de núcleos se llama “-reacción termonuclear”, lo que significa “reacción nuclear provocada por la temperatura”. Cada vez que se forma un nuevo gramo de helio, se libera una energía equivalente a la que se obtendría quemando media tonelada de carbón. ¡Y se forman millones de toneladas de helio por segundo!

La fusión del hidrógeno es, pues, la reacción que mantiene el calor de las estrellas. Como la mayor parte de éstas contiene casi exclusivamente hidrógeno, y basta consumir un poco para obtener una gran cantidad de energía, se comprende que las estrellas puedan brillar ininterrumpidamente durante miles de millones de años.

La zona del interior de las estrellas en las que se produce ,La energía termonuclear es pequeña: muy inferior a una décima parte del volumen total de la estrella. Lo cual dificulta notablemente la llegada del calor a la superficie.

Una parte de éste se transmite por radiación (es decir: la energía térmica producida en el núcleo central es enviada, bajo forma de radiaciones electromagnéticas, a los átomos exteriores, que la absorben y la envían, a su vez, hacia átomos más exteriores, hasta que así, de átomo en átomo, la energía llega a la superficie de la estrella, irradiándose en el espacio). Pero la mayor parte de la energía térmica es transportada a la superficie por la circulación de la materia estelar, que se halla en continuo movimiento: sube caliente del centro, se enfría en la superficie, por cesión de calor, y vuelve fría al centro, en busca de más calor. Esta forma de transporte se llama transporte por “convección”.

Los movimientos convectivos de la materia estelar provocan importantes fenómenos magnéticos, que repercuten en la superficie, produciendo maravillosas y fantasmagóricas manifestaciones: fuentes de gas incandescente, gigantescas protuberancias de gas luminoso coloreado, y manchas oscuras de materia fría, rodeadas por campos magnéticos, de extensión .e intensidad enormes. De esta naturaleza son las famosas manchas solares descubiertas por Galileo, que siempre han despertado gran interés entre los investigadores, por su influencia sobre la meteorología de nuestro planeta, sobre las transmisiones electromagnéticas, e incluso, al parecer, sobre algunos fenómenos biológicos.

La existencia de una estrella depende, por tanto, del perfecto equilibrio entre los mecanismos que producen la energía en su interior y los encargados de transportarla a la superficie. Cuando este equilibrio es inestable, las estrellas experimentan variaciones (estrellas variables); cuando, en cambio, se altera completamente, puede producirse uno de los más grandiosos fenómenos cósmicos: la explosión de una estrella, de lo cual nos ocuparemos en otro artículo.

Otros Temas Tratados en Este Sitio

Big Bang

Origen de la Vida

Origen del Hombre

Teoría de la Evolución

Muerte de una Estrella Los Pulsares Enana Blanca

Peso de Una Estrella de Neutrones

La Vida del Sol Tiempo de Vida Hidrogeno del Sol

La Luna Muestra Siempre la Misma Cara

Origen del aire que respiramos El Oxigeno

Agujeros Negros Origen, Formación y Características Breve y Fácil

Origen y Características de los Agujeros Negros
Muerte de Estrellas

Desde hace mucho tiempo uno de los temas predilectos de la ciencia-ficción han sido los agujeros negros, y en estrecha relación con ellos, el viaje a través del tiempo. El concepto de agujero negro fue popularizado por el físico británico Stephen Hawking, de la Universidad de Cambridge, quien describe con ese nombre a una región del Universo de la que no puede salir ningún objeto una vez que entró allí. Con esto en mente, sería interesante preguntarse qué le sucedería a alguien en el hipotético caso de encontrarse en las cercanías de una de estas regiones, qué sensaciones tendría y si la realidad que lo rodea sería igual a la que nos es familiar.

Hawking Físico astronomo

Para el físico Stephen Hawking y para la mayoría de los científicos un agujero negro es una región del Universo de la que no puede salir ningún objeto una vez que entró allí.

Agujeros negros: Como hemos visto en el nacimiento de las estrellas, una vez que el H y el He, el combustible termonuclear se han consumido en el núcleo de la estrella, sobreviene un colapso gravitatorio.

La evolución estelar culmina con la formación de objetos extremad mente compactos como enanas blancas o estrellas de neutrones cuando masa de la estrella no excede las 3 Mo (masa del Sol).

Si la masa es mayor, la compresión gravitatoria ya no se puede compensar con las fuerzas de repulsión de 1 electrones o neutrones degenerados y continúa tirando materia sobre la estrella: se forman los agujeros negros. En efecto, cuando los neutrones entre en colapso no existe ningún mecanismo conocido que  permita detener contracción.

Esta continúa indefinidamente hasta que la estrella desaparce, su volumen se anula y la densidad de materia se hace infinita. ¿Cómo entender una “estrella” más pequeña que un punto y con semejante densidad de materia en su interior?

Si una estrella se contrae, el campo gravitatorio en su superficie aumenta, aunque su masa permanezca constante, porque la superficie está más cerca del centro. Entonces, para una estrella de neutrones de la misma masa que el Sol la velocidad de escape será de unos 200.000 km/seg. Cuanto mayor es la velocidad de escape de un cuerpo más difícil es que algo pueda escapa de él.

En cierto momento la velocidad de escape llega al limite de 300.000 km/s. Esta es la velocidad de las ondas electromagnéticas en particular de la luz que será entonces lo único que puede escapar de estos objetos. Ya hemos mencionado que no es posible superar esta velocidad y por lo tanto cuando la velocidad de escape de una estrella sobrepasa este limite, nada podrá escapar de ella. Los objetos con esta propiedad se llaman agujero negros.

Desde 1915, con la teoría de la relatividad general de Einstein se sabía que la gravedad generada por un cuerpo masivo deforma el espacio, creando una especie de barrera; cuanto más masivo es el cuerpo, mayor es la deformación que provoca. Los agujeros negros se caracterizan por una barrera  profunda que nada puede escapar de ellos, ni materia ni radiación; así t da la materia que cae dentro de esta barrera desaparece del universo observable.

Las propiedades físicas de estos objetos son tan impresionantes que por mucho tiempo quitaron credibilidad a la teoría.

Esta predice la existencia de agujeros negros de todos los tamaños y masas: los miniagujeros negros tendrían la masa de una montaña concentrada en el tamaño de una partícula; un agujero negro de 1cm. de radio sería tan masivo como la Tierra; los agujeros negros estelares tendrían masas comparables a las de las estrellas dentro de un radio de pocos kilómetros; finalmente, los agujeros negros gigantes tendrían una masa equivalente a varios cientos de millones de estrellas dentro de un radio comparable al del sistema solar.

Una forma de detectar agujeros negros sería a través de ondas gravitatorias. Estas ondas son para la gravedad lo que la luz es para el campo electromagnético. Sin embargo la tecnología actual no permite todavía esta posibilidad. El colapso de una estrella o la caída de un cuerpo masivo sobre un agujero negro originarían la emisión de ondas gravitatorias que podrían ser detectables desde la Tierra con antenas suficientemente sensibles.

 Aunque estas tremendas concentraciones de materia no se han observado todavía directamente hay fuerte evidencia de la existencia de estos objetos. Los astrofísicos comenzaron a interesarse activamente en los agujeros negros en la década del 60, cuando se descubrieron fenómenos sumamente energéticos.

Las galaxias superactivas, como las Seyferts, cuásares y objetos BL Lacertae emiten una cantidad de energía mucho mayor que una galaxia normal, en todas las longitudes de onda. Todos estos violentos fenómenos parecen asociados con cuerpos compactos muy masivos: estrellas de neutrones o agujeros negros estelares en el caso de binarias X, estrellas supermasivas o agujeros negros gigantes en los núcleos galácticos activos.

Las aplicaciones más importantes de los agujeros negros a la astrofísica conciernen a los núcleos activos de galaxias y cuásares. Los efectos de las enormes energías involucradas allí podrían ser sumamente interesantes y podrían permitir explicar fenómenos que todavía no se comprenden.

Fuente Consultada:Notas Celestes de Carmen Nuñez

GRANDES HITOS EN LA HISTORIA DE LOS AGUJEROS NEGROS
1783 El astrónomo británico John Michell señala que una estrella suficientemente masiva y compacta tendría un campo gravitatorio tan grande que la luz no podría escapar.

1915 Albert Einstein dio a conocer su teoría de la gravitación, conocida como Teoría General de la Relatividad.

1919 Arthur Eddington comprobó la deflexión de la luz de las estrellas al pasar cerca del Sol.

1928 S. Chandrasekhar calculó el tamaño de una estrella que fuera capaz de soportar su propia gravedad, una vez  consumido todo si combustible nuclear. El resultado fue que una estrella de masa aproximadamente una vez y media la del Sol nc podría soportar su propia gravedad. Se le otorgó el Premio Nobel 1983.

1939 R. Opphenheimer explice qué le sucede a una estrella qué colapsa, de acuerdo con la Teoría de la Relatividad General.

1963 M. Schmidt identifica un quasar desde el observatorio de Monte Palomar.

1965 – 1970 R. Penrose y S, Hawking demuestran que debe haber una singularidad, de densidad y curvatura del espacio-tiempo infinitas, dentro de un agujero negro.

agujero negro

En el interior de un agujero negro, el retorcimiento del tiempo y el espacio aumentan hasta el infinito.
A esto los físicos llaman singularidad.

■ Un rayo de luz se curva al pasar cerca de un objeto masivo ya que está curvado el espacio que atraviesa. Si el rayo pasa sucesivamente por varios cuerpos su trayectoria se curvará hasta que el rayo quede girando en círculo, del que no puede escapar. Este es el efecto gravitatorio de los agujeros negros.

■ Un agujero negro es una zona del universo con una gravedad tan enorme que ni el tiempo puede salir de él.

■ Los pulsares y los quasars proporcionan información complementaria sobre la ubicación de los agujeros negros.

■ Detectar un agujero negro no es fácil. Se los descubre por la poderosa emisión de rayos X que los caracteriza.
Si un astronauta penetrara en un agujero negro no tendría forma de vivir. Debido a la intensísima fuerza gravitoria nos estiraríamos como un fideo hasta despedazarnos.

■ En el interior de un agujero negro el espacio y el tiempo aumentan hasta lo, infinito.

■ Se estima que el número de agujeros negros en el Universo es muy superior al número de estrellas visibles y son de mayores dimensiones que el Sol.

■ Existen varios agujeros negros identificados, uno se halla en nuestra Via Láctea: el Cygnus X-1.

AMPLIACIÓN DEL TEMA:
Fuente: Magazine Enciclopedia Popular: Los Agujeros Negros

Hagamos un ejercicio mental e imaginemos por un momento que somos intrépidos astronautas viajando al interior de un agujero negro…

Repasemos algunas ideas importantes. Los físicos saben desde hace mucho que un rayo de luz se curva al pasar cerca de un objeto masivo ya que está curvado el espacio que atraviesa. Pero ¿qué sucede si este rayo pasa sucesivamente cerca de varios cuerpos?.

Cada vez su trayectoria se curvará un poco más hasta que finalmente el rayo estará girando en círculo, del que no podrá escapar. Este efecto gravitatorio se manifiesta en los agujeros negros, donde la atracción es tan fuerte que nada, ni siquiera la luz, puede escapar de él una vez que entró.

La gravitación distorsiona además del espacio, el tiempo. Veamos qué sucede en la superficie de un agujero negro, el horizonte de sucesos, que coincide con los caminos de los rayos luminosos que están justo a punto de escapar, pero no lo consiguen.

DONDE EL TIEMPO SE DETUVO
Según la Teoría de la Relatividad, el tiempo para alguien que esté en una estrella será distinto al de otra persona lejana, debido al campo gravitatorio de esa estrella. Supongamos que nosotros, astronautas, estamos situados en la superficie de una estrella que colapsa, y enviamos una señal por segundo a la nave espacial que está orbitando a nuestro alrededor.

Son las 11:00 según nuestro reloj y la estrella empieza a reducirse hasta adquirir untamaño tal que el campo gravitatorio es tan intenso que nada puede escapar y nuestras señales ya no alcanzan la nave.

Desde ella, al acercarse las 11:00, nuestros compañeros astronautas medirían intervalos entre las señales sucesivas cada vez mayores, pero este efecto sería muy pequeño antes de las 10:59:59. Sin embargo, tendrían que esperar eternamente la señal de las 11:00. La distorsión del tiempo es aquí tan tremenda que el intervalo entre la llegada de ondas sucesivas a la nave se hace infinito y por eso la luz de la estrella llegaría cada vez más roja y más débil.

El tiempo, desde nuestro punto de vista como astronautas sobre la superficie de la estrella, se ha detenido. Llegaría un punto en que la estrella sería tan oscura que ya no podría verse desde la nave, quedando sólo un agujero negro en el espacio.

Pero como astronautas, tenemos un problema más angustiante.

La gravedad se hace más débil cuanto más nos alejamos de la estrella, es decir, varía rápidamente con la distancia. Por lo tanto, la fuerza gravitatoria sobre nuestros pies es siempre mayor que sobre nuestra cabeza. Esto significa que debido a la diferencia de fuerzas, nos estiraríamos como un fideo o, peor aún, nos despedazaríamos antes de la formación del horizonte de sucesos (a diferencia de lo que sucede en la Tierra, donde la gravedad para nosotros prácticamente no varía con la altura). Este experimento no es, por ahora, recomendable.

¿Qué ocurre con la materia dentro del agujero negro? Las teorías de Stephen Hawking y Roger Penrose, de la Universidad de Oxford aseguran que en el interior el retorcimiento del espacio y del tiempo aumentan hasta el infinito, lo que los físicos llaman una singularidad. Si una estrella esférica se encogiera hasta alcanzar el radio cero, ya no tendría diámetro, y toda su masa se concentraría en un punto sin extensión. ¿Qué sucede si la materia no puede salir del agujero?.

Sólo caben dos respuestas: o deja de existir o viaja a otra parte. Esta última posibilidad dio pie a la teoría del agujero de gusano: al caer en el agujero podríamos salir en otra región de Universo. Para desgracia de los novelistas de ciencia-ficción, esta posibilidad no posee gran aceptación científica hasta ahora.

¿ALGUIEN HA VISTO UN AGUJERO NEGRO?
Dado que se conoce muy poco acerca de estos huecos en el espacio, su estudio comenzó a desarrollarse mediante modelos matemáticos, aun antes de que hubiese evidencia de su existencia a través de observaciones. Pero, ¿cómo podemos creer en objetos cuya existencia se basa sólo en cálculos?.

La lista de evidencias comienza en 1963, cuando desde el observatorio de Monte Palomar en California, se midió el corrimiento al rojo de un objeto parecido a una estrella en dirección a una fuente de ondas de radio. Este corrimiento era muy grande, por lo que se pensó que se debía a la expansión del Universo y, por lo tanto, el objeto estaba muy lejos. Para ser visible, este objeto debería ser muy brillante y emitir una enorme cantidad de energía. A ellos se los llamó quasars (quasi-strange objects), y podrían proporcionar evidencia acerca de la existencia de los agujeros negros.

Otros candidatos para darnos información sobre los agujeros negros son los pulsares, que emiten ondas de radio en forma de pulso debido a la compleja interacción entre sus campos magnéticos y el material intergaláctico. También las estrellas de neutrones, objetos muy densos, podrían colapsar para convertirse en agujeros negros.

Detectar un agujero negro no es tarea fácil. La forma más utilizada está basada en el hecho de que estos objetos son fuentes emisoras de rayos X. Esto se relaciona con los sistemas binarios, formados por una estrella y un agujero negro. La explicación para este hecho es que de alguna forma se está perdiendo materia de la superficie de la estrella visible.

Como en una pareja de baile en una habitación pintada de negro donde la chica está vestida de blanco y el chico de negro, muchas veces se han observado sistemas en los que sólo hay una estrella visible girando alrededor de algún compañero invisible. Vemos girar a la chica, aunque no podamos distinguir a su pareja. Cuando la materia va cayendo en este compañero comienza a girar como una espiral y adquiere gran temperatura, emitiendo rayos X. Además, el agujero negro debe ser pequeño.

Actualmente se han identificado varios agujeros negros: uno de ellos es el caso de Cygnus X-l en nuestra galaxia, y otros en dos galaxias llamadas Nubes de Magallanes. Sin embargo, el número de agujeros negros se estima que es muy superior, pudiendo ser incluso mayor al de estrellas visibles y de mayores dimensiones que el Sol.

 

Estrella de Neutrones Concepto, Formación y Caracteristicas

Estrella de Neutrones Concepto, Formación y Caracteristicas

Ante todo definimos una estrella, gran cuerpo celeste compuesto de gases calientes que emiten radiación electromagnética, en especial luz, como resultado de las reacciones nucleares que tienen lugar en su interior. Por ejemplo el Sol es una estrella. El número de estrellas observables a simple vista desde la Tierra se ha calculado en un total de 8.000, la mitad en el hemisferio norte celeste y la otra mitad en el sur. Durante la noche no se pueden ver más de 2.000 al mismo tiempo en cada hemisferio.

En 1934 los teóricos usaron la mecánica cuántica para predecir la existencia de las estrellas de neutrones: cuando la gravedad se hace demasiado fuerte como para que una enana blanca resista el colapso, los electrones son empujados al interior de los núcleos atómicos convirtiendo a los protones en neutrones.

Pero al igual que los electrones, los neutrones obedecen un principio de exclusión, de acuerdo al cual cada neutrón puede ocupar un determinado nivel de energía que no puede compartir con otro. Cuando todos estos niveles son ocupados, los neutrones están completamente degenerados y ejercen una presión capaz de frenar el colapso gravitatorio.

Así, una estrella de neutrones es en muchos aspectos una versión extrema de una enana blanca: para la misma masa (aproximadamente 1 Mo*) una estrella de neutrones tiene un radio mucho menor (unos 15 km) y una densidad fantástica (un millón de toneladas por cm3).- (*):Mo es igual a la masa del Sol.

La temperatura es de unos 10 millones de grados, pero debido a su tamaño pequeño, estos objetos son en general imposibles de detectar ópticamente. La masa de una estrella de neutrones no puede exceder 3 Mo: por encima de este valor la gravedad le gana a la presión de los neutrones degenerados y el único estado final posible es un agujero negro.

La rápida rotación y los fuertes campos magnéticos son dos características importantes de estas estrellas ultradensas. Sabemos que todas las estrellas rotan. Al colapsar, la velocidad de rotación aumenta de manera de conservar el momento angular (así como un patinador baja los brazos para girar más rápidamente) La velocidad de rotación de las estrellas de neutrones es de varias vueltas por segundo.

También todas las estrellas tienen campos magnéticos pero cuando colapsan, éste aumenta. Los campos magnéticos de las estrellas de neutrones son un billón de veces más intensos que el terrestre. Estas dos propiedades son las que permiten detectar a las estrellas de neutrones en forma de púlsares.

La primera detección de un púlsar se produjo en 1986 en Inglaterra, 34 años después de haber sido predichos teóricamente. Aparece como un objeto que emite pulsos de radio de intensidad variable, pero espaciados a intervalos de tiempo regulares: el período, increíblemente preciso, es de 1,33730113 segundos.

El fenómeno fue interpretado como una estrella de neutrones cuyas líneas de campo magnético aceleran los electrones a lo largo del eje magnético, causando la emisión de un rayo de ondas de radio que rotan con la estrella y producen un pulso cuando el rayo intercepta la línea de Visión del observador.

Desde entonces se han descubierto otros varios púlsares y se ha encontrado que algunos de ellos no sólo emiten en radio, sino también en frecuencias más altas como rayos x y y. Se conocen actualmente más de 300 púlsares, situados mayormente en el plano galáctico, a unos pocos kpc del Sol. Los lugares con más posibilidades para encontrar púlsares son los remanentes de supernova.

La famosa Nebulosa del Cangrejo es el remanente de la supernova de 1054 y contiene efectivamente el púlsar del Cangrejo. Debido a su reciente formación es uno de los que rotan más rápido: da 33 vueltas por segundo. Podemos predecir con facilidad, que la velocidad de rotación de un púlsar disminuirá lentamente con el tiempo, de acuerdo a la velocidad con que disipa energía. Por eso los púlsares más jóvenes rotan más rápido que los viejos. Sus períodos van de 0,006 a 0,03 segundos hasta 4,3 segundos. Cuando la velocidad de rotación se hace pequeña, el mecanismo del púlsar no sirve: su vida promedio es de unos pocos millones de años.

Hay otro efecto que contribuye a la modificación de la velocidad de rotación pero de manera más abrupta: son los “glitches”, que disminuyen el período de rotación una parte en un millón en pocos días. Se interpreta como sismos estelares debido a inestabilidades en la corteza o el núcleo de la estrella de neutrones. Estos fenómenos son muy útiles para estudiar la estructura interna de los púlsares, pero sólo aparecen durante unos pocos pulsos.

El púlsar de la supernova de 1987 trajo muchas sorpresas. Apareció antes de lo esperado y su rotación era extremadamente veloz, su período de 0,5 milisegundos era de lejos el más corto que se conocía. Todavía los científicos encuentran entretenimiento en este objeto.

 Aunque la detección de púlsares en los remanentes de supernovas se ha hecho difícil y rara, hay un fenómeno más extendido que permite descubrir muchos de estos objetos: las fuentes compactas de rayos x. En 1971, a partir del lanzamiento del satélite astronómico Uhuru, se descubrieron fuentes galácticas emisoras de un fuerte flujo de rayos x. La fuente llamada Centauro x-3, por ejemplo, tiene una luminosidad en rayos x 10 veces mayor que la luminosidad total del Sol.

Se eclipsa cada 2,087 días, lo que demuestra que la fuente de rayos X está en movimiento orbital alrededor de un objeto más masivo. Esta fuente es parte de un sistema binario formado por la estrella de neutrones y una estrella gigante. La primera atrae el viento estelar de la segunda y convierte la energía gravitatoria del gas en rayos x.

Este tipo de púlsares binarios proveen una de las pruebas de la teoría de la relatividad que predice que un cuerpo masivo acelerado radiará energía en forma de ondas gravitatorias. La disipación de energía de esta forma causa el temblor de la órbita y en consecuencia una lenta disminución del período orbital del púlsar a lo largo del tiempo. Las predicciones teóricas de Einstein concuerdan muy bien con las observaciones del periodo orbital de PSR 1913+16, que está disminuyendo unos 76 milisegundo por año.

Fuente Consultada:Notas Celestes de Carmen Nuñez

Estrellas Explosivas Novas y Supernovas Formación y Características

Estrellas Explosivas Novas y Supernovas Formación y Característicasr

Estrellas explosivas: novas y supernovas

Cuenta la leyenda que Hiparco se decidió a confeccionar su catálogo cuan do apareció una estrella nueva en la constelación zodiacal de Escorpio.

Su objetivo era construir un sistema de movimientos planetarios y es probable que la observación de los planetas noche tras noche lo llevara a memo rizar las posiciones de las estrellas más brillantes, especialmente las que se encontraban cercanas a la franja del zodíaco.

La filosofía aristotélica vigente en ese momento suponía al cielo perfecto e inalterable. Entonces es posible imaginarse el asombro del astrónomo griego ante la sorprendente aparición. 

Algunos historiadores consideran que Hiparco observó en realidad un cometa y no una estrella nueva. Pero dado que en la actualidad se observan algunas decenas de novas por año por galaxia es llamativo que no se hubieran observado con anterioridad y que incluso con posterioridad a Hiparco (hasta 20 siglos después!) no se observara ninguna en occidente.

La siguiente observación de una nova en Europa fue realizada por Tycho Brahe en 1572. A él se debe el término nova (del latín, nova stella ) e indica la idea original sobre estos objetos: de repente aparecía una estrella donde previamente no se había observado.

Para descubrir una nueva estrella hay que ser un experto observador del cielo, como hemos mencionado, durante siglos se les prestó muy poca atención a los componentes del paisaje celeste que no fueran los planetas, por lo tanto si la nova aparecía en una constelación lejana al zodíaco muy probablemente pasara inadvertida.

También hay que considerar la fuerza de la teoría aristotélica: cualquier cambio en los cielos inmutables era imposible. La información sobre cualquier cambio celeste podía convertirse en tm sacrilegio y es muy probable que quien lo observara no lo hiciera público para no arriesgarse a ser tratado de loco, ciego o mentiroso.

Pero afortunadamente, durante el período que va de la época de Hiparco hasta el año 1500 los chinos observaron cuidadosamente el cielo y registraron todos los cambios detectados. En la época antigua y medieval reportaron la aparición de cinco estrellas brillantes (en los años 185, 393, 1006, 1054 y 1181). La de 1006 fue por lo menos 200 veces más brillante que Venus, de manera que ni siquiera los desinteresados europeos pudieron ignorarla

Luego de Tycho, el siguiente en observar una nova fue un astrónomo alemán, F. Fabricio en 1596, y en 1604 lo hizo Kepler. Todas estas observaciones coincidían en que aparecía una estrella muy brillante donde previamente no se había observado nada y este brillo disminuía lentamente hasta desaparecer.

En la actualidad sabemos que lo que antiguamente se llamaba nova corresponde en realidad a dos tipos de objetos: novas y supernovas. Al igual que las novas, las supernovas son estrellas eruptivas o explosivas, pero se distinguen de aquéllas en que la cantidad de energía liberada es mucho mayor y además, en el caso de las novas, sólo aparecen afectadas por la explosión las capas exteriores, mientras que la explosión de una supernova afecta toda la estrella. Aún las más luminosas como Nova Cygni 1975, brillan 1.000 veces menos que las supernovas.

Novas: Estas estrellas se clasifican en novas, que ganan más de 10 magnitudes en la explosión, y novas enanas, que sólo aumentan su brillo unas pocas magnitudes. Algunas han explotado sólo una vez desde que fueron observadas, pero se cree que son recurrentes cada 10.000 o 100.000 años. Las novas recurrentes, menos energéticas, experimentan explosiones cada 10 a 100 años.

La observación de varias post-novas a mediados de este siglo demostró que muchas de ellas son miembros de sistemas binarios super próximos en los que una de las estrellas es una enana blanca y la otra una estrella fría (por ejemplo una gigante roja). Cuando la estrella ínicialmente menos masiva comienza a expandirse para formar una gigante roja, etapa que se acelera al aumentar su masa con la que se desprende de su compañera, sus capas exteriores se acercan tanto a la enana blanca que parte de su envoltura queda atrapada en el campo gravitatorio de ésta, formando lo que se llama un disco de acreción.

Tal nombre se debe a que, debido a colisiones entre las partículas del disco, éste pierde energía y algunas partes caen sobre la enana blanca, que gana así cierta masa en un proceso llamado acreción. La gran gravedad superficial de la enana blanca comprime esta masa formada esencialmente de hidrógeno, y la calienta.

La temperatura se hace tan alta que comienza la fusión de este hidrógeno, lo que calienta aún más la superficie y se inicia la fusión en el disco de acreción, produciéndose un enorme destello de luz, y las capas superiores del disco son arrojadas lejos de la influencia gravitatoria de la enana blanca. Este destello de luz es lo que vemos desde la Tierra en forma de nova y la parte del disco de acreción impulsada hacia el exterior es la nube de gas y polvo que se observa alrededor de la post-nova.

El proceso de fusión disminuye gradualmente, pero el ciclo recomienza porque la compañera de la enana blanca sigue perdiendo masa y esto reconstruye el disco de acreción. De esta forma el fenómeno de nova puede repetirse muchas veces antes de que la supergigante finalice su expansión y se transforme ella misma en enana blanca.

Por lo visto, las condiciones necesarias para la formación de una nova son entonces bastante especiales, y muy pocas estrellas de nuestra galaxia las satisfarán. El Sol, como hemos visto, se transformará en enana blanca. Pero como no tiene compañera no será una nova.

Supernovas:El fenómeno de supernova es una explosión fenomenal que involucra la mayor parte del material de una estrella y determina el fin de la evolución de ciertos objetos estelares. Se supone que la mayoría de las supernovas de nuestra galaxia son indetectables debido a la extinción causada por el polvo interestelar. Actualmente se cree que las observaciones chinas de 1054 y las de Tycho y Kepler se trataban de supernovas. La de Kepler, en 1604, fue la última detectada en nuestra galaxia.

Hay esencialmente dos tipos de supernovas: a) las tipo I resultan de la explosión de estrellas viejas, de masa relativamente pequeña y pobres en hidrógeno pero ricas en elementos pesados, tal como corresponde a una fase avanzada de evolución; su composición indica que se trata de enanas blancas. b) Las tipo II son explosiones de estrellas masivas, también al final de su evolución, pero en una fase menos terminal que las de tipo 1; son ricas en hidrógeno y presumiblemente están en la etapa de supergigante roja.

En su máximo de luz, el brillo producido por las supernovas aumenta unas 15 magnitudes; las tipo 1 son casi tres veces más luminosas que las tipo II. Luego el brillo disminuye unas 304 magnitudes durante los primeros días y durante varios meses decrece casi exponencialmente.

La energía liberada durante el corto tiempo de la explosión es equivalente a la que irradiará el Sol durante 9 mil millones de años (recordemos que la edad actual del Sol es de unos 4,5 mil millones de años) o a la explosión simultánea de 1028 bombas de hidrógeno de 10 metagones cada una y la materia expulsada, alrededor de 5 M0,puede alcanzar velocidades de 36 x 106 km/h.

Las supernovas de tipo 1 pueden alcanzar una magnitud absoluta de -18,6, es decir 2.500 millones de veces la luminosidad del Sol o unas 100 veces más brillantes que la luz integrada de toda la galaxia. Según el tipo, la masa eyectada puede ser de 1 a 10 M0, lo que en algunos casos es la masa total de la estrella y, por lo tanto, no queda nada después de la explosión. A partir del descubrimiento de los púlsares (estrellas de neutrones de muy rápida rotación) en 1968, se sabe que después de la explosión puede quedar un objeto extremadamente denso. Este objeto, que es el núcleo de la estrella, está formado exclusivamente por neutrones.

Los mecanismos responsables de estas explosiones no se conocen todavía con certeza. La mayoría de las teorías consideran que la energía liberada por la explosión es principalmente de origen nuclear, en particular la fotodesintegración del Fe. Esta es la etapa final en la cadena de reacciones nucleares que ocurren durante la vida de las estrellas de unas 10 M0. Las estrellas con masas necesarias para terminar como supernovas de tipo 1 son por lo menos 10 veces más numerosas que las estrellas más masivas que dan origen a las supernovas tipo II. Por lo tanto sería razonable suponer que se observarán 10 veces más supernovas de tipo 1 que de tipo II.

Sin embargo no es así: los dos tipos se observan con la misma frecuencia. Por lo tanto hay que concluir que no todas las estrellas de poca masa terminan como supernovas y en consecuencia, que se necesitan ciertas condiciones especiales para que este fenómeno ocurra.

La pre-supernova de tipo II tiene una estructura de cáscara como una cebolla. A medida que descendemos de la capa superficial de H se encuentran capas de elementos de mayor masa atómica. Estas capas son producto de las distintas fases de la nucleosíntesis que han ocurrido durante la vida de la estrella. Las reacciones que originan los elementos más pesados se ordenan de acuerdo a la temperatura.

Los aumentos de temperatura ocurrieron alternándose con contracciones gravitatorias. El centro de la supergigante que explotará como supernova está compuesto por una mezcla de núcleos de Fe y otros núcleos con números atómicos entre 50 y 60. Estos son los elementos con mayor energía de ligadura. Por lo tanto no se puede extraer más energía de ellos. Cualquier cambio nuclear ulterior con estos elementos, tanto si es fusión para dar elementos más complicados como si es fisión para dar núcleos menos complicados, no liberará energía sino que la absorberá.

El núcleo estelar de hierro crece, luchando contra la contracción gravitatoria gracias a la presión de los electrones degenerados. Pero al describir las enanas blancas vimos que hay un limite para esto: cuando la masa del núcleo ha alcanzado el límite de Chandrasekhar (1,4 M0), la presión de los electrones no alcanza para evitar la contracción y la estrella colapsa. En ese momento, todos los productos del proceso de nucleosíntesis se han aniquilado, el gas está formado ahora por neutrones, protones y electrones libres.

Pero éstos últimos experimentan un gran aumento de energía al comprimirse, su energía se hace mayor que la necesaria para transformar un protón en neutrón y así son absorbidos por los protones. Privado de la componente más significativa de presión, el núcleo estelar colapsa a un ritmo acelerado. La distancia entre neutrones es ahora muy pequeña (del tamaño del núcleo atómico, fermi) y la estrella se ha transformado en una estrella de neutrones. Desde el inicio del colapso se requieren sólo unos pocos minutos para alcanza este estado.

Al comenzar el colapso del núcleo, las capas exteriores de la estrella, donde están ocurriendo algunas reacciones nucleares, caen arrastra das por él. Los gases se comprimen rápidamente y aumentan su temperatura. La velocidad de las reacciones nucleares aumenta notablemente, la gran cantidad de energía producida origina inestabilidades y, finalmente, la explosión de las capas exteriores.

Las supernovas de tipo 1 son parte de un sistema binario formado por una supergigante roja y una enana blanca, como el que da origen a las no vas. Sin embargo en este caso la masa de alguna de las componentes o d ambas es mayor que en el caso de la nova.

En esta situación, la enana blanca puede ganar más masa y superar el límite de Chandrasekhar. Entonces sufre un colapso y comprime muy fuertemente los núcleos de carbono y oxígeno en su interior, creando las condiciones para una fusión con tal liberación de energía que su resultado es una explosión de supernova. Probablemente éste fue el caso de las supernovas de Tycho y Kepler ya que en ninguno de los dos casos se ha detectado estrellas de neutrones en las posiciones correspondientes.

Incluso mucho tiempo después de la explosión las supernovas se revelar por sus efectos sobre el medio interestelar. El remanente joven de la supernova aparece como una gran burbuja que emite radiación en todo el espectro y se expande a una velocidad de 10.000 km/seg. A medida que lo hace empuja al gas interestelar y se va frenando. Después de unos cientos de años la cáscara se enfría y el remanente se desintegra en el medio circundante Los remanentes son antigüedades astronómicas muy valiosas, capaces de revelar información sobre la explosión, la evolución posterior y la estructura y composición del medio interestelar.

Las supernovas son uno de los contribuyentes más importantes a la evolución de la materia galáctica. No sólo transmiten al medio interestelar energía térmica y cinética sino que también la enriquecen con elementos pesados de la nucleosíntesis estelar. El interés por las supernovas de los astrónomos interesados en la evolución estelar y el medio interestelar ha aumentado notablemente, dado que se piensa que podrían ser el detonante del proceso de formación de nuevas estrellas.

La última observación de una explosión de supernova ocurrió en 1987 en la Gran Nube de Magallanes. Miles de investigadores renovaron su interés y en los últimos años se han realizado importantísimos avances en nuestra comprensión de estos fenómenos. Esta supernova ha proporcionado la posibilidad de realizar la medición de distancia más precisa que se haya hecho para un objeto fuera de nuestra galaxia. El remanente de SN 1987A (como se denomina) está a 1,60 x 105 años luz, con una certeza de ±5%.

Un anillo hecho del material eyectado por el progenitor de la supernova en su fase de supergigante, ya rodeaba a la estrella unos 5.000 años antes de la explosión, pero sólo se hizo visible cuando se calentó hasta unos 20.000 0K como consecuencia de la misma. Si ese anillo fuera perpendicular a la línea de la visión, se hubiera iluminado todo a la vez. Sin embargo, como está inclinado unos 450 respecto de esta posición, distintas partes se encuentran a distancias diferentes de nosotros.

La parte más cercana pareció encenderse tres meses después de la explosión, mientras que la más lejana permaneció oscura cerca de un año más. Esta diferencia indica que el diámetro del anillo es de 1,3 x 1013 km. La medición del diámetro angular fue realizada por la estación orbital Hubble y es de 1,66 segundos de arco.

Esencialmente, toda la energía cinética del núcleo que colapsa se convierte en una onda de choque que, al encontrar las capas exteriores que están colapsando, las hace rebotar y cambiar de dirección. Este proceso se ve favorecido por la gran cantidad de neutrinos emitidos por la estrella de neutrones que se está creando.

La luz puede ser emitida sólo cuando la onda llega a la capa más externa. En SN 1987A, la onda de choque demoró dos horas en atravesar toda la estrella. Los pocos (pero muy preciados) neutrinos detectados poseían características acordes con las predicciones teóricas —sus cantidades, energías y el intervalo de tiempo en que llegaron a la Tierra—, lo cual aumenta la credibilidad en los modelos.

El 99% de la energía liberada llega de esta forma, en los neutrinos que pueden escapar de la estrella mucho más rápido que los fotones de luz. Estas observaciones permiten abrigar esperanzas de observar más eventos de supernova en la medida en que mejoren los detectores de neutrinos. Se estima que los mismos ocurren cada 10 o 100 años, especialmente en las regiones centrales de nuestra galaxia, pero permanecen ocultos por el material interestelar que opaca la luz.

Si las predicciones teóricas respecto de los neutrinos de supernovas son tan precisas, ¿por qué hay una discrepancia tan grande entre las observaciones y las predicciones respecto de los neutrinos solares? Tal vez, más observaciones de supernovas ayuden a resolver este problema.

FORMACIÓN DE LOS ELEMENTOS QUÍMICOS: El aumento de presión y temperatura, después de producirse los primeros colapsos de la estrella, posibilita la fusión de núcleos de helio para formar uno de carbono. La persistencia de estas condiciones hará que los átomos de carbono se fusionen con otros para constituir otros más complejos. Así, el carbono, al fusionarse con un núcleo de deuterio, forma uno de nitrógeno, y al hacerlo con un núcleo de helio, constituye uno de oxígeno.

A través de reacciones similares se forma el resto de los elementos químicos, siendo necesarias condiciones más extremas: en general, cuanto mayor es el número atómico (Z), mayor presión y temperatura se requieren para la formación.

Ciertas características de la estructura interna de los núcleos de los elementos alteran la proporción que sería previsible: más abundantes los de menor número atómico. No obstante, en muchos casos, los átomos de los elementos químicos muy pesados se descomponen espontáneamente, modificando las proporciones que podrían calcularse.

¿Sabían que el átomo de carbono, debido a su mayor estabilidad, es el más abundante del Universo después del hidrógeno, el helio y el neón? La abundancia del carbono y su característica de generar otros elementos biogénicos son datos de gran importancia para entender la formación de moléculas orgánicas en el Universo y la aparición de vida sobre la Tierra. Es interesante, además, conocer que la abundancia relativa de hidrógeno, nitrógeno, oxígeno, carbono, fósforo y azufre es casi idéntica a la que se encuentra en la materia viva.

SUPERNOVAS INQUIETANTES
Al igual que los seres vivos, las estrellas nacen, viven y murieron Se forman a partir de una nube de gas, encienden sus hornos nucleares, irradian su luz durante millones de milenios y después se apagan colapsan y desaparecen. Una de las formas que tiene de morir es la supernova. Pero para llegar a ese final explosivo el astro tiene que tener por lo menos una masa equivalente a la de tres soles.

La supernova también ocurre cuando la estrella ha consumido casi todas sus fuentes de energía. Entonces dos fuerzas entran en una lucha crítica. La declinante fusión nuclear no puede ya compensar la fuerza de gravitación y esta hace que el astro comience a hundirse sobre sí mismo. Las capas exteriores se precipitan hacia el núcleo en un cataclismo gigantesco que origina un rápido sobrecalentamiento de la materia, proceso que culmina con la explosión que ya hemos descrito.

supernova

La supernova de la Galaxia del Cigarro, que se encuentra a alrededor de 12 millones de años luz de la Tierra

Las supernovas no son fenómenos frecuentes. En grandes sistemas estelares, como la Vía Láctea, se produce una cada siglo. Por esta razón, no son muchas las que el hombre ha podido presenciar en su brevísima existencia como especie.

En el año 1006 apareció una supernova en los cielos del hemisferio sur. En su apogeo brillaba tanto como el cuarto de luna y su luz proyectaba sombras sobre la Tierra. Fue visible durante dos semanas en pleno día, y durante dos años por la noche.

El 4 de julio de 1054, los astrónomos chinos registraron la aparición de una “estrella intrusa”. Su brillo era de tal magnitud que también resultaba visible de día. Pronto se transformó en uno de los objetos más notorios del firmamento, al que únicamente el sol y la luna superaban en brillo. Se dejó ver durante dos meses y después comenzó a apagarse paulatinamente hasta desaparecer por completo.

Cuando los astrónomos contemporáneos dirigieron sus telescopios hacia la región del cielo donde hace 900 años había aparecido la “estrella intrusa”, encontraron un extraño objeto al que se dio el nombre de Nebulosa del Cangrejo. Es una nube de gas en rápida expansión que sólo pudo originarse a partir de un estallido titánico. Los cálculos indican que nueve siglos atrás toda esa masa de gas debió haber estado comprimida en un volumen pequeño.

Se comprobó, de esa forma, que la mencionada nebulosa no era sino la supernova observada por los astrónomos chinos a comienzos de este milenio, que continúa explotando. El estallido ocurrió, en realidad 6 mil años antes de que su luz llegara a la Tierra y fuera percibida por los hombres.

La última supernova observada en la Vía Láctea fue registrada por el célebre astrónomo y matemático Johannes Kepler,en 1604, antes de la invención del telescopio. Desde entonces el hombre no había tenido ocasión de usar sus modernos instrumentos astronómicos para estudiar una supernova cercana.

Pero a comienzos de 1987, un científico canadiense descubrió desde el Observatorio de Las Campanas, en el norte de Chile, una supernova muy próxima a la Tierra, situada en la Gran Nube de Magallanes, que es una galaxia satélite de la nuestra.

Esta espectacular supernova, bautizada como Shelton 1987 A se hizo visible a simple vista. Ocurrió en realidad hace 170 mil años, es decir, antes de que en la Tierra se irguiera el hombre de Neandertal.

Así, por primera vez los astrónomos han podido seguir el curso evolutivo de una supernova con telescopios poderosos y modernos La supernova es desde luego un fenómeno inquietante. Es posible que el hombre llegue a auscultar las estrellas cercanas para determinar cuales de ellas amenazan con incurrir en esos estallidos catastróficos.

La teoría predice que a las elevadas temperaturas que alcanza el núcleo del astro que está por explotar, se producen, entre otras partículas, los fantasmales y casi inasibles neutrinos. Estos carecen de masa, se mueven a la velocidad de la luz, atraviesan la Tierra con la misma facilidad con que el agua pasa a través de un colador, y rara vez se detienen para interactuar con otras partículas.

El descubrimiento de Shelton 1987 A, ha ayudado a comprobar la teoría. Como resultado de esta supernova, la Tierra está recibiendo una lluvia de  neutrinos que se han captado en detectores especiales instalados en minas subterráneas, en los Estados Unido, Europa Japón y la Unión Soviética.

Cuando se perfeccionen estos detectores y se construyan incluso telescopios de neutrinos, el hombre estará en condiciones de escudriñar  en los núcleos de las estrellas que presenten gigantismo rojo I H acuerdo con las cantidades de neutrinos que éstas emitan será posible predecir con bastante exactitud y antelación cualquiera amenaza cercana de supernova que pudiera sumergir a la Tierra en un peligroso baño de radiación.

Fuente Consultada: Notas Celestes de Carmen Nuñez

Muerte de las Estrella Enanas Blancas Gigantes Rojas Vida y Evolucion

Muerte de las Estrella Enanas Blancas Gigantes Rojas

ESTRELLAS MORIBUNDAS: Enanas blancas: Cuando la estrella agota su combustible no tiene con qué luchar contra la contracción gravitatoria, por lo que entra en colapso y se convierte en enana blanca. Sin embargo, la compresión que puede sufrir la materia tiene un limite dado por el llamado principio de exclusión de Pauli.

Las altas densidades observadas en las enanas blancas son difíciles de encontrar en otros cuerpos celestes o en la Tierra. En verdad, la posibilidad de existencia de materia más densa que la observada en el sistema solar no fue considerada hasta que se desarrolló la mecánica cuántica. La comprensión de la naturaleza atómica de la materia permitió considerar la existencia de materia degenerada, mucho más concentrada que la materia ordinaria.

El Sol tiene una densidad promedio semejante a la del agua: cerca de 1 gr/cm3 y se comporta como un gas, con sus partículas moviéndose libremente.

El Hidrógeno (H) en su interior, a una temperatura de 15 millones de grados, está en su mayoría ionizado. Los electrones se han separado de sus núcleos y la alta temperatura reinante les impide acercarse a ellos.

Como consecuencia, 1 cm3 de materia solar ordinaria es esencialmente vacío. Los protones y electrones pueden moverse libremente casi sin chocar entre sí.

En una enana blanca en cambio, una masa como la del Sol puede estar comprimida en un volumen no mayor que el de la Tierra. La densidad asciende a 1.000 kg/cm3. Aun cuando la temperatura ha disminuido por debajo de la temperatura de ionización, los átomos permanecen disociados por la enorme presión de la gravedad.

Las fuerzas gravitatorias actuantes en un cuerpo celeste masivo pueden comprimir su materia hasta un estado de degeneración electrónica y no más, ya que el principio de exclusión impide a dos electrones ocupar el mismo nivel de energía. Este efecto cuántico se llama presión de degeneración electrónica y es el limite que impone la mecánica cuántica a la compresión de un gas de electrones. Esto es lo que ha sucedido en las enanas blancas.

Su interior es “frío” (aunque la  temperatura puede alcanzar hasta un millón de grados) en el sentido de que para mantener a la estrella en equilibrio, las fuerzas autogravítantes no están compensadas por movimientos térmicos como sucede en las estrellas de secuencia principal, sino por la presión ejercida por los electrones degenerados que llegan al limite de compresión. El interior de una enana blanca no está en estado gaseoso sino que es como mi cristal gigante que se enfría lentamente.

Las partículas están superpuestas y ya casi no hay espacios vacíos entre ellas. Por lo tanto, su posición y velocidad están determinadas cuánticamente. El principio de exclusión impide que dos partículas ocupen el mismo estado de energía y mientras en un gas ordinario quedan niveles de energía libre (no ocupados por ninguna partícula), los electrones de un gas degenerado ocupan todas las posiciones cuánticamente admisibles.

Las enanas blancas se descubrieron en 1910, aunque entonces no se entendían. Su temperatura superficial es muy alta y su luminosidad anormalmente baja. Esto sólo podía explicarse si su radio era muy pequeño, comparable al radio de la Tierra (Ley de Stefan).

S. Chandrasekhar (nacido en 1910) fue quien elaboró la teoría de una esfera de gas degenerado y este trabajo le valió el Premio Nobel de Física de 1983. Contrariamente a lo que podría suponerse, cuanto más grande es la masa de una enana blanca, menor es su radio. Esto resulta de la necesidad de una presión del gas suficiente para balancear la presión gravitatoria.

La masa y el tamaño de una enana blanca están fijos por la composición de la estrella. Los cálculos teóricos indican que si está compuesta esencialmente de H tendrá una masa máxima posible de 5,5 M0. Pero si contiene elementos más pesados llegará sólo a 1,4 M0. Estos valores se conocen como limites de Chartdrasekhar. Una estrella más masiva perdería masa o sufriría una catástrofe antes de transformarse en enana blanca.

Actualmente sólo se han identificado algunos cientos de enanas blancas. Como tienen baja luminosidad intrínseca, sólo pueden observarse aquellas cercanas al sistema solar. Los modelos indican que son la fase evolutiva final de las estrellas de poca masa y, en ese caso, el 10% de las estrellas de nuestra galaxia deberían ser enanas blancas.

Aunque la temperatura central de una enana blanca es menor al millón de grados (compárese con los 15 millones de grados del Sol) su atmósfera es, por lo general, más caliente que la de una estrella de secuencia principal. Los electrones degenerados juegan también un rol muy importante en la determinación de la estructura térmica de la estrella. Esta función es semejante a la de los electrones exteriores de los átomos en los metales ordinarios:

SU capacidad para moverse libremente es responsable de la capacidad de los metales para conducir calor eficientemente. De la misma forma, los electrones degenerados son excelentes conductores de calor en las enanas blancas. En consecuencia, estas estrellas tienen casi la misma temperatura en todo su volumen, son casi isotérmicas. Cerca de la superficie la presión es suficientemente baja y los electrones no están degenerados, entonces las propiedades de la materia son más normales. La temperatura superficial es de unos 10.000°K.

Los espectros de las enanas blancas presentan la sorprendente característica de tener líneas correspondientes a un único elemento. Cerca de 80% de las enanas blancas observadas muestran en sus espectros sólo líneas de absorción de hidrógeno; la mayoría de las restantes tiene sólo líneas de He.

El ciclo de contracciones gravitatorias impuestas por su propia evolución, ha purificado las capas exteriores de las enanas blancas más allá de la estratificación observada en las estrellas normales.

De la misma forma en que los espectros de las estrellas ordinarias se clasifican en B, A, E y G de acuerdo a su temperatura superficial, los de las enanas blancas se dividen en DB, DA, DF Y DG (D indica dwarf :en inglés enana), correspondientes a temperaturas de 100.000 a 4.000 0K. Las más calientes consumen energía a velocidades tan grandes y evolucionan tan rápidamente que esto nos da la posibilidad de observar a estas estrellas envejecer en el transcurso de unos pocos años.

La evolución de las enanas blancas se ha estudiado intensamente en los últimos años y el modelo aceptado actualmente postula que cerca de 10 millones de años después de su formación, la luminosidad de una enana blanca se ha debilitado hasta un décimo de la solar y su temperatura superficial ha disminuido hasta los 30.000 °K.

La teoría sugiere que a una enana blanca le lleva cerca de mil millones de años enfriarse hasta transformarse en una tibia esfera de gas degenerado. Los cálculos indican que en esta etapa la estrella sufre un último cambio importante: comienza a cristalizarse. A través de su evolución hasta este punto permaneció en estado gaseoso.

A medida que se enfría cada ion del gas comienza a sentir fuerzas eléctricas con sus vecinos, produciendo una fase líquida en la materia. Mientras estas fuerzas comienzan a dominar a mayores distancias, más y más núcleos se unen y forman un cristal. Dicho proceso se debe a la disminución de la temperatura, pero es ayudado por la alta presión que comprime a los núcleos.

Este cambio de estado tiene un efecto importante en las etapas finales de evolución de la estrella. Primero el cambio de liquido a sólido libera energía, pero una vez que se ha cristalizado una fracción importante de su interior, la enana blanca se enfría rápidamente. Como el tiempo necesario para que una enana blanca llegue a la etapa de cristalización se calcula semejante a la edad de nuestra galaxia, se puede estimar la época inicial de formación de estrellas en la Vía Láctea observando las enanas blancas más frías.

Fuente Consultada:Notas Celestes de Carmen Nuñez

Historia de la Estacion Espacial Internacional Objetivos y Experimentos

Historia de la Estación Espacial Internacional Objetivos y Experimentos a Realizar

 

 

UN POCO DE HISTORIA…
Las estaciones espaciales
El hombre ha tenido ya bastantes éxitos en el espacio: ha logrado dar vueltas en torno de la Tierra, ha conquistado la Luna y las sondas con que llegó a Marte y a Venus hablan de su inalterable empeño por proseguirlos. El gran instrumento con que cuenta es su taller en el espacio: las estaciones planetarias.

La construcción de estaciones espaciales habitadas por el hombre, importante etapa en los futuros viajes interplanetario, fue puesta en órbita. Tanto podía funcionar automáticamente como con dotación a bordo. El 23 del mismo mes, el Soyuz y así permaneció durante 5 horas 30 minutos, tiempo durante el cual se cumplió un programa completo de experimentos ecológicos y médico-biológicos que incluía también la producción del propio alimento. Transcurrido ese lapso, retornó a la Tierra.

El 30 de junio del mismo año, el Soyuz 11, tripulado por los cosmonautas Dobrolvski, Volkov y Patsaiev, acoplaron su nave al Salyut y pasaron a su interior, donde permanecieron durante más de tres semanas. Ya en la Tierra, el drama: al abrirse la cápsula, los tres cosmonautas estaban muertos.

El 14 de mayo de 1973, por medio de un impulsor Saturno V, los Estados Unidos pusieron en órbita el laboratorio espacial Skylab I no tripulado de 85 toneladas de peso. Averiado al minuto de su lanzamiento, al aumentar peligrosamente la temperatura inicial de la astronave los técnicos de la NASA se abocaron a la tarea de repararlo.

El día 25 del mismo mes y año, los astronautas Conrad, Kerwin y Wwitz, lanzados en una cápsula tipo Apolo, abordaron el Skylab I y sobre la parte averiada desplegaron una especie de parasol para hacer descender la temperatura del laboratorio.

Durante 28 días los cosmonautas realizaron la mayoría de los experimentos previstos, referidos casi todos ellos a observaciones de la Tierra, el Sol y el espacio sidéreo. Cumplida la misión, retornaron a la Tierra en la cápsula Apolo, Los laboratorios orbitales son plataformas con capacidad para dar albergue a varios tripulantes durante un lapso relativamente largo, y están provistos de los elementos necesarios para el transporte de cosmonautas en viajes de ida y vuelta.

La segunda misión del programa se cumplió en la estación Skylab 3, en condiciones similares a la anterior, el 28 de julio de 1973. Los cosmonautas fueron Bean, Garriott y Lousma, quienes tras instalar un parasol adicional, recargar las cámaras de los telescopios y descubrir un detector de meteoritos junto a la pared de la estación, durante 59 días estudiaron la Tierra y la Luna, en especial las reacciones del organismo durante casi dos meses en un ambiente falto de gravedad. Después de una caminata espacial de 6 hs. 31′, que constituyó un nuevo récord, retornaron a la Tierra el 25 dé septiembre. Su estado físico era excelente.

LA ESTACIÓN ESPACIAL INTERNACIONAL: La exploración y la conquista del espacio es uno de los desafíos más grandes y excitantes emprendidos por el hombre, y la aventura más audaz en la historia de la exploración espacial es, sin duda alguna, la construcción de la Estación Espacial Internacional (ISS).

astronautaEn 1984, el gobierno estadounidense lanzó un programa para la construcción de una es espacial. Los enormes costes que suponían las de estudio y de planificación retrasaron la propia marcha del proyecto, que no adquirió forma hasta que finalizó la Guerra Fría. En 1993, Rusia decidió a aportar la experiencia que había  en la construcción —iniciada en el año 1986— de la estación espacial soviética MIR (paz).

En 1998 se inició  la construcción de la ISS. En primer lugar debían crearse las condiciones técnicas para asegurar una colaboración estrecha. En este sentido, la lanzadera estadounidense emprendió varios viajes a la  MIR y efectuó entre otras cosas, maniobras de acoplamiento. 

El 20 de noviembre de 1998 se instaló el primer componente de la ISS, un módulo de carga y de que se colocó a 350 Km. de distancia de la Tierra. Le siguió ese mismo año una pieza de empalme, que el 12 de julio de 2000 atracó el módulo ruso.

Desde noviembre de aquel mismo año hasta el abril de 2003, la ISS acogió varias tripulaciones internacionales formadas por tres astronautas.

Estos permanecen de cinco a siete meses en el espacio, transcurrido este tiempo, son relevados por nuevas dotaciones. Después de la catástrofe del Columbia ocurrida en 1º de febrero de 2003, la tripulación fija debió reducirse a dos personas por problemas de suministro.

Los estudios que se realizaran en la estación son los siguiente:
1-BIOLOGÍA:
– Respuesta fisiológica al vuelo espacial.
– Salud humana y rendimiento.
– Desarrollo de contramedidas a la microgravedad.
– Investigación general en Biología.

2-CONOCIMIENTO SOBRE LA TIERRA

3-MICROGRAVEDAD
– Ciencia de los Materiales.
– Física de Fluidos
– Ciencia de la Combustión
– Biotecnología
– Física fundamental.

4-CIENCIA ESPACIAL
– La estructura y la evolución del Universo
– Exploración del Sistema Solar
– Conexión Tierra-Sol
– Búsqueda de otros sistemas planetarios.

5-INGENIERÍA Y TECNOLOGÍA
– Sistemas de comunicación espaciales de uso comercial, con énfasis en la mejora de la tecnología de satélites para telefonía personal, y comunicación de vídeo y datos.
– Eficiencia en el uso de la energía, y calidad de agua y aire.
– Técnicas de construcción y funciones de mantenimiento automatizadas.

6-ESTUDIO DE NUEVOS PRODUCTOS

 INFORMACIÓN GENERAL DEL MEGA PROYECTO:

1. La Estación Espacial es la mayor dotación objeto jamás enviado al espacio. Se trata de un centro de investigación que mide 108 m. de largo y 80 m. de ancho. Su peso es de más de 450.000 kg.

2. Orbita a 400 km. sobre la tierra y se puede ver en el cielo nocturno a simple vista. Los científicos pueden estudiar la tierra y su entorno. Pueden ver los cambios que están ocurriendo en la tierra, en el mar, y con nuestro clima.

3. La ISS puede ser visto por la gente en la Tierra. Cuando se haya completado, la ISS será visible a más deL 90 por ciento de la población mundial y dará una vuelta a la Tierra cada 90 minutos.

4. Está siendo alimentada por energía solar. Esta energía es necesaria para alimentar los seis laboratorios y todo el espacio de vida a bordo.

5. La Estación Espacial Internacional fue diseñada y construido con la colaboración de 100.000 personas de 16 naciones desde 1998, y cientos de empresas. El proyecto se inició en 1998.

6. El costo de construir la Estación Espacial Internacional es correcto alrededor de 96 mil millones de dólares.

7. Los primeros miembros de la tripulación permanente, incluidos el astronauta estadounidense Bill Shepherd (que era también el comandante de la ISS) y los cosmonautas rusos Sergei Krikalev, como ingeniero de vuelo y Gidaenko Youri como comandante de la Soyuz. Esta expedición duró 140 días, 23 horas y 30 minutos en órbita.

8. Los vehículos espaciales viajan a la estación para traer y llevar científicos y suministros.

9. Los científicos están estudiando cómo los diferentes fluidos, metales y otros materiales  responden en el espacio sin el efecto de la gravedad. Estos estudios podrían ayudar a comprender mejor los virus, las proteínas y enzimas. Se espera que estos nuevos estudios guiarán algún día a los posibles nuevos tratamientos para muchas enfermedades, incluyendo cáncer. Los científicos también están tratando de lograr una medición más precisa que lo posible en la tierra, las formas más eficientes de producción de materiales, y una comprensión más completa del universo.

10. Alrededor de 160 paseos espaciales fueron necesarios para el montaje y mantenimiento de la Estación Espacial Internacional.

DATOS TÉCNICOS: 

* Inicio de las obras: 1998

* Envergadura: 108,6 m.

* Longitud: 79,9 m.

* Profundidad: 88 m.

*Volumen: 1.140m3

* Masa: 450 toneladas. aprox.

* Altitud de la órbita: Alrededor de 350-450 Km. sobre el nivel del mar.

* Inclinación de la órbita: 51,60 º

* Vuelta a la Tierra: Una cada 90 minutos.

* Velocidad relativa: 29.000 Km./h

* Potencia eléctrica: 110 Kw.

* Superficie de las placas solares: 4.500 m2

* Tripulación fija: 3 personas (2000-2003). 2 personas (desde abril 2003).

* Vuelos a la ISS: 28 (hasta julio de 2006).


Fuente Consultada:
MUNDORAMA – Astronáutica
Maravillas del Siglo XX
El Universo Enciclopedia de la Astronomía y el Espacio Tomo V

Ver: Historia de la Astronáutica

Galaxias Grupo Local Grupo de Galaxias Mas Cercanas La Via Lactea

Galaxias: Grupo Local – Grupo de Galaxias

MÁS ALLÁ DE LA VÍA LÁCTEA Como ya hemos visto, nuestro sistema estelar presenta un diámetro de 100.000 años-luz y un espesor de 20.000 años-luz en su densa parte central. ¿Contiene la Galaxia la totalidad del universo, de las estrellas, gas y polvo que podemos observar?. La respuesta es “no”, puesto que los astrónomos han descubierto que nuestra Galaxia es sólo una entre muchos millones le galaxias.

Estas otras galaxias se extienden por el espacio en todas direcciones, hasta donde alcanza nuestra vista aun con la ayuda de los más potentes telescopios.

Como la Galaxia, todas ellas contienen estrellas y, posiblemente, planetas, así como gas y polvo. No obstante, los únicos planetas que hasta ahora hemos observado han sido sólo los del sistema solar, pero esto no significa que el Sol sea la única estrella del universo que tenga MI sistema planetario.

Significa, exclusivamente, que nuestros telescopios no son aún lo suficiente potentes para detectar otros planetas, si es que en realidad existen. Las incontables galaxias que podemos observar están a tal distancia de nosotros, que aun el diámetro de 100.000 años luz de nuestra propia Galaxia empieza a palidecer por su insignificancia.

Las galaxias más cercanas son visibles sólo desde el hemisferio sur. Se conocen con el nombre de Nubes de Magallanes, así denominadas en recuerdo del gran navegante Fernando de Magallanes, que fue el primero en tomar nota de su existencia durante su viaje alrededor del mundo, hace más de 400 años.

Las Nubes de Magallanes parecen trozos desgajados de la Vía Láctea; no obstante, se trata de dos galaxias independientes , a más de 150.000 años-luz de la nuestra. Y, sin embargo, las Nubes de Magallanes son vecinas muy próximas con respecto a la totalidad del universo.

Pertenecen al mismo cúmulo de galaxias que nuestro sistema estelar, al denominado “grupo local”. Este cúmulo contiene por lo menos 35 galaxias, o mas. La Galaxia parece estar situada a un extremo del cúmulo, y cerca del centro se encuentra la galaxia —aparte las Nubes de Magallanes— que puede verse sin telescopio.

GRUPO LOCAL
Grupo Local

“La Vía Láctea es parte de un barrio cósmico más grande –un grupo de más de 35 galaxias conocido como el Grupo Local. Estas galaxias se mueven por el espacio como una sola unidad, unidas por su mutua atracción gravitatoria. El número de galaxias que pertenecen al Grupo Local es incierto, debido a que los astrónomos siguen encontrando nuevos residentes de este barrio galáctico. Por ejemplo, una de las galaxias del Grupo Local fue descubierta en 1997, a unos tres millones de años luz de la Tierra. Esta nueva galaxia es diminuta: sólo contiene un millón de estrellas aproximadamente, comparado con los cientos de miles de millones de la Vía Láctea.”

Dicha galaxia aparece a simple vista una mancha luminosa, tenue y nebulosa, en la constelación de Andrómeda; pero al ser fotografiada mediante un gran telescopio aparece tan nítida, que pueden verse hasta algunas de sus estrellas individuales. Esta galaxia de Andrómeda está a casi dos millones de años-luz de nosotros. La luz que esta noche veremos proveniente de allí empezó su recorrido mucho antes de. que el hombre apareciera sobre la Tierra.

La totalidad del grupo local, que tiene una configuración muy ovalada, ocupa un volumen tan grande, que es difícil encontrar alguna comparación que nos permita imaginar su tamaño. No conocemos sus dimensiones con mucha exactitud, pero parece ser que se extiende sobre una superficie de por lo menos 4,5 millones de años-luz en longitud y la mitad en anchura. Su espesor es del orden de unos 600.000 años-luz.


Al utilizar telescopios para explorar aún más lejos en el espacio, más allá de nuestro grupo local, las distancias llegan a ser inimaginables. Otras galaxias y cúmulos de galaxias, alejados 50 millones y hasta 100 millones de años-luz, son bastante frecuentes. Los astrónomos saben ahora que las galaxias pueden observarse tan lejos como sus telescopios pueden profundizar. Con los más grandes y modernos, equipados con cámaras fotográficas, podemos estudiar galaxias situadas hasta 3.500 millones de años-luz de distancia.


Durante los últimos veinte años se ha introducido un nuevo método para “ver” aún más lejos en el espacio: el radiotelescopio. Estos instrumentos sólo son radiorreceptores muy sensibles con antenas especiales. Su objeto es el de recibir, no la luz, sino las ondas de radio emitidas por las estrellas y por el gas interestelar de nuestra propia Galaxia y de las demás galaxias.

Con los radiotelescopios los astrónomos pueden sondear en el espacio con mucha mayor profundidad que mediante los telescopios ópticos. Estos nuevos instrumentos ayudan al astrónomo a formarse una idea de la totalidad del universo, un universo al que no podemos encontrar límites en la actualidad.

Distancias a las estrellas Mas cercanas Tamaños y Medidas Estrellas

DISTANCIA A LAS ESTRELLAS Y SU TÉCNICA DE MEDICIÓN

LAS DISTANCIAS DE LAS ESTRELLAS En comparación con la inmensidad del espacio, el sistema solar es un pequeñísimo y compacto conjunto de cuerpos celestes. Pero acostumbrados a considerar las distancias de nuestro propio planeta, creemos que el sistema solar es enorme.

Ya no nos sorprende cuando nos damos cuenta de que la distancia de la Tierra al Sol es casi 4.000 veces mayor que la longitud del ecuador terrestre, y que la distancia desde el Sol hasta Plutón equivale a unas 150.000 vueltas alrededor de nuestro planeta. Tales distancias son tan grandes y desproporcionadas con relación a nuestra experiencia diaria, que sólo consiguen confundirnos cuando intentamos expresarlas en kilómetros. Y cuando hablamos de distancias aun mayores, los números en sí resultan demasiado grandes para comprenderlos con facilidad.

Galaxias y estrellas del universo

Por esta razón los astrónomos han tenido que buscar otra unidad de longitud para utilizarla en lugar del kilómetro. Y la más útil que se ha encontrado hasta el momento ha sido la velocidad de la luz, que se desplaza a 300.000 Km./seg, y recorre la distancia del Sol a la Tierra en poco menos de ocho minutos y medio, y del Sol a Plutón en cinco horas y media. Por ello decimos que el Sol está a ocho y medio minutos-luz de la Tierra, y que Plutón se encuentra a cinco y media horas-luz del Sol.

Puesto que la distancia del Sol a Plutón es sólo el radio de la circunferencia del sistema solar, debemos doblar dicha distancia para expresar su diámetro —11 horas-luz—. Pero como muchos cometas se alejan todavía más que la propia órbita de Plutón, podemos decir que la totalidad del sistema solar ocupa por lo menos un espacio de unas 12 horas-luz.

Puesto que un viaje alrededor de la Tierra sólo equivale a un octavo de segundo-luz, podemos darnos cuenta de la inmensidad del sistema solar según nuestros patrones terrestres.

Y, sin embargo, sólo se trata de un pequeño punto en el espacio sideral. La estrella más próxima al Sol está situada no a segundos, minutos y horas-luz del mismo, sino a una distancia de cuatro y medio años-luz. Cuando recordamos que en un año hay casi 9.000 horas, nos damos cuenta de que el diámetro del sistema solar es muy pequeño en comparación con la distancia que nos separa de la estrella más próxima. Si expresamos ambas distancias en kilómetros, obtendremos 12.000 millones de kilómetros para el sistema solar y 40 billones de kilómetros para la estrella más próxima (que es precisamente la alfa de la constelación del Centauro, o a Centauri, visible sólo para los habitantes del hemisferio sur).

Al considerar las distancias de otras estrellas vemos que cuatro y medio años-luz están sólo “a la vuelta de la esquina”. Por ejemplo, de entre las estrellas más brillantes que observamos en el cielo, Sirio está a 9 años-luz y Vega a 26, años-luz; y aun éstas son vecinas próximas. Arturo se encuentra a 36 años-luz, Capella 345 años-luz y Aldebarán a 68 años-luz y todavía no podemos considerarlas lejanas.

Sólo cuando hablamos de estrellas como la Espiga y Antares, a 220 y 520 años-luz, respectivamente, estamos tratando de estrellas realmente lejanas. Sin embargo, no hemos empezado siquiera a agotar la lista de las estrellas brillantes.

Rigel, de la constelación de Orion, se encuentra a 900 años-luz. Esto quiere decir que la luz que de ella nos llegó anoche empezó su viaje hace 900 años. El universo estelar es, por lo tanto, mucho mayor de lo que podemos imaginar cuando casualmente dirigimos nuestra mirada hacia el cielo nocturno. Hemos visto que los planetas constituyen un compacto grupo que sistemáticamente se mueve alrededor del Sol. ¿ Y qué ocurre con las estrellas? ¿Es posible encontrar cierto sistema u organización dentro de ellas? ¿Cómo se mueven, exactamente? ¿Hasta dónde se extienden en el espacio?

Preguntas de este género, que han intrigado a los astrónomos durante miles de años, sólo han podido contestarse a partir del siglo pasado. Desde luego, los hombres que vivían en cavernas se dieron cuenta de que las estrellas parecen conservar sus posiciones relativas. Este hecho permitió a los hombres primitivos agrupar las estrellas según configuraciones que les recordaban vagamente a los legendarios héroes y heroínas o a los animales salvajes que conocían.

Pero estos grupos, o constelaciones, sólo presentan tales aspectos al ser vistos por un observador terrestre. No se trata de grupos de estrellas que estén realmente cerca unas de otras en el espacio; tan sólo parecen estarlo. Cuando los astrónomos descubrieron que las estrellas también se mueven y aprendieron a medir las distancias estelares, empezaron a reconocer cierta organización en el sistema de las estrellas.

LAS DIEZ ESTRELLAS MAS CERCANAS

Próxima Centauri Distancia: 4,2 AL
Rigel Kentaurus Distancia: 4,3 AL
Estrella de Barnard Distancia: 5,9 AL
Wolf 359 Distancia: 7,7 AL
Lalande 21185 Distancia: 8,26 AL
Luyten 726-8A y B Distancia: 8,73 AL
Sirio A y B Distancia: 8,6 AL
Ross 154 Distancia: 9,693 AL
Ross 248 Distancia: 10,32 AL
Epsilon Eridani Distancia: 10,5 AL

LA MEDICIÓN DE LAS DISTANCIAS:

Cuando las estrellas cuyas distancias queremos medir son las más próximas, se emplea un recurso de la Trigonometría que se llama paralaje. Pongamos un ejemplo práctico. Si nos encontramos en un campo y vemos a mediana distancia un poste de telégrafo, al balancear nuestra cabeza podremos ver cómo el poste “se mueve” contra el fondo del horizonte, que está mucho más lejos. Desde luego que nos resultaría más fácil medir la distancia que nos separa utilizando una cinta de medición, pero ¿y si entre nosotros y el poste hubiese un río caudaloso?

En ese caso podríamos aplicar un artificio que consiste en medir el segmento aparente que se forma en el horizonte cuando, al movernos, el palo se traslada sobre él, medir la distancia real entre los dos puntos que marcan los extremos de nuestro movimiento y, finalmente, tomar los ángulos que quedan determinados ente el poste y nuestras dos posiciones sucesivas.

Esto es precisamente lo que hacen los astrónomos. Para ellos, con mover un poco el cuerpo, como hacíamos nosotros en el campo, no es suficiente, porque no hay punto de comparación entre las magnitudes de uno y otro ejemplo. Se pensó primero en trasladarse a dos puntos alejados de la Tierra y, desde allí, efectuar observaciones sincronizadas, es decir, en el mismo momento, pero también estas dimensiones resultaron escasas.

Finalmente, se pensó que lo ideal sería aprovechar que nuestro planeta se mueve en torno al Sol. De esta forma, se podría realizar una observación en enero, por ejemplo, y otra en julio (medio año después) con lo que el “balanceo” de nuestra prueba inicial pasaría a ser de unos 304 millones.de kilómetros (304.000.000.000 metros). ¡Ahora las cosas cambian! Bueno … no tanto. A pesar de esta “trampa”, la lejanía de las estrellas es tal que el ángulo determinado por las dos posiciones extremas de la Tierra y la más próxima de ellas es de 1 segundo y medio (o sea el ángulo que se forma entre los extremos de una llave de valija y un punto distante a seis kilómetros de ella).

De todos modos, podemos quedarnos tranquilos, porque este valor, por pequeño que sea, puede ser perfectamente captado con los instrumentos de precisión con que cuenta nuestra sociedad actual. Se han efectuado inclusive paralajes de estrellas cuyo ángulo es inferior a la décima de segundo. La distancia de las estrellas más lejanas es mucho más difícil de determinar, ya que en ellas no se puede aplicar el método de paralajes trigonométricos.

Pero, todo tiene solución. Partamos de la base que la luminosidad de los cuerpos celestes disminuye en la medida que se encuentren más lejos. Estoes fácilmente demostrable: mayor luz dará un farol que está al lado nuestro, que otro igual ubicado a una cuadra de distancia.

Lo que nos resta hacer ahora es ver cómo podemos aplicar esto en el espacio sideral. Empecemos por aclarar que las estrellas no son “faroles iguales”, lo que nos complica unpoco las cosas, ya que debemos averiguar no sólo su luminosidad absoluta, sino también la aparente.

Entendemos por absoluta, toda la luz que da; y aparente, sólo la que llega a nosotros.

La aparente se mide con facilidad por intermedio de placas fotosensibles. Para la absoluta, en cambio, las cosas se hacen un poco más complicadas. Es necesario que descompongamos la luz que nos mandan por medio de un prisma. Obtendremos así un espectro, que no es otra cosa que la luz distribuida de acuerdo con sus colores componentes en una escala que va de! ultravioleta al infrarrojo. De este gráfico se puede inferir la luminosidad absoluta de un cuerpo a partir de su temperatura intrínseca.

Después -ya obtenidos los datos de luminosidad absoluta y relativa- no queda otra cosa que aplicar fórmulas constantes que nos dan la distancia desde la Tierra hasta la estrella.

 

esquema del paralaje de una estrella

esquema del paralaje de una estrella

Fuente Consultada:
Secretos del Cosmos Tomo 2 (Salvat)
Enciclopedia Ciencia Joven -Distancia a las Estrellas  – Fasc. N°12 Editorial Cuántica

Dimensiones del Sistema Solar Tamaños Medidas Escala de los Planetas

Dimensiones del Sistema Solar
Distancias y Medidas Escala de los Planetas

EL SISTEMA SOLAR: EL SOL Y SU FAMILIA El Sol es la estrella más próxima a nosotros y está a una distancia de 150 millones de kilómetros. La Tierra da una vuelta alrededor del Sol en un año, en compañía de muchos otros cuerpos celestes.

Dimensiones del Sistema Solar Tamaños Medidas Escala de los Planetas

Algunos de estos astros pueden observarse a simple vista en el cielo nocturno errando entre las estrellas. Dichos astros, denominados planetas (de la palabra griega que significa “errante“), giran alrededor del Sol a diferentes velocidades y distancias. Algunos son bastante parecidos a la Tierra, y están constituidos fundamentalmente por rocas y metales, mientras que otros, por el contrario, contienen posiblemente una elevada proporción de hidrógeno y helio.

Ninguno de ellos puede producir calor y luz por medio de reacciones atómicas, como las estrellas, y sólo son visibles porque reflejan la luz solar.

Los planetas, por lo tanto, no brillan de la misma manera que las estrellas. En comparación con las estrellas, todos los planetas son cuerpos fríos y están situados en el espacio relativamente cerca de nosotros.

sol estrellaEl más próximo al Sol es el planeta Mercurio, que gira alrededor del primero a una distancia media de 5 8 millones de kilómetros. Con un diámetro de sólo dos quintas partes del de la Tierra, es un mundo muy seco que muestra constantemente la misma cara vuelta hacia el Sol, debido a que el período de rotación sobre su eje es igual al que tarda en describir su órbita. Por estar más cerca del Sol que la Tierra, sólo podemos observarlo al atardecer, poco después de ponerse el Sol, o al amanecer.

planeta del sistema solarDespués está el planeta Venus, el cual participa con Mercurio del honor de ser denominado estrella matutina o vespertina, pues sólo puede ser observado a la salida o a la puesta del Sol.

Girando alrededor del Sol a 108 millones de kilómetros de distancia, Venus recorre su órbita en siete meses, en comparación con los otros tres meses que tarda Mercurio.

planeta del sistema solarEsto es debido a que por la gravedad solar un planeta requiere más tiempo para recorrer su órbita a medida que aumenta la distancia que lo separa del Sol. Venus muestra muchas cosas en común con la Tierra. Tiene casi el mismo tamaño y, como ella, presenta estaciones regulares a medida que se traslada alrededor del Sol.

Como los demás planetas, gira también alrededor de su eje, pero no podemos medir la duración del día venusiano (o su velocidad de rotación) por estar siempre completamente envuelto por una espesa capa de nubes que impide ver su superficie, que puede ser tierra firme o, posiblemente, un enorme océano. Más lejos del Sol que la Tierra están los restantes planetas del sistema solar.

planeta del sistema solarA una distancia de 228 millones de kilómetros se encuentra Marte, que presenta un tamaño algo superior al de la mitad de la Tierra y necesita casi dos años para recorrer su órbita. Al contrario que Venus, Marte tiene sólo una tenue atmósfera, que nos permite observar la superficie del planeta, particularmente interesante porque muestra gran cantidad de detalles que algunos astrónomos atribuyen a la existencia de plantas vivientes.

Aún más lejos del Sol, a una distancia comprendida entre 320 y 480 millones de kilómetros, se encuentra un enjambre de minúsculos “pequeños planetas”. Estos astros, de diámetros que oscilan entre 750 y sólo unos pocos kilómetros, son demasiados pequeños para poder observarlos a simple vista. Debido a que algunos tienen órbitas muy alargadas y pueden llegar a estar muy cerca de nosotros, los astrónomos los utilizan para obtener con mucha exactitud las distancias dentro del sistema solar.asteroide

Estos pequeños planetas se denominan también asteroides, es decir, “parecidos a estrellas”. Vistos a través del telescopio parecen cabezas de alfiler, como las propias estrellas, y no discos luminosos como ocurre con los planetas.

El mayor de todos los planetas es Júpiter y su órbita se encuentra más alejada que las de los asteroides. Este planeta gigante tiene un diámetro once veces superior al de la Tierra. Si nos fuera posible poner a Júpiter en el platillo de una balanza su peso resultaría 300 veces mayor que el de la Tierra.

planeta del sistema solar jupiterA simple vista Júpiter se presenta como una estrella brillante, pero a través del telescopio aparece como un disco cruzado por varias bandas oscuras. Debido a que estas bandas cambian de posición cada mes, los astrónomos creen que lo que ellos realmente observan es una atmósfera densa y nubosa. Y esto se confirma por la rotación de algunos detalles apreciados en las bandas.

Tales detalles se mueven más rápidamente cerca del ecuador del planeta (con un período de 9 horas y 50 minutos) que cerca de los polos (con un período de 9 horas y 56 minutos). Estas distintas velocidades de rotación serían imposibles si la superficie del planeta fuese sólida. La distancia de Júpiter al Sol es de 778 millones de kilómetros, o sea más de cinco veces la distancia de la Tierra al Sol. saturno planeta del sistema solar

Saturno, el siguiente planeta que encontramos, está a 1.430 millones de kilómetros del Sol, casi dos veces más alejado que Júpiter. Aunque Saturno no es tan grande como Júpiter, tiene no obstante un diámetro 9 1/2 veces mayor que el de la Tierra. Al igual que Júpiter, posee una atmósfera que presenta bandas y nubes, y tarda 10 1/4 horas en girar sobre su eje. Saturno se distingue de los restantes planetas del sistema solar en que tiene un sistema de anillos que lo rodean ecuatorialmente.

Estos anillos están constituidos por miríadas de corpúsculos rocosos o de hielo, o quizá por una combinación de ambos, que giran a su alrededor. Debido a las diferentes dimensiones de las órbitas de estos corpúsculos, los anillos se extienden desde 15.000 hasta 60.000 kilómetros por encima de la atmósfera de nubes. Sin embargo, a causa de la acción gravitatoria de Saturno, dichas órbitas son tan coplanarias, que los anillos tienen un espesor de sólo unos 15 kilómetros.

Los anillos dan a Saturno un aspecto extraño y único. Los tres restantes planetas del sistema solar (excepto algunas veces Urano) sólo pueden ser observados mediante un telescopio. Urano, el más cercano de los tres, se encuentra a 2.870 millones de kilómetros del Sol; Neptuno, el siguiente, 1.500 millones de kilómetros más lejos, y Plutón, el más alejado, otros 1.500 millones más allá.

planeta del sistema solarA través del telescopio, Urano y Neptuno parecen presentar superficies nubosas; ambos tienen un diámetro superior al de la Tierra (Neptuno 3 1/2 veces mayor y Urano casi 3 3/4)- Plutón es mucho más pequeño que los otros dos, casi del mismo tamaño que Marte. Hasta aquí sólo hemos mencionado los nueve grandes planetas, incluyendo la Tierra, y los asteroides.

No todas las órbitas de los planetas están situadas en un mismo plano, sino que forman ciertos ángulos entre sí. Plutón tiene una órbita muy inclinada y algunas veces se acerca al Sol aún más que el propio Neptuno.

Pero la familia del Sol —la totalidad del sistema solar— es todavía mucho mayor. A través del espacio se desplazan muchos enjambres de corpúsculos metálicos y rocosos; y la acción gravitatoria del Sol ha capturado cierto número de ellos, que giran a su alrededor describiendo órbitas muy alargadas. A lo largo de la mayor parte de su trayectoria son invisibles y sólo pueden ser observados cuando la Tierra cruza su camino o cuando se acercan mucho al Sol.

Cuando un enjambre pasa muy cerca del Sol se calienta el gas helado transportado junto con los corpúsculos rocosos o metálicos. Dicho gas se escapa y se torna luminoso por efecto de la radiación solar, la cual al propio tiempo desprende partículas eléctricas que lo lanzan al espacio. A su vez, algunas de las partículas rocosas reflejan también la luz solar. El resultado de esta actividad es que el conjunto de corpúsculos puede observarse entonces como una mancha brillante en el cielo, con los gases que se liberan en el espacio formando una larga cola luminosa, que a veces se extiende hasta millones de kilómetros. A tales objetos se les da el nombre de cometas.

Pueden acercarse hasta pocos millones de kilómetros del Sol, mostrando entonces el otro extremo de su órbita mucho más allá de la del propio Plutón. Cuando un cometa describe su órbita alrededor del Sol, muchos de los corpúsculos que lo constituyen se reparten a lo largo de dicha órbita. Algunos de tales corpúsculos se agrupan gradualmente en enjambres mucho más dispersos.

Entonces ya no son visibles como un cometa, pero pueden observarse cuando la Tierra los encuentra a su paso y los corpúsculos penetran en la atmósfera terrestre. Debido a la gran velocidad de desplazamiento (muchos kilómetros por segundo) se calientan al entrar en contacto con el aire. En consecuencia, estos fragmentos brillan al propio tiempo que se van quemando, ionizándose el aire que los rodea y que también se ilumina a su vez. En cada punto de la trayectoria de uno de estos fragmentos la luz producida dura solamente una fracción de segundo. Pero a menudo toda la trayectoria puede ser observada durante un corto intervalo de tiempo, y se denomina ráfaga meteórica. El fragmento rocoso en sí se conoce con el nombre de meteorito.

Cuando la Tierra atraviesa un enjambre, advertimos en ciertos casos centenares de meteoritos, y tales “lluvias de estrellas” producen una visión espectacular. Sin embargo, son demasiado pequeñas para que puedan observarse, y deben ser registradas por otros métodos que describiremos más adelante.

Al girar alrededor del Sol, casi todos los grandes planetas son centro de pequeños sistemas de satélites naturales. Aunque parece ser que Mercurio, Venus y Plutón carecen de “lunas” -y la Tierra tiene sólo una-, los restantes planetas poseen un buen número de ellas.

Marte tiene dos pequeños satélites de unos 7,5 y 15 Km. de diámetro, que recorren sus órbitas en unas 30 y y1/2 horas, respectivamente. Júpiter posee 12, cuatro de los cuales son de tamaño parecido al de nuestra propia I ,una y los ocho restantes mucho menores. Tres de estos últimos muestran un diámetro de sólo 20 km. Saturno tiene 9 satélites, siendo todos ellos, excepto uno, de tamaño muy inferior al de la Luna.

trayectoria de un cometa

Comparación de la alargada órbita de un cometa con la casi circular de la Tierra. El calor solar dilata el luminoso gas de un cometa proyectándolo hacia delante de forma que la cola siempre apunta en sentido contrario al Sol.

Urano tiene 5 y Neptuno sólo 2, el mayor de ellos de i amaño parecido al de nuestro satélite. Aunque la Tierra es el único planeta que posee un solo satélite, éste parece tener un tamaño desproporcionado en revolución con el de la misma Tierra.

¡Algunos astrónomos llegan a considerar el sistema Tierra-Luna como un planeta doble! Pero no estamos seguros de ello. Muchos astrónomos piensan que la mayoría de los satélites del sistema solar eran asteroides que fueron capturados por los grandes planetas miles de millones de años atrás, cuando se estaba formando todo el sistema.

Fuente Consultada: Secretos del Cosmos Colin A. Roman Biblioteca Basica Salvat Nro. 2

EL DIA SOLAR Y DIA SIDERAL Diferencia entre ambos tipos de dias

EL DIA SOLAR Y DIA SIDERAL
Diferencia entre ambos tipos de días

Si absolutamente todo permaneciera completamente inmóvil, el tiempo no existiría. Sólo puede medirse el tiempo en relación con otros acontecimientos. El día, que como se sabe es el tiempo empleado por la Tierra para completar una vuelta alrededor de su eje, sería muy difícil de medir si no hubiera en el cielo objetos estacionarios como el Sol y las estrellas que nos sirvieran de referencia para saber cuándo se ha completado una rotación.

Un día sola e es el tiempo empleado por un punto cualquiera de la superficie terrestre para encontrarse de nuevo, luego de lo que a un observador terrestre le parece ser una rotación, exactamente en la misma posición respecto del Sol.

En realidad el día solar equivale a algo más que una rotación, porque cuando el punto ha dado la vuelta completa no queda, como debiera, en la misma posición respecto del Sol.

La razón de esto es que mientras efectuaba la rotación, la Tierra simultáneamente se trasladaba siguiendo su órbita alrededor del Sol.

Cuando el punto de referencia completó su rotación la Tierra ya se trasladó casi 2.500.000 km., de modo que para volver a ver el Sol habrá que girar un poco más, como se ve en la figura superior izquierda. (imagen izq.:día solar)

El día solar es algo más que una rotación. El día sideral o sidéreo, utilizado habitualmente por los astrónomos, también se basa en la rotación de la Tierra; pero en este caso se toma como referencia una estrella lejana (sideral viene del latín sidus que significa “astro”).

Las estrellas están a tal distancia (la más cercana a muchos billones de kilómetros) que los movimientos de la Tierra pierden comparativamente toda importancia y en consecuencia basta una rotación completa para que el punto de referencia vuelva a encontrarse exactamente frente a la misma estrella (figura inferior izquierda). Entonces, el día sideral es ligeramente más corto que el día solar, pues este Último equivale a una rotación y algo más.

La diferencia entre ambos es de alrededor de cuatro minutos: el día sideral tiene 23 horas, 56 minutos y 4,09054 segundos de día solar medio. El día solar real no es conveniente para uso cotidiano pues su duración varía.

En efecto, la órbita de la Tierra es una elipse, es decir, una especie de óvalo con dos centros o “focos”; en uno de dichos focos está el Sol; en el otro no hay nada.

La Tierra se mueve más rápidamente cuando está más cerca del Sol (perihelio) que cuando su distancia al Sol es máxima (afelio). De modo que el “ángulo extra” para enfocar el Sol es variable. Por eso utilizamos un día “promedio”.

El día que medimos con nuestro reloj, a diferencia del día natural determinado por la salida y puesta del Sol, tiene una longitud constante.

Lo denominamos día solar medio, porque es el promedio de las duraciones de todos los días solares del año. En consecuencia, los días solares reales son a veces más cortos y a veces más largos que el día solar medio. (imagen der.:día sideral)

El día solar real, o intervalo entre dos pasos sucesivos del Sol por un mismo meridiano, pasa de un mínimo de 23 horas 59 minutos y 39 segundos en septiembre a 24 horas y 30 segundos en diciembre.

Esta variación, igual para todos los puntos de la Tierra, no tiene nada que ver con las estaciones, que son opuestas en los hemisferios norte y sur. El afelio de la Tierra o punto en que se encuentra más alejada del Sol, tiene lugar a principios de julio de cada año, y el perihelio a principios de enero.

Fuente Consultada: Tecnirama Fac. Nro.61

Nueva Fotografia de la Tierra Imagen Definitiva del Planeta Tierra

Imagen Definitiva del Planeta Tierra

Hace pocos días el Satélite ruso Elektro-L logró captar la imagen mas real de nuestro planeta. Había sido puesto en órbita con fines meteorológicos, el 20 de enero de 2011, y envía fotografías a la Tierra cada 30 minutos. Puso conseguir esta maravillosa foto desde una altura de 36.000 m. con “un solo clic”, y dicha fotografía tiene una resolución de 121 pixeles y pesa unos 100 Mb. y cada píxel cubre un km2  de superficie. (una foto normal familiar puede pesar entre 1 Mb. y 10 Mb.)

Su impresionante resolución, los 121 megapíxeles, supone además que corre con ventaja sobre otras fotos históricas de nuestro mundo. Un motivo por el que ha llegado a ser calificada como la “foto definitiva de la Tierra”, según recoge la web especializada en tecnología Gizmodo, pese a la evolución de los dispositivos tecnológicos siempre depara alguna sorpresa.

La imagen clásica de nuestro planeta fue tomada el 7 de diciembre de 1972 por la NASA, y no se consiguió con la técnica convencional de un solo disparo, sino que resulta de una composición de muchas imágenes tomadas por el Apolo  17, cuando estaba a 45.000 m. de la superficie terrestre.  En aquella ocasión, la fotografía era una especie de collage, una composición de imágenes, como si se tratara de un verdadero puzzle que termina configurando una imagen única.

Desde los primeros vuelos espaciales se sintió la necesidad de lograr una foto desde altura, pero las condiciones técnicas de la época no lo permitían con la resolución o calidad requerida. Inclusive desde el lanzamiento de las bombas V2 de Hitler en la segunda guerra mundial se intentó pero solo de unos 10.000 m. de altitud.

El proyecto Corona fue una gran fuente de provisión de fotografías de la Tierra. Entre los años 1960 y 1972, los satélites tornaron más de 860 mil imágenes del planeta. La evolución de las cámaras fotográficas, que soportaban los 27 mil km/h de velocidad exterior, permitían capturar imágenes que cambiaron la concepción que se tenía hasta entonces de la Tierra.

Imagen Clásica del Planeta Tierra, conseguida en 1972

La Sondas Espaciales Lunik Surveyor Envio de Sondas a la Luna

La Sondas Espaciales: Lunik Surveyor Envio de Sondas a la Luna

El nacimiento de la astronáutica: ¿Qué es una sonda?

En la terminología espacial se llama sonda a todo ingenio lanzado al espacio por medio de cohetes y provisto de los instrumentos de medición y radiocomunicación que le permiten la exploración automática del espacio. Algunas sondas disponen de aparatos fotográficos o de televisión para tomar vistas de las superficies de los astros que exploran; otras son dirigidas de forma que lleguen a posarse en la superficie del astro (como las enviadas a la Luna, Venus y Marte).

La técnica de navegación de las sondas es algo más que una simple extrapolación de la empleada en los satélites artificiales: las distancias de, a lo sumo, miles de kilómetros de éstos, se convierten en decenas de millones en el caso de una sonda destinada a Marte, por ejemplo, lo que complica extraordinariamente los sistemas de navegación y seguimiento.

Sin embargo, los problemas de la investigación por medio de sondas se centran en la dificultad de poder emitir imágenes lejanas suficientemente detalladas, ya que la energía disponible a bordo para su transmisión es muy limitada. Por otra parte, las sondas que se envían hasta la superficie de otros astros deben posarse en ellos con suavidad y quedar en una posición de reposo adecuada para su buen funcionamiento.

El empleo de sondas espaciales ha proporcionado importantes avances en el conocimiento científico de la superficie de la Luna, Venus y Marte, y muy recientemente de Mercurio y Júpiter, desbancando totalmente a los más modernos observatorios astronómicos terrestres en la investigación de los planetas y astros menores del Sistema Solar.

Sondas lunares: Los datos suministrados por las sondas enviadas a la Luna han sido fundamentales para realizar los programas tripulados y para el envío de sondas profundas destinadas a estudiar otros astros del Sistema Solar.

Pueden dividirse en cuatro grandes grupos o familias:

1) Sondas de vuelo abierto.

2) Sondas de alunizaje, divisibles a su vez en sondas de impacto y de alunizaje suave.

3) Sondas de alunizaje con órbita intermedia alrededor de la Luna.

4) Satélites artificiales lunares.

Entre las del primer grupo cabe destacar el Lunik 1, soviético, por el impacto que causó en la opinión pública, en tanto que el primer lanzamiento de un ingenio destinado a nuestro satélite, pasó a unos 7.400 kilómetros de éste y entró en órbita solar. Los tres Pioneer estadounidenses que lo habían precedido constituyeron un absoluto fracaso. El Lunik 3 (octubre de 1959) fue un importante éxito de la tecnología astronáutica soviética: circunvalé la Luna y transmitió por primera vez fotografías de su cara oculta.

La sondas espaciales Lunik Surveyor Envio de Sondas a la Luna

Sonda Lunik, destinada a la astronáutica soviética a la exploración de la Luna. Con el programa Lunik la U.S. demostró la posibilidad de explorar automáticamente el satélite, sin arriesgar vidas humanas.

En este grupo debe incluirse también la serie Zond soviética (1965 1970), en principio destinada a la investigación de los planetas cercanos y después cambiada radicalmente de objetivo: a partir del Zond 4 todos los vehículos de esta serie parecen haber sido modelos derivados de las cápsulas habitadas Sojuz, y dedicados exclusivamente a la investigación lunar.

El Zond 5 fue el primer vehículo recuperado tras un vuelo circunlunar, mientras que los Zond 6, 7 y 8 permitieron ensayar las técnicas de reentrada en la atmósfera con “rebote” sobre las capas intermedias de la misma. Todos ellos iban equipados, además, con equipos fotográficos automáticos e instrumentos registradores de diversos parámetros.

En el segundo grupo debe incluirse el Lunik 2 (septiembre de 1959), que fue el primer objeto fabricado por el hombre que estableció contacto con otro cuerpo en el espacio.

La contrapartida estadounidense la constituyó la serie Ranger, destinada a fotografiar la Luna de cerca, pero en los años 196162 los deseos superaban las propias posibilidades y los seis primeros Ranger fallaron total o parcialmente.

Sólo consiguieron su objetivo los tres últimos de la serie. Por esta razón, mientras preparaba el ambicioso programa Lunar Orbiter, Estados Unidos intentó ganar la partida a los soviéticos con la serie Surveyor, destinada a lograr alunizajes suaves.

Sin embargo, una vez más se adelantaron sus oponentes con el Lunik 9 (enero de 1966), gran éxito tras cinco fracasos parciales que lo precedieron en otras tantas misiones Lunik. Cuatro meses más tarde, en mayo de 1966, el Surveyor 1, primero de una serie afortunada, lograba alunizar y obtener fotografías de gran calidad del suelo lunar.

En el tercer grupo hay que incluir los Lunik de los números 16 al 21. Cabe destacar el Lunik 16 (septiembre de 1970), cuya cápsula de descenso, equipada con un brazo articulado, tomó muestras de la superficie lunar en el Mar de la Tranquilidad y regresó a la Tierra. Con esta misión y las posteriores los soviéticos demostraron la posibilidad de explorar la Luna por medio de aparatos automáticos, evitando así los riesgos y las costosas inversiones que tuvieron que afrontar los estadounidenses con el programa Apolo.

El Lunik 17 (noviembre de 1970) alunizó en el Mar de las Lluvias y de su interior salió un vehículo lunar teledirigido, el Lunojod 1, que disponía de varios equipos de televisión, un telescopio de rayos X, detectores de radiación, un analizador químico por dispersión de partículas y un penetrómetro. La mayor parte de estos dispositivos iban encerrados en un compartimiento estanco mantenido a la presión atmosférica y con temperatura regulada. Como fuente de energía durante los períodos de noche lunar se utilizaba un reactor isotópico. 

La vida útil del Lunojod 1 fue de nueve meses, durante los cuales recorrió un total de 10 kilómetros transmitiendo más de 180.000 imágenes de televisión. El Lunik 18 (septiembre de 1971) se estrelló en una región próxima al Mar de la Fertilidad. Mientras que el Lunik 19 estudió las irregularidades del campo gravitatorio lunar, el Lunik 20 (febrero de 1972) realizó una misión similar a la del 16, recogiendo muestras lunares y trayéndolas a la Tierra.

La serie de investigaciones lunares soviéticas finalizó con el Lunik 21, lanzado el 8 de enero de 1973, llevando a bordo el Lunojod 2, casi cien kilogramos más pesado que su antecesor (840 frente a 756), y que construyó, cómo éste, un gran éxito de la exploración automática.

Entre los satélites artificiales lunar destacan los Lunik 10, 11 y 12 y la serie Lunar Orbiter estadounidense, cuyas fotografías fueron imprescindibles para la preparación de las misiones Apolo.

Fuente Consultada: Los Viajes Espaciales Salvat Tomo 53