Historia Carrera Espacial

Disputa Newton y Hooke Por las Orbitas Elípticas de los Planetas

HISTORIA DE LA PUBLICACIÓN DE LOS «PRINCIPIAS» – CONFLICTO NEWTON-HOOKE

ANTECEDENTES DE LA ÉPOCA. El incipiente desarrollo científico que se inició en el siglo XVII,  comenzó cuestionando el primitivo y anacrónico aristotelismo (Conjunto de las doctrinas del filósofo griego Aristóteles que explicaban los fenómenos naturales ), como teoría sintetizadora general que da cuenta del conjunto del cosmos, es decir,  fue vulnerado seriamente por los nuevos descubrimientos científicos, pero éstos no bastaron, hasta Newton, para dar ocasión a una teoría que ordenara y diera sentido a la acumulación de descubrimientos parciales.

Ello explica que en los más altos científicos de la época, las nociones matemáticas y astronómicas de la mayor exactitud se dieran junto a ideas místicas y religiosas tradicionales, tal como en el caso de Kepler.

En el campo de la astronomía se continuó la labor de Copérnico, especialmente por obra de Kepler, y los perfeccionamientos del telescopio que llevó a cabo Galileo permitieron comprender mejor la estructura del sistema solar.

La. investigación de la realidad física ensayó con éxito una metodología y una conceptuación nuevas cuando Galileo formuló las leyes del movimiento de los cuerpos, en 1638.

El descubrimiento de la circulación de la sangre por William Harvey (1578-1657), significó un extraordinario avance para la fisiología.

En la segunda mitad del siglo, el mundo científico, tal como aconteciera con el mundo filosófico, estaba dominado por la polémica en torno del cartesianismo. La explicación dada por Harvey a los movimientos del corazón se impuso a la observación empírica, pese a la oposición de Descartes. Leibniz refutó las ideas cartesianas acerca del movimiento, y Pascal estableció la teoría de la probabilidad de las hipótesis.

Pero la culminación científica del siglo XVII fue la obra de Isaac Newton (1642-1727), quien había de resumir en sí y superar todas las tendencias intelectuales de la época. Descubrió el cálculo infinitesimal y formuló la ley de la gravitación universal, que pasó a ser la nueva concepción totalizadora del universo y desplazó definitivamente al aristotelismo.

Newton y Hooke

Robert Hooke (1635-1703), científico inglés, conocido por su estudio de la elasticidad. Hooke aportó también otros conocimientos en varios campos de la ciencia.Nació en la isla de Wight y estudió en la Universidad de Oxford. Fue ayudante del físico británico Robert Boyle, a quien ayudó en la construcción de la bomba de aire.

En 1662 fue nombrado director de experimentación en la Real Sociedad de Londres, cargo que desempeñó hasta su muerte. Fue elegido miembro de la Real Sociedad en 1663 y recibió la cátedra Gresham de geometría en la Universidad de Oxford en 1665.

newton isaac

ISAAC NEWTON (1642-1727): El científico inglés realizó trabajos que revolucionaron el conocimiento y fundaron la ciencia clásica. Sus principios de la luz, del movimiento y de la atracción de las masas sólo serían cuestionados a comienzos del siglo XX, particularmente por Einstein. (Ver: Biografía)

LA HISTORIA Y DESCRIPCIÓN DE LOS «PRINCIPIA»: Hacia 1680 el problema del sistema planetario, en el sentido de dar una explicación racional a las leyes, que Kepler había dado empíricamente, estaba, por así decir, en el aire entre los astrónomos ingleses.

Se sabía, en virtud de las leyes de la fuerza centrífuga, que en un movimiento circular uniforme de un punto, que obedeciera a la tercera ley de Kepler, la fuerza era inversamente proporcional al cuadrado del radio.

¿Sería válida esta ley en el movimiento de los planetas, cuya órbita no era circular sino elíptica, y los cuerpos en cuestión no siempre podían asimilarse a puntos?.

Es a esta pregunta que Newton contesta afirmativamente en su célebre libro, en latín, Principios matemáticos de la filosofía natural (es decir de la física), conocido, abreviadamente como los Principia.

La obra se compone de tres libros, el Libro I de los cuales expone los fundamentos de la mecánica a la manera euclideana con definiciones, axiomas, teoremas y corolarios, introduciendo en los sistemas, además de la ley de inercia, el concepto de masa y el principio de acción y reacción.

Este libro se ocupa del movimiento en el vacío, comprobándose las leyes de Kepler en el caso de un movimiento central en el cual la fuerza que actúa sobre el punto móvil es inversámente proporcional al cuadrado de ia distancia al centro fijo, foco de la órbita elíptica del móvil.

El Libro II se ocupa, en cambio, del movimiento en un medio resistente, y entre las distintas cuestiones que trata aparece la primera fórmula teórica que expresa la velocidad del  sonido.

Los dos primeros libros sientan los principios matemáticos, es decir teóricos, de la ciencia del movimiento; el Libro III estudiará el movimiento «filosóficamente», es decir físicamente, tomando como ejemplo el «sistema del mundo».

Antepone para ello las «Reglas del razonamiento en filosofía», es decir las normas que desde entonces constituyen las bases del método científico en la investigación de los fenómenos naturales; pasando luego al enunciado del grupo de fenómenos celestes que debe explicar, demostrando que la ley: «Dos cuerpos gravitan mutuamente en proporción directa de sus masas y en proporción inversa del cuadrado de sus distancias», es de validez universal, dando así por primera vez una demostración matemática que elimina la milenaria distinción entre el mundo celeste y el mundo sublunar.

A continuación comprueba las leyes de Kepler y de la caída libre, demuestra el achatamiento de la Tierra, explica por vez primera las mareas y la precisión de los equinoccios, incluye los cometas en el sistema planetario…

En las ediciones sucesivas de los Principia que Newton publicó en vida, introdujo modificaciones y agregados entre los cuales el célebre «Escolio general», en el cual el científico da paso al metafísico o, mejor, al creyente, expresando que «Este muy hermoso sistema del Sol, los planetas y cometas sólo puede proceder del consejo y dominio de un Ser inteligente y poderoso… discurrir de Él a partir de las apariencias de las cosas, eso pertenece, sin duda, a la filosofía natural».

EL ORIGEN DEL CONFLICTO: LA LEY DE LA INVERSA DEL CUADRADO
EL ODIO ENTRE NEWTON Y HOOKE

A principios del siglo XVIII, el matemático y astrónomo alemán Johannes Kepplee había propuesto tres leyes del movimiento planetario, que describían con precisión como se mueven los planetas respecto al Sol, pero no conseguía explicar por qué los planetas  se movían como se movían, es decir en órbitas elípticas.

orbita elpitica de un planeta

1° Ley de Kepler: Los planetas recorren órbitas elípticas y el Sol ocupa uno de sus focos

Newton se propuso descubrir la causa de que las órbitas de los planetas fueran elípticas. Aplicando su propia ley de la fuerza centrífuga a la tercera ley de Kepler del movimiento planetario (la ley de las armonías) dedujo la ley del inverso de los cuadrados, que  establece que la fuerza de la gravedad entre dos objetos cualesquiera es inversamente proporcional al cuadrado de la distancia entre los centros de los objetos.

Newton reconocía así que la gravitación es universal que una sola fuerza, la misma fuerza, hace que  una manzana caiga al suelo y que la Luna gire alrededor de la Tierra.

Entonces se propuso contrastar la relación del inverso de los cuadrados con los datos conocidos.

Aceptó la estimación de Galileo de que la Luna dista de la Tierra unos sesenta radios terrestres,  pero la imprecisión de su propia estimación del diámetro de la Tierra le impidió completar esta prueba satisfactoriamente. Irónicamente, fue un intercambio epistolar en 1679  con su antiguo adversario Hooke lo que renovó su interés en este problema.

Esta vez dedicó su atención a la segunda ley de Kepler, la ley de la igualdad de las áreas, Newton pudo demostrar a partir de la fuerza centrífuga.

Hooke, sin embargo, desde 1674 estaba intentando explicar las órbitas planetarias, y había logrado dar con el problema del movimiento orbital.

En un tratado que se publicó aquel mismo año, descartó la idea de un equilibrio entre las fuerzas que empujaban hacia dentro las que empujaban hacia afuera para mantener a un objeto como la Luna en su órbita. Constató que el movimiento orbital resultaba de suma: por una parte, la tendencia de la Luna a moverse en línea recta y, por otra, una fuerza «única» que la atraía hacia la Tierra.

Mientras tanto el propio Newton, Huygens y todos los demás seguían hablando de «una tendencia a alejarse del centro», y Newton había llegado al extremo de aceptar vórtices cartesianos (una vieja teoría de Descartes) como responsables de empujar a los objetos para que volvieran a situarse en sus órbitas, a pesar de su tendencia desplazarse hacia el exterior.

También se sabe que  algunas de las cartas enviadas a Newton sobre este tema resultaron de particular interés para el científico, pues había despertado una gran idea para aplicar como teoría en sus investigaciones.  En una de sus cartas Hooke escribió a Newton para pedirle su opinión sobre estas teorías (que ya se habían publicado).

Le habló de la ley del cuadrado inverso, que Newton ya tenía, de la acción a distancia, y de la idea a la que había llegado: no había fuerza centrífuga ninguna, sino solamente una fuerza centrípeta que apartaba a los planetas de una trayectoria rectilínea y la curvaba mediante la gravedad.

En el gran libro sobre la historia del pensmaiento científico, de Moledo y Olszevicki, conocido como:»Historia de las ideas científicas», nos relata al respecto:

«Probablemente fue esta carta la que liberó a Newton del asunto de la fuerza centrífuga (que es una fuerza artificial, simplemente la reacción a la fuerza centrípeta —esta última sí real—) y lo estimuló para demostrar, en 1680, que una ley de la gravedad con cuadrados inversos a las distancias exige que los planetas se muevan recorriendo órbitas elípticae implica que los cometas deben seguir trayectorias elípticas o parabólicas alrededor del Sol. Ésta es la razón por la que ya tenía la respuesta preparada cuando, en 1684, Halley se apareció en la puerta de su casa.

Porque fue así: aprovechando un viaje, Halley, en agosto de 1684. visitó a Newton en Cambridge, donde debatieron sobre las órbitas de los planetas y la ley del cuadrado inverso. Según contó Newton después, cuando llevaban cierto tiempo reunidos, Halley le preguntó qué tipo de curva creía él que describirían los planetas, suponiendo que la fuerza de atracción hacia el Sol fuera inversa al cuadrado de las distancias respectivas de los planetas a dicho astro.

Newton dijo inmediatamente «una elipse», ante lo cual Halley le preguntó cómo lo sabía. «Porque la he calculado», respondió Newton de inmediato. Tras esto, Halley le pidió que le dejara ver los cálculos, pero Newton buscó entre sus papeles y no pudo encontrarlos. Se comprometió entonces a volver a hacerlos v a enviárselos apenas los tuviera listos.

Ese encuentro entre Halley y Newton y los cálculos que nunca encontro se convertirían en el puntapié inicial para que nuestro protagonis:: se pusiera a escribir los Principia.»

A petición de Halley, Newton pasó tres meses rehaciendo y mejorando la demostración. Entonces, en una explosión de energía sostenida durante dieciocho meses, durante los cuales se absorbía tanto en su trabajo que a menudo se olvidaba de comer, fue desarrollando estas ideas hasta que su presentación llenó tres volúmenes. Newton decidió titular su obra Philosophiae Naturalis Principia Mathemañca, en deliberado contraste con los Principia Philosophiae de Descartes.

Ya en 1684 Newton publicó un trabajo en el que explicaba la ley de cuadrado inverso, pero recién en 1687 vio la luz su gran obra épica.

Los tres libros de los Principia de Newton proporcionaron el nexo entre las leyes de Kepler y el mundo físico. Halley reaccionó con «estupefacción y entusiasmo» ante los descubrimientos de Newton. Para Halley, el profesor Lucasiano había triunfado donde todos los demás habían fracasado, y financió personalmente la publicación de la voluminosa obra como una obra maestra y un regalo a la humanidad.

«Los Principia fueron celebrados con moderación al ser publicados, en 1687, la primera edición sólo constó de unos quinientos ejemplares. Sin embargo, la némesis de  Newton, Robert Hooke, había amenazado con aguar la fiesta que Newton hubiera podido disfrutar.

Cuando apareció el libro segundo, Hooke afirmó públicamente que las cartas que había escrito en 1679 habían proporcionado las ideas científicas vitales para los descubrimientos de Newton. Sus pretensiones, aunque dignas de atención, parecieron abominables a Newton, que juró retrasar o incluso abandonar la publicación del tercero. Al final, cedió y publicó el último libro de los Principia, no sin antes eliminar cuidadosamente cualquier mención al nombre de Hooke.

El odio que Newton sentía por Hooke le consumió durante años. En 1693 todavía  sufrió otra crisis nerviosa y abandonó la investigación. Dejó de asistir a la Royal Society hasta la muerte de Hooke en 1703, y entonces fue elegido presidente y reelegido cacada año hasta su propia muerte en 1727.»

Fuente: «A Hombres de Gigantes»

Fuente Consultadas:
El Saber de la Historia de José Babini Edit. Biblioteca Fundamental del Hombre Moderno
Grandes Figuras de la Humanidad Edit. Cadyc Enciclopedia Temática Familiar
A Hombres de Gigantes Edit. CRÍTICA
Historia de las Ideas Científicas Leonardo Moledo y Nicolás Olszevicki Edit. PLANETA

Trabajo Enviado Por Colaboradores del Sitio

Concepto de Fuerza Centrífuga Aplicaciones Prácticas

Concepto de Fuerza Centrífuga – Aplicaciones Prácticas

Si se hace girar con rapidez un balde parcialmente lleno de agua, con los brazos extendidos alrededor del cuerpo, el contenido no se derrama, aun cuando el balde esté volcado sobre un costado. El principio responsable de este fenómeno es conocido por los físicos con el nombre de fuerza centrifuga.

Al mismo tiempo que se hace girar el balde, el agua tiende a permanecer dentro de éste, presionada hacia el fondo (es decir, hacia afuera con respecto a quien hace girar el balde) o al centro de giro por la fuerza centrífuga. Este es un ejemplo bastante directo de como se origina esta fuerza, aunque hay muchas otras aplicaciones más prácticas.

Sabemos, según las leyes de los cuerpos en movimiento, enunciadas por Isaac Newton, que las fuerzas siempre se originan por pares, siendo cada una de las mismas de igual valor y sentido contrario. La fuerza que se necesita para mantener un cuerpo que gira dentro de su trayectoria, evitando que se vaya hacia afuera, se conoce como fuerza centrípeta y es igual pero de sentido contrario a la fuerza centrífuga.

Fuerza centrífuga en un balde girando. El agua no sale del balde porque es empujada hacia el exterior o fondo.

En el caso del ejemplo mencionado, esta fuerza centrípeta se manifiesta como el esfuerzo realizado por el brazo para sostener el balde. Podemos ver, bastante fácilmente, cómo estas fuerzas se relacionan con la velocidad a la cual el objeto se mueve dentro de su órbita. Un ejemplo emocionante lo constituye, en el espec táculo circense, un motociclista que da vueltas dentro de una gran esfera de malla metálica.

Cuando su máquina se mueve lentamente, el motociclista no puede subir muy alto, pero a velocidades mayores la fuerza centrífuga que tiende a lanzarlo hacia afuera es tan grande, que puede trepar verticalmente hasta la cúspide de la esfera y girar sin perder contacto con la «pista», a pesar de desplazarse «cabeza abajo».

La inclinación que se observa en las curvas de las vías férreas obedece al mismo principio: la fuerza centrífuga que impulsa hacía afuera al tren cuando éste toma la curva, es contrarrestada por la fuerza centrípeta que se manifiesta cuando el costado de las ruedas presiona sobre los rieles. Este esfuerzo se reduce considerablemente inclinando las vías en un cierto ángulo, de modo que el riel exterior (el más alejado del centro de la curva) esté a mayor altura que el interior.

Otro ejemplo parecido lo constituye aquella famosa primera pista de Avus, en Alemania, donde ya en el año 1937, los promedios de velocidad establecidos por los coches de carrera llegaban a 261 Km./h., con records hasta de 280 Km./h. Esto podía lograrse porque aquella pista tenía curvas construidas con un extraordinario peralte que llegaba a los 45 grados. De esta manera, se conseguía precisamente vencer la gran fuerza centrífuga que esas velocidades provocaban en los giros. Una idea de dicha fuerza la da el cálculo de que, en el momento de paso sobre la curva, los neumáticos debían soportar nada menos que 3 veces el peso de la máquina.

Peralte o Inclinacion de la Carretera

Los llamados trajes de presión, creados por los japoneses durante la segunda guerra mundial y adoptados luego por casi todas las demás fuerzas aéreas, constituyen una solución bastante aceptable al problema de la tremenda fuerza centrífuga a que está sometido el piloto en un combate aéreo. Este traje evita que, en los giros violentos, la sangre se desplace y se agolpe por centrifugación, con el consiguiente desvanecimiento y pérdida momentánea de la visión. Pero no siempre ¡a fuerza centrífuga resulta negativa; muchas veces el hombre se vale de ella para obtener provecho.

Un buen ejemplo de aplicación práctica de este principio lo tenemos en el aparato denominado centrifuga. Si tenemos una suspensión de un sólido en un líquido, o una mezcla de líquidos de diferentes densidades, es decir, que tienen relaciones diferentes de peso a volumen (por ejemplo crema y leche), y que han sido mezclados hasta formar una emulsión, podemos separarla si la dejamos reposar tiempo suficiente.

Una centrifugadora es una máquina que pone en rotación una muestra para –por fuerza centrífuga– acelerar la decantación o la sedimentación de sus componentes o fases (generalmente una sólida y una líquida), según su densidad. Existen diversos tipos, comúnmente para objetivos específicos.

La atracción que ejerce la gravedad sobre la leche es mayor que sobre la crema, menos densa, que va a la superficie. Este proceso se puede acelerar centrifugando la mezcla (estas centrifugadoras tienen la forma de un cuenco que gira rápidamente). De este modo la leche es impulsada más lejos del centro que la crema, la cual, por no ser tan densa, no sufre con tanta intensidad los efectos de la fuerza centrífuga que se origina.

También bombas centrífugas y turbinas centrífugas que trabajan con líquidos y aire, respectivamente, son un acierto mecánico. Debemos recordar que los turborreactores centrífugos reciben este nombre porque su alimentación de aire lo produce una turbina de ese tipo.

Bomba centrifugadora

En la fundición de metales, las inyectaras centrífugas son insustituibles por la precisión, seguridad y calidad de los colados. Este tipo de inyectora recibe el metal fundido por un tragadero central, y mantiene adosada una batería de matrices a su contorno. Girando a gran velocidad, el metal es centrifugado con gran presión, e inyectado al interior de las matrices.

RAZÓN POR LA CUAL LA TIERRA NO ES ATRAÍDA POR EL SOL

Esquema Sistema Tierra-Sol

Esto se debe a que, a pesar de la atracción gravitacional (fuerza de gravedad) la fuerza centrífuga tiende constantemente a empujar a la Tierra hacia afuera. En este caso, las dos fuerzas están equilibradas. La fuerza de gravedad entre el Sol y la Tierra actúa como una fuerza centrípeta, que tiende a atraer al planeta, que gira en su órbita, hacia el Sol. La fuerza centrífuga originada por el movimiento de rotación, tiende a empujar al planeta en sentido contrario, es decir, fuera del Sol., El resultado es que la distancia entre el Sol y la Tierra se mantiene constante, suponiendo que la velocidad del planeta también se mantenga igual (en realidad, la velocidad de la Tierra sufre pequeñas variaciones, con la consiguiente alteración en la distancia al Sol). El mismo principio se aplica a los satélites artificiales que se ponen en órbita para girar alrededor de la Tierra. La atracción de la gravedad equilibra las fuerzas centrífugas, y los satélites pueden moverse a distancia más o menos constante de la Tierra, «suponiendo que su velocidad sea también constante». De todos modos, la velocidad se reduce gradualmente, a causa del rozamiento con la atmósfera, y los satélites tienden a caer hacia la Tierra.

Formula de la Fuerza Centrípeta:

Diagrama de un cuerpo girando, Fuerza Centrifuga

Ejemplo: si se toma una piedra de 2 Kg. de masa, atada a una cuerda y se la hace girar con un radio de 1,2 m. a razon de 2 vueltas por segundo. Cuanto vale la fuerza centrífuga que debe soportar la cuerda?.

La masa es de 2 Kg., el radio: 1,20 metro, pero nos falta la velocidad tangencial Ve, pues la del problema es la velocidad angular.

Para ello se sabe que dá dos vueltas en un segundo, entonces el recorrido es, dos veces el perímetro de la circunferencia por segundo. Podemos hallarlo asi: 3.14. 1.2. 2=7.53 m. cada vuelta , por dos es: 15,07 m. distancia que la masa recorre en 1 segundo, por lo tanto la velocidad tangencial es: 15,07 m/seg.

Aplicando la formula se tiene que Fc= ( 15,07 )². 2 /1,2² =454/1.44=315,27 Newton

Fuente Consultada:
Revista TECNIRAMA N°21 Enciclopedia de la Ciencia y La Tecnología -La Fuerza Centrífuga-

Cuadro sinoptico del Universo, Sistema Solar, Planetas y Galaxias

SINTESIS EN UN CUADRO SOBRE EL SISTEMA SOLAR

Nuestro sistema solar que está contenido en la galaxia llamada Vía Láctea, está conformado por el Sol y ocho planetas que gravitan a su alrededor. Los planetas siguen órbitas que, casi en su totalidad, están situadas en el mismo plano; y todos se desplazan en torno al Sol en el mismo sentido.

El tiempo que tardan en dar una vuelta constituye el año de cada planeta: Mercurio, el más cercano, demora tres meses terrestres. Además de los planetas, entre Marte y Júpiter circulan cuerpos pequeños, bloques de rocas cuyo diámetro no suele pasar los pocos kilómetros. Se cree que estos asteroides son los restos de un planeta que, o bien se fragmentó, o no llegó a formarse jamás.

Ampliar Sobre la Evolución del Universo

cuadro sinoptico universo

Ver Tambien: Sistema Solar Para Niños de Primaria

Diferentes clases de astros
Los astros se pueden dividir en cuatro tipos:

a) los que poseen luz propia, como el Sol, las estrellas, las nebulosas de emisión y algunos cometas:

b) los que brillan con luz reflejada, como la Luna, los planetas, satélites, asteroides, ciertos cometas y ciertas nebulosas:

c) los que no emiten luz alguna, como las nebulosas obscuras, cuya existencia se conoce en virtud de que impiden pasar la luz de los astros situados detrás de ellas; y

d) las estrellas fugaces y bólidos, que lucen porque al entrar velozmente en nuestra atmósfera se tornan incandescentes al rozar con los gases de ésta.

Los movimientos aparentes de los astros difieren según los casos.

Las estrellas, los conglomerados, las nebulosas y las galaxias, describen un círculo completo alrededor de la Tierra en 24 horas menos cuatro minutos.

Los planetas tienen un movimiento aparente complejo. Se clasifican eñ interiores o exteriores según sea que su órbita esté, respectivamente, dentro o fuera de la que sigue la Tierra. Los planetas interiores, Mercurio y Venus, siguen una ruta cercana al astro mayor y sólo son visibles antes de orto o salida de éste, y después de su ocaso o puesta. Vistos a través del telescopio los planetas interiores presentan fases porque,estando sus órbitas dentro de la terrestre, su disco se ve más o menos iluminado por el Sol.

Cuando se hallan a la mayor distancia aparente del Sol -máxima elongación- tienen la mitad del disco iluminado.La elongación puede ser oriental u occidental, de acuerdo a cómo están situados respecto del Sol.

Los planetas exteriores se ven de noche y, por lo común, viajan aparentemente de O a E a través de las estrellas, pero, según los movimientos combinados de cada planeta y la Tierra, hay un momento en que parece que se detienen: están estacionarios; acto seguido cambian de rumbo y se dirigen de E a O, hasta llegar a otro punto donde permanecen de nuevo estacionarios, para continuar posteriormente con su marcha normal.

Entre dos posiciones estacionarias llegan a la oposición, en que se sitúan en la línea Sol, Tierra y planeta. Si la disposición es planeta, Sol y Tierra, se dice que el planeta está en conjunción (con el Sol interpuesto).

Los planetas se mueven dentro del Zodíaco, que es una faja de 8o de anchura a cada lado de la eclíptica.

Otros Temas Tratados en Este Sitio

Big Bang

Origen de la Vida

Origen del Hombre

Teoría de la Evolución

Muerte de una Estrella Los Pulsares Enana Blanca

Peso de Una Estrella de Neutrones

La Vida del Sol Tiempo de Vida Hidrogeno del Sol

La Luna Muestra Siempre la Misma Cara

Origen del aire que respiramos El Oxigeno

Interesantes Temas de Historia Curiosidades del Mundo

LAS PÁGINAS MAS VISITADAS DE HISTORIA Y BIOGRAFÍAS

imagen imagen imagen
Grandes TragediasGrandes MasacresGrandes Errores
imagen imagen imagen
Los Desastres NaturalesMalas Noticias en el MundoCuando la Vidas Pega Duro
imagen imagen imagen
Grandes EnigmasVidas EjemplaresGrandes Descubrimientos
imagen imagen imagen
Grandes Ideas de la Ciencia Grandes Mujeres Grandes Inventos
imagen imagen imagen
Grandes Obras de IngenieríaAsesinos en SerieHistoria de los Barcos
imagen imagen imagen
Inventos AccidentalesCiudades MaravillosasLugares Fantásticos
imagen imagen imagen
Horrores del MundoLas Guerras MundialesCrueles Emperadores
imagen imagen imagen
Curiosidades del MundoEl Triángulo de las BermudasPatrimonios de la Humanidad
imagen imagen imagen
Grandes HambrunasPrincipales EpidemiasGrandes Ideologías
imagen imagen imagen
Vida en la Edad MediaReligiones del MundoLos Monasterios
imagen imagen imagen
Aventuras, Viajes y Hazañas Nuestra Identidad Argentina Las Sociedades Secretas
imagen imagen imagen
Países y Regiones del MundoGeografía del MundoGeografía Argentina
imagen imagen imagen
Un Paseo Por El Siglo XIXLas Dinastías ChinasJuegos Online
imagen imagen imagen
Grandes Matemáticos-FísicosBellos PaisajesLos Dioses Griegos
imagen LAS PREGUNTAS
DE LOS NAVEGANTES
Y CURIOSIDADES
imagen
Conceptos De Internet Sufridas y Famosas

 

Primer Viaje al Espacio Tripulado de Yuri Gagarin Avances Tecnicos Rusos

YURI A. GAGARIN: astronauta soviético nacido Gzhatz hoy lleva su nombre Gagarin, fue el primer hombre en volar una nave espacial fuera de la atmósfera de la Tierra y hacer una revolución completa alrededor del planeta.

Creció en una granja colectiva, donde su padre trabajaba como carpintero. A los 7 años, los alemanes invadieron Rusia y su padre se unió al ejército, mientras que su madre lo llevó junto a su hermano mayor y su hermana, a un lugar más seguro.

Vuelo de Gagarin

También durante sus estudios básicos decidió seguir una carrera técnica, y se inició en una escuela técnica cerca de Moscú. Se graduó en metalurgia (1951), y se inscribió en una universidad industrial, donde se interesó en los aviones.

Se matriculó en el sitio de vuelo de la escuela, la Escuela de Aviación de Oremburgo, y pronto demostró que tenía un talento natural para el vuelo. Graduado de controlador de vuelo con distinción (1955), se unió a la Fuerza Aérea Soviética, donde se convirtió en un piloto de pruebas de nuevos aviones y experimental.

 [Seguir Leyendo Yuri Gagarin y Otros Temas Relacionados…]

Mapa de la Luna Superficie de La Luna Crateres Mares y Montañas

Mapa de la Luna Superficie de La Luna
Crateres, Mares y Montañas

¿Por qué vemos más de la mitad de la superficie lunar? Hoy, esta y otras preguntas relativas al movimiento de nuestro satélite ya tienen respuesta. Sin embargo, a pesar de que la Luna es el objeto celeste más  próximo a nosotros, calcular su órbita todavía es difícil: se han descubierto más de 37.000 factores que influyen en sus movimientos.

Hace millones de años la Luna estuvo bombardeada por distintos cuerpos celestes, como asteroides y  cometas, dejando una superficie característica , totalmente «rugosa y ondulada», formada por miles de cráteres que pueden observarse a simple vista. Inicialmente fueron grandes cuerpos, mientras que en una segunda etapa,  los cuerpos que impactaban fueron mas pequeños, provocando cráteres mas chicos, y todo esto ocurrió hace unos 3800 millones de años aproximadamente.

 El análisis de impactos responde al nuevo catálogo de alta resolución de los cráteres lunares de 20 metros de diámetro o superior -que son 5.185 en total- que se ha hecho gracias a los datos tomados por el altímetro de la sonda espacial de la NASA Lunar Reconnaissance Orbiter (LRO). China también está desde hace pocos años en un proyecto para fotografiar, estudiar y armar un meticuloso y fiel plano de la superficie lunar, por lo que ha enviado una nave que orbita la Luna consiguiendo imágenes en 3D. También estaría previsto enviar una nave no tripulada que alunizara.

Cráter Lunar

Cráter Lunar

INFORMACIÓN BÁSICA DE LA LUNA:
Durante e una órbita de la Luna alrededor de la Tierra, la distancia que separa ambos cuerpos celestes puede variar muchísimo: hasta 1/8 del valor medio. A la distancia máxima de la Tierra, el diámetro aparente de la Luna es aproximadamente 9/10 del que nos muestra cuando se encuentra a la distancia mínima.

Tampoco el perigeo y el apogeo son fijos. A pesar de que se trata del objeto celeste más cercano a la Tierra, calcular el movimiento de la Luna es una tarea difícil. Este tipo de medidas se refiere . siempre a los centros de los dos cuerpos celestes y no a sus superficies.

Deben considerarse también las perturbaciones debidas a la atracción gravitatoria del Sol, al abultamiento ecuatorial de la Tierra y a la influencia de los planetas. Además, la magnitud de las perturbaciones provocadas por todos estos cuerpos varía continuamente, ya que también varían las posiciones de cada uno de ellos en el sistema solar.

Las técnicas más modernas para medir la distancia Tierra-Luna se basan en el empleo del láser. Se envía un rayo láser a la Luna, el cual, por reflexión, vuelve a la Tierra. Sabiendo la velocidad del rayo enviado y calculando el tiempo que emplea en cubrir el recorrido de ida y vuelta, es posible obtener, con una diferencia muy pequeña (pocos centímetros), el valor que se busca. L; teoría que predice el comportamiento de la órbita lunar tiene en cuenta muchos factores periódicos, algunos de los cuales apenas modifican el valor en 2 cm.

Sin embargo, la precisión que se obtiene con el láser obliga a los astrónomos a tener presentes incluso las variables más pequeñas.

IMPORTANCIA DE LA DISTANCIA TIERRA-LUNA
Esta medida no sólo permite verificar nuestras teorías sobre el movimiento lunar, sino también conocer exactamente la distancia Tierra-Luna. Esta información es importante porque influye sobre otros fenómenos. Las mismas teorías sobre el material que forma el interior de la Luna dependen en parte de tales valores.

Gracias a esta medida, es posible obtener en un tiempo muy breve indicaciones exactas sobre la disminución de velocidad (no regular) de la rotación terrestre. La distancia de la Luna a k Tierra interviene también en la medición de la deriva de los continentes, cuyos desplazamientos pueden ser de algunos centímetros por año.

LA ÓRBITA LUNAR
El tiempo que emplea la Luna en efectuar una órbita completa merece un discurso especial: a pesar de que gira alrededor de la Tierra, ésta no está inmóvil en el espacio, sino que, a su vez, gira alrededor del Sol. Respecto a las estrellas que son fijas, un mes lunar dura 27,32 días (mes sideral), pero el tiempo que tarda la Luna en volver a la misma fase respecto a la Tierra es diferente, ya que interviene el movimiento de ambos cuerpos. Este intervalo, llamado mes sinódico, equivale a 29,5 días.

El plano de la órbita lunar no coincide con el terrestre (eclíptica), sino que está inclinado unos 5° 19′. Esto es importante porque gracias a la existencia de un ángulo entre los dos planos no se producen cada mes eclipses en la superficie terrestre.

Con el tiempo, los nodos -puntos de intersección de los dos planos- se mueven con un desplazamiento de 19° por año. También la línea de los ápsides -la que une el perigeo con el apogeo- se mueve, aunque en dirección opuesta. El período de este último movimiento es de 8,85 años.

ROTACIÓN Y TRASLACIÓN
Como ya se ha indicado en otras ocasiones, el movimiento de rotación y el de traslación están sincronizados, es decir, la Luna tarda el mismo tiempo en efectuar una rotación completa alrededor de su propio eje que en girar alrededor de la Tierra. Esto se debe a la fuerza gravitatoria terrestre, que, a lo largo del tiempo, ha hecho disminuir la velocidad inicial de la rotación lunar.

Una consecuencia interesante de ello es que los movimientos del Sol en el firmamento de la Luna son muy lentos: basta decir que el Sol permanece sobre el horizonte durantes 354 horas consecutivas y que el disco solar tarda mas de una hora en emerger completamente. En una semana, el Sol asciende desde el horizonte hasta el punto mas alto del firmamento, y en otra llega a la puesta. El eje de rotación de la Luna está poco inclinado respecto al plano de la órbita y, por lo tanto las variaciones estacionales son mínimas.

ALGO MAS SOBRE LA SUPERFICIE LUNAR…

Un paisaje totalmente desolado, más severo y más áspero que cualquier escenario terrestre, daría la bienvenida a un visitante de la Luna. Elevadas cadenas de montañas., imponentes picos dentados de más de 10.000 metros de altura se alzan sobre una superficie marcada con profundas hendiduras e innumerables cráteres, cubierta por una delgada capa de polvo de ceniza.

Uno de los caracteres más distintivos de la superficie lunar son los cráteres. Éstos varían de tamaño, desde pequeños hoyos hasta enormes depresiones de más de ICO Km. de ancho. Algunos están cercados por empinadas paredes que se elevan quizá a 5.000 metros sobre el piso del cráter y algunos kilómetros sobre la superficie genera! del «terreno». Otros son depresiones poco profundas con paredes de sólo algunos cientos de metros de altura. Muchos tienen pisos a nivel, pero en otros casos se puede ver en el centro un pico solitario.

El origen de los cráteres ha sido motivo de gran número de discusiones. Dos hipótesis principales se formularon a este respecto: la que los atribuía a un origen volcánico, y la que los explicaba como debidos a grandes colisiones de cuerpos, tales como meteoritos, contra la superficie lunar.

La teoría volcánica adquirió bastante crédito antes de que los científicos comprobaran que era un hecho cierto la caída de meteoritos sobre la Tierra; fue necesaria une larga discusión, que se prolongó durante un siglo, antes de que todos los astrónomos aceptaran que la mayoría de los cráteres eran debidos a choques. De hecho, como luego pudo demostrarse, se pueden también hallar sobre la superficie de la Tierra cráteres formados de un modo semejante.

Uno de los más famosos, el cráter Meteoro, en Arizona, tiene 1.200 metros de ancho y 150 metros de profundidad. La razón de que la Tierra no esté marcada con cráteres, como la Luna, es porque el agua, el viento, y el hielo, han borrado en el trascurso del tiempo todas las huellas, excepto las de los cráteres más recientes.

Pero en la Luna no hay erosión alguna (ya que allí no existen el viento, el agua y el hielo), de modo que se guarda cuidadosamente la evidencia acumulativa de muchos millones de años de castigo meteorice Esta falta de erosión explica también la aspereza del paisaje. Actualmente se reconoce que existen también pequeños cráteres que no pueden ser debidos a choques y, por lo tanto, deben ser de origen volcánico, aun cuando su forma no es la de los volcanes terrestres. En este sentido, se plantea la cuestión de si la Luna se encontró en algún momento en forma de una masa fundida, a alta temperatura, o bien se formó a más baja temperatura a partir de materiales sólidos. Todos los indicios, resultantes de consideraciones de distintos tipos, parecen indicar que la Luna ha debido formarse a baja temperatura, si bien, desde luego, es posible que presente actualmente un interior parcialmente fundido.

La fuente de calor quizá no es su origen residual primitivo; al igual que actualmente se acepta para el origen de los volcanes terrestres, se puede derivar de acumulaciones de materiales radiactivos.

Otra interesante característica del paisaje luna-está constituida por la presencia de grandes áreas oscuras, que los primeros astrónomos creyeron que eran mares. Aunque actualmente se sabe que no son mares (no hay agua líquida en la Luna), continúan utilizándose los nombres antiguos. Un «mar» lunar es una especie de planicie seca situada a cierta distancia por debajo del nivel medio de la superficie. Así, por ejemplo, el océano de las Tormentas, que se sitúa totalmente a la izquierda en la fotografía de la superficie lunar. Un poco más al centro, en la parte superior, se halla el mar de las Lluvias («Mare imbricum»), con la bahía o golfo de los Iris, de forma semicircular, en su parte superior.

En la parte de abajo, el mar de los Nublados. El astrónomo Gilbert, estadounidense, fue el primero que estudió con gran detalle las características de la imponente colisión que dio lugar a la formación de uno de estos mares, la que se ha denominado «colisión imbria», por haber originado el mar de las Lluvias. Según todos los indicios, un enorme bólido, con un diámetro de más de 150 Km., incidió sobre la región del golfo de los Iris, procedente del noroeste, elevando una inmensa ola en todas las direcciones de la superficie lunar, pero especialmente en la dirección de su movimiento, esto es hacia el centro del disco visible de la Luna. La energía liberada por la colisión debió ser fabulosa.

Se estima que sería del orden de unos cien millones de veces superior a la de los mayores terremotos conocidos en la Tierra o, si se prefiere una medida más «actual», ¡del orden de cerca de un billón de bombas atómicas! Un choque de esta magnitud debió producir efectos muy notables. La región afectada se pulverizaría hasta el grado de arena fina, una parte de la cual pudo extenderse sobre un área considerable. Grandes trozos de materia de la superficie lunar y del mismo meteorito fueron probablemente lanzados en alto para caer después en grandes bloques, formando varias masas montañosas. Trozos más pequeños, animados de grandes velocidades, produjeron surcos y estrías en la superficie, que se extienden a grandes distancias del área del choque.

En otras ocasiones la energía desarrollada por la colisión pudo originar la fusión de una parte del material, dando lugar a la formación de las corrientes de lava que parece ser la sustancia principal de algunos de los mares. Este tipo de fenómenos se especula que pudieron ocurrir durante un período del orden de un millón de años, hace unos 4.500 millones de años. Posteriormente, los cuerpos que cayeron sobre la Luna fueron más pequeños, produciendo cráteres menores.

Fuente Consultada: El Universo Enciclopedia de la Astronomía y del Espacio Tomo 3 – Movimientos y Fases de la Luna

Escala del Sistema Solar
Distancia a las Estrellas
La Vía Láctea
Más Allá de la Vía Láctea
Características del Módulo Lunar
La Fases De La Luna
El Hombre Llegó a la Luna
Lugares de Alunizajes

Las Grandes Exploraciones de la Historia Cronologia Expediciones

Cuadro Cronológico de las Grandes Exploraciones de la Historia

tabla de exploraciones

Leif EricsonIslandiac. 1001Exploró Vinlandia, identificada (según diversas teorías) con las costas de Labrador, de la isla de Terranova, de Nueva Escocia y de Nueva Inglaterra.
Marco PoloVenecia1271-1295Viajó por Asia central, India, China, y el archipiélago Malayo.
Ibn BatutaMarruecos1325-1349Viajó por África, Oriente Próximo, India, China y las estepas de Asia central.
GilianesPortugal1433Navegó hacia el sur bordeando la costa occidental de África, pasando el cabo Bojador.
Diogo CamPortugal1482-1486Exploró la desembocadura del río Congo y parte de la costa de África occidental.
Bartolomeu DiasPortugal1488Exploró las bahías de Algoa y Mossel en Suráfrica, observando y dando nombre al cabo de las Tormentas, posteriormente rebautizado cabo de Buena Esperanza.
Cristóbal ColónItalia?1492-1504Descubrió América y estableció colonias durante sus cuatro viajes a través del Atlántico.
Giovanni CabotoItalia1497-1498Efectuó dos viajes bajo pabellón inglés. Exploró la isla de Cabo Bretón y Nueva Escocia; también navegó por las costas oriental y occidental de Groenlandia, la costa oriental de Labrador, la costa occidental de la isla de Baffin y una parte de la costa sur de Terranova.
Vasco da GamaPortugal1497-1498Navegando más allá del cabo de Buena Esperanza, llegó a Malindi, en la costa oriental de África, cruzando desde allí el océano Índico hasta Kozhikode (hoy Calicut), en India.
Américo VespucioItalia1499-1502Navegó por el Caribe bordeando las costas de Sudamérica. El geógrafo alemán Martin Waldseemüller publicó los pormenores de su viaje y sugirió que se diese al Nuevo Mundo el nombre de América.
Alonso de OjedaEspaña1499-1501Exploró la costa norte de Sudamérica.
Vicente Yáñez PinzónEspaña1499-1500Partiendo desde España, llegó a las costas de Brasil no lejos de Recife, visitó la desembocadura del Amazonas y, a continuación, siguió hacia el norte hasta llegar a las Guayanas.
Pedro Álvares CabralPortugal1500Llegó hasta las costas de Brasil y también dobló el cabo de Buena Esperanza.
Gaspar Corte-RealPortugal1500Exploró la costa nororiental de Labrador y Terranova.
Rodrigo de BastidasEspaña1501Exploró América central, tras descubrir las costas colombianas.
Sebastiano CabotoItalia1508-1509Recorrió Labrador en busca del paso del Noroeste, y posiblemente llegó incluso hasta la bahía de Hudson.
Juan Ponce de LeónEspaña1513Descubrió y exploró Florida.
Vasco Núñez de
Balboa
España1513Exploró el istmo de Panamá y descubrió el océano Pacífico (al que llamó már del Sur).
Fernando de
Magallanes
Portugal1519-1521Exploró el estuario del río de la Plata, navegando luego hacia el sur y atravesando el estrecho que lleva su nombre. Desde allí, surcó el océano Pacífico hasta las islas Filipinas, donde murió asesinado. Fue el primero que navegó el globo en dirección Oeste hasta una longitud alcanzada previamente en un viaje en dirección Este.
Juan Sebastián
Elcano
España1519-1522Uno de los capitanes de la expedición de Magallanes. Tras la muerte de éste, Elcano, al mando de la Victoria (única nave superviviente de la expedición) volvió a España pasando por las Molucas y el cabo de Buena Esperanza. Así, fue el primero que circunnavegó el globo.
Hernán CortésEspaña1519-1536Exploró las costas orientales de México y Yucatán, conquistó México y exploró la Baja California.
Francisco PizarroEspaña1524-1535Exploró la costa occidental de Sudamérica y conquistó Perú.
Giovanni da
Verrazano
Italia1524Exploró la costa oriental de Norteamérica hasta Terranova, llegando hasta las bahías de Nueva York y Narragansett.
Álvar Núñez Cabeza
de Vaca
España1527-1542Exploró la región suroccidental de los actuales EEUU y el norte de México. Dirigió una expedición en la región del Río de la Plata y atravesó el sur de Brasil hasta Asunción del Paraguay.
Jacques CartierFrancia1534-1536Exploró la costa occidental de Terranova y el golfo de San Lorenzo, remontando el río homónimo hasta el actual emplazamiento de Montreal.
Hernando de SotoEspaña1539-1542Exploró lo que es hoy el sureste de EEUU y parte del valle inferior del Mississippi (río que él mismo descubrió).
Hernando de
Alarcón
España1540Exploró el río Colorado tras demostrar la peninsularidad de Baja California.
Francisco de
Orellana
España1540-1541Siguió el curso del río Amazonas, desde sus cabeceras en los Andes hasta su desembocadura en el Atlántico.
Francisco Vázquez
de Coronado
España1541-1542Siguió el curso del río Colorado hacia el norte, divisando el Gran Cañón; exploró el sur de California, Nuevo México, el norte de Arizona y Texas, Oklahoma y el este de Kansas.
Pedro de ValdiviaEspaña1540-1553Exploró Chile.
Juan Rodrigues
Cabrillo
Portugal1542-1543Exploró la costa occidental de México y descubrió la bahía de San Diego (California).
Richard ChancellorInglaterra1553-1554Navegó por el norte de Escandinavia hasta el mar Blanco, y continuó su viaje por tierra desde Arjanguelsk hasta Moscú.
Martin FrobisherInglaterra1576Exploró la bahía que recibió su nombre y el estrecho de Hudson, en la búsqueda del paso del Noroeste.
Francis DrakeInglaterra1577-1580A bordo del Golden Hind, efectuó la segunda circunnavegación del globo.
John DavisInglaterra1585-1593Rodeó la costa oriental de Groenlandia en dirección sur hasta el cabo Farewell, desde donde navegó por la costa occidental de Groenlandia hasta la bahía de Baffin. En un viaje posterior que realizó a Sudamérica, descubrió las Malvinas.
Willem BarentsPaíses Bajos1594-1597Exploró Nueva Zembla, el mar y la isla que recibieron su nombre.
Walter RaleighInglaterra1595-1616Exploró las Guayanas, las costas de Trinidad y el río Orinoco en busca de El Dorado.
Pedro Fernandes
de Queirós
Portugal1596-1606Exploró las islas Marquesas y Salomón en el océano Pacífico.
Sebastián VizcaínoEspaña1596-1603Exploró la costa occidental de México entre Acapulco y Baja California; navegó hasta las bahías de San Diego y Monterrey.
Samuel de ChamplainFrancia1603-1613Remontó el río San Lorenzo hacia el norte hasta los rápidos de Lachine, al norte de Montreal; exploró la costa oriental de Norteamérica de norte a sur, desde Nueva Escocia hasta Vineyard Haven, fundó y dio nombre a Quebec, y exploró el lago que llevaría su nombre.
Henry HudsonInglaterra1609-1611Exploró el río, el estrecho y la bahía que llevan su nombre.
Jakob Le Maire y
Willem Cornelis
Schouten
Países Bajos1616-1617Rodearon el extremo sur de Tierra del Fuego, atravesaron el estrecho de Le Maire, divisaron y dieron nombre al cabo de Hornos, y llegaron hasta las Molucas.
William BaffinInglaterra1616Exploró la bahía que llevaría su nombre.
Abel Janszoon
Tasman
Países Bajos1642-1644Exploró Nueva Zelanda y las islas Tonga y Fiji, el golfo de Carpentaria y Tasmania, que recibiría ese nombre en su honor.
Jacques Marquette y
Louis Jolliet
Francia1673Navegaron por los ríos Wisconsin y Mississippi desde su curso superior hasta la desembocadura del río Arkansas; siguieron el curso del río Illinois hasta el lago Michigan.
René Robert Cavalier
de La Salle
Francia1682Navegó por el río Mississippi hasta su desembocadura en el golfo de México.
Vitus Jonassen BeringDinamarca1728-1741Exploró el mar, el estrecho y la isla que lleva su nombre.
Pierre Gaultier
de Varennes,
señor de la Vérendrye
Canadá1738-1742Exploró Manitoba, Dakota del Norte, el oeste de Minnesota y, posiblemente, parte de Montana.
Samuel HearneInglaterra1768-1771Siguió el curso del río Coppermine hacia el norte, desde su cuenca hasta las costas árticas de Canadá.
James CookInglaterra1768-1778Exploró y cartografió la costa de Nueva Zelanda, completó la cartografía de las principales masas oceánicas del mundo y refutó la teoría de la existencia de un gran territorio inexplorado y habitable en el hemisferio sur; exploró las costas de la Antártida y de Hawai.
James BruceEscocia1770-1771Visitó las fuentes del Nilo Azul, siguiendo el curso de este río hasta su confluencia con el Nilo Blanco.
Alexander MackenzieEscocia1789Partiendo desde Fort Chipewyan (Alberta, Canadá), bordeó el Gran Lago del Esclavo, y siguió el curso del río que llevaría su nombre hasta su desembocadura en el Ártico.
Robert GrayEstados Unidos1791-1792Exploró Grays Harbor y la costa noroeste del Pacífico; llegó hasta el río Columbia (al que puso el nombre de su nave).
Mungo ParkEscocia1795-1796Ascendiendo por el río Gambia, atravesó el norte de la región de Kaarta en Malí, llegando hasta el río Níger.
Meriwether Lewis y
William Clark
Estados Unidos1804-1806Partieron de Saint Louis, siguiendo por tierra el curso de los ríos Missouri y Columbia hasta llegar al océano Pacífico, y efectuaron el viaje de regreso.
Zebulon Montgomery
Pike
Estados Unidos1806-1807Dirigió expediciones hacia las cabeceras de los ríos Mississippi, Arkansas y Rojo; divisó el Pikes Peak.
John DavisEstados Unidos1821Primera persona en desembarcar en la Antártida.
Richard y John
Lander
Inglaterra1830-1831Navegaron el río Níger (África occidental) aguas abajo, estableciendo su curso y desembocadura.
James Clark RossInglaterra1831-1843Encontró la posición del polo norte magnético: descubrió el banco de hielo Ross en la Antártida, y cartografió la costa del cercano mar que también recibiría su nombre (Ross), en el mismo continente.
David LivingstoneEscocia1849-1859Atravesó Suráfrica, explorando el lago Ngami, el río Zambezi, las cataratas Victoria y los lagos Chilwa y Nyasa (Malawi).
Heinrich BarthAlemania1850-1855Realizó exhaustivas exploraciones en África occidental, visitando el curso superior del río Benue y Tombuctú.
Richard Francis
Burton
Inglaterra1854-1858Hizo el peregrinaje a La Meca; exploró Somalia, Etiopía y el lago Tanganica.
John Hanning SpekeInglaterra1856-1862Exploró el lago Victoria, que identificó como una de las fuentes del Nilo.
Robert O’Hara Burke y
William John Wills
Irlanda1860-1861Primeros europeos que atravesaron el continente australiano de sur a norte.
Samuel White BakerInglaterra1861-1864Exploró los afluentes del río Nilo en Etiopía, y el lago Alberto en África centro-oriental.
Henry Morton StanleyGales1874-1889Exploró el lago Eduardo, cartografió el lago Tanganica y siguió el curso del río Congo desde Nyangwe hasta su desembocadura en la costa occidental de África. Más tarde exploró la cadena Ruwenzori (‘montañas de la Luna’) en África centro-oriental, y siguió el curso del río Semliki hasta sus fuentes en el lago Eduardo.
Verney Lovett
Cameron
Inglaterra1875Primer europeo en atravesar el África ecuatorial de este a oeste.
Francis YounghusbandIndia británica1886-1904Viajó desde Pekín a Cachemira; posteriormente dirigió una expedición británica al Tíbet.
Sven Anders HedinSuecia1890-1908Exploró el Turkestán chino, Tíbet y Mongolia; descubrió las fuentes de los ríos Indo, Brahmaputra y Sutlej.
Mark Aurel SteinHungría1900-1916,
1930
Realizó cuatro expediciones en Asia central, siguiendo las rutas de las caravanas entre China y Occidente, y cartografiando regiones poco conocidas.
Ludwig Mylius-ErichsenDinamarca1902-1907Exploró las costas de Groenlandia.
Roald Engebrecht
Amundsen
Noruega1903-1926Atravesó por primera vez el paso del Noroeste; fue el primero en alcanzar el polo sur; y rodeó en dirigible el polo norte con el explorador estadounidense Lincoln Ellsworth y el italiano Umberto Nobile.
Ernest Henry
Shackleton
Irlanda1907-1909Localizó el polo sur magnético.
Robert Edwin PearyEstados Unidos1908-1909Primera persona, al parecer, en llegar al polo norte.
Hiram BinghamHawai1911Exploró los territorios incas y descubrió las antiguas ruinas de Machu Picchu en Perú.
Harry St. John B. PhilbyInglaterra1917-1932Cruzó Arabia de mar a mar. Primer europeo que visitó Najd.
Lincoln EllsworthEstados Unidos1925-1939Exploró las Regiones árticas en avión, dirigible y submarino, cruzando la Antártida en avión.
Umberto NobileItalia1926Sobrevoló sobre el polo norte con Amundsen y Ellsworth en el dirigible Norge, diseñado por él.
Richard Evelyn ByrdEstados Unidos1926-1957Sobrevoló los polos norte y sur; estableció la base Little America en el círculo polar antártico; dirigió numerosas expediciones que exploraron y cartografiaron las regiones costeras e interiores de la Antártida.
Bertram ThomasInglaterra1930-1931Primer europeo en atravesar el Rub al-Khali, el gran desierto de Arabia Saudí.
Charles William BeebeEstados Unidos1934Descendió hasta una profundidad oceánica récord de 923 m en las aguas de las islas Bermudas, utilizando la batisfera de su invención.
John RymillInglaterra1934-1937Exploró la península Antártica.
Finn RonneEstados Unidos1946-1958Determinó que la Antártida es un continente; exploró y cartografió la plataforma de hielo que lleva su nombre.
Edmund P. Hillary y
Vivian E. Fuchs
Nueva Zelanda
Inglaterra
1955-1958Realizaron la primera travesía terrestre de la Antártida.
Año Internacional
Geofísico
1957-1958Científicos de numerosos países realizaron descubrimientos en los campos de la climatología, la oceanografía, la naturaleza de la corteza terrestre y la geografía de la Antártida, entre otros.
Jacques Piccard y
Don Walsh
Suiza Estados Unidos1960Descendieron hasta una profundidad récord en la fosa de las Marianas (10.916 m), del océano Pacífico, utilizando el batiscafo Trieste.
Neil A. Armstrong y
Edwin E. Aldrin
Estados Unidos1969Primeras personas en caminar sobre la Luna.
Naomi UemuraJapón1978Primera persona en llegar sola al polo norte en trineo de perros.
Ranulph Fiennes y
Charles Burton
Inglaterra1979-1982Primeros en atravesar los dos polos en un solo viaje de circunnavegación del planeta.

Fuente Consultada: Enciclopedia Encarta

Hitos de la Carrera Espacial Primera Mujer en el Espacio Perra Laika

Hitos de la Carrera Espacial

El paso más sensacional en el campo de la técnica, después de la Segunda Guerra Mundial, lo ha dado la Astronáutica, con la aventura de los lanzamientos espaciales que llena por completo la historia de la ciencia de estos «últimos años. Rusia, tras costosas investigaciones, consiguió, en octubre de 1957, poner en órbita el primer satélite artificial de la Tierra: el Sputnik.

Fue transportado hasta la estratosfera por un cohete y empleó 95 minutos en recorrer la órbita alrededor de nuestro planeta. Siguió el lanzamiento del Sputnik II, que llevó en su interior a una perra y fue equipado con toda clase de aparatos, siendo un verdadero laboratorio espacial, que recogió valiosos datos para Jas futuras pruebas.

Estados Unidos rivaliza con la U. R. S. S. en el progreso técnico. En febrero de 1958 consiguió poner en órbita su primer satélite artificial: el Discoverer. Al año siguiente el Mechta se situó en la órbita del Sol como satélite artificial; el Lunik II alcanzó la Luna; y el Lunik III (todos ellos ingenios rusos) realizó la impresionante hazaña científica de fotografiar el hemisferio lunar hasta entonces desconocido, y emitir las fotografías a la Tierra.

EE. UU. siguió el programa de lanzamientos con los Vanguard, Discoverer, Pioner, Explorer, etc., alcanzando dos éxitos sensacionales: el primero con el Ranger-7, el 29 de julio de 1964, el cual envió 4.316 fotografías de la Luna, la última, a color, tomada a un centenar de metros, segundos antes de estrellarse contra el astro,….es decir se vivía una permanente competecia entre ambas potencias mundiales, que culminó con la llegada a la Luna, por parte de un proyecto de la NASA, con el gran cohete Saturno 5 , que transportó el Apolo XI hasta la superficie lunar, el 20 de Julio de 1969.

carrera espacial

sputnik

SPUTNIK: PRIMER SATÉLITE (URSS) EN ORBITA

¿Cuándo se lanzó el Sputnik?
El 4 de octubre de 1957, fue lanzado el Sputnik 1 en la entonces Unión Soviética, en Kazakhstan, cerca de la ciudad de Leningrado.

Esto representó el primer lanzamiento exitoso al espacio. El Sputnik 1 no era mucho más que un transmisor de radio, pero su órbita de 90 minutos alrededor de la Tierra condujo a la era espacial.

carrera espacial

EXPLORER: PRIMER SATÉLITE (EE.UU.) EN ORBITA

¿Cuándo lanzaron los Estados Unidos su primer satélite?
El lanzamiento soviético del Sputnik incitó a los Estados Unidos a poner en órbita su primer satélite: el Explorer 1.  El Comité Nacional Asesor en Aeronáutica (NASA), predecesor de la Administración Nacional de la Aeronáutica y el Espacio (NASA), adoptó un plan de la Marina estadounidense llamado Vanguardia para lanzar el primer satélite del país. No obstante, la recorrida de prueba del satélite, en diciembre de 1957, terminó en un incendio.  El Explorer fue lanzado con éxito hacia su órbita espacial alrededor de la Tierra el 31 de enero de 1958.

carrera espacial

perra laika

PRIMER SER VIVO ENVIADO AL ESPACIO (URSS)

El Sputnik 2, transportó en su viaje orbital a una perra, llamada Laika. Fue el primer ser vivo en viajar al espacio. Laika no mostró signos de sufrimiento por el lanzamiento o la falta de gravedad durante el viaje. Sin embargo, la Unión Soviética no había creado un método para traerla sana y; salva de regreso a la Tierra.

Una semana después del lanzamiento, Laika murió debido a la falta de aire. Unos 5 meses más tarde, el Sputnik 2 regresó a la Tierra y Laika quedó inmortalizada en la historia de vuelos espaciales.

carrera espacial

PRIMER SER VIVO ENVIADO AL ESPACIO (EEUU)

¿Cómo se probó la cápsula Mercury?
En enero de 1961, la primera Mercury fue probada con un chimpancé llamado Ham que cumplió exitosamente el primer vuelo suborbital. Ham sobrevivió.

Unos cuatro meses más tarde, el astronauta Alan B. Shepard también sobrevivió a un exitoso vuelo suborbital.

carrera espacial

carrera espacial

PRIMER HOMBRE EN EL ESPACIO (URSS)

¿Quién fue el primer hombre en ir al espacio?
Este honor lo tuvo el cosmonauta soviético Yuri Gagarin, el 21 de abril de 1961. casi un año antes que Glenn. La Unión Soviética informó sobre un vuelo orbital totalmente exitoso de 1 hora y 48 minutos de la cápsula Vostok 1 tripulada por un astronauta. 

Más tarde se supo que hubo problemas en el reingreso debido a que la carcaza antitérmica protectora de la cápsula se había calentado hasta ponerse incandescente por las elevadas temperaturas. 

Gagarin tuvo que eyectarse y abrir su paracaídas hasta que finalmente aterrizó a salvo.
Esta información, incluyendo el grado de heridas de Gagarin, no fue revelada hasta unos treinta años más tarde.

carrera espacial

PRIMER HOMBRE EN EL ESPACIO (EEUU)

¿Quién fue el primer astronauta estadounidense en dar una órbita alrededor de la Tierra?
El astronauta John Glenn Jr. Fue el primer estadounidense en dar una órbita a la Tierra. Su cápsula Mercury, llamada Friendsbip 7, fue lanzada el 20 de febrero de 1962 y lo mantuvo en órbita durante 5 horas.  En el reingreso a la atmósfera, la NASA

carrera espacial

PRIMERA MUJER EN EL ESPACIO (URSS)

El 16 de  junio de 1963, se lanzaron la Vostok 5 y la Vostok 6. Su plan también era encontrarse y establecer contacto radial en el espacio.

Lo que la mayoría de la gente no sabía en esa época era que la Vostok 6 iba comandada por una cosmonauta mujer, Valentina Tereshkova, de 26 años de edad. (La primera estadounidense astronauta fue Sally Ride, a bordo del transbordador espacial Challenger unos 20 años después.) Los vuelos de las Vostok 5 y 6 transcurrieron tranquilamente; la Vostok estableció el récord de permanencia de una persona en el espacio: 5 días.

carrera espacial

PRIMERA MUJER EN EL ESPACIO (EEUU)

Sally Ride nació en Los Ángeles en 1951, y fue una de las cinco mujeres seleccionadas en 1978 (entre 9000 pedidos), para volar en el nuevo sistema de la lanzadera espacial  que se puso en marcha 18 de junio 1983.  Ella tiene un doctorado en Física por la Uni

carrera espacial

carrera espacial

PRIMER PASEO ESPACIAL (URSS)

El 18 de marzo de 1965, Alexei Leonov salió al espacio abandonando su nave Vokshod 2, mientras su compañero Pavel Belyayev quedaba a los comandos. Leonov llevaba un traje espacial y estaba conectado a la Vokshod 2 por una cuerda y comunicación radial. Su caminata transcurrió con éxito, pero el traje espacial de Leonov se había expandido y el astronauta debió reducir la presión del aire adentro de éste para poder volver a entrar en la nave. El regreso fue un poco traumático, y tuvieron que descender a mas de 1000 Km. de distancia del objetivo, pasando la noche en un bosque frente a un fuego improvisado.

carrera espacial

PRIMER PASEO EN EL ESPACIO (EEUU)

Edward Higgins White II (1930 – 1967) fue un famoso astronauta norteamericano. Nació en San Antonio, Texas, Estados Unidos y fue formado en ingeniería aeronáutica en 1959 por la

CRONOLOGÍA DE LOS HITOS ESPACIALES

———4 OCT. 1957———
Empieza la Era Espacial con el lanzamiento del primer satélite soviético, el Sputnik 1. Fue puesto en órbita
alrededor de la Tierra.

———3 NOV. 1957———
Los soviéticos envían el Sputnik 2, tripulado por la perra Laika.

———1958———
Estados Unidos envía su primer vehículo espacial, d Explorer 1.

———1959 ———
Los soviéticos envían la sonda lunar Luna 2, que se estrella en la superficie lunar. La Luna 3 tiene éxito y envía las primeras fotografías de la Tierra vista desde el espacio.

———12 ABR. 1961 ———
El cosmonauta Yuri Gagarin realiza el primer vuelo tripulado.

——— MAYO 1961 ———
El presidente de Estados Unidos,John Kennedy, propone al estado la tarea de poner un hombre en la Luna antes del final de la década.

——— 20 FEB. 1962 ———
John Glenn, a bordo del Friendsbip 7, se convierte en el primer estadounidense que órbita la Tierra.

———10 JUL. 1962 ———
Se lanza el Telstar, primer satélite de telecomunicaciones comerciales. Transmite la primera película a través del Atlántico.

———1963 ———
La cosmonauta soviética Valentina Tereshkova se convierte en la primera mujer que sale al espacio.

———1965———
La sonda espacial estadounidense Maríner 4 proporciona las primeras fotografías de Marte. El soviético Alexei Leonov realiza el primer paseo espacial; tres meses después le sigue el estadounidense Edward H. White.

———1966———
La sonda espacial soviética Luna 9 alcaliza la superficie lunar y envía fotografías de ella.

———1967———
Los soviéticos instalan la estación espacial (nave espacial que puede mantenerse años en órbita) Soyuz, primera en la
historia. La misión acaba en desastre: la nave se estrella al regresar a la Tierra. Tres astronautas estadounidenses mueren calcinados durante una prueba de lanzamiento.

———1968———
Lanzamiento de la nave tripulada Apollo 8.

———2O JUL. 1969———
Los estadounidenses Neil Armstrong y Edwin Aldrin, de la misión Apollo 11, son los primeros hombres que caminan
sobre la superficie lunar.

———1970 ———
La nave soviética no tripulada Luna 16 recoge muestras de la superficie lunar.

———1971 ———
Una sonda soviética envía fotografías de Marte.

———1972 ———
Estados Unidos realiza su último vuelo tripulado del proyecto Apollo. Los astronautas son Eugene Ceñían
y Harrison Schmitt.

———1973———
Se instala el Skylab, la primera estación espacial estadounidense.

———1975———
Primeras operaciones conjuntas de Estados Unidos y la Unión Soviética con la misiones Apollo y Soyuz.

———1976———
Se lanza el Viking estadounidense para explorar la vida en Marte. Toma muestras de la superficie del planeta.

———1977———
Los Estados Unidos lanzan las sondas Voyager 1 y 2 para tomar fotografías de los planetas más remotos.

———1981———
Se pone en órbita el primer transbordador espacial.

———1983———
El presidente estadounidense Ronald Reagan da su conformidad a la Iniciativa de defensa estratégica,
que consiste en la instalación de defensas anti-misiles en el espacio.

——— 28 ENE. 1986———
Explosión del Challenger. Mueren sus siete tripulantes.

———1986———
La Unión Soviética instala la Estación espacial 3-

El planeta sedna, Características y datos, Distancia y medidas

OPINION CIENTIFICA –1

Sedna: el décimo planeta en el Sistema Solar

Aunque es más pequeño que Plutón, es el cuerpo más grande en órbita alrededor del Sol identificado desde el descubrimiento de Plutón, en 1930. Existe discusión entre los astrónomos si, por su pequeño tamaño, tendrá o no status de planeta…o será solamente un planetoide.

planeta sedna

Planeta Sedna, N°:10 del sistema solar

Mercurio, Venus, Tierra, Marte, Júpiter, Saturno, Urano, Neptuno, Plutón… ¡y Sedna!… Sí, porque entre los astrónomos ya se hizo oficial el descubrimiento del décimo planeta del Sistema Solar, el cuerpo celeste más lejano al Sol y de un tamaño muy similar a Plutón.

Está tan lejos del Sol que es el más frío del Sistema Solar. De hecho, su temperatura nunca sobrepasa los -240º C. Pero es el cuerpo celeste más importante y más grande en órbita alrededor del Sol identificado desde el descubrimiento de Plutón, en 1930.

¿Cómo se hizo posible la confirmación de este nuevo planeta?… El equipo encabezado por el investigador Mike Browne, del California Institute of Technology (Caltech) lo detectó por primera vez el 14 de noviembre del 2003, con la ayuda del telescopio Samuel Oschin, en el Observatorio Palomar de Caltech, cerca de San Diego, en California. Con el correr de los días, los telescopios de Chile, España, Arizona y Hawai confirmaron la existencia de Sedna. También lo hizo el nuevo telescopio infrarrojo espacial Spitzer, de la NASA.

Michael Brown dijo que era tanta la distancia de Sedna con respecto al sol, que desde el nuevo planeta se podría tapar el sol con la cabeza de un alfiler.

Más acerca de Sedna

Este nuevo planeta fue bautizado como Sedna en honor a la diosa del mar entre los pueblos inuit, habitantes esquimales del Norte de Canadá y Groenlandia, dama de las profundidades del mar y de las emociones humanas.

Según el pueblo inuit, la diosa Sedna dio origen a las criaturas marinas desde una cueva congelada que ocupa en el fondo del océano.

Sedna se encuentra aproximadamente a 12.800 millones de kilómetros de la Tierra y su tamaño parece ser tres cuartas partes el de Plutón. Es seis veces más pequeño que la Tierra.

Posee un diámetro de unos 2.000 kilómetros y una superficie recubierta de hielo y roca, y debido a su dimensión pequeña, algunos científicos expresaron sus dudas a que pueda ser considerado un planeta más. Y es que – dicen – tal vez sería más correcto hablar de un «planetoide».

Sedna es más rojo que cualquier otro cuerpo del Sistema Solar, con la excepción de Marte, y sigue una órbita muy elíptica, que en su punto más alejado lo sitúa a unos 135.000 millones de kilómetros del Sol, una distancia equivalente a 900 veces la existente entre el Sol y nuestro planeta, por lo cual tarda 10.500 años terrestres! en completar una sola órbita.

Para tener una idea, Plutón, el noveno planeta del Sistema Solar, y hasta ahora el último, tiene un diámetro de dos mil kilómetros y se encuentra a 6 mil millones de kilómetros de la Tierra.

Los primeros cálculos sugieren que Sedna se encuentra ubicado exactamente en una región del espacio llamada Cinturón de Kuiper. Éste posee cientos de objetos conocidos y los astrónomos creen que aún existen muchos otros esperando ser encontrados.

La mayoría son pequeños mundos de roca y hielo, aunque algunos también podrían ser tanto o más grandes que Plutón. La importancia de Sedna radica específicamente en que es el primero de este tipo de mundos que mantiene una órbita regular, ya que otros objetos similares son menos estables.

¿Qué viene ahora?…Intentar determinar si Sedna posee algún grado de atmósfera. Además, los científicos usarán el Hubble para descubrir por qué posee el tono rojizo más brillante después de Marte.

OPINION CIENTIFICA -2-

Sedna no es el décimo planeta del sistema solar. Numerosos medios de comunicación han cometido varios errores a la hora de describir el último descubrimiento de la NASA.

Entre otras cosas Sedna, un planetoide descubierto por astrónomos del Instituto Tecnológico de California ( Caltech) en cooperación con la NASA, no es un planeta ni tampoco, como se ha dicho, forma parte del cinturón de Kuiper.

El mismo equipo descubrió hace unos días otro planetoide, denominado 2004DW , y este si que forma parte del cinturón de Kuiper. De hecho, por su tamaño de 1600 km de diámetro, su descubrimiento habría sido una gran noticia sino fuera porque Sedna, a pesar de ser de un tamaño similar , tiene la particularidad de ser el primer planetoide situado más allá del cinturón de Kuiper, en una zona que hasta ahora era sólo intuida por la teoría y que se conoce como Nube de Oort.

Sedna está a más del doble de distancia que los objetos más lejanos de nuestro sistema conocidos hasta ahora y tres veces más lejos que Plutón. Por eso es noticia.

En nuestro sistema conocemos el cinturón de asteroides que se encuentra entre Marte y Júpiter, y un cinturón similar llamado Cinturón de Kuiper que se encuentra más allá de Plutón. De echo muchos astrónomos consideran que Plutón no es en realidad un planeta sino uno de los objetos que forman el Cinturón de Kuiper, ya que su tamaño es relativamente pequeño, su órbita es demasiado inclinada y a diferencia de los demás planetas sigue una trayectoría que hace que en ocasiones no sea el más alejado de la Tierra. Sedna es aún más pequeño que Plutón, su órbita también es muy inclinada, y su trayectoria es tan parabólica que sólo lo hemos detectado por casualidad, ya que dentro de unos 70 años volverá a alejarse de nuevo para no regresar y ser visible en las mismas condiciones en los próximos 10,500 años.

Ningún astrónomo calificaría a Sedna como planeta, y muchos dudan que Plutón lo sea, así que difícilmente se puede afirmar que Sedna es el décimo planeta de nuestro sistema. Se trata sólo de una exageración periodística.

Algunos Datos Sobre el Sistema Solar…

– El Sistema Solar está formado por una estrella central, el Sol, los cuerpos que le acompañan y el espacio que queda entre ellos.

– El Sol contiene el 99.85% de toda la materia en el Sistema Solar. Los planetas, los cuales están condensados del mismo material del que está formado el Sol, contienen sólo el 0.135% de la masa del sistema solar.

– Júpiter contiene más de dos veces la materia de todos los otros planetas juntos. Los satélites de los planetas, cometas, asteroides, meteoroides y el medio interplanetario constituyen el restante 0.015%.

– Los planetas terrestres son los cuatro más internos en el Sistema Solar: Mercurio, Venus, Tierra y Marte. Éstos son llamados terrestres porque tienen una superficie rocosa compacta, como la de la Tierra.

– Los planetas Venus, Tierra y Marte tienen atmósferas significantes, mientras que Mercurio casi no tiene.

– A Júpiter, Saturno, Urano y Neptuno se les conoce como los planetas Jovianos (relativos a Júpiter), puesto que son gigantescos comparados con la Tierra, y tienen naturaleza gaseosa como la de Júpiter. También son llamados los gigantes de gas, sin embargo, algunos de ellos tienen el centro sólido.

– Los asteroides son rocas más pequeñas que también giran, la mayoría entre Marte y Júpiter. Además, están los cometas que se acercan y se alejan mucho del Sol. Por su parte, los meteoritos son fragmentos de tierra extraterrestre que se encienden y se desintegran cuando entran a la atmósfera.

Biografia de Euler Leonhard Vida y Obra Cientifica del Matematico

Biografía de Euler Leonhard  – Historia de su Vida y Obra Científica

Euler  Leonhard Matematico Suizo

Leonhard Euler, fue un matemático, físico y filósofo suizo. Se trata del principal matemático del siglo XVIII y uno de los más grandes y prolíficos de todos los tiempos, muy conocido por el número de Euler, número que aparece en muchas fórmulas de cálculo y física.
Fecha de nacimiento: 15 de abril de 1707, Basilea, Suiza
Fallecimiento: 18 de septiembre de 1783, San Petersburgo, Rusia
Conocido por: Número e; Identidad de Euler; Característica de Euler; Fórmula de Euler
Estudiantes doctorales: Johann Friedrich Hennert; Nicolas Fuss; Stepán Rumovski
Educación: Universidad de Basilea (1720–1723), Universidad Estatal de San Petersburgo

https://historiaybiografias.com/linea_divisoria3.jpg

VEAMOS AHORA SU BIOGRAFIA Y OBRA CIENTIFICA....

EulerLeonhard Euler, fue hijo de un clérigo, que vivía en los alrededores de Basilea.

Su talento natural para las matemáticas se evidenció pronto por el afán y la facilidad con que dominaba los elementos, bajo la tutela de su padre .

A una edad temprana fue enviado a la Universidad de Basilea, donde atrajo la atención de Jean Bernoulli.

Inspirado por un maestro así, maduró rápidamente, a los 17 años de edad, cuando se graduó Doctor, provocó grandes aplausos con un discurso probatorio, el tema del cual era una comparación entre los sistemas cartesiano y newtoniano.

Su padre deseaba que ingresara en el sagrado ministerio, y orientó a su hijo hacia el estudio de la teología. Pero , al contrario del padre de Bernoulli, abandonó sus ideas cuando vio que el talento de su hijo iba en otra dirección.

Leonhard fue autorizado a reanudar sus estudios favoritos y, a la edad de diecinueve años, envió dos disertaciones a la Academia de París, una sobre arboladura de barcos, y la otra sobre la filosofía del sonido. Estos ensayos marcan el comienzo de su espléndida carrera.

Por esta época decidió dejar su país nativo, a consecuencia de una aguda decepción, al no lograr un profesorado vacante en Basilea.

Así, Euler partió en 1727, año de la muerte de Newton, a San Petersburgo, para reunirse con sus amigos, los jóvenes Bernoulli, que le habían precedido allí algunos años antes .

En el camino hacia Rusia, se enteró de que Nicolás Bernoulli había caído víctima del duro clima nórdico; y el mismo día que puso pie sobre suelo ruso murió la emperatriz Catalina, acontecimiento que amenazó con la disolución de la Academia, cuya fundación ella había dirigido. Euler, desanimado, estuvo a punto de abandonar toda esperanza de una carrera intelectual y alistarse en la marina rusa.

Pero, felizmente para las matemáticas, Euler obtuvo la cátedra de filosofía natural en 1730, cuando tuvo lugar un cambio en el sesgo de los asuntos públicos. En 1733 sucedió a su amigo Daniel

Bernoulli, que deseaba retirarse, y el mismo año se casó con Mademoiselle Gsell, una dama suiza, hija de un pintor que había sido llevado a Rusia por Pedro el Grande.

Dos años más tarde, Euler dio una muestra insigne de su talento, cuando efectuó en tres días la resolución de un problema que la Academia necesitaba urgentemente, pese a que se le juzgaba insoluble en menos de varios meses de labor.

Pero el esfuerzo realizado tuvo por consecuencia la pérdida de la vista de un ojo.

Pese a esta calamidad, prosperó en sus estudios y descubrimientos; parecía que cada paso no hacía más que darle fuerzas para esfuerzos futuros.

Hacia los treinta años de edad, fue honrado por la Academia de París, recibiendo un nombramiento; asimismo Daniel Bernoulli y Collin Maclaurin, por sus disertaciones sobre el flujo y el reflujo de las mareas.

La obra de Maclaurin contenía un célebre teorema sobre el equilibrio de esferoides elípticos; la de Euler acercaba bastante la esperanza de resolver problemas relevantes sobre los movimientos de los cuerpos celestes.

En el verano de 1741, el rey Federico el Grande invitó a Euler a residir en Berlín. Esta invitación fue aceptada, y Euler vivió en Alemania hasta 1766.

Cuando acababa de llegar, recibió una carta real, escrita desde el campamento de Reichenbach, y poco después fue presentado a la reina madre, que siempre había tenido un gran interés en conversar con hombres ilustres. Aunque intentó que Euler estuviera a sus anchas, nunca logró llevarle a una conversación que no fuera en monosílabos.

Un día, cuando le preguntó el motivo de esto, Euler replicó: «Señora, es porque acabo de llegar de un país donde se ahorca a todas las personas que hablan».

Durante su residencia en Berlín, Euler escribió un notable conjunto de cartas, o lecciones, sobre filosofía natural, para la princesa de Anhalt Dessau, que anhelaba la instrucción de un tan gran maestro.

Estas cartas son un modelo de enseñanza clara e interesante, y es notable que Euler pudiera encontrar el tiempo para un trabajo elemental tan minucioso como éste, en medio de todos sus demás intereses literarios.

Su madre viuda vivió también en Berlín durante once años, recibiendo asiduas atenciones de su hijo y disfrutando del placer de verle universalmente estimado y admirado.

En Berlín, Euler intimó con M. de Maupertuis, presidente de la Academia, un francés de Bretaña, que favorecía especialmente a la filosofía newtoniana, de preferencia a la cartesiana .

Su influencia fue importante, puesto que la ejerció en una época en que la opinión continental aún dudaba en aceptar las opiniones de Newton.

Maupertuis impresionó mucho a Euler con su principio favorito del mínimo esfuerzo, que Euler empleaba con buenos resultados en sus problemas mecánicos.

Un hecho que habla mucho en favor de la estima en que tenía a Euler, es que cuando el ejército ruso invadió Alemania en 1760 y saqueó una granja perteneciente a Euler, y el acto llegó al conocimiento del general, la pérdida fue inmediatamente remediada, y a ello se añadió un obsequio de cuatro mil florines, hecho por la emperatriz Isabel cuando se enteró del suceso.

En 1766 Euler volvió a San Petersburgo, para pasar allí el resto de sus días, pero poco después de su llegada perdió la vista del otro ojo. Durante algún tiempo, se vio obligado a utilizar una pizarra, sobre la cual realizaba sus cálculos, en grandes caracteres.

No obstante, sus discípulos e hijos copiaron luego su obra, escribiendo las memorias exactamente como se la dictaba Euler. Una obra magnífica, que era en extremo sorprendente, tanto por su esfuerzo como por su originalidad.

Euler poseyó una asombrosa facilidad para los números y el raro don de realizar mentalmente cálculos de largo alcance.

Se recuerda que en una ocasión, cuando dos de sus discípulos, al realizar la suma de unas series de diecisiete términos, no estaban de acuerdo con los resultados en una unidad de la quincuagésima cifra significativa, se recurrió a Euler.

Este repasó el cálculo mentalmente, y su decisión resultó ser correcta.

En 1771, cuando estalló un gran fuego en la ciudad, llegando hasta la casa de Euler, un compatriota de Basilea, Peter Grimm, se arrojó a las llamas, descubrió al hombre ciego, y lo salvó llevándolo sobre sus hombros.

Si bien se perdieron los libros y el mobiliario, se salvaron sus preciosos escritos. Euler continuó su profuso trabajo durante doce años, hasta el día de su muerte, a los setenta y seis años de edad.

Euler era como Newton y muchos otros, un hombre capacitado, que había estudiado anatomía, química y botánica. Como se dice de Leibniz, podría repetir la Eneida, del principio hasta el fin, e incluso podría recordar las primeras y las últimas líneas de cada página de la edición que solía utilizar.

Esta capacidad parece haber sido el resultado de su maravillosa concentración, aquel gran elemento del poder inventivo, del que el mismo Newton ha dado testimonio, cuando los sentidos se encierran en intensa meditación y ninguna idea externa puede introducirse.

La apacibilidad de ánimo, la moderación y la sencillez de las costumbres fueron sus características.

Su hogar era su alegría, y le gustaban los niños. Pese a su desgracia, fue animoso y alegre, poseyó abundante energía; como ha atestiguado su discípulo M. Fuss, «su piedad era racional y sincera; su devoción, ferviente»

———————— 000 ———————–

(Ver: Fórmula Divina de Euler)

Agujeros Negros Origen, Formación y Características Breve y Fácil

Origen y Características de los Agujeros Negros
Muerte de Estrellas

Desde hace mucho tiempo uno de los temas predilectos de la ciencia-ficción han sido los agujeros negros, y en estrecha relación con ellos, el viaje a través del tiempo.

El concepto de agujero negro fue popularizado por el físico británico Stephen Hawking, de la Universidad de Cambridge, quien describe con ese nombre a una región del Universo de la que no puede salir ningún objeto una vez que entró allí.

Con esto en mente, sería interesante preguntarse qué le sucedería a alguien en el hipotético caso de encontrarse en las cercanías de una de estas regiones, qué sensaciones tendría y si la realidad que lo rodea sería igual a la que nos es familiar.

Hawking Físico astronomo

Para el físico Stephen Hawking y para la mayoría de los científicos un agujero negro es una región del Universo de la que no puede salir ningún objeto una vez que entró allí.

Agujeros negros: Como hemos visto en el nacimiento de las estrellas, una vez que el H y el He, el combustible termonuclear se han consumido en el núcleo de la estrella, sobreviene un colapso gravitatorio.

La evolución estelar culmina con la formación de objetos extremad mente compactos como enanas blancas o estrellas de neutrones cuando masa de la estrella no excede las 3 Mo (masa del Sol).

Si la masa es mayor, la compresión gravitatoria ya no se puede compensar con las fuerzas de repulsión de 1 electrones o neutrones degenerados y continúa tirando materia sobre la estrella: se forman los agujeros negros. En efecto, cuando los neutrones entre en colapso no existe ningún mecanismo conocido que  permita detener contracción.

Esta continúa indefinidamente hasta que la estrella desaparce, su volumen se anula y la densidad de materia se hace infinita. ¿Cómo entender una “estrella” más pequeña que un punto y con semejante densidad de materia en su interior?

Si una estrella se contrae, el campo gravitatorio en su superficie aumenta, aunque su masa permanezca constante, porque la superficie está más cerca del centro. Entonces, para una estrella de neutrones de la misma masa que el Sol la velocidad de escape será de unos 200.000 km/seg. Cuanto mayor es la velocidad de escape de un cuerpo más difícil es que algo pueda escapa de él.

En cierto momento la velocidad de escape llega al limite de 300.000 km/s. Esta es la velocidad de las ondas electromagnéticas en particular de la luz que será entonces lo único que puede escapar de estos objetos. Ya hemos mencionado que no es posible superar esta velocidad y por lo tanto cuando la velocidad de escape de una estrella sobrepasa este limite, nada podrá escapar de ella. Los objetos con esta propiedad se llaman agujero negros.

Desde 1915, con la teoría de la relatividad general de Einstein se sabía que la gravedad generada por un cuerpo masivo deforma el espacio, creando una especie de barrera; cuanto más masivo es el cuerpo, mayor es la deformación que provoca. Los agujeros negros se caracterizan por una barrera  profunda que nada puede escapar de ellos, ni materia ni radiación; así t da la materia que cae dentro de esta barrera desaparece del universo observable.

Las propiedades físicas de estos objetos son tan impresionantes que por mucho tiempo quitaron credibilidad a la teoría.

Esta predice la existencia de agujeros negros de todos los tamaños y masas: los miniagujeros negros tendrían la masa de una montaña concentrada en el tamaño de una partícula; un agujero negro de 1cm. de radio sería tan masivo como la Tierra; los agujeros negros estelares tendrían masas comparables a las de las estrellas dentro de un radio de pocos kilómetros; finalmente, los agujeros negros gigantes tendrían una masa equivalente a varios cientos de millones de estrellas dentro de un radio comparable al del sistema solar.

Una forma de detectar agujeros negros sería a través de ondas gravitatorias. Estas ondas son para la gravedad lo que la luz es para el campo electromagnético. Sin embargo la tecnología actual no permite todavía esta posibilidad. El colapso de una estrella o la caída de un cuerpo masivo sobre un agujero negro originarían la emisión de ondas gravitatorias que podrían ser detectables desde la Tierra con antenas suficientemente sensibles.

 Aunque estas tremendas concentraciones de materia no se han observado todavía directamente hay fuerte evidencia de la existencia de estos objetos. Los astrofísicos comenzaron a interesarse activamente en los agujeros negros en la década del 60, cuando se descubrieron fenómenos sumamente energéticos.

Las galaxias superactivas, como las Seyferts, cuásares y objetos BL Lacertae emiten una cantidad de energía mucho mayor que una galaxia normal, en todas las longitudes de onda. Todos estos violentos fenómenos parecen asociados con cuerpos compactos muy masivos: estrellas de neutrones o agujeros negros estelares en el caso de binarias X, estrellas supermasivas o agujeros negros gigantes en los núcleos galácticos activos.

Las aplicaciones más importantes de los agujeros negros a la astrofísica conciernen a los núcleos activos de galaxias y cuásares. Los efectos de las enormes energías involucradas allí podrían ser sumamente interesantes y podrían permitir explicar fenómenos que todavía no se comprenden.

Fuente Consultada:Notas Celestes de Carmen Nuñez

GRANDES HITOS EN LA HISTORIA DE LOS AGUJEROS NEGROS
1783 El astrónomo británico John Michell señala que una estrella suficientemente masiva y compacta tendría un campo gravitatorio tan grande que la luz no podría escapar.

1915 Albert Einstein dio a conocer su teoría de la gravitación, conocida como Teoría General de la Relatividad.

1919 Arthur Eddington comprobó la deflexión de la luz de las estrellas al pasar cerca del Sol.

1928 S. Chandrasekhar calculó el tamaño de una estrella que fuera capaz de soportar su propia gravedad, una vez  consumido todo si combustible nuclear. El resultado fue que una estrella de masa aproximadamente una vez y media la del Sol nc podría soportar su propia gravedad. Se le otorgó el Premio Nobel 1983.

1939 R. Opphenheimer explice qué le sucede a una estrella qué colapsa, de acuerdo con la Teoría de la Relatividad General.

1963 M. Schmidt identifica un quasar desde el observatorio de Monte Palomar.

1965 – 1970 R. Penrose y S, Hawking demuestran que debe haber una singularidad, de densidad y curvatura del espacio-tiempo infinitas, dentro de un agujero negro.

agujero negro

En el interior de un agujero negro, el retorcimiento del tiempo y el espacio aumentan hasta el infinito.
A esto los físicos llaman singularidad.

■ Un rayo de luz se curva al pasar cerca de un objeto masivo ya que está curvado el espacio que atraviesa. Si el rayo pasa sucesivamente por varios cuerpos su trayectoria se curvará hasta que el rayo quede girando en círculo, del que no puede escapar. Este es el efecto gravitatorio de los agujeros negros.

■ Un agujero negro es una zona del universo con una gravedad tan enorme que ni el tiempo puede salir de él.

■ Los pulsares y los quasars proporcionan información complementaria sobre la ubicación de los agujeros negros.

■ Detectar un agujero negro no es fácil. Se los descubre por la poderosa emisión de rayos X que los caracteriza.
Si un astronauta penetrara en un agujero negro no tendría forma de vivir. Debido a la intensísima fuerza gravitoria nos estiraríamos como un fideo hasta despedazarnos.

■ En el interior de un agujero negro el espacio y el tiempo aumentan hasta lo, infinito.

■ Se estima que el número de agujeros negros en el Universo es muy superior al número de estrellas visibles y son de mayores dimensiones que el Sol.

■ Existen varios agujeros negros identificados, uno se halla en nuestra Via Láctea: el Cygnus X-1.

AMPLIACIÓN DEL TEMA:
Fuente: Magazine Enciclopedia Popular: Los Agujeros Negros

Hagamos un ejercicio mental e imaginemos por un momento que somos intrépidos astronautas viajando al interior de un agujero negro…

Repasemos algunas ideas importantes. Los físicos saben desde hace mucho que un rayo de luz se curva al pasar cerca de un objeto masivo ya que está curvado el espacio que atraviesa. Pero ¿qué sucede si este rayo pasa sucesivamente cerca de varios cuerpos?.

Cada vez su trayectoria se curvará un poco más hasta que finalmente el rayo estará girando en círculo, del que no podrá escapar. Este efecto gravitatorio se manifiesta en los agujeros negros, donde la atracción es tan fuerte que nada, ni siquiera la luz, puede escapar de él una vez que entró.

La gravitación distorsiona además del espacio, el tiempo. Veamos qué sucede en la superficie de un agujero negro, el horizonte de sucesos, que coincide con los caminos de los rayos luminosos que están justo a punto de escapar, pero no lo consiguen.

DONDE EL TIEMPO SE DETUVO
Según la Teoría de la Relatividad, el tiempo para alguien que esté en una estrella será distinto al de otra persona lejana, debido al campo gravitatorio de esa estrella. Supongamos que nosotros, astronautas, estamos situados en la superficie de una estrella que colapsa, y enviamos una señal por segundo a la nave espacial que está orbitando a nuestro alrededor.

Son las 11:00 según nuestro reloj y la estrella empieza a reducirse hasta adquirir untamaño tal que el campo gravitatorio es tan intenso que nada puede escapar y nuestras señales ya no alcanzan la nave.

Desde ella, al acercarse las 11:00, nuestros compañeros astronautas medirían intervalos entre las señales sucesivas cada vez mayores, pero este efecto sería muy pequeño antes de las 10:59:59. Sin embargo, tendrían que esperar eternamente la señal de las 11:00. La distorsión del tiempo es aquí tan tremenda que el intervalo entre la llegada de ondas sucesivas a la nave se hace infinito y por eso la luz de la estrella llegaría cada vez más roja y más débil.

El tiempo, desde nuestro punto de vista como astronautas sobre la superficie de la estrella, se ha detenido. Llegaría un punto en que la estrella sería tan oscura que ya no podría verse desde la nave, quedando sólo un agujero negro en el espacio.

Pero como astronautas, tenemos un problema más angustiante.

La gravedad se hace más débil cuanto más nos alejamos de la estrella, es decir, varía rápidamente con la distancia. Por lo tanto, la fuerza gravitatoria sobre nuestros pies es siempre mayor que sobre nuestra cabeza. Esto significa que debido a la diferencia de fuerzas, nos estiraríamos como un fideo o, peor aún, nos despedazaríamos antes de la formación del horizonte de sucesos (a diferencia de lo que sucede en la Tierra, donde la gravedad para nosotros prácticamente no varía con la altura). Este experimento no es, por ahora, recomendable.

¿Qué ocurre con la materia dentro del agujero negro? Las teorías de Stephen Hawking y Roger Penrose, de la Universidad de Oxford aseguran que en el interior el retorcimiento del espacio y del tiempo aumentan hasta el infinito, lo que los físicos llaman una singularidad. Si una estrella esférica se encogiera hasta alcanzar el radio cero, ya no tendría diámetro, y toda su masa se concentraría en un punto sin extensión. ¿Qué sucede si la materia no puede salir del agujero?.

Sólo caben dos respuestas: o deja de existir o viaja a otra parte. Esta última posibilidad dio pie a la teoría del agujero de gusano: al caer en el agujero podríamos salir en otra región de Universo. Para desgracia de los novelistas de ciencia-ficción, esta posibilidad no posee gran aceptación científica hasta ahora.

¿ALGUIEN HA VISTO UN AGUJERO NEGRO?
Dado que se conoce muy poco acerca de estos huecos en el espacio, su estudio comenzó a desarrollarse mediante modelos matemáticos, aun antes de que hubiese evidencia de su existencia a través de observaciones. Pero, ¿cómo podemos creer en objetos cuya existencia se basa sólo en cálculos?.

La lista de evidencias comienza en 1963, cuando desde el observatorio de Monte Palomar en California, se midió el corrimiento al rojo de un objeto parecido a una estrella en dirección a una fuente de ondas de radio. Este corrimiento era muy grande, por lo que se pensó que se debía a la expansión del Universo y, por lo tanto, el objeto estaba muy lejos. Para ser visible, este objeto debería ser muy brillante y emitir una enorme cantidad de energía. A ellos se los llamó quasars (quasi-strange objects), y podrían proporcionar evidencia acerca de la existencia de los agujeros negros.

Otros candidatos para darnos información sobre los agujeros negros son los pulsares, que emiten ondas de radio en forma de pulso debido a la compleja interacción entre sus campos magnéticos y el material intergaláctico. También las estrellas de neutrones, objetos muy densos, podrían colapsar para convertirse en agujeros negros.

Detectar un agujero negro no es tarea fácil. La forma más utilizada está basada en el hecho de que estos objetos son fuentes emisoras de rayos X. Esto se relaciona con los sistemas binarios, formados por una estrella y un agujero negro. La explicación para este hecho es que de alguna forma se está perdiendo materia de la superficie de la estrella visible.

Como en una pareja de baile en una habitación pintada de negro donde la chica está vestida de blanco y el chico de negro, muchas veces se han observado sistemas en los que sólo hay una estrella visible girando alrededor de algún compañero invisible. Vemos girar a la chica, aunque no podamos distinguir a su pareja. Cuando la materia va cayendo en este compañero comienza a girar como una espiral y adquiere gran temperatura, emitiendo rayos X. Además, el agujero negro debe ser pequeño.

Actualmente se han identificado varios agujeros negros: uno de ellos es el caso de Cygnus X-l en nuestra galaxia, y otros en dos galaxias llamadas Nubes de Magallanes. Sin embargo, el número de agujeros negros se estima que es muy superior, pudiendo ser incluso mayor al de estrellas visibles y de mayores dimensiones que el Sol.

Formacion de una Estrella de Neutrones y Sus Caracteristicas

Formacion de una Estrella de Neutrones y Sus Caracteristicas

Ante todo definimos una estrella, gran cuerpo celeste compuesto de gases calientes que emiten radiación electromagnética, en especial luz, como resultado de las reacciones nucleares que tienen lugar en su interior.

Por ejemplo el Sol es una estrella. El número de estrellas observables a simple vista desde la Tierra se ha calculado en un total de 8.000, la mitad en el hemisferio norte celeste y la otra mitad en el sur. Durante la noche no se pueden ver más de 2.000 al mismo tiempo en cada hemisferio.

En 1934 los teóricos usaron la mecánica cuántica para predecir la existencia de las estrellas de neutrones: cuando la gravedad se hace demasiado fuerte como para que una enana blanca resista el colapso, los electrones son empujados al interior de los núcleos atómicos convirtiendo a los protones en neutrones.

Pero al igual que los electrones, los neutrones obedecen un principio de exclusión, de acuerdo al cual cada neutrón puede ocupar un determinado nivel de energía que no puede compartir con otro.

Cuando todos estos niveles son ocupados, los neutrones están completamente degenerados y ejercen una presión capaz de frenar el colapso gravitatorio.

Así, una estrella de neutrones es en muchos aspectos una versión extrema de una enana blanca: para la misma masa (aproximadamente 1 Mo*) una estrella de neutrones tiene un radio mucho menor (unos 15 km) y una densidad fantástica (un millón de toneladas por cm3).- (*):Mo es igual a la masa del Sol.

La temperatura es de unos 10 millones de grados, pero debido a su tamaño pequeño, estos objetos son en general imposibles de detectar ópticamente.

La masa de una estrella de neutrones no puede exceder 3 Mo: por encima de este valor la gravedad le gana a la presión de los neutrones degenerados y el único estado final posible es un agujero negro.

La rápida rotación y los fuertes campos magnéticos son dos características importantes de estas estrellas ultradensas. Sabemos que todas las estrellas rotan.

Al colapsar, la velocidad de rotación aumenta de manera de conservar el momento angular (así como un patinador baja los brazos para girar más rápidamente) La velocidad de rotación de las estrellas de neutrones es de varias vueltas por segundo.

También todas las estrellas tienen campos magnéticos pero cuando colapsan, éste aumenta.

Los campos magnéticos de las estrellas de neutrones son un billón de veces más intensos que el terrestre. Estas dos propiedades son las que permiten detectar a las estrellas de neutrones en forma de púlsares.

La primera detección de un púlsar se produjo en 1986 en Inglaterra, 34 años después de haber sido predichos teóricamente.

Aparece como un objeto que emite pulsos de radio de intensidad variable, pero espaciados a intervalos de tiempo regulares: el período, increíblemente preciso, es de 1,33730113 segundos.

El fenómeno fue interpretado como una estrella de neutrones cuyas líneas de campo magnético aceleran los electrones a lo largo del eje magnético, causando la emisión de un rayo de ondas de radio que rotan con la estrella y producen un pulso cuando el rayo intercepta la línea de Visión del observador.

Desde entonces se han descubierto otros varios púlsares y se ha encontrado que algunos de ellos no sólo emiten en radio, sino también en frecuencias más altas como rayos x y y.

Se conocen actualmente más de 300 púlsares, situados mayormente en el plano galáctico, a unos pocos kpc del Sol. Los lugares con más posibilidades para encontrar púlsares son los remanentes de supernova.

La famosa Nebulosa del Cangrejo es el remanente de la supernova de 1054 y contiene efectivamente el púlsar del Cangrejo.

Debido a su reciente formación es uno de los que rotan más rápido: da 33 vueltas por segundo. Podemos predecir con facilidad, que la velocidad de rotación de un púlsar disminuirá lentamente con el tiempo, de acuerdo a la velocidad con que disipa energía. Por eso los púlsares más jóvenes rotan más rápido que los viejos.

Sus períodos van de 0,006 a 0,03 segundos hasta 4,3 segundos. Cuando la velocidad de rotación se hace pequeña, el mecanismo del púlsar no sirve: su vida promedio es de unos pocos millones de años.

Hay otro efecto que contribuye a la modificación de la velocidad de rotación pero de manera más abrupta: son los “glitches”, que disminuyen el período de rotación una parte en un millón en pocos días.

Se interpreta como sismos estelares debido a inestabilidades en la corteza o el núcleo de la estrella de neutrones. Estos fenómenos son muy útiles para estudiar la estructura interna de los púlsares, pero sólo aparecen durante unos pocos pulsos.

El púlsar de la supernova de 1987 trajo muchas sorpresas. Apareció antes de lo esperado y su rotación era extremadamente veloz, su período de 0,5 milisegundos era de lejos el más corto que se conocía. Todavía los científicos encuentran entretenimiento en este objeto.

Aunque la detección de púlsares en los remanentes de supernovas se ha hecho difícil y rara, hay un fenómeno más extendido que permite descubrir muchos de estos objetos: las fuentes compactas de rayos x.

En 1971, a partir del lanzamiento del satélite astronómico Uhuru, se descubrieron fuentes galácticas emisoras de un fuerte flujo de rayos x.

La fuente llamada Centauro x-3, por ejemplo, tiene una luminosidad en rayos x 10 veces mayor que la luminosidad total del Sol.

Se eclipsa cada 2,087 días, lo que demuestra que la fuente de rayos X está en movimiento orbital alrededor de un objeto más masivo.

Esta fuente es parte de un sistema binario formado por la estrella de neutrones y una estrella gigante. La primera atrae el viento estelar de la segunda y convierte la energía gravitatoria del gas en rayos x.

Este tipo de púlsares binarios proveen una de las pruebas de la teoría de la relatividad que predice que un cuerpo masivo acelerado radiará energía en forma de ondas gravitatorias.

La disipación de energía de esta forma causa el temblor de la órbita y en consecuencia una lenta disminución del período orbital del púlsar a lo largo del tiempo.

Las predicciones teóricas de Einstein concuerdan muy bien con las observaciones del periodo orbital de PSR 1913+16, que está disminuyendo unos 76 milisegundo por año.

Fuente Consultada:Notas Celestes de Carmen Nuñez

Estrellas Explosivas Novas y Supernovas Formación y Características

Estrellas Explosivas Novas y Supernovas Formación y Característicasr

Estrellas explosivas: novas y supernovas

Cuenta la leyenda que Hiparco se decidió a confeccionar su catálogo cuan do apareció una estrella nueva en la constelación zodiacal de Escorpio.

Su objetivo era construir un sistema de movimientos planetarios y es probable que la observación de los planetas noche tras noche lo llevara a memo rizar las posiciones de las estrellas más brillantes, especialmente las que se encontraban cercanas a la franja del zodíaco.

La filosofía aristotélica vigente en ese momento suponía al cielo perfecto e inalterable. Entonces es posible imaginarse el asombro del astrónomo griego ante la sorprendente aparición. 

Algunos historiadores consideran que Hiparco observó en realidad un cometa y no una estrella nueva. Pero dado que en la actualidad se observan algunas decenas de novas por año por galaxia es llamativo que no se hubieran observado con anterioridad y que incluso con posterioridad a Hiparco (hasta 20 siglos después!) no se observara ninguna en occidente.

La siguiente observación de una nova en Europa fue realizada por Tycho Brahe en 1572. A él se debe el término nova (del latín, nova stella ) e indica la idea original sobre estos objetos: de repente aparecía una estrella donde previamente no se había observado.

Para descubrir una nueva estrella hay que ser un experto observador del cielo, como hemos mencionado, durante siglos se les prestó muy poca atención a los componentes del paisaje celeste que no fueran los planetas, por lo tanto si la nova aparecía en una constelación lejana al zodíaco muy probablemente pasara inadvertida.

También hay que considerar la fuerza de la teoría aristotélica: cualquier cambio en los cielos inmutables era imposible. La información sobre cualquier cambio celeste podía convertirse en tm sacrilegio y es muy probable que quien lo observara no lo hiciera público para no arriesgarse a ser tratado de loco, ciego o mentiroso.

Pero afortunadamente, durante el período que va de la época de Hiparco hasta el año 1500 los chinos observaron cuidadosamente el cielo y registraron todos los cambios detectados. En la época antigua y medieval reportaron la aparición de cinco estrellas brillantes (en los años 185, 393, 1006, 1054 y 1181). La de 1006 fue por lo menos 200 veces más brillante que Venus, de manera que ni siquiera los desinteresados europeos pudieron ignorarla

Luego de Tycho, el siguiente en observar una nova fue un astrónomo alemán, F. Fabricio en 1596, y en 1604 lo hizo Kepler. Todas estas observaciones coincidían en que aparecía una estrella muy brillante donde previamente no se había observado nada y este brillo disminuía lentamente hasta desaparecer.

En la actualidad sabemos que lo que antiguamente se llamaba nova corresponde en realidad a dos tipos de objetos: novas y supernovas. Al igual que las novas, las supernovas son estrellas eruptivas o explosivas, pero se distinguen de aquéllas en que la cantidad de energía liberada es mucho mayor y además, en el caso de las novas, sólo aparecen afectadas por la explosión las capas exteriores, mientras que la explosión de una supernova afecta toda la estrella. Aún las más luminosas como Nova Cygni 1975, brillan 1.000 veces menos que las supernovas.

Novas: Estas estrellas se clasifican en novas, que ganan más de 10 magnitudes en la explosión, y novas enanas, que sólo aumentan su brillo unas pocas magnitudes. Algunas han explotado sólo una vez desde que fueron observadas, pero se cree que son recurrentes cada 10.000 o 100.000 años. Las novas recurrentes, menos energéticas, experimentan explosiones cada 10 a 100 años.

La observación de varias post-novas a mediados de este siglo demostró que muchas de ellas son miembros de sistemas binarios super próximos en los que una de las estrellas es una enana blanca y la otra una estrella fría (por ejemplo una gigante roja). Cuando la estrella ínicialmente menos masiva comienza a expandirse para formar una gigante roja, etapa que se acelera al aumentar su masa con la que se desprende de su compañera, sus capas exteriores se acercan tanto a la enana blanca que parte de su envoltura queda atrapada en el campo gravitatorio de ésta, formando lo que se llama un disco de acreción.

Tal nombre se debe a que, debido a colisiones entre las partículas del disco, éste pierde energía y algunas partes caen sobre la enana blanca, que gana así cierta masa en un proceso llamado acreción. La gran gravedad superficial de la enana blanca comprime esta masa formada esencialmente de hidrógeno, y la calienta.

La temperatura se hace tan alta que comienza la fusión de este hidrógeno, lo que calienta aún más la superficie y se inicia la fusión en el disco de acreción, produciéndose un enorme destello de luz, y las capas superiores del disco son arrojadas lejos de la influencia gravitatoria de la enana blanca. Este destello de luz es lo que vemos desde la Tierra en forma de nova y la parte del disco de acreción impulsada hacia el exterior es la nube de gas y polvo que se observa alrededor de la post-nova.

El proceso de fusión disminuye gradualmente, pero el ciclo recomienza porque la compañera de la enana blanca sigue perdiendo masa y esto reconstruye el disco de acreción. De esta forma el fenómeno de nova puede repetirse muchas veces antes de que la supergigante finalice su expansión y se transforme ella misma en enana blanca.

Por lo visto, las condiciones necesarias para la formación de una nova son entonces bastante especiales, y muy pocas estrellas de nuestra galaxia las satisfarán. El Sol, como hemos visto, se transformará en enana blanca. Pero como no tiene compañera no será una nova.

Supernovas:El fenómeno de supernova es una explosión fenomenal que involucra la mayor parte del material de una estrella y determina el fin de la evolución de ciertos objetos estelares. Se supone que la mayoría de las supernovas de nuestra galaxia son indetectables debido a la extinción causada por el polvo interestelar. Actualmente se cree que las observaciones chinas de 1054 y las de Tycho y Kepler se trataban de supernovas. La de Kepler, en 1604, fue la última detectada en nuestra galaxia.

Hay esencialmente dos tipos de supernovas: a) las tipo I resultan de la explosión de estrellas viejas, de masa relativamente pequeña y pobres en hidrógeno pero ricas en elementos pesados, tal como corresponde a una fase avanzada de evolución; su composición indica que se trata de enanas blancas. b) Las tipo II son explosiones de estrellas masivas, también al final de su evolución, pero en una fase menos terminal que las de tipo 1; son ricas en hidrógeno y presumiblemente están en la etapa de supergigante roja.

En su máximo de luz, el brillo producido por las supernovas aumenta unas 15 magnitudes; las tipo 1 son casi tres veces más luminosas que las tipo II. Luego el brillo disminuye unas 304 magnitudes durante los primeros días y durante varios meses decrece casi exponencialmente.

La energía liberada durante el corto tiempo de la explosión es equivalente a la que irradiará el Sol durante 9 mil millones de años (recordemos que la edad actual del Sol es de unos 4,5 mil millones de años) o a la explosión simultánea de 1028 bombas de hidrógeno de 10 metagones cada una y la materia expulsada, alrededor de 5 M0,puede alcanzar velocidades de 36 x 106 km/h.

Las supernovas de tipo 1 pueden alcanzar una magnitud absoluta de -18,6, es decir 2.500 millones de veces la luminosidad del Sol o unas 100 veces más brillantes que la luz integrada de toda la galaxia. Según el tipo, la masa eyectada puede ser de 1 a 10 M0, lo que en algunos casos es la masa total de la estrella y, por lo tanto, no queda nada después de la explosión. A partir del descubrimiento de los púlsares (estrellas de neutrones de muy rápida rotación) en 1968, se sabe que después de la explosión puede quedar un objeto extremadamente denso. Este objeto, que es el núcleo de la estrella, está formado exclusivamente por neutrones.

Los mecanismos responsables de estas explosiones no se conocen todavía con certeza. La mayoría de las teorías consideran que la energía liberada por la explosión es principalmente de origen nuclear, en particular la fotodesintegración del Fe. Esta es la etapa final en la cadena de reacciones nucleares que ocurren durante la vida de las estrellas de unas 10 M0. Las estrellas con masas necesarias para terminar como supernovas de tipo 1 son por lo menos 10 veces más numerosas que las estrellas más masivas que dan origen a las supernovas tipo II. Por lo tanto sería razonable suponer que se observarán 10 veces más supernovas de tipo 1 que de tipo II.

Sin embargo no es así: los dos tipos se observan con la misma frecuencia. Por lo tanto hay que concluir que no todas las estrellas de poca masa terminan como supernovas y en consecuencia, que se necesitan ciertas condiciones especiales para que este fenómeno ocurra.

La pre-supernova de tipo II tiene una estructura de cáscara como una cebolla. A medida que descendemos de la capa superficial de H se encuentran capas de elementos de mayor masa atómica. Estas capas son producto de las distintas fases de la nucleosíntesis que han ocurrido durante la vida de la estrella. Las reacciones que originan los elementos más pesados se ordenan de acuerdo a la temperatura.

Los aumentos de temperatura ocurrieron alternándose con contracciones gravitatorias. El centro de la supergigante que explotará como supernova está compuesto por una mezcla de núcleos de Fe y otros núcleos con números atómicos entre 50 y 60. Estos son los elementos con mayor energía de ligadura. Por lo tanto no se puede extraer más energía de ellos. Cualquier cambio nuclear ulterior con estos elementos, tanto si es fusión para dar elementos más complicados como si es fisión para dar núcleos menos complicados, no liberará energía sino que la absorberá.

El núcleo estelar de hierro crece, luchando contra la contracción gravitatoria gracias a la presión de los electrones degenerados. Pero al describir las enanas blancas vimos que hay un limite para esto: cuando la masa del núcleo ha alcanzado el límite de Chandrasekhar (1,4 M0), la presión de los electrones no alcanza para evitar la contracción y la estrella colapsa. En ese momento, todos los productos del proceso de nucleosíntesis se han aniquilado, el gas está formado ahora por neutrones, protones y electrones libres.

Pero éstos últimos experimentan un gran aumento de energía al comprimirse, su energía se hace mayor que la necesaria para transformar un protón en neutrón y así son absorbidos por los protones. Privado de la componente más significativa de presión, el núcleo estelar colapsa a un ritmo acelerado. La distancia entre neutrones es ahora muy pequeña (del tamaño del núcleo atómico, fermi) y la estrella se ha transformado en una estrella de neutrones. Desde el inicio del colapso se requieren sólo unos pocos minutos para alcanza este estado.

Al comenzar el colapso del núcleo, las capas exteriores de la estrella, donde están ocurriendo algunas reacciones nucleares, caen arrastra das por él. Los gases se comprimen rápidamente y aumentan su temperatura. La velocidad de las reacciones nucleares aumenta notablemente, la gran cantidad de energía producida origina inestabilidades y, finalmente, la explosión de las capas exteriores.

Las supernovas de tipo 1 son parte de un sistema binario formado por una supergigante roja y una enana blanca, como el que da origen a las no vas. Sin embargo en este caso la masa de alguna de las componentes o d ambas es mayor que en el caso de la nova.

En esta situación, la enana blanca puede ganar más masa y superar el límite de Chandrasekhar. Entonces sufre un colapso y comprime muy fuertemente los núcleos de carbono y oxígeno en su interior, creando las condiciones para una fusión con tal liberación de energía que su resultado es una explosión de supernova. Probablemente éste fue el caso de las supernovas de Tycho y Kepler ya que en ninguno de los dos casos se ha detectado estrellas de neutrones en las posiciones correspondientes.

Incluso mucho tiempo después de la explosión las supernovas se revelar por sus efectos sobre el medio interestelar. El remanente joven de la supernova aparece como una gran burbuja que emite radiación en todo el espectro y se expande a una velocidad de 10.000 km/seg. A medida que lo hace empuja al gas interestelar y se va frenando. Después de unos cientos de años la cáscara se enfría y el remanente se desintegra en el medio circundante Los remanentes son antigüedades astronómicas muy valiosas, capaces de revelar información sobre la explosión, la evolución posterior y la estructura y composición del medio interestelar.

Las supernovas son uno de los contribuyentes más importantes a la evolución de la materia galáctica. No sólo transmiten al medio interestelar energía térmica y cinética sino que también la enriquecen con elementos pesados de la nucleosíntesis estelar. El interés por las supernovas de los astrónomos interesados en la evolución estelar y el medio interestelar ha aumentado notablemente, dado que se piensa que podrían ser el detonante del proceso de formación de nuevas estrellas.

La última observación de una explosión de supernova ocurrió en 1987 en la Gran Nube de Magallanes. Miles de investigadores renovaron su interés y en los últimos años se han realizado importantísimos avances en nuestra comprensión de estos fenómenos. Esta supernova ha proporcionado la posibilidad de realizar la medición de distancia más precisa que se haya hecho para un objeto fuera de nuestra galaxia. El remanente de SN 1987A (como se denomina) está a 1,60 x 105 años luz, con una certeza de ±5%.

Un anillo hecho del material eyectado por el progenitor de la supernova en su fase de supergigante, ya rodeaba a la estrella unos 5.000 años antes de la explosión, pero sólo se hizo visible cuando se calentó hasta unos 20.000 0K como consecuencia de la misma. Si ese anillo fuera perpendicular a la línea de la visión, se hubiera iluminado todo a la vez. Sin embargo, como está inclinado unos 450 respecto de esta posición, distintas partes se encuentran a distancias diferentes de nosotros.

La parte más cercana pareció encenderse tres meses después de la explosión, mientras que la más lejana permaneció oscura cerca de un año más. Esta diferencia indica que el diámetro del anillo es de 1,3 x 1013 km. La medición del diámetro angular fue realizada por la estación orbital Hubble y es de 1,66 segundos de arco.

Esencialmente, toda la energía cinética del núcleo que colapsa se convierte en una onda de choque que, al encontrar las capas exteriores que están colapsando, las hace rebotar y cambiar de dirección. Este proceso se ve favorecido por la gran cantidad de neutrinos emitidos por la estrella de neutrones que se está creando.

La luz puede ser emitida sólo cuando la onda llega a la capa más externa. En SN 1987A, la onda de choque demoró dos horas en atravesar toda la estrella. Los pocos (pero muy preciados) neutrinos detectados poseían características acordes con las predicciones teóricas —sus cantidades, energías y el intervalo de tiempo en que llegaron a la Tierra—, lo cual aumenta la credibilidad en los modelos.

El 99% de la energía liberada llega de esta forma, en los neutrinos que pueden escapar de la estrella mucho más rápido que los fotones de luz. Estas observaciones permiten abrigar esperanzas de observar más eventos de supernova en la medida en que mejoren los detectores de neutrinos. Se estima que los mismos ocurren cada 10 o 100 años, especialmente en las regiones centrales de nuestra galaxia, pero permanecen ocultos por el material interestelar que opaca la luz.

Si las predicciones teóricas respecto de los neutrinos de supernovas son tan precisas, ¿por qué hay una discrepancia tan grande entre las observaciones y las predicciones respecto de los neutrinos solares? Tal vez, más observaciones de supernovas ayuden a resolver este problema.

FORMACIÓN DE LOS ELEMENTOS QUÍMICOS: El aumento de presión y temperatura, después de producirse los primeros colapsos de la estrella, posibilita la fusión de núcleos de helio para formar uno de carbono. La persistencia de estas condiciones hará que los átomos de carbono se fusionen con otros para constituir otros más complejos. Así, el carbono, al fusionarse con un núcleo de deuterio, forma uno de nitrógeno, y al hacerlo con un núcleo de helio, constituye uno de oxígeno.

A través de reacciones similares se forma el resto de los elementos químicos, siendo necesarias condiciones más extremas: en general, cuanto mayor es el número atómico (Z), mayor presión y temperatura se requieren para la formación.

Ciertas características de la estructura interna de los núcleos de los elementos alteran la proporción que sería previsible: más abundantes los de menor número atómico. No obstante, en muchos casos, los átomos de los elementos químicos muy pesados se descomponen espontáneamente, modificando las proporciones que podrían calcularse.

¿Sabían que el átomo de carbono, debido a su mayor estabilidad, es el más abundante del Universo después del hidrógeno, el helio y el neón? La abundancia del carbono y su característica de generar otros elementos biogénicos son datos de gran importancia para entender la formación de moléculas orgánicas en el Universo y la aparición de vida sobre la Tierra. Es interesante, además, conocer que la abundancia relativa de hidrógeno, nitrógeno, oxígeno, carbono, fósforo y azufre es casi idéntica a la que se encuentra en la materia viva.

SUPERNOVAS INQUIETANTES
Al igual que los seres vivos, las estrellas nacen, viven y murieron Se forman a partir de una nube de gas, encienden sus hornos nucleares, irradian su luz durante millones de milenios y después se apagan colapsan y desaparecen. Una de las formas que tiene de morir es la supernova. Pero para llegar a ese final explosivo el astro tiene que tener por lo menos una masa equivalente a la de tres soles.

La supernova también ocurre cuando la estrella ha consumido casi todas sus fuentes de energía. Entonces dos fuerzas entran en una lucha crítica. La declinante fusión nuclear no puede ya compensar la fuerza de gravitación y esta hace que el astro comience a hundirse sobre sí mismo. Las capas exteriores se precipitan hacia el núcleo en un cataclismo gigantesco que origina un rápido sobrecalentamiento de la materia, proceso que culmina con la explosión que ya hemos descrito.

supernova

La supernova de la Galaxia del Cigarro, que se encuentra a alrededor de 12 millones de años luz de la Tierra

Las supernovas no son fenómenos frecuentes. En grandes sistemas estelares, como la Vía Láctea, se produce una cada siglo. Por esta razón, no son muchas las que el hombre ha podido presenciar en su brevísima existencia como especie.

En el año 1006 apareció una supernova en los cielos del hemisferio sur. En su apogeo brillaba tanto como el cuarto de luna y su luz proyectaba sombras sobre la Tierra. Fue visible durante dos semanas en pleno día, y durante dos años por la noche.

El 4 de julio de 1054, los astrónomos chinos registraron la aparición de una «estrella intrusa». Su brillo era de tal magnitud que también resultaba visible de día. Pronto se transformó en uno de los objetos más notorios del firmamento, al que únicamente el sol y la luna superaban en brillo. Se dejó ver durante dos meses y después comenzó a apagarse paulatinamente hasta desaparecer por completo.

Cuando los astrónomos contemporáneos dirigieron sus telescopios hacia la región del cielo donde hace 900 años había aparecido la «estrella intrusa», encontraron un extraño objeto al que se dio el nombre de Nebulosa del Cangrejo. Es una nube de gas en rápida expansión que sólo pudo originarse a partir de un estallido titánico. Los cálculos indican que nueve siglos atrás toda esa masa de gas debió haber estado comprimida en un volumen pequeño.

Se comprobó, de esa forma, que la mencionada nebulosa no era sino la supernova observada por los astrónomos chinos a comienzos de este milenio, que continúa explotando. El estallido ocurrió, en realidad 6 mil años antes de que su luz llegara a la Tierra y fuera percibida por los hombres.

La última supernova observada en la Vía Láctea fue registrada por el célebre astrónomo y matemático Johannes Kepler,en 1604, antes de la invención del telescopio. Desde entonces el hombre no había tenido ocasión de usar sus modernos instrumentos astronómicos para estudiar una supernova cercana.

Pero a comienzos de 1987, un científico canadiense descubrió desde el Observatorio de Las Campanas, en el norte de Chile, una supernova muy próxima a la Tierra, situada en la Gran Nube de Magallanes, que es una galaxia satélite de la nuestra.

Esta espectacular supernova, bautizada como Shelton 1987 A se hizo visible a simple vista. Ocurrió en realidad hace 170 mil años, es decir, antes de que en la Tierra se irguiera el hombre de Neandertal.

Así, por primera vez los astrónomos han podido seguir el curso evolutivo de una supernova con telescopios poderosos y modernos La supernova es desde luego un fenómeno inquietante. Es posible que el hombre llegue a auscultar las estrellas cercanas para determinar cuales de ellas amenazan con incurrir en esos estallidos catastróficos.

La teoría predice que a las elevadas temperaturas que alcanza el núcleo del astro que está por explotar, se producen, entre otras partículas, los fantasmales y casi inasibles neutrinos. Estos carecen de masa, se mueven a la velocidad de la luz, atraviesan la Tierra con la misma facilidad con que el agua pasa a través de un colador, y rara vez se detienen para interactuar con otras partículas.

El descubrimiento de Shelton 1987 A, ha ayudado a comprobar la teoría. Como resultado de esta supernova, la Tierra está recibiendo una lluvia de  neutrinos que se han captado en detectores especiales instalados en minas subterráneas, en los Estados Unido, Europa Japón y la Unión Soviética.

Cuando se perfeccionen estos detectores y se construyan incluso telescopios de neutrinos, el hombre estará en condiciones de escudriñar  en los núcleos de las estrellas que presenten gigantismo rojo I H acuerdo con las cantidades de neutrinos que éstas emitan será posible predecir con bastante exactitud y antelación cualquiera amenaza cercana de supernova que pudiera sumergir a la Tierra en un peligroso baño de radiación.

Fuente Consultada: Notas Celestes de Carmen Nuñez

Muerte de las Estrella Enanas Blancas Gigantes Rojas Vida y Evolucion

Muerte de las Estrella Enanas Blancas Gigantes Rojas

ESTRELLAS MORIBUNDAS: Enanas blancas: Cuando la estrella agota su combustible no tiene con qué luchar contra la contracción gravitatoria, por lo que entra en colapso y se convierte en enana blanca.

Sin embargo, la compresión que puede sufrir la materia tiene un limite dado por el llamado principio de exclusión de Pauli.

Las altas densidades observadas en las enanas blancas son difíciles de encontrar en otros cuerpos celestes o en la Tierra.

En verdad, la posibilidad de existencia de materia más densa que la observada en el sistema solar no fue considerada hasta que se desarrolló la mecánica cuántica. La comprensión de la naturaleza atómica de la materia permitió considerar la existencia de materia degenerada, mucho más concentrada que la materia ordinaria.

El Sol tiene una densidad promedio semejante a la del agua: cerca de 1 gr/cm3 y se comporta como un gas, con sus partículas moviéndose libremente.

El Hidrógeno (H) en su interior, a una temperatura de 15 millones de grados, está en su mayoría ionizado.

Los electrones se han separado de sus núcleos y la alta temperatura reinante les impide acercarse a ellos.

Como consecuencia, 1 cm3 de materia solar ordinaria es esencialmente vacío. Los protones y electrones pueden moverse libremente casi sin chocar entre sí.

En una enana blanca en cambio, una masa como la del Sol puede estar comprimida en un volumen no mayor que el de la Tierra. La densidad asciende a 1.000 kg/cm3. Aun cuando la temperatura ha disminuido por debajo de la temperatura de ionización, los átomos permanecen disociados por la enorme presión de la gravedad.

Las fuerzas gravitatorias actuantes en un cuerpo celeste masivo pueden comprimir su materia hasta un estado de degeneración electrónica y no más, ya que el principio de exclusión impide a dos electrones ocupar el mismo nivel de energía. Este efecto cuántico se llama presión de degeneración electrónica y es el limite que impone la mecánica cuántica a la compresión de un gas de electrones. Esto es lo que ha sucedido en las enanas blancas.

Su interior es “frío” (aunque la  temperatura puede alcanzar hasta un millón de grados) en el sentido de que para mantener a la estrella en equilibrio, las fuerzas autogravítantes no están compensadas por movimientos térmicos como sucede en las estrellas de secuencia principal, sino por la presión ejercida por los electrones degenerados que llegan al limite de compresión. El interior de una enana blanca no está en estado gaseoso sino que es como mi cristal gigante que se enfría lentamente.

Las partículas están superpuestas y ya casi no hay espacios vacíos entre ellas. Por lo tanto, su posición y velocidad están determinadas cuánticamente. El principio de exclusión impide que dos partículas ocupen el mismo estado de energía y mientras en un gas ordinario quedan niveles de energía libre (no ocupados por ninguna partícula), los electrones de un gas degenerado ocupan todas las posiciones cuánticamente admisibles.

Las enanas blancas se descubrieron en 1910, aunque entonces no se entendían. Su temperatura superficial es muy alta y su luminosidad anormalmente baja. Esto sólo podía explicarse si su radio era muy pequeño, comparable al radio de la Tierra (Ley de Stefan).

S. Chandrasekhar (nacido en 1910) fue quien elaboró la teoría de una esfera de gas degenerado y este trabajo le valió el Premio Nobel de Física de 1983. Contrariamente a lo que podría suponerse, cuanto más grande es la masa de una enana blanca, menor es su radio. Esto resulta de la necesidad de una presión del gas suficiente para balancear la presión gravitatoria.

La masa y el tamaño de una enana blanca están fijos por la composición de la estrella. Los cálculos teóricos indican que si está compuesta esencialmente de H tendrá una masa máxima posible de 5,5 M0. Pero si contiene elementos más pesados llegará sólo a 1,4 M0. Estos valores se conocen como limites de Chartdrasekhar. Una estrella más masiva perdería masa o sufriría una catástrofe antes de transformarse en enana blanca.

Actualmente sólo se han identificado algunos cientos de enanas blancas. Como tienen baja luminosidad intrínseca, sólo pueden observarse aquellas cercanas al sistema solar. Los modelos indican que son la fase evolutiva final de las estrellas de poca masa y, en ese caso, el 10% de las estrellas de nuestra galaxia deberían ser enanas blancas.

Aunque la temperatura central de una enana blanca es menor al millón de grados (compárese con los 15 millones de grados del Sol) su atmósfera es, por lo general, más caliente que la de una estrella de secuencia principal. Los electrones degenerados juegan también un rol muy importante en la determinación de la estructura térmica de la estrella. Esta función es semejante a la de los electrones exteriores de los átomos en los metales ordinarios:

SU capacidad para moverse libremente es responsable de la capacidad de los metales para conducir calor eficientemente. De la misma forma, los electrones degenerados son excelentes conductores de calor en las enanas blancas. En consecuencia, estas estrellas tienen casi la misma temperatura en todo su volumen, son casi isotérmicas. Cerca de la superficie la presión es suficientemente baja y los electrones no están degenerados, entonces las propiedades de la materia son más normales. La temperatura superficial es de unos 10.000°K.

Los espectros de las enanas blancas presentan la sorprendente característica de tener líneas correspondientes a un único elemento. Cerca de 80% de las enanas blancas observadas muestran en sus espectros sólo líneas de absorción de hidrógeno; la mayoría de las restantes tiene sólo líneas de He.

El ciclo de contracciones gravitatorias impuestas por su propia evolución, ha purificado las capas exteriores de las enanas blancas más allá de la estratificación observada en las estrellas normales.

De la misma forma en que los espectros de las estrellas ordinarias se clasifican en B, A, E y G de acuerdo a su temperatura superficial, los de las enanas blancas se dividen en DB, DA, DF Y DG (D indica dwarf :en inglés enana), correspondientes a temperaturas de 100.000 a 4.000 0K. Las más calientes consumen energía a velocidades tan grandes y evolucionan tan rápidamente que esto nos da la posibilidad de observar a estas estrellas envejecer en el transcurso de unos pocos años.

La evolución de las enanas blancas se ha estudiado intensamente en los últimos años y el modelo aceptado actualmente postula que cerca de 10 millones de años después de su formación, la luminosidad de una enana blanca se ha debilitado hasta un décimo de la solar y su temperatura superficial ha disminuido hasta los 30.000 °K.

La teoría sugiere que a una enana blanca le lleva cerca de mil millones de años enfriarse hasta transformarse en una tibia esfera de gas degenerado. Los cálculos indican que en esta etapa la estrella sufre un último cambio importante: comienza a cristalizarse. A través de su evolución hasta este punto permaneció en estado gaseoso.

A medida que se enfría cada ion del gas comienza a sentir fuerzas eléctricas con sus vecinos, produciendo una fase líquida en la materia. Mientras estas fuerzas comienzan a dominar a mayores distancias, más y más núcleos se unen y forman un cristal. Dicho proceso se debe a la disminución de la temperatura, pero es ayudado por la alta presión que comprime a los núcleos.

Este cambio de estado tiene un efecto importante en las etapas finales de evolución de la estrella. Primero el cambio de liquido a sólido libera energía, pero una vez que se ha cristalizado una fracción importante de su interior, la enana blanca se enfría rápidamente. Como el tiempo necesario para que una enana blanca llegue a la etapa de cristalización se calcula semejante a la edad de nuestra galaxia, se puede estimar la época inicial de formación de estrellas en la Vía Láctea observando las enanas blancas más frías.

Fuente Consultada:Notas Celestes de Carmen Nuñez

Historia de la Estacion Espacial Internacional Objetivos y Experimentos

Historia de la Estación Espacial Internacional Objetivos y Experimentos a Realizar

 

 

UN POCO DE HISTORIA…
Las estaciones espaciales
El hombre ha tenido ya bastantes éxitos en el espacio: ha logrado dar vueltas en torno de la Tierra, ha conquistado la Luna y las sondas con que llegó a Marte y a Venus hablan de su inalterable empeño por proseguirlos. El gran instrumento con que cuenta es su taller en el espacio: las estaciones planetarias.

La construcción de estaciones espaciales habitadas por el hombre, importante etapa en los futuros viajes interplanetario, fue puesta en órbita. Tanto podía funcionar automáticamente como con dotación a bordo. El 23 del mismo mes, el Soyuz y así permaneció durante 5 horas 30 minutos, tiempo durante el cual se cumplió un programa completo de experimentos ecológicos y médico-biológicos que incluía también la producción del propio alimento. Transcurrido ese lapso, retornó a la Tierra.

El 30 de junio del mismo año, el Soyuz 11, tripulado por los cosmonautas Dobrolvski, Volkov y Patsaiev, acoplaron su nave al Salyut y pasaron a su interior, donde permanecieron durante más de tres semanas. Ya en la Tierra, el drama: al abrirse la cápsula, los tres cosmonautas estaban muertos.

El 14 de mayo de 1973, por medio de un impulsor Saturno V, los Estados Unidos pusieron en órbita el laboratorio espacial Skylab I no tripulado de 85 toneladas de peso. Averiado al minuto de su lanzamiento, al aumentar peligrosamente la temperatura inicial de la astronave los técnicos de la NASA se abocaron a la tarea de repararlo.

El día 25 del mismo mes y año, los astronautas Conrad, Kerwin y Wwitz, lanzados en una cápsula tipo Apolo, abordaron el Skylab I y sobre la parte averiada desplegaron una especie de parasol para hacer descender la temperatura del laboratorio.

Durante 28 días los cosmonautas realizaron la mayoría de los experimentos previstos, referidos casi todos ellos a observaciones de la Tierra, el Sol y el espacio sidéreo. Cumplida la misión, retornaron a la Tierra en la cápsula Apolo, Los laboratorios orbitales son plataformas con capacidad para dar albergue a varios tripulantes durante un lapso relativamente largo, y están provistos de los elementos necesarios para el transporte de cosmonautas en viajes de ida y vuelta.

La segunda misión del programa se cumplió en la estación Skylab 3, en condiciones similares a la anterior, el 28 de julio de 1973. Los cosmonautas fueron Bean, Garriott y Lousma, quienes tras instalar un parasol adicional, recargar las cámaras de los telescopios y descubrir un detector de meteoritos junto a la pared de la estación, durante 59 días estudiaron la Tierra y la Luna, en especial las reacciones del organismo durante casi dos meses en un ambiente falto de gravedad. Después de una caminata espacial de 6 hs. 31′, que constituyó un nuevo récord, retornaron a la Tierra el 25 dé septiembre. Su estado físico era excelente.

LA ESTACIÓN ESPACIAL INTERNACIONAL: La exploración y la conquista del espacio es uno de los desafíos más grandes y excitantes emprendidos por el hombre, y la aventura más audaz en la historia de la exploración espacial es, sin duda alguna, la construcción de la Estación Espacial Internacional (ISS).

astronautaEn 1984, el gobierno estadounidense lanzó un programa para la construcción de una es espacial. Los enormes costes que suponían las de estudio y de planificación retrasaron la propia marcha del proyecto, que no adquirió forma hasta que finalizó la Guerra Fría. En 1993, Rusia decidió a aportar la experiencia que había  en la construcción —iniciada en el año 1986— de la estación espacial soviética MIR (paz).

En 1998 se inició  la construcción de la ISS. En primer lugar debían crearse las condiciones técnicas para asegurar una colaboración estrecha. En este sentido, la lanzadera estadounidense emprendió varios viajes a la  MIR y efectuó entre otras cosas, maniobras de acoplamiento. 

El 20 de noviembre de 1998 se instaló el primer componente de la ISS, un módulo de carga y de que se colocó a 350 Km. de distancia de la Tierra. Le siguió ese mismo año una pieza de empalme, que el 12 de julio de 2000 atracó el módulo ruso.

Desde noviembre de aquel mismo año hasta el abril de 2003, la ISS acogió varias tripulaciones internacionales formadas por tres astronautas.

Estos permanecen de cinco a siete meses en el espacio, transcurrido este tiempo, son relevados por nuevas dotaciones. Después de la catástrofe del Columbia ocurrida en 1º de febrero de 2003, la tripulación fija debió reducirse a dos personas por problemas de suministro.

Los estudios que se realizaran en la estación son los siguiente:
1-BIOLOGÍA:
– Respuesta fisiológica al vuelo espacial.
– Salud humana y rendimiento.
– Desarrollo de contramedidas a la microgravedad.
– Investigación general en Biología.

2-CONOCIMIENTO SOBRE LA TIERRA

3-MICROGRAVEDAD
– Ciencia de los Materiales.
– Física de Fluidos
– Ciencia de la Combustión
– Biotecnología
– Física fundamental.

4-CIENCIA ESPACIAL
– La estructura y la evolución del Universo
– Exploración del Sistema Solar
– Conexión Tierra-Sol
– Búsqueda de otros sistemas planetarios.

5-INGENIERÍA Y TECNOLOGÍA
– Sistemas de comunicación espaciales de uso comercial, con énfasis en la mejora de la tecnología de satélites para telefonía personal, y comunicación de vídeo y datos.
– Eficiencia en el uso de la energía, y calidad de agua y aire.
– Técnicas de construcción y funciones de mantenimiento automatizadas.

6-ESTUDIO DE NUEVOS PRODUCTOS

 INFORMACIÓN GENERAL DEL MEGA PROYECTO:

1. La Estación Espacial es la mayor dotación objeto jamás enviado al espacio. Se trata de un centro de investigación que mide 108 m. de largo y 80 m. de ancho. Su peso es de más de 450.000 kg.

2. Orbita a 400 km. sobre la tierra y se puede ver en el cielo nocturno a simple vista. Los científicos pueden estudiar la tierra y su entorno. Pueden ver los cambios que están ocurriendo en la tierra, en el mar, y con nuestro clima.

3. La ISS puede ser visto por la gente en la Tierra. Cuando se haya completado, la ISS será visible a más deL 90 por ciento de la población mundial y dará una vuelta a la Tierra cada 90 minutos.

4. Está siendo alimentada por energía solar. Esta energía es necesaria para alimentar los seis laboratorios y todo el espacio de vida a bordo.

5. La Estación Espacial Internacional fue diseñada y construido con la colaboración de 100.000 personas de 16 naciones desde 1998, y cientos de empresas. El proyecto se inició en 1998.

6. El costo de construir la Estación Espacial Internacional es correcto alrededor de 96 mil millones de dólares.

7. Los primeros miembros de la tripulación permanente, incluidos el astronauta estadounidense Bill Shepherd (que era también el comandante de la ISS) y los cosmonautas rusos Sergei Krikalev, como ingeniero de vuelo y Gidaenko Youri como comandante de la Soyuz. Esta expedición duró 140 días, 23 horas y 30 minutos en órbita.

8. Los vehículos espaciales viajan a la estación para traer y llevar científicos y suministros.

9. Los científicos están estudiando cómo los diferentes fluidos, metales y otros materiales  responden en el espacio sin el efecto de la gravedad. Estos estudios podrían ayudar a comprender mejor los virus, las proteínas y enzimas. Se espera que estos nuevos estudios guiarán algún día a los posibles nuevos tratamientos para muchas enfermedades, incluyendo cáncer. Los científicos también están tratando de lograr una medición más precisa que lo posible en la tierra, las formas más eficientes de producción de materiales, y una comprensión más completa del universo.

10. Alrededor de 160 paseos espaciales fueron necesarios para el montaje y mantenimiento de la Estación Espacial Internacional.

DATOS TÉCNICOS: 

* Inicio de las obras: 1998

* Envergadura: 108,6 m.

* Longitud: 79,9 m.

* Profundidad: 88 m.

*Volumen: 1.140m3

* Masa: 450 toneladas. aprox.

* Altitud de la órbita: Alrededor de 350-450 Km. sobre el nivel del mar.

* Inclinación de la órbita: 51,60 º

* Vuelta a la Tierra: Una cada 90 minutos.

* Velocidad relativa: 29.000 Km./h

* Potencia eléctrica: 110 Kw.

* Superficie de las placas solares: 4.500 m2

* Tripulación fija: 3 personas (2000-2003). 2 personas (desde abril 2003).

* Vuelos a la ISS: 28 (hasta julio de 2006).


Fuente Consultada:
MUNDORAMA – Astronáutica
Maravillas del Siglo XX
El Universo Enciclopedia de la Astronomía y el Espacio Tomo V

Ver: Historia de la Astronáutica

Vuelos Tripulados Principales Vuelos de la Carrera Espacial

CRONOLOGÍA DE LOS VUELOS ESPACIALES TRIPULADOS

MISIÓNPAÍSFECHAOBJETIVOS CONSEGUIDOS
VOSTOK 1URSS12-4-1961Yury A. Gagarin. Primer hombre en el espacio dando una vuelta alrededor de la Tierra.
VOSTOK 2URSS6-8-1961Gherman 5. Titov. Segundo astronauta ruso que estuvo en órbita durante 25 horas.
FRIENDSHIP 7EE.UU20-2-1962John H. Glenn Jr. Primer astronauta americano en órbita alrededor de la Tierra.
VOSTOK 3URSS11-8-1962Andrian G. Nikolayev. En órbita simultáneamente con el Vostok 4.
VOSTOK 4URSS12-8-1962Pavel R. Popovich. En órbita simultáneamente con el Vostok 3.
VOSTOK 6URSS16-6-1962Valentina V. Tereshkova. Primera mujer en el espacio.
VQSKHOD 1URSS12-10-1964Vladimir M. Komarov, Konstantin P. Feoktistov y Boris B. Yegorov. Primera cápsula espacial con más de un astronauta a bordo.
GEMINI 4URSS18-3-1965Pavel Belyayev y Aleksey Leonov que realizó el primer paseo espacial.
VOSKHOD 2EE.UU3-6-1965 James A. McDivitt y Edward H. White II. Primer paseo espacial realizado por los norteamericanos.
GEMINI 7EE.UU4-12-1965Frank Borman y James A. Lowell Jr. Establecen un nuevo record de permanencia en el espacio al efectuar 206 vueltas alrededor de nuestro Planeta.
SOYUZ 1URSS23-4-1967Vladimir M. Komarov, sufre el primer accidente mortal en la carrera del espacio.
APOLLO 8EE.UU21-12-1968Frank Borman, James Lowell Jr. y William Anders. Primer vuelo de una nave tripulada alrededor de la Luna.
APOLLO 11EE.UU16-7-1969Neil A. Armstrong, Edwin E. Aldrin Jr. y Michael Collins. Llegada del hombre a la Luna.

Viajeros en el espacio
El mundo quedó boquiabierto la mañana del 4 de octubre de 1957, cuando el Sputnik. 1 señaló el inicio de una nueva era. En USA el asombro fue angustioso al mismo tiempo que empezaba la lucha para poner en órbita un satélite norteamericano. De la noche a la mañana, los expertos en cohetes, ignorados desde los días de Robert Goddard, tornáronse respetables y sus servicios muy demandados.

Vuelos espaciales tripulados

Vuelos espaciales tripulados

Con anterioridad a este día de otoño, el programa espacial norteamericano había consistido en una investigación esporádica, inicial-mente usando los cohetes del alemán Von Braun, después su propio arsenal defensivo con el fin de registrar datos a grandes altitudes. Ninguno de estos cohetes había entrado en órbita ni escapado a la gravedad terrestre.

El Sputnik 2, llevando a la pequeña perra Laika, lanzado un mes después del Sputnik I, aumentó el interés en USA. Finalmente, el Explorer I despegó de Cabo Cañaveral el 31 de enero de 1958, y pronto descubrió unas inesperadas capas de partículas cargadas alrededor de la Tierra. Se les llamó los cinturones de Van Alien, en honor del hombre que interpretó correctamente los datos.

Vuelos espaciales tripulados
En unos meses, la recién creada NASA (Administración Nacional de la Aeronáutica y del Espacio) se hizo cargo de las operaciones ya iniciadas de un programa en tres etapas cuyo objetivo, establecido antes por el Presidente Kennedy, era colocar un hombre en la Luna y devolverlo sano y salvo a la Tierra en el plazo de diez años. La primera fase, el programa Mercurio, recibió mayor atención cuando el ruso Yuri Gagarin completó una órbita entera alrededor de la Tierra en el Vostok 1, el 12 de abril de 1961.

Pero el 5 de mayo de 1961, el interés mundial se dirigió hacia Alan Shepard que en el primer vuelo norteamericano, amerizó en el Atlántico después de un viaje de 486 Km. en el Freedom 7. Los cinco siguientes vuelos Mercurio, cada uno intentando una nueva maniobra o un período de órbita más largo, incluyeron el primer vuelo orbital de John Glenn el 20 de febrero de 1962, y la misión final Mercurio, un vuelo de 22 órbitas realizado por Cordón Cooper los días 15 y 16 de mayo de 1963. Por aquel entonces, el cosmonauta ruso Nikolayev había recorrido 64 órbitas en el Vostok 3 la única mujer cosmonauta, Valentina Tereshkova, se estaba preparando para su misión de 48 órbitas en junio.

Los vuelos Mercurio y Vostok convencieron a los científicos de que los seres humanos podían manejar sus naves en un medio ingrávido, podían llevar a cabo útiles observaciones en el espacio y regresar para contarlo.

Los siguientes programas tripulados, el norteamericano Geminis y los vuelos rusos Voskhod, demostraron que los humanos podían conducir una nave espacial y ensamblarla con otro vehículo y que las personas podían andar y trabajar en el vacío del espacio. Tales tareas serían necesarias para aterrizar en la superficie lunar, volver a despegar y regresar a la nave principal.

Por entonces, en las Navidades de 1968; un vehículo tripulado circunvaló la Luna. La tripulación del primer Apolo expresó su sentimiento de respeto al volver la vista atrás hacia la belleza de la Tierra desde el espacio profundo. Por primera vez los hombres vieron el planeta como un todo y se dieron cuenta de lo que habían dejado: lo bella, frágil y solitaria que es la Tierra colgando en el vacío. Sus limitadas palabras nos decepcionaron, pero su emoción fue transmitida.

Siete meses más tarde, el 20 de julio de 1969, después de unos instantes de suspenso, aterrizando por control manual cuando quedaban sólo unos pocos segundos de combustible, una voz tranquilamente jubilosa anunció a través de 380.000 Km., «Houston, aquí base, tranquilidad. El Eagle (Águila) ha aterrizado». El hombre estaba en la Luna.

Algunas horas más tarde veían en la TV este cauteloso «gigantesco salto para la humanidad» y todos nosotros estuvimos con Neil Amstrong en un nuevo mundo. Con una excepción, el resto de los vuelos Apolo parecieron prosaicos para todo el mundo excepto para los astronautas, los científicos y el resto de personal involucrado.

El Apolo 13 fue la excepción. Una explosión a bordo lanzó la nave hacia el espacio. Después de un viaje desesperado alrededor de la Luna y de vuelta hacia la Tierra en su módulo lunar, Aquarius, los hombres volvieron a la cápsula Apolo para realizar un espeluznante, pero afortunado, regreso.

El Apolo 17 fue el último vuelo lunar tripulado, el último capítulo de la epopeya lunar —originariamente inspirado en razones políticas— que se convirtió en la mayor proeza tecnológica de la historia de la humanidad.

Se volvió la atención entonces hacia la estación espacial en órbita terrestre, Skylab, lanzada en 1973. El Skylab demuestra de nuevo la adaptabilidad del hombre donde quiera que se encuentre, probando que el hombre puede trabajar, comer, dormir, pasar meses en un laboratorio ingrávido muy por encima de la protectora atmósfera terrestre, y no sufrir ningún efecto nocivo permanente conocido. Las tires tripulaciones del Skylab repararon las averías del equipo y reeemplazaron los filmes de las cámaras situadas en el exterior de su nave.

Probaron técnicas de fabricación por crecimiento de cristales semiconductores para transistores con una perfección inalcanzable cu la Tierra e hicieron aleaciones que no se pueden realizar aquí debido a la gravedad. Usaron el vacío espacial, imposible de conseguir en nuestro mundo rodeado de aire.

Estudiaron el cometa Kohoutek y el Sol, acerca del cual sabemos tan poco. Sus imágenes del Sol fueron estudios fotográficos de valor inestimable a largo plazo, obtenidos por encima del océano del aire, el cual absorbe gran parte de la radiación. Después regresó a la Tierra mostrándonos que el espacio no es tan hostil, únicamente nuevo e inexplorado y con mucho que ofrecer a aquellos que acepten su reto.

Vuelos No Tripulados Al Espacio Historia de la Astronautica

Historia Cronológica de los Vuelos No Tripulados

MISIONPAÍSFECHAOBJETIVOS
SPUTNIK 1URSS4-10-1957Lanzamiento del primer satélite artificial.
SPUTNIK 2URSS3-11-1957Primera cápsula habitada (Perra «Laika»)
EXPLORER 1EE.UU.31-1-1958Descubrimiento del cinturón interior de radiación Van Allen.
VANGUARD 1EE.UU.17-3-1958Primera prueba de la forma achatada de la Tierra; primera utilización de la energía solar por acumulación.
LUNA 3URSS4-10-1959Primera navegación alrededor de la Luna. Primeras fotografías de la cara oculta de la Luna
TIROS 1EE.UU.1-4-1960Primer satélite climatológico. Envió por TV imágenes de la cubierta de nubes. Un total de 22.952 fotografías transmitidas.
TELSTAR 1EE.UU.10-7-1962Primer relais trasatlántico de señales televisivas. Primer relais de TV en color.
MARINER 4EE.UU.28-11-1964Fotografías de la superficie de Marte, estudios sobre la atmósfera de. Marte y datos microme teóricos, 2.300 pies cuadrados de paneles detectores.
LUNA 9URSS31-1-1966Logra alunizar por primera vez, transmitió fo­tos de la superficie lunar por primera vez.
SURVEYOR 1EE.UU.30-5-1966Primer alunizaje americano; transmitió imáge­nes de TV de sí mismo y de la superficie lunar.
SURVEYOR 3EE.UU.17-4-1967Alunizaje: extrajo muestras de la superficie mediante una pata excavadora, transmitió datos de las tensiones superficiales
MARINER 9EE.UU.30-10-1971Entró en órbita de Marte el 13 de Noviembre, transmitió cientos de fotografías y consiguió gran cantidad de datos.
PIONEER 10EE.UU.2-3-1972Primer vehículo para explorar el cinturón de asteroides, voló hasta Júpiter y más allá del sistema solar.
PIONEER 11EE.UU.6-4-1973Enviado hacia Júpiter y Saturno en una trayectoria parecida a la del Pioneer 10.
SKYLAB 1EE.UU.14-5-1973Puesta en órbita del laboratorio espacial que SEría ocupado por tres tripulaciones de astronautas posteriormente.
VIKING IEE.UU.20-8-1975Desciende en el planeta Marte el 20 de Julio de 1976 y envió fotografías de la superficie del planeta. Análisis del terreno mediante una excavadora.
VIKING IIEE.UU.9-9-1975Segundo descenso en Marte y análisis del terreno.
VOYAGER IIEE.UU.20-8-1977Nave espacial no tripulada lanzada, hacia Júpi­ter y Saturno. siguiendo después hacía Urano y Neptuno.
VOYAGER 1EE.UU.5-9-1977nave gemela de la anterior y que aunque fue lanzada más tarde debe llegar a Júpiter antes que la Voyager II. El 3 de Marzo de 1979 enviaba una serie de importantes fotografías sobre Júpiter y sus satélites.

Sondas no tripuladas en el espacio exterior
La mayor parte de las sondas no tripuladas en el espacio exterior, revelando informaciones sorprendentes e insospechadas de no haber sido directamente obtenidas. La URSS envió la primera en 1959 la cual entró en órbita alrededor del Sol. Desde 1958 a 1960, cuatro intentos norteamericanos fracasaron, hasta que finalmente el Pioneer V entró en órbita solar en marzo de 1960. Los Lunik II y III rusos habían chocado ya contra la Luna y el último había tomado la primera fotografía de su cara oculta.

El Programa Ranger (1961-1962), el ingenio espacial Surveyor que se posó sobre la Luna y los satélites lunares enviaron información y fotografías para su uso en los siguientes vuelos tripulados y proporcionaron a los científicos norteamericanos detalles sobre la radiación en el espacio exterior y la densidad de los meteoros.

Los Mariner fueron lanzados en dirección a Venus y Marte y, junto a sus homólogos soviéticos (los primeros, de nuevo), enviaron torrentes de información invalidando mucho de lo que previamente se había creído acerca de estos planetas. Marte tiene tormentas de arena en su delgada atmósfera y presenta señales inequívocas de erosión por el agua.

El Mariner 10 fotografió Venus de camino hacia Mercurio, al que sobrevoló el 29 de marzo de 1974, enviando las primeras fotografías del planeta más cercano al Sol. Las sondas soviéticas Venera penetraron las nubes de Venus y obtuvieron datos que muestran una atmósfera muy parecida a la descripción de un huracán en el infierno.

El Pioneer 10 atravesó el cinturón de asteroides rocosos entre Júpiter y Marte, para volar cerca de Júpiter el 3 de diciembre de 1973. De nuevo sorpresas —el cinturón de asteroides resultó casi vacío, en absoluto arriesgado para la navegación, y el campo magnético de Júpiter era distinto y diez veces más fuerte de lo esperado.

A bordo del Pioner 10, en la actualidad dirigiéndose hacia fuera del sistema solar, hay una pequeña placa grabada con símbolos del siglo XX. Se trata de nuestro primer mensaje intencionado enviado a alguien situado ahí fuera desde que Tesla puso en marcha su generador de descargas de alta frecuencia a principios de siglo. ¿Será más descifrable que los mensajes «no intencionados» enviados hasta ahora? Las señales de televisión escapan a través de la misma ionosfera que refleja las ondas de radio, por lo que el «Top 10» de Nielsen está viajando también por el espacio.

A finales de 1974, el Helios partió hacia sus estudios solares en órbita alrededor del Sol y el Mariner 10 pasó cerca de Mercurio por segunda vez, conectó sus cámaras de televisión y envió más imágenes.

El 16 de marzo de 1975, el Mariner 10 hizo su tercera y ultima pasada sobre Mercurio, acercándose hasta una distancia de 320 Km. y enviando imágenes televisivas desde muy cerca. En esta misión la NASA obtuvo el resultado de tres vuelos por el precio de uno.

El Pioner 11 dio una pasada sobre Júpiter el 2 de diciembre de 1974. enviando las primeras imágenes de su polo y nuevos datos sobre su composición interior y sobre el remolino magnético que rodea al más grande de los planetas.

Vida en el Espacio Los Astronautas en las Estaciones Espaciales

LA VIDA EN EL ESPACIO DE LOS ASTRONAUTAS

Detrás del trabajo de un astronauta hay meses de entrenamiento, pero también miedos, posibles secuelas y un salario exiguo. Así es su vida íntima en el espacio

Meses de entrenamiento, bajón emocional, preparación psicológica para cualquier adversidad, aislamiento del resto del mundo, falta de reconocimiento económico, emociones fuertes, miedo… Así son la vida y las emociones de un astronauta antes de dejar la Tierra y después de volver a ella. El viaje al espacio es una experiencia tan cargada de adrenalina como de temores.

Todos sabemos cuál es la misión de un astronauta cuando deja este planeta, ¿pero cómo vive una experiencia por la que pocas personas en el mundo han pasado? ¿Cuál es la carga emocional y económica para su familia? ¿Sufren los astronautas secuelas físicas o psicológicas después de las misiones espaciales? ¿Reciben sueldos millonarios?

Al regresar a la Tierra, muchos tardan semanas en recuperarse. La labor que desarrollaron en el espacio es hasta tal punto estresante que volver a casa trae consigo una sensación de relajación que puede llegar a desembocar en una enfermedad.

Durante el viaje espacial, estos científicos son mas que nunca dueños de cada uno de sus movimientos.

Si algo sale mal, desde aquí abajo sólo pueden recibir consejos; las decisiones finales son exclusivamente de ellos. Por eso, muchos dicen que la vuelta a casa trae consigo una desorientación total en el plano fisiológico y una sensación de cansancio y abatimiento absolutos. (Foto estación espacial rusa Salyut, lanzada en 1971)

 • Científicos hechos de una materia especial

Embarcarse en un vuelo espacial, sobre todo los de larga duración a bordo de la Estación Espacial Internacional, no es algo sencillo, aunque sí muy demandado por los científicos. Hay que estar hecho de una pasta especial para que el cuerpo soporte semejante impacto. En el “automóvil” en el que se viaja no se pueden abrir las ventanillas.

A veces hay muy malos olores por la desgasificación de algunos objetos con los cambios de temperaturas y presión; puede hacer mucho frío o mucho calor, y el ruido es muy alto y constante, ocasionado por el zumbido de los ventiladores, el aire acondicionado, los filtros y el timbre de los teléfonos.

Hay un nuevo amanecer cada 90 minutos, lo cual es maravilloso, pero 16 de ellos por día son capaces de enloquecer cualquier biorritmo. Así es este viaje, sin duda fantástico, pero también lleno de inconvenientes. Las náuseas son una constante, especialmente al ponerse en órbita, y el sencillo acto de ir al baño en casa se convierte en toda una odisea en la nave.

El procedimiento funciona como un acoplamiento en órbita entre dos vehículos espaciales, dentro de los cuales debe haber un encaje perfecto. “El baño es muy bueno —escribió el astronauta Michael Foale refiriéndose a la difunta estación espacial rusa Mir—, pero me lleva entre 15 y 20 minutos de principio a fin. Es mucho tiempo”.

Dentro de la nave no hay arriba ni abajo. Todo flota, hasta los seres humanos, así que hay que tener mucho cuidado de no chocar contra partes vitales del aparato o contra los propios experimentos científicos.

Por todo esto, es necesario estar preparado para el viaje al espacio. Meses de entrenamiento y algunos días de incomunicación con el exterior para evitar enfermedades son clave antes de lanzarse al vacío, y a un viaje que, para muchos, ha sido sin retorno. Y eso pesa en las mentes de los astronautas.

• Se seleccionan personas que no tengan claustrofobia

Los ejercicios preparatorios son muy intensos y la salud debe ser de hierro. Por eso, para el viaje espacial se seleccionan personas que no sean propensas a sufrir enfermedades ni tengan claustrofobia. Por tal motivo, el círculo de candidatos se reduce bastante con estas condiciones.

El gran sueño de muchos astronautas es que algún científico llegue a inventar un sistema o medicina que impida los mareos y la sensación de desorientación durante las primeras seis u ocho horas de vuelo, las más peligrosas del viaje, y a las que acompaña una insoportable tensión ante un riesgo de explosión.

¿Pero qué ocurriría si uno de los tripulantes contrajera una enfermedad durante el tiempo que está en el espacio? Unos ocho días previos de aislamiento ponen a los tripulantes a salvo de cualquier enfermedad contagiosa.

El acercamiento a ellos sólo está permitido tomando ciertas medidas de seguridad, como vestirse con unos trajes apropiados y cubrirse la boca con una mascarilla. Las revisiones médicas son frecuentes. No obstante, hay todo tipo de medicinas a bordo, además de un desfibrilador, un aparato para medir la presión y conexión directa con un médico, disponible las 24 horas, que está en la Tierra.

• La convivencia prolongada puede ocasionar tensiones

“No importa con quién esté volando, podría ser su mejor amigo, pero va a haber momentos en que estarán a punto de ahorcarse el uno al otro”, dijo el astronauta Daniel Bursch en 2002 al terminar su estancia de 194 días en el espacio. “Cuando eso sucede, uno tiene que irse a hacer ejercicio, dedicarse a un hobby o ponerse a trabajar». La convivencia es otro de los problemas. Espacio reducido suele ser sinónimo de tensión con el compañero; por eso, los estudios psicológicos sobre la personalidad y la cultura de los tripulantes son de gran ayuda en la convivencia.

Tanto la NASA como la ESA tienen mucho cuidado de que sus astronautas sean personas de carácter afable. Durante los meses de entrenamiento se van conociendo y estrechando el espacio que los separa. De hecho, uno de los grandes problemas de los asiáticos es que necesitan mucho espacio entre ellos y su interlocutor algo que en un vuelo espacial es imposible. Por eso, la convivencia previa es imprescindible.

Pero lo que es especialmente duro para la mayoría de los pioneros del espacio son las semanas o meses que viven alejados de los seres queridos. “Dile a la pequeña Jenna que la amo y que lloré cuando leí que ella creyó que me había convertido en una estrella» escribió Michael Foale a su esposa en un correo electrónico desde la Mir. “Cada vez que recibo un correo tuyo es como si fuera un regalo o un trozo de chocolate que me moría por comer. A propósito de chocolate, aquí tenemos, pero no nos dura nada, y el vehículo de carga Progress aún tardará un mes en llegar… Siempre que miro por la ventana trato de pensar en lo que está haciendo la gente sobre los lugares por los que pasamos».

• Hoy han mejorado las comunicaciones con la Tierra

Las comunicaciones con el espacio han sido tradicionalmente difíciles. Antes había que esperar a que la estación pasara sobre una serie de antenas terrestres y satélites para enviar o recibir información.

Hoy es posible hablar virtualmente con Control de Misiones a cualquier hora, y también es posible usar el sistema de radioaficionado, que ahora es muy popular entre los astronautas. De todas maneras, como en la Tierra, a veces las comunicaciones fallan, y es entonces cuando sobrevienen las mayores frustraciones.

Por si fuera poco, cuando es posible hablar en tiempo real hay que hacerlo ante los oídos de la gente de Control de Misiones, una falta de privacidad que ha sido criticada duramente por los astronautas. Otro tema que está siendo evaluado es el hecho de comunicar o no malas noticias familiares. El consenso parece ser no hacerlo si se trata de un vuelo corto en el transbordador, pero sí si se encuentran en una misión de larga duración.

El correo electrónico parece ser el sistema más aceptado por los astronautas para comunicarse. Y es que hasta la inmensidad del espacio es capaz de llegar uno de ellos con la fotografía de un hijo, una esposa o un mensaje de alegría. Y todo sin que -al menos en teoría— nadie sea testigo de sus conversaciones.

Por correo electrónico un astronauta puede recibir, por ejemplo, noticias sobre la tarea encomendada a un amigo para que cuide de su familia. Porque tanto la NASA como la ESA encargan a un compañero muy allegado al astronauta su atención durante su ausencia. Esa persona tiene asignado un trabajo con horario mientras su amigo está en el espacio: ocuparse de todo lo que su familia pueda necesitar, desde apoyo moral hasta mediar con los doctores del colegio de los chicos o arreglar un enchufe que no funciona.

• No se pueden demostrar públicamente debilidades

La psicología y el comportamiento humano en órbita es un asunto espinoso, sobre todo para la NASA. La herencia del piloto de pruebas “macho y duro» con la que nacieron los primeros astronautas dificulta que éstos puedan mostrar alguna debilidad públicamente. Hacerlo sería admitir que no están preparados convenientemente. “Yo vivía aterrado todo el tiempo con la idea de que me iba a dar un ataque de apendicitis o que me iban a doler los dientes. Una noche lo soñé tan vivamente que amanecí con dolor de muelas por apretar las mandíbulas», dice el cosmonauta Valery Ryumin.

Otro problema poco estudiado es el de los efectos del profundo aislamiento. Algunos estudios de la Annada estadounidense demostraron las reacciones psicológicas de los científicos y personal desplegado durante el invierno en posiciones aisladas, como las bases en la Antártida. Son situaciones emocionalmente parecidas a las de un vuelo espacial de larga duración. Muchos sufrieron problemas nerviosos. Otros se volvieron esquizofrénicos.

Estar separado del resto del mundo dentro de un ambiente difícil es complicado. No siempre hay ayuda inmediata y tampoco noticias frescas. Las cosas se rompen. Los compañeros se hacen antipáticos. La comida deshidratada se vuelve aburrida. La motivación comienza a flaquear.

En efecto, la palabra comida, por ejemplo, se asocia con algo muy poco placentero en el espacio. Durante los primeros años de la carrera espacial, los médicos no se ponían de acuerdo sobre si se podía o no tragar comida en ingravidez. Rusia empezó a fabricar alimentos y a envasar-los en algo parecido a un tubo de pasta de dientes, mientras que en EE.UU. se utilizaba algo similar a una pastilla de caldo que se tragaba después de mojarla en agua. Los astronautas protestaron y la comida cambió un poco.

Ahora se utilizan, sobre todo, latas de comida —se abren con abrelatas normales— que previamente se han metido en cámaras de baja presión para evitar que revienten. También se recurre mucho a los alimentos deshidratados y la bebida siempre se ingiere desde una bolsa y por un sorbete. Pero aunque la comida no es muy suculenta, se trata del aspecto menos desagradable. De hecho, en la nave hay otros muchos detalles que pueden llevar a la depresión.

HAGO UN TESTAMENTO ANTES DE VIAJAR: Durante muchos meses, ya estás mentalmente allí” señala el astronauta español Pedro Duque. “Sabes que amba nadie te va a ayudar, así que te preparas con todo. Luego llega el día del despegue, y la sensación de mareo es terrible y te das cuenta de que eso no lo has podido controlar. Te han puesto una inyección para el mareo y eso te quita reflejos.

A eso le sumas la tensión porque son los momentos de más peligro”. Después de su experiencia en el espacio -en 1998 durante 9 días en el vuelo STS-95 del transbordador espacial y en 2003 durante 10 días en la misión Cervantes de la ESA-, Pedro Duque tiene las sensaciones muy vivas. El hoy director de Operaciones del Centro Español de Apoyo a Usuarios y Centro de Operaciones no olvida ni uno sólo de los momentos vividos antes y después de cada misión.

“Yo hice un pequeño testamento en ambas ocasiones. Hay que ser precavido. En cuanto a los seguros de vida, la verdad es que es la agencia quien lo organiza. Uno tiene la cabeza en otras cosas”. Quizá la gran demanda hace que las condiciones no sean las mejores. “A mí no me pagaron plus de peligrosidad, pero después del segundo viaje me dieron un mes extra de vacaciones”. Unas vacaciones que lo ayudaron a superarla vuelta a la gravedad:  ‘Tardas mucho tiempo en recuperarte”.
El éxito a veces puede más que los momentos desagradables. “Cuando ves que sacas adelante algo que durante meses has estado preparando, no quieres volver a tierra. Mientras tanto, te vas comunicando con tu familia por e-mail y lo llevas adelante mucho mejor, a pesar de que no te sueltas en los mensajes por si alguien los lee”.

•Siempre existe el riesgo de sufrir una depresión

El veterano astronauta retirado John Blaha, uno de los primeros en convivir en la Mir con dos cosmonautas, admitió cómo sucumbió a ella. Para empezar, poco antes de comenzar la misión cambiaron la tripulación rusa con la que había estado entrenando. Blaha llegó a la Mir sin conocer a sus compañeros.

La estación, una maravilla tecnológica, no obstante estaba plagada de problemas: las ventanas estaban llenas de hongos, la ducha no funcionaba y no había espacio para nada. Pero lo peor fue cómo perdió su confianza en los controladores de Houston, un problema que ha estado presente históricamente en casi todas las agencias espaciales. Los controladores le asignaban tareas constantemente y muy pronto Blaha se encontró durmiendo menos de tres horas por día.

• En el espacio también se producen huelgas

Por este y otros motivos, en el espacio también hubo huelgas. La primera tuvo lugar en la antigua estación Skylab, donde los tres astronautas se negaron a trabajar durante 24 horas, según ellos por el control al que fueron sometidos.

Ante este cúmulo de tensiones, riesgos y dificultades sería lógico pensar que los astronautas reciben un plus económico por peligrosidad. Nada más lejos de la realidad. Su salario es el mismo en la Tierra que en el espacio. El astronauta español Pedro Duque aún recuerda los 25 dólares de dietas que le dieron por el viaje de Houston a Florida desde donde despegaría en su primer vuelo espacial. “Todos nos quedamos con el tiquet de recuerdo por lo anecdótico del asunto. Eso da una idea de todo lo demás”.

En la NASA el salario oscila entre los 60.000 y los 85.000 dólares anuales, según la antigüedad. Comparado, por ejemplo, con el salario de un ejecutivo en la industria privada en EE.UU. es muy poco. De hecho, el sueldo del antiguo director de la agencia espacial, Sean O’Keefe, era de 158.000 dólares anuales. En su nuevo cargo como rector de la Universidad de Louisiana, O’Keefe gana más del triple.

Al comienzo de la era espacial, los astronautas sí recibían casas y automóviles. Eran parte de una elite de héroes y se los quería honrar. Ahora no. Ser seleccionado para una misión es considerado como un premio en sí mismo por tener las cualidades que se busca para ese vuelo específico. El dinero pierde importancia cuando a uno lo seleccionan para una misión. Entonces hay que pensar en los preparativos. ‘Susan Helms, la primera mujer en vivir en la Estación Espacial Internacional, en 2001, decidió cortar con todo. “Me dije: Susan vas a estar fuera del planeta durante meses. Tienes que tomar medidas radicales’. Cancelé mis tarjetas de crédito, cerré mi departamento, dejé mis cosas en un depósito e hice remitir el correo a casa de mi madre. No quería tener problemas con el alquiler, las goteras o la cuenta de la luz”.

• Los astronautas cancelan  sus celulares antes de partir

Hacer un pequeño testamento es una opción a la que todos los astronautas recurren antes de viajar al espacio. Hay un 98 por ciento de posibilidades de supervivencia, pero el 2 por ciento restante es muy real. Muchos anulan su correo electrónico para no tener que contestar cientos de mensajes a su regreso y otros cancelan sus teléfonos celulares.

Otra cosa con la que los astronautas no tienen que lidiar es con los seguros de vida. Primero, porque no existen beneficios especiales para los familiares de astronautas que mueren durante una misión espacial. De hecho, el seguro de vida a través de la Asociación de Beneficios a Empleados de la NASA contiene una cláusula específica de “no pago” si la “muerte resulta o es causada al volar como tripulante o pasajero en un transbordador espacial”.

 Estos son términos que todo astronauta acepta desde el comienzo. Por otro lado, ninguna compañía aseguradora haría un contrato con un astronauta por un precio razonable. Según Sean O’Keefe, ellos reciben los mismos beneficios por muerte que cualquier otro estadounidense que arriesga su vida en zonas de guerra o en el desempeño de otros servicios al Gobierno, esto es, aproximadamente unos 200.000 dólares.

No obstante, cuando llega la oportunidad de una misión, es el momento de máxima alegría. Para ellos viene a ser como ganar la lotería, especialmente si se trata del primer vuelo de un astronauta. Y es que resulta toda una satisfacción después de años de duro entrenamiento y con frecuencia viendo pasar por delante a varios de sus compañeros. En ese momento, los científicos se olvidan de los problemas y se someten a cuantas pruebas sean necesarias. Haber pasado esa especie de casting ya es suerte suficiente. Se trata, desde luego, de un sueño hecho realidad, ese que tantos niños imaginan en algún momento de su infancia: llegar a ser algún día un astronauta.

Lola Delgado / Ángela Posada-Swafford
Fuente Consultada: Revista Muy Interesante Abril 2006

Ultimo astronauta en pisar la Luna Todas Las Misiones Apolo a la Luna

ULTIMO ASTRONAUTA EN PISAR LA LUNA – LAS MISIONES APOLO –

ULTIMOS ASTRONAUTAS DE LAS MISIONES APOLO: Estados Unidos lanza el Apolo17, la última misión de su programa lunar Apolo. La misión Apollo 17 se desarrolló en diciembre de 1972 y en ella participaron los astronautas Eugene Cernan, Ron Evans y Jack Schmitt. Durante el viaje de 13 días de duración, ambos astronautas pasan 22 horas en la Luna y recorren 35 km en el vehículo lunar, mientras Ronald E. Evans permanece en órbita.

Recogieron 108,8 k de rocas y recorrieron 33,8 km a bordo de su rover. Encontraron en el valle Tauro-Littrow tierra color anaranjada. Dejaron una placa con la leyenda: “Aquí el hombre completó su primera exploración en la Luna, diciembre 1972 d. C. Que el espíritu de paz con el que vinieron se refleje en las vidas de toda la humanidad”.

La misión  Se trató de la última ocasión en la que el ser humano visitó la Luna y la única misión en la que un geólogo viajó y estudió suelo espacial. En total, permanecieron alrededor de 74 horas en la Luna. En la fotografía de abajo vemos de izquierda a derecha Harrison Schmitt, Ronald Evans y Eugene Cernan (abajo), la tripulación del Apolo 17 (NASA).

Cernan fue un aviador de las FF.AA. de EE.UU. y elegido para participar de las misiones Apolo como piloto de la Géminis IX, luego piloto del módulo lunar en misión del Apolo X y comandante en la misión del Apolo XVII. Ha sido el segundo en pasear por el espacio y el último que dejó sus huellas en la superficie lunar.

Eugene Cerna ultimo astronauta en pisar la luna
Astronautas de la última misión de la NASA a la Luna en 1972, el Apolo XVII

eugene cernan ultimo astronauta en pisar la luna

Eugene Cernan

El Apolo 17: La primera serie de aterrizajes tripulados por hombres en la Luna terminó con la misión del Apolo 17, que fue la de mayor éxito. Se continuó con el modelo de investigación y experimentación establecido por las dos misiones anteriores: examen geológico y muestreo de una zona preseleccionada, despliegue y activación de experimentos de superficie tipo ASLEP, y culminación de recuentos fotográficos científicos de la corteza de la Luna realizados desde una órbita lunar.

El lugar de aterrizaje fue la región de Taurus-Littrow, de las montañosas tierras altas que bordean el sureste del Mare Serenitatis. Aquí, durante 44,2 horas humanas de actividad exploratoria, dos astronautas recorrieron 35 km. y recogieron 120 kg. de muestras de piedras.

Entre éstas se encontraban lavas basálticas, gabros, anortositas y brechas y resultó ser la colección más variada traída por una misión Apolo. Indicaban, de manera más clara que las muestras recogidas antes, los principales estadios de los 4.600 millones de años de historia de la Luna: brechas con componentes cristalinos derivadas de fragmentaciones por impacto de las rocas más antiguas, brechas formadas por excavaciones originadas por impacto de la cubeta del Mare Serenitatis, lavas basálticas que posteriormente rellenaron la cubeta del mismo mar, y los materiales de desecho de rocas de superficie generados por impactos ocasionados durante los últimos 3.800 millones de anos. Abajo vemos un esquema de la travesía en la Luna de esta última misión.

mapa travesia apolo XVII

UN POCO DE HISTORIA… Durante la segunda guerra mundial, científicos alemanes, incluyendo a Werner von Braun, produjeron cohetes capaces de volar cientos de kilómetros, en los cuales el combustible líquido ardía con el oxígeno que se había comprimido y almacenado en forma líquida. Uno de ellos, el cohete famoso V-2.

Desde entonces los vuelos de cohetes se han desarrollado enormemente, especialmente en Estados Unidos de América y en Rusia. Muchos cohetes modernos constan de tres partes, y cada una de ellas añade su propia tremenda velocidad a la ya aportada por su predecesora. Con un cohete de este tipo los científicos rusos enviaron el primer satélite artificial de la Tierra, el Sputnik I, en octubre de 1957.

Tanto Rusia como los Estados Unidos han enviado luego muchos más, y hacia fines de 1960 más de 30 circulaban alrededor de la Tierra. Un cohete ya ha hecho impacto en la Luna. Otro ha dado la vuelta alrededor de ella, tomando fotografías del lado hasta entonces nunca visto.

Todavía otro se ha transformado en un diminuto planeta que gira alrededor del Sol. En abril de 1961 el astronauta ruso Yuri Gagarin surcó el espacio interplanetario dando un giro completo en 89 minutos alrededor de la Tierra, y en agosto del mismo año, otro cosmonauta ruso, Gherman Titov, dio 17 vueltas en torno a la Tierra en 25 horas 18 minutos. En febrero de 1962, el estadounidense John H. Glenn dio 3 vueltas alrededor de la Tierra en 4 horas 54 minutos.

PRIMEROS PASOS: DUELO ESPACIAL: El 4 de octubre de 1957, los estadounidenses, atónitos, descubrieron el Sputnik -«compañero de ruta»-, el primer artefacto satelital que orbitaba alrededor de la Tierra. En ese momentoSputnik Primer Satelite Enviado al Espaciose dieron cuenta de su atraso respecto de los rusos, que nombraron como el «misil gap».

En abril de 1961, el primer vuelo tripulado convirtió a Gagarin en un héroe mundial: el astronauta soviético triunfó con el Vostok I.

Sin embargo, bajo el impulso de Kennedy, Estados Unidos aceptó el desafío de la carrera a la Luna, que se convirtió en una de las apuestas de la guerra fría.

La NASA dio inicio a los programas lunares preparatorios: Gemini, Ranger, Lunar Orbiter y Surveyor.

Por su lado, los tres programas de los soviéticos carecían de coherencia. El 3 de julio de 1969, el tercer ensayo de su cohete lunar gigante NI fracasó de nuevo. El programa Apolo otorgó finalmente la victoria a los estadounidenses dieciocho días después.

HISTORIA DEL PROGRAMA APOLO: Los vuelos Apolo se habían iniciado en octubre de 1961 con el primer lanzamiento no tripulado de un cohete Saturno 1. Pero hasta 1967 no tendría lugar la prueba de vuelo del cohete lunar Saturno 5. El Saturno 5 era el ingenio más pesado, complejo y costoso jamás lanzado al espacio. Sus tres secciones alcanzaban una altura de casi cien metros.

En la primera sección había cinco motores F-1 accionados por queroseno y oxígeno líquido; en la segunda, otros tantos del tipo J-2 que consumían hidrógeno y oxígeno; en la tercera se albergaba un solo J-2.

Durante los dos minutos y medio de vuelo iniciales, la primera sección generaría una potencia de empuje de aproximadamente 3.500 toneladas, con un consumo de unos dos millones de litros de carburante; y aceleraría el cohete a casi diez mil kilómetros por hora, diez veces la velocidad del sonido. Tanto en tierra como durante el vuelo, más de dos toneladas de instrumentos y computadoras controlarían automáticamente la velocidad y el rumbo.

La nave espacial Apolo propiamente dicha constaba de tres partes o módulos: el módulo de servicio (MS), el módulo de mando (MM) y el módulo lunar (ML). El más grande era el módulo de servicio, que albergaba el motor que curvaría la trayectoria de ida del Apolo para ponerlo en órbita lunar, y que posteriormente impulsaría su viaje de retorno a la Tierra. El MS portaba asimismo la antena principal de largo alcance, la reserva de oxígeno, las células de combustible y los reactores para el control de posición.

Los dos componentes del combustible se mezclaban por presión de gas en lugar de bombas, y la ignición se producía por contacto. La cámara de propulsión y el morro poseían capas protectoras que se iban quemando progresivamente, por lo que no necesitaban sistema alguno de refrigeración. Cualquiera de las tres células de combustible podía suministrar la energía eléctrica suficiente para un retorno sin problemas.

Encima del MS y sirviéndose de sus instalaciones durante todo el viaje, excepto unas pocas horas, estaba el módulo de mando de los astronautas. Era un verdadero prodigio de diseño. Tan sólo su forma de cono truncado recordaba a la cápsula Mercury de Alan Shepard. En su interior, no obstante, había cuatro veces más espacio.

El MM contenía una compacta computadora con una capacidad de almacenamiento de datos que superaba a la de la computadora del control de tierra del Proyecto Mercury. Exteriormente se hallaba protegido contra el calor que generaría el reencuentro con la atmósfera terrestre por una sólida capa aislante revestida de fibra de metal y resina.

El módulo lunar no se parecía a nada conocido, aunque dio en llamársele la «chinche». Su exterior se había recubierto de hoja metálica y estaba provisto de cuatro patas, parecidas a las de un insecto, que le servirían de soporte tras el alunizaje. Para facilitar el despegue de la superficie lunar, cada componente del ML había sido escrupulosamente diseñado con objeto de reducir su peso al mínimo. No poseía sillones ni asientos.

Durante el despegue y el alunizaje los astronautas se sujetaron con unos livianos arneses. Al iniciar el descenso sobre el satélite, el ML pesaría aproximadamente 11.000 kilos, correspondientes en su mayor parte al combustible que habría de consumir; la parte inferior del ML, cuya función era servir de plataforma de alunizaje, se quedaría en el satélite. Al despegar, el ML tendría un peso análogo al de un automóvil grande.

El primer vuelo orbital tripulado del MM del Apolo quedó fijado para febrero de 1967. En la tarde del 27 de enero, durante un ejercicio simulado, se declaró un incendio en la cápsula herméticamente cerrada, provista de oxígeno puro a presión en su interior.

En menos de un minuto, Gus Grissom, Edward White y Roger Chaffee, los tres astronautas que se hallaban en ella, perecieron. Una investigación sobre la tragedia revelaría que un cable defectuoso había prendido fuego a algún soporte sintético, propagándose las llamas con relampagueante velocidad en aquella atmósfera de oxígeno.

Mientras el MM se diseñaba y construía de nuevo, el Proyecto Apolo casi llegó a paralizarse. Pocos meses después se producía una nueva tragedia del espacio, esta vez en la URSS. El cosmonauta Vladimir Koma-rov, que había participado en el primer vuelo del Vos-jod, perdió la vida el 24 de abril de 1967, al no abrirse el paracaídas destinado a frenar el descenso de la nave espacial Soyuz durante el retorno a la atmósfera, y estrellarse la cápsula contra el suelo.

A finales de 1968, sin embargo, Estados Unidos estaba preparado para reanudar sus vuelos Apolo. Después de dos nuevas misiones no tripuladas para probar el ML y el cohete Saturno 5, en octubre de 1968 tres astronautas se mantuvieron en órbita terrestre once días a bordo del Apolo 7.

En diciembre, el Apolo 8 y sus tres tripulantes describieron diez órbitas lunares y en marzo del siguiente año los astronautas del Apolo 9 realizaron maniobras de encuentro y acoplamiento con el ML, y probaron el voluminoso traje espacial que se utilizaría en la superficie lunar. En mayo, Snoopy, el ML del Apolo 10, descendió sobre el Mar de la Tranquilidad hasta una altitud de unos 15.000 metros. Todo estaba listo para el alunizaje definitivo.

La mañana del 16 de julio, fecha del lanzamiento, cerca de un millón de espectadores abarrotaban las carreteras cercanas a Gabo Kennedy, en Florida. Con un prolongado rugido, el Saturno 5 comenzó a remontarse en el aire y después describió un ángulo sobre el océano.

Tres días más tarde, los tripulantes —Neil A. Armstrong, jefe civil de la misión; Edwin E. Aldrin, Jr., coronel de la Fuerza Aérea y doctor en Astronáutica, y Michael Collin, teniente coronel de la Fuerza Aérea, que permanecería en el módulo de mando mientras Armstrong y Aldrin descendiesen en el Eagle hasta el Mar de la Tranquilidad— entraron en órbita lunar.

A primeras horas de la tarde del día 20, el Eagle y sus dos tripulantes se separaron del MM y descendieron a una órbita inferior que los condujo a una altitud de 15.000 metros sobre la superficie lunar. En el momento programado, Armstrong inició la maniobra de descenso final, de diez minutos de duración.

Mientras el Eagle se aproximaba a la superficie lunar, Armstrong advirtió que se encaminaba directamente a un cráter salpicado de rocas y rápidamente accionó los mandos para desviar la nave a un lugar de alunizaje más seguro, donde el Eagle se posaría suavemente. Acto seguido comunicó por radio: «Houston, estamos en la base de Tranquilidad. El Eagle ha alunizado».

Fuente Consultada:
Grandes Acontecimiento del Siglo XX 1969:El Hombre Llega a la Luna

Puedes ampliar este tema

Hitos de la Exploracion Espacial Historia de las Misiones Espaciales

Hítos de la Exploración Espacial: Historia

¿Por qué son necesarios los trajes espaciales?
Se necesitan trajes espaciales porque los fluidos corporales hervirían bajo la presión natural del espacio. Hasta los pilotos de aeronaves que vuelan a elevadas alturas necesitan trajes presurizados y la NASA desarrolló trajes espaciales para los astronautas de la Mercury a partir de los originalmente usados por los pilotos de los jets de la Marina de los Estados Unidos.

¿Cómo eran los trajes espaciales de la Géminis?
Cuando los astronautas comenzaron a caminar en el espacio, debieron hacerse modificaciones a sus trajes para darles más movimiento y comodidad, a la vez más protección contra micrometeoritos y rasgaduras o roturas accidentales. Los trajes espaciales de la Géminis eran ajustadas cubiertas de aire protegidas por una capa de tela de red para evitar que se aglobara cuando el traje se presurizaba. Debajo de la tela exterior de nailon llevaban una capa de fieltro y siete capas aislantes para protegerlos de los cambios de temperatura. Se les daba oxígeno desde la nave espacial a través de un tubo conectado a la sección media del traje.

¿Hubo trajes espaciales para los alunizajes?
astronauta americanoLa experiencia demostró que los trajes espaciales de las Géminis tenían el problema del recalentamiento. Los trajes espaciales de las Apolo tenían una capa de tela con una red de tubos a través de los cuales fluía líquido refrigerado. Tenían una cubierta interna de hilo que daba al astronauta más comodidad y luego la protección provista por la goma, el nailon y el aluminio.

El suministro de supervivencia debía ser móvil, de modo que se desarrolló una mochila con oxígeno, agua fría y una fuente de energía. Se le agregaron los cascos espaciales Apolo, que permitían más libertad de movimiento de la cabeza sin peligro de filtraciones en la conexión al cuello. Incluían botas con una capa protectora especial, que se ponían por encima de los pantalones del traje.


Los trajes espaciales han evolucionado mucho desde la época en que los cosmonautas soviéticos volaban sólo en ropa interior. Nuevos diseños y una tecnología cada vez más sofisticada permiten a los astronautas explorar el espacio, llevar a cabo experimentos y registrar datos sin estar atados a la nave que hace las veces de base.

¿Qué se ponen los astronautas de los transbordadores espaciales?
Los trajes espaciales de los transbordadores espaciales sólo se requieren para el despegue y el aterrizaje. Hay tantos astronautas ahora que ya no se hacen los trajes espaciales a medida.

Las diferentes partes que lo componen —mangas, pantalones, torso, etcétera vienen en diferentes tamaños y sólo deben combinarse para lograr un traje con buen calce individual. Tienen la capa con tubería llena de líquido refrigerante más próxima al cuerpo. El traje exterior tiene muchas capas, incluyendo dacrón, nailon térmico, uretano y aluminio (mylar). Las botas ya vienen pegadas a los pantalones.

El torso es de fibra de vidrio inflexible y lleva el casco incorporado. Esta sección se pone como una armadura, por encima de la cabeza. Los sistemas de supervivencia y la radio están contenidos en una mochila incorporada. Los trajes espaciales de los transbordadores espaciales son de color naranja.

¿Los cosmonautas usan trajes espaciales?
Ahora sí, por lo menos durante el despegue, el aterrizaje y las maniobras de acoplamiento. Originalmente, no se requerían trajes y algunos cosmonautas volaban en ropa interior. Pero el 29 de junio de 1971, cuando los tres cosmonautas del Soyuz 11 se desacoplaron de la estación espacial Salyut 1, se abrió repentinamente una válvula de escape de aire. Sin los sistemas de supervivencia del traje espacial, los hombres se asfixiaron.

A partir de entonces, se hizo obligatorio el uso de trajes espaciales en las fases peligrosas de los viajes al espacio. Son trajes de una sola pieza que se presurizan y enfrían y llevan instrumentos de supervivencia en los pantalones.

¿Qué es una estación espacial?
Una estación espacial es un satélite en órbita que tiene como fin albergar a una tripulación de astronautas durante un período extenso de tiempo: semanas o aun meses.

¿Cuál fue la primera estación espacial?
estacion espacialEl 19 de abril de 1971, la Unión Soviética puso en órbita alrededor de la Tierra la primera estación espacial tripulada, Salyut 1. La estación consistía de cuatro compartimentos y tenía como fin albergar a tres tripulantes hasta durante 4 semanas.

El compartimento de ingreso tenía el equipo de acoplamiento para la nave espacial que llevaría a los cosmonautas de ida y de regreso. Los compartimentos de trabajo cilindros de aproximadamente 2,9 metros (10 pies) de circunferencia x 3,9 metros (13 pies) de largo y 4.15 metros (14 pies) x 4,1 metro (13,5 pies) daban cabida a los controles, los instrumentos, un molino de desplazamiento, una mesa y los artefactos sanitarios.

El cuarto compartimento estaba destinado al sistema de propulsión.

Se puede decir que las primeras cinco estaciones Salyut no lograron funcionar adecuadamente. La Salyut 6 y la Salyut 7 fueron modificadas y albergaron muchas misiones prolongadas, que rompieron récords y tuvieron éxito, entre 1977 y 1986. En 1986 las reemplazó la estación espacial Mir de la Unión Soviética.

¿Cuándo se lanzó la estación espacial Skylab de los Estados Unidos?
La primera versión estadounidense de una estación espacial, la Skylab, fue puesta en órbita el 14 de mayo de 1973. Los astronautas de la primera misión tuvieron que pasar gran parte del tiempo reparando la estación, que tuvo graves desperfectos desde el momento del despegue. Pudieron arreglarla y completar los experimentos planificados en 28 días. Hubo otras dos misiones que usaron —y repararon también la Skylab con éxito. Las principales áreas de estudio incluyeron observaciones de la Tierra, manchas solares y el cometa Kohoutek, además de investigaciones sobre los efectos médicos de un viaje espacial prolongado.

¿Qué es un transbordador espacial?
 transbordador espacialOriginalmente, la idea era que el transbordador espacial fuera un sistema de transporte hacia y desde una estación espacial. Debido a los recortes presupuestarios y a los cambios en las prioridades de la NASA, la estación espacial nunca se concretó, pero sí en cambio los transbordadores.

El transbordador se transformó en un laboratorio en órbita así como en una nave que podía usarse reiteradas veces para realizar transporte en el espacio. La clave principal de su éxito es su flexibilidad para emprender diferentes tipos de misiones durante su vida útil.

Puede realizar mantenimiento y reparaciones en satélites, o conducir investigaciones científicas. El transbordador tiene capacidad para llevar hasta ocho astronautas, diez de ser necesario. Está diseñado para permanecer en órbita hasta 10 días, si bien la duración típica de una misión es de 5 días. Si bien han ocurrido tragedias con transbordadores, ha demostrado ser útil.

¿Rusia tiene un transbordador?
La Unión Soviética desarrolló y construyó el transbordador Buran a fines de los 70 y principios de los 80. El Buran es muy parecido al transbordador estadounidense. El transbordador soviético fue lanzado en su viaje inaugural en noviembre de 1988. A diferencia del transbordador estadounidense, que despega autopropulsado, el Buran fue lanzado en un cohete que lo liberó una vez en órbita.

El viaje orbital no tripulado del Buran, que duró 3 horas y 25 minutos, fue una prueba exitosa de su capacidad de maniobra y aterrizaje. Los cambios políticos que acompañaron la disolución de la Unión Soviética y la recreación de Rusia pusieron freno a las misiones Buran posteriores.

¿Qué otros países tienen programas espaciales?
Es probable que la mayoría de los países industrializados tengan algún tipo de programa espacial. Esto no significa que todos ponen personas en el espacio. La mayoría se concentran en lanzar satélites de comunicaciones y/o supervisión. Con el pasar del tiempo, los vuelos tripulados al espacio se están volviendo un esfuerzo cooperativo internacional.

Por ejemplo, la estación espacial Freedom, anunciada por el presidente Ronald Reagan en su discurso Estado de la Unión, involucra la participación de los Estados Unidos, Japón, Canadá y la Agencia Espacial Europea (cuyos Estados miembros incluyen al Reino Unido, Dinamarca, Noruega, Suecia, Finlandia, Bélgica, los Países Bajos. Suiza, Austria, Alemania, Francia, Italia y España).

El primer satélite chino, el Tungfang hitng, fue lanzado el 24 de abril de 1970. El gobierno de China mantiene en secreto los detalles sobre el programa de vuelos espaciales tripulados de la China, pero se han revelado fotografías de astronautas entrenándose. China también ha discutido posibles misiones de cooperación con Rusia y los Estados Unidos.

India. Israel y Japón tienen programas nacionales para lanzar y mantener satélites y para unirse a otros países, especialmente los Estados Unidos con el fin de enviar sus ciudadanos al espacio.

¿Qué es el Spacelab?
El Spacelab, una misión espacial entre la NASA y la Agencia Espacial Europea, fue lanzado por primera vez en El Spacelabnoviembre de 1983. El Spacelab no es en sí misma una nave espacial. Consiste de varios módulos que se desplazan acoplados al transbordador espacial con el objetivo de realizar investigaciones específicas.

Cada módulo mide 2,7 metros (9 pies) por 4 metros (19 pies) y puede ser usado como espacio de trabajo o para transportar instrumentos tales como telescopios. Existen otras unidades, llamadas plataformas, que pueden usarse para carga que no necesitan ser presurizadas.

El Spacelab depende del transbordador que provee espacio habitacional y suministro de supervivencia, pero transporta todo lo demás en módulos
presurizados o plataformas no presurizadas.

¿Alguna nave espacial estudió el Sol?
La NASA desarrolló una serie de Observatorios Solares Orbitales (OSO), que fueron lanzados entre 1962 y 1975.
Tenían como propósito observar los rayos solares ultravioletas, gamma y X a lo largo de un ciclo de 11 años de una mancha solar. Desde 1973 a 1974, se acopló un Telescopio Apolo (ATM) al Skylab para observar el Sol. El sucesor del programa OSO se llamó Misión Solar Máxima (Solar Máximum Alission – SMM), que estudió el Sol durante el apogeo de la actividad de las manchas solares.

El SMM se lanzó en 1980, fue reparado por una tripulación de un transbordador en 1984 y continuó operando hasta 1989. Otros países como Francia, Japón y la Unión Soviética también han llevado a cabo observaciones solares. La NASA, la ESA y la Unión Soviética han dado particular atención al fenómeno del viento solar.

¿Qué hacen las sondas?
Las sondas son naves no tripuladas equipadas con instrumentos para juntar y transmitir datos y/o imágenes del espacio. Debido a que son autónomas, pueden enviarse adonde nadie puede sobrevivir: en órbita alrededor del . Sol, a otros planetas o hasta más allá del sistema solar.

La contra de las sondas no tripuladas es que los desperfectos deben atenderse desde la Tierra (o el transbordador espacial), que puede encontrarse a millones o billones de kilómetros de distancia. Gran parte de la información que tenemos del Sol y los planetas vino de sondas espaciales tales como la Pioneer, la Mariner y la Voyager.

PioneerMarinerVoyager
Pioneer Mariner Voyager

¿Por qué seguimos mandando nuevas sondas a los mismos planetas?
Los conocimientos y tecnologías desarrollados -así como los fracasos en las tareas programadas de algunas sondas- hicieron que meta importante enviar reiteradas veces sondas al mismo planeta. No sabemos con qué nos encontraremos cuando recibimos información de una sonda distante. Cada una de las sondas enviadas a Júpiter, por ejemplo, abre un nuevo interrogante.

El Voyager 1 descubrió diez lunas más en órbita alrededor de Júpiter, sin contar las que se ven desde la Tierra. Para averiguar más acerca de estos satélites son necesarias más sondas. Las primeras sólo pudieron acercarse a los planetas y captar una visión muy general de ellos.

Cuando los científicos pudieron resolver cómo poner en órbita una sonda alrededor de otro planeta, pudimos ver los planetas enteros. No obstante, lo que puede obtenerse de una sola sonda en una misión tiene cierta limitación. Es necesario llevar a cabo sucesivas misiones para profundizar la investigación. Imaginemos lo que es enviar una sonda al Sol. Si en su camino, pasa por Venus y Mercurio, no nos queremos perder la oportunidad de recibir nueva información por no activarla en su trayecto, aunque ya hayan estado allí otras sondas anteriormente.

¿Qué planetas visitaron las sondas Mariner?
La Maríner 2, que fue la primera sonda planetaria lanzada con éxito, fue puesta en órbita alrededor de la Tierra el 27 de agosto de 1962. Desde allí, fue lanzada por un cohete en un viaje de 4 meses a Venus. El 28 de noviembre de 1965, la Maríner 4 se acercó a unos 870 kilómetros (540 millas) de Marte y envió las primeras fotografías de la superficie del planeta. Las Maríner 6 y Maríner 7 (1969) tomaron fotografías detalladas de aproximadamente el 10 por ciento de la superficie marciana, pero se perdieron uno de los accidentes geológicos más interesantes descubierto más tarde por la Maríner 9 (1971).

Esta sonda fue el primer satélite en entrar en órbita alrededor de Marte. Después de esperar que se calmara una tormenta de polvo marciana, la Maríner 9 envió fotografías de todo el planeta. La Maríner 10 fotografío aproximadamente el 40 por ciento de la superficie de Mercurio antes de ingresar en la órbita alrededor del Sol. En esta órbita, la sonda pudo pasar junto a Mercurio un par de veces más: sobre el polo sur y el lado oscuro del planeta. El programa Mariner fue considerado todo un éxito.

¿A qué planetas fueron las sondas Pioneer?
La Pioneer 10 (1972-1973) fue diseñada para enviar señales de radio de regreso a la Tierra desde Júpiter. Le llevó 21 meses llegar al gigante de gas. Pudo registrar parte de la superficie de Júpiter y enviar imágenes más claras de las que se habían tomado hasta entonces desde la Tierra.

La Pioneer 11 (1973-1974) se valió de la fuerza gravitacional de Júpiter para autoimpulsarse hacia Saturno. Envió las primeras fotografías de ese planeta. Tanto la Pioneer 10 corno la Pioneer 11 continuaron juntando datos desde más allá del sistema solar. Se espera que la Pioneer 10 pueda transmitir datos en el siglo XXI: no obstante, debido a algunos inconvenientes técnicos, no se espera que la Pioneer 11 dure tanto tiempo.

¿Cuándo se enviaron sondas Voyager a los gigantes de gas?
La Voyager 2 se lanzó primero, el 20 de agosto de 1977, pero la Voyager 1, lanzada el 5 de septiembre de 1977, fue la primera en llegar a Júpiter. La Voyager 1 llegó al punto más cercano el 5 de marzo de 1979 y recopiló información sobre el planeta y sus lunas. La Voyager 2 llegó a Júpiter en julio de 1979.

En noviembre de 1980, la Voyager 1 transmitió datos y fotografías de Saturno a la Tierra. Continuó luego con el estudio de la luna más grande de Saturno. Titán. El vuelo junto a Titán implicó que el Voyager 1 no pudiera llegar a Urano. La Voyager 2 llegó a Saturno en agosto de 1981 y continuó viaje, pasando junto a Urano el 24 de enero de 1986. Tres años y medio después, se aproximó a Neptuno y a su luna Tritón. Después de completar sus investigaciones planetarias, ambas sondas Voyager continuaron enviando información en sus viajes a la deriva en el espacio profundo.

¿Cuándo llegaron a Marte las sondas Viking?
Las sondas Mariner ya habían dado vuelta alrededor de Marte, pero el programa Viking se diseñó específicamente para aterrizar en un planeta en busca de la existencia de vida, entre otras cosas. La Viking 1 entró en órbita alrededor de Marte el 19 de junio de 1976. La NASA planeaba enviar un módulo que aterrizara en la superficie el las sondas Vikingdía de la independencia, para celebrar el bicentenario de Estados Unidos, pero hubo complicaciones que demoraron el aterrizaje hasta el 20 de julio.

La Viking 2 aterrizó el 3 de septiembre del mismo año. Ambas sondas contaron con dispositivos para realizar experimentos biológicos con el objetivo de determinar si había señales de vida en Marte. Para los que tenían sus esperanzas puestas en esto, los resultados fueron desalentadores. Las sondas Viking no descubrieron evidencias biológicas de vida en el planeta, pero estudiaron el suelo, el clima y la atmósfera, y enviaron más de 42.000 fotografías.

¿Qué es la misión Global Surveyor de Marte?
Lanzada el 6 de noviembre de 1996, la sonda de la NASA Global Surveyor de Marte fue diseñada principalmente para estudiar patrones actuales e históricos del clima; llevar a cabo estudios de geología y recursos naturales para determinar la posibilidad de realizar misiones tripuladas a Marte; y de más está decirlo, para buscar vida. Muchos astrónomos suponen que los signos vitales que puedan encontrarse en el planeta serán indicios más bien de una vida que existió cientos de miles de años atrás, que de seres contemporáneos.

El descubrimiento realizado a principios de 1996 de rastros de vida potencial en un meteorito de 600.000 años proveniente de Marte apresuró el proyecto Global Surveyor. Esta es la primera parte de una serie de misiones a Marte de una década de duración, llamada Programa de Exploración de Marte. El Global Surveyor realizará operaciones de trazado de mapas, controlará el clima y recopilará datos sobre las características de superficie.

¿Qué sondas lanzó a Venus la Unión Soviética?
El programa Venera se concentró en hacer aterrizar una sonda en Venus. Las primeras sondas enviaron datos e imágenes desde adentro de la atmósfera del planeta antes de ser incineradas por las increíbles temperaturas o aplastadas por la monumental presión atmosférica.

La Venera 7 aterrizó el 22 de julio de 1972 y transmitió los primeros datos enviados por una sonda apoyada sobre la superficie de otro planeta hasta el momento (aunque sólo durante 23 minutos). Las primeras imágenes de superficie que se le tomaron a Venus fueron transmitidas por la Venera 9 y la Venera 10 en octubre de 1975.

¿En qué consistió el programa soviético a Marte?
El programa soviético a Marte (las sondas recibieron el nombre del planeta) tuvieron demasiados inconvenientes, incluyendo lanzamientos fallidos, desafortunados intentos de abandonar la órbita terrestre, sin poder llegar a Marte, y hasta muertes. (Un grupo de científicos fueron a investigar la falla del lanzamiento de una de las primeras sondas; se produjo una explosión en la que murió gran parte del equipo.)

De siete naves espaciales, sólo una llegó realmente a Marte. La Mars 3 arribó a destino después de atravesar una terrible tormenta de polvo el 2 de diciembre de 1971. Inmediatamente comenzó a enviar imágenes a la Tierra, pero se detuvo 20 segundos después.

¿Adonde fueron las sondas soviéticas Fobos?
Se emprendió el proyecto de las sondas Fobos (1988-1989) con el fin de borrar los malos recuerdos del programa Mars tan prolífico en desastres de la década del 70. Las dos sondas, diseñadas para entrar en órbita alrededor de Marte y aterrizar en la luna del planeta, Fobos, fueron lanzadas en julio de 1988. Una orden incorrecta enviada a la Fobos 1 la anuló y ésta se perdió. La Fobos 2 tardó 6 meses en llegar a Marte. Dio órbitas a Marte durante varias semanas, y luego ajustó su órbita para incluir a la luna Fobos.

Cuando la Fobos 2 se estaba preparando para liberar sus dos módulos de aterrizaje en la superficie lunar, se perdió el contacto permanentemente. El programa Fobos no fue un desastre total, ya que llegaron a la Tierra imágenes y datos de la órbita de la Fobos 2 alrededor de Marte, pero no cumplió las expectativas.

¿Qué logró la sonda soviética Vega?
El programa soviético marciano no estuvo a la altura de las expectativas, mientras que las sondas Vega enviadas en 1985 a Venus y al cometa Halley fueron éxitos insoslayables. Hacia 1985, las relaciones internacionales se habían facilitado al punto en que la Unión Soviética, los Estados Unidos, Europa, Brasil y Australia compartían información sobre este emprendimiento.

Las sondas Vega 1 y Vega 2 fueron lanzadas en diciembre de 1985. Ambas enviaron módulos de aterrizaje a la superficie de Venus en jumo y liberaron globos para supervisar la atmósfera y el clima. Luego las sondas se reorientaron y se encauzaron hacia la órbita del cometa Halley.

La Vega 1 fue la primera en llegar hasta el cometa, y pasó junto a él a una distancia de 8.000 kilómetros (5.000 millas). Ambas sondas obtuvieron datos sobre el cometa y enviaron la información a la Tierra para ser usada por la sonda europea Giotto en su misión hacia el cometa Halley.

¿Qué sondas fueron enviadas al cometa Halley?
Una flota internacional de sondas fue lanzada para interceptar la órbita del cometa Halley en 1986. La sonda soviética Vega 1 fue la primera en llegar a destino, el ó de marzo, a unos 8.000 kilómetros (5.000 millas) del núcleo del cometa. La Vega 2 tomó fotografías desde una distancia de 21.000 kilómetros (13.000 millas) tres días después.

La Vega 1 transmitió datos que contribuyeron a asegurar el éxito de la sonda Giotto de la ESA, que llegó al cometa 7 días más tarde. El 8 de marzo, la sonda japonesa Suisei pasó junto al cometa Halley a una distancia de 146.000 kilómetros (91.000 millas) para obtener una vista amplia.

También se envió desde Japón la sonda Sakigake para estudiar la cola del cometa. La misión de la Giotto fue entrar en la cola del cometa y fotografiarla durante la mayor cantidad de tiempo posible antes de chocar con el núcleo. La sonda transmitió su película casi hasta el punto de impacto.

En lugar de colisión, sin embargo, la sonda fue expulsada de la trayectoria del cometa por un grano de polvo de 1 gramo (3 centésimas partes de una onza). Al cabo de una hora, la Giotto comenzó a enviar datos nuevamente mientras volaba al costado del cometa.

¿Qué es el Telescopio Espacial Hubble?
Desde que los telescopios fueron usados por primera vez por Galileo a principios del siglo XVII, los astrónomos Telescopio Espacial Hubblesoñaron con colocarlos donde la atmósfera terrestre no interfiriera para observar el universo.

El Telescopio Espacial Hubble hace realidad ese sueño. Se trata de un telescopio de reflexión, que no es el más grande que se ha hecho en la Tierra. Su sorprendente claridad se debe a estar ubicado más allá de la distorsionante interferencia de la atmósfera terrestre.

El Telescopio Espacial Hubble tiene un espejo primario de 2,4 metros (7,9 pies) de diámetro. Además de la unidad del telescopio en sí, el Hubble tiene dos cámaras, dos espectrómetros (para descomponer los componentes de la luz) y un fotómetro (para medir el brillo).

El sistema de control para ubicar estrellas funciona con giroscopios y dispositivos especiales de rastreo de estrellas y sensores. El Hubble es el niño mimado de la NASA, sin embargo, en su construcción e instalación se volcó un esfuerzo internacional. En retribución a la colaboración, los demás países tienen su propio tiempo de observación con el Hubble.

¿Cuándo se lanzó el Telescopio Espacial Hubble?
La NASA estuvo unos 30 años pensando, diseñando, creando y probando un telescopio que pudiera ponerse en órbita. El resultado, el Telescopio Espacial Hubble, estuvo listo para ser lanzado en 1985. Su misión sería observar el sistema solar y las galaxias más allá de aquél sin la interferencia de la atmósfera terrestre. A principios de 1986, no obstante, el fatal lanzamiento del Challenger pospuso todos los proyectos de la NASA.

El Hubble fue lanzado a bordo del transbordador espacial Discovery el 24 de abril de 1990. El 26 de abril de 1990 fue liberado del Discovery y entró en órbita. Todo el mantenimiento y reemplazo de instrumentos debe ser llevado a cabo por los transbordadores espaciales.

¿Hubo problemas con el Telescopio Espacial Hubble?
Afortunadamente, la NASA hizo planes para reparar el Hubble en su permanencia de 15 años en órbita. Dos meses después del lanzamiento del Hubble, se descubrió que el espejo primario no había sido ajustado adecuadamente (entre otros problemas). No podía regularse el foco del telescopio.

A pesar de que se trataba de un inconveniente mayúsculo, la misión de la peligrosa y compleja reparación que debía efectuarse resultó un golpe maestro. Se lanzó el transbordador espacial Endeavor en diciembre de 1993. Su tripulación capturó el Hubble, lo reparó y liberó con todo éxito. Las imágenes y los datos enviados desde entonces han compensado ampliamente las primeras dificultades, con lo que es de suponer que el Hubble será recordado más por sus logros científicos que por sus problemas.

¿Cuál es la siguiente misión NASA de importancia?
Los planes varían todo el tiempo, debido a restricciones presupuestarias y gubernamentales, pero el siguiente programa espacial de espectacular importancia es un viaje prolongado alrededor de Saturno y un aterrizaje en su luna Titán. La misión es un emprendimiento conjunto entre la ESA y la NASA. La nave espacial en cuestión, llamada Cassini, ha sido diseñada parcialmente a partir de los equipos Mariner, Viking y Voyager. La sonda de aterrizaje, llamada Huygens, será producida por la ESA. Se espera que la Cassini llegue a Saturno los primeros años del siglo XXI.

Después de una órbita de un mes la nave se acercará a Titán para depositar sobre la superficie lunar la sonda Huygens. (Se sabe muy poco sobre la superficie de Titán, y existe cierta preocupación de que la Huygens pueda hundirse en un mar de metano líquido.)

La Cassini intentará usar la gravedad del satélite para lanzarse hacia las demás lunas de Saturno, Si tiene éxito. Cassini transcurrirá unos 4 años saltando del campo gravitacional de una luna a otro, estudiando los satélites y los anillos de Saturno.

¿Habrá alguna vez asentamientos fuera del mundo?
La idea de colonias de humanos en la Luna o en Marte no sólo se encuentra en las páginas de los libros de ciencia ficción. La NASA viene planeando una base lunar desde la década del 60. Las inversiones en el programa del transbordador espacial distrajeron la atención de este objetivo, pero se ha reavivado el interés. En 1991, astronautas veteranos describieron algunos posibles escenarios.

Quizás una base lunar podría usarse para entrenar misiones destinadas a Marte. También podría concentrarse el objetivo en el estudio científico de la misma Luna, que exigiría un tipo de base diferente. Podría haber una comunidad científica ya funcionando para el año 2015. Sí la idea es establecer una colonia permanente en la Luna, podría iniciarse una comunidad autónoma de unos seis astronautas hacia el 2010.