Cohetes y Satelites

Explotación Agricola en Europa del Siglo XIX Economía

EL PREDOMINIO DE LA ECONOMÍA AGRÍCOLA
EN EUROPA EN EL SIGLO XIX

La Europa de principios del siglo XIX era aún una Europa campesina cuya vida económica dependía estrechamente de las fluctuaciones de sus principales producciones agrícolas. La ausencia de excedentes mantenidos limitaba el desarrollo de las ciudades, que permanecían muy ligadas al campo. Las frecuentes malas cosechas de cereales, patatas, legumbres, ocasionaban grandes subidas de precio. Las crisis estacionales o anuales, engendradas por las malas cosechas o por la deficiencia de las relaciones comerciales y de los medios de transporte, se conjugaron a partir de 1817 con una larga etapa de depresión y de hundimiento de los precios, que sucedió al favorable período precedente.

LA POBLACIÓN: A partir de 1801, la población mundial ha crecido con más rapidez que nunca. Sólo en el siglo XIX se duplicó con creces; la anterior duplicación tardó cuatro veces más. Desde el siglo XVII la curva de crecimiento se ha ido haciendo cada vez más empinada. Sin embargo, las cosas no son tan sencillas como parece deducirse de esta imagen general. Algunos países han crecido con más rapidez que otros, y lo mismo puede decirse de los continentes.

El resultado ha sido un cambio en el orden de las naciones, atendiendo a su número de habitantes. Empecemos por Europa: en 1801, Francia reunía bajo su bandera más habitantes que ningún otro país al oeste de Rusia; en 1914 ocupaba la cuarta posición, por detrás de Alemania, Austria-Hungría y Gran Bretaña. El crecimiento de los Estados Unidos fue aún más rápido: en 1900 sus habitantes habían ocupado ya todo el continente (que en 1801 aún seguía inexplorado en gran parte) y su número había ascendido de 6 a 76 millones, lo que representa un aumento del 1.150 por 100.

Se dispone  de   información   mucho   más completa y exacta acerca de los países de Europa y América que de los de Asia y África; no obstante, parece comprobado que la población creció en todas las partes del mundo durante el siglo XIX: en China, por ejemplo, el aumento superó el 40 por 100, llegándose a los 475 millones; Japón pasó de unos 28 millones a unos 45, y la India de 175 a 290 millones. Se trata, en todos los casos, de incrementos muy grandes.

LA AGRICULTURA CONTINUA PREDOMINANDO
Salvo algunas excepciones, los métodos de explotación agrícola permanecían anticuados, ya que la mayoría de los grandes propietarios se desinteresaron de ello y no trataron de aumentar sus rentas por medio de la comercialización de sus productos. En cuanto a los pequeños cultivadores, sin instrucción, apartados de la escena política por los regímenes censatarios, no disponían de capital suficiente para introducir innovaciones.

agricultura en europa

Falta de abono, la tierra se convertía en  barbecho  cada   tres   años;   falta   también de maquinaria (se sembraba a mano, se trillaba con el mayal, se segaba con la hoz), una gran parte del suelo se desperdiciaba y los rendimientos obtenidos eran muy escasos. El desconocimiento de los métodos de conservación de la carne, el estado de los animales, desnutridos y sujetos a epidemias, impedía toda explotación ganadera racional, utilizándose el ganado, sobre todo, para los trabajos agrícolas.

Las crisis de subsistencias probaba trágicamente que el destino de millones de  hombres  dependía aún de las cosechas  de   trigo;   por  eso la agricultura estaba orientada hacia los productos de más corriente consumo, y, en pri mer lugar, hacia los cereales, como el trigo el centeno, la cebada, la avena y el alforjón.

La ausencia  de  excedentes  obligaba  a  la: diferentes naciones e incluso a las regione: a  vivir  replegadas  sobre  sí  mismas.   Uni camente  los   productos   exóticos   (especias café) daban lugar a un tráfico importante Sin embargo, este medio siglo conoció cier tos progresos agrícolas, de los que Inglate rra fue la principal beneficiaria. Más  adelantada que sus vecinos, había experimentado, desde el siglo XVIII , nuevos métodos; 2.000 lores, propietarios del tercio de la superficie cultivable, transformaron hectáreas de tierra de labor en fértiles praderas, en las que practicaron una ganadería moderna con selección de razas (la raza Durham llegó a ser la primera de Europa).

Los decretos para la formación de «acotados» (reunión de tierras rodeadas por vallas), concluidos en 1840, los «cornlaws», leyes que prohibían la entrada de trigos extranjeros, habían enriquecido   a   estos   grandes   propietarios que llevaron a cabo una verdadera revolución sustituyendo el barbecho por el cultivo de plantas herbáceas, de trébol, de alfalfa y otras análogas, alternando con los cereales; la utilización de los abonos (cal, guano, fertilizantes industriales descubiertos por Liebig), la mejora de los arados, la desecación de los pantanos, reforzaron esta revolución agraria.

Las Corn Laws fueron aranceles a la importación para apoyar los precios del grano británico doméstico contra la competencia de importaciones, vigentes entre 1815 y 1846.

PEQUEÑAS PROPIEDADES Y GRANDES DOMINIOS: Además  del  tipo inglés (que acabamos de ver mas arriba),  se podían  distinguir otras dos modalidades  de  agricultura en Europa.  Una de ellas predominaba en Francia, Países Bajos, Suiza y norte de Italia; la supresión de las servidumbres señoriales   había   emancipado   jurídicamente   al campesinado, pero éste, dueño en su inmensa mayoría, de pequeñas o medias propiedades, vegetaba y se mantenía gracias a la supervivencia de las prácticas comunales y a la ayuda de trabajos artesanos.

Sin embargo, en estos países fueron realizados importantes   trabajos   de  desecación   (particularmente en Holanda, donde los «polders» alcanzaron una gran extensión) que permitieron acrecentar la superficie cultivable. El rercer tipo de agricultura, el de los grandes dominios   señoriales,  reinaba  en  la  mayor parte de Europa; en el sur de Italia y en Toscana, la aristocracia terrateniente practicaba el absentismo, dejando a los administradores el cuidado de ocuparse de sus inmensas propiedades, y éstos las hacían explotar por los jornaleros a los que apenas les quedaba para vivir. Los grandes propietarios españoles practicaban también la aparcería; pero tenían que hacer frente a la Mesta, poderosa asociación de ganaderos que monopolizaba inmensas extensiones de tierras, oponiéndose al desarrollo de la agricultura.

En Prusia y en Europa Oriental, las reformas napoleónicas fueron abandonadas después de Waterloo y los campesinos tuvieron que devolver a los nobles el tercio de sus tierras, cayendo nuevamente en un estado de semi-servidumbre. Sin embargo, algunos pequeños hidalgos prusianos intentaron modernizar sus posesiones siguiendo el ejemplo de los lores ingleses.

Por último, en Rusia, la tierra estaba en manos de la corona y de los nobles; una parte de sus inmensos dominios era explotada directamente, y la otra repartida en parcelas entregadas a las familias de los siervos a cambio de los servicios que prestaban trabajando las tierras de su señor. Rusia era entonces la mayor exportadora de trigo de Europa, pero las exportaciones se hacían en detrimento de la población, que vivía en condiciones miserables. Esta oposición entre la Europa Occidental y los países orientales, próximos todavía a las estructuras feudales, había de durar hasta nuestros días.

La Era Capitalista El Desarrollo De La Ciencia e Inventos En Europa

LA ERA CAPITALISTA EN EUROPA: EVOLUCIÓN TECNOLÓGICA Y DESARROLLO CIENTÍFICO

A partir del siglo XIX se inician un par de transformaciones que renovaran la economía, la sociedad y la política de todo Europa.Estas dos destacadas transformaciones son la Revolución Industrial y la Revoluciones Burguesas ocurridas entre 1820 y 1848. La primera cambió la forma de producir y de organizar la economía de ese momento, estableciendo un sistema capitalista que se extendió a nivel mundial y la segunda se refiere a los movimientos revolucionarios que luchaban por una sociadad mas justa, con mas libertad y sobre todo participación en la política, que culminaron con las ideas liberales como principio rector de la vida social, de esta manera nacía el liberalismo político y económico.

La Revolución Industrial dio origen a una nueva forma de organizar el trabajo: el trabajo fabril; a un nuevo tipo de trabajador: el obrero industrial; y a una nueva forma de organización económico-social: el capitalismo. El capitalismo surgió luego de una sucesión de grandes y profundos cambios sociales y económicos que se produjeron en el campo y en las ciudades.

El trabajo asalariado se difundió en las ciudades en las que se desarrollaba la industria y también en las zonas rurales en las que la producción agropecuaria se destinaba al mercado. Sin duda el capitalismo significó para el hombre un camino de progreso, pero al mismo tiempo llevó a la formación de una sociedad dividida en clases sociales con intereses contrapuestos. El conflicto más profundo fue el que se planteó entre la burguesía, propietaria de los medios necesarios para la producción, como las industrias, la tierra, las herramientas, y los obreros, que no disponían de bienes ni de tierras ni de herramientas, y que lo único que podían hacer para subsistir era vender su fuerza de trabajo.

revolucion industrial en europa

Hacia la primera mitad del siglo XIX, el capitalismo se consolidó en Europa occidental y los cambios que había introducido la Revolución Industrial se extendieron por otros países del continente europeo y los Estados Unidos. La burguesía se consolidó como clase y fue protagonista de importantes revoluciones —1830, 1848— e impuso al mundo sus ideas, valores e instituciones de corte liberal. Pero este mundo burgués fue también un mundo de fuertes conflictos sociales. Junto a la próspera burguesía, en las ciudades industriales el número de obreros organizados crecía cada vez más: reclamaban por mejores condiciones de vida y mejores salarios. El progreso y la miseria fueron las principales características de esta época.

La industrialización cambió de forma radical el mundo. Las nuevas fuentes de energía condujeron a la mecanización y surgieron nuevas formas de comunicación y transporte. Varios factores provocaron el avance de la industrialización en el siglo XIX. En Europa, la consolidación de grandes imperios, como el británico, conllevó mayores oportunidades comerciales. La ampliación de los mercados de exportación alentó un aumento de la productividad, como resultado de la cual comenzaron a aparecer grandes fábricas modernizadas. En Gran Bretaña, el ritmo del desarrollo industrial se había acelerado durante el siglo xvm, cuando el imperio alcanzó su extensión máxima.

Explica John M. Roberts en su libro: “Historia Universal Ilustrada“: ¿Qué entendemos por «industrialización»? Por lo general, suele interpretarse como producción organizada a gran escala, con mucha gente trabajando junta. Pero el sentido común nos dice que debemos excluir de la definición la agricultura, a pesar de que a menudo se ha practicado con gran número de operarios en una misma finca —los siervos en Europa oriental o los esclavos en las plantaciones, por ejemplo—, y también el comercio, que se ocupa del intercambio de mercancías, y no de su producción. ¿A qué nos referimos, pues, cuando hablamos de industrialización en el contexto de la historia de la humanidad? Una posible definición sería «el proceso que conduce a una sociedad que cada vez resulta más dependiente de la industria fabricante de artículos y menos del comercio o la agricultura».

LA MÁQUINA A VAPOR: En 1765, el inventor inglés James Watt construyó un modelo de máquina de vapor. Cuatro años después, en 1769, construyó su primera máquina de vapor. El invento halló muy pronto aplicación en las empresas de Inglaterra. En 1780, en Birmingham funcionaban 11 máquinas de vapor, on Leeds 20, y en Manchester 32. La invención de la máquina dE vapor marcó una nueva otapa de la revolución técnica. Juntamente con la máquina de vapor entra en escena la ciencia.

En su forma mas simple el vapor utiliza agua hirviendo para producir vapor a presión. Este vapor hace presión contra una turbina o un pistón y fuerza su movimiento, y ese movimiento acciona las ruedas del motor. Pese a haberse inventado ya en 1698, el accionamiento por vapor experimentó diversos refinamientos hasta poder ser usado para accionar el primer barco en 1802. Las modificaciones más importantes del motor de vapor las realizó el escocés James Watt. Nacido en 1732, Watt consagró su vida a mejorar el motor de vapor.

De hecho, de no haber realizado los cambios que realizó, el motor de vapor no habría podido impulsar la Revolución Industrial. Watt ideó la cámara separada en la que se condensaba el vapor y gracias a la cual el motor tenía una mayor eficacia; y también inventó el barómetro o indicador de presión, y la manivela y el volante que provocaron el movimiento rotatorio. Fue un motor de Watt el que impulsó el barco experimental Clermont aguas arriba por el río Hudson en 1807.

maquina newcomen a vapor

La bomba de vapor, empleada para suministrar energía a molinos y fundiciones, la inventó Newcomen en 1712, pero no resultó práctica hasta que james Watt perfeccionó en 1191 esta enorme máquina, basándose en el diseño de Newcomen pero eliminando la mayoría de sus inconvenientes para poderla emplear para impulsar maquinaria. Un elemento fundamental de la máquina era el regulador, que mantiene constante la entrada de vapor, sea cual sea la carga.

LOS TRIUNFOS DE LA CIENCIA
Fue en el siglo xix cuando las ciencias llegaron a ocupar un lugar preponderante en la civilización de la Europa Occidental. Los sabios no fueron ya aficionados, sino profesores e investigadores que se especializaban, publicaron sus trabajos, confrontaron sus métodos de razonamiento y de experimentación.

Descubrimientos matemáticos importantes fueron el origen de un desarrollo general en las otras disciplinas científicas: el alemán Gauss, profesor de la Universidad de Gottinga, puso las bases del cálculo de probabilidades; en Francia, Lagrange hizo progresar el estudio de la mecánica, Monge creó la geometría descriptiva, Laplace demostró la estabilidad del sistema solar, Arago determinó la medida del meridiano. Sus sucesores Cauchy y Evaristo Galois (que murió a la edad de 21 años, a consecuencia de un duelo) fueron los promotores de la nueva álgebra y de las matemáticas puras. Noruega tuvo en Abel su gran matemático.(Ver: Matemáticos y Físicos)

Estos descubrimientos fueron directamente aplicados a la astronomía; Arago logró medir el diámetro de los planetas; Verrier, basándose en cálculos, estableció la existencia de un nuevo planeta, Neptuno, que un astrónomo berlinés, Gall, descubrió muchos años después, con la ayuda de un telescopio. Varios descubrimientos esenciales revolucionaron la física: refutando todas las afirmaciones anteriores, el óptico Fresnel demostró que los fenómenos luminosos eran debidos a la propagación de las ondas vibratorias. A la sombra del viejo Berthollet, Biot y Arago hicieron las primeras medidas precisas relativas a la densidad del aire; el mismo año, Gay-Lussac descubrió las leyes de la dilatación de los gases y estudió la composición de la atmósfera.

Por su parte, Carnot definió en un largo estudio las primeras leyes de la termodinámica. Los progresos más ricos en consecuencias fueron realizados en el campo de la electricidad: en 1800, los italianos Galvani y Volta construyeron a primera pila; el danés Oersted descubrió la acción de la corriente eléctrica sobre una aguja imantada, y el francés Ampére definió las leyes del electromagnetismo. El inglés Faraday y el americano Henry establecieron la noción de la inducción, y el alemán Ohm expuso su teoría matemática de la corriente eléctrica.

Estos descubrimientos permitieron el empleo del telégrafo eléctrico (dispuesto por Steinheil y Morse), que funcionó en Francia y en Inglaterra hacia los años de 1840. Los progresos de la química revistieron el mismo carácter internacional: gracias al inglés Davy y al sueco Berzelius, la pila eléctrica fue utilizada para el análisis de los cuerpos; la electrólisis permitió así aislar nuevos cuerpos simples: el potasio, el sodio, el magnesio, el cromo, aislados por el francés Vauquelin, el yodo y el aluminio por el alemán Woehler.

La química orgánica hizo importantes progresos gracias al francés Chevreul, autor de un estudio sobre los cuerpos grasos naturales, y al alemán Liebig, que creó un centro de estudios sobre los ácidos orgánicos, la fermentación y la descomposición de las materias, y realizó trabajos sobre la aplicación de la química en la agricultura. Por último, el inglés Dalton y el italiano Avogadro concluyeron las primeras teorías del átomo. Dos aficionados, el ofi cial Niepce y el pintor Daguerre, estudiaron la fijación de las imágenes luminosas obtenidas en la cámara oscura; en 1839, el inglés Talbot realizó las primeras fotografías en papel; seis años después, Niepce de Saint-Víctor inventó la fotografía sobre vidrio.

Los biólogos se dedicaron al estudio de la célula, elemento fundamental de los tejidos, descubierta, en 1830. Bichat y Laennec modernizaron los métodos de la medicina, y el descubrimiento de los anestésicos permitió a la cirugía dar un gran paso adelante. Gracias a un estudio detallado de las rocas, los geólogos reconstruyeron las principales etapas de la evolución de la corteza terrestre. Cuvier, partiendo de la observación de los fósiles, lanzó las bases de la paleontología, ayudado por sus discípulos Dufrenoy y Elie de Beaumont.

Estos últimos se convencieron de la estabilidad de las especies después de su creación; los descubrimientos de Boucher de Perthes sobre el hombre prehistórico  pusieron  en  discusión sus conceptos sobre el origen del mundo.   Lamarck y  Geoffroy   Saint Hilaire   se instituyeron, contra Cuvier, en campeones del transformismo, es decir de la evolución de las especies bajo el efecto de los cambios de ambiente y de herencia. Esta teoría parecía  incompatible  con la  enseñanza  de la Iglesia y dio lugar a una larga controversia entre la ciencia y la religión.

La investigación científica no descuidó la historia; atendió sobre todo, a las civilizaciones del pasado:   Champollion descubrió  el  significado de los jeroglíficos de Egipto, fundando así la egiptología; en Mesopotamia y en Grecia   fueron   emprendidas   excavaciones, fundándose  en  ésta  última  la   escuela  de Atenas.

Con la escuela de Diplomas, los investigadores franceses se dedicaron a un estudio sistemático del pasado de su país, y los sabios italianos multiplicaron las excavaciones   para   exhumar  los   innumerables vestigios de la civilización romana. Las ciencias habían abandonado definitivamente el campo del empirismo y tomado una extensión que iba a provocar una nueva revolución industrial, prodigiosamente acelerada, hacia finales de siglo.

La revolución industrial  vino acompañada de una explosión tecnológica que trajo grandes avances en el transporte (el automóvil y el aeroplano), las comunicaciones (el teléfono y las señales inalámbricas) e incluso el ámbito doméstico (la bombilla y el gramófono). En las ciencias, el naturalista británico Charles Darwin transformó el modo de concebir el mundo con la Teoría de la Evolución.

LA TECNOLOGÍA APLICADA A LOS MEDIOS DE COMUNICACIÓN:

Los Caminos: Al ampliarse la producción y el mercado de venta, se necesitaban medios de comunicación más perfectos. Aún antes de comenzar la revolución industrial, los caminos no satisfacían las necesidades de la población. Según testimonios de los contemporáneos, eran “molestos, malos, y dignos tan solo de ser destruídos” Por ellos transitaban penosamente, como mil años atrás, únicamente bestias de carga. Los transportes eran lentos y sumamente caros. Entre Inglaterra y Escocia, en general, no había comunicación regular. De Londres a Oxford se tardaba no menos de dos jornadas, y las cargas requerían más de tres semanas para llegar a Liverpool.

La etapa inicial de la revolución industrial está relacionada con la intensificación de la construcción de caminos. Sólo en el quinquenio de 1769 a 1774, el Parlamento votó más de 450 decretos sobre la construcción de nuevos caminos o mejoramiento de los viejos. Con el mejoramiento de los caminos, la velocidad de las comunicaciones comerciales aumentó a más del doble. A partir de 1756 aparecieron las comunicaciones postales y de viajeros regulares entre Londres y Edimburgo. Las bestias de carga fueron sustituidas en casi todas partes por las carretas. Sin embargo, para la conducción de cargas voluminosas y pesadas, el transporte terrestre continuaba siendo muy caro e incómodo. Surgió la idea de sustituir los caminos por las comunicaciones fluviales. La construcción de canales comenzó a principios de la segunda mitad del siglo XVIII. En 1755 fue construido un canal de 11 millas de longitud entre Liverpool y Manchester.

Como consecuencia de la apertura del canal, los gastos en el transporte de mercancías se redujeron a la mitad. En 1766 se abrió un canal de 29 millas. A fines del siglo XVIII, el Gran Canal de Unión comunicaba a Londres con las ciudades del centro de Inglaterra. Hacia 1825, la red de canales alcanzó 500 millas de longitud A principios de la década del 40 del siglo XIX, Inglaterra disponía de 2.200 millas de canales y de 1.800 millas de ríos navegables.  En Unos 30 años el país se cubrió de todo un sistema de canales, abiertos preferentemente en los condados del centro y del norte del país.

Todos los canales los construyeron particulares, dueños de grandes manufacturas o magnates de la industria. Pero la verdadera revolución en los medios de transporte está relacionada con la aplicación del vapor y la invención de la locomotora y el barco de vapor. En el primer cuarto del siglo XIX, los veleros comenzaron a ser sustituidos por los vapores, y las torpes y pesadas diligencias por los ferrocarriles.

puentes y canales en la revolucion industrial

El primer vapor se botó en 1807 en el río Hudson, en Norteamérica. Su inventor y constructor fue Kobert Fulton. En Gran Bretaña, el primer vapor se construyó en 1811. En 1816 un vapor cruzó por primera vez el Canal de la Mancha. Tres años después, en 1819, el vapor norteamericano Savannah hizo el primer viaje entre el Nuevo y el Viejo Mundo, cruzando el Atlántico en 25 días, o sea en 6 días más que los barcos de vela.

En 1842, el vapor inglés Drover realizó el primer viaje en derredor del mundo. Hasta entonces sólo los barcos de vela habían circundado el globo. En los primeros tiempos, la navegación a vapor fue más letita que la de vela y resultaba más cara; muchos comerciantes y empresarios no querían utilizarla, pero los más sagaces no tardaron en darse cuenta de sus ventajas en un futuro próximo.Todavía la mayor trascendencia fue la construcción de los ferrocarriles.

El Ferrocarril: La aparición del ferrocarril fue esencial para el éxito de la industrialización. En Gran Bretaña funcionaba desde antes del siglo XIX una forma rudimentaria de ferrocarril: desdelas bocaminas y las canteras, unos vagones tirados por caballos transportaban el carbón por medio de unas sencillas vías fabricadas con piedra y hierro.

La invención del motor a vapor fue el catalizador del cambio. En 1804, un minero de estaño de Cornualles, Richard Trevithick, enganchó un motor a vapor a un vagón de una mina. Inspirado por esta acción, George Stephenson creó su Rocket, la primera locomotora móvil capaz de tirar de vagones.

primera linea de ferrocarril

La primera línea de ferrocarril enlazó Liverpool con Manchester en 1830, y tras ella se desató un boom de la construcción ferroviaria. A partir de 1850, el Estado británico tuvo que intervenir para estandarizar el ancho de vía, que hasta entonces había sido variado. Esta intervención dotó a Gran Bretaña del primer sistema de transporte ferroviario nacional totalmente operativo. El ferrocarril fue ampliándose por toda Europa, uniendo las regiones y comunidades más aisladas y contribuyendo a la integración económica.

Desde el descubrimiento de nuevas rutas marítimas en los siglos quince y dieciséis, los mares unieron a los continentes en lugar de separarlos. Con el aprovechamiento de la energía del vapor en el siglo dieciocho, los barcos cubrieron con rapidez esas distancias, o por lo menos lo hicieron a un ritmo más constante y confiable. Al ponerle ruedas a la máquina de vapor, la revolución del transporte terrestre no se hizo esperar.

Vapores en los puertos: La máquina de vapor, que primero se empleaba para bombear agua de las minas de carbón y estaño, llegó a ser el artefacto más importante de la Revolución Industrial. Esta fuente de energía alimentada por carbón fue adaptada con éxito a la propulsión de barcos, a comienzos del siglo diecinueve.

El norteamericano Robert Fulton construyó en 1807 un barco de vapor, el Claremont, que funcionó. Por la misma época, el inglés Patrick Bell construía a su vez un barco similar. Al principio, el vapor fue considerado útil en los viajes por ríos o canales, pero hacia la década del 30 los barcos de vapor realizaban ya viajes transoceánicos. Los buques de vapor, o vapores, que no dependían de los vientos favorables, podían ajustarse a horarios, lo cual nunca había ocurrido antes. En consecuencia el comercio internacional se incrementó con rapidez. El vapor, más que la vela, intercomunicó pronto vastos imperios como el británico.

Hacia 1880, el motor de vapor propulsaba casi todo tipo de barcos: de guerra, de carga y de pasajeros. Las armadas movidas por vapor exhibían acorazados más armados y más blindados que nunca en toda la historia.

barco movido a palas

Automóviles: La historia del automóvil comenzó en 1885, con la aparición de la primera máquina movida por un motor de combustión interna. Nueve años después, un inventor francés llamado Panhard construyó un vehículo de cuatro ruedas, fácilmente identificable como antepasado del automóvil moderno. Durante la siguiente década se construyeron automóviles en Francia y Alemania, que servían como juguetes para los ricos. Este período puede considerarse como la prehistoria del automóvil.

Su verdadera historia comenzó en 1907 en los Estados Unidos, cuando Henry Ford empezó a producir en serie su Modelo T, mucho más barato que ningún otro coche construido hasta la fecha. Ford estaba dispuesto a atraer a un mercado de masas, y sus primeros modelos costaban sólo 950 dólares. En veinte años, gracias al enorme éxito obtenido, pudo rebajar el precio a menos de 300 dólares.

La demanda aumentó con tal rapidez que en 1915 Ford producía ya un millón de coches al año; esto significaba que lo que antes era un lujo se había convertido en un artículo corriente. De este modo, Ford cambió el mundo; a partir de entonces, incluso las personas con ingresos modestos podían disfrutar de una movilidad impensable incluso para los millonarios de cincuenta años antes.

auto antiguo de 1894

Una revista francesa patrocinó en 1894 una carrera para vehículos automáticos de Varis a Ruán. Los vencedores fueron dos vehículos de gasolina de las firmas Panhard.A consecuencia de esta carrera, la industria accedió a respaldar financieramente a los inventores.

El tendido de cables: Samuel Finley Bréese Morse, artista e inventor norteamericano, produjo la primera aplicación práctica masiva de los impulsos electromagnéticos, al inventar el código Morse en 1837. Siete años más tarde envió un mensaje instantáneo que rezaba: “¡Lo que hubiera fraguado Dios!”, por una linea telegráfica que iba de Baltimore a Washington D.C. ¿Qué quería decir con ello? Se trataba de una expresión de admiración respetuosa. Para la época, el telégrafo era una novedad inimaginable, tan importante y sorprendente como es hoy Internet. Los cables no tardarían en extenderse en todas direcciones por los países industrializados de Europa occidental y Norteamérica, para llegar luego a las más remotas regiones del globo.

Hablar por teléfono: Alexander Graham Bell, un terapeuta de la fonoaudiología, se interesó en el sonido y la comunicación junto con la tecnología telegráfica (consultar la sección anterior sobre el telégrafo), y construyó un teléfono experimental en 1876. Bell, inmigrante escocés a Estados Unidos, produjo y comercializó los aparatos y fundó además Bell Telephone Company. A comienzos del siglo veinte el teléfono no era ya una novedad y se había tornado en una comodidad diaria.

El envió de ondas radiofónicas: A finales del siglo diecinueve, Guglielmo Marconi, inventor italiano, demostró que las ondas de radio podían servir para enviar señales sin necesidad de cables. Los escépticos pensaban que las ondas de radio no podían recorrer distancias lo suficientemente grandes para ser de utilidad. Marconi, que vivía y trabajaba en Inglaterra, probó que estaban equivocados enviando una señal en código Morse a 14,5 kilómetros de distancia, a través del canal de Bristol. En 1901 envió una señal a mucho mayor distancia: a través del océano Atlántico, desde Cornualles (situada en la punta suroccidental de la principal isla de Inglaterra), hasta Newfoundland, en Canadá. Marconi ganó el premio Nobel de física en 1909.

Los Zepellin: Durante mucho tiempo —quizá miles de años— los hombres han soñado con poder volar. En el siglo XVIII empezaron a hacerlo: los hermanos Montgolfier realizaron su primera ascensión en globo en 1783. Durante muchos años, los únicos agentes capaces de elevar el artefacto eran el aire y el gas calientes producidos al quemar materiales directamente debajo del globo, de ahí que se los llamara «globos de aire caliente».

En el siglo XIX, las «máquinas más ligeras que el aire» (una denominación curiosa, puesto que en realidad eran más pesadas, y lo único más ligero era el agente elevador) empezaron a utilizar gases como el hidrógeno, que no necesitaban calentarse. El tamaño y la forma de los aparatos fue cambiando, ya que se pretendía que sirvieran para algo más que el mero flotar a capricho del viento. Los primeros «dirigibles» verdaderos —es decir, aparatos que se podían guiar— aparecieron cuando surgió el motor de combustión interna y pudieron abandonarse los extravagantes experimentos realizados hasta entonces con grandes remos e incluso velas. (Ver: Historia de los Zepellin)

Primeros Vuelos en Aviones: (Ver: Los Hermanos Wright)

globo zepellin

El dirigible Zeppelin Sachsen aterrizando en el aeropuerto de Mockaa en 1913.
Estas aeronaves funcionaban con hidrógeno, un gas muy inflamable, con constante riesgo de incendio.

Fuente Consultadas:
Todo Sobre Nuestro Mundo Christopher LLoyd
HISTORAMA La Gran Aventura del Hombre Tomo X La Revolución Industrial
Historia Universal Ilustrada Tomo II John M. Roberts
Historia del Mundo Para Dummies Peter Haugen
La Revolución Industrial M.J. Mijailov

La Revolución Islámica Ayatolá Jomeini Derroca al Sha Palhevi

RESUMEN CAUSAS DESTITUCIÓN GOBIERNO DE REZA PALHEVI EN IRÁN

Se conoce como Revolución Islámica de Irán al proceso dirigido por el líder relgioso, el ayatolá Ruhollah Jomeini por el cual fue derrocado definitivamente el sha (rey) Reza Pahlevi, quien respondía a intereses norteamericanos y además había generado la famosa Revolución Blanca, poniendo en práctica una serie de reformas políticas, sociales y económicas que se oponían a las costumbres y doctrinas religiosas del pueblo iraní , cuestionando a la vez el poder y autoridad de los los dirigentes religiosos.

La oposición a este régimen autocrático, abarcaba todos los sectores de la sociedad, que no aceptaban la corrupción y el insaciable enriquecimiento de la familia real, quienes reclamaban un gobierno mas democrático, justo y con una repartición de la riqueza mas equitativa. Las grandes ganancias de la explotación petrolera, obtenidas del suelo iraní iban a las arcas de las grandes compañías y de la familia Palhevi, poco volvía al pueblo.

En febrero de 1979, estalló la revolución, apoyada sobre las enseñanzas islámicas chiitas acabó con la monarquía laica del sha, se proclamó la República Islámica de Irán, y se rechazó toda influencia occidental.

Ayatholá Jomeini

Ayatholá Jomeini

En 1979, el Ayatollah Jomeini lideró una revolución islámica y derrocó al Sha. Jomeini en la década de 1970, era un hombre desconocido, pero contaba con ciertas aptitudes de las que carecían otros dirigentes. En primer lugar, parecía no tener miedo alguno: había sido el único religioso que se atrevió a criticar abiertamente la ‘Revolución Blanca’ del Sha ya en 1963. Fue el profundo sentimiento antioccidental y antiimperialista que reinaba en las naciones árabes desde los tiempos de la descolonización (fines de la Segunda Guerra Mundial, y comienzos de la década de los 50), y el sistema fuertemente represivo del Sha, el que posibilitó el triunfo de Jomeini y facilitó el establecimiento de una república fundada en el estricto cumplimiento de las doctrinas religiosas islámicas.
A partir del triunfo de la revolución islámica, Irán quedó convertido en el referente de la protesta antioccidental y antinorteamericana en el Medio Oriente.

La revolución islámica de Irán fue un hito en la historia del siglo XX. Para el historiador británico Eric Hobsbawn la peculiaridad de esta revuelta reside en su ideología, traspasada por un discurso religioso y antimoderno, que contradecía las características laicas e “izquierdistas” de las revoluciones que, desde 1789, se habían dado en la edad contemporánea.

La revolución, liderada por el carismático ayatolá Jomeini, liquidó el régimen déspota, pro occidental y corrupto del sha Mohamed Reza Pahlevi e instauró un sistema basado en los preceptos de la ley islámica (sharia) y articulado políticamente en una Constitución que sancionaba el concepto de vélayat-é faqih (soberanía del doctor de la ley o jurisconsulto islámico sobre el Parlamento).

ANTECEDENTES DE LA REVOLUCIÓN IRANÍ: En 1951, el popular primer ministro iraní Mohamad Mossadeg planeó la nacionalización de la Compañía Petrolera Anglo-Iraní. EE UU instó al sah de Irán a destituir a Mossadeg, lo cual dio lugar a que la población retirase su apoyo al sah, a quien se tenía por un títere de los americanos. La revuelta popular obligó al sah a exiliarse para evitar una posible revolución. Finalmente, EE UU logró restaurar al sah en el poder, pero, a los ojos de su pueblo, este había quedado contaminado por su asociación con los norteamericanos.

 

Sha Reza Palhevi Irán

Sha Reza Palhevi

Los enfrentamientos contra el régimen del Sha fueron muchos y durante varios años, pero uno de los mas cruentos fue en 1978 cuando los soldados abren fuego contra la población que se manifestaba en las calles de Teherán. Había mas de 20.000 personas y miles de ellas resultaron heridas o muertas. Al poco tiempo y como reacción a esta dura represión , los manifestantes comenzaron a quemar negocios, bancos, kioskos de bebidas alcohólicas y todo lo que tuvieran un símbolo occidental, provocando una tensión social que iría en aumento hasta la revolución de 1979.

En respuesta a esta insatisfacción popular, el sah empleó la represión para evitar otra insurrección. En los dos decenios siguientes, Irán se embarcó en un periodo fructífero de industrialización y militarización; en la década de 1970, el excesivo gasto en defensa había dado lugar a un déficit presupuestario y una crisis económica. Entre tanto, la sociedad iraní se había transformado: había surgido una reducida élite occidentalizada.

La rápida industrialización dio lugar a un elevado aumento de la inmigración hacia las ciudades y generó pobreza y desempleo. Las leyes de censura del sah impedían expresar a través de los medios de comunicación o concentraciones públicas el descontento social, y las mezquitas se convirtieron en el único reducto donde era posible hablar con libertad. En ellas, los detractores del sah entraron en contacto con las ideas de los clérigos chutas y, en particular, con las del ayatolá Jomeini, quien propugnaba la revolución para crear una república islámica y poner fin al laicismo y la occidentalización de su país.

En las postrimerías de 1978, la prensa oficial publicó un artículo criticando a Jomeini que desencadenó protestas civiles generalizadas. El ejército se negó a abrir fuego contra los manifestantes y cambió de bando. Desde el exilio, Jomeini defendió una república islámica, y el sah, al carecer del respaldo del ejército, huyó.

El martes 16 de enero de 1979, el sha, enfermo, abandonó el país. Jomeini ponía fin al reinado de los Pahlavi, pero la monarquía no estaba abolida. Apoyándose en el ejército, el quinto del mundo, el primer ministro iraní Shapur Bajtiar se opuso al retorno del imán. Ante el aumento de los peligros, el primer ministro cedió en su momento.

El 1 de febrero de 1979, Jomeini hizo una entrada triunfal en Teherán, donde lo recibieron más de cuatro millones de personas. Sobrevinieron violentos incidentes entre el 9 y el 12 de febrero, declarando el fin de la monarquía y el derrumbamiento de las últimas fuerzas que la sostenían.

La monarquía fue oficialmente abolida por el referéndum del 30 de marzo que proclamó la instauración de la República islámica. Pronto surgió en el seno de los elementos religiosos una división entre moderados y conservadores, y fueron estos últimos los que, con el apoyo de los «guardianes de la revolución», controláron los comités islamicos e instauraron un orden moral que rige a toda la sociedad iraní.

Inmediatamente después, el nuevo régimen se dispuso a disociarse de Occidente; los partidarios de Jomeini irrumpieron en la embajada de EE UU en Teherán en noviembre de 1979 y precipitaron la crisis de los rehenes que le costó al presidente Cárter las elecciones presidenciales de 1980 y que no concluyó hasta enero de 1981.

Para entonces, el sah había fallecido (en el Cairo) y el nuevo presidente de EE UU, Reagan, había prometido descongelar los activos iraníes. La revolución aún estaba consolidándose cuando Iraq instigó una guerra contra Irán en 1980.

La Revolución Islámica que en 1979 desplazó del poder de Irán al Sha Rezah Pahlevi, modificó el panorama político de la región. El Ayatollah Jomeini instaló un régimen fundamentalista e intolerante que fusiló en pocos meses a decenas de miles de opositores.

LOS DOCE DÍAS QUE ESTREMECIERON A IRÁN
Jueves 1° de febrero de 1979, el avión de Jomeini aterriza en el aeropuerto de Teherán. Comenzaba entonces el primero de los doce días que verían la caída de la monarquía. El 5 de febrero, Jomeini nombró a Bazargan primer ministro islámico, en oposición al primer ministro imperial Shapur Bajtiar. Demócrata y reformista, Bazargan tranquilizó a Occidente, pero inquietaba a los radicales iraníes. El 8 de febrero, el pueblo salió a la calle respondiendo al llamado del imán al grito de «¡Muera Bajtiar!».

Los manifestantes vestían una cinta blanca en la cabeza para significar que estaban prontos a morir como mártires. En la víspera del 10 de febrero, hallados culpables de mirar por televisión la película sobre el regreso de Jomeini, los homafars (técnicos de la fuerza aérea) fueron «corregidos» por los guardias imperiales que dieron así, involuntariamente, la señal de la sublevación. Al día siguiente se concentraron 100.000 personas en Teherán para una marcha política. El ejército abrió entonces fuego sobre la multitud.

La muchedumbre se dispersó por las calles de Teherán y la insurrección se expandió. La capital se erizó de barricadas y se decretó el toque de queda. En dos días cayeron cuarteles, edificios administrativos, palacios imperiales, uno tras otros. El 12 de febrero se ponía fin a la monarquía de 2.500 años de antigüedad.

INTERESANTE TESTIMONIO DE JOMEINI SOBRE SU VISIÓN DEL GOBIERNO AMERICANO

En Irán no hay un sentimiento antinorteamericano, sino contra el gobierno estadounidense. En los eslóganes y denuncias, cuando hablamos de Norteamérica nos referimos al gobierno de Estados Unidos, no al pueblo estadounidense. He recibido informes sobre la propaganda antiiraní orquestada por la Administración de Estados Unidos. Los sionistas en especial están haciendo todo lo posible por envenenar a la opinión pública contra Irán. Tal como se ha informado, como resultado de ello en Estados Unidos puede haber sentimientos negativos contra Irán.

Pero si los hechos van más allá de la pantalla sionista-imperialista, si a través de los medios de comunicación logramos exponer a la ciudadanía norteamericana la verdad, entonces es muy probable que los norteamericanos cambien de criterio sobre nosotros y respondan amigablemente a nuestra actitud amistosa. Pero no abrigamos ilusiones de que el gobierno de Estados Unidos vaya a cambiar su actitud hostil.

El gobierno estadounidense ha perdido gran parte de sus intereses en Irán. Y, lo que todavía es peor, su Administración también ha perdido su prestigio político en otros países. Hemos pedido a gritos justicia, hemos pedido que se resuelvan nuestros motivos de queja. El gobierno de Estados Unidos puso al sah en el trono; es decir, lo pusieron los aliados [en 1941] tras destituir a su padre, Reza Jan, que era un títere de los británicos. En consecuencia el gobierno de Estados Unidos lo ayudó a mantenerse en el poder frente a la oposición de nuestro pueblo. El sah despilfarró nuestros recursos, nuestra dignidad nacional, nuestros activos naturales, el talento de nuestra juventud y todo lo que teníamos. Evidentemente, los iraníes no pueden tener buena opinión del gobierno de Estados Unidos.

Y nuestro pueblo ha descubierto recientemente que la Administración norteamericana ha convertido lo que llama su embajada en una base de espionaje y conspiración contra Irán. Los espías actuaban aquí con la excusa de ser personal diplomático. Y ahora que nuestro pueblo es consciente de este hecho, considera que la Administración estadounidense es su enemigo número uno.

Desde nuestro punto de vista no puede culparse al pueblo norteamericano del comportamiento de su gobierno en Irán. Los norteamericanos tendrán que reconocer el hecho de que su Administración ha sido injusta no sólo con nosotros, sino también con ellos mismos. A través de su lacayo, el sah, nos ha privado de todo, lo cual ha puesto en peligro el honor de la ciudadanía estadounidense. Debido al comportamiento del gobierno de Estados Unidos, actualmente los pueblos de Oriente están desarrollando un punto de vista negativo sobre la nación norteamericana.

Los norteamericanos han de tener este hecho en consideración. Que Qimmy) Cárter siga siendo presidente es un peligro para Norteamérica. Plantea una amenaza al honor nacional de Estados Unidos. Si el gobierno estadounidense -por medio de la intervención militar, del bloqueo económico, de tácticas bravuconas y recursos similares- logra privarnos de justicia, la crisis nunca podrá resolverse, seguirá siempre presente en la mente de nuestro pueblo.

El pueblo norteamericano no debe permitir a Cárter que siga este comportamiento, porque de ser así los iraníes irán sospechando que el pueblo norteamericano comparte la voluntad negativa de Cárter contra Irán. Y entonces entre ambos pueblos se establecerá la enemistad.

Otra opción es que el gobierno de Estados Unidos reconozca las fechorías que ha cometido en Irán. Que no son pocas. Una de ellas es haber permitido la entrada de un asesino en Estados Unidos. Y, lo que aún es peor, que el gobierno norteamericano imponga a un asesino como gobernante de Irán. Cuando Cárter llegó a la presidencia prosiguió la política de sus predecesores; es decir, intentó perpetuar el gobierno criminal del sah y el saqueo de Irán. Cuando nuestra nación se levantó contra la tiranía de los Pahlevi, Cárter hizo todo lo posible por mantenerla. No lo consiguió.

El odio al sah de nuestro pueblo era demasiado evidente para que Cárter no lo notara. Con todo, en flagrante desacuerdo con los sentimientos de la nación iraní, Cárter ofreció al sah derrocado refugio en Estados Unidos. Creo que ni siquiera el pueblo norteamericano se creyó la afirmación de Cárter de que permitía la entrada del sah por motivos humanitarios.

Las consideraciones humanitarias no entran para nada en el pensamiento del gobierno norteamericano. Washington está dispuesto alo que sea, incluso amatar a 200.000 personas en un ataque nuclear, para obtener algún provecho. Es impensable que esos funcionarios dieran una visa de entrada al sah por motivos humanitarios. En cierto modo han secuestrado al tirano derrocado para asegurarse de que no divulgue sus secretos.

Si se lo permitimos, todos los hechos que el gobierno de Estados Unidos quiere ocultar saldrán a la luz. Y entonces el mundo entero sabrá quién ha ayudado al sah a cometer sus crímenes. Y desde luego, el pueblo norteamericano dejará de votar a su presidente una vez que descubra qué ha hecho. Desde nuestro punto de vista, todo lo que interesa a Cárter es secundario para la Gasa Blanca, y con tal de alcanzar su objetivo está dispuesto a hacer lo que sea, incluso a sacrificar el honor de su país.

No podemos creer que los reclamos del gobierno estadounidense obedezcan a motivos humanitarios. ¿Acaso sólo el sah es un ser humano? ¿No son seres humanos los 35 millones de iraníes? ¿No eran seres humanos los vietnamitas? ¿No vemos claramente los crímenes que con la aprobación de Cárter están cometiéndose actualmente en el sur de Líbano? Para nosotros [la resolución de la crisis] supone la extradición a Irán del sah derrocado y la adopción de medidas para compensar a Irán por los daños causados por su tiranía.

Desde luego, hay daños que son irreparables. Por ejemplo, en la lucha contra el sah hemos tenido unas cien mil bajas. Y aunque el trabajo y el talento humano derrochados para la obtención de sus dañinos objetivos no pueden compensarse, esperamos la repatriación de los bienes saqueados a Irán. El punto principal que cabe tener en cuenta es que nos hallamos en una nueva era. Irán ya no es hoy lo que era bajo el sah. Ha ocurrido un milagro.

Bajo el régimen anterior un solo policía podía obligar a todos los comerciantes de un gran bazar a enarbolar banderas para celebrar el cumpleaños del sah. Ese mismo pueblo se levanta con las manos desnudas contra los tanques y la artillería. Incluso ahora se envuelven en sudarios y acuden aquí [a Qom] para manifestarse dispuestos al martirio.

No se puede zarandear a un país que ha experimentado tal transformación. Transformación que el señor Cárter aún no ha comprendido. Cree que puede volver a imponer un dictador a un país. Pero ha de entender que los iraníes nunca permitirán tales actos. Cárter se tiene que despertar. Y los norteamericanos han de desalojar a Cárter con su voto. Deben elegir a un presidente adecuado. Si se convence a los iraníes de que el gobierno de Estados Unidos no pretende engañarlos, habrá unas relaciones normales con Estados Unidos; el tipo de relaciones que mantenemos con otros países.

Fuente Consultadas:
Revista TIME Historia del Siglo XX El Mundo Islámico – La Revolución Islámica en Irán

Los Satélites Artificiales Argentinos Historia Plan Espacial

HISTORIA PLAN ESPACIAL DE ARGENTINA

La creación de la Comisión Nacional de Actividades Espaciales (CONAE) en 1991 le dio nuevo impulso a la presencia argentina en el espacio. Desde 1961, durante tres décadas, un organismo similar, que dependía de la Fuerza Aérea, realizó más de 150 lanzamientos. En su mayoría, cohetes y globos destinados al estudio de la atmósfera, aunque también hubo estudios con animales, como ratas y monos. La CONAE, en colaboración con la NASA y agencias europeas, puso en órbita los satélites SAC C (2000) y SAC D (2011).

Mono Juan Enviado al Espacio Por Argentina, Murió en el zoologico de Córdoba.

El mono Juan: El 23 de diciembre de 1969, la Argentina se convirtió en el cuarto país del mundo, después d’ la URSS, Estados Unidos y Francia, en poner un mono en el espacio. El tripulante, de la especie caí, había nacido en
Misiones y fue bautizado como Juan. Realizó un vuelo suborbital (a 82 km de altura) a bordo del cohete Canopus II, lanzado desde El Chamical, La Rioja. Fue todo un desafío. Diseñaron una butaca de modo que los efectos de la  aceleración ingresen a su cuerpo de manera transversal. En la cápsula, la temperatura debía ser de no más de 25° C, cuando en la punta de la ojiva hacía 800°C. Al mono lo sedaron y lo constiparon. El vuelo duró cinco minutos. El mono Juan ascendió a 82 kilómetros. Murió en un zoológico de Córdoba.

ANTES DE SEGUIR HABLAREMOS SOBRE HISTORIA Y CONCEPTOS BÁSICOS

INTRODUCCIÓN:
CIENCIA Y SOCIEDAD
A lo largo del siglo XX la Humanidad ha conocido un impresionante desarrollo de la investigación científica que, a diferencia del pasado, ha encontrado muy rápidamente aplicaciones tecnológicas. En la base del gran crecimiento económico de los países industriales está esa revolución científico-técnica que ha inundado de nuevos inventos las industrias, los hogares y la vida cotidiana de los seres humanos.

Los avances  relacionados con la electrónica tuvieron su influencia en varios ámbitos. Los electrodomésticos establecieron un cambio fundamental en el hogar al aportar una notable mejora en la calidad de la vida cotidiana.

Con la invención del telégrafo en 1838, cuyos primeros clientes fueron las compañías ferroviadas, empezó el desarrollo de las comunicaciones. La transmisión de la voz, la imagen y el pensamiento influyó de manera determinante sobre la vida individual y colectiva.

La radio, el cine, el teléfono, la televisión y la computadora simbolizan este siglo XX de la denominada aldea global, donde las sociedades industrializadas cayeron en la red de los medios de comunicación de masas. El sector de los bienes y servicios culturales, conocido también como las industrias culturales, comunicacionales, creativas o de contenido, pasó a ser objeto de consumo masivo.

A la vez, dicho sector mostró claramente su doble faceta de recurso económico y fuente de identidad y cohesión social. El reto era llegar a armonizar los flujos de comunicaciones e informaciones y sus dispositivos técnicos con la calidad de vida de cada uno de los consumidores.

El consumo de información y la emergencia del hogar electrónico se vieron convertidos en dos cuestiones de capital importancia, que guardaban una estrecha relación con las nuevas tecnologías de la información. La implantación de tecnologías integradas en los hogares no tardaría en causar efecto en los hábitos y costumbres del ámbito doméstico.

Todo el planeta es hoy en día un sistema interconectado por redes televisivas, informáticas, telefónicas, y cualquier información es emitida y recibida en segundos. Nos sentimos copartícipes de todo lo que sucede en el mundo.

Como consecuencia de todos estos cambios, la sociedad presenta características diferentes de la de nuestros abuelos. La de hoy es una sociedad esencialmente urbana, con un nuevo papel de la mujer y con un tipo de familia más reducida y más móvil.

CONCEPTO DE LOS SATELITES ARTIFICIALES: La comunicación vía satélite ha revolucionado por completo la manera de conocer los hechos y los acontecimientos ocurren en la Tierra. Su utilización permite escuchar y ver todo lo que sucede «en tiempo real», es decir, en el momento en que se está produciendo el acontecimiento.

Las características que distinguen un satélite de telecomunicaciones y lo hacen interesante para muchas aplicaciones prácticas son:

1) la visibilidad, desde el satélite, de todos los puntos de la región que cubre la antena de a bordo; esto permite servir con la misma facilidad regiones o ciudades de alto desarrollo y zonas dispersas o de difícil acceso;

2) la posibilidad de unir simultáneamente mediante el satélite muchas estaciones en tierra;

3)  la flexibilidad de crecimiento del sistema, ya que, si se desea conectar con una nueva localidad, basta construir en ella una estación terrestre;

4) la flexibilidad de distribución de la capacidad total de comunicación del satélite entre las diversas estaciones de tierra, lo que permite atender demandas no permanentes, como las que surgen de las concentraciones de personas en zonas de veraneo durante las vacaciones o de situaciones de emergencia debidas a desastres naturales o averías de la red terrestre;

5) la posibilidad de efectuar conexiones con medios móviles (embarcaciones, aviones, automóviles) o con estaciones transportables.

El primer satélite de telecomunicaciones fue lanzado por Estados Unidos en 1958: era el SCORE, que difundió un mensaje de felicitación del presidente Eisenhower.

El SCORE se precipitó a la atmósfera casi un mes después de su partida. En 1960 se lanzó primero el Currier, un satélite también estadounidense, capaz de captar señales y retransmitirlas; luego fue el Eco-1, que no era más que una esfera cubierta de aluminio de 166 kg de peso.

Desde su órbita reflejaba las señales de radio y televisión y las dirigía a la superficie terrestre. Una segunda esfera de este tipo fue lanzada en 1964 con resultados decepcionantes, por lo que esta vía se abandonó. En cambio, se obtuvieron buenos resultados con el lanzamiento del Telstar-1 el 10 de julio de 1962, a una órbita inclinada 44,8° respecto al ecuador. Podía gestionar 600 conversaciones telefónicas o un canal de televisión.

Para colocar un satélite en órbita es importante realizar una serie de precisos test de desprendimientos entre el cohete y el satélite. Por otro lado durante el despegue aparecen una secuencia de sacudidasd y vibraciones bruscas que podrían perjudicar el equipamiento. Hay algunos componentes escenciales y muy delicados como los paneles solares y las antes de de cominicación que también sufren estas vibraciones, por lo que hay que ser muy cuidadoso con los controles, pues un error de este tipo pondría en juego el éxito de la misión, luego de años de trabajo y de gasto de dinero.

Una vez que el satélite ya entró en la atmosfera, cohete debe soltar el o los dos satélites que transporta. En el caso de Argentina uno de ellos, es el ARSAT-1, para lo que necesita un perfecto desempeño comunicacional (envío de la orden y recepción por el lanzador) y mecánico, es decir, que nada se trabe e impida así la separación del satélite del cohete. El satélite acompañante es el ISDLA-1, de Loral (Estados Unidos-Canadá).

ORBITA GEOESTACIONARIA

LOS SATÉLITES ARTIFICIALES EN ARGENTINA:
Antes de hablar sobre los tipos y características de nuestros satélites, vamos a hacer una breve introducción histórica sobre los institutos públicos y empresas nacionales que se dedican a la investigación y a este tipo de tecnología.

Desde hace mas de una década en la Argentina, el Estado ha decidido invertir una importante cantidad de recursos en el sector a través de instituciones existentes, como la Comisión Nacional de Actividades Espaciales (CONAE) e INVAP, la empresa rionegrina de alta tecnología, y creando nuevas, como ARSAT, el Centro de Ensayos de Alta Tecnología (CEATSA) y la construcción de lanzadores a través de VENG (Vehículo Espacial de Nueva Generación).

En relación a las instituciones referentes, dos de ellas definen las misiones espaciales del país: ARSAT, como responsable del Sistema Satelital Geoestacionario Argentino de Telecomunicaciones y CONAE como responsable del Plan Espacial Nacional.

Este último es el organismo del Estado argentino que diseña, ejecuta, controla, gestiona y administra las actividades y emprendimientos espaciales dedicados a la observación de la Tierra desde el espacio.

Por su parte, INVAP, que es una empresa dedicada al diseño y construcción de sistemas tecnológicos complejos, es el integrador principal de los proyectos satelitales de CONAE y ARSAT.

INVAP empresa de alta tecnología

INVAP es una empresa creada por convenio entre la Comisión Nacional de Energía Atómica de Argentina y el Gobierno de la Provincia de Río Negro. Su sede principal se encuentra en San Carlos de Bariloche y ocupa a 360 empleados de manera directa y a más de 700 si sumamos a los de las empresas asociadas, contratistas y proveedores.

Un Poco de Historia Argentina….

Despúes de la Segunda Guerra Mundial, durante el gobierno de Juan Perón, se contrata un grupo de destacados profesionales en el ramo de la aeronaútica, que habína participado en Alemania en diversos proyectos aeroespaciales para la aplicación bélica. Se destacan Kurt Tank, creador del Pulqui II, y Ricardo Dyrgalla, el ingeniero polaco que desarrolló el primer motor cohete argentino, que fue probado con éxito en el misil Tábano en campo de pruebas del noroeste cordobés. (ver: Científicos Alemanes en Argentina)

En 1947 se construye el  primer motor de cohete de combustible líquido, en 
1947 y mas tarde se creala Sociedad Argentina Interplanetaria, la primera en América latina, en 1949. Argentina también fue el cuarto país en colocar un ser vivo en vuelo suborbital y regresarlo a Tierra.

A través de la Comisión Nacional de Investigaciones Espaciales (Cnie), creada en 1960, cuyo primer presidente fue Teófilo Tabanera  (de ahí el nombre del Centro Espacial en Córdoba) se lanza el primer el cohete Alfa Centauro, y de ahí en mas se continua con el desarrollo y lanzamientos de distintos cohete hasta el cierre del famoso Plan Condor II. Como veremos mas abajo, también se cierra la Cnie y se reemplaza por la Conae.

Vamos ahora a transcribir lo que publica Diego Hurtado en su libro “La Ciencia Argentina”, explicando con claridad los acontecimientos históricos.

Además del desarrollo nuclear, otro de los temas conflictivos que colisionó con la política exterior de Menen fue el proyecto Cóndor II. Excede el marco del presente libro repasar en detalle la compleja trama de presiones desplegadas por Estados Unidos, que desencadenó el proceso por el cual se canceló este desarrollo con un desenlace más bien humillante.

Alcanza con señalar la perspectiva diplomática argentina que se propuso reducir a cero cualquier posible confrontación con Estados Unidos, complementada por la absoluta ausencia de la problemática del desarrollo científico y tecnológico como variable de la política exterior y por la falta de unidad política de aquellos sectores que favorecían el desarrollo de tecnología espacial.

En mayo de 1991, el entonces ministro de Defensa Erman González anunció en un discurso televisado por el canal ATC el desmantelamiento del misil Cóndor II, el cierre de la CNIE y la creación de la Comisión Nacional de Actividades Espaciales (CONAE).

El nuevo organismo quedaría a cargo de todos los emprendimientos en materia espacial con fines pacíficos y estaría bajo control presidencial y parlamentario. La intención era crear una agencia espacial con las características de una agencia civil. Al frente de la CONAE fue puesto el astrónomo Jorge Sahade.

A través de la CONAE, el empleo de la tecnología espacial con fines pacíficos pasó a ser considerado política de Estado. A cambio del desmantelamiento del proyecto Cóndor II, Estados Unidos se comprometió a transferir tecnología para el desarrollo de satélites.

El proyecto Cóndor II, era un plan para desarrollar misiles balísticos, pero también lanzadores satelitales que hubiesen colocado al país en la autopista del desarrollo espacial.

En agosto de 1991, la CONAE firmó un acuerdo de colaboración con la NASA. Al mes siguiente, la empresa INVAP anunció que colaboraría con la NASA en la construcción del satélite SAC-B. Especializada en su origen en el desarrollo de tecnología nuclear, INVAP se integraría al desarrollo de satélites y desarrollaría el sistema de guía, incluidos los instrumentos de precisión. Por su parte, la NASA se encargaría de la puesta en órbita. En febrero 1994, el New York Times se refería a la empresa argentina como “una pequeña versión argentina de una compañía de Silicon Valley” y comentaba su exitosa incursión en el desarrollo de tecnología espacial.

En 1994 se redactó el Plan Espacial “Argentina en el Espacio 1995-2006”. Varotto cuenta que este programa “fue aprobado luego de pasar un examen bastante riguroso que terminó con una reunión de gabinete completo”. Y agrega: “Se decidió concentrar los recursos en ir arriba para mirar para abajo”. El plan se centraba en la recolección de información del territorio argentino, tanto continental como marítimo.

La idea era que esta información, combinada con la que se obtuviera por otros medios, “contribuya a la optimización de actividades de determinadas áreas socio-económicas”. Finalmente, en 1997 se decidió que en la próxima revisión del plan espacial, la CONAE debería comenzar a trabajar en el problema del acceso al espacio, esto es, ¡en el desarrollo de un cohete lanzador!

Con el LUSAT I, lanzado en 1990 comienza la historia de los satélites artificiales  de la Argentina, fue el primer satélite argentino, que fue un proyecto de radioaficionados. Después de 20 años en órbita, con la batería ya agotada, continuó funcionando.

SATÉLITES SAC-A Y SAC-B
La CONAE realizó dos misiones en los años noventa. El cohete PegasusXL llevó al primer satélite argentino, el SAC-B, hacia el espacio en noviembre de 1996. Tenía instrumentos de la CONAE, la NASA y la ASI (agencia espacial de Italia).

Su objetivo era realizar estudios sobre las fulguraciones solares y los rayos gamma. Sin embargo, aunque alcanzó los 550 km de altura, fallaron los mecanismos del PegasusXL y no pudo entrar en órbita. Mejor suerte tuvo la misión SAC-A, que se concretó en 1998. El transbordador Endeavour puso en órbita a este satélite, que alcanzó los 389 km de altura. Diseñado para poner a prueba diversos instrumentos creados en el país volvió a la Tierra en agosto de 1999.

satelite argentino sac a

El satélite SAC-C
Argentina en su Plan Espacial Nacional – “Argentina en el Espacio 1995-2006” , establece los objetivos que deben orientar el trabajo de la Comisión Nacional de Actividades Espaciales (Conae). Como componente fundamental de ese plan, se deben realizar proyectos satelitales que cumplan el objetivo de “proveer a través de misiones satelitales propias, las plataformas, cargas útiles y servicios para satisfacer requerimientos específicos de nuestro país en las áreas de teleobservación, comunicaciones y ciencias básicas, que no se ven satisfechos por la oferta de sistemas existentes”.

satelite argentino sac c

SATÉLITE SAC-C
En noviembre de 2000, el cohete Delta despegó de la base Vanderburg, de la Fuerza Aérea de Estados Unidos, y puso en órbita el satélite SAC-C. Integra la Constelación Matutina junto a los satélites EO-1 y Landsat 7. Órbita a 705 km de altura, desde donde toma imágenes de todo el mundo para enviarlas al Centro Espacial Teófilo Tabanera, ubicado en Falda del Carmen (Córdoba). Estas imágenes tienen varios propósitos, como el estudio de la atmósfera o la prevención de catástrofes naturales. Posee cámaras de teleobservación e instrumentos científicos de la CONAE, la NASA y las agencias espaciales de Francia y Dinamarca.

A partir de este objetivo, la Conae llevó adelante el diseño, construcción y puesta en órbita del SAC-C, el primer satélite argentino de observación de la Tierra, cuyo lanzamiento se produjo el 21 de noviembre de 2000, con un lanzador Delta 7320, desde la Base Aérea de Vandenberg, en California, Estados Unidos.

Este satélite cumple funciones muy importantes: produce imágenes del territorio que pueden ser utilizadas para la agricultura y para el estudio del medio ambiente terrestre y marino. Además, permite estimar con precisión los alcances de catástrofes naturales o provocadas por el hombre y aporta materiales para realizar estudios científicos y tecnológicos que, entre otras cosas, contribuirán a mejorar el diseño y la fabricación de nuevos satélites. El satélite se controla desde el Centro Espacial Teófilo Tabanera, ubicado en Córdoba. Allí se reciben los datos que envía el satélite y se los distribuye entre los usuarios.

Desde el punto de vista productivo, el aspecto interesante de este proyecto es la articulación entre una decisión de un agencia del Estado nacional -la Conae- y varias empresas del país, que son las que construyeron el satélite. El principal contratista es el Invap, una empresa de alta tecnología, encargada de la construcción del satélite propiamente dicho y de algunos de los instrumentos que contiene y que permiten realizar las observaciones y la transmisión de datos.

conrado varoto

El físico, doctorado en el Instituto Balseiro (1968), Conrado Franco Varotto es el actual ditector de la CONAE. Nació en Brugine  (Italia), el 13 de agosto de 1941, pero desde pequeño vivió en Argentina.

SATELITES ARGENTINOS EN ÓRBITA

satelite sac d

SAC-D también conocido como Aquarius, lanzado el 10 de junio de 2011. Es un satélite argentino de observación climática y oceanográfica, construido por INVAP. Pertenece a una serie de satélites grande y complejos, y solo hay planes para poner dos o tres mas en órbita. La idea mundial es comenzar a colocar satélites mas perqueños de no mas ed 200 Kg. y que trabajen en red.

 

PADE: Proyecto PADE entró en órbita terrestre el día 6 de Diciembre del año 2001, utilizámdose el transbordador Endeavour.Despúes de cumplir una corta pero exitosa misión con experimentos del medioambiente espacial, regresó a la Tierra 15 días mas tarde.

SAC-C: Desde la base norteamericana Vandenberg en California, el día 21 de noviembre de 2000, fue puesto en órbita el SAC-C, satélite argentino de teleobservación.Tiene una cámara MMRS con una resolución de 175 metros, la HRTC 35 metros, y la HSTC 300 metros. Hoy se encuentra en operación.

SAC-A: Desarrollado por la CONAE y construído por la empresa de Río Negro INVAP, fue puesto en órbita el 14 de Diciembre de 1998, con el Endeavour. Se utilizó para el seguimiento de las ballenas Franca Austral y mediante el analisis fotográfico se estudian los ciclos de inundaciones y sequías. Fuera de uso e incinerado por la atmósfera terertre.

NAHUEL 1-A: Fue construído totalemnete en el exterior y puesto en órbita en Enero de 1997, por medio del cohete Ariane
Su objetivo principal es de las telecomunicaciones. Actualmente se encuentra en operaciones.-

SAC-B: Pensado como satélite cientifico, para realizar mediciones de radiaciones electromágneticas en el espacio y de partículas. El 4 de Noviembre de 1996 fue puesto en órbita por medio del cohete Pegasus XL, que a su vez partió desde el fuselaje de un avión L-1011 en vuelo. Cayó a Tierra en el año 2002 y fue un fracaso por que una etapa del cohete lanzador no se desprendió del satélite. Diseñado por la CONAE Y construído por INVAP.

MU-SAT: Fue puesto en órbita el 29 de Agosto de 1996; mediante el cohete de origen ruso. Fue un proyecto desarrollado por la Asociación de Investigaciones Tecnológicas de Córdoba y el Instituto Universitario Aeronáutico, con científicos que trabajaron en el antiguo programa Condor II, importante programa que fue desechado por la “sugerencia” de EE.UU.
Fotografió diversas zonas del país con imágenes de baja resolución, para seguimientos meteorológicos y de masas hídricas.
Durante el primer año se lograron gran cantidad de fotos e información y aún continúa en órbita. Pesa 30 kilos y era un cuboide de 34x34x43 centímetros.

LUSAT 1: Es el Primer Objeto Argentino puesto en órbita. Fue un proyecto casi amateur, desarrollado por un grupo de radioficionados argentinos. Se puso en órbita utiliando un cohete Ariane, en Enero de 1990. Construído en parte en Argentina y el resto en AMSAT NA en Boulder, Colorado.  Su misión es la de proveer comunicaciones en packet a todos los radioaficionados del país y del mundo.A pesar de que sus baterías operan a una fracción del poder inicial, el Lusat aún funciona.

Respecto a su fabricación, es igual al ARSAT 1, desarrollado por la CONAE y fabricado por INVAP. Es importante destacar que el mundo solo 8 países construyen satélites geoestacionarios. Ellos son China Rusia,EE.UU.,Alemania, Francia, Japón, India , Israel y Argentina.

Arsat-1, el primer satélite argentino

Satélite Argentino AR-SAT1

Imagen en Órbita del Satélite Argentino AR-SAT1

El primer satélite geoestacionarioargentino. Con una potencia de 3.400 watts, y pensado para una vida útil de 15 años, fue desarrollado a lo largo de siete años y fabricado en la ciudad de San Carlos de Bariloche por las estatales Invap y la empresa Argentina de Soluciones Satelitales (ArSat). Con su lanzamiento en octubre de 2014, el ARSAT-1 tiene por objetivo brindar servicios de TV, Internet, telefonía y datos.Los servicios del ARSAT-1 incluyen Internet en lugares remotos, transporte de señales para canales de TV, redes de datos para organismos públicos y privados, conectividad en radiobases para operadores celulares y telefonía corporativa, entre otros.Una vez en órbita, se despliegan los paneles solares, con los que alcanza los 16,42 metros de largo y una antena de comunicaciones de 2 metros de diámetro. Se utilizó como material base la fibra de carbono reforzada con plástico (CFRP), titanio y aluminio. El CFRP es un material ampliamente usado que se consigue a partir de fibras de carbono y resina epoxy.

CARACTERÍSTICAS:

caracteristicas del satelite argentino arsat

INVAP: La empresa de tecnología INVAP es la única del país certificada por la NASA para participar de sus proyectos espaciales. Fabricó el “bus”, o satélite propiamente dicho, y varios instrumentos utilizados en las misiones de la CONAE. Su origen es un acuerdo firmado en los años setenta entre la Comisión Nacional de Energía Atómica (CNEA) y el gobierno de Río Negro.

Sus productos se utilizan, además, en la producción de energía nuclear y eólica, y en medicina. A esta empresa se sumaron la experiencia de los ingenieros satelitales de ARSAT en operar satélites geoestacionarios de telecomunicaciones quienes, además de especificar los satélites, también siguieron técnicamente todo el proyecto, controlando tanto el diseño como los procesos utilizados y los ensayos medioambientales. 

Para los ensayos mediambientales se creó CEATSA, operativo desde fines de 2012 y con sede en Bariloche. De este modo se logró evitar los costos de ensayar el ARSAT-1 en Europa. Este modernos y novedoso laboratorio se  convirtió en el segundo laboratorio para realizar ensayos medioambientales en satélites de esta magnitud en Latinoamérica. Se hicieron los ensayos de vibración, acústicos y termovacío, todo superados exitosamente. También se hicieron pruebas de propiedades de masa, compatibilidad electromagnética y medición de antenas, todos ensayos estándares exigidos por la industria aeroespacial.

El lanzamiento se hizo desde el centro espacial Guayana, el día 16 de octubre d 2014, convirtiendosé Argentina en el primer país latinoamericano en tener en órbita un satélite geoestacional de construcción propia. La puesta en órbita estuvo a cargo de la compañia Arianespace, conformada por el Centro Nacional de Estudios Espacial francés y todas las empresas espaciales europeas.

Arsat-2 , otro satélite argentino

arsat 2

La características generales son similares a su predecesor. Fue desarrollado para brindar servicios de telecomunicaciones sobre el continente americano en tres coberturas: sudamericana, norteamericana y hemisférica, pero con explotación comercial por su posición privilegiada, su cobertura transcontinental, sus tres antenas y su emisión en dos bandas (Ku y C).  Seguramente que a corto plazo favorecerá la industria argentina de generación de contenidos audiovisuales. El tamaño del cuerpo es una especie de cubo de 2.0 m. de lado y cuando extiende sus paneles solares se tranforma en un aparato de 16,42 m.La computadora de vuelo principal fue desarrollada y fabricada en el país.

Idem al anterior, ARTSAT 2, fue desarrollado por la CONAE y fabricado por INVAP. Es importante destacar que el mundo solo 8 países construyen satélites geoestacionarios. Ellos son China Rusia,EE.UU.,Alemania, Francia, Japón, India , Israel y Argentina.

El lanzamiento está previsto para septiembre de 2015, desde el Centro Espacial en la Guayanas francesas, por la empresa Arianespace, la misma que puso el ARSAT 1 en órbita en 2104.


Fuente Consultada:
Sitio WEb de SATÉLITES ARSAT
“La Ciencia Argentina” de Diego Hurtado
Revista TIME El Siglo de la Ciencia de Clarín
Sitio Web del Diario “La Nación”

Calor Producido Por la Corriente Electrica Aplicaciones

U na coméate eléctrica se asemeja a una caravana de electrones; en movimiento; el conductor sería como un bosque contra cuyos árboles chocarían los electrones al “recorrerlo produciendo una agitación general. Los: “árboles” son en este caso átomos o moléculas dei conductor y el movimiento que nace del choque con los electrones se traduce en un aumento de las vibraciones habituales de los átomos y moléculas.

Dichas oscilaciones se perciben como temperatura. De ahí que él calor sea uno de los efectos invariables de la corriente eléctrica al pasar por un conductor. Podemos decir también que ese calor se produce al tratar la corriente de superar la resistencia del conductor.

RESISTENCIA
La resistencia de una sustancia es la dificultad que ofrece al paso de una corriente eléctrica. Puesto que una corriente es un flujo de electrones que saltan de un átomo a otro, la resistencia depende fundamentalmente de la firmeza con que los electrones están sujetos a los átomos.

En un buen conductor como el cobre, algunos de los electrones están muy débilmente unidos a los átomos y ía resistencia es muy pequeña, mientras que en un mal conductor de la electricidad (aislador) como el caucho, todos los electrones están firmemente unidos a sus respectivos núcleos y la resistencia es muy grande.

En los buenos conductores la resistencia depende del calibre y de la longitud. Cuanto más grueso y corto sea un conductor, tanto menor será su resistencia; cuanto más fino y largo, más resistirá al paso de la corriente, pues al reducirse su sección los electrones tienen menos espacio para pasar.

CONDUCTIBILIDAD Y  NATURALEZA QUÍMICA
Hay dos tipos de sustancias: las que conducen la corriente, llamadas “conductoras”, y las que.no la conducen o “aisladoras”. Pero entre las primeras se distinguen dos clases: conductores de primera clase y conductores de segunda clase.

Entre los de primera clase se encuentran los metales, cuya estructura química no varía por el paso de la corriente eléctrica; en ellas los electrones “viajan” solos. Los de segunda clase son los electrólitos, sustancias cuyas moléculas disueltas en agua se separan en iones o partículas electrizadas que al conducir la corriente (en solución o fundidos) sufren reacciones “electrolíticas” que alteran su constitución.

En estas sustancias los electrones son transportados por los iones hasta los bornes o “electrodos”. De allí la disociación de los electrólitos al apartarse los iones de cargas eléctricas opuestas.

EL CALOR,  FORMA DE ENERGÍA
Veamos qué relación hay entre calor y trabajo. El calor es una forma de energía o capacidad de realizar un trabajo que consiste en vencer una cierta resistencia. Las distintas formas de energía pueden transformarse unas en otras. Por ejemplo, un cuerpo colocado a cierta altura posee energía “potencial” que, al caer el cuerpo, se transforma gradualmente en “cinética”.

Al caer contra el suelo produce una pequeña cantidad de calor, como el martillo al dar contra el clavo. La energía se conserva (éste es un principio fundamental de la Física): en el ejemplo de la caída a medida que la energía potencial disminuye, la energía cinética o de movimiento aumenta  y  la  suma de  ambas permanece  constante.

EL TRABAJO MECÁNICO
Cuando una fuerza mueve un cuerpo efectúa un trabajo mecánico (en nuestro ejemplo, la fuerza que actúa es el peso del cuerpo) y ese trabajo es igual al producto de la fuerza por el camino recorrido en su dirección, es decir, por una longitud.

De modo que si queremos expresar el trabajo en unidades, la unidad de trabajo será igual a la unidad de fuerza multiplicada por la unidad de longitud. La unidad de fuerza se llama dina (en el sistema de medidas cuyas unidades fundamentales son el centímetro, el gramo-masa y el segundo, llamado por eso “sistema cg.s.”).

La dina es la fuerza que aplicada al gramo-masa le comunica una aceleración de 1 centímetro por segundo a cada segundo. La unidad de longitud es el centímetro. Pero como la dina es una unidad muy pequeña, el trabajo de una dina a lo largo de 1 centímetro es una unidad diminuta, llamada ergio. Por eso se usa como unidad otra de diez millones de ergios, denominada julio (o joule).

EQUIVALENTE MECÁNICO DEL CALOR
En numerosas experiencias se comprueba que a la realización de un trabajo corresponde la aparición de una cantidad de calor. Por ejemplo, cuando usamos un inflador de bicicleta comprimimos un gas (el aire) y notamos que el tubo metálico se calienta.

Si se ha convertido un trabajo T en una cantidad de calor Q que verifica que T= J x Q, esa “J” es una cantidad constante que permite calcular la reciprocidad entre joules y calorías y se llama equivalente mecánico del calor.

Su valor es 4,18 (1 caloría equivale a 4,18 joules) y lo descubrió el gran sabio inglés James Joule (1818-1889) quien también enunció una sencilla fórmula que permite conocer la cantidad de calor producida poruña corriente eléctrica.

CORRIENTE  ELÉCTRICA Y CALOR
Para abreviar sus fórmulas, los físicos representan las magnitudes por letras, que son generalmente las iniciales de la palabra o la unidad que expresan. “T” significa “trabajo”, medido en joules. “I” significa  “intensidad de la corriente”, medida en  amperios. R significa “resistencia” del circuito, medida en ohmios. “t”  significa  “tiempo”,  medido en  segundos. “V” significa “voltaje”, medido en  voltios.

El   trabajo   realizado   por  una   corriente   eléctrica depende del voltaje, de la intensidad de la corriente y, naturalmente, del tiempo transcurrido, o sea T = V x I x t que ue se expresa T = V .I. t (1) pues los signos de multiplicación (.) se sobreentienden.

Pero según la ley de Ohm: volt = ohmio x amperio,… ósea V = R x I

Al reemplazar “V” por su valor I x R en la fórmula anterior tenemos: T=R x I x l x t  ósea, T = R. I². t (2)

En otros términos, el trabajo  que efectúa una corriente eléctrica es, medido en joules, el resultado de multiplicar la resistencia del circuito en ohmios por el cuadrado de la intensidad en amperios y por los segundos de tiempo transcurrido.

El trabajo se obtiene en joules. Para transformarlo en calorías (una pequeña caloría es la cantidad de calor necesaria para elevar en un grado centígrado la temperatura de un gramo de agua) basta dividir por 4,18 ya que 4,18 julios equivalen a una pequeña caloría.

De modo que conociendo esta relación podemos saber con exactitud cuánto calor produce una corriente. Pero ignoraremos aún cuánta energía   útil  se  produce porque  ésta  depende  de nuestro  designio y siempre  se  gasta  una  parte  de esa energía en fenómenos colaterales indeseables.

CÓMO SE  APROVECHA   EL  EFECTO  CALÓRICO DE LA ELECTRICIDAD
En casi todos los artefactos eléctricos que producen calor o luz se emplean hilos metálicos de muy pequeño calibre y gran longitud, o que por su naturaleza oponen mucha dificultad al paso de la corriente. Estos hilos, arrollados en espiral, se llaman resistencias y logran un rendimiento próximo al 100 % al transformar la energía eléctrica en calor (no en luz).

Otro sistema basado en el mismo principio es el arco eléctrico, donde el hilo metálico es reemplazado por dos electrodos de carbón que también constituyen una resistencia. El arco se forma merced a los vapores de carbón incandescente y se logran temperaturas muy elevadas (unos 3.600°C). Hay otros métodos de producir calor y que sólo mencionaremos. Mediante corrientes alternas de alta frecuencia es posible calentar en todo su espesor sustancias no conductoras (aisladoras llamadas también “dieléctricos”)   por  el   sacudimiento   que   el  campo eléctrico produce en su masa.

Se logra un calentamiento muy uniforme, aprovechable en ciertas industrias (plásticos). Otro método es el calentamiento por inducción en el que se utiliza un campo electromagnético variable (ya hemos visto la relación entre electricidad y magnetismo). También se logra un calentamiento muy uniforme. Pero en estos dos métodos el rendimiento es muy inferior al ciento por ciento.

RESISTIVIDAD Y RESISTENCIA
La resistencia total de un circuito depende, además de su longitud y calibre, de la resistencia especifica o resistividad de la sustancia que lo constituye, y que indicaremos por la letra “r”.

La fórmula se obtiene así: la resistencia R del circuito es tanto más grande cuanto mayor es su longitud “l” y la resistividad “r” del material que lo compone. Por otra parte R es tanto más pequeño cuanto mayor es la sección “s” del conductor.

En resumen, R es igual a la resistividad multiplicada por la longitud y dividida por la sección del conductor, o sea: R = r.l/s

Esta fórmula guía a ios ingenieros en la elección de la sustancia conductora apropiada a cada caso, pues la resistividad “r” es característica de cada material, y hay tablas para conocerlas. Generalmente aumenta con la temperatura (excepto en los semiconductores, el carbón y otras sustancias o mezclas).

Ejemplo: Un calentador electrico para 220 Volt, tiene una resistencia  de 80 Ohmios. Calcular la cantidad de calor T que produce este calentador en 2 minutos.

Antiguo Calentador Eléctrico

Sabemos que: T = R. I². t

La corriente I la obtenemos de la ley de Ohm: I=V/R=220/80=2,75 Amperios

Entonces: T=80. (2.75)². 120 seg.=72.600 Joules y multiplicado por 0,24 lo pasamos a calorias: 17.224 cal.

LÁMPARAS ELÉCTRICAS DE FILAMENTO
Las aplicaciones prácticas del efecto térmico de la corriente son muy numerosas. Una de las más importantes es la lámpara eléctrica. Ésta se compone de un largo y fino filamento de tungsteno que ofrece una considerable resistencia al paso de la corriente (el filamento puede tener hasta 60 centímetros de largo aunque está arrollado en una espiral de menos de 2,5 centímetros de longitud).

La fórmula de Joule nos dice que cuanto mayor sea la resistencia del hilo conductor, mayor es el calor producido. En este caso, debido al escaso calibre y gran longitud, se produce suficiente calor como para que que el tungsteno se vuelva incandescente y emita una luz casi blanca. Aunque ahora parezca simple, los primeros intentos para hallar un filamento adecuado fueron penosos.

Thomas Alva Edison, el inventor americano de la primera lámpara eléctrica útil (1879) empleó hilos de bambú carbonizado y evitó que ardieran haciendo el vacío dentro de la lámpara, es decir, retirando el oxígeno necesario para la combustión. Luego se recurrió al filamento de tungsteno pero el metal se vaporizaba gradualmente y depositábase en una capa negruzca en la pared de vidrio. Para impedirlo, la mayoría de las lámparas actuales están llenas de un gas inerte como el argón, que no reacciona   con   el  metal   y  evita su   vaporización.

ESTUFAS ELÉCTRICAS
Las estufas eléctricas se componen también de un alambre arrollado en espiral que se calienta al rojo cuando pasa la corriente; entonces el hilo conductor no sólo caldea el aire sino que emite rayos caloríficos. El filamento se arrolla sobre un soporte de material no conductor y refractario para que soporte temperaturas bastante altas. Generalmente se usa mica o materiales cerámicos.

El metal de la resistencia es una aleación, por lo general de níquel y cromo. La mayoría de los otros metales se oxidarían (combinación con el oxígeno del aire) y se quemarían muy rápidamente. Existen calentadores llamados de inmersión porque se colocan dentro del agua que se desea calentar, construidos en forma similar a las estufas; su filamento queda  aislado  del  agua  por una  cápsula  metálica  hermética.

FUSIBLES
Los fusibles usados para proteger circuitos eléctricos, representan otra útil aplicación del efecto calórico de la electricidad. Si, por alguna razón, pasa por ellos una corriente más intensa que la prevista se calientan excesivamente y se derriten. Evitan así que el contacto fortuito entre dos cables desnudos, que permite a la corriente utilizar un camino más corto y fácil (de allí viene el nombre de “cortocircuito”) sobrepase la capacidad prevista para el circuito  y pueda provocar un desastre.

El alambre de un fusible se compone de un metal o aleación de bajo punto dé fusión. Si una corriente demasiado intensa recorre el circuito engendra suficiente calor como para fundir el alambre del fusible. Esto corta el  circuito  y se  evitan  serios daños.

El fusible es un simple trozo de alambre fino cuya temperatura de fusión es muy inferior a la del resto del circuito. Se lo intercala de modo que toda la corriente deba pasar por él, y si la intensidad de ésta sobrepasa cierto límite el alambre del fusible se calienta hasta fundir, interrumpiendo el circuito.

HORNOS  ELÉCTRICOS
Otra aplicación importante son los hornos eléctricos. Existen dos tipos: el horno de resistencia que funciona como las estufas domésticas aunque en mayor escala y el horno de arco que se base en el arco eléctrico ya mencionado. Se utiliza la formación de chispas entre los dos electrodos mantenidos a corta distancia y la gran cantidad de calor producida se debe a la resistencia que ofrece el aire al paso de corriente por ser mal conductor.

Estos hornos de arco se usan para fundir metales y en algunos el metal se funde por el calor de dos electrodos de carbón puestos por encima del metal. En otros el mismo metal sirve de electrodo mientras que el otro es de carbono y se funde por el calor del arco.

PLANCHA ELECTRICA: Idem al caso anterior, utiliza calor generado por una resistencia a partir de la corriente eléctrica. las amas de casa todavía no no la podían utilizar ya que no existía la conexion a la red eléctrica y no se había inventado aun el termostato. El calor se producía en una resistencia colocada en el interior de la plancha que con el paso de la corriente eléctrica se calentaba por el efecto Joule.

Esto consiste en que la circulación de corriente eléctrica por la resistencia, desprende mas o menos cantidad de calor dependiendo de tres factores: el valor del cuadrado de la intensidad, la resistencia y el tiempo de funcionamiento del aparato eléctrico.

Fuente Consultada:
Revista TECNIRAMA N°14 Enciclopedia de la Ciencia y La Tecnología – Ciencia: La Electricidad-

Uso de Computadoras en la Segunda Guerra Mundial

PRIMEROS SISTEMAS DE CÁLCULO RÁPIDO APLICADOS EN LA GUERRA MUNDIAL

El cerebro humano es la más eficaz de las máquinas de computar, pero es también la más lenta. La sucesión de imágenes que llamamos vista, atraviesa velozmente el cerebro a razón de sólo ocho a trece veces por segundo. La velocidad más efectiva de un mecanógrafo profesional  es sólo, de  cuatro letras o cifras por segundo. Compárese el alcance de la velocida humana con la de una máquina electrónica cue puede engullir 60.000 datos por segundo.

Era inevitable que el cerebro mecánico tuviese que reemplazar en las oficinas al cerebro humano. Ciertos servicios nuevos como cálculo y análisis de impuestos a los réditos, seguro médico, fondos para jubilaciones, seguridad social, censos de la población de la nación entera, y cómputo de votos, exigían máquinas matemáticas, y así nacieron las primeras máquinas que procesaban información usando tarjetas perforadas.

En realidad el  paso decisivo para la construcción de un ordenador electrónico, en el sentido moderno, lo dio Von Neumann ( con el concepto de software almacenado en una memoria)  se dió a partir del conflicto bélico mundial, en donde era necesario realizar miles y miles de cálculos exactos en el menor tiempo posible, por ejemplo para determinar el ángulo de inclinación de un arma para dar en el blanco del enemigo.

Para ello se valió de los grandes adelantos de la electrónica en esos momentos. En 1944 se construyó el primer ordenador utilizado con fines prácticos: el ENIAC. Como en tantas otras ciencias, este avance vino provocado por las necesidades militares que surgieron con la segunda güera mundial. En 1952 aparecen, sólo a título experimental, los ordenadores MANIAC-I y MANIAC-II. Sin lugar a dudas, podemos afirmar que ese fue el nacimiento de unas máquinas que aún no sabemos, y ni tan siquiera prevemos, hasta dónde pueden llegar.

Estas primeras máquinas computadoras robot, que nacieron en la segunda Guerra Mundial, costaban cada una cinco o más millones de dólares, se han modificado y mejorado cada cinco años. Cada nueva máquina lucía habilidades nuevas y nueva velocidad. Cada una es una creación especial y se les ha dado nombres especiales: ENIAC, MARK I, II, III, BIZMAC, NORC, UNIVAC, ERMA, ZEPHIR. Se las construía en todo el mundo y siempre el último modelo era más imponente que el anterior.

La primera de las computadoras  electrónicas fue la ENIAC de Goldstein, creada en 1944 para calcular tablas de bombardeos y fuego. Resolvió el problema de la trayectoria de una granada en menos tiempo del que la granada necesitaba para llegar al blanco. Esta máquina aconsejó a los ingenieros estadounidenses que no perdieran el tiempo en un cañón eléctrico al cual los alemanes habían dedicado valiosos años y enorme cantidad de dinero. ENIAC demostró que no podía realizarse.

ENIAC, Computadora Electrónica

Las limitaciones de ENIAC, sin embargo, fueron graves. Podía recordar solamente veinte números por vez. El hecho de emplear tarjetas perforadas retardaba el funcionamiento. Podía dar cabida únicamente a 24.000 tarjetas por hora. Había mucho que mejorar y los mejoramientos llegaron.

El siguiente cerebro gigante, MARK I, pudo almacenar 400.000 dígitos, comparado con los 3000 dígitos de capacidad de la ENIAC. MARK I realizaba las sumas en sólo 20.000 microsegundos, comparado con los 300.000 microsegundos de tiempo de la ENIAC. MARK I, en realidad, tenía más de todo: 700.000  piezas y más  engranajes que  10.000 relojes.

MARK I, Computadora Electrónica

El paso decisivo para la construcción de un ordenador electrónico, en el sentido moderno, lo dio Von Neumann ya entrado el siglo XX, al permitir que los programas fuera internos a la máquina. Para ello se valió de los grandes adelantos de la electrónica en esos momentos. En 1944 se construyó el primer ordenador utilizado con fines prácticos: el ENIAC. Como en tantas otras ciencias, este avance vino provocado por las necesidades militares que surgieron con la segunda güera mundial. En 1952 aparecen, sólo a título experimental, los ordenadores MANIAC-I y MANIAC-II. Sin lugar a dudas, podemos afirmar que ese fue el nacimiento de unas máquinas que aún no sabemos, y ni tan siquiera prevemos, hasta dónde pueden llegar.

En 1952, la capacidad de almacenamiento saltó a 3 millones de datos individuales. El tiempo de suma se redujo a 60 microsegundos. En 1954, la capacidad de almacenamiento aumentó a 50 millones de dígitos, y el tiempo de suma se redujo a 14 microsegundos. Y las máquinas siguieron siendo siempre nás veloces.

MARK II fue diez veces más rápida rué la ENIAC; MARK III fue veinticinco veces mas ligera que MARK II. El modelo más reciente puede acumular datos equivalentes a 465.000 tarjetas perforadas y manejar 3.600.000 cómputos distintos por minuto.

La UNIVAC,  capaz  de   realizar  100.000   multiplicaciones por segundo,   podía hacer en  dos minutos mismo que un   hombre en toda su vida   usando una buena   calculadora de pupitre.   Su primer   trabajo fué analizar 12 millones de detalles individuales reunidos por 132.000 recopiladores sobre las formas y condiciones de vida de 150 millones de norteamericanos. Hace un promedio de 60.000. reservas de aviones por día e imprime por minuto 600 renglones de respuestas en un papel.

ZEPHIR es un genio mecánico del idioma, del tamaño de un ropero, que automáticamente traducía del inglés a tres idiomas extranjeros.

Al IBM 704 se le reconoce ahora un vocabulario de 60.000 palabras, comparado con el de 5000 palabras del común de las personas. Tiene 1.179.648 células memorizadoras, lo cual implica haber dejado muy atrás los 200 caracteres por segundo de la primera máquina perforadora electrónica.

En la construcción del “empleado bancario” ERMA, de 25 toneladas, se tardó cinco años, pero ha transformado el trabajo bancario en los Estados Unidos. En lugar de voluminosos archivos de notas y fichas del Mayor, el cajero pagador de un banco tiene solamente un sencillo teclado en su mostrador. Oprimiendo el número de la cuenta del cliente, el pagador acciona el equipo central (dos tambores rotativos de cilindros de aluminio rociados con óxido de hierro archivan magnéticamente toda clase de informes) poniendo a la vista en el acto el saldo del cliente.

A mediados de 1958 ya 1700 empresas usaban cerebros electrónicos, y había pedidos pendientes por 3000 más, a precios que oscilaban entre medio millón y cuatro millones de dólares cada una.

Nace el minúsculo gigante
Los cerebros gigantes continuaron engrandeciéndose hasta que su mismo tamaño se convirtió en un grave problema. Una llamada telefónica transcontinental, por ejemplo, requería 12.300 tubos de vacío además de 112.000 resistencias y 97.000 condensadores. Los grandes lechos de tubos de vacío exigían costosos  acondicionadores  de aire  para  mantenerlos fríos. El mismo tubo de vacío, que fue el iniciador fe la era electrónica, se convirtió en el freno del progreso.

Abocados a este problema, los Laboratorios Telefónicos Bell volvieron a los cristales. Los investigadores supusieron que podría haber uno o dos recursos que quedaron inadvertidos en la galena, u otro material descartado que se utilizase antes de inventarse el tubo al vacío. Su corazonada resultó ser acertada. En 1948 anunciaron la invención del transistor.

Tan pequeño como la uña de un dedo, este trozo de germanio con dos “bigotes” de alambre realizaba todas las funciones de un tubo electrónico. Ya no se necesitaba hacer que los electrones saliesen de los electrodos ni usar ningún costoso sistema de enfriamiento para los tubos calientes. Con 70.000 horas de vida, el triple de los tubos de vacío, el transistor era duradero, seguro y reducido de tamaño.

El tipo de transistor de conexión estaba hecho de simples cristales de germanio metálico. Tenía tres zonas de cristales, que diferían en cuanto a la resistencia al paso de la corriente eléctrica, con las diferencias debidas a cantidades de impurezas insignificantes, pero medidas muy cuidadosamente.

primer transistor

Funcionaba de acuerdo con el mismo principio que un tubo de vacío, que tiene un emisor y un recector (un ánodo y un cátodo). Cualquier variación en la corriente del emisor provocaba una variación mucho mayor en la corriente del colector 7 en consecuencia, hay amplificación.

De igual manera las impurezas de un transistor provocan la variación en la corriente y de este modo controlan y amplifican el flujo de electrones. Para amplificar una señal común, un transistor requiere «clámente un millonésimo de la energía utilizada per un tubo de vacío similar.

Con la aparición del transistor los cerebros gigantes redujeron su tamaño desde el de una casa al de una valija. Los datos guardados en 1.600 gavetas de archivo pudieron entonces condensarse en un espacio de 0,5 metros cúbicos.

Con toda su capacidad para computar y su reducción de tamaño, los cerebros electrónicos han conseguido hacer el trabajo corriente de oficina con una velocidad diez mil veces mayor en los últimos diez años. Los cerebros electrónicos, comenzaron a realizar todas las operaciones comunes. Podían entregar paquetes, escoger y envolver comestibles, cobrar monedas, seleccionar libros de las librerías, y actuar como secretarios de directores y gerentes muy ocupados.

Hoy todo esta evolución es historia y parece anecdótico, pero en aquel momento el mundo estaba asombrado, pues en el tiempo que tardaba un ser humano en apuntar un simple número, ese pequeño adminículo podía multiplicar dieciséis cantidades grandes, elevar al cuadrado el resultado, consultar una tabla de cifras en una pulgada cuadrada de puntos, elegir la cifra exacta e incluirla en el cálculo final….era una maravilla de la ciencia, que había nacido lamentablemente por las exigencias de una onminosa guerra que se llevó mas de 50.000.000 millones de personas, gran parte de ellas civiles inocentes.

LAS COMPUTADORAS COMO DECIFRADORAS DE CÓDIGOS

Durante la S.G.M. Alemania había logrador inventar un sistema de enciptamiento de la información enviada que resultaba sumamente díficil para los aliados poder resolverlo, pues las posibilidades de encriptación de esa información era del orden de billones de posibilidades. A ese sistema se lo utilizaba mediante una máquina creada para tal fin, llamada  Máquina Enigma.

En cierto momento de la guerra una de esas máquinas fue capturada y se le pidió al matemático Alan Turing que se encargase junto a un equipo de cientificos estudiar y descubrir el sistema de codificación de Enigma, para aventajar a los alemanes en sus movimientos estratégicos. Para ello creó una máquina mecánica como la que se observa en la figura de abajo.

Máquina de Turing

Solía decirse que la Primera Guerra Mundial fue la guerra de los químicos y la Segunda Guerra Mundial la de los físicos. De hecho, de acuerdo con la información revelada en las últimas décadas, quizás sea verdad que la Segunda Guerra Mundial fue también la guerra de los matemáticos, y que en el caso de una tercera guerra su contribución sería aún más importante.

Debido a la naturaleza secreta del trabajo llevado a cabo en Bletchley por Turing y su equipo, su contribución inmensa al esfuerzo de la guerra no pudo ser reconocida públicamente, ni siquiera muchos años después de la guerra.

A lo largo de toda su carrera como descifrador, Turing nunca perdió de vista sus objetivos matemáticos. Las máquinas hipotéticas habían sido reemplazadas por máquinas reales, pero las preguntas esotéricas seguían vigentes.

Cerca del final de la guerra Turing ayudó a construir el Colossus, una máquina totalmente electrónica compuesta de 1.500 válvulas que eran mucho más rápidas que los relés electromecánicos empleados en las bombas. Colossus era un computador en el sentido moderno de la palabra, y su velocidad adicional y sofisticación hicieron que Turing lo considerara un cerebro primitivo: tenía memoria, podía procesar información y los estados dentro del computador se asemejaban a estados mentales. Turing había transformado su máquina imaginaria en el primer computador real.

Máquina Colossus

CRONOLOGÍA DEL ORDENADOR ELECTRÓNICO

1642 Pascal diseñó la primera máquina de calcular basada en ruedas dentadas que sólo podía sumar y restar.

1694 El matemático Leibniz diseña una máquina ampliando los estudios de Pascal. Esta calculadora, además de sumar y restar, también multiplicaba, dividía e incluso extraía raíces cuadradas. Debido a la falta de tecnología en esa época la difusión de esta máquina fue escasa.

1822 Babbage establece los principios de funcionamiento de los ordenadores electrónicos en un proyecto de máquina denominada «máquina diferencial», que podía resolver polinomios de hasta 8 términos.

1833 Un nuevo trabajo de Babbage, la «máquina analítica», puede considerarse como un prototipo de los actuales ordenadores electrónicos.

1944  John Von Neuman propone la idea de «programa interno» y desarrolla un fundamento teórico para la construcción de un ordenador electrónico.

1945   Entra en funcionamiento el ENIAC (Electronic Numerical Integrator and Calculator), su primera utilización fue para la construcción de tablas para el cálculo de trayectoria de proyectiles.

1952 Se construyen los ordenadores MANIAC-I y MANIAC-II, con lo que se termina la prehistoria de la informática.

Fuente Consultada:
Grandes Inventos de la Humanidad Beril Becker
Gran Enciclopedia de la Informática Tomo I Historia de las Computadoras

 

Historia de la Automatizacion Causas y Evolución

Historia de la Automatización Industrial

Bajo la presión de la segunda Guerra Mundial se introdujo en las fábricas toda clase de elevadores de horquilla y transportadores para acelerar la marcha de los materiales. Estos se convirtieron en parte integral de la línea de montaje, llevando artículos de una máquina a otra. Inevitablemente, el paso siguiente fue la mano de hierro que comprimiese todas las operaciones mecánicas en una corriente continua.

Una mano humana ejecuta siete movimientos básicos que se combinan cuando toma un objeto, lo hace girar, lo mueve o lo levanta. Treinta juntas son mantenidas bajo el control de las tensiones equilibradas de cincuenta músculos mediante pulsaciones indicadoras que recorren las líneas de sus nervios.

Ford fue el primero que trató de construir, dentro de una fabrica, una máquina cuya constitución interna imitase un organismo viviente. El brazo móvil mecánico, con su mano, fue el primer mecanismo de un robot que actuaba exactamente como los órganos sensoriales. Era un brazo flexible, articulado.

En el extremo tenía una grapa compleja parecida a una mano de acero. La grapa asía la pieza en que se trabajaba  y la  colocaba en la herramienta.Este elemento estaba regido a la distancia por un rollo de papel horadado, como el rollo de música de una pianola. Los agujeros permitían que los contactos eléctricos se hicieran únicamente en los puntos prefijados.

Estos determinaban todos los movimientos separados: a qué velocidad tenía que moverse, cuándo los dedos tenían que cerrarse, a qué distancia debía llegar el brazo móvil, dónde y cómo tendría que colocar el material de trabajo.

El brazo móvil fue un acontecimiento espectacular. Economizó tiempo, dinero y trabajo humano. El cerebro mecánico que apuntó hacia objetivos militares durante la guerra ahora aceleraba la producción de un automóvil Ford. Los ingenieros comenzaron a preguntarse por qué los mecanismos serviles no podían dar órdenes a todas las otras máquinas de la planta y regir la fábrica entera.

automatizar fabrica siglo xix

FÁBRICA AUTOMÁTICA
Para el nuevo salto hacia el futuro se disponía de todos los inventos electrónicos. La automatización de toda una   fábrica   fue una   aventura   en que debería  jugarse un billón  de dólares.   Ford   decidió correr el riesgo.

La automatización significaba más que la interconexión de las máquinas existentes. Fue necesario volver a diseñar y volver a construir todas las máquinas y hacer que la fábrica entera estuviese gobernada por dispositivos eléctricos preestablecidos.

El monstruo de múltiples brazos tenía una cuadra de largo y ejecutaba 540 operaciones mecánicas. Había 265 taladros automáticos, 6 fresadoras, 21 barrenadoras, 56 escariadoras, 101 avellanadores, 106 terrajas de contratuercas y 133 inspecciones.

Las mediciones empezaron a realizarse por medio de pulsaciones eléctricas, en lugar de dientes metálicos. La manipulación se hizo con condensadores eléctricos en lugar de levas. Los movimientos fueron comandados por alambres de conexión y no por palancas.

El capataz fue una cinta magnética que daba una serie de órdenes en forma de sí y de no a los tubos electrónicos, que a su vez la retransmitían cual soldados de centinela a los lugares de trabajo. A   los   músculos   mecánicos   se   acoplaron   cerebros electrónicos.

La automatización hizo anticuados todos los conceptos normales de la producción en masa. El trabajo se realiza en una fábrica con rapidez mil veces superior a lo que lo pueden hacer las manos humanas. Lo que empezó siendo una barra de metal se taladró, horadó, fresó, acepilló, troqueló, aserró, cizalló, trituró y afiló; y mientras tanto daba saltos mortales el tiempo bajo los transportadores aéreos y salía finalmente   convertido   en   150   motores  terminados por hora.

El éxito de la operación Ford contribuyó a que la automatización se extendiera velozmente por todo el territorio de los Estados Unidos. El sistema telefónico es automatizado casi en un 90 por ciento. En cintas perforadas se registran los números llamados y la ciudad, la hora en que comenzó la llamada y la hora en que terminó. Las computadoras reúnen, traducen, clasifican y resumen toda la información facturable.

Un sencillo cable coaxil simultáneamente cientos de conversaciones telefónicas individuales, programas radiales y de televisión. Estaciones amplificadoras que no requieren personal para su atención envian a todo el país todo tipo de comunicaciones.

En la industria petrolera, las unidades de destilación comenzaron tratando 5,5 millones de galones de petróleo no refinado por día mediante el control automático que cuida la circulación del petróleo, su temperatura, su presión y el envase. En las fábricas ie lámparas eléctricas, un río de vidrio corre durante las 24 horas del día, saliendo 1200 lamparitas por minuto.

Cada industria sintió el impacto de la automatización. Con mediciones electromagnéticas se determinó tensión, dureza e imperfecciones de las chapas de hierro. Las células fotoeléctricas estudiaron el pulido, la incandescencia y la transparencia de papeles y tejidos. La automatización no sólo moldeaba un producto, sino que medía su peso, su presión y su espesor, imprimiendo los datos al momento en un rollo de papel. Determinaba por anticipado la clase de operación requerida y hacía sus propias correcciones.

Los métodos de fabricación fueron transformados completamente por el potencial de esta nueva técnica automática. En las radios, por ejemplo, se eliminaron todos los pequeños trozos de cable y soldadura. Las piezas componentes se rediseñaron por completo.

En lugar de cables, se grabaron circuitos extendiendo el metal fundido en moldes plásticos acanalados. Se dispusieron seis distintos circuitos en obleas de cerámica de una pulgada, formando una estructura rígida de aparato radiotelefónico.

La máquina insertadora cortaba, modelaba, insertaba, agruaba y soldaba mecánicamente. Los que habían sido gabinetes en secciones se convirtieron en cajas moldeadas en una sola pieza.

Con esta simplificación se pudo realizar 10.000 montajes por día. Con los viejos métodos, un obrero tardaba un día entero en hacer un solo montaje.  Pronto comenzó a tomar posesión de los depósitos. Las máquinas entregaban mercaderías a los autómatas de depósito que se deslizaban por pasillos, cumpliendo y rotulando pedidos, almacenando mercaderías del stock y entregando planillas con todos los datos.

Todas las operaciones se dirigían por radio desde una oficina central. Los cerebros electrónicos llevaban cuenta exacta de la venta, llenaban listas de pagos de sueldos y jornales, calculaban y enviaban facturas y ordenaban la producción.

Importancia de la Automatización

Fuente Consultada:
Grandes Inventos de la Humanidad Beril Becker

Historia del Uso de la Corriente Alterna Edison Vs. Tesla

HISTORIA Y EVOLUCIÓN DE LA CORRIENTE ELÉCTRICA

Hacia 1880, la ciudad de Nueva York tenía por la noche un aspecto muy diferente al de hoy. Calles y casas estaban, en general, iluminadas con lámparas de gas o de aceite. Pocos años antes, Edison había presentado su práctica lámpara incandescente. Sin embargo, no había un sistema público de energía eléctrica, aunque las calles del bajo Manhattan estaban festoneadas con gran número de alambres eléctricos para circuitos telefónicos y telegráficos.

El primer sistema comercial de energía eléctrica, desarrollado por Thomas Edison, era estrictamente un sistema de corriente continua. La mayoría de los científicos estaban convencidos que la corriente alterna no era segura ni práctica para uso comercial y que no tenía ninguna ventaja compensadora.

Cuando se considera que la distribución práctica de la energía eléctrica se inició con la corriente continua y que sus sistemas predominaron muchos años, es sorprendente que alguna vez llegara a nosotros la corriente alterna. Ahora, sin embargo, los sistemas de energía eléctrica están basados casi exclusivamente en corrientes alternas.

Es evidente que hay algunas propiedades de la corriente alterna que la hacen particularmente valiosa en situaciones comerciales modernas.

MlCHAEL FARADAY
PRIMEROS PASOS….Conocido como el “príncipe de los experimentadores”. Faraday había sido el creador de un sorprendente número de cosas nuevas, incluyendo la iluminación a gas; pero se lo recuerda únicamente como el inventor de la dínamo.

Ya en 1821, demostró que un alambre   cargado podía   girar continuamente   en torno de un imán y que podía hacerse que un unan. girase alrededor de un alambre que transportaba corriente. De estos primeros experimentos resultó una idea que siguió dándole vueltas en el cerebro curante los diez años siguientes. ¿Sería posible que un imán produjera electricidad?

Faraday Cientifico

Lo que indujo a Faraday a concentrarse en este problema fue su convencimiento de que en el espacio que rodeaba a un imán o a un alambre cargado vibraban líneas invisibles de fuerza que se movían hacia fuera en círculos. Sabía que consiguiendo que lesas líneas invisibles de fuerza hicieran girar una rueda, habría dominado esos poderes invisibles.

Era una idea audaz y original la de conseguir que un campo magnético saltara por el espacio desde luna bobina primaria a una bobina secundaria. Fracasaron los ensayos que, con intermitencias, hizo durante diez años. No logró inducir una corriente continua en una bobina secundaria, hasta que de pronto comprendió la verdad en la tarde del 17 de octubre de 1831: para conseguir una corriente continua era necesario tener en movimiento continuo las bobinas  o   imanes   que   cortasen   las líneas   de fuerza.

En pocos días construyó la primera dínamo. Montó un disco de cobre de 30 centímetros, que podía hacerse girar mediante una manivela. Los bordes exteriores pasaban entre los polos de un gran imán mientras giraba. Unas escobillas iban desde el disco le cobre a la segunda bobina, que tenía un galvanómetro. Mientras hacía girar la manivela, la aguja del galvanómetro anunciaba triunfalmente el hecho de que la corriente pasaba sin cesar. Faraday consiguió convertir la fuerza mecánica en corriente. La primera dínamo (o generrador de energía eléctrica) había nacido.

Dinamo, generador de energía electrica

Faraday ignoraba que el año anterior, Joseph Henry, desde Estados Unidos, había escrito a un amigo: “Últimamente he logrado producir movimiento en una pequeña máquina mediante una fuerza que, a mi juicio, hasta ahora no ha sido aplicada en mecánica: mediante atracción y repulsión magnética“. Henry no dio este hecho a la publicidad y con ello hizo perder a Estados Unidos en honor de haber descubierto la dínamo.

En las décadas   que siguieron,   la dínamo   experimental   de Faraday se   transformó,   poco a poco, en el tipo   de   motor-generador   conocido   actualmente. En lugar   del disco   de cobre, se hizo   girar bobinas entre los polos.   Un simple anillo   se transformó   en una serie de bobinas como  un inducido.

Un electroimán reemplazó   al imán permanente.   Los   núcleos de hierro   de los inducidos   se cortaron   en láminas aisladas, para   conseguir un campo   mayor de intensidad.

En 1873,   Z. T. Gramme, de Viena, hizo que un motor   eléctrico girase   accionado   por una   máquina   de vapor y   generó corriente   eléctrica.

Fue entonces   cuando   Edison   pensó   en valerse   de una máquina   de vapor   para   hacer   rotar una   dínamo enorme y con   ello conseguir   una corriente   directa que pasara en forma constante a través de los cables tendidos   por   debajo   de   tierra,   hasta   las   bombitas eléctricas de los edificios. Estaba dispuesto entonces a iniciar los experimentos conducentes a mejorar la lámpara eléctrica, objetivo que logró luego de ensayar 1200 variantes de materiales para el filamento.

Mas tarde Edison se abocó al estudio de generación de corriente eléctrica o generadores y para ello, añadió bastantes espiras de alambre en las bobinas de los primitivos generadores que rodeaban al inducido, hizo los imanes suficientemente grandes y aceleró la rotación del inducido lo necesario para conseguir una fuente barata de energía eléctrica.

EdisonLuego Edison analizó en que si se distribuía la energía por una ciudad era necesario colocar un medidor de consumo. Pensó en el problema práctico de colocar un medidor en cada edificio, a fin de conocer el consumo de corriente eléctrica.

Basándose en que la velocidad de rotación de una dínamo es directamente proporcional a la corriente, construyó un medidor consistente en un pequeño motor desmultiplicado de tal manera que una fracción de una vuelta de la aguja indicadora representase un número enorme de revoluciones. Hubo que resolver otros problemas, tales como la fabricación de fusibles seguros y artefactos livianos.

Toda la provisión de lamparitas, artefactos y electricidad fue gratuita durante un período de cinco meses en todos los edificios que accediesen a cambiar el gas por electricidad. Finalmente, todo estuvo listo y se dio paso a la corriente.

Los periodistas que vieron toda una manzana de la ciudad iluminada con 2.300 lamparitas eléctrica: comprendieron que la era de la iluminación de ga tocaba a su término. Escribieron que no había ninguna llama vacilante ni olor nauseabundo a gas expresando su atónita sorpresa ante las “resplande cientes herraduras que brillaban dentro de los globo en forma de peras”.

La lámpara eléctrica de Edison abrió el camine a la nueva era eléctrica. De los inducidos de 1e central eléctrica entregaban una corriente de 60 ciclos y de 120 voltios que fue la común en todos los hogares de Estados Unidos. Cada libra de carbón producía al consumirse un kilovatio hora de electricidad. Una habitación se iluminaba con sólo hacer girar un interruptor, todo porque una bobina de alambre hacía cosas de magia en un imán.

La lámpara de filamento carbónico se convirtic en lámpara de tungsteno cuando William Coolidge, de la General Electric, descubrió que un pedazo de tungsteno tratado especialmente podía estirarse en forma de metal flexible.

Irving Langmuir añadió un gas que retardaba la evaporación del tunsgteno yj consiguió que ardiese a mayor temperatura, a fin de que de una simple lamparita se obtuviese más luz. Ahora el Hombre Mecánico abriría sus ojos brillantes   dondequiera   una  habitación necesitara luz.

LA ERA DE LA ENERGÍA ELÉCTRICA:

La central eléctrica de Edison dio el impulso inicial a una nueva era de la energía.Resultó evidente que no se aprovechaba toda la energía de que era capaz la primera central eléctrica. La iluminación eléctrica sólo por períodos exigía el total de la energía. Hubo una enorme reserva, que se podía destinar a otros propósitos.

¿Por   qué   no aplicarla   para   hacer   caminar   las ruedas de los tranvías, en vez de emplear caballos? Esto apuntaba hacia un motor eléctrico.

La corriente que pasa por las bobinas de un inducido lo hace girar en virtud de la forma en que lo atraen y repelen los polos norte y sur de un imán permanente. Con un inducido conectado a las ruedas de los tranvías, era posible hacer girar éstas. Todo lo que se necesitaba era agregar un tercer cable a los que pasaban por debajo de tierra, para que sirviese de nueva línea de transmisión y suministrase la energía que necesitaba el motor eléctrico.

Los cincuenta mil caballos cuyos cascos repiqueteaban en los empedrados de Broadway conocieron pronto un sonido nuevo: el ruido metálico del primer tranvía eléctrico.

El tercer cable tardó poco en suministrar energía a los hogares y a los nuevos trenes elevados. El nuevo sistema de transporte permitió la expansión de la ciudad. Los trabajadores no necesitaron ya vivir a distancias que pudieran recorrer a pie para ir a sus oficinas y fábricas. Mientras tanto, los barrios céntricos de las ciudades comenzaron a crecer en sentido vertical, a medida que los motores nuevos accionaban los ascensores de edificios altos.

Los motores eléctricos lograron contener más energía con tamaños menores. Se tornaron tan potentes como para ser unidos directamente a las máquinas de las fábricas. Entraron en los hogares en aspiradoras de alfombra. El proceso sigue continuando ante nuestra vista, mediante el agregado de motores a lavadoras, mezcladoras, batidoras, refrigeradoras y acondicionadoras de aire.

La Corriente alternada
Aunque la electricidad, en su avance arrollador por el mundo hacía adeptos continuamente, la central  eléctrica  de  Edison  reveló  un notorio  defecto.

Las luces eléctricas, que eran brillantes y constantes cerca de la usina, se debilitaban y oscilaban a tres kilómetros de distancia.

Los generadores de corriente eléctrica no proporcionaban más   de 500 voltios   y esta   energía   no se podía  “impulsar” a  mucha   distancia de la   central eléctrica. Si se sobrepasaba los 500 voltios, la energía se derrochaba en lluvias de crujientes chispas azules que partían de las piezas   sobrecargadas del generador. Se vio con   claridad que hacía   falta un   generador de nuevo tipo, que fuese capaz de suministrar energía a distancias largas.

Tesla NikolaUn inventor servio, Nikola Tesla, que trabajó a las órdenes de Edison desde que llegó a este país, se convenció de que la solución estaba en la corriente alternada, que podía generarse en voltajes muy altos.

Edison creyó que esta corriente era demasiado peligrosa. Tesla argüyó que podría reducirse el voltaje, hasta llegar a 120 voltios para uso doméstico, mediante transformadores escalonados.

A todo esto, el transformador, inventado en 1886, resultó ser mucho más flexible de lo que todos imaginaban.   Fue posible pasar   energía de alto voltaje de un circuito a otro circuito con voltaje más bajo, pero con la misma frecuencia (número de revoluciones de una armadura), sin que se moviese ninguna pieza.

El aumento y disminución de los voltajes fue fácil y seguro. Todo lo que se necesitaba era aumentar o disminuir en el secundario el número de espiras de alambre   con relación   al primario, una   ley sencilla que databa de los días de Faraday.

Tesla llevó su patente a George Westinghouse, quien prosperaba mucho con su nuevo freno de aire, que dio seguridad a los ferrocarriles. Westinghouse adivinó en el acto la importancia del generador de corriente alterna. Calculó que el costo de transmisión de esa energía sería sólo el diez por ciento de lo que costaba la corriente continua de Edison.

Los voltajes altos exigían cables más delgados, lo cual permitía muy grandes economías por razón de costosnormal de 120 voltios a distancias que llegaban a 400 kilómetros.

Pronto resultó evidente que mediante centrales hidroeléctricas podían distribuirse 80.000 voltios a ciudades y granjas del campo desde 500 a 1.000 kilómetros. Si fallaba la caída natural del agua, siempre había turbinas de vapor como reserva, para prestar el servicio.

Valida de estos medios, la energía eléctrica se abarató tanto que pudo competir con la energía del vapor, y pronto las fábricas empezaron a usarlas como fuente de potencia. Se instalaron en fábricas nuevos motores de eficacia mayor, en lugar de los ejes, correas y poleas exigidos por la máquina de vapor. La fábrica no sólo adquirió un aspecto más limpio y ordenado, sino que también dispuso de una mayor velocidad.

Se acoplaron motores a máquinas que ahora podían aumentar su velocidad de. rotación hasta 400 revoluciones -por minuto. Conectando motores de diferentes tamaños, sólo se necesitaba una energía mínima. Las fábricas economizaron el costo del anterior movimiento constante de las correas, los ejes y las cadenas que se empleaban con la energía de vapor.

Más o menos en 1920, el Hombre Mecánico unió casi todas las aldeas y ciudades de Estados Unidos a su red de conductores. Los nuevos mapas del mundo se llenaron pronto de puntos, a medida que se desprendían poblaciones nuevas de los centros congestionados y se poblaban los lugares intermedios entre ciudades, y las regiones antes agrestes y rurales. Haciendo el trabajo de cien millones de caballos, la electricidad ayudó a transformar Estados Unidos de una nación minúscula en una nación gigantesca.

Tal como la máquina de vapor revolucionó la navegación, y el motor de nafta debía pronto transformar el transporte por carreteras, la energía eléctrica infundió vida nueva a los ferrocarriles, las fábricas y las granjas de Estados Unidos.

Fuente Consultada:
Grandes Inventos de la Humanidad Beril Becker

 

Historia de la Produccion en Serie La Cadena de Montaje

CADENA O LÍNEA DE MONTAJE
Cuando pudieron hacerse formas metálicas exactamente iguales, fue lógico pensar en ellas como piezas intercambiables.

Eli Whitney fue quien por primera vez montó piezas intercambiables como un nuevo método de fabricación. Se pudo hacer las piezas en un lugar y luego armarlas en otro. Whitney pensó que en esta forma los productos manufacturados podrían producirse en cantidad mayor con más rapidez y a menor costo.

Ely Whitney

En los primeros años de su juventud, Whitney se ganó la vida batiendo clavos en un yunque. Nunca podía dar a los clavos formas exactamente iguales. Años después, cuando ya había inventado la desmotadora de algodón, en una ocasión en que observaba cómo con un martillo pilón se hacían miles de clavos idénticos, se convenció de que las máquinas tendrían que sustituir a la mano del hombre.

Por esa época, en 1789, Francia estaba en plena revolución, y los Estados Unidos temían que su mejor amiga pudiera volverse contra ellos. Se necesitaban fusiles para la defensa de las costas de América. Para fabricarlos a mano se requerirían años. No es de extrañar que el Departamento de Guerra se alegrase cuando Whitney propuso entregar 10.000 mosquetes en el término de dos años al bajo precio de $ 13,40 cada uno. Se celebró contrato con Whitney, adelantándole una suma para que comenzara la fabricación.

El joven inventor, sin embargo, tropezó con gran dificultad para encontrar hombres que poseyeran la pericia mecánica necesaria para hacer las máquinas cortadoras que reemplazasen al viejo martillo, el escoplo y la lima. Al igual que antes Watt, Whitney tuvo que hacerse las herramientas requeridas y adiestrar en el manejo a los obreros que él tomaba en las fundiciones y talleres de maquinaria.

Su primera tarea fue construir un elemento mecánico que reemplazara a las, manos humanas en la aplicación y dirección del movimiento de un instrumento cortante. No había maquinistas cuyas manos fuesen suficientemente firmes o fuertes como para sostener un instrumento de raspado contra una pieza de hierro que gira más de unos pocos minutos cada vez.

Se necesitaba una presión constante y exacta. Resolvió el problema con una especie de plantilla mecánica, que viene a ser un molde de madera o metal, a lo largo del cual se mueve una herramienta que hace piezas iguales.

Cada pieza del mosquete se sujetaba en una posición prefijada antes que las fresas la cortaran. De esta manera se repetía cada una con precisión absoluta. No sólo se empleaban piezas uniformes, sino que los bancos de trabajo se ubicaban de manera que las piezas pudieran pasarse de un obrero al otro.

La fábrica se dividía en departamentos, cada uno con su máquina especial unida por correa a un eje que impulsaba y hacía todas las herramientas cortantes.

Con esto la fábrica ya estaba preparada para ponerse en marcha, y todas las máquinas comenzaron a trabajar al mismo tiempo. Una máquina daba forma a la caja de madera del fusil, con sus superficies planas y curvadas. En hojas metálicas se hacían agujeros en lugares precisos, a fin de que sirviesen de guías para la producción en masa de trabajo de perforación.

Con grapas se sujetaban hojas metálicas contra los bancos, mientras las fresas las cortaban. Interruptores automáticos-detenían la acción de la herramienta. El mecánico sólo necesitaba agrapar las barras metálicas, las cuales eran cortadas, cepilladas, conformadas, taladradas, lustradas y esmeriladas automáticamente.

Los obreros solamente tenían que reunir las diversas piezas y llevarlas a la sala de montaje, donde se armaban los fusiles en tiempo record.

Finalmente, se dispuso de una forma de producir grandes cantidades de materiales con la rapidez, la uniformidad y la precisión que ningún artesano podía lograr individualmente.

Comienza la producción en masa
En este tiempo las avanzadas de pobladores y colonizadores de zonas lejanas estaban en plena marcha hacia el oeste de los Estados Unidos. Había que preparar las fronteras (que es como se llamaba a los límites entre civilización y regiones incultas) y construir viviendas.

El hacha era la herramienta predilecta del pionero. Pero éste a menudo tenía que esperar meses a que el herrero le forjara un hacha. Cada mango exigía un tallado cuidadoso. Cada hoja de hacha requería un largo y lento proceso de templado y pulimento.

Lo que Whitney había hecho para el fusil, otros entusiastas de la mecánica lo aplicaron al hacha. Las fábricas las hicieron a millares. Se colocaban en tambores giratorios y pasaban por las llamas de un horno en un proceso de calentamiento uniforme. Luego un martinete de fragua les daba rápidos golpes sucesivos, que hacían perforaciones de una medida exacta, por donde entrase a la perfección el mango.

De la noche a la mañana dejaron de faltar hachas. Corrió si se tratase de celebrar la intensificación de la producción fabril, empezaron a salir en cantidad los relojes de las fábricas. Con máquinas se perforaban miles de piezas por día y se montaban tan rápidamente que todo el mundo pudo tener reloj por muy bajo precio.

El hecho de que las máquinas pudieran hacer cosas mejores y con mayor rapidez produjo una conmoción creciente que todo lo inyadió. Elias Howe descubrió la parte esencial de la idea de una máquina de coser un día en que puso el ojo de una aguja en la punía en lugar de la cabeza.

De esta manera fue posible hacer que el hilo atravesase la lela sin necesidad de que la aguja la pasase de lado a lado. Otro hilo que salía de una lanzadera pasaba por dentro del lazo. Cuando la primera aguja retrocedía nuevamente, con un punto de cadeneta se apretaban los dos hilos. Esto resultó cien veces más rápido que coser a mano.

Singer introdujo mejoras. Mediante un pedal consiguió que las manos de la costurera quedasen libres y pudiesen guiar la tela. Se dio a la aguja movimiento vertical, subiendo y bajando, en vez de moverse Imrizontalmente como la aguja de Howe.

Al poco tiempo la máquina de coser pasó del hogar a la fábrica. La producción en masa hizo bajar los precios. Todos pudieron adquirir desde entonces mi traje nuevo, un vestido nuevo. Las máquinas construyeron nuevas máquinas despúes de cada nuevo invento. La lenta salida de los productos manufacturados, parecida a un goteo se transformó en un diluvio.

PARA SABER MAS…
Cadena de Montaje en Ford

La producción dependió de la rapidez con que el hombre pudiese servir a la máquina. En la línea de montaje, cada hombre agregaba una pieza al armazón desnudo que iba avanzando por esa línea. A medida que el magneto, por ejemplo, se desplazaba sobre un medio transportador, los hombres le añadían algo cada uno, hasta que finalmente salía terminado al cabo de trece minutos. Levantando el transportador del magneto veinte centímetros, para que los hombres no tuvieran que agacharse, el tiempo disminuyó a siete minutos. Imprimiendo al transportador un poco más de velocidad, ese tiempo se redujo a cinco minutos.

Con métodos similares, en la línea del ehassis se redujo el número de estaciones, hasta que fue sólo de cuarenta y cinco, y de la última operación salía el auto armado. Fue éste un ejemplo sensacional del método nuevo de producción. En 1915, un coche se terminaba en noventa y tres minutos. Una década después, luego de haberse vendido 16 millones de automóviles del modelo T, cada quince minutos salía un coche nuevo. Lo más sorprendente de todo es que el precio se pudo reducir de 850 a 295 dolores.

Frederick Taylor fue el primero que concibió la idea de que el propio hombre pudiera convertirse en un mecanismo. Taylor es el ingeniero que descubrió un acero de aleación nueva capaz de cuadruplicar la velocidad de las herramientas cortantes. Imaginó que el propio hombre podía llegar a ser igual de eficiente que una máquina si se eliminaban movimientos superfluos. Utilizando un cronógrafo, determinó el tiempo que tardaban distintos obreros y el que se requería en distintos movimientos para concluir una operación.

Otros ingenieros siguieron estudiando los movimientos de los obreros con el propósito de llegar al máximo de producción posible por minuto. Todos estos estudios sobre la forma de lograr que las piezas y los materiales saliesen en forma uniforme y fija; con la velocidad mayor con que las máquinas pudieran producirlas, desembocaron en una sorprendente conclusión: nunca se conseguiría que el hombre fuese una máquina eficiente.

Ver: Henry Ford y su Producción

Fuente Consultada:
Grandes Inventos de la Humanidad Beril Becker

Aliscafos: Funcionamiento y Usos Lanchas Flotantes

La velocidad de un barco, incluso cuando se trata de una nave de combate, está muy limitada por las enormes fuerzas de fricción que se desarrollan entre su casco y el agua en la que flota. Parece, sin embargo, que el desarrollo del aliscafo (aliscafo, hidroplano o hidrofoil), basado en principios totalmente nuevos, puede proporcionar un medio de vencer las limitaciones de velocidad impuestas por el agua.

Las relaciones que existen entre los aliscafos y las embarcaciones ordinarias son similares a las que existen entre los aeroplanos y los globos dirigibles. Tanto los globos dirigibles como los barcos ordinarios se trasladan (en el aire y en el agua, respectivamente), y casi toda la potencia suministrada por sus motores se emplea en vencer “la resistencia al avance entre su superficie externa y el agua o aire que los rodea.

aliscafo

En contraposición, tanto los aeroplanos como los aliscafos emplean sus planos inclinados, esquíes o aletas, para desviar parte del aire o del agua hacia abajo. De esta forma, la potencia desarrollada por sus motores se emplea no sólo para impulsar la nave venciendo la resistencia al avance, sino también para sustentarla.

Esta fuerza de elevación sostiene el aeroplano (que es, por supuesto, mucho más pesado que el aire) en el vuelo, mientras que en los aliscafos se emplea para elevar el casco de la nave sobre la superficie del agua, produciendo una drástica reducción de la resistencia al avance, con el correspondiente aumento de velocidad. Sin embargo, cuando están parados, los aliscafos flotan sobre el agua de forma análoga a una embarcación normal, y sólo cuando se impulsan a gran velocidad reducen la superficie de contacto con el agua, al elevarse.

aliscafo PT 10

El PT.10, primer aliscafo construido para el transporte de pasajeros, fue botado en 1952. Esta embarcación, equipada con pianos en “V”, puede transportar a   30  personas.

En el momento en que un aliscafo alcanza la velocidad adecuada, su casco se eleva sobre la superficie del agua, creando perturbaciones aerodinámicas mucho menores que una embarcación corriente que se trasladara a la mitad de la velocidad, en condiciones comunes. Los aliscafos son, por tanto, muy adecuados para el servicio en ríos y lagos, donde las perturbaciones excesivas pueden causar grandes perjuicios en las orillas y a otras embarcaciones. De hecho, hasta hace poco, este tipo de embarcación se ha utilizado sólo en aguas interiores o resguardadas.

Se han empleado, por ejemplo, para viajar por los ríos soviéticos y para cruzar los lagos suizos, siendo especialmente adecuados para viajes cortos, ya que consumen, como mínimo, el doble que las embarcaciones ordinarias. Al principio, se encontró cierta oposición al empleo de estas embarcaciones en aguas abiertas, ya que existían dudas sobre su comportamiento en condiciones climatológicas adversas, y no se sabía si serían más vulnerables a las grandes olas que las embarcaciones corrientes, en caso de ser sorprendidas por una tormenta en el mar.

Las primeras experiencias en los años 60 de un grupo de investigadores en los EE. UU. han demostrado que un aliscafo navegando por el océano es, en realidad, una realización práctica. El viaje de 370 kilómetros entre Port Everglades, en Florida, y las Bahamas con este tipo de embarcación, se puede realizar en unas tres horas, siendo más rápido que los buques de vapor y más económico que los aviones.

Aunque los aliscafos viajan más rápidamente que las embarcaciones ordinarias de tamaño parecido, este aumento de velocidad se consigue sin pérdida de comodidad para los pasajeros, e incluso se afirma que el viaje en aliscafo es mucho más suave. Esta ventaja adicional sobre los viajes ordinarios por agua se deriva del hecho de que el casco del aliscafo se eleva sobre la superficie.

Como sólo los planos (esquíes o aletas) reciben los golpes de agua directamente, las elevaciones y descensos, así como el balanceo experimentado por el barco, se reducen considerablemente. También se reducen en alto grado las vibraciones debidas a los motores.

DISEÑO DEL ALISCAFO
Aunque el agua es unas 815 veces más densa que el aire, los aliscafos tienen muchos puntos en común con los aeroplanos. Los planos inclinados no sólo crean un impulso hacia arriba, como consecuencia de desplazar el agua hacia abajo, sino que la presión hidrostática en la zona inmediatamente superior al plano se reduce, como consecuencia del movimiento. Por lo tanto, sobre ambas superficies del plano se crean fuerzas que tienden a elevarlo, trasmitiendo su impulso al casco unido a él.

La zona de bajas presiones que se crea por encima del plano puede, en ciertas circunstancias, provocar la formación de burbujas de vapor bajo la superficie del agua (un líquido se puede vaporizar haciendo descender su presión, lo mismo que elevando su temperatura).

La formación de estas burbujas no constituye en sí un problema serio; pero, una vez que se han formado, pueden alcanzar la parte posterior del aliscafo. Allí se deshacen, provocando pequeñas ondas de choque que pueden dañar las superficies metálicas. Esto se evita, en gran parte, empleando perfiles especiales, muy finos, para los planos, lo cual requiere el uso de materiales muy costosos, tales como el titanio. Para reducir el peso al mínimo, las embarcaciones se fabrican, en general, con ligeras aleaciones de aluminio.

La gran diferencia de densidad entre el aire y el agua puede provocar una falta de estabilidad si el plano, o parte de él, se eleva momentáneamente fuera del agua. Esta dificultad no es corriente en aguas resguardadas, donde las olas no son grandes, pero es uno de los problemas a resolver antes de que los aliscafos puedan navegar con seguridad por los océanos. Si el ángulo de los planos permanece fijo, el impulso ascendente aumenta a medida que el plano se hunde en el agua. Por lo tanto, el barco mantiene automáticamente su elevación, pero sigue las ondulaciones de las olas.

Sin embargo, puede conseguirse un desplazamiento suave si el ángulo de los planos (o su incidencia) es alterable; en algunas embarcaciones, el ajuste de este ángulo se realiza por un dispositivo automático sensible. De esta forma, la quilla de la nave puede mantenerse a calado constante.

Se han desarrollado varios tipos diferentes de aliscafos, con el fin de conseguir estabilidad. Los sistemas principales emplean planos en “V”, grupos de planos dispuestos en escalera y diversos sistemas con control de inclinación. En los dispositivos que emplean planos en “V”, el sistema de planos principal se monta ligeramente delante del centro de gravedad de la embarcación, disponiendo un segundo plano en “V” próximo a la popa.

Como puede observarse en el esquema, los extremos de los planos emergen del agua, incluso cuando la embarcación “vuela” sobre aguas quietas. Esto es indispensable para estabilizar la nave cuando atraviesa aguas revueltas o cuando gira.

En el sistema en escalera, una serie de planos se disponen, uno sobre otro, como los peldaños de una escalera, sobre un soporte. A medida que el casco de la nave se eleva de forma gradual sobre la superficie del agua, a causa de la velocidad creciente, algunos de los planos emergen. Esto significa que se dispone dé un área extensa para producir la elevación cuando la velocidad es baja; pero, a medida que la velocidad aumenta, la fuerza precisa para el avance de la nave se reduce, ya que el área de los planos sumergidos es menor. Del mismo modo que en los sistemas en “V”, la estabilidad es mantenida por los planos que se sumergen y emergen del agua.

Existen muchas variaciones en los sistemas de incidencia controlada. En general, las naves equipadas con este tipo de sistema llevan planos totalmente sumergidos a popa, y la estabilidad se consigue por una serie de dispositivos diferentes, con distintos tipos de flotadores ajustables, montados cerca de la proa. Algunos tipos poseen alas o flotadores que se deslizan sobre la superficie, mientras que en otros la estabilidad se consigue por diversos mecanismos automáticos, que ajustan el ángulo de incidencia para compensar las variaciones en la superficie del agua. Con el fin de que los planos trabajen con eficacia, es esencial que su superficie sea lisa. Pero casi todas las superficies sumergidas en el mar se recubren de lapas y otros pequeños organismos marinos.

Por ello, es preciso limpiar, al menos una vez al mes, los planos y todas las partes asociadas situadas debajo del agua. Sólo con los adelantos conseguidos hasta el presente no parece probable que puedan construirse grandes embarcaciones fundamentadas en el principio del aliscafo.

La principal dificultad con que se tropieza en el diseño de los aliscafos, incluso los de tipo más pequeño, es la acomodación de los planos para amarrar las naves. Con embarcaciones pequeñas, el problema no es grave, ya que pueden ser retráctiles. Sin embargo, con los grandes buques, dotados de sus correspondientes planos de gran tamaño, existe un peligro real de que éstos puedan dañar la obra del puerto al entrar el barco.

El mayor aliscafo construido hasta la fecha es un barco soviético de 107 toneladas, con capacidad para 300 pasajeros. De esta embarcación se afirma que puede alcanzar velocidades de 80 kilómetros por hora.

Vista Inferior de los Aliscafos Con Sistemas Distintos

APLICACIONES
Aunque la mayoría de los aliscafos que se encuentran en servicio está destinada al trasporte de pasajeros a lo largo de los ríos o a través de lagos, existen ya posibles aplicaciones para naves rápidas, basadas en el principio del aliscafo. Estas embarcaciones presentan un interés militar indudable, en especial para destruir submarinos. Otra aplicación interesante se encuentra en el campo de los vehículos anfibios y lanchas de desembarco.

El establecer una cabeza de playa ha sido siempre una operación peligrosa, ya que las lentas lanchas de desembarco son, con frecuencia, un blanco fácil. Estas naves, equipadas con planos retráctiles,  serían, por tanto, unos instrumentos valiosos.

Fuente Consultada:
Enciclopedia de la Ciencia y la Tecnología Fasc. N°72 Los Aliscafos

Aviones Convertibles Primeros Modelos y Tipos

INTRODUCCIÓN: El día 2 de noviembre de 1954 constituye un hito en la historia del aeroplano. Dicho día, en la base de pruebas de la casa Convair, el piloto J. K. Coleman realizó el primer vuelo en un avión que despegó verticalmente desde su posición de partida, basculó en el aire, voló horizontalmente a más de 800 kilómetros por ahora y aterrizó de nuevo en posición vertical hasta quedar apoyado sobre la cola.

El Faire-Rotodyne, convertible para pasajeros, de velocidad superior a los 300 kilómetros por hora.

El avión era un monoplano de ala en delta Corvair XFY-1 equipado con un turbopropulsor Allison de 5.500 HP. Dos hélices tripalas contrarrotativas proporcionan, junto con el empuje del chorro del reactor, la fuerza de sustentación necesaria para el despegue vertical. Se trata de un nuevo tipo de avión, que los norteamericanos designan VTOL (Vertical Take oíi Landing: despegue y aterrizaje vertical) y que en Europa se conoce por «convertible».

En el año 1950, con ocasión de la guerra de Corea, el Gobierno de los Estados Unidos se dio cuenta de la necesidad de disponer de aviones de caza capaces de despegar en cualquier clase de terreno, sin necesitar aeródromos y pistas de aterrizaje.

En efecto, el peso cada vez mayor de los aviones de caza obligó a hacer pistas y campos de aterrizaje de mayor extensión y resistencia, y, por otra parte, el terreno montañoso no ofrecía lugares a propósito para la instalación de tales campos y pistas. Asimismo había que pensar en aviones de caza capaces de despegar de la cubierta de los buques de guerra y de transporte y que pudiesen aterrizar de nuevo en ellos, evitando tener que acompañar las escuadras y convoyes con costosos y vulnerables portaaviones.

A partir de dicho año los proyectos se suceden, la mayoría irrealizables por fantásticos; pero algunos ofrecen posibilidades constructivas, y al cabo de cuatro años se consigue que vuele el primer «convertible».

Qué se entiende por avión convertible:

Un avión convertible es un avión capaz de despegar y aterrizar como un helicóptero, es decir, verticalmente, y una vez alcanzada la altura suficiente, volar como un avión.

Aunque el helicóptero resuelve muchos problemas, como son los del salvamento en zonas difíciles de acceso, vigilancia y enlace, así como transporte del aeropuerto al centro urbano y de ciudad a ciudad con helicopuertos centrales, las misiones de tipo militar, en campaña, quedan limitadas en estos aparatos por su reducida velocidad.

En dos décadas de desarrollo el helicóptero sólo ha alcanzado una velocidad máxima de 251 kilómetros por hora (récord mundial, septiembre de 1953, helicóptero Sikorsky XH-39, piloto Wester, de los Estados Unidos), y no es previsible ni probable que llegue a alcanzar nunca las velocidades sónicas, ya alcanzadas y hasta rebasadas por algunos tipos de aviones de caza.

El 5 de enero de 1959 el Fairey-Rotodyne, primer convertible comercial para pasajeros, ya logró alcanzar en sus vuelos de ensayo los 307 kilómetros por hora sobre un circuito de 100 kilómetros, batiendo con ello la marca de velocidad máxima alcanzada por los helicópteros.

Si motivos militares son los que han impulsado el rápido desarrollo del convertible, no debe olvidarse el problema de la seguridad, que queda ampliamente resuelto con este tipo de avión. Por consiguiente, no deberá extrañar que, una vez puestos a punto los convertibles militares, se construyan paralelamente los convertibles civiles, tanto para el transporte de viajeros como para el turismo o el avión particular.

Tipos de aviones convertibles:

Los convertibles se clasifican en tres grandes grupos:
1.° Los que disponen de rotores, hélices o reactores distintos para la sustentación como helicópteros y para la propulsión como aviones.
2.° Los que tienen un mismo rotor, hélice o reactor para la sustentación y la propulsión, y el eje del propulsor ha de girar 90° al pasar de una a otra clase de vuelo.
3.° Los que se sustentan y avanzan sobre una columna de aire creada por sus elementos propulsores. Son las plataformas volantes.

En el primer grupo, los aparatos reúnen las características del helicóptero combinadas con las del aeroplano: alas y hélices o reactores de avión para el vuelo horizontal, y rotor de helicóptero o reactores para el vuelo vertical. La ventaja principal de estos convertibles estriba en la seguridad de su pilotaje, ya que el paso de vuelo helicóptero al vuelo avión es continuo, conservando siempre el mando del aparato. El grupo primero se subdivide en tres subgrupos:

a)    Los convertiplanos cuyo rotor de despegue se para en el vuelo horizontal, de manera que las palas ofrezcan una resistencia mínima al avance.
b)    Los convertiplanos en que las palas del rotor de sustentación vertical se colocan de manera que en vuelo horizontal actúan como las alas fijas de los aviones normales.
c)    Los combinados de avión y helicóptero, es decir, los helicoplanos o helicópteros combinados, con fuselaje y alas de avión provisto de rotores sustentadores.

Entre los proyectos correspondientes al grupo primero, subgrupo a), destaca el convertiplano de Wilford, con rotor monopala contrapesado, de propulsión por reacción, a tase de chorro de gases comprimidos por el motor y eyectados e inflamados en el extremo acodado de la pala.

En el subgrupo b) merece citarse el convertiplano de Herrick, HV-1, que realizó sus primeros ensayos en 1931, prosiguiendo sus estudios en años posteriores (el HV-2 voló en 1937).

avion convertible herridyne

Modelo norteamericano «Helidyne», convertible, con dos rotores coaxiles y dos motores para vuelo horizontal. Ofrece, en su conjunto, las ventajas del helicóptero, el autogiro y del avión clásico.

Convertiplano de Herrick. Es un biplano con una ala fija y otra giratoria, a voluntad, dotada de turborreactores en sus extremos. Para el despegue y aterrizaje el plano superior actúa como un rotor de helicóptero; este rotor se convierte en plano cuando navega en vuelo horizontal.

El subgrupo c) está formado por los helicópteros «combinados», de los cuales constituye un precursor el autogiro español La Cierva, cuyos primeros vuelos datan del año 1923. El notable ingeniero Juan de la Cierva, con su revolución genial de la articulación de las palas del rotor y el descubrimiento del fenómeno de autogiración, hizo posible el desarrollo posterior del helicóptero y, como consecuencia, el del convertiplano.

Como se sabe, el autogiro primitivo era un avión de alas reducidas en las que una hélice tractora proporcionaba la velocidad suficiente para que el rotor entrase en autogiración, suministrando la fuerza de sustentación necesaria al vuelo. El rotor permitía una velocidad de vuelo muy reducida y el aterrizaje prácticamente vertical, y en los últimos modelos se lograba el despegue vertical acelerando el rotor mediante una transmisión desde el motor.

Soluciones parecidas, aunque no pueden clasificarse   estrictamente   como  convertibles,   son:

El «helicoplano» Hamilton, que se ensayó en los Estados Unidos en 1929, formado por un avión monoplano de ala alta Hamilton con dos hélices de eje vertical de 5,50 metros de diámetro situadas bajo el ala y a ambos lados del fuselaje.

Tipo de avión convertible que despega sobre un trípode, proyectado por L. H. Leonard. Una vez que el aparato ha despegado, gira sobre sí mismo un ángulo de 90 grados, las aletas estabilizadores se reducen por retracción (alas delanteras) y el aparato queda convertido en un cigarro puro volante de grandes alas.

El «giróptero» del francés Chauviére, construido en 1929, provisto de rotor sustentador y hélice tractora.El «clinógiro» de Odier Bessiére, ensayado en Francia en 1932, no es más que un monoplano Caudron 193, con motor de 95 HP, al que se le ha añadido una ala superior giratoria formada por un rotor de cuatro palas. Un proyecto posterior de A. Flettner prevé un avión clásico con cuatro hélices verticales para asegurar despegue y aterrizaje verticales.

Entre los «combinados» modelos pueden citarse los siguientes:

El helicóptero birrotor americano de la «Gyro-dyne Co.» Helidyne 7 A, con alas fijas reducidas de avión y dos motores con hélices propulsoras que le permiten volar a 140 kilómetros por hora con una carga útil de 1.340 kilogramos. Se trata de una adaptación del helicóptero Bendix. Sus primeros vuelos tuvieron efecto en noviembre de 1949. Un nuevo tipo, el Helidyne, destinado al transporte militar, presenta un peso en vuelo de 11.300 kilogramos.

Parecido a éste es el aparato experimental francés Farfadet SO-1310, helicóptero con un rotor de reacción a base de aire comprimido suministrado por una turbina «turbomeca» de 260 HP y alas fijas de superficie reducida, así como una hélice tractora accionada por una segunda turbina. En vuelo horizontal el rotor entra en autogiración. Sus ensayos dieron comienzo en el año 1953.

El Fairey-Rotodyne, que ya se ha citado, corresponde a este subgrupo.
En el grupo segundo, convertiplanos de rotor sobre eje que bascula en 90° para pasar del vuelo vertical al horizontal, también se distinguen dos subgrupos:

a)    Convertiplanos en que el rotor y el fuselaje basculan simultáneamente al pasar del vuelo en helicóptero a vuelo en avión, o sea eje del rotor invariable respecto al fuselaje.

b)    Convertiplanos con rotores o reactores de eje basculante respecto al fuselaje que permanece siempre en posición horizontal.

Los aparatos correspondientes al grupo segundo se caracterizan por tratarse en general de aparatos de alas fijas cuyas hélices son de diámetro mucho mayor al que normalmente sería necesario para el vuelo horizontal. En efecto, en este tipo de convertiplano las hélices, que trabajan con eje vertical, han de proporcionar la fuerza de sustentación necesaria para elevar vertical-mente el aparato.

El Hillar X-18 Propelloplane, avión convertible de ala basculante que despega en vertical.

Entre los aparatos del grupo segundo, subgrupo a), figuran los primeros convertibles de realización práctica y cuyos vuelos permitirán la solución del problema para los aviones de caza. Es el VTOL Convair XFY-1, ya citado, y otros como el Coleóptero, que más adelante describiremos con mayor detalle.

Este subgrupo a) es mecánicamente el de más fácil realización;  en cambio, presenta  otros inconvenientes que la práctica indicará la forma en que deberán solucionarse. Son éstos la difícil maniobra del paso de vuelo vertical a horizontal, y viceversa, basculando todo el aparato.

El embarco de los tripulantes y del material en el fuselaje en posición vertical tampoco será fácil. Por último, la estabilidad en el momento de aterrizaje si sopla viento algo fuerte parece precaria dada la altura del centro de gravedad con relación a la reducida base de apoyo sobre la cola.

Como primeros proyectos y realizaciones, merecen citarse los siguientes:
El de Focke-Wulf, que durante la segunda Guerra Mundial proyectó un convertible a base de substituir las alas por un gran rotor tripala situado tras la cabina de mando, accionado por estatorreactores en el extremo de las palas. Esto obligaba a utilizar cohetes de despegue. Los empenajes de tipo normal soportaban el tren de aterrizaje, sobre el cual se apoyaba el aparato en posición vertical para el despegue y aterrizaje.

Parecido al anterior, pero más atrevido, es el proyecto de L. H. Leonard, en el cual dos grandes rotores impulsan un fuselaje en cuya proa se halla la cabina de mando y los empenajes, y en la popa el tren de aterrizaje que, replegado en vuelo, se despliega para el aterrizaje vertical sobre la cola.

Un convertiplano correspondiente a este grupo, que fue construido por encargo de la Marina de los Estados Unidos, es el ala volante semicircular «Chance Vought» XFSU-1, de Zimmerman. En los extremos del ala dos grandes hélices tractoras despegaban el aparato colocado en ángulo de 45° y el aterrizaje se efectuaba en un espacio muy limitado, lo que permitía su utilización sobre las cubiertas de los buques. Fue rescindido el contrato de construcción en serie debido a la precaria estabilidad en el aterrizaje, defecto que, como indicamos, es inherente a este grupo.

Los aparatos del grupo segundo, subgrupo b), se reducen en general a aviones clásicos en los que, bien los motores, bien las alas, pueden bascular en 90° para lograr la posición vertical de las hélices.

Entre éstos pueden citarse el Bell XV-3, monoplano bimotor con dos rotores de 7 metros de diámetro en los extremos de las alas, cuyos ejes giran a la posición vertical para el despegue y a la horizontal para la propulsión. En el Bell-VTOL, monoplano de ala alta del año 1955, son los turborreactores situados bajo el ala los que basculan.

Otro tipo interesante de convertiplano es el Hiller X-18 Propelloplane, de 18 toneladas, cuyos primeros vuelos se realizaron en 1958. El ala, que gira solidariamente con los propulsores, colocándose en posición vertical para el despegue y horizontal para el avance, soporta dos turborreactores provistos de hélices contrarrotativas.

Una disposición análoga presenta el Vertol 76, cuyo primer vuelo completo se llevó a cabo el 15 de julio de 1958. El Kaman 16-B es un aparato anfibio construido según las mismas directrices.

Fuente Consultada:
Enciclopedia Cultural UNIVERSITAS Tomo N°17 -Los Aviones Convertibles-

Biografia de Cavendish Trabajo Cientifico Vida y Obra

Enrique Cavendish nació en Niza (Francia), en 1731. A la edad de 11 años íue enviado a la escuela en Hackney (Londres). En 1749 pasó a Cambridge, pero salió de allí sin haber obtenido ningún título. Perteneció a la Royal Society desde 1760 y, a partir de ese año, se dedicó, por su cuenta, al estudio de las matemáticas y de la física. Seis años después publicó trabajos sobre las propiedades del hidrógeno y del ácido carbónico.

Enrique Cavendish

Gran científico británico nacido el 10 de octubre de 1731. No muy famoso, pero destacado porque fue el primero en medir la densidad y composición de la atmosfera terrestre. Analizó la densidad media del nuestro planeta, descubrió el gas argón, inventó el pendulo de torsión, y propuso la ley de atracción electrica entre cargas de distinto signo. LLegó a poner en riego su vida al realizar experimentos con corrientes elétricas. Tenía una vida muy excentrica, y gozaba de una excelente posición social y económica.

Al mismo tiempo, investigaba las propiedades del calor, llegando independientemente a los conceptos de calor latente y calor específico, pero nunca se atrevió a publicar los resultados de sus investigaciones. También descubrió el nitrógeno, describiendo sus propiedades más importantes.

La  mayor contribución  de Enrique  Cavendish a la ciencia fue el descubrimiento de la composición del agua. Debe recordarse que la teoría del flogisto desorientó a los químicos durante algún tiempo, y que él, como muchos de sus contemporáneos, la apoyó.

Primero realizó experimentos sobre la composición del aire, demostrando que era constante. Luego mezcló dos partes de aire inflamable (hidrógeno) con una de aire desflogisticado (oxígeno) en el interior de un globo de cristal, haciendo explotar la mezcla por medio de una chispa eléctrica.

Otros químicos de su tiempo no se habían fijado en el rocío o empañamiento que se produce en las paredes de cristal del globo después de esta explosión. Cavendish comprobó que el peso del globo no había variado. Comprendió que los gases se habían combinado, dando agua. Como no publicó sus investigaciones, se suscitó una controversia, puesto que algunos atribuían el descubrimiento a Jacobo Watt, el inventor de la máquina de vapor.

En conexión con este experimento, descubrió la composición del ácido nítrico. A veces, las gotas de condensación que quedaban en ‘ las paredes del recipiente eran ligeramente acidas, y, al analizarlas, comprobó que tenían ácido nítrico. Explicó este hecho mediante la hipótesis de que el ácido se formaba por combinación del nitrógeno con los otros dos gases. El nitrógeno se encontraba allí como impureza.

Esto pudo demostrarlo añadiendo más nitrógeno, con lo cual se formaba más ácido nítrico. En sus años postreros viajó por toda Inglaterra, tomando nota de las formaciones rocosas y del paisaje. Su último gran experimento fue el descubrimiento de la atracción gravitatoria entre los cuerpos, lo que equivale a pesar la Tierra, como es denominado en algunas oportunidades.

obra cientifica de cavendish

El globo de explosión (reacción) que Cavendish usó se llenaba con los gases y se pesaba de la manera mostrada. Entonces se hacía explotar la mezcla por medio de una chispa eléctrica. Averiguó que el peso no cambiaba y que los gases desaparecían, quedando unas gotas de agua condensada en  las  paredes del  globo.  Se  basó en este experimento   para    explicar   ta    composición    del    agua.

Ampliar Sobre El Peso de la Tierra de Cavendish

Procesos Para Obtener Metales desde Minerales

Es muy raro encontrar metales puros en la corteza terrestre. Casi siempre están combinados con otros elementos como compuestos metálicos. El hierro, por ejemplo, puede combinarse con el oxígeno o con el azufre, para formar óxidos o sulfuros. La cantidad de metales que existen en la corteza terrestre es relativamente pequeña. Si estuvieran esparcidos al azar, no se encontraría nunca una concentración suficiente de ninguno de ellos para emprender una explotación rentable. Sería necesario tratar enormes cantidades de roca para obtener una cantidad muy pequeña de metal.

Por fortuna, una serie de procesos geológicos, a lo largo de la historia de la Tierra, ha concentrado los compuestos metálicos. Cuando una roca contiene tal cantidad de metal que valga la pena extraerlo, se le da el nombre de mineral. Existen tres tipos de roca: ígnea (que procede de materiales fundidos), sedimentaria (formada con fragmentos desmenuzados de una roca anterior) y metamórfica (roca alterada por la temperatura y la presión).

Los tres tipos pueden contener minerales, aunque el metal se haya concentrado en ellos por diversas causas. La concentración de metal necesaria para que una roca se considere como mena o mineral explotable depende del metal de que se trate.

Por ejemplo, una roca que contenga cobre constituye una mena si un 0,7 % de su volumen está compuesto de cobre; en cambio, un porcentaje tan bajo en el caso del aluminio no permite una extracción rentable, pues la concentración de este metal debe ser, por lo menos, de un 30 %. Tales cifras dependen, en gran parte, de la relativa rareza de los metales; pero también, en cierta medida, de la demanda comercial.

Las rocas ígneas se han formado por solidificación de magmas — rocas en estado fundido—. Durante el proceso, ciertos materia’ les se solidifican antes que otros. En el conjunto semifluido, estos minerales pueden irse al fondo y separarse, como una capa, en la fase temprana del proceso. El mineral puede ser rico en un metal determinado. Por ejemplo, el mineral cromita contiene cromo, como indica su nombre.

Al formarse posteriormente los minerales que contienen metal, pueden cristalizar en los huecos que quedan entre los minerales más antiguos, formando así una separación de utilidad para el explorador y el minero. El último magma solidificado (magma residual) puede haberse enriquecido con titanio, hierro u otros metales, que forman depósitos aprovechables.

Los más útiles, entre los depósitos magmáticos, están relacionados con grandes intrusiones de magma básico en el interior de la corteza.   El magma básico, en su estado original, tiene únicamente una pequeña cantidad de sílice y grandes proporciones de ciertos metales: hierro, titanio, cromo.

METALURGIA: El campo de acción que abarca la metalurgia es verdaderamente amplio. Tanto es así que, dentro de esta actividad, existen numerosas especialidades, las cuales, aun dirigidas al mismo fin, presentan métodos y técnicas de distintas características. En principio, la metalurgia puede dividirse en dos ramas: la metalurgia de materiales férreos (hierro y acero, fundamentalmente) y la de materiales no férreos (en la que se incluye el resto de los metales). El hecho de que el hierro y el acero sean considerados aparte es índice de la magnitud e importancia que reviste la industria siderúrgica en el mundo entero.

El hierro es, sin duda, el metal más útil, y, después del aluminio, es también el más abundante, formando un 4 %, aproximadamente, de la corteza terrestre. Con pocas excepciones, tales como el oro, los metales no se presentan en la naturaleza en estado metálico, sino que aparecen formando parte de un mineral, que puede ser un óxido, un sulfuro, u otra combinación química cualquiera del metal en cuestión.

Minerales de Hierro

El mineral ha de ser extraído de la mina y, después, será sometido a un tratamiento adecuado. En el proceso de extracción, el técnico en metalurgia juega un importante papel, relacionado con la elección del método más apropiado para cada mineral.

Cualquiera que sea el procedimiento utilizado en la extracción de un mineral de la mina o yacimiento en donde aparezca, aquél se presenta siempre en bloques de gran tamaño; por lo general, está acompañado de ganga, material terroso de dónde el mineral ha de ser separado. Generalmente, la primera operación que, se efectúa consiste en triturar el material de partida para reducirlo a un tamaño conveniente.

La etapa siguiente es la separación de la ganga, que algunas veces se realiza por el procedimiento de flotación, basado en el hecho de que los distintos minerales se mojan de modo diferente. Por ello, en un baño líquido, bajo las condiciones adecuadas, puede hacerse que el mineral flote, mientras la ganga se va al fondo, o viceversa, siendo posible, de este modo, efectuar su separación.

Es tarea del químico metalúrgico, en este caso, determinar experimentalmente en el laboratorio, valiéndose de pequeñas muestras, las condiciones óptimas de separación, así como las operaciones de control que se cumplirán en el proceso a escala industrial.

La etapa siguiente consiste en la obtención del metal no refinado a partir del mineral, proceso conocido con el nombre de fundición. Los hornos de fundición utilizados con este propósito difieren, en cuanto a su diseño, en relación con el mineral a ser tratado en particular.

Los más conocidos son los altos hornos, utilizados en la separación y obtención del hierro.

En este proceso, corresponde al técnico en metalurgia asegurar que todas las operaciones se lleven a cabo propiamente. Para ello, ha de analizar el mineral de hierro de partida y calculará las cantidades correctas, de coque y piedra caliza, necesarias para que el proceso de reducción se efectúe normalmente. Asimismo, ha de examinar la calidad del hierro bruto obtenido.

El metal no refinado, o bruto, conseguido en el proceso de fundición debe, entonces, ser purificado o refinado, lo cual puede realizarse de distintos modos. En unos casos, el metal se funde de nuevo, haciendo que al mismo tiempo pase una corriente de aire, con objeto de oxidar las impurezas que lo acompañan.

Para refinar el cobre, al metal ción, así como encontrar el medio de recuperar, del barro depositado en el fondo, los productos metálicos rentables. Al terminar el proceso de refinación, se cuenta ya con un metal de relativa pureza. El metal así obtenido puede ser utilizado directamente o fundido de nuevo, junto con otro u otros metales, para formar una aleación. Al producto final hay que darle, entonces, la forma que ha de tener al ser utilizado.

Para ello es necesario volver a fundir el metal, y, una vez líquido, verterlo en los moldes de la forma apropiada. Estas tareas se llevan a cabo en una fundición, y, aquí, el técnico metalúrgico es el responsable del control de dichos procesos, así como del de aleación. También debe ser un experto en el diseño de moldes y capaz de darse cuenta de las posibles fallas que puedan presentar las estructuras metálicas, como, asimismo, rectificarlas.

Cuando al producto final no se le da una forma especial, suele obtenerse bajo el aspecto de barras o lingotes, que han de sufrir tratamientos posteriores, tales como el laminado, forja, o cualquier otro tipo de tratamiento mecánico.
El metal o aleación puede laminarse, ahora, para darle una forma de plancha, o forjarse mediante un martillo mecánico; hilarse, para constituir un alambre, haciéndolo pasar a través de una serie de agujeros de tamaños decrecientes.

Todos estos procesos han de efectuarse del modo más rápido y económico, y las condiciones óptimas serán fijadas por un especialista en metalurgia. Él debe, por ejemplo, calcular hasta qué punto un lingote puede ser laminado sin que sea necesario templar el metal en un horno apropiado, ya que muchos metales se vuelven duros, siendo frágiles a la vez, y se fracturarán si se los trabaja demasiado.

Por otra parte, el proceso de templado consume tiempo y dinero, por lo cual ha de decidirse si su aplicación resulta rentable. Uno de los campos más importantes, dentro de la metalurgia, es el de la investigación, que puede ser de investigación aplicada —que se refiere a problemas directamente relacionados con la industria y con el perfeccionamiento de los productos—, o de investigación básica, que estudia los principios fundamentales del comportamiento de los metales.

Las industrias requieren, con frecuencia, la presencia de especialistas en metalurgia, para resolver cualquiera de los problemas reseñados, que pueden suscitarse en los procesos de producción. También recurren a ellos para realizar trabajos más rutinarios, tales como los de verificación y control de la calidad del producto obtenido.

La mayor parte de los instrumentos y métodos utilizados son, sin embargo, los mismos, cualquiera que sea la naturaleza de la investigación propuesta, y sólo la interpretación de los resultados conseguidos puede, en algunos casos, ser distinta. Un industrial, por ejemplo, puede estar únicamente interesado, en medir la resistencia del metal que produce, con objeto de comprobar si se halla dentro de los límites que le son exigidos. Mediante la investigación básica, es posible detectar los cambios que se produzcan en dicha propiedad, los cuales pueden indicar que ha tenido lugar alguna modificación en la estructura íntima del metal, hecho imperceptible a simple vista, pero que puede resultar de extraordinaria importancia en el futuro comportamiento de aquél.

Uno de los instrumentos más importantes empleados por el técnico metalúrgico es el microscopio, especialmente el electrónico, que, debido a sus 100.000, o más, aumentos, es de gran utilidad para el estudio de las estructuras de los metales. La investigación de la corrosión y el desarrollo de aleaciones que sean resistentes a ella es otro importante campo de estudio, que se halla dentro del dominio de la metalurgia. La mayoría de los metales resultan atacados y corroídos bajo  ciertas  condiciones:   el  agua  del  mar ataca el metal de las calderas y tuberías, y la humedad de la tierra corroe los cables eléctricos subterráneos.

Los daños ocasionados por la corrosión cuestan muchos millones de dólares al año. En el- futuro, los trabajos de investigación en estos temas serán aún más interesantes, dado que, tanto en el campo espacial como en el nuclear, se necesitan materiales de especiales características, que resistan condiciones extraordinarias de presión, temperatura, radiación, etc.

Fuente Consultada
Revista TECNIRAMA (CODEX) Enciclopedia de la Ciencia y Tecnologia N°96

El Titanio Características Propiedades y Usos Aplicaciones

EL TITANIO:

Aunque el metal titanio ocupa el cuarto lugar entre los elementos más abundantes en la corteza terrestre, no suscitó mucho interés hasta que la industria aeronáutica comenzó a utilizarlo. Cuando fue descubierto, hace unos 150 años, era un elemento problemático, que defraudó y confundió a los metalúrgicos, quienes se esforzaron para extraerlo económicamente y hacer algo útil con él.

De hecho, era tan difícil separar el metal de sus minerales que hasta 1949 no se encontró un método económico para hacerlo. Existen dos principales minerales de titanio: el rutilo, una forma impura de bióxido de titanio, y la ümenita (ferrotitanato), mezcla de óxidos de titanio y hierro. Mientras que del rutilo se obtiene todo el titanio metálico, los compuestos se fabrican de la ilmenita.

El método para la obtención del titanio metálico expuesto por el estadounidense W. J. Kroll, en el año 1949, consiste en convertir el titanio del mineral en tetracloruro de titanio, Cl4 Ti. A continuación, se reduce éste a metal, haciéndolo reaccionar con magnesio. El metal así producido tiene el aspecto de coque esponjoso.

titanio

El procedimiento Kroll todavía se usa mucho en América y Japón, pero un método químico distinto, que exige el empleo de grandes cantidades de sodio, se practica actualmente en Inglaterra. Mediante él se obtiene el titanio en forma de gránulos grises y pesados. Tanto en su forma esponjosa como granular, el metal es poco útil; para utilizarlo en sus distintas aplicaciones es necesario consolidarlo y extraerle las burbujas de aire.

Desgraciadamente, ello no se-consigue fundiéndolo e introduciéndolo en un molde. El titanio funde alrededor de los 1.700°C, 200° por encima del punto de fusión del acero. A tales temperaturas, el titanio reacciona con el recubrimiento del horno y absorbe gases del aire, que inutilizan su estructura.

A veces, los gránulos de titanio metálico crudo se mezclan con otros metales en polvo para hacer aleaciones y, después de homogeneizados completamente, se introducen en una prensa de 2.500 toneladas, para convertirlos en bloques, que se sueldan, y formar un electrodo de unos 4 metros de longitud y casi una tonelada de peso. Este electrodo se suspende de la parte superior de un horno y en la base se sitúa un crisol refrigerado por agua.

Se extrae el aire y se hace saltar un arco eléctrico entre el electrodo y una pequeña cantidad de polvo de titanio, que se dispone en el crisol. El electrodo se funde lentamente, para formar un lingote. Se repite la fusión, controlando todo el proceso a control remoto. Las grietas se descubren con ondas sonoras de alta frecuencia (ultrasonidos). Se trata de una técnica de ecos. Las grietas internas del metal actúan como espejos, reflejando las ondas y evitando que lo atraviesen. Cuando la señal no llega al otro lado de la pieza significa que hay una grieta.

INGENIERÍA AERONÁUTICA

La industria aeronáutica necesita aleaciones ligeras, que puedan soportar las tensiones producidas en los vuelos a grandes velocidades. El titanio proporciona la solución. Su densidad es sólo el 60 % de la del acero, y, por otra parte, conserva su resistencia a temperaturas superiores a, las que se consideran de seguridad para las aleaciones de aluminio y otras ligeras.

Esta industria utiliza el titanio para los alabes de las turbinas, y para recubrir los escapes, las conducciones de aire caliente y los bordes de las alas, expuestos a la erosión del aire. Debido a su alta resistencia a la corrosión por ácidos, etc., este metal se usa también en la fabricación de recipientes y tubos anticorrosivos para la industria química.

En mucha menor escala, aunque por la misma razón, el titanio está sustituyendo gradualmente al acero inoxidable en la fabricación de instrumentos quirúrgicos, tales como los implementos, pinzas, clavos y tornillos usados para fijar las partes rotas de un hueso.

PROTECCIÓN DE LAS RADIACIONES

Las centrales nucleares usan titanio en muchos de sus componentes internos, porque este metal y sus aleaciones tienen la capacidad de impedir el paso de la radiación. El metal irradiado pierde rápidamente toda la radiactividad, permitiendo que las piezas sean fácilmente manejables, lo que simplifica el mantenimiento del reactor.

uso del titanio en la aeronautica

Por su dureza, resistencia a la corrosión y ligera de peso, el Titanio se usa en la industria aeronáutica. En las paredes internas de los motores  a reacción se utiliza titanio puro. También se usa en impulsores, turbocarburadores y blisk de titanio y aluminio

PIGMENTO BLANCO

Muchas pinturas y tintas blancas deben su color al pigmento bióxido de titanio, O2Ti, único compuesto de titanio de alguna importancia real. Los pisos plásticos y los productos industrializados con cauchos blancos llevan incorporado este compuesto. Se rocía sobre las telas, para evitar el brillo innecesario, y se utiliza también para tratar los esmaltes y las tejas vidriadas, regulando color, opacidad y brillo.

La industria del papel utiliza el óxido de titanio de dos modos distintos. Puede incorporarse durante la fabricación —de modo que sus partículas queden completamente integradas en el cuerpo de la lámina, para reflejar la luz y que el papel aparezca blanco— o se puede extender sobre su superficie. Es frecuente cubrir los papeles gruesos con óxido1, pero en los que se usan para expedir cartas por avión, que deben ser ligeros y no trasparentes, el óxido se mezcla con la pulpa durante la fabricación. El “papel encerado” para envolver es blanco porque se le añade óxido de titanio.

La extracción del titanio metálico y la fabricación de su pigmento son dos procesos completamente independientes. El pigmento no se hace con el metal, pues su punto de partida es también el mineral ilmenita, del que se obtiene triturándolo y disolviendo el titanio con ácido sulfúrico concentrado. Cuando la solución se enfría después de hervir, el hierro, que también fue disuelto, cristaliza y puede separarse. Concentrando aún más el líquido, nos queda el titanio en forma de cristales de sulfato de titanio hidratado.

Estos cristales se filtran y lavan antes de introducirlos en un horno rotatorio, en el que se extraen los gases sulfurosos, quedando partículas de bióxido de titanio impuro. Después de purificadas y reducidas al tamaño apropiado, están listas para ser mezcladas con la pulpa de papel o con la pintura.

EL TITANIO COMO METAL DE TRANSICIÓN

A medida que recorremos la tabla periódica de izquierda a derecha, cada elemento aumenta en un electrón el número de los que tiene en la órbita externa, para llegar a una capa estable con ocho electrones. Pero, a veces, se añade algún electrón a una de las órbitas internas, que pueden tener hasta 18 y 32 electrones. El titanio es un metal que pertenece al llamado “grupo de transición”. Todos estos metales tienen dos electrones en la órbita externa, aunque en la interna inmediata pueden tener entre 9 y 18 electrones.

Fuente Consultada: Revista TECNIRAMA N°12 Enciclopedia de la Ciencia y la Tecnología

 

Carrera Armamentista y Espacial en la Guerra Fría

GUERRA FRÍA: Se designan un período del siglo pasado que abarcó dos generaciones y se refieren al inestable equilibrio internacional signado por la inevitable hostilidad entre dos sistemas de organización social fundamentalmente antagónicos: el del capitalismo, basado en la propiedad privada de los medios de producción y en el que el poder es naturalmente ejercido por quienes son sus dueños, y el socialismo, basado en la propiedad colectiva de esos mismos medios y en e! que el poder lógicamente corresponde —o debe corresponder, si se quiere— a la colectividad.

En aquella etapa de la historia en donde se enfrentaban dos concepciones ideológicas por el control del planeta, era necesario para los EE.UU. terminar con los “espías”, con los “traidores”, con la “subversión interna”. Y había que hacer frente con más decisión a la amenaza internacional que el comunismo representaba. ¿Cómo? Manteniendo siempre una abrumadora superioridad militar sobre el “adversario”, sobre el “enemigo”.

Se habían registrado ya varias crisis que habían puesto al mundo al borde de una nueva conflagración generalizada. Se iban a registrar otras, así como varias “guerras locales”, odioso nombre que se da a trágicos conflictos que hacen el efecto de válvulas de seguridad por donde escapan los excesos de presión que genera la “guerra fría”. Lo único que parecía valer era la violencia.

guerra fria

¡Armas, armas! Nunca había suficientes. La carrera de los armamentos se combinó con la carrera nuclear y la carrera espacial.

¡Armas, armas!: Fría o caliente, la guerra, esa “prosecución de la política exterior por otros medios” según Clausewitz, exige armas. A ser posible, armas más abundantes y mejores que las del adversario. Pronto, pues, comenzó una frenética carrera armamentista. Como comenzó pronto también el clamor de la opinión pública mundial en favor del desarme. Paralelamente al enfrentamiento entre los dos militares, ha habido un constante enfrentamiento entre las “fuerzas de la paz” y las “fuerzas de la guerra”. El desarme se convirtió en tema permanente de debate en las Naciones Unidas y en sucesivas conferencias internacionales.

Apenas declarada oficialmente la “guerra fría”, se legó para justificar los créditos que con destino a nuevas armas votaba el Congreso norteamericano que, mientras Estados Unidos había procedido a una vasta desmovilización de sus ejércitos, la Unión Soviética mantenía los suyos con sus efectivos casi completos y en una especie de estado de alerta. Surgieron, sin embargo, autorizadas voces que desbarataron este argumento. Como las de los cuáqueros, esos consecuentes y a veces tan “inoportunos” defensores de la paz.

“Otra inexactitud a la que se presta mucho crédito —dijeron en 1951, en su declaración “Steps to Peace”— es que Estados Unidos se desarmó unilateralmente después de la Segunda Guerra Mundial, debilitándose y abriendo así el camino a la expansión soviética.

La falsedad en esto hay que buscarla en sus sistema de referencia, porque, si bien es verdad que hemos desmovilizado nuestro ejército en mucha mayor medida que los rusos el suyo, el poderío militar de Estados Unidos nunca ha sido medido por el tamaño de su ejército permanente.

Por razones geográficas, nos apoyamos principalmente en el poder naval y aéreo, mientras que la Unión Soviética es primordialmente una potencia terrestre. Si incluyéramos todas las categorías de armas, como debe hacerse en cualquier análisis objetivo de la fuerza militar, la teoría del desarme unilateral de Estados Unidos se derrumbaría.

En los años transcurridos desde la guerra, nuestra producción de armas atómicas ha continuado a un ritmo cada vez más vivo y ha sido acompañada por una vasta red de bases aéreas y de bombarderos destinados al lanzamiento de tales armas. Nuestra armada, que es con gran diferencia la mayor del mundo, ha sido entretanto mantenida sin disminución alguna”. Convertido por la “doctrina Truman” en guardián del “mundo libre”, Estados Unidos se mostró decidido desde el principio a mantener una gran delantera en la carrera de los armamentos. El Congreso votaba créditos por miles de millones de dólares para nuevas armas, con especial dedicación a las atómicas y a los medios de lanzarlas contra los objetivos. Pero fue también una carrera que causó muchos sinsabores y decepciones al guardián del “mundo libre”.

Ya fue un hecho muy serio que los soviéticos pusieran fin en 1949 al monopolio atómico norteamericano. Se había supuesto que no lograrían hacerlo hasta 1952 ó 1953. Truman se apresuró a anunciar que Estados Unidos preparaba una bomba de hidrógeno, basada en la fusión de los átomos, no en su fisión, e infinitamente más poderosa que la bomba atómica.

Y, en efecto, el 1? de noviembre de 1952, el mundo entero presenció el aterrador espectáculo de la primera explosión megatónica, preparada con una movilización imponente en el apartado atolón de Eníwetok, en el Pacífico. Pero ¿quién hubiera podido imaginarse que los soviéticos harían un
ensayo parecido el 12 de agosto de 1953, es decir, sólo poco más de hueve meses después? Era indudable que avanzaban por el mismo camino a paso de carga. Siguió la carrera. Más ensayos. Bombas de creciente poder megatónico. Proyectiles balísticos intercontinentales, capaces de llevar estas bombas a cualquier lugar del planeta. ¿Quién asustaba más a quien? Aquel horror tenía algo de juego de niños.

Se procuraba tranquilizar al “mundo libre” con estadísticas: la superioridad nuclear norteamericana era abrumadora. Por su parte, puesto al frente del Kremlin, Nikita Krushchev, con cierta jocunda afición a la jactancia, decía que la Unión Soviética poseía una bomba tan poderosa que no se atrevía a ensayarla y que una conflagración nuclear significaría de modo inevitable el fin del capitalismo en el mundo. El ambiente se contaminaba con la radioactividad.

Y para que las crecientes protestas no frenaran la alocada carrera, llegó a hablarse de bombas nucleares “humanitarias”, término que suponía tan insensato sarcasmo que pronto fue cambiado por el de “limpias”, tampoco muy acertado. Hasta que el 4 de octubre de 1957 el mundo quedó pasmado al escuchar el bip, bip, bipdel primer Sputnik y ver en la noche el paso del primer satélite artificial de la Tierra.

Era el comienzo de la era espacial. Y también la señal de que Moscú se había adelantado en algunos aspectos de la carrera armamentista. Porque en seguida se advirtió el aspecto militar de la proeza científica. Un satélite artificial era “más” que un proyectil balístico intercontinental. Había que alterar algunos rumbos en la desesperada carrera. Había que cambiar algunos conceptos estratégicos. Y había que votar nuevos créditos para nuevas armas. Se habló menos de una “guerra preventiva”. Se habló más de recaudos contra un “ataque por sorpresa”, de sistemas de alarma, de una vigencia permanente, de la necesidad de mantener un poder desvastador de represalia, de la fuerza “disuasiva” que suponía un enorme arsenal nuclear permanentemente a punto. Se estaba ya en el “equilibrio del terror”. En él seguimos viviendo.

¿Eran únicamente razones militares las qué abonaban el mantenimiento de la carrera armamentista a pesar de los clamores de la opinión pública mundial? No se acertaba a comprender por qué avanzaba tan poco en las conversaciones sobre desarme que, en atención a estos clamores, se mantenían en Ginebra. Año tras año, la Asamblea General de las Naciones Unidas recomendaba que se diera un mayor impulso a estas conversaciones. Se decía que Moscú, al proclamarse campeón de la paz y el desarme y negarse al mismo tiempo a determinadas inspecciones, a las que tachaba de “espionaje encubierto”, no hacía más que utilizar a Ginebra como una “tribuna de propaganda”.

En todo caso, era una propaganda muy eficaz. Indujo a Adlai Stevenson, el ex candidato demócrata a la presidencia de Estados Unidos, a expresarse así en la Universidad de Chicago el 12 de mayo de 1960: “Resulta a la vez triste e irónico que los comunistas hayan logrado en tan gran medida acaparar y explotar el clamor por la paz, que es sin duda el grito más fuerte y apasionado en este mundo cansado de guerras y asustado. . . Hemos subrayado lo militar y, durante años, ha parecido que no hemos querido negociar con los rusos, fuera para probar sus intenciones o para demostrar la farsa que representaban.

Entretanto, ellos han suspendido unilateralmente los ensayos nucleares; han reducido unilateralmente su ejército; han propuesto conversaciones en la cumbre con objeto de reducir las tensiones y los peligros de guerra, han propuesto el desarme total. Sean cuales fueren sus móviles, cínicos o sinceros, han tomado constantemente la iniciativa. Han respondido al clamor por la paz, mientras que nosotros hemos puesto reparos y vacilado y luego, al final, cedido.”

Se “cedió” únicamente de modo muy relativo. Porque, aunque se llegó a un acuerdo para suspender los ensayos nucleares en la atmósfera o la superficie de la Tierra —un acuerdo impuesto por Ja creciente contaminación radioactiva de ambiente—, continuó la carrera armamentista, ya combinada con las carreras nuclear y espacial.

Apenas transcurría un año sin que, llegado el momento en que se discutían en el Congreso norteamericano los créditos militares, no se difundieran noticias alarmistas capaces de inducir a la pronta aprobación de tales créditos. Los “gastos de defensa” representaron así cada año una proporción mayor del presupuesto federal de Estados Unidos.

Hasta que la economía norteamericana se convirtió, ya de modo interrumpido, en una típica “economía de guerra”.

La Guerra Fría Crisis de los Misiles Historia Causas Consecuencias

Guerra Fría:Antecedentes, Causas y Acontecimientos

GUERRA FRÍA: ¿Fue Walter Lippman, como se afirma, el primero que utilizó la expresión “guerra fría” para caracterizar esa zona intermedia entre la paz y la guerra —entre una paz perturbada por frecuentes conflictos bélicos “locales” y una guerra generalizada sólo impedida por el terror que inspiraba el holocausto nuclear— que ha mantenido a la humanidad en vilo desde la terminación de la Segunda Guerra Mundial y el aplastamiento de la regresión fascista?

Designan un período del siglo pasado que abarcó dos generaciones y se refieren al inestable equilibrio internacional signado por la inevitable hostilidad entre dos sistemas de organización social fundamentalmente antagónicos: el del capitalismo, basado en la propiedad privada de los medios de producción y en el que el poder es naturalmente ejercido por quienes son sus dueños, y el socialismo, basado en la propiedad colectiva de esos mismos medios y en e! que el poder lógicamente corresponde —o debe corresponder, si se quiere— a la colectividad.

Antecedentes, causas y consecuencias de la Guerra Fría: La segunda guerra mundial dejó importantes consecuencias en los países que habían participado en Millones de muertos y desaparecidos, de los cuales muchos eran civiles; gente desplazada, en su gran mayoría de Europa del este, al oeste; población hambrienta y con frío; destrucción de ciudades, algunas reducidas a escombros.

Nada quedó sin ser afectado: ni puentes, ni ferrocarriles, ni caminos, ni transportes.  La mano de obra se resintió y grandes extensiones de tierras se perdieron para el cultivo.  La actividad industrial se atrasó, faltaban materias primas, herramientas apropiadas, tecnología moderna y energía.

Ante esta realidad, Europa perdió su papel decisivo en la política internacional, y surgió entonces, un nuevo orden mundial representado por la hegemonía de los Estados Unidos y de la Unión Soviética, alrededor de los cuales, y formando dos bloques enfrentados, el bloque occidental y el bloque oriental, se alinearon los restantes países del mundo.  La tensión entre ellos, dio lugar a la llamada “Guerra fría” que dominó por completo las relaciones internacionales en la última mitad del siglo XX.

Guerra Fría: La formación de los bloques

Luego de la guerra, tanto los Estados Unidos, como la Unión Soviética, no supieron ponerse de acuerdo acerca de la reordenación del mundo, pues representaban dos formas de organización política, económica y social muy diferentes.

Para los Estados Unidos, los gobiernos debían garantizar el ejercicio de las libertades individuales, la existencia de organizaciones políticas y sindicales y la libertad ideológica.  Para la Unión Soviética, en cambio, se debía garantizar primeramente la igualdad de oportunidades y la justicia social.  Luego sí, se tendrían en cuenta las libertades individuales.

Estas diferencias, al parecer irreconciliables, hicieron que generaciones enteras viviesen bajo la amenaza de una nueva guerra, ahora con armas nucleares, que arrasaría todo el planeta.

La URSS dominaba, con el apoyo del Ejército Rojo y de partidos comunistas que eliminaron cualquier opositor, Polonia, Rumania, Hungría, Checoslovaquia, Bulgaria, Alemania Oriental, Albania y Yugoslavia.  Los EE.UU., controlaron el resto del mundo capitalista, el hemisferio occidental y los océanos, sin intervenir en la zona soviética.  Los conflictos, ahora se producirían en las regiones pertenecientes a los antiguos imperios coloniales, cuyo fin, ya en 1945 resultaba inminente, sin que se conociese con claridad que orientación política iban a adoptar los nuevos estados postcoloniales.

En Europa, la línea de separación de los bloques, se había trazado según los acuerdos de 1943-1945 llevados adelante por RooseveltChurchill y Stalin.  Alemania quedó dividida en Oriental y Occidental, y lo mismo sucedió con su capital, Berlín.

El secretario de Estado de los Estados Unidos, George Marshall, produjo un programa de ayuda para la reconstrucción de Europa.  El Plan Marshall, otorgaba generosas líneas de crédito y donaciones a los Estados Europeos, a cambio de un cierto control por parte de los Estados Unidos.  Esto permitió el crecimiento económico de casi dieciséis países que se repartieron aproximadamente trece mil millones de dólares.  Al mismo tiempo, EE.UU. inició una dura crítica contra el comunismo.

El espionaje adquirió especial importancia, pero los servicios secretos de uno u otro bando, la KGB y la CIA, a pesar de involucrarse en operaciones complicadas y en asesinatos encubiertos, no tuvieron, salvo algunos casos aislados en países del tercer mundo, un poder político real.  Pero alimentaron la difusión de novelas de espionaje con audaces detectives como protagonistas, de los cuales, James Bond, será su máximo exponente.

La profunda división entre el bloque oriental y occidental, se popularizó con el nombre de “telón de acero” (cortina de hierro).  De un lado, los Estados Unidos y sus aliados en un acuerdo políticomilitar, la OTAN.  Del otro lado, la URSS y sus aliados reunidos en un comité de información y defensa de sus intereses llamado COMINFORM, que dio lugar, posteriormente, a la creación de un mercado económico socialista, el COMECON, y de una alianza militar, EL PACTO DE VARSOVIA.

Cuando ambos bloques contaron con un extenso arsenal atómico, la guerra entre ellos, a pesar de ser utilizada como amenaza, hubiese resultado suicida.

Las guerras de la guerra fría

Sin embargo, tanto los Estados Unidos, como la Unión Soviética, se involucraron en distintas guerras, especialmente en aquellas que fueron llevadas adelante por países (ex colonias), surgidos luego de lograda su Independencia.

La guerra de Corea:

Antiguamente japonés este país habia sido dividido, al fin de la guerra, en dos zonas de ocupación ubicadas a ambos lados del paralelo 38 N, al norte, la soviética, al sur la norteamericana. Cuando retiraron las tropas, en lugar de producirse la unificación de ambas regiones, la división de Corea de consolidó. Cuando el norte quiso avanzar por la fuerza hacia el sur, el presidente de los EE.UU, Truman, decidió intervenir y envió tropas al mando del general Mc. Arthur, las que protagonizaron un gran enfrentamiento armado que se resolvió en 1953 con la firma del armisticio de Panmunjon, firmado en la Pagoda de la Paz, restableciendo las fronteras entre las dos coreas iniciales.

La guerra de lndochina:

La indochina francesa, integrada por Vietnam, Laos y Camboya, se dividió, luego de la Segunda Guerra mundial.  En el norte se formó la República Democrática de Vietnam, con capital en Hanoi, organizada por el Viet minh (fuerzas comunistas), y en el sur se instaló un protectorado francés que no reconoció la independencia de Vietnam del Norte.  La URSS y China, apoyaron al norte comunista, y los EE.UU. a los franceses.  Francia finalmente aceptó la división de Vietnam en dos estados y en el sur se formó una República que se alineó con Norteamérica con el propósito de lograr la ayuda necesaria para terminaron Vietnam del norte.
De esta manera se inició la Guerra de Vietnam, que duró casi veinte años y que terminó con la retirada de las tropas estadounidenses, que no pudieron derrotar a los comunistas en una larga y cruel guerra de guerrillas.  En 1975, las dos zonas se unificaron en un solo país y quedó conformada la República Socialista de Vietnam.

Los conflictos árabe israelíes:
Luego de haber padecido los horrores del Holocausto, los judíos se plantearon la necesidad deformar su propio estado en las tierras de su antiguo país, Palestina, que estaba bajo dominio británico.  Inglaterra abandonó los territorios y la ONU (Naciones Unidas), los dividió en dos partes: una bajo el gobierno de los árabes, y otra bajo el dominio de los judíos.  Es el nacimiento del Estado de Israel, que fijó su capital en Tel Aviv y tuvo a David Ben Gurión como primer presidente.

Pero los países árabes en general, y el pueblo palestino en particular no reconocieron al nuevo estado judío y se produjo un enfrentamiento armado que terminó con la división de la ciudad de Jerusalén para judíos y palestinos.  A pesar de haber sido derrotados varias veces, los árabes no aceptaron la situación y comenzaron a organizarse en diferentes asociaciones para resistir, de las cuales la más importante fue la OLP (Organización para la liberación de Palestina), dirigida por Yasser Arafat.  Los Estados Unidos apoyaron a Israel y la URSS, al mundo árabe.

En 1967 Israel, en una guerra relámpago, extendió sus territorios hacia Belén, Jerusalén, Jericó, el Sinaí hasta Suez, y los altos del Golán.  Esta guerra se denominó de “los seis días” y terminó con la victoria de Israel.  Pero, los árabes decidieron atacar nuevamente y el día del Yom Kippur (fiesta religiosa), del año 1973, avanzaron sobre Israel, pero fueron nuevamente vencidos gracias a la intervención de los EE.UU., que ayudaron a los judíos a obtener una nueva victoria.

Los países árabes, ante esta realidad, decidieron llevar adelante una guerra económica y embargaron el petróleo de los países que ayudaron a Israel, al mismo tiempo que reducían las ventas con el propósito de lograr un aumento de los precios.  Esto desequilibró la economía internacional y los EE.UU. y la URSS, acordaron, a través de la ON U, un “alto el fuego”.

Guerra Fría: La crisis de los misiles en Cuba:

Cuba, que tenía un gobierno dictatorial bajo el auspicio de los EE.UU., organizó, a partir de 1956, un movimiento revolucionario nacionalista dirigido por Fidel Castro, que se logró consolidar en el poder en 1959.  Una vez allí, el nuevo gobierno nacionalizó los recursos económicos de la isla, situación que originó el boicot económico de los EE.UU., quienes interrumpieron totalmente los intercambios y brindaron asilo político y ayuda económica a los disconformes con el nuevo régimen.  La URSS, por el contrario, apoyó a Cuba y en 1960 se establecieron relaciones militares y económicas.

Pero en 1961, se produjo por parte de un grupo de cubanos exiliados, un intento de desembarco en Bahía de los Cochinos, apoyado por la CIA.  Eso motivó que la URSS instalase misiles nucleares en la isla, apuntando a los Estados Unidos.  El presidente Kennedy, ordenó el bloqueo de la isla para impedir la llegada de los barcos soviéticos con las piezas nucleares.  Luego de varios días de tensión, Kruschev ordenó el regreso de los barcos y Kennedy, levantó el bloqueo.  Cuba se convirtió en un país comunista aliado a la URSS y enfrentado a los EE.UU.

Consecuencias de la guerra fría

El enfrentamiento militar y la carrera armamentista, no fueron los aspectos más importantes de la guerra fría, pero sí los más visibles, pues dieron origen a importantes movimientos pacifistas internacionales.  Más significativa fue la política de los dos bloques enfrentados que dividió al mundo en dos bandos: procomunistas y anticomunistas, haciéndole olvidar antiguos problemas, Pero sobre todo, la guerra fría creó la “Comunidad Europea”, que con el tiempo se mostró lo suficientemente capaz para ocupar un lugar entre los grandes

UN PODER DESTRUCTIVO SIN PRECEDENTES

Desde Hiroshima (agosto de 1945) no ha dejado de multiplicarse el poder destructivo de las armas nucleares. A la primera generación, bombas A (atómicas), siguió un nuevo tipo, bombas H (termonucleares), cuyo poder es ilimitado. Si la bomba arrojada sobre Hiroshima equivalía a la carga de 8.000 bombarderos, una sola bomba H supera en potencial destructivo a todas las bombas arrojadas sobre Alemania durante la Segunda Guerra Mundial. Estos ingenios de muerte multiplican su onda explosiva con efectos térmicos y radioactivos; especialmente temibles son las radiaciones, en cuanto que pueden sembrar la muerte a miles de kilómetros del objetivo. En la panoplia de tipos de armas nucleares se han conseguido variantes, como la bomba de neutrones, que puede eliminar la vida del área elegida sin producir destrozos materiales.

La revolución nuclear ha ido acompañada de la revolución balística. Como vectores de las armas atómicas se pasó de aviones subsónicos a aviones supersónicos. Desde 1957 los misiles han tomado el relevo, con un espectro que comprende desde los de alcance medio, que impactan en un blanco a 2.500 km de distancia, hasta los intercontinentales, con un alcance preciso a 14.500 km, y que pueden ser lanzados desde plataformas móviles, aviones o submarinos nucleares. Con los misiles han desaparecido de la superficie del planeta los santuarios seguros.

Finalmente, la revolución balística se ha completado con la modernización tecnológica. Instrumentos electrónicos permiten una precisión casi de metros en el lugar del impacto, precisión conseguida por los SS2O soviéticos y los Pershing II y Cruceros norteamericanos. En esta última generación los misiles son de cabeza múltiple, lo que quiere decir que portan varias cabezas nucleares, con las cuales se ataca diversos blancos con un solo disparo.

Los técnicos han empezado a calcular cuántas veces podría ser destruido el planeta si se empleara todo el arsenal atómico acumulado. Y no parece que sea un consuelo el que tras la reducción de ese arsenal, conseguido en arduas conversaciones, la Tierra puede ser destruida un menor número de veces.  

Guerra Fría: EL CRECIMIENTO DEL CLUB ATÓMICO

En 1945 Estados Unidos poseía el monopolio del arma atómica, pero perdió parte de la ventaja cuando en 1949 la URSS experimentó su primera bomba en Siberia. A partir de 1950, Estados Unidos y la URSS se concentraron en la producción de la bomba H, aunque el primero mantenía ventaja por su sistema de bases en el extranjero, por la miniaturización de los ‘mecanismos y, sobre todo, por la fabricación de los submarinos Polaris,imposibles de detectar por los aparatos de radar para prevenir el ataque.

UN ARSENAL COSTOSO

Sin embargo, a finales de la década de los 50, la URSS cobró ventaja en la carrera del espacio, cuando puso en órbita el primer satélite (Sputnik) y el primer astronauta (Yuri Gagarin), conquistas científicas que tenían una inmediata aplicación militar.

Pero en ese momento ya habían aparecido nuevos países en el club atómico. En 1952, Gran Bretaña experimentó su primera bomba atómica, y en 1960 lo consiguió Francia. Cuatro años después, China realizaba las pruebas y en seguida acumulaba un nutrido arsenal. Sucesivamente, Israel, India y África del Sur, y probablemente algún otro país, se dotaron del correspondiente arsenal atómico. De esta forma, las posibilidades de un enfrentamiento de efectos mundiales se multiplicaron.

No sólo las armas atómicas, sino todos los instrumentos bélicos de las últimas generaciones, tienen un coste que ha llegado a ser insoportable. Con el dinero de un avión “invisible” (no detectable por el radar) o un submarino atómico se podrían construir centenares de hospitales o miles de escuelas. Y aunque en este empeño se concentraron primero los supergrandes, todos los países, incluso los más pobres, invierten cada vez más en armas.

Esta situación agobiante suscitó conversaciones y acuerdos parciales; si el desarme parecía una meta imposible, al menos se intentaría la no diseminación del armamento nuclear. En 1968, sesenta y dos países firma. ron en Ginebra el Tratado de No Proliferación Nuclear, que chinos y franceses se negaron a suscribir.

En 1950, el gasto militar mundial se cifraba en 100.000 millones de dólares, en 1980 en 300.000 millones, en 1982 se había elevado bruscamente a 500.000 y en 1985 alcanzaba 870.000 millones. Las superpotencias no podían soportarlo. De hecho en el hundimiento de la URSS desempeñó un papel el intento ruinoso de replicar al proyecto Reagan de “guerra de las galaxias”. Y para el Tercer Mundo supuso una aberración histórica invertir en armamento los recursos que debiera haber destinado al desarrollo.

Guerra Fría:  CONVERSACIONES DE DESARME

Al año siguiente las dos superpotencias iniciaron conversaciones para la limitación de armas estratégicas (SALT), fijando un techo para el número e instalación de proyectiles balísticos. Así se llegó al acuerdo SALT 1 (1972), que establecía la “paridad nuclear”. Sería el primer paso para nuevas reducciones, incluidas en el acuerdo SALT II, que no entró en vigor al faltar el refrendo parlamentario en los dos grandes.

En conjunto la Guerra Fría dejó dos efectos indeseados. En primer lugar, una inversión disparatada en armamento. En segundo lugar, una imagen casi diabólica del adversario, como resumió el presidente norteamericano Reagan cuando calificó a la Unión Soviética de “imperio del mal”.

El fin de la Guerra Fría: A fines de 1989 -el año en que se celebró el bicentenario de la Revolución Francesa- los televisores de todo el mundo mostraron cómo una multitud de alemanes orientales se dedicaba a demoler el Muro de Berlín. El Muro simbolizaba la división de Alemania -y del mundo- en dos mitades, que representaban el orden capitalista y el orden comunista.

El proceso que condujo a la caída del Muro -y a sucesivos cambios- fue iniciado a mediados de la década de 1980 por el secretario general del Partido Comunista de la Unión Soviética, Mijaíl Corbachov. El propósito de Gorbachov era la reforma del sistema soviético, que condensaba en dos términos: perestroika -que aludía a la reestructuración económica- y glasnost -que remitía a la transparencia y a la apertura política-.

Este proceso suponía, además, una progresiva eliminación de los conflictos estratégico-militares con el bloque occidental, es decir, la terminación programada de la Guerra Fría. Esta tendencia de desmilitarización se puso de manifiesto con los acuerdos para el desarme celebrados con los Estados Unidos.

La reforma “desde arriba” del sistema soviético no tuvo el desarrollo imaginado por sus iniciadores. En pocos años, el régimen comunista se desmoronó, la Unión Soviética se desmembró y prácticamente desapareció como potencia mundial, encerrada en los problemas provocados por la transición de la economía centralmente planificada y el sistema de partido único, a la economía de mercado y la democracia representativa.

Las consecuencias del fin de la Guerra Fría todavía no pueden ser apreciadas en toda su magnitud. Sin embargo, hay cambios profundos y perceptibles que pueden destacarse: la suspensión de la amenaza de una guerra atómica entre las potencias y la reconversión de la industria bélica; la alteración de los equilibrios políticos y militares en las zonas calientes de la Guerra Fría -la Guerra del Golfo y el proceso de paz entre israelíes y palestinos se relacionan con este cambio-; la pérdida de atractivo del modelo comunista frente al capitalismo liberal; el surgimiento de movimientos nacionalistas en los países de Europa del Este y en la ex Unión Soviética; el crecimiento del integrismo islámico, y la configuración de un nuevo esquema de poder internacional marcado por un relativo declive del poderío de los Estados Unidos y los ascensos de Europa y, sobre todo, del Japón.

Kennedy ante la crisis de los misiles
Este gobierno, tal y como os prometió, ha mantenido la más estrecha vigilancia del desarrollo del poderío militar soviético en la isla de Cuba! Durante la pasada semana, se estableció una inconfundible y evidente prueba del hecho de que se está levantando ahora una serie de instalaciones de lanzamiento de proyectiles dirigidos a esa aprisionada isla. El propósito de esas bases no puede ser otro que el de establecer unas instalaciones capaces de llevar a cabo ataques nucleares contra el hemisferio occidental (…)

Las características de estas nuevas instalaciones de lanzamiento de proyectiles dirigidos, indica la existencia de dos tipos de instalaciones. Varias de ellas incluyen proyectiles dirigidos de alcance intermedio, capaces de transportar cargas nucleares hasta una distancia de 100 millas náuticas. Cada uno de esos proyectiles dirigidos es capaz de alcanzar Washington, alcanzando el Canal de Panamá, Cabo Cañaveral, México (capital) o cualquier otra ciudad del sudeste de Estados Unidos, América Central o zona del Caribe (…).

  1. Por lo tanto actuando en defensa de nuestra propia seguridad y de todo el hemisferio occidental, y con arreglo a la autoridad que me concede la Constitución, respaldado por el Congreso, he dispuesto que sean tomadas inmediatamente las siguientes medidas: Para contener toda esta ofensiva, acaba de ser iniciada una estricta cuarentena de todo el equipo militar ofensivo que es embarcado para Cuba (…).
  2. He mandado una ordenada e incrementada vigilancia en Cuba y de sus construcciones militares (…) He ordenado a las Fuerzas Armadas que estén preparadas para cualquier eventualidad y creo que, en interés tanto del pueblo cubano como de los técnicos soviéticos de estos lugares, debe reconocerse el peligro que encierra esta amenaza.

3.La política de esta nación será considerar cualquier lanzamiento de un proyectil nuclear desde Cuba contra cualquier nación del hemisferio occidental, como un ataque de la Unión Soviética contra los Estados Unidos (…).
4. Como medida militar de precaución totalmente necesaria, he ordenado que sea reforzada nuestra base de Guantánamo (…).

  1. Esta misma noche hemos convocado una reunión inmediata al órgano consultivo de la Organización de Estados Americanos (…).
  2. Con arreglo a la Carta de las Naciones Unidas, hemos pedido esta noche una reunión urgente del Consejo de Seguridad, que deberá ser convocada sin demora para tomar una acción contra la última amenaza soviética contra la paz mundial.
    7. Y último. Dirijo un llamamiento al presidente Kruschev para que suspenda y elimine esta clandestina y provocadora amenaza para la paz del mundo y para unas estables relaciones entre nuestras dos naciones.

John E Kennedy,
Presidente de los Estados Unidos de América, 23 de octubre de 1962.

LOS MOMENTOS MAS CRÍTICOS DE LA CRISIS

KENNEDY INFORMA AL MUNDO
El lunes 22 de octubre, a las siete de la tarde, John F. Kennedy, el hombre más joven que ha asumido la presidencia de los Estados Unidos, se dirigió a su pueblo para anunciarles la trascendental decisión: “El propósito de las bases no puede ser otro que proporcionar una fuerza de ataque nuclear contra el Hemisferio Occidental”. Calificó las seguridades dadas por los rusos -en cuanto a que el armamento era defensivo- como un “engaño deliberado” y, acto seguido, paso a exponer lo que, con reiterada existencia, calificó como medidas iniciales.
“Cuarentena” sobre todo el material ofensivo que fuera enviado a Cuba.

Vigilancia estricta y redoblada sobre la Isla, utilizando para ello cualquier medio.
El lanzamiento de un cohete sobre Estados Unidos, desde Cuba, sería considerado como un ataque directo de la Unión Soviética, lo que implicaba la directa e inmediata represalia.

“Conciudadanos, no dude nadie que ésta es una actitud difícil y peligrosa.. .Nadie puede predecir qué rumbo tomará ni que pérdidas o bajas puede costar…”
El bloqueo comenzó efectivamente el 24. La medida obedecía, según algunos, para dar mayor tiempo a que el Kremlin recapacitara, para otros, era el natural temor al enfrentamiento. Noventa buques de la armada estadounidense, apoyados por sesenta y ocho escuadrones aéreos, más ocho portaaviones, se colocaron en posición de localizar e interceptar a más de una veintena de barcos rusos que se dirigían hacia la Isla.
La orden era perentoria: Toda nave que transporte armamento a Cuba debería ser detenida. Para ello, las unidades navales norteamericanas tendrían que abordar cualquier barco que fuera sospechoso, y a los otros, aunque pertenecieran a una nación neutral, se les sometería a control.

Para abordar un barco estimado como sospechoso, se tendría que proceder conforme a la práctica tradicional de darle un alto. En seguida, el capitán tendría que presentar la documentación de la carga que llevaba a bordo y, de ser necesario, aceptar la inspección de rigor.

El problema se presentaría si un buque no aceptaba detenerse ni permitía la inspección. En esos casos, la costumbre establece un disparo de advertencia a varios metros de la proa… Lo que sobrevendría a continuación era sólo cuestión de criterio de parte del capitán del barco sospechoso, como del que ejerce el control.

Kruschev, luego de mantener un silencio de casi 24 horas, protestó airadamente en los foros internacionales, insistiendo en que las armas eran defensivas.

El Secretario General de las Naciones Unidas, U Thant y el Papa Juan XXIII, exhortaron fervientemente a los Estados Unidos y a la Unión Soviética para que preservaran la paz mundial, lo que dio pie para que se iniciaran las negociaciones.

Kruschev ofreció un canje: si los norteamericanos desmantelaban una base de proyectiles existente en Turquía, la URSS lo haría en Cuba.

Kennedy, pese a que en el Comité se había visto como posible de llevar a cabo tal desarme, dado lo anticuado de sus instalaciones, no accedió. La solución no era hacer coincidir el fiel de la balanza entre dos bases, sino que pasaba, exclusivamente, por el retiro de los cohetes desde la isla.

Recién el miércoles 24 la tensión aflojó un grado. El mundo se informó que quince barcos rusos habían cambiado de rumbo.

A todo esto, las conversaciones eran exclusivamente bilaterales. Es decir, Fidel Castro no intervenía en ellas. La opinión pública occidental pro-soviética observaba, con estupefacción, de que el gordo líder del Kremlin estaba negociando la Cuba de Fidel por unas bases en Turquía.

En el intertanto, dos barcos fueron interceptados. Uno fue un mercante de bandera panameña que había sido fletado por la URSS, cuyo capitán aceptó la inspección, luego de la cual, una vez que se comprobó que no portaba armamento, se le dejó seguir su camino hacia La Habana. Más tarde, el mundo contuvo la respiración. Un buque soviético fue detenido en la zona de bloqueo. Era un barco cisterna que indudablemente no transportaba armas. Los hombres de la línea dura en Washington opinaron que no. se podía aceptar ese reto, y que Estados Unidos debía reaccionar con toda su energía militar. Kennedy optó por dar más tiempo a Kruschev, y considerando que el buque había respetado las reglas de la cuarentena, esto es, se había identificado debidamente ante los navíos norteamericanos, debía serle permitido continuar sin ser registrado.

Otro “incidente” hubo de ser cargado en el haber de esta crisis. Un avión U-2 había sido derribado sobre territorio cubano, puesto que no había regresado a su base. Se dice que el mismo Fidel Castro habría apretado el disparador del proyectil que dio por tierra con el espía. John Kennedy, comprendiendo que esa baja era en aras de una solución de paz más global, no concedió mayor importancia a la acción.

La situación estaba clara. El primer mandatario de la Unión Soviética y el Presidente de los Estados Unidos, eran los dos únicos hombres en el mundo de quienes dependía, en última instancia, la responsabilidad de la guerra nuclear.

El fin de la Guerra Fría y las transformaciones territoriales
El fin de la Segunda Guerra Mundial configuró una situación política internacional conocida bajo el nombre de Guerra Fría. La Guerra Fría consistió en el enfrentamiento político, económico, social e ideológico entre dos formas de organización: el sistema capitalista y el sistema socialista. El primero, liderado por los Estados Unidos y el segundo, por la ex Unión Soviética. El resto de los países del mundo se hallaban alineados en uno u otro bloque, aunque un importante número de países se mantuvo al margen, sosteniendo lo que se reconocería como una posición diferente. Se denominaron No Alineados, por su negativa a alinearse con las superpotencias.

El proceso de reformas económicas (“perestroika“) y la democratización de algunos estamentos políticos (“glasnot“), que tuvieron lugar en la Unión Soviética durante la gestión de Mijail Gorbachov (1985-1991), así como la unificación de Alemania Oriental y Occidental (en 1989), significaron el inicio de un proceso de finalización de la Guerra Fría (1991).

Una de las consecuencias inmediatas del fin de la Guerra Fría fue la transformación de las fronteras políticas de la mayor parte de los países que constituían el bloque socialista. Así, la Unión Soviética se dividió en varios estados independientes: Azerbaiyán, Kazajstán, Kirguistán, Tayikistán, Turkmenistán, Uzbekistán, Letonia. Lituania, Estonia, Bielorrusia, Ucrania, Moldavia, Georgia. Armenia. Rusia continúa liderando la política y la economía en el área, desde la Confederación de Estados Independientes, integrada por los países ex miembros de h Unión Soviética —a excepción de los países bálticos— con fines de colaboración económica y militar. Alemania Oriental y Alemania Occidental se unificaron en un único Estado. Checoslovaquia se ha dividido en la República Checa y Eslovaquia, y Yugoslavia en Serbia, Macedo-nia, Eslovenia, Bosnia-Herzegovina y Croacia.

Algunas de estas nuevas divisiones territoriales tuvieron origen en formas de organización política anteriores a .la Segunda Guerra Mundial y, fundamentalmente, en las diferenciaciones étnicas y religiosas existentes con anterioridad al proceso de formación del bloque socialista. Parte de la inestabilidad política iniciada en 1991 se mantiene hasta la actualidad.

Los Sucesos mas importantes del Siglo XX:Guerras Mundiales,Descolonizacion

Los avances científicos y técnicos han cambiado radicalmente la vida cotidiana de las personas.  De todas las ciencias, ha sido la física la que ha experimentado una transformación más profunda hasta el punto de adquirir una cierta hegemonía en el campo del conocimiento y de proporcionar las figuras más gloriosas de la ciencia del siglo XX. Las investigaciones se orientaron hacia el conocimiento del espacio y del átomo; lo inmenso y lo minúsculo parecen haber sido los dos polos de atención a los que los sabios pudieron acercarse gracias al progreso de los instrumentos de análisis. Pero no fue la observación sino la construcción teórica el primer paso. A diferencia de la Revolución Científica del siglo XVII, con Galileo y Newton como figuras relevantes, que postulaba una actitud empírica de observación de los fenómenos, la del siglo XX encuentra en la teoría, formulada a partir de postulados matemáticos y metafísicos, el punto de partida, la base que posteriormente permitirá la interpretación de los fenómenos observables. (picar en la foto para mas información)

Entre 1914 y 1918 se desarrolló en Europa la mayor conflagración hasta entonces conocida. Motivada por conflictos imperialistas entre las potencias europeas, la “gran guerra”, como se denominó originalmente a la primera guerra mundial, implicó a toda la población de los estados contendientes, así como a la de sus colonias respectivas. La segunda guerra mundial fue un conflicto armado que se extendió prácticamente por todo el mundo entre los años 1939 y 1945. Los principales beligerantes fueron, de un lado, Alemania, Italia y Japón, llamadas las potencias del Eje, y del otro, las potencias aliadas, Francia, el Reino Unido, los Estados Unidos, la Unión Soviética y, en menor medida, la China. La guerra fue en muchos aspectos una consecuencia, tras un difícil paréntesis de veinte años, de las graves disputas que la primera guerra mundial había dejado sin resolver.(picar en la foto para mas información)

El comunismo defiende la conquista del poder por el proletariado (clase trabajadora), la extinción por sí misma de la propiedad privada de los medios de producción, y por lo tanto la desaparición de las clases como categorías económicas, lo cual, finalmente, conllevaría a la extinción del Estado como herramienta de dominación de una clase sobre otra.

Adoptó la bandera roja con una hoz y un martillo cruzados (símbolo de la unión de la clase obrera y el campesinado), y desde su origen tuvo carácter internacionalista, aunque el Stalinismo recuperó el discurso nacionalista de la “madre Rusia” durante la Segunda Guerra Mundial, a la que la propaganda soviética siempre llamó “gran Guerra Patriótica”. (picar en la foto para mas información)

 

El proceso de descolonización constituye uno de los más decisivos factores de la configuración de una nueva realidad histórica en el panorama global de la época actual, y ha dado origen no solo a un nuevo Tercer Mundo, con una dinámica interna propia, sino también a una serie de cuestiones y problemas que se proyectan directamente en el plano de la historia universal.

Es por ello una tarea no solo posible, sino necesaria, emprender descripciones históricas de la primera fase de este naciente Tercer Mundo, que constituye el campo problemático más reciente del siglo XX, y a la vez quizá el mas importante para el futuro de la historia actual. (picar en la foto para mas información)

 

En la actualidad, se teme que la humanidad haya alcanzado, e incluso sobrepasado, la capacidad de carga que tiene a nivel planetario. El ser humano consume el 35% del total de recursos utilizados por la totalidad de las especies vivientes, y a medida que la población crece, esta proporción también aumenta. Hacia el año 1835, la humanidad alcanzó por primera vez en su historia los 1.000 millones de habitantes, pero la población se duplicó en tan solo un siglo. En la actualidad, la población humana mundial se incrementa a razón de 1.000 millones cada década, y la proporción de tiempo amenaza con ser incluso más reducida. Esto se debe a que la población aumenta de manera exponencial (por ejemplo, en caso de duplicarse la población cada generación con una población inicial de 10 millones, en una generación habría 10 millones, a la siguiente 20, a la próxima 40, después 80, y así sucesivamente). (picar en la foto para mas información)

 

Avances Cientificos Despues de la Guerra Television Color TV Color

La televisión en colores es uno de, los astros domésticos más jóvenes de la era electrónica. Y, a pesar de haberse vendido inicialmente a precios astronómicos, ese nuevo juguete va, poco a poco, penetrando en las casas de los estratos medios. No obstante, la calidad técnica de esas transmisiones aún no ha alcanzado un punto “óptimo” de realización tecnológica, y los costos de producción continúan siendo bastante elevados, lo que impide que ella ocupe definitivamente el lugar conquistado por su rival en blanco y negro. Al respecto, investigaciones recientes estudian la posibilidad de substituir f/ tubo de la TV en colores —que representa cerca del 50 al 60 % del costo del aparato— por un sistema menos costoso, como pantallas “planas” o el cristal líquido, usado ya en calculadoras de bolsillo y relojes electrónicos.

Los Primeros Pasos….La Televisión
La idea de utilizar ondas de radio para transportar información visual se remonta a los primeros tiempos de la radio, pero no llegó a ser factible hasta 1926. El principio básico es fragmentar la imagen en una serie de puntos que entonces se transmiten y muestran en una pantalla tan rápidamente que el ojo humano los percibe como una imagen completa.

En 1926 el inventor escocés John Logie Baird (1888-1946) mostró una televisión basada en el método mecánico de repasar una imagen en líneas de puntos de luz. De todas formas, el sistema de Baird tenía poco futuro y fue rápidamente sustituido por un sistema totalmente electrónico. Este último fue desarrollado por Vladimir Zworykin (1889-1982), ingeniero de origen ruso pero que trabajaba en EUA. Su primera cámara útil, hecha en 1931, enfocó la imagen sobre un mosaico de células fotoeléctricas (ver p. 36-37). El voltaje inducido en cada célula fue una medida de la intensidad de luz en este punto, y podía transmitirse como una señal. Una cámara de televisión moderna opera esencialmente de la misma manera, midiendo la intensidad de luz en cada punto de la imagen. Esta información se codifica y transmite entonces en la onda de radio.

En el extremo receptor, la señal tiene que ser decodificada. Un televisor es básicamente un tubo de rayos catódicos, en el cual un “cañón” dispara un haz de electrones hacia una pantalla luminescente. Cuando chocan con ella, la pantalla se ilumina. Para reconstruir la imagen en su totalidad, el haz se mueve de lado a lado en una serie de líneas (625) en los televisores, cubriendo toda la pantalla en 1/25 segundos.

Historia Evolución Tecnológica Post Guerra Mundial
LA TELEVISIÓN COLOR: Los principios de la moderna televisión electrónica estaban bien establecidos hacia mediados de los años 30, época en que tanto en EE.UU. como en Gran Bretaña se realizaban transmisiones regulares, aunque para una audiencia relativamente reducida. La definición era mala, la imagen era titilante y las técnicas de realización eran primitivas, pero aun así se ofrecía un servicio aceptable. Los adelantos en este campo quedaron bruscamente detenidos por el estallido de la guerra en Europa.

Una vez finalizado el conflicto, las investigaciones continuaron más o menos desde el punto donde habían quedado en 1939. La calidad mejoró considerablemente gracias a la aplicación de algunos adelantos en electrónica logrados durante la guerra, pero uno de los rasgos básicos seguía inalterado: la imagen era en blanco y negro.

No había en realidad dificultades técnicas, ya que los problemas de la televisión en color son básicamente los mismos que los de la fotografía en color, que se habían superado mucho tiempo antes. En esencia, la imagen transmitida debía separarse en tres imágenes, una roja, otra verde y una tercera azul, que luego se reproducirían, superpuestas, en la pantalla del receptor.

De manera bastante sorprendente, teniendo en cuenta la determinación con que se abandonaron los sistemas fotomecánicos de televisión en los años 30, el primer sistema adoptado (diseñado por Peter Goldmark en 1951, en Estados Unidos) consistía en un disco giratorio con filtros de color, colocado delante del objetivo de la cámara. Sin embargo, en 1953, la compañía RCA perfeccionó un sistema completamente electrónico por el cual, el rayo de luz transmitido a través del objetivo de la cámara se divide en sus componentes rojo, verde y azul mediante espejos selectores del color. Las tres imágenes se transforman entonces en una señal que se transmite en dos modalidades. La primera, denominada luminancia, depende del brillo de la imagen.

La segunda, llamada crominancia, está relacionada con el color. En el receptor, la señal de crominanciaes recibida por tres cañones de electrones cuyos rayos barren la pantalla, activando un gran número de puntos fosforogénicos que producen una luminosidad roja, verde o azul. Como los sistemas de luminancia y crominancia están separados, las transmisiones de televisión en color pueden ser recibidas también por receptores de blanco y negro.

En 1960, la televisión ya no era una novedad en el mundo occidental y el televisor se había convertido en un elemento corriente entre los aparatos domésticos. El número de receptores ascendía para entonces a unos 100 millones, el 85 % de los cuales se encontraban en Estados Unidos.

En 1970, la cifra había aumentado a más del doble, con unos 230 millones de aparatos. A principios de los años 80, los televisores en color habían desplazado a los aparatos de blanco y negro. Para entonces, había en casi todos los hogares de Estados Unidos (98 %) por lo menos un televisor, que era en color en el 80 % de los casos.

Estas cifras se refieren. naturalmente, a los receptores domésticos y no tienen en cuenta los numerosos sistemas de televisión muchos de circuito cerrado) utilizados con fines especiales: por ejemplo, dispositivos antirrobo en los comercios, demostraciones de operaciones quirúrgicas a estudiantes y observaciones de la superficie terrestre desde satélites.

PARA SABER MAS SOBRE LOS COMIENZOS DE LA TELEVISIÓN:

En 1925, el año en que el inventor escocés John Logie Baird se convirtió en la primera persona que transmitió imágenes en movimiento a un receptor lejano, solo un puñado de ingenieros y hombres de negocios de amplios horizontes habían oído hablar de la nueva tecnología que iba a transformar la cultura.

No obstante, entre estos primeros visionarios el desarrollo de la televisión todavía estaba en estado embrionario. Trabajando en el laboratorio casero de su ático londinense, Baird, desconocido y pobre, construyó una cámara que registraba los objetos con un haz concentrado de luz. Utilizó una célula fotoeléctrica para convertir la luz y la sombra del objeto registrado en electricidad y fabricó un receptor que realizaba el proceso inverso.

El 2 de octubre registró la cabeza de un muñeco y observó con alegría que su cara se reproducía temblorosa en la pantalla que había colocado en la habitación contigua. Corriendo hacia un edificio del otro lado de la calle, le pidió a un portero que se sentara frente a su cámara. El joven William Taynton fue la primera persona televisada.

El sistema de Baird consistía en un aparato mecánico rudimentario que utilizaba discos con agujeros para registrar el objeto, deshacer la luz en rayos y convertir los en una imagen proyectable del objeto original. Funcionaba, pero las temblorosas imágenes provocaban dolor de cabeza al espectador.

Mientras Baird trataba de mejorar su modelo mecánico, otros pioneros trabajaban en sistemas electrónicos. La televisión electrónica ya había sido tratada en teoría por el físico británico Campbell Swinton en 1908. Swinton escribió: «Debe descubrirse algo apropiado. Creo que la visión eléctrica a distancia entra en el reino de lo posible».

Los descubrimientos a los que aludía fueron realizados por Vladimir Kosma Zworykin y Philo T. Farnsworth. El físico norteamericano nacido en Rusia y el estudiante de Utah desarrollaron las primeras lámparas de imágenes. En 1927, Farnsworth presentó un sistema sin los discos de Nipkow en los que confiaba Baird. Con la invención de Farnsworth, el reino de lo posible ya era probable.

Los nuevos medios de comunicacion o transporte en el siglo XIX

Hacia una nueva técnica industrial.

Después de 1840, el maquinismo industrial se complicó en el término de cincuenta años todas las industrias fueron reequipadas eficaz y completamente. En las ciudades se concentró la industria con sus grandes fábricas y los talleres desaparecieron progresivamente. El obrero ya no fue responsable del producto final, sino un pequeño engranaje dentro del proceso productivo. Prueba de ello fueron los nuevos métodos de trabajo (Taylorismo). Estos intentaban obtener el máximo de rendimiento en el menor tiempo posible. La especialización y la producción en serie fueron también rasgos típicos de este período.

El aprovechamiento de las nuevas fuentes de energía sumado a la invención de nuevas máquinas, abrieron paso a la era de la siderurgia moderna. Comenzaron a utilizarse la rotativa y la máquina de escribir (1867), el cemento y el hormigón (1883), las armas arepetición (1862) y la dinamita (1866), además de os tornos y las perforadoras neumáticas, Inglaterra, Francia, Alemania y los Estados Unidos, dominaron la producción mundial y se convirtieron en potencias de primer orden..

A su vez, también el maquinismo agrícola se diversificó: se fabricaron trilladoras, segadoras, tractores, etc. Estas nuevas máquinas comenzaron a utilizarse a partir de 1870 en los Estados Unidos e Inglaterra. Se adoptaron métodos intensivos de agricultura; el guano peruano, por ejemplo, fue utilizado como fertilizante.

A partir de 1850, el libre cambio y el deseo de competir, aceleró las transformaciones agrícolas estimuladas, a su vez, por la ampliación de nuevos mercados consumidores. Se fortalecieron, de este modo, los lazos coloniales que sometieron a las naciones pequeñas, productoras de materias primas, a la voluntad de las poderosas.

Transportes comunicaciones: las distancias se acortan.

Los transportes y las comunicaciones alcanzaron gran despliegue a partir de la segunda mitad del siglo XIX, merced a los grandes avances científicos descubrimiento de nuevas fuentes de energía y a la importancia que había cobrado la industria del carbón, el hierro y el acero.

El barco a vapor. El transporte marítimo se vio favorecido por la adopción del barco de vapor en reemplazo del velero. Esto posibilitó no sólo una mayor rapidez,. sino que permitió el traslado de gran cantidad de mercancías a lugares distantes. Así el mercado internacional creció en forma notable. También aparecieron grandes transatlánticos que favorecieron el traslado de emigrantes europeos hacia América, Asia o África. Los puertos cambiaron su fisonomía y fueron remodelados para adecuarlos a las nuevas necesidades comerciales.

Primeros Barcos de Acero

El ferrocarril. La gran revolución del transporte terrestre fue protagonizada por el ferrocarril. Los malos caminos y la precariedad de los vehículos no podían competir con este “caballo de hierro”. En 1860, los Estados Unidos y Europa contaban con 108.000 Km. de vías férreas y hacia comienzos del siglo XX, existían en el mundo aproximadamente 1.000.000 Km. de vías. El ferrocarril, al igual que el barco de vapor, amplió el mercado internacional, ya que partía de los centros de producción industrial y agrícola hasta las terminales que se encontraban en los puertos desde donde los productos eran exportados (ampliar sobre el ferrocarril)

tren siglo xix

El automóvil La segunda revolución en el transporte terrestre se introdujo con e4 automóvil. Hasta mediados de siglo existían ciertos vehículos propulsados por vapor. Sin embargo, eran peligrosos, demasiado pesados y lentos (aproximadamente 4 Km. por hora).

En 1884, los alemanes Daimler y Maybach inventaron el motor de gasolina, mucho más liviano que el anterior, y al año siguiente Daimler y Benz fabricaron el automóvil. A partir de entonces la industria automotriz creció yse desarrolló cambiando el aspecto y la atmósfera de las ciudades hasta alcanzar el nivel y la importancia de los que gozan en nuestros días Esto favoreció también el mejoramiento de caminos y puentes. El tránsito en las ciudades también se vio innovado por la aparición del tranvía. (ampliar sobre la industria automotriz)

La bicicleta. Ya hacia 1879 había aparecido una de las tantas antecesoras de la actual bicicleta. A diferencia de la bicicleta moderna, aquélla tenía la rueda de atrás mucho más grande que la de adelante. Con el correr el tiempo experimentó grandes cambios. Para 1890 ostentaba un aspecto muy similar a las bicicletas de nuestros días y en 1895, casi todas contaban con ruedas neumáticas. Fue uno de los medios de transporte más difundido, ya que facilitó enormemente la movilidad individual en el campo y la ciudad. En la actualidad se la utiliza también con fines recreativos y deportivos.

Historia de la Bicicleta

Canales: El mercado internacional se había ampliado, pero se necesitaban rutas más cortas entre Europa y los demás continentes. En 1869 se abrió el Canal de Suez que redujo de 25 a 18 días el viaje de Marsella a Bombay. Gracias al éxito obtenido se construyeron luego el de Corinto en Grecia (1893), el de Kiel, en Alemania (1895), y el de Panamá, en América (1914)

El avión. El hombre había conquistado el mar y la tierra entonces miró hacia el cielo. En 1900 Zepellin realizó los primeras experiencias con el dirigible, nave que permitiría el transporte de pasajeros. En 1903 los hermanos Wright inventaron el aeroplano. Estas experiencias fueron continuadas por Alberto Santos Dumont y Luis Blériot y se iniciaron, entonces, los primeros vuelos y servicios regulares. En 1914 se recorrió una distancia de 1.021 km en casi 21 horas a una velocidad de 203,85 Km. por hora a la altura de 6228 metros.(ampliar sobre la historia de la aviación)

Comunicaciones. Gran desarrollo alcanzaron las comunicaciones postales debido al avance de los transporte. El telegrafo creado por Morse en 1837 se extendió con increíble rapidez. En 1845 se instaló el primer cable bajo el agua en los Estados Unidos y en 1878 se instalaron los primeros cables transatlánticos. La importancia 4 de este nuevo medio queda corroborada por el siguiente dato: en 1908 se enviaron por telégrafo 334.000.000 de despachos.

En 1876, Alejandro Graham Bel inventó el teléfono que se difundiría a partir de 1879. En 1877 Tomás Alva Edison construyó el primer fonógrafo y en 1887 apareció la telegrafía sin hilos (radio) producto de la inventiva de Guillermo Marconi.

Otras técnicas. La técnica tipográfica (la imprenta) evolucionó también notablemente al igual que la fotografía. En 1895 los hermanos Lumiére inventaron el cinematógrafo que se transformó, no sólo en un elemento importante de información y difusión de ideas, sino en una de las más importantes expresiones artísticas del Sigo XX.

Las exposiciones industriales: la esperanza de una nueva era:

El auge adquirido por el industrialismo produjo en las naciones europeas un sentimiento de orgullo y satisfacción por el progreso alcanzado.

Se realizaron entonces múltiples exposiciones con el fin de mostrar al mundo el nivel técnico e industrial logrado. En 1851, Gran Bretaña mandó construir, a instancias del príncipe Alberto, el Palacio de Cristal, en el que se realizó la primera de estas exposiciones. En 1862 se efectuó la segunda, también en Londres. En 1867, París organizó su primera exposición a la que asistieron no sólo los más importantes científicos y representantes de la industria, sino también las más destacadas personalidades políticas del momento. En años subsiguientes se efectuaron nuevas muestras en Holanda, España, Estados Unidos, Australia y nuevamente en Francia. (Ver: La torre de Eifel)

En todas ellas, los protagonistas fueron las máquinas,, los descubrimientos científicos, los nuevos productos industriales. De esta manera, el mundo parecía afrontar con un optimismo creciente los conflictos internacionales que, día a día, eran más profundos. Así, se festejaba el comienzo de una nueva era cuyo progreso y desarrollo se creía no tendría límites y cuyos alcances posibilitarían el mejoramiento del nivel de vida medio.

AMPLIACIÓN DEL TEMA
LOS FERROCARRILES TRANSCONTINENTALES Y EL AUTOMÓVIL
La revolución más espectacular tuvo lugar en los ferrocarriles. Dos cifras bastan para dar una idea de este extraordinario desarrollo: año 1850, en el mundo había 38.700 kilómetros de vías férreas; año 1913, 1.100.000. Las zonas de mayor densidad ferroviaria eran Europa y los Estados Unidos. Y este enorme aumento se debió al progreso de la técnica: al uso del acero y del cemento armado en la construcción de puentes, y al de la perforadora de aire comprimido en la de túneles (el túnel de San Gotardo se construyó entre 1871 y 1882, y el del Simplón fue acabado en 1906).

El aumento de la velocidad fue el resultado del perfeccionamiento de las locomotoras, que se convirtieron en más potentes y menos pesadas, y del de los rieles, que en lo sucesivo serían de acero, en vez de hierro. La segunda mitad del siglo xix fue el gran período de la construcción de ferrocarriles. Cada país construyó su propia red, y, después, las naciones establecieron acuerdos para construir líneas transcontinentales. A este fin, decidieron adoptar, en general, el mismo ancho de vía (1,44 m.).

En Norteamérica, la construcción del primer ferrocarril transcontinental, Nueva York-San Francisco, fue concluida en 1869. Unos años después, el zar Alejandro III de Rusia tomó la decisión de construir el transiberiano, que fue acabado en 1904, y puso a Vladivostok a sólo 15 días de viaje de Moscú. Ferrocarril que se vería prolongado, en seguida, por el transmanchuriano, que llegaba hasta el mar de la China. De menor importancia fueron el transcaspiano (que iba del Caspio a la frontera china), el transaraliano (de Samara a Tachkent), y el transandino (de Buenos Aires a Valparaíso).

El sueño de Cecil Rhodes, de unir a Ciudad del Cabo con El Cairo, no llegó a realizarse. En efecto, de los 11.000 kilómetros de distancia, hay que recorrer 3.500 kilómetros por carretera o en barco, y en los 7.500 kilómetros de ferrocarril, hacer catorce transbordos.

La utilización práctica del ferrocarril tuvo importantes consecuencias. Permitió el transporte rápido de los productos (a partir de 1900, sería posible recorrer 1.200 Km. diarios): los nuevos países pudieron consagrarse, en lo sucesivo, al monocultivo.

Al tiempo que se desarrolló este medio de transporte colectivo, lo hicieron dos medios de transporte individual: la bicicleta, «la pequeña reina» (la primera vuelta a Francia se organizó en 1903), y, sobre todo, el automóvil. El lejano antepasado de éste fue el carro de vapor, de Cugnot, cuyo modelo tuvieron presente, pasado 1820, los ingleses Griffith y Hancok para su diligencia de vapor, cuyo desarrollo quedó detenido por el del ferrocarril. El francés Amadée Bollée, construyó nuevamente un coche de vapor (1873), la «Mancelle». Pero el progreso decisivo no tuvo lugar, sin embargo, hasta que se perfeccionó el motor de explosión, y se produjo, después, la invención del neumático por Dunlop y Michelin.

En 1891, la fábrica Panhard-Levassor construyó según el diseño de Daimler, un coche que alcanzaba una velocidad de 22 kilómetros por hora. Tres años después, la carrera París-Lyon enfrentó a más de cien monstruos ruidosos y tosedores. Varios de ellos eran de motor de vapor, otros de motor de bencina, habiendo otros más de motor de aire comprimido, o movido por electricidad. Pero sólo veinte de ellos lograron tomar la salida siendo el coche con motor de vapor De Dion quien ganó la carrera, a una media de 22 kilómetros hora.

Mas, a pesar de este triunfo, el automóvil de vapor no consiguió tener un porvenir como su rival, el de bencina. Poco a poco, este último se fue perfeccionando.En 1914, la velocidad récord superó los 100 kilómetros por hora. La industria automovilística, aunque nacida en Europa, se desarolló, sobre todo, en Estados Unidos. En vísperas de la primera guerrao mundial, ,circulaban por el mundo dos millones de automóviles, la mitad de los cuales pertenecía a Estados Unidos.

 

Los Hermanos Wright La Conquista del aire El Primer Vuelo Con Motor

       Los Primeros Vuelos Aéreos de los Hermanos Wright    

UN POCO DE HISTORIA: Desde los tiempo mas remotos volar siempre ha sido el gran sueño del hombre, e impulsados por ese deseo de transformarse en pájaros ha hecho que muchos valerosos intrépidos hayan ideado todo tipo de artilugio para luego lanzarse desde lo mas alto de su zona, y muchas veces estrellarse contra el duro piso. Pero debemos agradecer infinitamente a ese grupo de soñadores porque fueron ellos lo que pusieron la semilla inicial para que luego otros mas osados probaran nuevos artefactos voladores.

Como casi todos sabemos, el gran genio del Renacimiento europeo, llamado Leonardo Da Vinci comenzó a esbozar en su cuaderno de anotaciones diarias, las primeras formas de esos artefactos, pero sin llegar a realizar experiencia alguna, pues él estaba mas ocupado con otras prioridades que le daban grandes satisfacciones sin arriesgar su pellejo, como fue el arte y la comida.

Se sabe que los primeros intentos fueron en Francia por el siglo XVIII, los hermanos Montgolfier hicieron las primeras pruebas con globos aerostáticos y otros menos conocidos se han lanzado desde grandes alturas. En 1785, un francés y un americano cruzan el Canal de la Mancha en globo, y no tardarán en realizarse los primeros intentos de volar en avión.

Un inglés de apellido Cagley en 1849 construye un planeador de tres alas, y hace sus pruebas usando como piloto a un niños de solo 10 años y se convierte en el primer aparato en flotar un mínimo tiempo en el aire. Deberán pasar unos 40  años para que en 1890, otro francés,  Clément Ader realice un  primer vuelo de la historia en un aparato propulsado por vapor.

Pero despacio estamos entrando al siglo XX, pero sin olvidarnos de otros grandes inventores, como Lawrence Hardgrave que construye un modelo impulsado por paletas movidas por un motor de aire comprimido que vuela 95 metros, Otto Lilienthal que en 1877 inventa unl planeador con alas curvadas. Samuel Pierpont Langley también se anima y ahora consigue elevar durante un minuto de aeroplano impulsado por vapor y que bajaba lentamente planeando.

Y ahora si llegamos a 1903, Orville Wright realiza el primer vuelo de la historia en un aeroplano propulsado y bajo control humano, durante 12 larguísimos segundos. Trabajando junto a su hermano Wilbur, desarrolla los primeros aviones propulsados por un pequeño motor.

Los Wright eran fabricantes de bicicletas y empezaron diseñando planeadores, con los que realizaron cientosde pruebas; incluso diseñaron su propio túnel de viento.

Según sus experiencias a ellos les faltaba una fuerza poderosa que trate de impulsar con potencia el aeroplano hacia adelante y oro colega llamado Charlie Taylor, les fabricara un motor de gasolina de doce caballos que pesa poco más de ochenta kilos, mas o menos el peso de una persona.

Después de varias pruebas y de estrellarse  varias veces en la arena con su planeador motorizado, consiguieron recorrer unos 31 metros el día 17 de diciembre de 1903 con el Flyer. El brasilero Alberto Santos Dumon, en Francia logrará tres años después un vuelo de 220 metros en 22 segundo.

 Los hermanos Wright eran hijos del obispo estadounidense Milton Wright, ministro de la Iglesia United Brethren (Hermanos unidos), y de Susan Koerner Wright. Wilbur, el mayor, nació en Millville, Indiana, el 16 de abril de 1867 en tanto Orville, en Dayton, Ohio, el  19de agosto de 1871.

Desde niños se interesaron por los juguetes, cometas y objetos mecánicos, y uno de sus preferidos era una hélice que se cargaba con unas gomas elásticas  y lograba elevarse mientras la hélice giraba. Si bien muy tenían personalidades muy distintas, a los hermanos los unía el mimo espíritu inquieto e ingenioso, pues por curiosidad los hacía desarmar, explorar construir nuevos objetos mecánicos.

 En 1889 instalaron su propia imprenta e Dayton, donde editaron y publicaron el diario West Side News, y tres años más tarde, entusiasmados con la aparición de Ir bicicletas, dejaron la imprenta para instalar un taller de reparación que se transformaría en la Wright Cycle Co., que vendía su propio modelo de bicicleta. Los ingresos ayudaban a su manutención mientras ellos investigaban sobre aeroplanos.

Wilbur se interesó en el vuelo cuando se enteró del fatal accidente de Otto Lilienthal mientras investigaba el planeo en 1896. Por aquel entonces, la investigación sobre el vuelo se orientaba a emular el movimiento de las alas de las aves. Mientras observaba el vuelo de un águila, Wilbur comprendió que además de utilizar el planeo, movían las alas para girar. El control del vuelo era vital además de la propulsión. Un aeroplano tenía que poder ladear, subir o bajar, y girar a derecha e izquierda, y dos o tres de estas actividades debían realizarse simultáneamente.

Los hermanos Wright decidieron enfrentarse a los problemas del control del vuelo antes de pensar en la fuerza propulsora. Escribieron a la Smithsonian Institution pidiendo material sobre investigación aeronáutica y leyeron todo lo que pudieron encontrar sobre el tema. En 1899 ya habían diseñado una cometa de dos alas que podían moverse mecánicamente de forma que una tenía más sustentación y la otra menos.

Entre 1900 y 1902 diseñaron tres planeadores biplanos, utilizando un túnel de viento en Dayton para ayudarse en la investigación. Llegaron a diseñar mecanismos fiables que les permitían tener el dominio de los movimientos de los aparatos en el aire, como por ejemplo en los virajes mediante una técnica denominada alabeo. Eso los ayudó luego a conseguir un avión controlable, que comenzaron a construir en 1902.

Los vuelos se iniciaron en una playa llamada Kitty Hawk, en Carolina del Norte, que eligieron después de que el Weather Bureau les proporcionara una lista de lugares ventosos. La arena protegería los planeadores y la soledad del lugar les daría privacidad. La versión final de los planeadores tenía timón trasero para girar a izquierda y derecha, alerones para ascender o descender, y las alas podían plegarse. Una vez que estuvieron satisfechos con los planeadores, diseñaron el motor, una máquina de cuatro cilindros y doce caballos de potencia.

Al primer aparato experimental lo llamaron Flyer. Realizaron su primer vuelo exitoso de prueba el 17 de diciembre de 1903, en Kitty Hawk, estado de Carolina del Norte, en EE.UU. Lo piloteó, acostado sobre la máquina, Orville Wright. Su hermano Wilbur corrió a su lado para mantenerlo equilibrado. Pese a que disponía de motor, emplearon una catapulta para impulsarlo y rieles para que carreteara derecho.

Unavez en el aire, el biplano voló unos 40 metros durante 12 segundos, a un metro del suelo. Lo hizo llevado por su planta impulsora de cuatro cilindros, alimentada a nafta y con un sistema de transmisión por cadena que trasladaba su empuje a las hélices. Ese mismo día realizaron otros tres vuelos, presenciados por cuatro socorristas y un niño de la zona, siendo los primeros de su tipo hechos en público y documentados.

En la última prueba, Wilbur Wright consiguió volar 260 metros en 59 segundos. Al día siguiente, diarios como el Cincinnati Enquirer y el Dayton Daily News publicaron la noticia.

Según algunos biógrafos Orville, ganó la prioridad de manejo con  el lanzamiento de una moneda, el 17 de diciembre de 1903.

portada de una revista sobre los hermanos wright

El Flyer realizó su primer vuelo exitoso en 1903, en Carolina del Norte. Lo piloteó, acostado sobre la máquina, Orville Wright. Su hermano Wilbur corrió a su lado para mantenerla equilibrada.

Esa mañana un fuerte viento de más de 40 kilómetros por hora,  soplaba sobre la franja de dunas que interrumpen el mar. A las nueve de la mañana  los hermanos Wilbur y Orville Wright, inventores y constructores del aparato, ayudados por cinco hombres, arrastraron la mole de 275 kilogramos desde su cobertizo hasta la llanura de arena, al pie de Kill Devil Hill, una elevada duna de 30 metros de altitud. El viento consigue levantar el planeador número 3 de los hermanos Wright en Kitty Hawk (Carolina del Norte). Ambos fueron excelentes pilotos de planeadores, y el año 1902 sometieron a prueba en Kitty Hawk las teorías aeronáuticas que desarrollaron en Dayton. En esta foto tomada por Orville, su hermano Wilbur (al fondo) y Dan Tate, de Kitty Hawk, hacen volar el planeador como una cometa.

17 DE DICIEMBRE DE 1903, LA PRIMERA EXPERIENCIA:

Para conseguir suficiente velocidad para ese primer despegue, habían encendido la máquina en una duna arenosa. Hoy, el viento haría todo el trabajo. Se llevaría el aparato hacia arriba como una cometa: una cometa sin pita, empujada hacia delante por un motor, lista a retar la gravedad y a volar hasta donde quisiera.

Los dos hombres habían diseñado el motor ellos mismos. Habían fabricado cada parte del avión que esperaba por ellos en el cobertizo -experimentando, investigando y probando sus descubrimientos. Ahora sólo faltaba la gran prueba.

El viento no era el único hambriento en esa costa desolada. Wilbur y Orville Wright también lo estaban, pero por el trabajo. El viento sería su amigo, no su enemigo. Les ayudaría en el despegue y suavizaría el aterrizaje.Los dos hermanos sonrieron. Yahabían esperado suficiente tiempo. Era el momento de empezar.

Tomada la decisión, los Wright salieron de su pequeño campo rápidamente. Verificaron el viento otra vez. Colgaron una señal para llamar a los salvavidas desde su base, a una milla de distancia a través de la arena. Los salvavidas habían estado informados del plan desde el principio; no podían quedarse por fuera ahora.

Era tiempo de revisar la aeronave. Los fabricantes la sacaron del cobertizo y la chequearon por todas partes. Las alas, los puntales, los cables que unían los controles: todos estaban en su sitio, como deberían estar. Las hélices se movían fácilmente.

También el control que accionaba el estabilizador frontal que salía por delante de las alas. Los patines con forma de trineo que sostenían la máquina no mostraban ningún signo del accidente que había tenido días antes. La aeronave estaba lista.

Los hermanos Wright la colocaron en la carrilera de lanzamiento y la amarraron con algunos trozos de alambre para mantenerla quieta. Wilbur puso unacuña debajo del ala derecha. A unos pocos pies de distancia, Orville organizó su cámara.

Mientras fijaba los trípodes firmemente en la arena, los salvavidas llegaron al campo sonriendo y hablando a gritos para que los oyeran.Miraban fijamente mientras los dos hermanos prendían el motor de la nave. Funcionó muy suavemente, con vibraciones regulares, calentándose para el momento en que tuviera que correr por la rampa de lanzamiento hacia el vacío.

“Dale Orville”, dijo Wilbur. “Yo ya tuve mi turno, ahora te toca a ti”.

Cautelosamente, Orville se acomodó en la nave, y se extendió cuan largo era en el ala baja. El viento le daba de frente en sus ojos y la arena le pegaba en los párpados. Miró hacia abajo a las pequeñas piedras en el piso bajo su cara.

Era el último chequeo a los controles, moviendo sus caderas de un lado al otro. Sí, el receptáculo donde él estaba se movía con él, torciendo las estructuras de las alas hacia los lados. En la punta del ala derecha estaba Wilbur, esperando para sostener el ala nivelada, a medida que se fuera moviendo por la carrilera. Realmente, ya era el momento de despegar. Orville, con su mano, soltó los alambres que le servían de ancla a la nave.

 Se estaba moviendo hacia delante a una velocidad de caminante. No, más rápido que eso. Con el rabillo de su ojo, Orville podía ver que su hermano tenía que ir corriendo a su lado. Corriendo más rápido. Acelerando la carrera… y, de repente, Wilbur ya no estaba allí. La nave había despegado. ¡Estaba subiendo muy alto ¡Rápidamente, Orville movió la palanca que controlaba el estabilizador frontal.

De repente, ahí estaba el piso, solamente a diez pies debajo de él y subiendo rápidamente Desesperado, Orville haló la palanca hacia atrás.Fue como si le hubieran pegado en el estómago. Con un golpe y un vacío, la nave frenó su caída alocada. La tierra empezó a quedarse lejos, al tiempo que la máquina apuntaba hacia arriba; el paisaje se llenó de cielo. Un ventarrón cogió sus alas con un golpe y las hizo subir todavía más.

Orville movió de nuevo la palanca. Con velocidad acelerada, la máquina se inclinó en el aire. Luego se fue hacia el piso como una golondrina en picada. Otra corrección, y volvió a apuntar hacia el cielo. Y hacia abajo. Y hacia arriba… Y para abajo. Y con un crujido, una sacudida de choque y un montón de arena que volaba, la máquina se estrelló contra el suelo. Y se quedó allí. Medio mareado y sin aliento, Orville salió arrastrándose fuera de la estructura y miró hacia atrás, al punto desde donde había despegado.

La distancia recorrida en aquel primer vuelo con motor dirigido fue de sólo 37 metros, menos que la longitud de la cabina de un jumbo.  Quizá parezca insignificante, pero supuso el inicio de una nueva era.  En menos de setenta años, el hombre llegó a la luna.  Los hermanos Wright habían abierto un camino que otros pronto seguirían. 

La conquista del aire
Solamente había volado ciento veinte pies, y durante doce segundos. Pero esa distancia corta y ese pequeño tiempo, se sumaban a nada menos que a una victoria. Orville y su hermano habían logrado lo que nadie había hecho hasta ese momento. Habían construido una máquina más pesada que el aire, que podía llevar una persona en vuelo libre. Se mantuvo suspendida por su propia fuerza y sus movimientos se podían controlar difícil, pero definitivamente por su piloto. Entre los dos habían diseñado y creado el primer aeroplano de tamaño completo, con éxito.

En las arenas al sur de Kitty Hawk, Carolina del Norte, Orville y Wilbur Wright habían conquistado el aire. Lo ocurrido en aquella jornada quedó señalado para el común de la gente como el inicio de la aviación moderna y así lo registra la mayoría de las páginas históricas. Sin embargo, hay quienes sostienen que no es así. Argumentan que durante las pruebas el Flyer no se elevó por sus propios medios, sino ayudado por rieles y una catapulta. Más allá de las polémicas, los Wright patentaron su avión y siguieron mejorándolo. Durante 1904, efectuaron un centenar de vuelos. En uno de ellos recorrieron casi 40 kilómetros en 38 minutos.

En los años siguientes, realizaron infinidad de pruebas y exhibiciones tanto en su país como en Europa y batieron numerosos récords. A partir de 1908, los aviones de los hermanos Wright ya no necesitaron más de una catapulta para alzar vuelo. El 17 de septiembre de ese año, mostrando un modelo biplaza a militares de su país, Orvalle Wright se accidentó y quedó malherido. Desafortunadamente, su ocasional acompañante, el teniente Thomas Selfridge (1882-1908), se transformó en la primera víctima fatal de la aviación con motores tal cual la conocemos en la actualidad.

A continuación, intentaron vender su aeroplano a los ejércitos francés, británico y americano. Pedían grandes cantidades de dinero pero no ofrecieron ninguna exhibición y se encontraron con la incredulidad de los responsables. No empezaron los vuelos de demostración hasta 1908, ya que antes temían el espionaje, y el mundo empezó a creer en la posibilidad del vuelo tripulado. A los pocos años la aviación europea había superado sus esfuerzos. Wilbur murió en 1812 y Orville en 1948. Ambos permanecieron solteros: el vuelo era su única pasión.

Luego de esa histórica primer experiencia, el piloto Orville comentó «Después  de calentar el motor durante unos minutos, tiré del cable que sujetaba el aparato a la guía, y comenzó a moverse. Wilbur corría (…) sujetando un ala para que mantuviese el equilibrio en la guía (…) El manejo del aparato durante el vuelo fue desastroso, subiendo y bajando continuamente (…) El vuelo duró sólo 20 segundos, pero a pesar de todo fue la primera vez que un artilugio manejado por un hombre había conseguido elevarse por sí mismo gracias a su propia potencia y volar una distancia sin reducir su velocidad y aterrizar poco después en un punto alejado de donde había empezado (…)».

Con estas palabras, publicadas en 1913 en el semanario American Aviation Journal, Orville Wright recordaba el primer vuelo con motor en el biplano Flyer 1,  realizado en diciembre de 1903, iniciando así la historia de la aviación moderna.

Un diario italiano La Domenica ilustra en 1908 el fracaso de Orville Wright y de Thomas Selfridge en unos de sus experimentos que termina con una caída desde unos 30 metros.

SANTOS DUMONT: El brasileño a bordo de la nave 14 bis, de 1906. Muchos consideran que el suyo fue el vuelo inaugural de la aviación, tal como la entendemos hoy.


Cerca de Chicago, EE.UU., se realiza una prueba del planeador de alas múltiples ideado por Octave Chanute (1832-1910). Este ingeniero estadounidense, de origen francés, está considerado entre los pioneros de la aviación, que además contribuyó al éxito de los legendarios hermanos Wright.

CRONOLOGÍA DE LOS PRIMEROS INTENTOS

852 — El hispano musulmán Abas Ibn Firnas se lanza desde una torre de Córdoba con lo que se considera el primer paracaídas de la historia.

875 — El mismo Firnas se hizo unas alas de madera recubiertas de seda y se lanzó desde una torre en Córdoba. Permaneció en el aire unos minutos y al caer se rompió las piernas, pero fue el primer intento conocido científico de realizar un vuelo.

1010 — El inglés Eilmer de Malesbury, monje benedictino, matemático y astrólogo, se lanza con un planeador de madera y plumas desde una torre y vuela 200 metros, pero al caer se rompe las piernas.

1250 — El inglés Roger Bacon hace una descripción del ornitóptero en su libro Secretos del arte y de la naturaleza. El ornitóptero es un artilugio parecido a un planeador, cuyas alas se mueven como las de un pájaro.

1500 — Leonardo da Vinci realiza los primeros diseños de un autogiro que habría de elevarse haciendo girar las aspas impulsado por los brazos. También diseña un ornitóptero como el de Roger Bacon y un planeador.

I709 — El jesuita brasileño Bartolomeo de Gusmao, también conocido como «el padre volador», describe, y probablemente construye, el primer globo de la historia, y se lo enseña y hace una demostración, con el ingenio de papel, en el patio de la Casa de Indias, en Lisboa, al rey Juan V de Portugal.

1783 — El francés Jean Frangois Pilátre de Rozier es el primer hombre en ascender, en un globo de aire caliente, diseñado por Joseph y Etienne Montgolfier. • En diciembre, los franceses Jacques Alexandre-César Charles y Marie-Noél Robert realizan el primer vuelo en un globo aerostático de hidrógeno, hasta una altura de 550 metros.

1785 — El francés Jean Pierre Blanchard y el estadounidense John Jeffries cruzan por primera vez el canal de la Mancha en globo. • Los franceses Frangois Pilátre y Jules Román se convierten en los primeros hombres en morir en un accidente aeronáutico al estrellarse su globo, dos años después de aquel primer ascenso de Pilátre.

1794 — El Servicio de Artillería Francesa crea la primera fuerza aérea del mundo en la forma de una compañía de globos bajo el mando del capitán Coutelle, que entrará en combate ese mismo año en Fleurus, Bélgica. Hasta 1908 no se creará una fuerza aérea dotada de aeroplanos.

1797 — El francés André-Jacques Garnerin realiza el primer descenso en paracaídas desde una aeronave al lanzarse desde un globo a 680 m de altura sobre el parque Mongeau, en París.

1836 — El Gran Globo de Nassau vuela desde Londres hasta Weilburg en Alemania, a 800 Km., en 18 horas.

1849 — El británico George Cayley construye un planeador de tres alas que vuela con un niño de diez años a bordo y se convierte en el primer aparato en volar más pesado que el aire.

Fuente Consultada:
El Diario de National Geographic N°39
Genios de la Humanidad Los Hermanos Wright
PIONEROS Teo Gómez