Inventos Siglo XX

Explotación Agricola en Europa del Siglo XIX Economía

EL PREDOMINIO DE LA ECONOMÍA AGRÍCOLA
EN EUROPA EN EL SIGLO XIX

La Europa de principios del siglo XIX era aún una Europa campesina cuya vida económica dependía estrechamente de las fluctuaciones de sus principales producciones agrícolas. La ausencia de excedentes mantenidos limitaba el desarrollo de las ciudades, que permanecían muy ligadas al campo. Las frecuentes malas cosechas de cereales, patatas, legumbres, ocasionaban grandes subidas de precio. Las crisis estacionales o anuales, engendradas por las malas cosechas o por la deficiencia de las relaciones comerciales y de los medios de transporte, se conjugaron a partir de 1817 con una larga etapa de depresión y de hundimiento de los precios, que sucedió al favorable período precedente.

LA POBLACIÓN: A partir de 1801, la población mundial ha crecido con más rapidez que nunca. Sólo en el siglo XIX se duplicó con creces; la anterior duplicación tardó cuatro veces más. Desde el siglo XVII la curva de crecimiento se ha ido haciendo cada vez más empinada. Sin embargo, las cosas no son tan sencillas como parece deducirse de esta imagen general. Algunos países han crecido con más rapidez que otros, y lo mismo puede decirse de los continentes.

El resultado ha sido un cambio en el orden de las naciones, atendiendo a su número de habitantes. Empecemos por Europa: en 1801, Francia reunía bajo su bandera más habitantes que ningún otro país al oeste de Rusia; en 1914 ocupaba la cuarta posición, por detrás de Alemania, Austria-Hungría y Gran Bretaña. El crecimiento de los Estados Unidos fue aún más rápido: en 1900 sus habitantes habían ocupado ya todo el continente (que en 1801 aún seguía inexplorado en gran parte) y su número había ascendido de 6 a 76 millones, lo que representa un aumento del 1.150 por 100.

Se dispone  de   información   mucho   más completa y exacta acerca de los países de Europa y América que de los de Asia y África; no obstante, parece comprobado que la población creció en todas las partes del mundo durante el siglo XIX: en China, por ejemplo, el aumento superó el 40 por 100, llegándose a los 475 millones; Japón pasó de unos 28 millones a unos 45, y la India de 175 a 290 millones. Se trata, en todos los casos, de incrementos muy grandes.

LA AGRICULTURA CONTINUA PREDOMINANDO
Salvo algunas excepciones, los métodos de explotación agrícola permanecían anticuados, ya que la mayoría de los grandes propietarios se desinteresaron de ello y no trataron de aumentar sus rentas por medio de la comercialización de sus productos. En cuanto a los pequeños cultivadores, sin instrucción, apartados de la escena política por los regímenes censatarios, no disponían de capital suficiente para introducir innovaciones.

agricultura en europa

Falta de abono, la tierra se convertía en  barbecho  cada   tres   años;   falta   también de maquinaria (se sembraba a mano, se trillaba con el mayal, se segaba con la hoz), una gran parte del suelo se desperdiciaba y los rendimientos obtenidos eran muy escasos. El desconocimiento de los métodos de conservación de la carne, el estado de los animales, desnutridos y sujetos a epidemias, impedía toda explotación ganadera racional, utilizándose el ganado, sobre todo, para los trabajos agrícolas.

Las crisis de subsistencias probaba trágicamente que el destino de millones de  hombres  dependía aún de las cosechas  de   trigo;   por  eso la agricultura estaba orientada hacia los productos de más corriente consumo, y, en pri mer lugar, hacia los cereales, como el trigo el centeno, la cebada, la avena y el alforjón.

La ausencia  de  excedentes  obligaba  a  la: diferentes naciones e incluso a las regione: a  vivir  replegadas  sobre  sí  mismas.   Uni camente  los   productos   exóticos   (especias café) daban lugar a un tráfico importante Sin embargo, este medio siglo conoció cier tos progresos agrícolas, de los que Inglate rra fue la principal beneficiaria. Más  adelantada que sus vecinos, había experimentado, desde el siglo XVIII , nuevos métodos; 2.000 lores, propietarios del tercio de la superficie cultivable, transformaron hectáreas de tierra de labor en fértiles praderas, en las que practicaron una ganadería moderna con selección de razas (la raza Durham llegó a ser la primera de Europa).

Los decretos para la formación de «acotados» (reunión de tierras rodeadas por vallas), concluidos en 1840, los «cornlaws», leyes que prohibían la entrada de trigos extranjeros, habían enriquecido   a   estos   grandes   propietarios que llevaron a cabo una verdadera revolución sustituyendo el barbecho por el cultivo de plantas herbáceas, de trébol, de alfalfa y otras análogas, alternando con los cereales; la utilización de los abonos (cal, guano, fertilizantes industriales descubiertos por Liebig), la mejora de los arados, la desecación de los pantanos, reforzaron esta revolución agraria.

Las Corn Laws fueron aranceles a la importación para apoyar los precios del grano británico doméstico contra la competencia de importaciones, vigentes entre 1815 y 1846.

PEQUEÑAS PROPIEDADES Y GRANDES DOMINIOS: Además  del  tipo inglés (que acabamos de ver mas arriba),  se podían  distinguir otras dos modalidades  de  agricultura en Europa.  Una de ellas predominaba en Francia, Países Bajos, Suiza y norte de Italia; la supresión de las servidumbres señoriales   había   emancipado   jurídicamente   al campesinado, pero éste, dueño en su inmensa mayoría, de pequeñas o medias propiedades, vegetaba y se mantenía gracias a la supervivencia de las prácticas comunales y a la ayuda de trabajos artesanos.

Sin embargo, en estos países fueron realizados importantes   trabajos   de  desecación   (particularmente en Holanda, donde los «polders» alcanzaron una gran extensión) que permitieron acrecentar la superficie cultivable. El rercer tipo de agricultura, el de los grandes dominios   señoriales,  reinaba  en  la  mayor parte de Europa; en el sur de Italia y en Toscana, la aristocracia terrateniente practicaba el absentismo, dejando a los administradores el cuidado de ocuparse de sus inmensas propiedades, y éstos las hacían explotar por los jornaleros a los que apenas les quedaba para vivir. Los grandes propietarios españoles practicaban también la aparcería; pero tenían que hacer frente a la Mesta, poderosa asociación de ganaderos que monopolizaba inmensas extensiones de tierras, oponiéndose al desarrollo de la agricultura.

En Prusia y en Europa Oriental, las reformas napoleónicas fueron abandonadas después de Waterloo y los campesinos tuvieron que devolver a los nobles el tercio de sus tierras, cayendo nuevamente en un estado de semi-servidumbre. Sin embargo, algunos pequeños hidalgos prusianos intentaron modernizar sus posesiones siguiendo el ejemplo de los lores ingleses.

Por último, en Rusia, la tierra estaba en manos de la corona y de los nobles; una parte de sus inmensos dominios era explotada directamente, y la otra repartida en parcelas entregadas a las familias de los siervos a cambio de los servicios que prestaban trabajando las tierras de su señor. Rusia era entonces la mayor exportadora de trigo de Europa, pero las exportaciones se hacían en detrimento de la población, que vivía en condiciones miserables. Esta oposición entre la Europa Occidental y los países orientales, próximos todavía a las estructuras feudales, había de durar hasta nuestros días.

La Era Capitalista El Desarrollo De La Ciencia e Inventos En Europa

LA ERA CAPITALISTA EN EUROPA: EVOLUCIÓN TECNOLÓGICA Y DESARROLLO CIENTÍFICO

A partir del siglo XIX se inician un par de transformaciones que renovaran la economía, la sociedad y la política de todo Europa.Estas dos destacadas transformaciones son la Revolución Industrial y la Revoluciones Burguesas ocurridas entre 1820 y 1848. La primera cambió la forma de producir y de organizar la economía de ese momento, estableciendo un sistema capitalista que se extendió a nivel mundial y la segunda se refiere a los movimientos revolucionarios que luchaban por una sociadad mas justa, con mas libertad y sobre todo participación en la política, que culminaron con las ideas liberales como principio rector de la vida social, de esta manera nacía el liberalismo político y económico.

La Revolución Industrial dio origen a una nueva forma de organizar el trabajo: el trabajo fabril; a un nuevo tipo de trabajador: el obrero industrial; y a una nueva forma de organización económico-social: el capitalismo. El capitalismo surgió luego de una sucesión de grandes y profundos cambios sociales y económicos que se produjeron en el campo y en las ciudades.

El trabajo asalariado se difundió en las ciudades en las que se desarrollaba la industria y también en las zonas rurales en las que la producción agropecuaria se destinaba al mercado. Sin duda el capitalismo significó para el hombre un camino de progreso, pero al mismo tiempo llevó a la formación de una sociedad dividida en clases sociales con intereses contrapuestos. El conflicto más profundo fue el que se planteó entre la burguesía, propietaria de los medios necesarios para la producción, como las industrias, la tierra, las herramientas, y los obreros, que no disponían de bienes ni de tierras ni de herramientas, y que lo único que podían hacer para subsistir era vender su fuerza de trabajo.

revolucion industrial en europa

Hacia la primera mitad del siglo XIX, el capitalismo se consolidó en Europa occidental y los cambios que había introducido la Revolución Industrial se extendieron por otros países del continente europeo y los Estados Unidos. La burguesía se consolidó como clase y fue protagonista de importantes revoluciones —1830, 1848— e impuso al mundo sus ideas, valores e instituciones de corte liberal. Pero este mundo burgués fue también un mundo de fuertes conflictos sociales. Junto a la próspera burguesía, en las ciudades industriales el número de obreros organizados crecía cada vez más: reclamaban por mejores condiciones de vida y mejores salarios. El progreso y la miseria fueron las principales características de esta época.

La industrialización cambió de forma radical el mundo. Las nuevas fuentes de energía condujeron a la mecanización y surgieron nuevas formas de comunicación y transporte. Varios factores provocaron el avance de la industrialización en el siglo XIX. En Europa, la consolidación de grandes imperios, como el británico, conllevó mayores oportunidades comerciales. La ampliación de los mercados de exportación alentó un aumento de la productividad, como resultado de la cual comenzaron a aparecer grandes fábricas modernizadas. En Gran Bretaña, el ritmo del desarrollo industrial se había acelerado durante el siglo xvm, cuando el imperio alcanzó su extensión máxima.

Explica John M. Roberts en su libro: “Historia Universal Ilustrada“: ¿Qué entendemos por «industrialización»? Por lo general, suele interpretarse como producción organizada a gran escala, con mucha gente trabajando junta. Pero el sentido común nos dice que debemos excluir de la definición la agricultura, a pesar de que a menudo se ha practicado con gran número de operarios en una misma finca —los siervos en Europa oriental o los esclavos en las plantaciones, por ejemplo—, y también el comercio, que se ocupa del intercambio de mercancías, y no de su producción. ¿A qué nos referimos, pues, cuando hablamos de industrialización en el contexto de la historia de la humanidad? Una posible definición sería «el proceso que conduce a una sociedad que cada vez resulta más dependiente de la industria fabricante de artículos y menos del comercio o la agricultura».

LA MÁQUINA A VAPOR: En 1765, el inventor inglés James Watt construyó un modelo de máquina de vapor. Cuatro años después, en 1769, construyó su primera máquina de vapor. El invento halló muy pronto aplicación en las empresas de Inglaterra. En 1780, en Birmingham funcionaban 11 máquinas de vapor, on Leeds 20, y en Manchester 32. La invención de la máquina dE vapor marcó una nueva otapa de la revolución técnica. Juntamente con la máquina de vapor entra en escena la ciencia.

En su forma mas simple el vapor utiliza agua hirviendo para producir vapor a presión. Este vapor hace presión contra una turbina o un pistón y fuerza su movimiento, y ese movimiento acciona las ruedas del motor. Pese a haberse inventado ya en 1698, el accionamiento por vapor experimentó diversos refinamientos hasta poder ser usado para accionar el primer barco en 1802. Las modificaciones más importantes del motor de vapor las realizó el escocés James Watt. Nacido en 1732, Watt consagró su vida a mejorar el motor de vapor.

De hecho, de no haber realizado los cambios que realizó, el motor de vapor no habría podido impulsar la Revolución Industrial. Watt ideó la cámara separada en la que se condensaba el vapor y gracias a la cual el motor tenía una mayor eficacia; y también inventó el barómetro o indicador de presión, y la manivela y el volante que provocaron el movimiento rotatorio. Fue un motor de Watt el que impulsó el barco experimental Clermont aguas arriba por el río Hudson en 1807.

maquina newcomen a vapor

La bomba de vapor, empleada para suministrar energía a molinos y fundiciones, la inventó Newcomen en 1712, pero no resultó práctica hasta que james Watt perfeccionó en 1191 esta enorme máquina, basándose en el diseño de Newcomen pero eliminando la mayoría de sus inconvenientes para poderla emplear para impulsar maquinaria. Un elemento fundamental de la máquina era el regulador, que mantiene constante la entrada de vapor, sea cual sea la carga.

LOS TRIUNFOS DE LA CIENCIA
Fue en el siglo xix cuando las ciencias llegaron a ocupar un lugar preponderante en la civilización de la Europa Occidental. Los sabios no fueron ya aficionados, sino profesores e investigadores que se especializaban, publicaron sus trabajos, confrontaron sus métodos de razonamiento y de experimentación.

Descubrimientos matemáticos importantes fueron el origen de un desarrollo general en las otras disciplinas científicas: el alemán Gauss, profesor de la Universidad de Gottinga, puso las bases del cálculo de probabilidades; en Francia, Lagrange hizo progresar el estudio de la mecánica, Monge creó la geometría descriptiva, Laplace demostró la estabilidad del sistema solar, Arago determinó la medida del meridiano. Sus sucesores Cauchy y Evaristo Galois (que murió a la edad de 21 años, a consecuencia de un duelo) fueron los promotores de la nueva álgebra y de las matemáticas puras. Noruega tuvo en Abel su gran matemático.(Ver: Matemáticos y Físicos)

Estos descubrimientos fueron directamente aplicados a la astronomía; Arago logró medir el diámetro de los planetas; Verrier, basándose en cálculos, estableció la existencia de un nuevo planeta, Neptuno, que un astrónomo berlinés, Gall, descubrió muchos años después, con la ayuda de un telescopio. Varios descubrimientos esenciales revolucionaron la física: refutando todas las afirmaciones anteriores, el óptico Fresnel demostró que los fenómenos luminosos eran debidos a la propagación de las ondas vibratorias. A la sombra del viejo Berthollet, Biot y Arago hicieron las primeras medidas precisas relativas a la densidad del aire; el mismo año, Gay-Lussac descubrió las leyes de la dilatación de los gases y estudió la composición de la atmósfera.

Por su parte, Carnot definió en un largo estudio las primeras leyes de la termodinámica. Los progresos más ricos en consecuencias fueron realizados en el campo de la electricidad: en 1800, los italianos Galvani y Volta construyeron a primera pila; el danés Oersted descubrió la acción de la corriente eléctrica sobre una aguja imantada, y el francés Ampére definió las leyes del electromagnetismo. El inglés Faraday y el americano Henry establecieron la noción de la inducción, y el alemán Ohm expuso su teoría matemática de la corriente eléctrica.

Estos descubrimientos permitieron el empleo del telégrafo eléctrico (dispuesto por Steinheil y Morse), que funcionó en Francia y en Inglaterra hacia los años de 1840. Los progresos de la química revistieron el mismo carácter internacional: gracias al inglés Davy y al sueco Berzelius, la pila eléctrica fue utilizada para el análisis de los cuerpos; la electrólisis permitió así aislar nuevos cuerpos simples: el potasio, el sodio, el magnesio, el cromo, aislados por el francés Vauquelin, el yodo y el aluminio por el alemán Woehler.

La química orgánica hizo importantes progresos gracias al francés Chevreul, autor de un estudio sobre los cuerpos grasos naturales, y al alemán Liebig, que creó un centro de estudios sobre los ácidos orgánicos, la fermentación y la descomposición de las materias, y realizó trabajos sobre la aplicación de la química en la agricultura. Por último, el inglés Dalton y el italiano Avogadro concluyeron las primeras teorías del átomo. Dos aficionados, el ofi cial Niepce y el pintor Daguerre, estudiaron la fijación de las imágenes luminosas obtenidas en la cámara oscura; en 1839, el inglés Talbot realizó las primeras fotografías en papel; seis años después, Niepce de Saint-Víctor inventó la fotografía sobre vidrio.

Los biólogos se dedicaron al estudio de la célula, elemento fundamental de los tejidos, descubierta, en 1830. Bichat y Laennec modernizaron los métodos de la medicina, y el descubrimiento de los anestésicos permitió a la cirugía dar un gran paso adelante. Gracias a un estudio detallado de las rocas, los geólogos reconstruyeron las principales etapas de la evolución de la corteza terrestre. Cuvier, partiendo de la observación de los fósiles, lanzó las bases de la paleontología, ayudado por sus discípulos Dufrenoy y Elie de Beaumont.

Estos últimos se convencieron de la estabilidad de las especies después de su creación; los descubrimientos de Boucher de Perthes sobre el hombre prehistórico  pusieron  en  discusión sus conceptos sobre el origen del mundo.   Lamarck y  Geoffroy   Saint Hilaire   se instituyeron, contra Cuvier, en campeones del transformismo, es decir de la evolución de las especies bajo el efecto de los cambios de ambiente y de herencia. Esta teoría parecía  incompatible  con la  enseñanza  de la Iglesia y dio lugar a una larga controversia entre la ciencia y la religión.

La investigación científica no descuidó la historia; atendió sobre todo, a las civilizaciones del pasado:   Champollion descubrió  el  significado de los jeroglíficos de Egipto, fundando así la egiptología; en Mesopotamia y en Grecia   fueron   emprendidas   excavaciones, fundándose  en  ésta  última  la   escuela  de Atenas.

Con la escuela de Diplomas, los investigadores franceses se dedicaron a un estudio sistemático del pasado de su país, y los sabios italianos multiplicaron las excavaciones   para   exhumar  los   innumerables vestigios de la civilización romana. Las ciencias habían abandonado definitivamente el campo del empirismo y tomado una extensión que iba a provocar una nueva revolución industrial, prodigiosamente acelerada, hacia finales de siglo.

La revolución industrial  vino acompañada de una explosión tecnológica que trajo grandes avances en el transporte (el automóvil y el aeroplano), las comunicaciones (el teléfono y las señales inalámbricas) e incluso el ámbito doméstico (la bombilla y el gramófono). En las ciencias, el naturalista británico Charles Darwin transformó el modo de concebir el mundo con la Teoría de la Evolución.

LA TECNOLOGÍA APLICADA A LOS MEDIOS DE COMUNICACIÓN:

Los Caminos: Al ampliarse la producción y el mercado de venta, se necesitaban medios de comunicación más perfectos. Aún antes de comenzar la revolución industrial, los caminos no satisfacían las necesidades de la población. Según testimonios de los contemporáneos, eran “molestos, malos, y dignos tan solo de ser destruídos” Por ellos transitaban penosamente, como mil años atrás, únicamente bestias de carga. Los transportes eran lentos y sumamente caros. Entre Inglaterra y Escocia, en general, no había comunicación regular. De Londres a Oxford se tardaba no menos de dos jornadas, y las cargas requerían más de tres semanas para llegar a Liverpool.

La etapa inicial de la revolución industrial está relacionada con la intensificación de la construcción de caminos. Sólo en el quinquenio de 1769 a 1774, el Parlamento votó más de 450 decretos sobre la construcción de nuevos caminos o mejoramiento de los viejos. Con el mejoramiento de los caminos, la velocidad de las comunicaciones comerciales aumentó a más del doble. A partir de 1756 aparecieron las comunicaciones postales y de viajeros regulares entre Londres y Edimburgo. Las bestias de carga fueron sustituidas en casi todas partes por las carretas. Sin embargo, para la conducción de cargas voluminosas y pesadas, el transporte terrestre continuaba siendo muy caro e incómodo. Surgió la idea de sustituir los caminos por las comunicaciones fluviales. La construcción de canales comenzó a principios de la segunda mitad del siglo XVIII. En 1755 fue construido un canal de 11 millas de longitud entre Liverpool y Manchester.

Como consecuencia de la apertura del canal, los gastos en el transporte de mercancías se redujeron a la mitad. En 1766 se abrió un canal de 29 millas. A fines del siglo XVIII, el Gran Canal de Unión comunicaba a Londres con las ciudades del centro de Inglaterra. Hacia 1825, la red de canales alcanzó 500 millas de longitud A principios de la década del 40 del siglo XIX, Inglaterra disponía de 2.200 millas de canales y de 1.800 millas de ríos navegables.  En Unos 30 años el país se cubrió de todo un sistema de canales, abiertos preferentemente en los condados del centro y del norte del país.

Todos los canales los construyeron particulares, dueños de grandes manufacturas o magnates de la industria. Pero la verdadera revolución en los medios de transporte está relacionada con la aplicación del vapor y la invención de la locomotora y el barco de vapor. En el primer cuarto del siglo XIX, los veleros comenzaron a ser sustituidos por los vapores, y las torpes y pesadas diligencias por los ferrocarriles.

puentes y canales en la revolucion industrial

El primer vapor se botó en 1807 en el río Hudson, en Norteamérica. Su inventor y constructor fue Kobert Fulton. En Gran Bretaña, el primer vapor se construyó en 1811. En 1816 un vapor cruzó por primera vez el Canal de la Mancha. Tres años después, en 1819, el vapor norteamericano Savannah hizo el primer viaje entre el Nuevo y el Viejo Mundo, cruzando el Atlántico en 25 días, o sea en 6 días más que los barcos de vela.

En 1842, el vapor inglés Drover realizó el primer viaje en derredor del mundo. Hasta entonces sólo los barcos de vela habían circundado el globo. En los primeros tiempos, la navegación a vapor fue más letita que la de vela y resultaba más cara; muchos comerciantes y empresarios no querían utilizarla, pero los más sagaces no tardaron en darse cuenta de sus ventajas en un futuro próximo.Todavía la mayor trascendencia fue la construcción de los ferrocarriles.

El Ferrocarril: La aparición del ferrocarril fue esencial para el éxito de la industrialización. En Gran Bretaña funcionaba desde antes del siglo XIX una forma rudimentaria de ferrocarril: desdelas bocaminas y las canteras, unos vagones tirados por caballos transportaban el carbón por medio de unas sencillas vías fabricadas con piedra y hierro.

La invención del motor a vapor fue el catalizador del cambio. En 1804, un minero de estaño de Cornualles, Richard Trevithick, enganchó un motor a vapor a un vagón de una mina. Inspirado por esta acción, George Stephenson creó su Rocket, la primera locomotora móvil capaz de tirar de vagones.

primera linea de ferrocarril

La primera línea de ferrocarril enlazó Liverpool con Manchester en 1830, y tras ella se desató un boom de la construcción ferroviaria. A partir de 1850, el Estado británico tuvo que intervenir para estandarizar el ancho de vía, que hasta entonces había sido variado. Esta intervención dotó a Gran Bretaña del primer sistema de transporte ferroviario nacional totalmente operativo. El ferrocarril fue ampliándose por toda Europa, uniendo las regiones y comunidades más aisladas y contribuyendo a la integración económica.

Desde el descubrimiento de nuevas rutas marítimas en los siglos quince y dieciséis, los mares unieron a los continentes en lugar de separarlos. Con el aprovechamiento de la energía del vapor en el siglo dieciocho, los barcos cubrieron con rapidez esas distancias, o por lo menos lo hicieron a un ritmo más constante y confiable. Al ponerle ruedas a la máquina de vapor, la revolución del transporte terrestre no se hizo esperar.

Vapores en los puertos: La máquina de vapor, que primero se empleaba para bombear agua de las minas de carbón y estaño, llegó a ser el artefacto más importante de la Revolución Industrial. Esta fuente de energía alimentada por carbón fue adaptada con éxito a la propulsión de barcos, a comienzos del siglo diecinueve.

El norteamericano Robert Fulton construyó en 1807 un barco de vapor, el Claremont, que funcionó. Por la misma época, el inglés Patrick Bell construía a su vez un barco similar. Al principio, el vapor fue considerado útil en los viajes por ríos o canales, pero hacia la década del 30 los barcos de vapor realizaban ya viajes transoceánicos. Los buques de vapor, o vapores, que no dependían de los vientos favorables, podían ajustarse a horarios, lo cual nunca había ocurrido antes. En consecuencia el comercio internacional se incrementó con rapidez. El vapor, más que la vela, intercomunicó pronto vastos imperios como el británico.

Hacia 1880, el motor de vapor propulsaba casi todo tipo de barcos: de guerra, de carga y de pasajeros. Las armadas movidas por vapor exhibían acorazados más armados y más blindados que nunca en toda la historia.

barco movido a palas

Automóviles: La historia del automóvil comenzó en 1885, con la aparición de la primera máquina movida por un motor de combustión interna. Nueve años después, un inventor francés llamado Panhard construyó un vehículo de cuatro ruedas, fácilmente identificable como antepasado del automóvil moderno. Durante la siguiente década se construyeron automóviles en Francia y Alemania, que servían como juguetes para los ricos. Este período puede considerarse como la prehistoria del automóvil.

Su verdadera historia comenzó en 1907 en los Estados Unidos, cuando Henry Ford empezó a producir en serie su Modelo T, mucho más barato que ningún otro coche construido hasta la fecha. Ford estaba dispuesto a atraer a un mercado de masas, y sus primeros modelos costaban sólo 950 dólares. En veinte años, gracias al enorme éxito obtenido, pudo rebajar el precio a menos de 300 dólares.

La demanda aumentó con tal rapidez que en 1915 Ford producía ya un millón de coches al año; esto significaba que lo que antes era un lujo se había convertido en un artículo corriente. De este modo, Ford cambió el mundo; a partir de entonces, incluso las personas con ingresos modestos podían disfrutar de una movilidad impensable incluso para los millonarios de cincuenta años antes.

auto antiguo de 1894

Una revista francesa patrocinó en 1894 una carrera para vehículos automáticos de Varis a Ruán. Los vencedores fueron dos vehículos de gasolina de las firmas Panhard.A consecuencia de esta carrera, la industria accedió a respaldar financieramente a los inventores.

El tendido de cables: Samuel Finley Bréese Morse, artista e inventor norteamericano, produjo la primera aplicación práctica masiva de los impulsos electromagnéticos, al inventar el código Morse en 1837. Siete años más tarde envió un mensaje instantáneo que rezaba: “¡Lo que hubiera fraguado Dios!”, por una linea telegráfica que iba de Baltimore a Washington D.C. ¿Qué quería decir con ello? Se trataba de una expresión de admiración respetuosa. Para la época, el telégrafo era una novedad inimaginable, tan importante y sorprendente como es hoy Internet. Los cables no tardarían en extenderse en todas direcciones por los países industrializados de Europa occidental y Norteamérica, para llegar luego a las más remotas regiones del globo.

Hablar por teléfono: Alexander Graham Bell, un terapeuta de la fonoaudiología, se interesó en el sonido y la comunicación junto con la tecnología telegráfica (consultar la sección anterior sobre el telégrafo), y construyó un teléfono experimental en 1876. Bell, inmigrante escocés a Estados Unidos, produjo y comercializó los aparatos y fundó además Bell Telephone Company. A comienzos del siglo veinte el teléfono no era ya una novedad y se había tornado en una comodidad diaria.

El envió de ondas radiofónicas: A finales del siglo diecinueve, Guglielmo Marconi, inventor italiano, demostró que las ondas de radio podían servir para enviar señales sin necesidad de cables. Los escépticos pensaban que las ondas de radio no podían recorrer distancias lo suficientemente grandes para ser de utilidad. Marconi, que vivía y trabajaba en Inglaterra, probó que estaban equivocados enviando una señal en código Morse a 14,5 kilómetros de distancia, a través del canal de Bristol. En 1901 envió una señal a mucho mayor distancia: a través del océano Atlántico, desde Cornualles (situada en la punta suroccidental de la principal isla de Inglaterra), hasta Newfoundland, en Canadá. Marconi ganó el premio Nobel de física en 1909.

Los Zepellin: Durante mucho tiempo —quizá miles de años— los hombres han soñado con poder volar. En el siglo XVIII empezaron a hacerlo: los hermanos Montgolfier realizaron su primera ascensión en globo en 1783. Durante muchos años, los únicos agentes capaces de elevar el artefacto eran el aire y el gas calientes producidos al quemar materiales directamente debajo del globo, de ahí que se los llamara «globos de aire caliente».

En el siglo XIX, las «máquinas más ligeras que el aire» (una denominación curiosa, puesto que en realidad eran más pesadas, y lo único más ligero era el agente elevador) empezaron a utilizar gases como el hidrógeno, que no necesitaban calentarse. El tamaño y la forma de los aparatos fue cambiando, ya que se pretendía que sirvieran para algo más que el mero flotar a capricho del viento. Los primeros «dirigibles» verdaderos —es decir, aparatos que se podían guiar— aparecieron cuando surgió el motor de combustión interna y pudieron abandonarse los extravagantes experimentos realizados hasta entonces con grandes remos e incluso velas. (Ver: Historia de los Zepellin)

Primeros Vuelos en Aviones: (Ver: Los Hermanos Wright)

globo zepellin

El dirigible Zeppelin Sachsen aterrizando en el aeropuerto de Mockaa en 1913.
Estas aeronaves funcionaban con hidrógeno, un gas muy inflamable, con constante riesgo de incendio.

Fuente Consultadas:
Todo Sobre Nuestro Mundo Christopher LLoyd
HISTORAMA La Gran Aventura del Hombre Tomo X La Revolución Industrial
Historia Universal Ilustrada Tomo II John M. Roberts
Historia del Mundo Para Dummies Peter Haugen
La Revolución Industrial M.J. Mijailov

Calor Producido Por la Corriente Electrica Aplicaciones

U na coméate eléctrica se asemeja a una caravana de electrones; en movimiento; el conductor sería como un bosque contra cuyos árboles chocarían los electrones al “recorrerlo produciendo una agitación general. Los: “árboles” son en este caso átomos o moléculas dei conductor y el movimiento que nace del choque con los electrones se traduce en un aumento de las vibraciones habituales de los átomos y moléculas.

Dichas oscilaciones se perciben como temperatura. De ahí que él calor sea uno de los efectos invariables de la corriente eléctrica al pasar por un conductor. Podemos decir también que ese calor se produce al tratar la corriente de superar la resistencia del conductor.

RESISTENCIA
La resistencia de una sustancia es la dificultad que ofrece al paso de una corriente eléctrica. Puesto que una corriente es un flujo de electrones que saltan de un átomo a otro, la resistencia depende fundamentalmente de la firmeza con que los electrones están sujetos a los átomos.

En un buen conductor como el cobre, algunos de los electrones están muy débilmente unidos a los átomos y ía resistencia es muy pequeña, mientras que en un mal conductor de la electricidad (aislador) como el caucho, todos los electrones están firmemente unidos a sus respectivos núcleos y la resistencia es muy grande.

En los buenos conductores la resistencia depende del calibre y de la longitud. Cuanto más grueso y corto sea un conductor, tanto menor será su resistencia; cuanto más fino y largo, más resistirá al paso de la corriente, pues al reducirse su sección los electrones tienen menos espacio para pasar.

CONDUCTIBILIDAD Y  NATURALEZA QUÍMICA
Hay dos tipos de sustancias: las que conducen la corriente, llamadas “conductoras”, y las que.no la conducen o “aisladoras”. Pero entre las primeras se distinguen dos clases: conductores de primera clase y conductores de segunda clase.

Entre los de primera clase se encuentran los metales, cuya estructura química no varía por el paso de la corriente eléctrica; en ellas los electrones “viajan” solos. Los de segunda clase son los electrólitos, sustancias cuyas moléculas disueltas en agua se separan en iones o partículas electrizadas que al conducir la corriente (en solución o fundidos) sufren reacciones “electrolíticas” que alteran su constitución.

En estas sustancias los electrones son transportados por los iones hasta los bornes o “electrodos”. De allí la disociación de los electrólitos al apartarse los iones de cargas eléctricas opuestas.

EL CALOR,  FORMA DE ENERGÍA
Veamos qué relación hay entre calor y trabajo. El calor es una forma de energía o capacidad de realizar un trabajo que consiste en vencer una cierta resistencia. Las distintas formas de energía pueden transformarse unas en otras. Por ejemplo, un cuerpo colocado a cierta altura posee energía “potencial” que, al caer el cuerpo, se transforma gradualmente en “cinética”.

Al caer contra el suelo produce una pequeña cantidad de calor, como el martillo al dar contra el clavo. La energía se conserva (éste es un principio fundamental de la Física): en el ejemplo de la caída a medida que la energía potencial disminuye, la energía cinética o de movimiento aumenta  y  la  suma de  ambas permanece  constante.

EL TRABAJO MECÁNICO
Cuando una fuerza mueve un cuerpo efectúa un trabajo mecánico (en nuestro ejemplo, la fuerza que actúa es el peso del cuerpo) y ese trabajo es igual al producto de la fuerza por el camino recorrido en su dirección, es decir, por una longitud.

De modo que si queremos expresar el trabajo en unidades, la unidad de trabajo será igual a la unidad de fuerza multiplicada por la unidad de longitud. La unidad de fuerza se llama dina (en el sistema de medidas cuyas unidades fundamentales son el centímetro, el gramo-masa y el segundo, llamado por eso “sistema cg.s.”).

La dina es la fuerza que aplicada al gramo-masa le comunica una aceleración de 1 centímetro por segundo a cada segundo. La unidad de longitud es el centímetro. Pero como la dina es una unidad muy pequeña, el trabajo de una dina a lo largo de 1 centímetro es una unidad diminuta, llamada ergio. Por eso se usa como unidad otra de diez millones de ergios, denominada julio (o joule).

EQUIVALENTE MECÁNICO DEL CALOR
En numerosas experiencias se comprueba que a la realización de un trabajo corresponde la aparición de una cantidad de calor. Por ejemplo, cuando usamos un inflador de bicicleta comprimimos un gas (el aire) y notamos que el tubo metálico se calienta.

Si se ha convertido un trabajo T en una cantidad de calor Q que verifica que T= J x Q, esa “J” es una cantidad constante que permite calcular la reciprocidad entre joules y calorías y se llama equivalente mecánico del calor.

Su valor es 4,18 (1 caloría equivale a 4,18 joules) y lo descubrió el gran sabio inglés James Joule (1818-1889) quien también enunció una sencilla fórmula que permite conocer la cantidad de calor producida poruña corriente eléctrica.

CORRIENTE  ELÉCTRICA Y CALOR
Para abreviar sus fórmulas, los físicos representan las magnitudes por letras, que son generalmente las iniciales de la palabra o la unidad que expresan. “T” significa “trabajo”, medido en joules. “I” significa  “intensidad de la corriente”, medida en  amperios. R significa “resistencia” del circuito, medida en ohmios. “t”  significa  “tiempo”,  medido en  segundos. “V” significa “voltaje”, medido en  voltios.

El   trabajo   realizado   por  una   corriente   eléctrica depende del voltaje, de la intensidad de la corriente y, naturalmente, del tiempo transcurrido, o sea T = V x I x t que ue se expresa T = V .I. t (1) pues los signos de multiplicación (.) se sobreentienden.

Pero según la ley de Ohm: volt = ohmio x amperio,… ósea V = R x I

Al reemplazar “V” por su valor I x R en la fórmula anterior tenemos: T=R x I x l x t  ósea, T = R. I². t (2)

En otros términos, el trabajo  que efectúa una corriente eléctrica es, medido en joules, el resultado de multiplicar la resistencia del circuito en ohmios por el cuadrado de la intensidad en amperios y por los segundos de tiempo transcurrido.

El trabajo se obtiene en joules. Para transformarlo en calorías (una pequeña caloría es la cantidad de calor necesaria para elevar en un grado centígrado la temperatura de un gramo de agua) basta dividir por 4,18 ya que 4,18 julios equivalen a una pequeña caloría.

De modo que conociendo esta relación podemos saber con exactitud cuánto calor produce una corriente. Pero ignoraremos aún cuánta energía   útil  se  produce porque  ésta  depende  de nuestro  designio y siempre  se  gasta  una  parte  de esa energía en fenómenos colaterales indeseables.

CÓMO SE  APROVECHA   EL  EFECTO  CALÓRICO DE LA ELECTRICIDAD
En casi todos los artefactos eléctricos que producen calor o luz se emplean hilos metálicos de muy pequeño calibre y gran longitud, o que por su naturaleza oponen mucha dificultad al paso de la corriente. Estos hilos, arrollados en espiral, se llaman resistencias y logran un rendimiento próximo al 100 % al transformar la energía eléctrica en calor (no en luz).

Otro sistema basado en el mismo principio es el arco eléctrico, donde el hilo metálico es reemplazado por dos electrodos de carbón que también constituyen una resistencia. El arco se forma merced a los vapores de carbón incandescente y se logran temperaturas muy elevadas (unos 3.600°C). Hay otros métodos de producir calor y que sólo mencionaremos. Mediante corrientes alternas de alta frecuencia es posible calentar en todo su espesor sustancias no conductoras (aisladoras llamadas también “dieléctricos”)   por  el   sacudimiento   que   el  campo eléctrico produce en su masa.

Se logra un calentamiento muy uniforme, aprovechable en ciertas industrias (plásticos). Otro método es el calentamiento por inducción en el que se utiliza un campo electromagnético variable (ya hemos visto la relación entre electricidad y magnetismo). También se logra un calentamiento muy uniforme. Pero en estos dos métodos el rendimiento es muy inferior al ciento por ciento.

RESISTIVIDAD Y RESISTENCIA
La resistencia total de un circuito depende, además de su longitud y calibre, de la resistencia especifica o resistividad de la sustancia que lo constituye, y que indicaremos por la letra “r”.

La fórmula se obtiene así: la resistencia R del circuito es tanto más grande cuanto mayor es su longitud “l” y la resistividad “r” del material que lo compone. Por otra parte R es tanto más pequeño cuanto mayor es la sección “s” del conductor.

En resumen, R es igual a la resistividad multiplicada por la longitud y dividida por la sección del conductor, o sea: R = r.l/s

Esta fórmula guía a ios ingenieros en la elección de la sustancia conductora apropiada a cada caso, pues la resistividad “r” es característica de cada material, y hay tablas para conocerlas. Generalmente aumenta con la temperatura (excepto en los semiconductores, el carbón y otras sustancias o mezclas).

Ejemplo: Un calentador electrico para 220 Volt, tiene una resistencia  de 80 Ohmios. Calcular la cantidad de calor T que produce este calentador en 2 minutos.

Antiguo Calentador Eléctrico

Sabemos que: T = R. I². t

La corriente I la obtenemos de la ley de Ohm: I=V/R=220/80=2,75 Amperios

Entonces: T=80. (2.75)². 120 seg.=72.600 Joules y multiplicado por 0,24 lo pasamos a calorias: 17.224 cal.

LÁMPARAS ELÉCTRICAS DE FILAMENTO
Las aplicaciones prácticas del efecto térmico de la corriente son muy numerosas. Una de las más importantes es la lámpara eléctrica. Ésta se compone de un largo y fino filamento de tungsteno que ofrece una considerable resistencia al paso de la corriente (el filamento puede tener hasta 60 centímetros de largo aunque está arrollado en una espiral de menos de 2,5 centímetros de longitud).

La fórmula de Joule nos dice que cuanto mayor sea la resistencia del hilo conductor, mayor es el calor producido. En este caso, debido al escaso calibre y gran longitud, se produce suficiente calor como para que que el tungsteno se vuelva incandescente y emita una luz casi blanca. Aunque ahora parezca simple, los primeros intentos para hallar un filamento adecuado fueron penosos.

Thomas Alva Edison, el inventor americano de la primera lámpara eléctrica útil (1879) empleó hilos de bambú carbonizado y evitó que ardieran haciendo el vacío dentro de la lámpara, es decir, retirando el oxígeno necesario para la combustión. Luego se recurrió al filamento de tungsteno pero el metal se vaporizaba gradualmente y depositábase en una capa negruzca en la pared de vidrio. Para impedirlo, la mayoría de las lámparas actuales están llenas de un gas inerte como el argón, que no reacciona   con   el  metal   y  evita su   vaporización.

ESTUFAS ELÉCTRICAS
Las estufas eléctricas se componen también de un alambre arrollado en espiral que se calienta al rojo cuando pasa la corriente; entonces el hilo conductor no sólo caldea el aire sino que emite rayos caloríficos. El filamento se arrolla sobre un soporte de material no conductor y refractario para que soporte temperaturas bastante altas. Generalmente se usa mica o materiales cerámicos.

El metal de la resistencia es una aleación, por lo general de níquel y cromo. La mayoría de los otros metales se oxidarían (combinación con el oxígeno del aire) y se quemarían muy rápidamente. Existen calentadores llamados de inmersión porque se colocan dentro del agua que se desea calentar, construidos en forma similar a las estufas; su filamento queda  aislado  del  agua  por una  cápsula  metálica  hermética.

FUSIBLES
Los fusibles usados para proteger circuitos eléctricos, representan otra útil aplicación del efecto calórico de la electricidad. Si, por alguna razón, pasa por ellos una corriente más intensa que la prevista se calientan excesivamente y se derriten. Evitan así que el contacto fortuito entre dos cables desnudos, que permite a la corriente utilizar un camino más corto y fácil (de allí viene el nombre de “cortocircuito”) sobrepase la capacidad prevista para el circuito  y pueda provocar un desastre.

El alambre de un fusible se compone de un metal o aleación de bajo punto dé fusión. Si una corriente demasiado intensa recorre el circuito engendra suficiente calor como para fundir el alambre del fusible. Esto corta el  circuito  y se  evitan  serios daños.

El fusible es un simple trozo de alambre fino cuya temperatura de fusión es muy inferior a la del resto del circuito. Se lo intercala de modo que toda la corriente deba pasar por él, y si la intensidad de ésta sobrepasa cierto límite el alambre del fusible se calienta hasta fundir, interrumpiendo el circuito.

HORNOS  ELÉCTRICOS
Otra aplicación importante son los hornos eléctricos. Existen dos tipos: el horno de resistencia que funciona como las estufas domésticas aunque en mayor escala y el horno de arco que se base en el arco eléctrico ya mencionado. Se utiliza la formación de chispas entre los dos electrodos mantenidos a corta distancia y la gran cantidad de calor producida se debe a la resistencia que ofrece el aire al paso de corriente por ser mal conductor.

Estos hornos de arco se usan para fundir metales y en algunos el metal se funde por el calor de dos electrodos de carbón puestos por encima del metal. En otros el mismo metal sirve de electrodo mientras que el otro es de carbono y se funde por el calor del arco.

PLANCHA ELECTRICA: Idem al caso anterior, utiliza calor generado por una resistencia a partir de la corriente eléctrica. las amas de casa todavía no no la podían utilizar ya que no existía la conexion a la red eléctrica y no se había inventado aun el termostato. El calor se producía en una resistencia colocada en el interior de la plancha que con el paso de la corriente eléctrica se calentaba por el efecto Joule.

Esto consiste en que la circulación de corriente eléctrica por la resistencia, desprende mas o menos cantidad de calor dependiendo de tres factores: el valor del cuadrado de la intensidad, la resistencia y el tiempo de funcionamiento del aparato eléctrico.

Fuente Consultada:
Revista TECNIRAMA N°14 Enciclopedia de la Ciencia y La Tecnología – Ciencia: La Electricidad-

Uso de Computadoras en la Segunda Guerra Mundial

PRIMEROS SISTEMAS DE CÁLCULO RÁPIDO APLICADOS EN LA GUERRA MUNDIAL

El cerebro humano es la más eficaz de las máquinas de computar, pero es también la más lenta. La sucesión de imágenes que llamamos vista, atraviesa velozmente el cerebro a razón de sólo ocho a trece veces por segundo. La velocidad más efectiva de un mecanógrafo profesional  es sólo, de  cuatro letras o cifras por segundo. Compárese el alcance de la velocida humana con la de una máquina electrónica cue puede engullir 60.000 datos por segundo.

Era inevitable que el cerebro mecánico tuviese que reemplazar en las oficinas al cerebro humano. Ciertos servicios nuevos como cálculo y análisis de impuestos a los réditos, seguro médico, fondos para jubilaciones, seguridad social, censos de la población de la nación entera, y cómputo de votos, exigían máquinas matemáticas, y así nacieron las primeras máquinas que procesaban información usando tarjetas perforadas.

En realidad el  paso decisivo para la construcción de un ordenador electrónico, en el sentido moderno, lo dio Von Neumann ( con el concepto de software almacenado en una memoria)  se dió a partir del conflicto bélico mundial, en donde era necesario realizar miles y miles de cálculos exactos en el menor tiempo posible, por ejemplo para determinar el ángulo de inclinación de un arma para dar en el blanco del enemigo.

Para ello se valió de los grandes adelantos de la electrónica en esos momentos. En 1944 se construyó el primer ordenador utilizado con fines prácticos: el ENIAC. Como en tantas otras ciencias, este avance vino provocado por las necesidades militares que surgieron con la segunda güera mundial. En 1952 aparecen, sólo a título experimental, los ordenadores MANIAC-I y MANIAC-II. Sin lugar a dudas, podemos afirmar que ese fue el nacimiento de unas máquinas que aún no sabemos, y ni tan siquiera prevemos, hasta dónde pueden llegar.

Estas primeras máquinas computadoras robot, que nacieron en la segunda Guerra Mundial, costaban cada una cinco o más millones de dólares, se han modificado y mejorado cada cinco años. Cada nueva máquina lucía habilidades nuevas y nueva velocidad. Cada una es una creación especial y se les ha dado nombres especiales: ENIAC, MARK I, II, III, BIZMAC, NORC, UNIVAC, ERMA, ZEPHIR. Se las construía en todo el mundo y siempre el último modelo era más imponente que el anterior.

La primera de las computadoras  electrónicas fue la ENIAC de Goldstein, creada en 1944 para calcular tablas de bombardeos y fuego. Resolvió el problema de la trayectoria de una granada en menos tiempo del que la granada necesitaba para llegar al blanco. Esta máquina aconsejó a los ingenieros estadounidenses que no perdieran el tiempo en un cañón eléctrico al cual los alemanes habían dedicado valiosos años y enorme cantidad de dinero. ENIAC demostró que no podía realizarse.

ENIAC, Computadora Electrónica

Las limitaciones de ENIAC, sin embargo, fueron graves. Podía recordar solamente veinte números por vez. El hecho de emplear tarjetas perforadas retardaba el funcionamiento. Podía dar cabida únicamente a 24.000 tarjetas por hora. Había mucho que mejorar y los mejoramientos llegaron.

El siguiente cerebro gigante, MARK I, pudo almacenar 400.000 dígitos, comparado con los 3000 dígitos de capacidad de la ENIAC. MARK I realizaba las sumas en sólo 20.000 microsegundos, comparado con los 300.000 microsegundos de tiempo de la ENIAC. MARK I, en realidad, tenía más de todo: 700.000  piezas y más  engranajes que  10.000 relojes.

MARK I, Computadora Electrónica

El paso decisivo para la construcción de un ordenador electrónico, en el sentido moderno, lo dio Von Neumann ya entrado el siglo XX, al permitir que los programas fuera internos a la máquina. Para ello se valió de los grandes adelantos de la electrónica en esos momentos. En 1944 se construyó el primer ordenador utilizado con fines prácticos: el ENIAC. Como en tantas otras ciencias, este avance vino provocado por las necesidades militares que surgieron con la segunda güera mundial. En 1952 aparecen, sólo a título experimental, los ordenadores MANIAC-I y MANIAC-II. Sin lugar a dudas, podemos afirmar que ese fue el nacimiento de unas máquinas que aún no sabemos, y ni tan siquiera prevemos, hasta dónde pueden llegar.

En 1952, la capacidad de almacenamiento saltó a 3 millones de datos individuales. El tiempo de suma se redujo a 60 microsegundos. En 1954, la capacidad de almacenamiento aumentó a 50 millones de dígitos, y el tiempo de suma se redujo a 14 microsegundos. Y las máquinas siguieron siendo siempre nás veloces.

MARK II fue diez veces más rápida rué la ENIAC; MARK III fue veinticinco veces mas ligera que MARK II. El modelo más reciente puede acumular datos equivalentes a 465.000 tarjetas perforadas y manejar 3.600.000 cómputos distintos por minuto.

La UNIVAC,  capaz  de   realizar  100.000   multiplicaciones por segundo,   podía hacer en  dos minutos mismo que un   hombre en toda su vida   usando una buena   calculadora de pupitre.   Su primer   trabajo fué analizar 12 millones de detalles individuales reunidos por 132.000 recopiladores sobre las formas y condiciones de vida de 150 millones de norteamericanos. Hace un promedio de 60.000. reservas de aviones por día e imprime por minuto 600 renglones de respuestas en un papel.

ZEPHIR es un genio mecánico del idioma, del tamaño de un ropero, que automáticamente traducía del inglés a tres idiomas extranjeros.

Al IBM 704 se le reconoce ahora un vocabulario de 60.000 palabras, comparado con el de 5000 palabras del común de las personas. Tiene 1.179.648 células memorizadoras, lo cual implica haber dejado muy atrás los 200 caracteres por segundo de la primera máquina perforadora electrónica.

En la construcción del “empleado bancario” ERMA, de 25 toneladas, se tardó cinco años, pero ha transformado el trabajo bancario en los Estados Unidos. En lugar de voluminosos archivos de notas y fichas del Mayor, el cajero pagador de un banco tiene solamente un sencillo teclado en su mostrador. Oprimiendo el número de la cuenta del cliente, el pagador acciona el equipo central (dos tambores rotativos de cilindros de aluminio rociados con óxido de hierro archivan magnéticamente toda clase de informes) poniendo a la vista en el acto el saldo del cliente.

A mediados de 1958 ya 1700 empresas usaban cerebros electrónicos, y había pedidos pendientes por 3000 más, a precios que oscilaban entre medio millón y cuatro millones de dólares cada una.

Nace el minúsculo gigante
Los cerebros gigantes continuaron engrandeciéndose hasta que su mismo tamaño se convirtió en un grave problema. Una llamada telefónica transcontinental, por ejemplo, requería 12.300 tubos de vacío además de 112.000 resistencias y 97.000 condensadores. Los grandes lechos de tubos de vacío exigían costosos  acondicionadores  de aire  para  mantenerlos fríos. El mismo tubo de vacío, que fue el iniciador fe la era electrónica, se convirtió en el freno del progreso.

Abocados a este problema, los Laboratorios Telefónicos Bell volvieron a los cristales. Los investigadores supusieron que podría haber uno o dos recursos que quedaron inadvertidos en la galena, u otro material descartado que se utilizase antes de inventarse el tubo al vacío. Su corazonada resultó ser acertada. En 1948 anunciaron la invención del transistor.

Tan pequeño como la uña de un dedo, este trozo de germanio con dos “bigotes” de alambre realizaba todas las funciones de un tubo electrónico. Ya no se necesitaba hacer que los electrones saliesen de los electrodos ni usar ningún costoso sistema de enfriamiento para los tubos calientes. Con 70.000 horas de vida, el triple de los tubos de vacío, el transistor era duradero, seguro y reducido de tamaño.

El tipo de transistor de conexión estaba hecho de simples cristales de germanio metálico. Tenía tres zonas de cristales, que diferían en cuanto a la resistencia al paso de la corriente eléctrica, con las diferencias debidas a cantidades de impurezas insignificantes, pero medidas muy cuidadosamente.

primer transistor

Funcionaba de acuerdo con el mismo principio que un tubo de vacío, que tiene un emisor y un recector (un ánodo y un cátodo). Cualquier variación en la corriente del emisor provocaba una variación mucho mayor en la corriente del colector 7 en consecuencia, hay amplificación.

De igual manera las impurezas de un transistor provocan la variación en la corriente y de este modo controlan y amplifican el flujo de electrones. Para amplificar una señal común, un transistor requiere «clámente un millonésimo de la energía utilizada per un tubo de vacío similar.

Con la aparición del transistor los cerebros gigantes redujeron su tamaño desde el de una casa al de una valija. Los datos guardados en 1.600 gavetas de archivo pudieron entonces condensarse en un espacio de 0,5 metros cúbicos.

Con toda su capacidad para computar y su reducción de tamaño, los cerebros electrónicos han conseguido hacer el trabajo corriente de oficina con una velocidad diez mil veces mayor en los últimos diez años. Los cerebros electrónicos, comenzaron a realizar todas las operaciones comunes. Podían entregar paquetes, escoger y envolver comestibles, cobrar monedas, seleccionar libros de las librerías, y actuar como secretarios de directores y gerentes muy ocupados.

Hoy todo esta evolución es historia y parece anecdótico, pero en aquel momento el mundo estaba asombrado, pues en el tiempo que tardaba un ser humano en apuntar un simple número, ese pequeño adminículo podía multiplicar dieciséis cantidades grandes, elevar al cuadrado el resultado, consultar una tabla de cifras en una pulgada cuadrada de puntos, elegir la cifra exacta e incluirla en el cálculo final….era una maravilla de la ciencia, que había nacido lamentablemente por las exigencias de una onminosa guerra que se llevó mas de 50.000.000 millones de personas, gran parte de ellas civiles inocentes.

LAS COMPUTADORAS COMO DECIFRADORAS DE CÓDIGOS

Durante la S.G.M. Alemania había logrador inventar un sistema de enciptamiento de la información enviada que resultaba sumamente díficil para los aliados poder resolverlo, pues las posibilidades de encriptación de esa información era del orden de billones de posibilidades. A ese sistema se lo utilizaba mediante una máquina creada para tal fin, llamada  Máquina Enigma.

En cierto momento de la guerra una de esas máquinas fue capturada y se le pidió al matemático Alan Turing que se encargase junto a un equipo de cientificos estudiar y descubrir el sistema de codificación de Enigma, para aventajar a los alemanes en sus movimientos estratégicos. Para ello creó una máquina mecánica como la que se observa en la figura de abajo.

Máquina de Turing

Solía decirse que la Primera Guerra Mundial fue la guerra de los químicos y la Segunda Guerra Mundial la de los físicos. De hecho, de acuerdo con la información revelada en las últimas décadas, quizás sea verdad que la Segunda Guerra Mundial fue también la guerra de los matemáticos, y que en el caso de una tercera guerra su contribución sería aún más importante.

Debido a la naturaleza secreta del trabajo llevado a cabo en Bletchley por Turing y su equipo, su contribución inmensa al esfuerzo de la guerra no pudo ser reconocida públicamente, ni siquiera muchos años después de la guerra.

A lo largo de toda su carrera como descifrador, Turing nunca perdió de vista sus objetivos matemáticos. Las máquinas hipotéticas habían sido reemplazadas por máquinas reales, pero las preguntas esotéricas seguían vigentes.

Cerca del final de la guerra Turing ayudó a construir el Colossus, una máquina totalmente electrónica compuesta de 1.500 válvulas que eran mucho más rápidas que los relés electromecánicos empleados en las bombas. Colossus era un computador en el sentido moderno de la palabra, y su velocidad adicional y sofisticación hicieron que Turing lo considerara un cerebro primitivo: tenía memoria, podía procesar información y los estados dentro del computador se asemejaban a estados mentales. Turing había transformado su máquina imaginaria en el primer computador real.

Máquina Colossus

CRONOLOGÍA DEL ORDENADOR ELECTRÓNICO

1642 Pascal diseñó la primera máquina de calcular basada en ruedas dentadas que sólo podía sumar y restar.

1694 El matemático Leibniz diseña una máquina ampliando los estudios de Pascal. Esta calculadora, además de sumar y restar, también multiplicaba, dividía e incluso extraía raíces cuadradas. Debido a la falta de tecnología en esa época la difusión de esta máquina fue escasa.

1822 Babbage establece los principios de funcionamiento de los ordenadores electrónicos en un proyecto de máquina denominada «máquina diferencial», que podía resolver polinomios de hasta 8 términos.

1833 Un nuevo trabajo de Babbage, la «máquina analítica», puede considerarse como un prototipo de los actuales ordenadores electrónicos.

1944  John Von Neuman propone la idea de «programa interno» y desarrolla un fundamento teórico para la construcción de un ordenador electrónico.

1945   Entra en funcionamiento el ENIAC (Electronic Numerical Integrator and Calculator), su primera utilización fue para la construcción de tablas para el cálculo de trayectoria de proyectiles.

1952 Se construyen los ordenadores MANIAC-I y MANIAC-II, con lo que se termina la prehistoria de la informática.

Fuente Consultada:
Grandes Inventos de la Humanidad Beril Becker
Gran Enciclopedia de la Informática Tomo I Historia de las Computadoras

 

Historia de la Automatizacion Causas y Evolución

Historia de la Automatización Industrial

Bajo la presión de la segunda Guerra Mundial se introdujo en las fábricas toda clase de elevadores de horquilla y transportadores para acelerar la marcha de los materiales. Estos se convirtieron en parte integral de la línea de montaje, llevando artículos de una máquina a otra. Inevitablemente, el paso siguiente fue la mano de hierro que comprimiese todas las operaciones mecánicas en una corriente continua.

Una mano humana ejecuta siete movimientos básicos que se combinan cuando toma un objeto, lo hace girar, lo mueve o lo levanta. Treinta juntas son mantenidas bajo el control de las tensiones equilibradas de cincuenta músculos mediante pulsaciones indicadoras que recorren las líneas de sus nervios.

Ford fue el primero que trató de construir, dentro de una fabrica, una máquina cuya constitución interna imitase un organismo viviente. El brazo móvil mecánico, con su mano, fue el primer mecanismo de un robot que actuaba exactamente como los órganos sensoriales. Era un brazo flexible, articulado.

En el extremo tenía una grapa compleja parecida a una mano de acero. La grapa asía la pieza en que se trabajaba  y la  colocaba en la herramienta.Este elemento estaba regido a la distancia por un rollo de papel horadado, como el rollo de música de una pianola. Los agujeros permitían que los contactos eléctricos se hicieran únicamente en los puntos prefijados.

Estos determinaban todos los movimientos separados: a qué velocidad tenía que moverse, cuándo los dedos tenían que cerrarse, a qué distancia debía llegar el brazo móvil, dónde y cómo tendría que colocar el material de trabajo.

El brazo móvil fue un acontecimiento espectacular. Economizó tiempo, dinero y trabajo humano. El cerebro mecánico que apuntó hacia objetivos militares durante la guerra ahora aceleraba la producción de un automóvil Ford. Los ingenieros comenzaron a preguntarse por qué los mecanismos serviles no podían dar órdenes a todas las otras máquinas de la planta y regir la fábrica entera.

automatizar fabrica siglo xix

FÁBRICA AUTOMÁTICA
Para el nuevo salto hacia el futuro se disponía de todos los inventos electrónicos. La automatización de toda una   fábrica   fue una   aventura   en que debería  jugarse un billón  de dólares.   Ford   decidió correr el riesgo.

La automatización significaba más que la interconexión de las máquinas existentes. Fue necesario volver a diseñar y volver a construir todas las máquinas y hacer que la fábrica entera estuviese gobernada por dispositivos eléctricos preestablecidos.

El monstruo de múltiples brazos tenía una cuadra de largo y ejecutaba 540 operaciones mecánicas. Había 265 taladros automáticos, 6 fresadoras, 21 barrenadoras, 56 escariadoras, 101 avellanadores, 106 terrajas de contratuercas y 133 inspecciones.

Las mediciones empezaron a realizarse por medio de pulsaciones eléctricas, en lugar de dientes metálicos. La manipulación se hizo con condensadores eléctricos en lugar de levas. Los movimientos fueron comandados por alambres de conexión y no por palancas.

El capataz fue una cinta magnética que daba una serie de órdenes en forma de sí y de no a los tubos electrónicos, que a su vez la retransmitían cual soldados de centinela a los lugares de trabajo. A   los   músculos   mecánicos   se   acoplaron   cerebros electrónicos.

La automatización hizo anticuados todos los conceptos normales de la producción en masa. El trabajo se realiza en una fábrica con rapidez mil veces superior a lo que lo pueden hacer las manos humanas. Lo que empezó siendo una barra de metal se taladró, horadó, fresó, acepilló, troqueló, aserró, cizalló, trituró y afiló; y mientras tanto daba saltos mortales el tiempo bajo los transportadores aéreos y salía finalmente   convertido   en   150   motores  terminados por hora.

El éxito de la operación Ford contribuyó a que la automatización se extendiera velozmente por todo el territorio de los Estados Unidos. El sistema telefónico es automatizado casi en un 90 por ciento. En cintas perforadas se registran los números llamados y la ciudad, la hora en que comenzó la llamada y la hora en que terminó. Las computadoras reúnen, traducen, clasifican y resumen toda la información facturable.

Un sencillo cable coaxil simultáneamente cientos de conversaciones telefónicas individuales, programas radiales y de televisión. Estaciones amplificadoras que no requieren personal para su atención envian a todo el país todo tipo de comunicaciones.

En la industria petrolera, las unidades de destilación comenzaron tratando 5,5 millones de galones de petróleo no refinado por día mediante el control automático que cuida la circulación del petróleo, su temperatura, su presión y el envase. En las fábricas ie lámparas eléctricas, un río de vidrio corre durante las 24 horas del día, saliendo 1200 lamparitas por minuto.

Cada industria sintió el impacto de la automatización. Con mediciones electromagnéticas se determinó tensión, dureza e imperfecciones de las chapas de hierro. Las células fotoeléctricas estudiaron el pulido, la incandescencia y la transparencia de papeles y tejidos. La automatización no sólo moldeaba un producto, sino que medía su peso, su presión y su espesor, imprimiendo los datos al momento en un rollo de papel. Determinaba por anticipado la clase de operación requerida y hacía sus propias correcciones.

Los métodos de fabricación fueron transformados completamente por el potencial de esta nueva técnica automática. En las radios, por ejemplo, se eliminaron todos los pequeños trozos de cable y soldadura. Las piezas componentes se rediseñaron por completo.

En lugar de cables, se grabaron circuitos extendiendo el metal fundido en moldes plásticos acanalados. Se dispusieron seis distintos circuitos en obleas de cerámica de una pulgada, formando una estructura rígida de aparato radiotelefónico.

La máquina insertadora cortaba, modelaba, insertaba, agruaba y soldaba mecánicamente. Los que habían sido gabinetes en secciones se convirtieron en cajas moldeadas en una sola pieza.

Con esta simplificación se pudo realizar 10.000 montajes por día. Con los viejos métodos, un obrero tardaba un día entero en hacer un solo montaje.  Pronto comenzó a tomar posesión de los depósitos. Las máquinas entregaban mercaderías a los autómatas de depósito que se deslizaban por pasillos, cumpliendo y rotulando pedidos, almacenando mercaderías del stock y entregando planillas con todos los datos.

Todas las operaciones se dirigían por radio desde una oficina central. Los cerebros electrónicos llevaban cuenta exacta de la venta, llenaban listas de pagos de sueldos y jornales, calculaban y enviaban facturas y ordenaban la producción.

Importancia de la Automatización

Fuente Consultada:
Grandes Inventos de la Humanidad Beril Becker

Historia del Uso de la Corriente Alterna Edison Vs. Tesla

HISTORIA Y EVOLUCIÓN DE LA CORRIENTE ELÉCTRICA

Hacia 1880, la ciudad de Nueva York tenía por la noche un aspecto muy diferente al de hoy. Calles y casas estaban, en general, iluminadas con lámparas de gas o de aceite. Pocos años antes, Edison había presentado su práctica lámpara incandescente. Sin embargo, no había un sistema público de energía eléctrica, aunque las calles del bajo Manhattan estaban festoneadas con gran número de alambres eléctricos para circuitos telefónicos y telegráficos.

El primer sistema comercial de energía eléctrica, desarrollado por Thomas Edison, era estrictamente un sistema de corriente continua. La mayoría de los científicos estaban convencidos que la corriente alterna no era segura ni práctica para uso comercial y que no tenía ninguna ventaja compensadora.

Cuando se considera que la distribución práctica de la energía eléctrica se inició con la corriente continua y que sus sistemas predominaron muchos años, es sorprendente que alguna vez llegara a nosotros la corriente alterna. Ahora, sin embargo, los sistemas de energía eléctrica están basados casi exclusivamente en corrientes alternas.

Es evidente que hay algunas propiedades de la corriente alterna que la hacen particularmente valiosa en situaciones comerciales modernas.

MlCHAEL FARADAY
PRIMEROS PASOS….Conocido como el “príncipe de los experimentadores”. Faraday había sido el creador de un sorprendente número de cosas nuevas, incluyendo la iluminación a gas; pero se lo recuerda únicamente como el inventor de la dínamo.

Ya en 1821, demostró que un alambre   cargado podía   girar continuamente   en torno de un imán y que podía hacerse que un unan. girase alrededor de un alambre que transportaba corriente. De estos primeros experimentos resultó una idea que siguió dándole vueltas en el cerebro curante los diez años siguientes. ¿Sería posible que un imán produjera electricidad?

Faraday Cientifico

Lo que indujo a Faraday a concentrarse en este problema fue su convencimiento de que en el espacio que rodeaba a un imán o a un alambre cargado vibraban líneas invisibles de fuerza que se movían hacia fuera en círculos. Sabía que consiguiendo que lesas líneas invisibles de fuerza hicieran girar una rueda, habría dominado esos poderes invisibles.

Era una idea audaz y original la de conseguir que un campo magnético saltara por el espacio desde luna bobina primaria a una bobina secundaria. Fracasaron los ensayos que, con intermitencias, hizo durante diez años. No logró inducir una corriente continua en una bobina secundaria, hasta que de pronto comprendió la verdad en la tarde del 17 de octubre de 1831: para conseguir una corriente continua era necesario tener en movimiento continuo las bobinas  o   imanes   que   cortasen   las líneas   de fuerza.

En pocos días construyó la primera dínamo. Montó un disco de cobre de 30 centímetros, que podía hacerse girar mediante una manivela. Los bordes exteriores pasaban entre los polos de un gran imán mientras giraba. Unas escobillas iban desde el disco le cobre a la segunda bobina, que tenía un galvanómetro. Mientras hacía girar la manivela, la aguja del galvanómetro anunciaba triunfalmente el hecho de que la corriente pasaba sin cesar. Faraday consiguió convertir la fuerza mecánica en corriente. La primera dínamo (o generrador de energía eléctrica) había nacido.

Dinamo, generador de energía electrica

Faraday ignoraba que el año anterior, Joseph Henry, desde Estados Unidos, había escrito a un amigo: “Últimamente he logrado producir movimiento en una pequeña máquina mediante una fuerza que, a mi juicio, hasta ahora no ha sido aplicada en mecánica: mediante atracción y repulsión magnética“. Henry no dio este hecho a la publicidad y con ello hizo perder a Estados Unidos en honor de haber descubierto la dínamo.

En las décadas   que siguieron,   la dínamo   experimental   de Faraday se   transformó,   poco a poco, en el tipo   de   motor-generador   conocido   actualmente. En lugar   del disco   de cobre, se hizo   girar bobinas entre los polos.   Un simple anillo   se transformó   en una serie de bobinas como  un inducido.

Un electroimán reemplazó   al imán permanente.   Los   núcleos de hierro   de los inducidos   se cortaron   en láminas aisladas, para   conseguir un campo   mayor de intensidad.

En 1873,   Z. T. Gramme, de Viena, hizo que un motor   eléctrico girase   accionado   por una   máquina   de vapor y   generó corriente   eléctrica.

Fue entonces   cuando   Edison   pensó   en valerse   de una máquina   de vapor   para   hacer   rotar una   dínamo enorme y con   ello conseguir   una corriente   directa que pasara en forma constante a través de los cables tendidos   por   debajo   de   tierra,   hasta   las   bombitas eléctricas de los edificios. Estaba dispuesto entonces a iniciar los experimentos conducentes a mejorar la lámpara eléctrica, objetivo que logró luego de ensayar 1200 variantes de materiales para el filamento.

Mas tarde Edison se abocó al estudio de generación de corriente eléctrica o generadores y para ello, añadió bastantes espiras de alambre en las bobinas de los primitivos generadores que rodeaban al inducido, hizo los imanes suficientemente grandes y aceleró la rotación del inducido lo necesario para conseguir una fuente barata de energía eléctrica.

EdisonLuego Edison analizó en que si se distribuía la energía por una ciudad era necesario colocar un medidor de consumo. Pensó en el problema práctico de colocar un medidor en cada edificio, a fin de conocer el consumo de corriente eléctrica.

Basándose en que la velocidad de rotación de una dínamo es directamente proporcional a la corriente, construyó un medidor consistente en un pequeño motor desmultiplicado de tal manera que una fracción de una vuelta de la aguja indicadora representase un número enorme de revoluciones. Hubo que resolver otros problemas, tales como la fabricación de fusibles seguros y artefactos livianos.

Toda la provisión de lamparitas, artefactos y electricidad fue gratuita durante un período de cinco meses en todos los edificios que accediesen a cambiar el gas por electricidad. Finalmente, todo estuvo listo y se dio paso a la corriente.

Los periodistas que vieron toda una manzana de la ciudad iluminada con 2.300 lamparitas eléctrica: comprendieron que la era de la iluminación de ga tocaba a su término. Escribieron que no había ninguna llama vacilante ni olor nauseabundo a gas expresando su atónita sorpresa ante las “resplande cientes herraduras que brillaban dentro de los globo en forma de peras”.

La lámpara eléctrica de Edison abrió el camine a la nueva era eléctrica. De los inducidos de 1e central eléctrica entregaban una corriente de 60 ciclos y de 120 voltios que fue la común en todos los hogares de Estados Unidos. Cada libra de carbón producía al consumirse un kilovatio hora de electricidad. Una habitación se iluminaba con sólo hacer girar un interruptor, todo porque una bobina de alambre hacía cosas de magia en un imán.

La lámpara de filamento carbónico se convirtic en lámpara de tungsteno cuando William Coolidge, de la General Electric, descubrió que un pedazo de tungsteno tratado especialmente podía estirarse en forma de metal flexible.

Irving Langmuir añadió un gas que retardaba la evaporación del tunsgteno yj consiguió que ardiese a mayor temperatura, a fin de que de una simple lamparita se obtuviese más luz. Ahora el Hombre Mecánico abriría sus ojos brillantes   dondequiera   una  habitación necesitara luz.

LA ERA DE LA ENERGÍA ELÉCTRICA:

La central eléctrica de Edison dio el impulso inicial a una nueva era de la energía.Resultó evidente que no se aprovechaba toda la energía de que era capaz la primera central eléctrica. La iluminación eléctrica sólo por períodos exigía el total de la energía. Hubo una enorme reserva, que se podía destinar a otros propósitos.

¿Por   qué   no aplicarla   para   hacer   caminar   las ruedas de los tranvías, en vez de emplear caballos? Esto apuntaba hacia un motor eléctrico.

La corriente que pasa por las bobinas de un inducido lo hace girar en virtud de la forma en que lo atraen y repelen los polos norte y sur de un imán permanente. Con un inducido conectado a las ruedas de los tranvías, era posible hacer girar éstas. Todo lo que se necesitaba era agregar un tercer cable a los que pasaban por debajo de tierra, para que sirviese de nueva línea de transmisión y suministrase la energía que necesitaba el motor eléctrico.

Los cincuenta mil caballos cuyos cascos repiqueteaban en los empedrados de Broadway conocieron pronto un sonido nuevo: el ruido metálico del primer tranvía eléctrico.

El tercer cable tardó poco en suministrar energía a los hogares y a los nuevos trenes elevados. El nuevo sistema de transporte permitió la expansión de la ciudad. Los trabajadores no necesitaron ya vivir a distancias que pudieran recorrer a pie para ir a sus oficinas y fábricas. Mientras tanto, los barrios céntricos de las ciudades comenzaron a crecer en sentido vertical, a medida que los motores nuevos accionaban los ascensores de edificios altos.

Los motores eléctricos lograron contener más energía con tamaños menores. Se tornaron tan potentes como para ser unidos directamente a las máquinas de las fábricas. Entraron en los hogares en aspiradoras de alfombra. El proceso sigue continuando ante nuestra vista, mediante el agregado de motores a lavadoras, mezcladoras, batidoras, refrigeradoras y acondicionadoras de aire.

La Corriente alternada
Aunque la electricidad, en su avance arrollador por el mundo hacía adeptos continuamente, la central  eléctrica  de  Edison  reveló  un notorio  defecto.

Las luces eléctricas, que eran brillantes y constantes cerca de la usina, se debilitaban y oscilaban a tres kilómetros de distancia.

Los generadores de corriente eléctrica no proporcionaban más   de 500 voltios   y esta   energía   no se podía  “impulsar” a  mucha   distancia de la   central eléctrica. Si se sobrepasaba los 500 voltios, la energía se derrochaba en lluvias de crujientes chispas azules que partían de las piezas   sobrecargadas del generador. Se vio con   claridad que hacía   falta un   generador de nuevo tipo, que fuese capaz de suministrar energía a distancias largas.

Tesla NikolaUn inventor servio, Nikola Tesla, que trabajó a las órdenes de Edison desde que llegó a este país, se convenció de que la solución estaba en la corriente alternada, que podía generarse en voltajes muy altos.

Edison creyó que esta corriente era demasiado peligrosa. Tesla argüyó que podría reducirse el voltaje, hasta llegar a 120 voltios para uso doméstico, mediante transformadores escalonados.

A todo esto, el transformador, inventado en 1886, resultó ser mucho más flexible de lo que todos imaginaban.   Fue posible pasar   energía de alto voltaje de un circuito a otro circuito con voltaje más bajo, pero con la misma frecuencia (número de revoluciones de una armadura), sin que se moviese ninguna pieza.

El aumento y disminución de los voltajes fue fácil y seguro. Todo lo que se necesitaba era aumentar o disminuir en el secundario el número de espiras de alambre   con relación   al primario, una   ley sencilla que databa de los días de Faraday.

Tesla llevó su patente a George Westinghouse, quien prosperaba mucho con su nuevo freno de aire, que dio seguridad a los ferrocarriles. Westinghouse adivinó en el acto la importancia del generador de corriente alterna. Calculó que el costo de transmisión de esa energía sería sólo el diez por ciento de lo que costaba la corriente continua de Edison.

Los voltajes altos exigían cables más delgados, lo cual permitía muy grandes economías por razón de costosnormal de 120 voltios a distancias que llegaban a 400 kilómetros.

Pronto resultó evidente que mediante centrales hidroeléctricas podían distribuirse 80.000 voltios a ciudades y granjas del campo desde 500 a 1.000 kilómetros. Si fallaba la caída natural del agua, siempre había turbinas de vapor como reserva, para prestar el servicio.

Valida de estos medios, la energía eléctrica se abarató tanto que pudo competir con la energía del vapor, y pronto las fábricas empezaron a usarlas como fuente de potencia. Se instalaron en fábricas nuevos motores de eficacia mayor, en lugar de los ejes, correas y poleas exigidos por la máquina de vapor. La fábrica no sólo adquirió un aspecto más limpio y ordenado, sino que también dispuso de una mayor velocidad.

Se acoplaron motores a máquinas que ahora podían aumentar su velocidad de. rotación hasta 400 revoluciones -por minuto. Conectando motores de diferentes tamaños, sólo se necesitaba una energía mínima. Las fábricas economizaron el costo del anterior movimiento constante de las correas, los ejes y las cadenas que se empleaban con la energía de vapor.

Más o menos en 1920, el Hombre Mecánico unió casi todas las aldeas y ciudades de Estados Unidos a su red de conductores. Los nuevos mapas del mundo se llenaron pronto de puntos, a medida que se desprendían poblaciones nuevas de los centros congestionados y se poblaban los lugares intermedios entre ciudades, y las regiones antes agrestes y rurales. Haciendo el trabajo de cien millones de caballos, la electricidad ayudó a transformar Estados Unidos de una nación minúscula en una nación gigantesca.

Tal como la máquina de vapor revolucionó la navegación, y el motor de nafta debía pronto transformar el transporte por carreteras, la energía eléctrica infundió vida nueva a los ferrocarriles, las fábricas y las granjas de Estados Unidos.

Fuente Consultada:
Grandes Inventos de la Humanidad Beril Becker

 

Historia de la Produccion en Serie La Cadena de Montaje

CADENA O LÍNEA DE MONTAJE
Cuando pudieron hacerse formas metálicas exactamente iguales, fue lógico pensar en ellas como piezas intercambiables.

Eli Whitney fue quien por primera vez montó piezas intercambiables como un nuevo método de fabricación. Se pudo hacer las piezas en un lugar y luego armarlas en otro. Whitney pensó que en esta forma los productos manufacturados podrían producirse en cantidad mayor con más rapidez y a menor costo.

Ely Whitney

En los primeros años de su juventud, Whitney se ganó la vida batiendo clavos en un yunque. Nunca podía dar a los clavos formas exactamente iguales. Años después, cuando ya había inventado la desmotadora de algodón, en una ocasión en que observaba cómo con un martillo pilón se hacían miles de clavos idénticos, se convenció de que las máquinas tendrían que sustituir a la mano del hombre.

Por esa época, en 1789, Francia estaba en plena revolución, y los Estados Unidos temían que su mejor amiga pudiera volverse contra ellos. Se necesitaban fusiles para la defensa de las costas de América. Para fabricarlos a mano se requerirían años. No es de extrañar que el Departamento de Guerra se alegrase cuando Whitney propuso entregar 10.000 mosquetes en el término de dos años al bajo precio de $ 13,40 cada uno. Se celebró contrato con Whitney, adelantándole una suma para que comenzara la fabricación.

El joven inventor, sin embargo, tropezó con gran dificultad para encontrar hombres que poseyeran la pericia mecánica necesaria para hacer las máquinas cortadoras que reemplazasen al viejo martillo, el escoplo y la lima. Al igual que antes Watt, Whitney tuvo que hacerse las herramientas requeridas y adiestrar en el manejo a los obreros que él tomaba en las fundiciones y talleres de maquinaria.

Su primera tarea fue construir un elemento mecánico que reemplazara a las, manos humanas en la aplicación y dirección del movimiento de un instrumento cortante. No había maquinistas cuyas manos fuesen suficientemente firmes o fuertes como para sostener un instrumento de raspado contra una pieza de hierro que gira más de unos pocos minutos cada vez.

Se necesitaba una presión constante y exacta. Resolvió el problema con una especie de plantilla mecánica, que viene a ser un molde de madera o metal, a lo largo del cual se mueve una herramienta que hace piezas iguales.

Cada pieza del mosquete se sujetaba en una posición prefijada antes que las fresas la cortaran. De esta manera se repetía cada una con precisión absoluta. No sólo se empleaban piezas uniformes, sino que los bancos de trabajo se ubicaban de manera que las piezas pudieran pasarse de un obrero al otro.

La fábrica se dividía en departamentos, cada uno con su máquina especial unida por correa a un eje que impulsaba y hacía todas las herramientas cortantes.

Con esto la fábrica ya estaba preparada para ponerse en marcha, y todas las máquinas comenzaron a trabajar al mismo tiempo. Una máquina daba forma a la caja de madera del fusil, con sus superficies planas y curvadas. En hojas metálicas se hacían agujeros en lugares precisos, a fin de que sirviesen de guías para la producción en masa de trabajo de perforación.

Con grapas se sujetaban hojas metálicas contra los bancos, mientras las fresas las cortaban. Interruptores automáticos-detenían la acción de la herramienta. El mecánico sólo necesitaba agrapar las barras metálicas, las cuales eran cortadas, cepilladas, conformadas, taladradas, lustradas y esmeriladas automáticamente.

Los obreros solamente tenían que reunir las diversas piezas y llevarlas a la sala de montaje, donde se armaban los fusiles en tiempo record.

Finalmente, se dispuso de una forma de producir grandes cantidades de materiales con la rapidez, la uniformidad y la precisión que ningún artesano podía lograr individualmente.

Comienza la producción en masa
En este tiempo las avanzadas de pobladores y colonizadores de zonas lejanas estaban en plena marcha hacia el oeste de los Estados Unidos. Había que preparar las fronteras (que es como se llamaba a los límites entre civilización y regiones incultas) y construir viviendas.

El hacha era la herramienta predilecta del pionero. Pero éste a menudo tenía que esperar meses a que el herrero le forjara un hacha. Cada mango exigía un tallado cuidadoso. Cada hoja de hacha requería un largo y lento proceso de templado y pulimento.

Lo que Whitney había hecho para el fusil, otros entusiastas de la mecánica lo aplicaron al hacha. Las fábricas las hicieron a millares. Se colocaban en tambores giratorios y pasaban por las llamas de un horno en un proceso de calentamiento uniforme. Luego un martinete de fragua les daba rápidos golpes sucesivos, que hacían perforaciones de una medida exacta, por donde entrase a la perfección el mango.

De la noche a la mañana dejaron de faltar hachas. Corrió si se tratase de celebrar la intensificación de la producción fabril, empezaron a salir en cantidad los relojes de las fábricas. Con máquinas se perforaban miles de piezas por día y se montaban tan rápidamente que todo el mundo pudo tener reloj por muy bajo precio.

El hecho de que las máquinas pudieran hacer cosas mejores y con mayor rapidez produjo una conmoción creciente que todo lo inyadió. Elias Howe descubrió la parte esencial de la idea de una máquina de coser un día en que puso el ojo de una aguja en la punía en lugar de la cabeza.

De esta manera fue posible hacer que el hilo atravesase la lela sin necesidad de que la aguja la pasase de lado a lado. Otro hilo que salía de una lanzadera pasaba por dentro del lazo. Cuando la primera aguja retrocedía nuevamente, con un punto de cadeneta se apretaban los dos hilos. Esto resultó cien veces más rápido que coser a mano.

Singer introdujo mejoras. Mediante un pedal consiguió que las manos de la costurera quedasen libres y pudiesen guiar la tela. Se dio a la aguja movimiento vertical, subiendo y bajando, en vez de moverse Imrizontalmente como la aguja de Howe.

Al poco tiempo la máquina de coser pasó del hogar a la fábrica. La producción en masa hizo bajar los precios. Todos pudieron adquirir desde entonces mi traje nuevo, un vestido nuevo. Las máquinas construyeron nuevas máquinas despúes de cada nuevo invento. La lenta salida de los productos manufacturados, parecida a un goteo se transformó en un diluvio.

PARA SABER MAS…
Cadena de Montaje en Ford

La producción dependió de la rapidez con que el hombre pudiese servir a la máquina. En la línea de montaje, cada hombre agregaba una pieza al armazón desnudo que iba avanzando por esa línea. A medida que el magneto, por ejemplo, se desplazaba sobre un medio transportador, los hombres le añadían algo cada uno, hasta que finalmente salía terminado al cabo de trece minutos. Levantando el transportador del magneto veinte centímetros, para que los hombres no tuvieran que agacharse, el tiempo disminuyó a siete minutos. Imprimiendo al transportador un poco más de velocidad, ese tiempo se redujo a cinco minutos.

Con métodos similares, en la línea del ehassis se redujo el número de estaciones, hasta que fue sólo de cuarenta y cinco, y de la última operación salía el auto armado. Fue éste un ejemplo sensacional del método nuevo de producción. En 1915, un coche se terminaba en noventa y tres minutos. Una década después, luego de haberse vendido 16 millones de automóviles del modelo T, cada quince minutos salía un coche nuevo. Lo más sorprendente de todo es que el precio se pudo reducir de 850 a 295 dolores.

Frederick Taylor fue el primero que concibió la idea de que el propio hombre pudiera convertirse en un mecanismo. Taylor es el ingeniero que descubrió un acero de aleación nueva capaz de cuadruplicar la velocidad de las herramientas cortantes. Imaginó que el propio hombre podía llegar a ser igual de eficiente que una máquina si se eliminaban movimientos superfluos. Utilizando un cronógrafo, determinó el tiempo que tardaban distintos obreros y el que se requería en distintos movimientos para concluir una operación.

Otros ingenieros siguieron estudiando los movimientos de los obreros con el propósito de llegar al máximo de producción posible por minuto. Todos estos estudios sobre la forma de lograr que las piezas y los materiales saliesen en forma uniforme y fija; con la velocidad mayor con que las máquinas pudieran producirlas, desembocaron en una sorprendente conclusión: nunca se conseguiría que el hombre fuese una máquina eficiente.

Ver: Henry Ford y su Producción

Fuente Consultada:
Grandes Inventos de la Humanidad Beril Becker

Aliscafos: Funcionamiento y Usos Lanchas Flotantes

La velocidad de un barco, incluso cuando se trata de una nave de combate, está muy limitada por las enormes fuerzas de fricción que se desarrollan entre su casco y el agua en la que flota. Parece, sin embargo, que el desarrollo del aliscafo (aliscafo, hidroplano o hidrofoil), basado en principios totalmente nuevos, puede proporcionar un medio de vencer las limitaciones de velocidad impuestas por el agua.

Las relaciones que existen entre los aliscafos y las embarcaciones ordinarias son similares a las que existen entre los aeroplanos y los globos dirigibles. Tanto los globos dirigibles como los barcos ordinarios se trasladan (en el aire y en el agua, respectivamente), y casi toda la potencia suministrada por sus motores se emplea en vencer “la resistencia al avance entre su superficie externa y el agua o aire que los rodea.

aliscafo

En contraposición, tanto los aeroplanos como los aliscafos emplean sus planos inclinados, esquíes o aletas, para desviar parte del aire o del agua hacia abajo. De esta forma, la potencia desarrollada por sus motores se emplea no sólo para impulsar la nave venciendo la resistencia al avance, sino también para sustentarla.

Esta fuerza de elevación sostiene el aeroplano (que es, por supuesto, mucho más pesado que el aire) en el vuelo, mientras que en los aliscafos se emplea para elevar el casco de la nave sobre la superficie del agua, produciendo una drástica reducción de la resistencia al avance, con el correspondiente aumento de velocidad. Sin embargo, cuando están parados, los aliscafos flotan sobre el agua de forma análoga a una embarcación normal, y sólo cuando se impulsan a gran velocidad reducen la superficie de contacto con el agua, al elevarse.

aliscafo PT 10

El PT.10, primer aliscafo construido para el transporte de pasajeros, fue botado en 1952. Esta embarcación, equipada con pianos en “V”, puede transportar a   30  personas.

En el momento en que un aliscafo alcanza la velocidad adecuada, su casco se eleva sobre la superficie del agua, creando perturbaciones aerodinámicas mucho menores que una embarcación corriente que se trasladara a la mitad de la velocidad, en condiciones comunes. Los aliscafos son, por tanto, muy adecuados para el servicio en ríos y lagos, donde las perturbaciones excesivas pueden causar grandes perjuicios en las orillas y a otras embarcaciones. De hecho, hasta hace poco, este tipo de embarcación se ha utilizado sólo en aguas interiores o resguardadas.

Se han empleado, por ejemplo, para viajar por los ríos soviéticos y para cruzar los lagos suizos, siendo especialmente adecuados para viajes cortos, ya que consumen, como mínimo, el doble que las embarcaciones ordinarias. Al principio, se encontró cierta oposición al empleo de estas embarcaciones en aguas abiertas, ya que existían dudas sobre su comportamiento en condiciones climatológicas adversas, y no se sabía si serían más vulnerables a las grandes olas que las embarcaciones corrientes, en caso de ser sorprendidas por una tormenta en el mar.

Las primeras experiencias en los años 60 de un grupo de investigadores en los EE. UU. han demostrado que un aliscafo navegando por el océano es, en realidad, una realización práctica. El viaje de 370 kilómetros entre Port Everglades, en Florida, y las Bahamas con este tipo de embarcación, se puede realizar en unas tres horas, siendo más rápido que los buques de vapor y más económico que los aviones.

Aunque los aliscafos viajan más rápidamente que las embarcaciones ordinarias de tamaño parecido, este aumento de velocidad se consigue sin pérdida de comodidad para los pasajeros, e incluso se afirma que el viaje en aliscafo es mucho más suave. Esta ventaja adicional sobre los viajes ordinarios por agua se deriva del hecho de que el casco del aliscafo se eleva sobre la superficie.

Como sólo los planos (esquíes o aletas) reciben los golpes de agua directamente, las elevaciones y descensos, así como el balanceo experimentado por el barco, se reducen considerablemente. También se reducen en alto grado las vibraciones debidas a los motores.

DISEÑO DEL ALISCAFO
Aunque el agua es unas 815 veces más densa que el aire, los aliscafos tienen muchos puntos en común con los aeroplanos. Los planos inclinados no sólo crean un impulso hacia arriba, como consecuencia de desplazar el agua hacia abajo, sino que la presión hidrostática en la zona inmediatamente superior al plano se reduce, como consecuencia del movimiento. Por lo tanto, sobre ambas superficies del plano se crean fuerzas que tienden a elevarlo, trasmitiendo su impulso al casco unido a él.

La zona de bajas presiones que se crea por encima del plano puede, en ciertas circunstancias, provocar la formación de burbujas de vapor bajo la superficie del agua (un líquido se puede vaporizar haciendo descender su presión, lo mismo que elevando su temperatura).

La formación de estas burbujas no constituye en sí un problema serio; pero, una vez que se han formado, pueden alcanzar la parte posterior del aliscafo. Allí se deshacen, provocando pequeñas ondas de choque que pueden dañar las superficies metálicas. Esto se evita, en gran parte, empleando perfiles especiales, muy finos, para los planos, lo cual requiere el uso de materiales muy costosos, tales como el titanio. Para reducir el peso al mínimo, las embarcaciones se fabrican, en general, con ligeras aleaciones de aluminio.

La gran diferencia de densidad entre el aire y el agua puede provocar una falta de estabilidad si el plano, o parte de él, se eleva momentáneamente fuera del agua. Esta dificultad no es corriente en aguas resguardadas, donde las olas no son grandes, pero es uno de los problemas a resolver antes de que los aliscafos puedan navegar con seguridad por los océanos. Si el ángulo de los planos permanece fijo, el impulso ascendente aumenta a medida que el plano se hunde en el agua. Por lo tanto, el barco mantiene automáticamente su elevación, pero sigue las ondulaciones de las olas.

Sin embargo, puede conseguirse un desplazamiento suave si el ángulo de los planos (o su incidencia) es alterable; en algunas embarcaciones, el ajuste de este ángulo se realiza por un dispositivo automático sensible. De esta forma, la quilla de la nave puede mantenerse a calado constante.

Se han desarrollado varios tipos diferentes de aliscafos, con el fin de conseguir estabilidad. Los sistemas principales emplean planos en “V”, grupos de planos dispuestos en escalera y diversos sistemas con control de inclinación. En los dispositivos que emplean planos en “V”, el sistema de planos principal se monta ligeramente delante del centro de gravedad de la embarcación, disponiendo un segundo plano en “V” próximo a la popa.

Como puede observarse en el esquema, los extremos de los planos emergen del agua, incluso cuando la embarcación “vuela” sobre aguas quietas. Esto es indispensable para estabilizar la nave cuando atraviesa aguas revueltas o cuando gira.

En el sistema en escalera, una serie de planos se disponen, uno sobre otro, como los peldaños de una escalera, sobre un soporte. A medida que el casco de la nave se eleva de forma gradual sobre la superficie del agua, a causa de la velocidad creciente, algunos de los planos emergen. Esto significa que se dispone dé un área extensa para producir la elevación cuando la velocidad es baja; pero, a medida que la velocidad aumenta, la fuerza precisa para el avance de la nave se reduce, ya que el área de los planos sumergidos es menor. Del mismo modo que en los sistemas en “V”, la estabilidad es mantenida por los planos que se sumergen y emergen del agua.

Existen muchas variaciones en los sistemas de incidencia controlada. En general, las naves equipadas con este tipo de sistema llevan planos totalmente sumergidos a popa, y la estabilidad se consigue por una serie de dispositivos diferentes, con distintos tipos de flotadores ajustables, montados cerca de la proa. Algunos tipos poseen alas o flotadores que se deslizan sobre la superficie, mientras que en otros la estabilidad se consigue por diversos mecanismos automáticos, que ajustan el ángulo de incidencia para compensar las variaciones en la superficie del agua. Con el fin de que los planos trabajen con eficacia, es esencial que su superficie sea lisa. Pero casi todas las superficies sumergidas en el mar se recubren de lapas y otros pequeños organismos marinos.

Por ello, es preciso limpiar, al menos una vez al mes, los planos y todas las partes asociadas situadas debajo del agua. Sólo con los adelantos conseguidos hasta el presente no parece probable que puedan construirse grandes embarcaciones fundamentadas en el principio del aliscafo.

La principal dificultad con que se tropieza en el diseño de los aliscafos, incluso los de tipo más pequeño, es la acomodación de los planos para amarrar las naves. Con embarcaciones pequeñas, el problema no es grave, ya que pueden ser retráctiles. Sin embargo, con los grandes buques, dotados de sus correspondientes planos de gran tamaño, existe un peligro real de que éstos puedan dañar la obra del puerto al entrar el barco.

El mayor aliscafo construido hasta la fecha es un barco soviético de 107 toneladas, con capacidad para 300 pasajeros. De esta embarcación se afirma que puede alcanzar velocidades de 80 kilómetros por hora.

Vista Inferior de los Aliscafos Con Sistemas Distintos

APLICACIONES
Aunque la mayoría de los aliscafos que se encuentran en servicio está destinada al trasporte de pasajeros a lo largo de los ríos o a través de lagos, existen ya posibles aplicaciones para naves rápidas, basadas en el principio del aliscafo. Estas embarcaciones presentan un interés militar indudable, en especial para destruir submarinos. Otra aplicación interesante se encuentra en el campo de los vehículos anfibios y lanchas de desembarco.

El establecer una cabeza de playa ha sido siempre una operación peligrosa, ya que las lentas lanchas de desembarco son, con frecuencia, un blanco fácil. Estas naves, equipadas con planos retráctiles,  serían, por tanto, unos instrumentos valiosos.

Fuente Consultada:
Enciclopedia de la Ciencia y la Tecnología Fasc. N°72 Los Aliscafos

Aviones Convertibles Primeros Modelos y Tipos

INTRODUCCIÓN: El día 2 de noviembre de 1954 constituye un hito en la historia del aeroplano. Dicho día, en la base de pruebas de la casa Convair, el piloto J. K. Coleman realizó el primer vuelo en un avión que despegó verticalmente desde su posición de partida, basculó en el aire, voló horizontalmente a más de 800 kilómetros por ahora y aterrizó de nuevo en posición vertical hasta quedar apoyado sobre la cola.

El Faire-Rotodyne, convertible para pasajeros, de velocidad superior a los 300 kilómetros por hora.

El avión era un monoplano de ala en delta Corvair XFY-1 equipado con un turbopropulsor Allison de 5.500 HP. Dos hélices tripalas contrarrotativas proporcionan, junto con el empuje del chorro del reactor, la fuerza de sustentación necesaria para el despegue vertical. Se trata de un nuevo tipo de avión, que los norteamericanos designan VTOL (Vertical Take oíi Landing: despegue y aterrizaje vertical) y que en Europa se conoce por «convertible».

En el año 1950, con ocasión de la guerra de Corea, el Gobierno de los Estados Unidos se dio cuenta de la necesidad de disponer de aviones de caza capaces de despegar en cualquier clase de terreno, sin necesitar aeródromos y pistas de aterrizaje.

En efecto, el peso cada vez mayor de los aviones de caza obligó a hacer pistas y campos de aterrizaje de mayor extensión y resistencia, y, por otra parte, el terreno montañoso no ofrecía lugares a propósito para la instalación de tales campos y pistas. Asimismo había que pensar en aviones de caza capaces de despegar de la cubierta de los buques de guerra y de transporte y que pudiesen aterrizar de nuevo en ellos, evitando tener que acompañar las escuadras y convoyes con costosos y vulnerables portaaviones.

A partir de dicho año los proyectos se suceden, la mayoría irrealizables por fantásticos; pero algunos ofrecen posibilidades constructivas, y al cabo de cuatro años se consigue que vuele el primer «convertible».

Qué se entiende por avión convertible:

Un avión convertible es un avión capaz de despegar y aterrizar como un helicóptero, es decir, verticalmente, y una vez alcanzada la altura suficiente, volar como un avión.

Aunque el helicóptero resuelve muchos problemas, como son los del salvamento en zonas difíciles de acceso, vigilancia y enlace, así como transporte del aeropuerto al centro urbano y de ciudad a ciudad con helicopuertos centrales, las misiones de tipo militar, en campaña, quedan limitadas en estos aparatos por su reducida velocidad.

En dos décadas de desarrollo el helicóptero sólo ha alcanzado una velocidad máxima de 251 kilómetros por hora (récord mundial, septiembre de 1953, helicóptero Sikorsky XH-39, piloto Wester, de los Estados Unidos), y no es previsible ni probable que llegue a alcanzar nunca las velocidades sónicas, ya alcanzadas y hasta rebasadas por algunos tipos de aviones de caza.

El 5 de enero de 1959 el Fairey-Rotodyne, primer convertible comercial para pasajeros, ya logró alcanzar en sus vuelos de ensayo los 307 kilómetros por hora sobre un circuito de 100 kilómetros, batiendo con ello la marca de velocidad máxima alcanzada por los helicópteros.

Si motivos militares son los que han impulsado el rápido desarrollo del convertible, no debe olvidarse el problema de la seguridad, que queda ampliamente resuelto con este tipo de avión. Por consiguiente, no deberá extrañar que, una vez puestos a punto los convertibles militares, se construyan paralelamente los convertibles civiles, tanto para el transporte de viajeros como para el turismo o el avión particular.

Tipos de aviones convertibles:

Los convertibles se clasifican en tres grandes grupos:
1.° Los que disponen de rotores, hélices o reactores distintos para la sustentación como helicópteros y para la propulsión como aviones.
2.° Los que tienen un mismo rotor, hélice o reactor para la sustentación y la propulsión, y el eje del propulsor ha de girar 90° al pasar de una a otra clase de vuelo.
3.° Los que se sustentan y avanzan sobre una columna de aire creada por sus elementos propulsores. Son las plataformas volantes.

En el primer grupo, los aparatos reúnen las características del helicóptero combinadas con las del aeroplano: alas y hélices o reactores de avión para el vuelo horizontal, y rotor de helicóptero o reactores para el vuelo vertical. La ventaja principal de estos convertibles estriba en la seguridad de su pilotaje, ya que el paso de vuelo helicóptero al vuelo avión es continuo, conservando siempre el mando del aparato. El grupo primero se subdivide en tres subgrupos:

a)    Los convertiplanos cuyo rotor de despegue se para en el vuelo horizontal, de manera que las palas ofrezcan una resistencia mínima al avance.
b)    Los convertiplanos en que las palas del rotor de sustentación vertical se colocan de manera que en vuelo horizontal actúan como las alas fijas de los aviones normales.
c)    Los combinados de avión y helicóptero, es decir, los helicoplanos o helicópteros combinados, con fuselaje y alas de avión provisto de rotores sustentadores.

Entre los proyectos correspondientes al grupo primero, subgrupo a), destaca el convertiplano de Wilford, con rotor monopala contrapesado, de propulsión por reacción, a tase de chorro de gases comprimidos por el motor y eyectados e inflamados en el extremo acodado de la pala.

En el subgrupo b) merece citarse el convertiplano de Herrick, HV-1, que realizó sus primeros ensayos en 1931, prosiguiendo sus estudios en años posteriores (el HV-2 voló en 1937).

avion convertible herridyne

Modelo norteamericano «Helidyne», convertible, con dos rotores coaxiles y dos motores para vuelo horizontal. Ofrece, en su conjunto, las ventajas del helicóptero, el autogiro y del avión clásico.

Convertiplano de Herrick. Es un biplano con una ala fija y otra giratoria, a voluntad, dotada de turborreactores en sus extremos. Para el despegue y aterrizaje el plano superior actúa como un rotor de helicóptero; este rotor se convierte en plano cuando navega en vuelo horizontal.

El subgrupo c) está formado por los helicópteros «combinados», de los cuales constituye un precursor el autogiro español La Cierva, cuyos primeros vuelos datan del año 1923. El notable ingeniero Juan de la Cierva, con su revolución genial de la articulación de las palas del rotor y el descubrimiento del fenómeno de autogiración, hizo posible el desarrollo posterior del helicóptero y, como consecuencia, el del convertiplano.

Como se sabe, el autogiro primitivo era un avión de alas reducidas en las que una hélice tractora proporcionaba la velocidad suficiente para que el rotor entrase en autogiración, suministrando la fuerza de sustentación necesaria al vuelo. El rotor permitía una velocidad de vuelo muy reducida y el aterrizaje prácticamente vertical, y en los últimos modelos se lograba el despegue vertical acelerando el rotor mediante una transmisión desde el motor.

Soluciones parecidas, aunque no pueden clasificarse   estrictamente   como  convertibles,   son:

El «helicoplano» Hamilton, que se ensayó en los Estados Unidos en 1929, formado por un avión monoplano de ala alta Hamilton con dos hélices de eje vertical de 5,50 metros de diámetro situadas bajo el ala y a ambos lados del fuselaje.

Tipo de avión convertible que despega sobre un trípode, proyectado por L. H. Leonard. Una vez que el aparato ha despegado, gira sobre sí mismo un ángulo de 90 grados, las aletas estabilizadores se reducen por retracción (alas delanteras) y el aparato queda convertido en un cigarro puro volante de grandes alas.

El «giróptero» del francés Chauviére, construido en 1929, provisto de rotor sustentador y hélice tractora.El «clinógiro» de Odier Bessiére, ensayado en Francia en 1932, no es más que un monoplano Caudron 193, con motor de 95 HP, al que se le ha añadido una ala superior giratoria formada por un rotor de cuatro palas. Un proyecto posterior de A. Flettner prevé un avión clásico con cuatro hélices verticales para asegurar despegue y aterrizaje verticales.

Entre los «combinados» modelos pueden citarse los siguientes:

El helicóptero birrotor americano de la «Gyro-dyne Co.» Helidyne 7 A, con alas fijas reducidas de avión y dos motores con hélices propulsoras que le permiten volar a 140 kilómetros por hora con una carga útil de 1.340 kilogramos. Se trata de una adaptación del helicóptero Bendix. Sus primeros vuelos tuvieron efecto en noviembre de 1949. Un nuevo tipo, el Helidyne, destinado al transporte militar, presenta un peso en vuelo de 11.300 kilogramos.

Parecido a éste es el aparato experimental francés Farfadet SO-1310, helicóptero con un rotor de reacción a base de aire comprimido suministrado por una turbina «turbomeca» de 260 HP y alas fijas de superficie reducida, así como una hélice tractora accionada por una segunda turbina. En vuelo horizontal el rotor entra en autogiración. Sus ensayos dieron comienzo en el año 1953.

El Fairey-Rotodyne, que ya se ha citado, corresponde a este subgrupo.
En el grupo segundo, convertiplanos de rotor sobre eje que bascula en 90° para pasar del vuelo vertical al horizontal, también se distinguen dos subgrupos:

a)    Convertiplanos en que el rotor y el fuselaje basculan simultáneamente al pasar del vuelo en helicóptero a vuelo en avión, o sea eje del rotor invariable respecto al fuselaje.

b)    Convertiplanos con rotores o reactores de eje basculante respecto al fuselaje que permanece siempre en posición horizontal.

Los aparatos correspondientes al grupo segundo se caracterizan por tratarse en general de aparatos de alas fijas cuyas hélices son de diámetro mucho mayor al que normalmente sería necesario para el vuelo horizontal. En efecto, en este tipo de convertiplano las hélices, que trabajan con eje vertical, han de proporcionar la fuerza de sustentación necesaria para elevar vertical-mente el aparato.

El Hillar X-18 Propelloplane, avión convertible de ala basculante que despega en vertical.

Entre los aparatos del grupo segundo, subgrupo a), figuran los primeros convertibles de realización práctica y cuyos vuelos permitirán la solución del problema para los aviones de caza. Es el VTOL Convair XFY-1, ya citado, y otros como el Coleóptero, que más adelante describiremos con mayor detalle.

Este subgrupo a) es mecánicamente el de más fácil realización;  en cambio, presenta  otros inconvenientes que la práctica indicará la forma en que deberán solucionarse. Son éstos la difícil maniobra del paso de vuelo vertical a horizontal, y viceversa, basculando todo el aparato.

El embarco de los tripulantes y del material en el fuselaje en posición vertical tampoco será fácil. Por último, la estabilidad en el momento de aterrizaje si sopla viento algo fuerte parece precaria dada la altura del centro de gravedad con relación a la reducida base de apoyo sobre la cola.

Como primeros proyectos y realizaciones, merecen citarse los siguientes:
El de Focke-Wulf, que durante la segunda Guerra Mundial proyectó un convertible a base de substituir las alas por un gran rotor tripala situado tras la cabina de mando, accionado por estatorreactores en el extremo de las palas. Esto obligaba a utilizar cohetes de despegue. Los empenajes de tipo normal soportaban el tren de aterrizaje, sobre el cual se apoyaba el aparato en posición vertical para el despegue y aterrizaje.

Parecido al anterior, pero más atrevido, es el proyecto de L. H. Leonard, en el cual dos grandes rotores impulsan un fuselaje en cuya proa se halla la cabina de mando y los empenajes, y en la popa el tren de aterrizaje que, replegado en vuelo, se despliega para el aterrizaje vertical sobre la cola.

Un convertiplano correspondiente a este grupo, que fue construido por encargo de la Marina de los Estados Unidos, es el ala volante semicircular «Chance Vought» XFSU-1, de Zimmerman. En los extremos del ala dos grandes hélices tractoras despegaban el aparato colocado en ángulo de 45° y el aterrizaje se efectuaba en un espacio muy limitado, lo que permitía su utilización sobre las cubiertas de los buques. Fue rescindido el contrato de construcción en serie debido a la precaria estabilidad en el aterrizaje, defecto que, como indicamos, es inherente a este grupo.

Los aparatos del grupo segundo, subgrupo b), se reducen en general a aviones clásicos en los que, bien los motores, bien las alas, pueden bascular en 90° para lograr la posición vertical de las hélices.

Entre éstos pueden citarse el Bell XV-3, monoplano bimotor con dos rotores de 7 metros de diámetro en los extremos de las alas, cuyos ejes giran a la posición vertical para el despegue y a la horizontal para la propulsión. En el Bell-VTOL, monoplano de ala alta del año 1955, son los turborreactores situados bajo el ala los que basculan.

Otro tipo interesante de convertiplano es el Hiller X-18 Propelloplane, de 18 toneladas, cuyos primeros vuelos se realizaron en 1958. El ala, que gira solidariamente con los propulsores, colocándose en posición vertical para el despegue y horizontal para el avance, soporta dos turborreactores provistos de hélices contrarrotativas.

Una disposición análoga presenta el Vertol 76, cuyo primer vuelo completo se llevó a cabo el 15 de julio de 1958. El Kaman 16-B es un aparato anfibio construido según las mismas directrices.

Fuente Consultada:
Enciclopedia Cultural UNIVERSITAS Tomo N°17 -Los Aviones Convertibles-

Biografia de Cavendish Trabajo Cientifico Vida y Obra

Enrique Cavendish nació en Niza (Francia), en 1731. A la edad de 11 años íue enviado a la escuela en Hackney (Londres). En 1749 pasó a Cambridge, pero salió de allí sin haber obtenido ningún título. Perteneció a la Royal Society desde 1760 y, a partir de ese año, se dedicó, por su cuenta, al estudio de las matemáticas y de la física. Seis años después publicó trabajos sobre las propiedades del hidrógeno y del ácido carbónico.

Enrique Cavendish

Gran científico británico nacido el 10 de octubre de 1731. No muy famoso, pero destacado porque fue el primero en medir la densidad y composición de la atmosfera terrestre. Analizó la densidad media del nuestro planeta, descubrió el gas argón, inventó el pendulo de torsión, y propuso la ley de atracción electrica entre cargas de distinto signo. LLegó a poner en riego su vida al realizar experimentos con corrientes elétricas. Tenía una vida muy excentrica, y gozaba de una excelente posición social y económica.

Al mismo tiempo, investigaba las propiedades del calor, llegando independientemente a los conceptos de calor latente y calor específico, pero nunca se atrevió a publicar los resultados de sus investigaciones. También descubrió el nitrógeno, describiendo sus propiedades más importantes.

La  mayor contribución  de Enrique  Cavendish a la ciencia fue el descubrimiento de la composición del agua. Debe recordarse que la teoría del flogisto desorientó a los químicos durante algún tiempo, y que él, como muchos de sus contemporáneos, la apoyó.

Primero realizó experimentos sobre la composición del aire, demostrando que era constante. Luego mezcló dos partes de aire inflamable (hidrógeno) con una de aire desflogisticado (oxígeno) en el interior de un globo de cristal, haciendo explotar la mezcla por medio de una chispa eléctrica.

Otros químicos de su tiempo no se habían fijado en el rocío o empañamiento que se produce en las paredes de cristal del globo después de esta explosión. Cavendish comprobó que el peso del globo no había variado. Comprendió que los gases se habían combinado, dando agua. Como no publicó sus investigaciones, se suscitó una controversia, puesto que algunos atribuían el descubrimiento a Jacobo Watt, el inventor de la máquina de vapor.

En conexión con este experimento, descubrió la composición del ácido nítrico. A veces, las gotas de condensación que quedaban en ‘ las paredes del recipiente eran ligeramente acidas, y, al analizarlas, comprobó que tenían ácido nítrico. Explicó este hecho mediante la hipótesis de que el ácido se formaba por combinación del nitrógeno con los otros dos gases. El nitrógeno se encontraba allí como impureza.

Esto pudo demostrarlo añadiendo más nitrógeno, con lo cual se formaba más ácido nítrico. En sus años postreros viajó por toda Inglaterra, tomando nota de las formaciones rocosas y del paisaje. Su último gran experimento fue el descubrimiento de la atracción gravitatoria entre los cuerpos, lo que equivale a pesar la Tierra, como es denominado en algunas oportunidades.

obra cientifica de cavendish

El globo de explosión (reacción) que Cavendish usó se llenaba con los gases y se pesaba de la manera mostrada. Entonces se hacía explotar la mezcla por medio de una chispa eléctrica. Averiguó que el peso no cambiaba y que los gases desaparecían, quedando unas gotas de agua condensada en  las  paredes del  globo.  Se  basó en este experimento   para    explicar   ta    composición    del    agua.

Ampliar Sobre El Peso de la Tierra de Cavendish

Procesos Para Obtener Metales desde Minerales

Es muy raro encontrar metales puros en la corteza terrestre. Casi siempre están combinados con otros elementos como compuestos metálicos. El hierro, por ejemplo, puede combinarse con el oxígeno o con el azufre, para formar óxidos o sulfuros. La cantidad de metales que existen en la corteza terrestre es relativamente pequeña. Si estuvieran esparcidos al azar, no se encontraría nunca una concentración suficiente de ninguno de ellos para emprender una explotación rentable. Sería necesario tratar enormes cantidades de roca para obtener una cantidad muy pequeña de metal.

Por fortuna, una serie de procesos geológicos, a lo largo de la historia de la Tierra, ha concentrado los compuestos metálicos. Cuando una roca contiene tal cantidad de metal que valga la pena extraerlo, se le da el nombre de mineral. Existen tres tipos de roca: ígnea (que procede de materiales fundidos), sedimentaria (formada con fragmentos desmenuzados de una roca anterior) y metamórfica (roca alterada por la temperatura y la presión).

Los tres tipos pueden contener minerales, aunque el metal se haya concentrado en ellos por diversas causas. La concentración de metal necesaria para que una roca se considere como mena o mineral explotable depende del metal de que se trate.

Por ejemplo, una roca que contenga cobre constituye una mena si un 0,7 % de su volumen está compuesto de cobre; en cambio, un porcentaje tan bajo en el caso del aluminio no permite una extracción rentable, pues la concentración de este metal debe ser, por lo menos, de un 30 %. Tales cifras dependen, en gran parte, de la relativa rareza de los metales; pero también, en cierta medida, de la demanda comercial.

Las rocas ígneas se han formado por solidificación de magmas — rocas en estado fundido—. Durante el proceso, ciertos materia’ les se solidifican antes que otros. En el conjunto semifluido, estos minerales pueden irse al fondo y separarse, como una capa, en la fase temprana del proceso. El mineral puede ser rico en un metal determinado. Por ejemplo, el mineral cromita contiene cromo, como indica su nombre.

Al formarse posteriormente los minerales que contienen metal, pueden cristalizar en los huecos que quedan entre los minerales más antiguos, formando así una separación de utilidad para el explorador y el minero. El último magma solidificado (magma residual) puede haberse enriquecido con titanio, hierro u otros metales, que forman depósitos aprovechables.

Los más útiles, entre los depósitos magmáticos, están relacionados con grandes intrusiones de magma básico en el interior de la corteza.   El magma básico, en su estado original, tiene únicamente una pequeña cantidad de sílice y grandes proporciones de ciertos metales: hierro, titanio, cromo.

METALURGIA: El campo de acción que abarca la metalurgia es verdaderamente amplio. Tanto es así que, dentro de esta actividad, existen numerosas especialidades, las cuales, aun dirigidas al mismo fin, presentan métodos y técnicas de distintas características. En principio, la metalurgia puede dividirse en dos ramas: la metalurgia de materiales férreos (hierro y acero, fundamentalmente) y la de materiales no férreos (en la que se incluye el resto de los metales). El hecho de que el hierro y el acero sean considerados aparte es índice de la magnitud e importancia que reviste la industria siderúrgica en el mundo entero.

El hierro es, sin duda, el metal más útil, y, después del aluminio, es también el más abundante, formando un 4 %, aproximadamente, de la corteza terrestre. Con pocas excepciones, tales como el oro, los metales no se presentan en la naturaleza en estado metálico, sino que aparecen formando parte de un mineral, que puede ser un óxido, un sulfuro, u otra combinación química cualquiera del metal en cuestión.

Minerales de Hierro

El mineral ha de ser extraído de la mina y, después, será sometido a un tratamiento adecuado. En el proceso de extracción, el técnico en metalurgia juega un importante papel, relacionado con la elección del método más apropiado para cada mineral.

Cualquiera que sea el procedimiento utilizado en la extracción de un mineral de la mina o yacimiento en donde aparezca, aquél se presenta siempre en bloques de gran tamaño; por lo general, está acompañado de ganga, material terroso de dónde el mineral ha de ser separado. Generalmente, la primera operación que, se efectúa consiste en triturar el material de partida para reducirlo a un tamaño conveniente.

La etapa siguiente es la separación de la ganga, que algunas veces se realiza por el procedimiento de flotación, basado en el hecho de que los distintos minerales se mojan de modo diferente. Por ello, en un baño líquido, bajo las condiciones adecuadas, puede hacerse que el mineral flote, mientras la ganga se va al fondo, o viceversa, siendo posible, de este modo, efectuar su separación.

Es tarea del químico metalúrgico, en este caso, determinar experimentalmente en el laboratorio, valiéndose de pequeñas muestras, las condiciones óptimas de separación, así como las operaciones de control que se cumplirán en el proceso a escala industrial.

La etapa siguiente consiste en la obtención del metal no refinado a partir del mineral, proceso conocido con el nombre de fundición. Los hornos de fundición utilizados con este propósito difieren, en cuanto a su diseño, en relación con el mineral a ser tratado en particular.

Los más conocidos son los altos hornos, utilizados en la separación y obtención del hierro.

En este proceso, corresponde al técnico en metalurgia asegurar que todas las operaciones se lleven a cabo propiamente. Para ello, ha de analizar el mineral de hierro de partida y calculará las cantidades correctas, de coque y piedra caliza, necesarias para que el proceso de reducción se efectúe normalmente. Asimismo, ha de examinar la calidad del hierro bruto obtenido.

El metal no refinado, o bruto, conseguido en el proceso de fundición debe, entonces, ser purificado o refinado, lo cual puede realizarse de distintos modos. En unos casos, el metal se funde de nuevo, haciendo que al mismo tiempo pase una corriente de aire, con objeto de oxidar las impurezas que lo acompañan.

Para refinar el cobre, al metal ción, así como encontrar el medio de recuperar, del barro depositado en el fondo, los productos metálicos rentables. Al terminar el proceso de refinación, se cuenta ya con un metal de relativa pureza. El metal así obtenido puede ser utilizado directamente o fundido de nuevo, junto con otro u otros metales, para formar una aleación. Al producto final hay que darle, entonces, la forma que ha de tener al ser utilizado.

Para ello es necesario volver a fundir el metal, y, una vez líquido, verterlo en los moldes de la forma apropiada. Estas tareas se llevan a cabo en una fundición, y, aquí, el técnico metalúrgico es el responsable del control de dichos procesos, así como del de aleación. También debe ser un experto en el diseño de moldes y capaz de darse cuenta de las posibles fallas que puedan presentar las estructuras metálicas, como, asimismo, rectificarlas.

Cuando al producto final no se le da una forma especial, suele obtenerse bajo el aspecto de barras o lingotes, que han de sufrir tratamientos posteriores, tales como el laminado, forja, o cualquier otro tipo de tratamiento mecánico.
El metal o aleación puede laminarse, ahora, para darle una forma de plancha, o forjarse mediante un martillo mecánico; hilarse, para constituir un alambre, haciéndolo pasar a través de una serie de agujeros de tamaños decrecientes.

Todos estos procesos han de efectuarse del modo más rápido y económico, y las condiciones óptimas serán fijadas por un especialista en metalurgia. Él debe, por ejemplo, calcular hasta qué punto un lingote puede ser laminado sin que sea necesario templar el metal en un horno apropiado, ya que muchos metales se vuelven duros, siendo frágiles a la vez, y se fracturarán si se los trabaja demasiado.

Por otra parte, el proceso de templado consume tiempo y dinero, por lo cual ha de decidirse si su aplicación resulta rentable. Uno de los campos más importantes, dentro de la metalurgia, es el de la investigación, que puede ser de investigación aplicada —que se refiere a problemas directamente relacionados con la industria y con el perfeccionamiento de los productos—, o de investigación básica, que estudia los principios fundamentales del comportamiento de los metales.

Las industrias requieren, con frecuencia, la presencia de especialistas en metalurgia, para resolver cualquiera de los problemas reseñados, que pueden suscitarse en los procesos de producción. También recurren a ellos para realizar trabajos más rutinarios, tales como los de verificación y control de la calidad del producto obtenido.

La mayor parte de los instrumentos y métodos utilizados son, sin embargo, los mismos, cualquiera que sea la naturaleza de la investigación propuesta, y sólo la interpretación de los resultados conseguidos puede, en algunos casos, ser distinta. Un industrial, por ejemplo, puede estar únicamente interesado, en medir la resistencia del metal que produce, con objeto de comprobar si se halla dentro de los límites que le son exigidos. Mediante la investigación básica, es posible detectar los cambios que se produzcan en dicha propiedad, los cuales pueden indicar que ha tenido lugar alguna modificación en la estructura íntima del metal, hecho imperceptible a simple vista, pero que puede resultar de extraordinaria importancia en el futuro comportamiento de aquél.

Uno de los instrumentos más importantes empleados por el técnico metalúrgico es el microscopio, especialmente el electrónico, que, debido a sus 100.000, o más, aumentos, es de gran utilidad para el estudio de las estructuras de los metales. La investigación de la corrosión y el desarrollo de aleaciones que sean resistentes a ella es otro importante campo de estudio, que se halla dentro del dominio de la metalurgia. La mayoría de los metales resultan atacados y corroídos bajo  ciertas  condiciones:   el  agua  del  mar ataca el metal de las calderas y tuberías, y la humedad de la tierra corroe los cables eléctricos subterráneos.

Los daños ocasionados por la corrosión cuestan muchos millones de dólares al año. En el- futuro, los trabajos de investigación en estos temas serán aún más interesantes, dado que, tanto en el campo espacial como en el nuclear, se necesitan materiales de especiales características, que resistan condiciones extraordinarias de presión, temperatura, radiación, etc.

Fuente Consultada
Revista TECNIRAMA (CODEX) Enciclopedia de la Ciencia y Tecnologia N°96

Vida y Obra de Henry Ford Que es el fordismo? El Ford T Biografia

LA VIDA Y OBRA DE HENRY FORD (1863-1947)

¿Que es el fordismo?
El término “fordismo” se refiere al modo de producción en serie que llevo a la practica Henry Ford; fabricante de coches de Estados Unidos.

Este sistema supone una combinación de cadenas de montaje, maquinaria especializada, altos salarios y un número elevado de trabajadores en plantilla. Este modo de producción resulta rentable siempre que el producto pueda venderse a un precio bajo.

Introducción: Nació en Greenfield y murió en Dearborn. Empezó a trabajar desde muy niño en un taller de maquinarias en Detroit. Despúes estudió ingeniería, llegando a ingeniero jefe de la Edison Iluminating Co. y en 1903 se estableció por su cuenta en Detroit, fundando Ford Motor Co. que bajo su presidencia llegó a ser la mayor fábrica de autos y tractores del mundo.

Creó el automóvil más popular que ha existido, el famoso modelo T, llamado vulgarmente Fortingo, del que vendió 10.000.000 de 1908 a 1924, luego se superó con otros modelos como el V-8 que también logró gran difusión. Escribió: Mi Filosofía Industrial en 1929.

SU BIOGRAFÍA:
Henry Ford nació en una granja cerca de Dearborn, Michigan, el 30 de julio de 1863, y asistió a escuelas públicas. Hijo de unos pobres granjeros irlandeses emigrados en 1847, desde niño demostró una gran afición y dotes excepcionales para la mecánica. Buen estudiante, compaginó sus estudios secundarios en Dearbon con las labores agrícolas y ganaderas de la modesta granja familiar.

En este período construyó ya su primer ingenio mecánico con pretensiones de tractor, al que el propio Henry Ford bautizó con el nombre de Fordson (el hijo de Ford).

Con apenas 16 años, en 1878, Henry Ford se fugó de su casa para dirigirse a pie a Detroit, con intención de trabajar como mecánico, lo que consiguió pronto al ser admitido en un pequeño taller de maquinaria, el Detroit Automobile Company. Al poco tiempo regresó a Dearbon con la experiencia necesaria para dedicarse a la reparación de máquinas de vapor y al estudio y composición de relojes.

En 1888 contrajo matrimonio con Clara James Bryant, con la que estuvo casado toda su vida y tuvo un hijo, Edsel, hombre brillante e imaginativo en el campo de la dirección de empresas pero que siempre estuvo tapado por la gigantesca sombra de su padre. En 1891, Henry Ford regresó de nuevo a Detroit, donde comenzó a trabajar en la Edison Illuminating Co., en la que pronto pasó a desempeñar el puesto de ingeniero jefe de mecánicos.

El nacimiento de la Ford Motor Company

Por aquel entonces, Henry Ford ocupaba la mayor parte de su tiempo libre, fundamentalmente las noches, en la construcción del que sería su primer coche sin caballos, que acabó en el pequeño taller que tenía en su casa en 1896. Se trataba de un vehículo de cuatro ruedas arrastrado por un motor de dos cilindros y de cuatro tiempos, refrigerado con agua y sin marcha atrás.

Aunque no aportó ninguna novedad mecánica respecto a los autos que habían fabricado los alemanes Gottlieb Daimler y Carl Benz, Henry Ford introdujo novedades relacionadas con su construcción en serie y con las ventajas económicas que proporcionaba a los futuros usuarios (el coche salió a la venta por tan sólo 200 dólares).

Gracias al relativo éxito de ventas de su primer coche, en 1899 Henry Ford abandonó la Edison y se asoció con su antiguo taller mecánico para fabricar coches de encargo. Pero, debido a su fuerte carácter, a su comportamiento un tanto excéntrico para la época (pilotaba con éxito sus propios coches de carreras) y, sobre todo, a sus ideas empresariales revolucionarias, en 1903, cuando contaba cuarenta años, decidió fundar su propia compañía, la Ford Motor Company, donde pudo poner en práctica su propósito y construir un modelo estándar, en serie, para abaratar el costo y tener acceso al mayor mercado posible.

El sueño americano: el Ford-T

En Europa, la mayoría de las fábricas de coches habían sido constituidas entre los años 1880 y 1890 por la compañía Daimler, que en 1896 sacó a la calle el primer camión y en 1900 el primer automóvil verdadero (el moderno Mercedes), y por la Benz (ambas acabarían fusionándose para constituir la Mercedes Benz); pero en Estados Unidos, además de la factoría creada por Charles Edgar Durgea, la industria y producción de coches aún estaba sin desarrollar, circunstancia que Henry Ford supo percibir y de la que sacó provecho.

Asociado con los hermanos Dodge, fabricantes de motores, Henry Ford, con tan sólo el 25% del total de las acciones, comenzó a cosechar los primeros éxitos y también los primeros problemas con sus socios. Los hermanos Dodge se inclinaban por la fabricación de un coche de lujo y de alto precio, mientras que Ford defendía lo contrario: un coche sencillo, popular y, sobre todo, barato.

La idea principal de Ford era que, si fabricaba en serie los coches, los costos de producción del automóvil se reducirían ostensiblemente, lo cual contribuiría a bajar también el precio de venta en la calle, circunstancia que haría aumentar la demanda, el mercado y las ganancias.

Tras solucionar los problemas con sus socios y optar por la compra del 58% de las acciones de los Dodge, Ford lanzó por fin, a principios de 1908, la primera serie de su flamante Ford-T a un precio único y revolucionario en el mercado, 500 dólares, bastante bajo en comparación con los 2.000 dólares que constituían el precio medio de un coche por aquella época. El éxito fue fulminante y las ventas se multiplicaron por cinco. Fue por aquel entonces cuando Ford, exultante y feliz, afirmaba: “Daré a cada americano un automóvil del color que prefiera, con tal de que sea negro”.

De repente, una gran cantidad de campesinos y obreros de las ciudades podían disponer de su propio vehículo, lo cual revolucionó incluso los hábitos sociales del país. El modelo Ford-T, que, según decía la propaganda, “podía hacer de todo, incluso lavar platos”, se vendió solo, sin necesidad de una campaña publicitaria de grandes proporciones, como demostraron las apabullantes cifras de ventas: en 1916 se vendieron medio millón de unidades, dos millones en 1923 y, para 1927, fecha de su retirada de producción, se había alcanzado la friolera cantidad de 15 millones de Ford-T (todos ellos negros, por supuesto).

Desde el punto de vista estrictamente empresarial, el secreto de Henry Ford fue el haber sabido combinar tres factores decisivos. El primero fue la normalización y la fabricación masiva de todas la piezas que componían el vehículo, de tal forma que, al congregar ordenada y racionalmente todas las piezas sobre la cadena de montaje, se podían ensamblar, en tan sólo 1 hora y 33 minutos, un centenar largo de unidades diarias listas para salir a la calle.

El segundo factor fue la concesión a sus trabajadores de unos salarios bastante altos (según sus competidores desorbitados), de cinco dólares al día, con lo que logró dos propósitos a la vez: incrementar el nivel de vida de éstos, que inmediatamente pasaban a comprarse un Ford-T, y rebajar todavía más los precios de venta. Finalmente, Ford estableció a escala nacional un tupida red de concesionarios, vendedores y expertos agentes de publicidad, y fomentó otro sistema de pago revolucionario: la compra del coche a plazos.

Hombre preocupado por la deshumanización que conllevaban los nuevos métodos de producción que él mismo aplicaba en sus factorías y fervoroso pacifista, en vísperas de la entrada de los Estados Unidos en la Gran Guerra financió varias campañas pacifistas sonadas para detener el conflicto. Pero cuando comprendió lo inevitable del mismo, Ford sacó su espíritu pragmático e industrial y puso a disposición del Gobierno todo el potencial de sus factorías, maniobra que le proporcionó multimillonarios contratos de producción.

En el año 1919, Henry Ford fue obligado por un juez a repartir beneficios entre sus socios minoritarios, entre ellos los hermanos Dodge, los cuales le acusaron de no querer repartir los beneficios de la empresa e invertirlos en la fabricación de más coches, por lo que Henry Ford, en una contraofensiva financiera brutal y expeditiva, optó por comprar todas las acciones (por un valor de más de 100 millones de dólares) para hacerse con el control absoluto de la Ford Motor Company.

El imperio Ford cede su hegemonía

A pesar de seguir ganando buenos dividendos con el Ford-T, de sacar al mercado el famoso tractor Ford son y de comprar filiales, como la Lincoln Motor Company, lo cierto es que, a partir de la década de los veinte, la Ford Motor Co. dejó de ser la empresa líder en el sector automovilístico estadounidense por dos motivos fundamentales: por la feroz competencia que encontró en la otra empresa gigante del sector, la General Motor, en propiedad del magnate J. P. Morgan (con el famoso modelo Chevy), y en la Chrysler; y por su lentitud de reflejos a la hora de adoptar la práctica, común en las otras compañías, de lanzar un modelo nuevo prácticamente cada año.

Tres generaciones Ford. El nieto Henry II Ford, de 21 años de edad; el abuelo Henry Ford y su hijo Edsel Ford.

Por fin, en diciembre de 1927, Henry Ford presentó en sociedad el nuevo coche de la compañía, el Ford Modelo-A, vehículo mucho más evolucionado y de lujo, con el que también tuvo un gran éxito, pero muy lejos del obtenido con el Ford-T. Dos años después, volvió a sacar otro coche, el sorprendente Ford V-8. Ambos coches le permitieron recuperar algo del terreno perdido con sus grandes competidoras, pero ya sin conseguir el liderato en el mercado de ventas estadounidense. Sin embargo, sí que se hizo fuerte en Europa, donde, a raíz de la colaboración con el cártel petrolero de los Rockefeller (accionista de la Ford Motor Company) y de su amigo íntimo Harvey S. Firestone, Henry Ford pudo acaparar más de la mitad de la industria del sector.

Problemas laborales

Durante el periodo comprendido entre 1937 y 1941, la Ford fue la única empresa de vehículos que no reconocía de modo oficial a ningún sindicato para representar a los trabajadores en la negociación colectiva. En un juicio oral ante la Corte Nacional de relaciones laborales, Ford fue condenado por violar repetidamente la ley nacional sobre relaciones laborales. Los hechos que se le imputaron fueron elevados mediante una apelación ante los juzgados federales. Se le obligó a negociar un contrato tipo, tras el éxito de la huelga que los trabajadores de su principal fábrica de River Rouge, Michigan, llevaron a cabo en abril de 1941.

Algo mas sobre Ford y los Sindicatos….

Ford estaba contra la organización de la mano de obra y se opuso resueltamente a la formación de sindicatos durante años. Las relaciones laborales estaban en manos del célebre Ford Servíce Department dirigido por un hombre brutal llama Harry Bennett. Ford, en sus años seniles, llegó a confiar en ciegamemente en ese hombre, antiguo boxeador profesional, que aplicaba en sus relaciones con los empleados de Ford tenia la creencia darwiniana acerca de la supervivencia de los mejor dotados. Siempre empuñaba un fusil y guardaba una diana en su despacho. Henry Ford, que durante un tiempo había sido el ídolo los trabajadores con sus Five Dollar Day, que se consideraba sí mismo como un trabajador corriente y que aborrecía a los capitalistas, llegó a ser conocidísimo como explotador.

No extraño, por consiguiente, que entre las manifestaciones protesta y las marchas del hambre que tuvieron lugar en Estados Unidos durante la Gran Depresión, hubiese una constituida por parados de Detroit que se encaminase hacia la factory de Dearborn. Una procesión de varios centenares de personas formó en la primavera de 1932 y, cuando llegó Bennett y de su coche, alguien le arrojó un ladrillo a la cabeza. Inmensamente sonaron disparos, algunos de la policía de Dearborn otros de la propia policía de protección de Ford —en realidad Ford tenía más policías en nómina que toda la ciudad Detroit—. Cuatro de los manifestantes resultaron muertos, veinte fueron heridos. La tragedia confirmó la hostilidad de Ford hacia los sindicatos y acentuó la pésima reputación que tenía entre sus empleados. Siguieron más años de violencia negándose Ford a tratar con los sindicatos. No fue hasta cuando por fin se logró romper su determinación y, al votar los trabajadores en favor de la sindicalización, Henry que prendido y apesadumbrado.

Producción durante la guerra 

A principios de 1941 Ford firmó contratos con el gobierno para, al principio, fabricar distintas partes de los bombarderos y, posteriormente, en su totalidad. Inició entonces la construcción de una enorme fábrica en Willow Run, Michigan, que empezó a producir en mayo de 1942. A pesar de algunas dificultades técnicas, a finales de la II Guerra Mundial su fábrica ya había producido más de 8.000 aviones.

La sombra del gigante

Pero la falsa prosperidad de los contratos de guerra no pudo ocultar las graves deficiencias de la compañía, debidas al notorio retraso tecnológico por el empeño de Henry Ford en continuar produciendo vehículos baratos y, por lo tanto, técnicamente más mediocres que los de la competencia. A principios de los años cuarenta, Henry Ford, demasiado viejo y enfermo, se dispuso a ceder la dirección del imperio a su competente hijo Edsel. Pero éste murió de repente en 1943. Gracias a la decidida intervención de su esposa, Clara Bryant, Henry Ford delegó toda la responsabilidad en su nieto Henry Ford II, que se encontró con la misión de sacar a flote el fabuloso conglomerado de empresas levantado por su abuelo.

Hombre sencillo y amable en su vida privada, Ford no dejó de contribuir con su dinero a la financiación y auxilio de varias instituciones culturales, educativas y caritativas. En 1919 creó el Hospital Henry Ford de Detroit, al que dotó con siete millones de dólares de la época. Ese mismo año se hizo con la edición del semanario Dearbon Independent, rotativo anteriormente de tendencia antisemita. Ford prohibió tal tipo de artículos en su periódico y ordenó la redacción de una disculpa pública a los judíos. En el año 1936 puso en pié su mayor obra social, la sociedad filantrópica Fundación Ford, a la que legó parte de sus acciones cuando murió para que se dedicara a promover estudios de investigación sobre la pobreza, la superpoblación mundial y la problemática del Tercer Mundo, el deterioro del Medio Ambiente y la conservación de la Naturaleza y sus recursos. Actualmente, la fundación cuenta con medio billón de dólares para dichos proyectos.

Ford escribió dos libros en colaboración con Samuel Crowther: My life and work, en 1922 (Mi vida y mi obra), y Today and Tomorrow, de 1926 (Hoy y mañana). Su destacado papel en la evolución de la economía industrial moderna ha sugerido la acuñación del término fordismo para describir el modelo socioeconómico predominante en los países más desarrollados del siglo XX.

Su edad avanzada le obligó a abandonar la dirección efectiva de sus empresas en 1945. Henry Ford murió el siete de abril de 1947, en Dearborn, dejando una fortuna personal estimada entre los 500 y los 700 millones de dólares, y legó parte de sus acciones en la Ford Motor Company a la Fundación Ford, una organización sin ánimo de lucro. Su destacado papel en la evolución de la moderna economía industrial ha llevado a la acuñación del término fordismo para describir el modelo socioeconómico predominante en los países desarrollados durante la mayor parte del siglo XX.

Ford no se limitó a diseñar y fabricar su auto, creó la manera de producir muchos autos en el menor tiempo posible, y venderlos en grandes cantidades al menor precio posible.Cuál fue el secreto de Henry Ford, el creador de autos más vendidos del planeta?

Ford diseño una nueva forma de organizar la producción automotriz, vinculada con la aplicación de los principios de la organización científica del trabajo. La forma característica de esta producción estaba basada en la cadena de montaje, que permitía un parcelación precisa de las tareas y una asignación rigurosa de tiempos de cada una de ellas. Estas innovaciones se tradujeron en un importante aumento en la producción. En 1909 el tiempo que llevaba terminar un Ford T era de 14 horas,y su precio oscilaba los 1500 dólares. Quince años más tardes se lo fabricaba en solo 1.33 hora y se lo vendía a 600 dólares.

Los cambios en la organización de la producción fueron acompañados por una nueva consideración de la relación entre la empresa y los trabajadores.

En salario mínimo de los trabajadores norteamericanos en aquella época era de 2.34 dólares el día, con jornadas de 9 horas diarias. En una decisión sin precedentes, Ford decidió duplicar ese salario y pagar a sus operarios la suma de cinco dólares por ocho horas de trabajo diario.

Ford, comentaba: “Es necesario que los obreros produzcan el máximo posible y reciban los más altos salarios posibles”

Pero no sólo se trataba de mantener satisfechos a los obreros, ya que era necesario una estricta subordinación de los trabajadores a la línea de montaje.

Los obreros que tenían menos de 6 meses de antigüedad o que eran menores de 21 años de edad, o las mujeres, no cobraban la doble tarifa.

“Nosotros exigimos que nuestros hombres hagan lo que se les diga. Nuestra organización es tan especializada y todas sus partes dependen de las otras de tal modo que es imposible pensar en dejar a nuestros obreros hacer lo que quieran. Sin la más rigurosa disciplina llegaríamos a la confusión más extrema.”

Ford creía de su éxito como fabricante de automóviles dependía de la ampliación del mercado de consumidores y que para ello había que mejorar los salarios. Y estuvo en lo cierto, en 1913 existía en Estados Unidos un vehículo cada 77 habitantes. En 1920 había uno cada 11 habitantes y 10 años después uno cada 4.5 habitantes.

Ford trataba de conciliar la producción en masa con el consumo en masa, para ello se propuso fabricar automóviles cada vez más baratos y mejorar sus mecanismos de distribución y venta. Ideó hábilmente la publicidad e ideó audaces métodos de ventas. En Julio de 1941 la compañía dió a conocer una importante declaración: “Todos los compradores al menor de automóviles Ford, desde el 1 de Agosto de 1914 hasta el 1 de Agosto de 1915, compartirían las ganancias de la compañía en una extensión de 40 a 50 dólares por autos que compren, a condición de que logremos vender y entregar 300.000 nuevos coches durante ese año”

Un año después Ford repartió 308.213 cheques de 50 dólares a los compradores de todo el país.

La Primera Línea de Montaje:

Lo que se a dicho la primera línea de montaje móvil ensayada en la manufactura y ciertamente la primera en la industria automotriz, fue producida para producir el volante de magneto del Ford T.

En intento fue realizado en primavera de 1913.Bajo el modelo anterior un obrero podía terminar 35 o 40 por día de nueve horas, lo que daba un promedio de uno cada veinte minutos. Se instaló una línea a lo largo de una cadena sin fin que movía la unidades en montaje, pasando por veintinueve operaciones distintas a una velocidad de 5 pies por minuto.

El primer día el grupo de obrero produjo 1.118 volantes lo que indicada un volante cada 13 minuto y 10 segundos. Los defectos de la primera línea fueron corregidos llegando a promedios de 9 minutos.

En 1919 había 6.771.000 automóviles de pasajeros en uso en los Estados Unidos, en 1929 había no menos de 23.121.000… incluso a fines de 1923 existían dos automóviles por cada tres familias en Middletown, una típica ciudad norteamericana.

Los Lynd y sus investigadores entrevistaron a 123 familias de la clase obrera de Midddlteown y descubrieron que 60 de ellas tenían coche. De las 60, 26 vivían en casas maltrechas, que a los encuestadores se le ocurrió preguntar si tenían bañeras y descubrieron que 21 de las 26 no las poseían. El automóvil estaba incluso antes que la bañera!.

EL FORDISMO

Mientras que en sus primeros momentos el “proceso de industrialización” fue un fenómeno exclusivamente inglés, se inició luego la industrialización masiva de otras sociedades como Francia, en la primera mitad del siglo XIX y Alemania y Norteamérica en la segunda mitad.

La última fase de este proceso de industrialización se gesta a partir de un cambio en el proceso de trabajo introducido por las experiencias de Henry Ford en su fábrica de autos en Estados Unidos de Norteamérica, generando una nueva forma de organizar la producción y el trabajo.

La introducción del ‘transportador de cinta o de cadena  aseguró la circulación de las  piezas mientras los obreros permanecían quietos en sus puestos de trabajo. Al hacer pasar delante de cada trabajador la pieza principal a la cual debía montarles otras piezas, al final del circuito el producto estaba terminado. Gracias a esta línea de montaje, el ritmo de trabajo era regulado mecánicamente por la velocidad del transportador que pasaba delante de cada obrero.

Los transportadores y la cadena de montaje permitieron relacionar la producción de unas máquinas con otras, reduciendo la necesidad de fuerza de trabajo. El movimiento continuo de los objetos a ensamblar facilitó la producción ininterrumpida de una masa de bienes homogéneos y estandarizados para hacer frente a la demanda. Al reducirse el tiempo de trabajo utilizado para ensamblar cada unidad de producto, creció la productividad, por lo que fue posible trasladar los beneficios a los consumidores a través de la baja de precios, situación que generó el incremento de la demanda.

La empresa Ford, además, fue precursora al realizar’ estudios sociológicos sobre los parámetros de vida de sus trabajadores y la simplicancias de los mismos en el proceso de trabajo. Esto funcionó a modo de “disciplinamiento” de la mano de obra a través de controles realizados por asistentes sociales. Y generó una suerte de “intercambio” con los empleados, quienes, al modificar algunos hábitos de su vida, recibían a cambio aumentos de salario. Estos estudios dieron nacimiento al Departamento de Sociología en la empresa, antecesor del Departamento de Personal.

Las normas de consumo y de vida, se modificaron debido a que se les exigía a los trabajadores cumplir con determinadas pautas, acordes con la nueva situación. El Departamento de Sociología asesoraba a las familias acerca de esas pautas que, en última instancia, eran funcionales con el proceso productivo instalado.

Ford expresó: “La experiencia me ha enseñado mucho en materia de salarios. Yo creo, en primer lugar, dejando de lado toda otra consideración, que nuestro propio éxito depende en parte de los salarios que nosotros pagamos. Si nosotros repartimos mucho dinero, ese dinero se gasta. Éste enriquece a los comerciantes, a los minoristas, a los fabricantes y a los trabajadores de todo tipo. Esa prosperidad se traduce por un crecimiento de la demanda para nuestros automóviles.[…] Nosotros no hemos cambiado los salarios simplemente porque teníamos ganas de hacerlo y porque podíamos. Si nosotros hemos decidido pagar salarios más altos es para colocar nuestro negocio sobre una base durable. Eso no lo hicimos para repartir regalos, sino para asegurar el porvenir. Una industria con bajos salarios está siempre en peligro”.

Asimismo, Ford decía que “así como nosotros adaptamos las máquinas y herramientas en el taller para producir la clase de autos que tenemos diseñados en nuestras mentes, así nosotros hemos construido un sistema educacional en vista a generar el producto humano que tenemos en mente”. Para lograrlo, se realizaba el seguimiento de las pautas de vida de los obreros más allá del ámbito de la fábrica, a través de actividades relacionadas con la formación, como la creación de escuelas; el fomento del deporte; la creación de asociaciones para paliar problemas como el del alcoholismo, que poseía índices sumamente altos en ese momento; el fomento de la construcción de viviendas y los créditos al personal.
Algunos de los resultados observados en los trabajadores de la empresa Ford fueron la disminución del alcoholismo, del ausentismo, del analfabetismo y de la rotación de trabajadores, con un claro incremento de la productividad, aun con reducción de la jornada de trabajo de 9 a 8 horas diarias.

Después de la crisis de 1929, en los Estados Unidos, el Estado asumirá la tarea de asegurar a los trabajado-
res los distintos beneficios, como educación, recreación, vivienda y salud, que inicialmente, como hemos dicho, estuvieron bajo responsabilidad de la empresa.

El modo de desarrollo fordista tuvo plena vigencia a partir de la Segunda Guerra Mundial y hasta principios de la década del 70. Desde entonces, el “modelo” fordista entra en una etapa de crisis que perdura hasta la actualidad. Sin embargo, durante su período de vigencia, el fordismo solucionó uno de los principales problemas del capitalismo: las crisis de sobreproducción o subconsumo.

La generalización de las pautas de consumo masivo de bienes durables y el crecimiento de los salarios reales lograron crear el mercado necesario para la creciente producción masiva de bienes homogéneos, resolviéndose así -al menos en los países desarrollados- el problema de las crisis de subconsumo. En síntesis, el “círculo virtuoso” generado por el fordismo garantizó a los países industrializados, durante los 30 años de posguerra, el incremento en la producción, la productividad, las tasas de ganancias, la inversión, el empleo y los salarios.

Fuente Consultada: Economía Las Ideas y los Grandes Procesos Económicos Rofman-Aronskind-Kulfas-Wainer

  Volver Arriba 

Toyotismo Criterio Para La Organizacion Industrial de Producion

TOYOTISMO, Organización Industrial Científica – EFICIENCIA LABORAL –

ABANDONO DE LA PRODUCCIÓN EN CADENA
Al final de los años sesenta se llegó a la conclusión —principalmente en los países escandinavos— de que ya no era totalmente válido el principio de Ford según el cual un producto resulta tanto más barato cuanto más racional es su fabricación. El crecimiento de la producción se veía amenazado por los altos índices de absentismo laboral, frecuentes bajas por enfermedad, descenso de la calidad y dificultad para contratar nueva mano de obra. Algunas grandes empresas suecas, entre ellas Saab-Scania y Volvo, crearon equipos de investigación en los cuales los propios trabajadores pudieron aportar sus experiencias y sugerencias. En 1972 se eliminó la cadena de producción en el taller de fabricación de motores de las fábricas Saab-Scania. En Volvo cada trabajador monta «su» automóvil de forma ampliamente autónoma.

El dinamismo de la empresa japonesa se atribuye a los secretos” de la organización productiva que presenta fuertes diferencias con el taylorismo y fordismo de la industria norteamericana.

toyotismo, produccion japonesa

Estas características de las empresas japonesas son, en primer lugar, el sistema de empleo “de por vida”, el sindicato por empresa que tiende más a la cooperación que al conflicto (huelgas) y el salario por antigüedad

Pero son sin duda las innovaciones introducidas por el ingeniero Ohno de la empresa automotriz Toyota  que impusieron un modelo de producción —el toyotismo— con las siguientes características:

  • Se produce a partir de los pedidos hechos a la fábrica (demanda), que ponen en marcha la producción
  • La eficacia del método japonés está dado por los llamados “cinco ceros”: “cero error, cero avería (rotura de una máquina), cero demora, cero papel (disminución de la burocracia de supervisión y planeamiento y cero existencias (significa no inmovilizar capital en stock y depósito: sólo producir lo que ya está vendido, almacenar ni producir en serie como en el fordismo). Lo comercial (el mercado) organiza el taller.
  • La fabricación de productos muy diferenciados y variados (muchos modelos) en bajas cantidades (producción acotada). Recordemos que el fordismo implicaba la producción masiva de un mismo producto esta standard, ppor ejemplo, el Ford T negro).
  • Un modelo de fábrica mínima, con un personal reducido y flexible.
  • Un trabajador multifuncional que maneja simultáneamente varias máquinas diferentes. Los puestos bajo son polivalentes, cada obrero se encarga de operar tres o cuatro máquinas y realiza varias tareas de ejecución, reparación, control de calidad y programación. En el taylorismo los obreros realizan tareas parciales y un trabajo repetitivo.
  • La disposición de las máquinas y de los trabajadores en torno a ellas también es distinto a la que imponía  la cinta transportadora en la cadena de montaje de Ford.
  • La adaptación de la producción a la cantidad que efectivamente se vende: producir “justo lo necesario a tiempo”.
  • La llamada autonomatizacíón, introduce mecanismos que permiten el paro automático de la máquina so de funcionamiento defectuoso, para evitar los desperdicios y fallos.

El automóvil de mayor producción en el mundo después del Ford T, el Volkswagen «escarabajo», se montaba en la cadena de producción, en la que cada trabajador realizaba una única operación  La firma sueca Volvo ha prescindido de este sistema; cada operario monta «su» automóvil.

CRISIS DEL FORDISMO: La suba del 400 % del precio del petróleo crudo, establecida por la Organización de Países Exportadores de Petróleo (OPEP) entre 1973 y 1974, determinó la disminución de la producción de los países industriales. A pesar de las estrictas restricciones impuestas por los gobiernos al consumo de petróleo y sus derivados, el encarecimiento se trasladó al resto de los productos, cuyos precios aumentaron en forma vertiginosa y la inflación se incrementó notablemente, tanto en Europa como en los Estados Unidos.

Las innovaciones tecnológicas no alcanzaron a resolver estos problemas. Al mismo tiempo, la progresiva saturación de los mercados internos condujo a una mayor apertura internacional del comercio, y se hicieron sentir los efectos de la competencia de otros países con economías pujantes, como el Japón. Mientras tanto, las múltiples fundones que desarrollaba el Estado determinaron que el gasto público creciera a la par de la inflación, y las ideas de Keynes comenzaron a ser discutidas.

Con más gastos que ingresos, es decir, con déficit, los gobiernos recurrieron al endeudamiento externo, a la emisión de moneda y al aumento de los impuestos para poder financiar su gestión. Esta conjunción de situaciones desalentó las inversiones de las empresas y el consumo de la población. Entonces, el crecimiento económico se estancó y el Estado obtenía aún menos recursos, lo que condujo al aumento del déficit, el endeudamiento y a la inflación. Así, progresivamente, las economías entraron en crisis.

No hay una explicación unánime acerca de los ciclos de crecimiento y depresión de las economías capitalistas. Para algunas teorías, esta sucesión se atribuye solo a factores económicos (por ejemplo el precio de las materias primas, el estancamiento del consumo, la tecnología); para otras, inciden también factores sociales o políticos (como migraciones y conflictos gremiales). Por ello, el debate sobre las causas de la crisis del fordismo sigue vigente.

TABLA COMPARATIVA DE AMBOS SISTEMA

tabla comparativa: producción ford - toyota

Vida y Obra Thomas Edison Breve Biografia y Sus Inventos

“Nuestra época debería llamarse la era de Edison. Este hombre extraordinario realizó más de dos mil inventos. No existe ningún gran descubrimiento moderno que no deba algo a su genio…” Henry Ford.

Biografía de Tomás Alva Edison: Inventor estadounidense.

De era un niño era llamado Al, y se lo recordaba como un muchachito feliz, alegre y simpático, pero distraído y obstinado. Su padre, era fabricante de durmientes para ferrocarril, decidió trasladarse a Ohío con toda su familia. En la escuela primaria sus maestros no le tenían mucha simpatía y  lo consideraban un mal estudiante, capaz sólo de calentar los bancos de la clase.

Con su madre tenía una muy buena relación, y él la recordaba como  “comprensiva , cariñosa y  su mejor maestra” y según sus biógrafos tuvo una influencia muy destacada en la vida de su hijo, pues es probable que sin ella hubiera sido un hombre ignorante, incomprendido y desdichado. Cuando pesaba por fracasos escolares su madre siempre estaba ahí presente para ayudarlo y así con tiempo logró terminar su carrera inicial.

Siempre vivió con sueños, imaginando con distintos inventos y sistemas mecánicos para agilizar procesos industriales u personales. Era de una personalidad incansable, entusiasta, sabía que las ideas, para dar su fruto, deben apoyarse en la investigación científica más cuidadosa y perfecta. Trabajó tesoneramente. Deseaba adquirir y leer todos los libros científicos necesarios para sus anhelados experimentos.

Se convirtió en vendedor de frutas y más adelante se presentó en las oficinas de la compañía ferroviaria donde trabajaba un amigo de su padre, diciéndole: “No aspiro a un puesto, deseo sólo una autorización para vender diarios y alimentos en los trenes.” Días más tarde llegaba la autorización anhelada, para la línea Port Hurón-Detroit. Este mejoramiento económico hizo que Edison pueda acceder a buena literatura para sus intereses y haga de los mas variados experimentos con mezclas, frascos de química, imanes, probetas y toda clase de aparatos para la ocación.

Mas tarde su padres cedió  una parte del sótano para laboratorio, y así colmó uno de los mayores deseos de su hijo. Un acontecimiento que casi le cuesta la vida debía turbar la dicha del futuro sabio. La compañía le permitió instalar, en un coche furgón, una pequeña imprenta para la publicación del “Weekly Herald” cuya dirección, redacción y compaginación estaban completamente a su cargo. Este semanario publicaba las noticias de la guerra entre norteños y sureños, recogidas en Detroit. Al bajar para vender —al precio de 3 centavos el ejemplar— la ultima edición, no advirtió que el tren se había puesto en marcha. De un salto trepó al estribo del último coche, quedando suspendido. Imposibilitado para mantenerse mucho tiempo en esa posición acrobática, debió su salvación a la rapidez de un empleado que lo ayudó a entrar en el vagón, pero que desgraciadamente lo golpeó en el oído. El salvamento le produjo una mastoiditis que determinó en el joven una semisordera incurable. Aceptó ese contratiempo con resignación, pero tuvo que renunciar al puesto.

Cierto  día salvó la vida de un niño que estaba sobre los rieles, a punto de ser atropellado por un tren. Ese acto de arrojo le valió la gratitud y el afecto del padre de la criatura que en ese entonces era telegrafista en Port Hurón y que le dijo: “Lo que yo puedo hacer por ti es enseñarte mi oficio. Cuando lo conozcas te será mucho más fácil conseguir un buen empleo.”

Mientras aprendía el alfabeto Morse, Edison vivía fascinado, entusiasmado, por el funcionamiento de la máquina. Un año después lo veremos en su primer puesto de telegrafista de Cincinnati. Seguidamente se trasladó a Boston. A la edad de 22 años (1869) vivía en Nueva York y trabajaba en una compañía importante. Un día se produjo un desperfecto en el aparato transmisor. Edison se ofreció para repararlo y cumplió tan brillantemente su tarea que fue nombrado consejero técnico.

Durante este nuevo período de su vida inventó un registrador eléctrico para los votos parlamentarios que, sin embargo, no obtuvo el éxito esperado; pero, incansable en sus investigaciones, inventó otra máquina que reemplazó al anticuado indicador telegráfico de las cotizaciones de valores. Esto le produjo 40.000 dólares de ganancia que le permitieron abandonar su empleo y abrir un laboratorio en Newark.

La personalidad del joven sabio era tan definida que sus colaboradores aceptaron modestos salarios y penosos horarios con tal de trabajar junto a él. Su encantadora vecina, Mary Stillwall, después de haber sido su primera secretaria, aceptó ser su esposa a pesar de la existencia modesta que Tomas le ofrecía. Mary, cariñosa, fiel y buena, compartió sin quejas las privaciones, las fatigas y las preocupaciones que un día debían transformarse en riqueza y gloria.

Desde 1870 hasta 1876, Edison hizo patentar 120 inventos distintos, algunos muy importantes. Entre ellos estaba el multicopista (mimeógrafo), destinado a la copia de escritos y dibujos que se reproducen mediante un papel especial cubierto de parafina, y un aparato con sirena para alertar policías y bomberos. Pero el más notable fue el sistema de telégrafo automático, que consistía en una cinta perforada que permitía la impresión de un mensaje en letras, en vez del antiguo sistema de puntos y líneas. Este nuevo aparato, ensayado con enorme éxito, realizaba la anhelada posibilidad de permitir la transmisión simultánea de varios mensajes con el mismo cable.

Mientras tanto Edison había abandonado sus laboratorios de Newark para trasladarse a locales más grandes y mejor equipados cerca de West Orange. El lugar donde se levantaron sus nuevos laboratorios debía procurarle más tarde el apodo de “Brujo de Menlo Park”. Aquí tuvo como colaboradores, entre otros personajes destacados, al físico e inventor estadounidense de origen croata Nikola Tesla.

Sus numerosos estudios sobre la acústica, a la que dedicaba largas horas desde hacía muchos años, le valieron el más original de sus descubrimientos: el fonógrafo. Se sabe también,  que pasó al mismo tiempo, otro sabio francés de nombre Charles Cros, inventaba una máquina llamada “parlante” … El hecho es asombroso por cuanto los dos hombres trabajaban separadamente.

El primer fonógrafo consistía en un cilindro sobre el cual se ajustaba una bocina que recibía la voz unida a una punta que grababa las vibraciones sonoras. Provisto de este aparato curiosísimo, Edison se presentó ante el señor Beach, director de una de las más importantes revistas científicas americanas. “Buenos días” dijo la voz de Edison, saliendo del aparato./’¿qué pensáis del fonógrafo?”. Beach se sobresaltó ,pero pronto se sobrepuso al asombro y preparó inmediatamente un número especial para anunciar, en el “Scientific American”, el nuevo y prodigioso invento. Esto ocurría en 1878. El gran hombre era feliz como un niño que hubiera llegado a fabricar un juguete maravilloso.

A partir de este instante trabajará incansablemente y éste será el período más absorbente de su vida. El mundo estaba deseando el alumbrado público. La lámpara de arco, derivada del invento del italiano Volta, no era práctica pues producía una luz demasiado violenta, cara y “ruidosa”. Un grupo de financistas e industriales confió a Edison la solución del problema que otros no habían podido resolver.

Éste concibió una pequeña lámpara incandescente, pero ese proyecto no se pudo realizar sino dos años más tarde. Durante ochocientos días y ochocientas noches, secundado por sus más fieles colaboradores, tuvo la paciencia de ensayar seis mil fibras diferentes: vegetales, minerales, animales y aun humanas, pues hasta un pelo de la barba rojiza de uno de sus asistentes se utilizó en los experimentos.

El recipiente (un pequeño globo de vidrio que le había valido meses de trabajo) estaba listo. Pero lo que no había podido encontrar aún, era el filamento capaz de resistir la incandescencia por mucho tiempo. Parece que la noche fue buena consejera y la suerte favoreció a su genio. Mientras leía a la luz de una lámpara de petróleo, su mano se untó con hollín al tocar inadvertidamente el tubo. Examinándosela ,pensó de pronto que sólo un filamento carbonizado podría mantenerse largo tiempo incandescente sin destruirse, siempre que estuviera en el vacío.

La seguridad de la victoria animó sus últimas investigaciones. Así nació la primera lámpara eléctrica, la antepasada de las que hoy alumbran nuestras veladas e iluminan nuestras ciudades, transformando la noche en día. Dos años más tarde, en 1882, inauguraba en Nueva York el primer alumbrado eléctrico de sus calles. Ese año marcó el momento culminante de la gloria de Edison y el comienzo de su enorme riqueza.

Pero para un verdadero sabio, como lo fue Edison, ni la gloria ni el dinero son la finalidad suprema. Edison tenía 35 años de edad: nada ni nadie podía ya detenerlo. El mundo aguardaba aún otros milagros del “Brujo de Menlo Park”.

A sus investigaciones posteriores debemos el primer sistema nacional de producción y distribución de la energía eléctrica. La “Central de Edison”, adoptada pronto en el mundo entero, facilitó todos los desarrollos ulteriores de la industria moderna. La primera demostración práctica, coronada con un éxito completo, tuvo lugar en Menlo Park, el 21 de octubre de 1879, y dio paso a la inauguración del primer suministro de luz eléctrica de la historia, instalado en la ciudad de Nueva York en 1882, y que inicialmente contaba con 85 abonados.

Thomas Alva Edison contribuyó a la investigación estrictamente científica, con el descubrimiento del llamado efecto termoeléctrico (1883), también conocido en la actualidad como efecto Edison, el cual permitiría, años más tarde, el desarrollo del dispositivo electrónico conocido como diodo, que daría paso al advenimiento de la moderna revolución de la electrónica.

Tampoco exageramos al decir que Tomás Alva Edison es uno de los más grandes bienhechores de la humanidad.

LÁMPARAS DE ARCO
UNA LÁMPARA LUMINOSA DE ARCO El arco se forma entre el grueso electrodo de cobre superior al inferior, que consiste en un tubo delgado de acero lleno de una mezcla de magnetita, titanio y óxido de hierro y cromo, l^a lámpara se adapta perfectamente para el alumbrado le las calles de cualquier ciudad, -pues la luz se esparce muy bien en una gran extensión

UNA LÁMPARA DE ARCO DE LLAMA Tanto el electrodo superior como el interior, son carbones impregnados de substancias que dan a la lámpara un gran rendimiento. El floruro de calcio, muy frecuentemente empleado, hace que la lámpara dé una luz amarilla; el cloruro de cerio la produce blanca, y el cloruro de estroncio, rojiza. Es la mejor lámpara para anuncios y alumbrado de plazas públicas.

En 1879 Edison dio una demostración pública de su lámpara eléctrica incandescente, iluminando las casas y las calles de Menlo Park, Nueva Jersey. El «New York Herald» dedicó toda su primera página a este acontecimiento, y fue necesario establecer trenes especiales para llevar el extraordinario número de personas que deseaban conocer el nuevo sistema de iluminación. En 1880 se estableció, por primera vez, el alumbrado eléctrico en un navío, el «Columbia». Una de las primeras dínamos instaladas en este barco se puede ver en el Museo del Instituto Smitlisonian.

Durante algunos años pareció seguro el triunfo de la lámpara eléctrica. Día por día fue perfeccionándose la fabricación de bombillas y los sistemas de suministro de corriente en gran escala a los edificios y viviendas, y aunque las poderosas Compañías de gas comenzaron a ridiculizar al nuevo iluminante, llegó un tiempo en que el alumbrado eléctrico amenazó seriamente reemplazar al gas.

El coste del gas, empleando un mechero ordinario, en abanico, era cerca de 40 centavos por cada mil bujías-horas. La primitiva lámpara eléctrica, por otro lado, producía el alumbrado a 35 centavos la misma cantidad de bujías-horas. Más importante que esto era el progreso alcanzado con los arcos voltaicos, sobre todo, para el alumbrado de los grandes edificios y al exterior. Los globos de gas producían la luz a menos de 30 centavos las mil bujías-horas, mientras la nueva lámpara eléctrica de arco daba la misma intensidad con sólo cinco centavos.

Se dijo de él:
Fritz Vogtle, uno de los biógrafos del inventor estadounidense, rescató en su libro Edison (Editorial Salvat, 1985) una serie de citas interesantes sobre el mago de Menlo Park. Aquí se vuelcan algunas, sintetizadas, aunque primero valga una mención del autor del libro mencionado: “La obra de Edison muestra claramente que inventar e investigar no sólo proporcionan comodidad y mejores  condiciones de trabajo sino también creación de empleo y bienes en general”. .

Robert Millikan, en Edison como científico, 1932: “Únicamente corresponde a Edison el mérito de haber ideado y mostrado cómo un ser mortal puede hablar de viva voz a todas las generaciones. Si hoy pudiéramos escuchar las voces de Sócrates, Marco Aurelio, Shakespeare, Newton, Franklin, Goethe, Faraday, Maxwell… ¿no tejeríamos acerca de este hecho una nueva leyenda de Prometeo, parecida a aquella en la que el fuego es robado al cielo y ofrecido a los hombres?”

Henry Ford, en Mi amigo Edison, 1947: “Ni siquiera quiere admitir la posibilidad de un fracaso. Es de la opinión de que el traba-) jo constante y concienzudo es capaz de resolverlo todo. Esta genial aptitud para el trabajo esforzado me fascinó y convirtió a Edison en mi héroe”.

Mas de la vida e Inventos de Edison….

A las 3 de la tarde del 4 de septiembre de 1882, el inventor Thomas Alva Edison, de 35 años de edad, se embarcó en lo que llamó “la aventura más

 grande de mi vida”. Se puso en funcionamiento la primera central eléctrica de Nueva York, en la calle Pearl, y 85 hogares, tiendas y oficinas se iluminaron súbitamente con 400 bombillas incandescentes. Edison y sus colegas, directores de la Edison Electric Light Company, se habían reunido en Wall Street, en la oficina dé uno de sus principales patrocinadores, el millonario J. Pierpont Morgan. La oficina de éste era una de las iluminadas en esa tarde. A las 7 de la noche, al crepúsculo, la luz eléctrica hizo su impacto en las cercanas oficinales del diario The New York Times.

Con meses de anticipación, Edison había supervisado el inicio de la transición del gas a la electricidad en Nueva York. Eligió la margen del estrecho de East River por estar allí la zona financiera, en la que deseaba impresionar a posibles patrocinadores. Organizó entonces una encuesta casa por casa y dispuso la instalación de líneas troncales, cajas de conexiones, interruptores, medidores, fusibles y portalámparas. Once meses después, en agosto de 1883, más de 430 edificios de la ciudad contaban con iluminación eléctrica, con unos 10.000 focos. Los trabajos de Edison con la electricidad confirmaron su idea de inventar sólo cosas que llenaran una necesidad. Puso en práctica este principio en mayo de 1876, cuando junto con “colegas y amigos” abrió un laboratorio o “fábrica de inventos”  en el poblado de Menlo Park, Nueva Jersey.

El local era un edificio de madera de dos pisos, erigido en ricas tierras de cultivo y, de hecho, pasó a ser el primer laboratorio de investigación industrial del mundo. Contaba con una máquina de vapor, un horno de fundición, acumuladores, equipo fotográfico, alambre de cobre, bobinas de inducción e instrumentos de medición, entre éstos un electrómetro y un galvanómetro. En ese tiempo, el inventor y sus colaboradores intentaban perfeccionar la lámpara incandescente, en la que desde la década de 1830 habían trabajado varios científicos.

En 1878 Edison fundó la Edison Electric Light Company, pero no fue sino hasta fines del año siguiente cuando, paso tras paso, finalmente produjo una bombilla eléctrica, práctica. (Por ese mismo tiempo, el físico y químico Joseph Swan inventó en Inglaterra una bombilla similar. Edison mostró su invento en público en la noche de fin de año de 1879, al iluminar la carretera de Menlo Park, el laboratorio y la biblioteca con un dínamo y cerca de ‘10 luces. Unos 3.000 espectadores presenciaron esa genialidad de llamado “Mago de Menlo Park.

Nacido en Milán, Ohio, el 11 de febrero de 1847, Thomas Alva Edison tenía siete años de edad cuando su familia se mudó a Port Huron, Michigan. Su formación escolar terminó después de tres meses, cuando el maestro de la escuela local lo expulsó por ser de lento aprendizaje. La verdad es que Edison sufría d sordera parcial, a causa de un ataque de escarlatina.

Tocó a su madre fomentar en él un creciente interés por la ciencia, sobre todo por las máquinas de vapor y la fuerza mecánica. El joven Edison instaló un pe dueño laboratorio químico en el sótano de la casa paterna. Allí producía su propia corriente eléctrica con pilas voltaicas y construyó e hizo funcionar un rústico aparato telefónico. Poco tiempo después, cuando vendía periódicos y dulces en el ferrocarril que iba dé Port Huron a Detroit, construyó un modesto laboratorio en el vagón de equipaje. También instaló una imprenta de segunda mano en la que editaba un semanario, el Grand Trunk Herald, que vendía en el tren.

Telegrafista vagabundo: De los 16 a los 21 años, Edison trabajo corno lo que él llamó “telegrafista vagabundo”, en los estados del sur y el oeste medio de la Unión Americana. En 1869 vivía en Nueva York, en un sótano de Wall Street. En cierta ocasión, mientras visitaba por casualidad las oficinas de Gold lndicator Company, se descompuso el indicador telegráfico de los precios del oro. El lo reparó allí mismo y fue contratado como ayudante del ingeniero principal te la compañía. Después creó la impresora de acciones Edison Universal, vendida a la Western Unión en 40 000 dólares. Edison utilizó el dinero para establecer y equipar su primer taller en Newark, Nueva Jersey, donde fabricó el receptor telegráfico de cotizaciones bursátiles, a principios de la década de 1870. En 1876 se mudó a Menlo Park, para dedicarse a la invención. Al año siguiente mejoró el micrófono del teléfono de Alexander Graham Bell.

Cinco días sin dormir Edison afirmó haber dejado de dormir cinco días par a perfeccionar su fonógrafo cuando poso para una foto  en su taller de West Orange el 16 de jur4o de 18118. Más tarde, ese mismo día, se fotografió con algunos de sus colaboradores , ya menos desaliñado y mas normal.

En el transmisor de Bell, las vibraciones sonoras de la voz se convertían directamente en impulsos eléctricos; pero la reproducción del sonido era débil, sobre todo a grandes distancias, en las que prácticamente se desvanecía casi de inmediato.  El micrófono de Edison utilizaba trocitos de carbón para lograr un contacto cuya resistencia variara según la presión de las ondas acústicas. Esto controlaba la corriente de una batería y podían enviarse señales eléctricas mucho mas potentes que con el aparato de Bell. Así se transmitía a mayor distancia.

En el teléfono de Bell, la bocina también servia de auricular, por lo que el usuario tenía que hablar y oír alternada mente en el mismo lado del aparato. Edison separó el transmisor y el receptor, facilitando así la comunicación. Después de perfeccionar el teléfono, Edison se concentró en la invención del fonógrafo, antecedente del gramófono y del moderno tocadiscos. En diciembre de 1877 hizo una demostración a sus empleados de Menlo Park. Al girar lentamente el cilindro del fonógrafo, se oyó una débil voz que recitaba el poema infantil María tenía un corderito.

Patentó el fonógrafo en febrero de 1878 y nueve años después se mudó a una nueva casa y a un laboratorio másespacioso, en West Orange, Nueva Jersey. Para entonces había ganado ya alrededor de un millón de dólares con A sus inventos (en total patentó 1.093, desde una pluma eléctrica hasta casas baratas de hormigón armado). Llegó a tener hasta 5.000 empleados.

En alguna ocasión Edison esbozó su método de trabajo a un reportera de Scientific American, quien escribió: “Los bocetos preliminares se envían a los fabricantes de modelos, que revisan las enormes listas de material para conseguir las partes necesarias, o quizá piezas terminadas para el aparato; de inmediato se destinan al trabajo tantos obreros como puedan emplearse, para adelantarse, y así el modelo funcional estará listo en muy poco tiempo.”

Después se hacían mejoras, se preparaban diagramas de trabajo y se creaban los patrones y moldes necesarios. Luego se construía y se probaba el aparato, de tamaño real. El siguiente paso, en caso de que el invento satisficiera las exigencias y expectativas de Edison, era llevarlo a otro taller y reproducirlo. “Los inventos de magnitud suficiente.., se lanzarán como base de una industria separada”, concluía el artículo. Entre esos inventos figuró, en 1889, el cinetoscopio, del que Edison declaró que llevaría la política, el arte y el deporte al hombre común.

El cinetoscopio de Edison daba la ilusión del movimiento, al pasar en rápida sucesión una serie de fotos en la pantalla de la máquina-. De producir documentales de bailarinas y boxeadores, Edison pasó a realizar películas con argumento, entre ellas El aran asalto al tren, filmada en 1903. Con tina duración de 10 minutos, ésta fue una de las filmaciones más largas de su tiempo. Edison murió el 18 de octubre de 1931 a la edad de 84 años. Tres días después fue sepultado cerca de su casa de West Orange (Ver: Nuevas Técnicas Industriales en el Siglo XIX    )

Los inventos de Edison
El listado de los inventos e innovaciones que concretó Thomas A/va Edison —y que patentó oficialmente— es cercano al millar, sin contar registros asentados en Europa. Pero sólo unos pocos inventos son importantes y trascendentes. Es decir, que implicaron cambios y se continuaron en el tiempo. Por esto, algunos son recordados en manuales de estudio o enciclopedias.

Muchos de sus inventos sólo son retoques, incorporaciones, mejoras o innovaciones que se asientan sobre otros inventos importantes. Por ejemplo, el invento del fonógrafo se patentó, pero luego Edison, tramitó unos dos centenares de patentes que implicaron agregados o perfeccionamientos o nuevas piezas y mecanismos.

Así definidas las cosas, el siguiente es un sintético recordatorio de los principales pasos dados en el camino de las invenciones por Edison, los cuales están detallados en el texto principal de esta biografía. Es un re-corrido por todas aquellas áreas donde paseó su talento creativo.

Telégrafo
Empezó siendo operario y terminó generando innovaciones en este aparato de comunicaciones. Su primer paso a los 16 años — transgresor y tramposo— fue crear una aplicación que mandaba —automáticamente y a intervalos regulares— una señal fija a la central de telégrafos, para que no se notara que el operador dormía. Posteriormente, en 1864, ideó un repetidor automático de mensajes sin la intervención de un operario, que perfeccionó en 1866. Desarrolló asimismo un sistema de caligrafía sencilla, de rápida escritura, para tomar más aceleradamente los mensajes. Las letras eran de buen diseño y simples. Hizo otros aportes que permitieron hacer más eficientes los telégrafos manipulados. Edison logró también enviar dos mensajes en el mismo sentido por un solo hilo; pero otro colega creó el dúplex (un mensaje en cada dirección). Luego inventó el telégrafo cuádruple que transmitía cuatro mensajes, dos hacia cada destino.

Mimeógrafo
O matriz mimeográfica (stencil). Una hoja metálica era perforada por un punzón, obteniendo un modelo o patrón. Se utilizó para hacer copias de un texto o imagen original.

Papel parafinado
Fueron varios los ensayos para lograrlo. Hasta su novia Mary trabajó en ello. El papel tuvo entre otros destinos, el de servir para el fonógrafo y, tiempo después, para envolver alimentos.

Máquina de escribir
No fue Edison el inventor, pero sí colaboró con Christopher Latham Sholes en la invención de la máquina de escribir, en 1873. Remington la industrializó.

Registradora de votos
Ayudado por otro aprendiz de inventor, Edison creó la máquina de registro de votos. Objetivo: acelerar los trámites parlamentarios. Error y fracaso. Los congresistas usan la dilación del voto como herramienta política. Fue en 1868.

Registradora de cotizaciones
En medio de la vorágine financiera de Wall Street, en 1869, Edison trabajó en el perfeccionamiento de los indicadores de cotizaciones, como el tope simultáneo —los indicadores podían ser llevados a punto cero de una central— y una registradora universal de cotizaciones. Registró 46 patentes relacionadas con estos instrumentos.

Teléfono
En 1876, Alexander Graham Bell patentó el teléfono, pero fue Edison quien inventó el micrófono de carbono, fundamental para que el teléfono fuera útil.

El Relay no magnético
Se trató de un mecanismo censor —utilizando una tiza húmeda— que accionaba una palanca tras el paso de electricidad. Esto surgió de un desarrollo de 1875.

Fonógrafo
Se trata de las grandes hazañas de Edison, su invento más original. Le permitió grabar y reproducir sonidos. Solicitó la patente el 24 de diciembre de 1877 y fue concedida el 13 de febrero de 1878. Con el correr de los años le hizo modificaciones.

Lámpara incandescente
En 1879 consiguió desarrollar su lámpara de iluminación con una bombilla al vacío y un filamento de algodón. Luego concretó otras innovaciones. Fue uno de los inventos que lo hicieron famoso en el mundo.

Electricidad
Tras la lámpara, Edison desenvolvió una intensa actividad creando instrumental, piezas, dínamos y otros elementos vinculados con la conducción de la electricidad.

Central energética
En 1881 se puso en marcha la primera central eléctrica, instalada en Pearl Street, en el distrito financiero de Nueva York. La electricidad se convirtió en un servicio comerciable.

Cinematografía
El kinetoscopio fue el aparato creado y patentado por Edison en 1891, con unos 15 metros de película. Las escenas se observaban por medio de una pantalla de aumento. También le corresponde el mérito del primer estudio de filmación, el teatro kinetoscópico —más famoso por sunombre Black María—, en 1893. En 1913 habría filmado una cinta hablada, pero la industria del cine no le prestó la debida atención.

Fluoroscopio
Un invento destinado a realizar estudios médicos. Permitía obtener imágenes de rayos X en movimiento.

Efecto Edison
Fue su mayor descubrimiento científico. Se le llama también efecto termoiónico. Descubrió, en 1884, el efecto de la emisión electrónica en los mentales incandescentes. Vio que una lámpara incandescente podía actuar como una válvula que permitía el paso de i electricidad negativa, pero no positiva. Se utilizó en las válvulas.

Radiotelegrafía
Dio algunos pasos en este sentido. Detectó descargas eléctricas entre objetos metálicos distantes de un contacto eléctrico. Logró controlar y emitir esas ondas. Vendió sus avances a Guglielmo Marco-ni.

Taxímetro
Registraba alteraciones de temperatura del orden de una millonésima de grado Fahrenheit.

Megáfono
La idea le pertenece, al llevar a cabo comunicaciones a cierta distancia, empleando grandes embudos que terminaban en pequeñas aberturas donde apoyaba el oído el receptor del mensaje.

Separador de hierro
En los años 90 desarrolló un aparato para separar el hierro de la roca. Funcionaba con un electroimán que dividía el recorrido de ambos materiales.

Cemento
Además de ocuparse de producir cemento, buscó nuevas aplicaciones y concibió el sistema de placas modulares de cemento para la i construcción rápida de viviendas.

Mecánica
Cuando se abocó a producir cemento ideó un método de auto engrase de las maquinarias, garantizando la lubricación. Asimismo, montó un sistema de comunicación dentro de su fábrica.

 Acumulador
A partir del año 1900, obtuvo importantes avances en el perfeccionamiento de los acumuladores de las baterías para motores. Tenían una vida útil de 10 años.

Ayuda en guerra
Durante la Primera Guerra Mundial montó una planta de ácido fénico, otra de benceno y una tercera de anilina. Colaboró con la marina en emprendimientos defensivos.

Música
En 1927 fabricó un disco que permitía escuchar música durante cuarenta minutos. Un anticipo del long play.
u Biotecnología. Realizó cruzas de distintas cepas de árboles para lograr obtener caucho. Cuando estaba al borde de concretarlo, se consiguió producir caucho sintético.

PARA SABER ALGO MAS…

La compañía de Thomas Alva Edison no solo construyó el primer estudio cinematográfico del mundo en 1893. sino que también desarrolló, patentó y adquirió los derechos de la tecnología primitiva. Con el cambio de siglo, se levantaron nuevas compañias cinematográficas de la noche a la mañana, generalmente con sus propias versiones de cámaras y equipos de proyectar .Algunas de éstas eran modelos originales y patentables; otras resultaban ser copias piratas de los productos de Edison. Este no hacía distinciones, demandaba a todos sus competidores por igual, ahogando a las pequeñas compañías con monstruosos costos legales.

Cuando no podía acabar con sus competidores de entrada, el astuto Edison les ofrecía un trato: unir sus patentes en una sola compañía —un trust— y renunciar a todos los pleitos. En diciembre de 1908, se formó la Compañía de Patentes Motions Pictures, con la mayoría de las acciones repartidas entre Edison y un antiguo rival, la Compañía Biograph. Cualquiera que quisiera producir, distribuir o exhibir películas en Estados Unidos, tenía que comprar una licencia a esta sociedad.

Sirviéndose de tácticas coactivas, el trust atacó a las firmas rebeldes con presiones legales y físicas. El productor Carl Laemmle, que pronto fundó la Universal Pictures, protestó públicamente, y filmó películas en sitios secretos para escapar a los ladrones y a los espías del trust. El distribuidor William Fox, de la 20th Century Fox, demandó al trust en 1912, alegando la restricción del mercado, pero no se aceptó su demanda. Finalmente, en 1915, el gobierno de Estados Unidos, de acuerdo con la ley antitrust de Sherman, disolvió eltrust aunque sin resultados prácticos —en parte porque no era posible hacerle cumplir los edictos y cobrar derechos, y en parte porque se ocupaba de cortometrajes mientras que los independientes, más innovadores, presentaban las películas de largometraje, cada vez más populares.

Aunque quizás el mayor legado del trust fue Hollywood mismo. Atraídos por el clima soleado y el variado paisaje, los productores de la costa este habían hecho frecuentes visitas allí desde 1907. Pero el trust ofreció a muchos independientes una razón que les impulsó a cambiar de residencia: Hollywood estaba lejos de los abogados neoyorquinos de Edison y cerca de la seguridad de México. Gracias en parte al inventor
considerado egoísta y codicioso, este territorio infestado de mofetas y rico en naranjales y limoneros se convirtió en el centro mundial del espectáculo.

Fuente Consultada: Como funcionan las mayoría de las cosas Readers Digest – Wikipedia – Encarta – Grandes Inventores del Siglo XIX

Tragedia del Titanic Hundimiento del Titanic Barco de Pasajeros Ingles

La Tragedia del Titanic
Historia de su Hundimiento

Era la noche del 14 de abril de 1912. Sobre la cubierta del transatlántico Titanic, el marinero de guardia Federico Fleet oteaba en la noche fría y serena. El transatlántico, el “insumergible”, la más grande y hermosa nave del mundo, avanzaba majestuoso en la quinta noche de su viaje inaugural hacia Nueva York. Se encontraba a 700 Km. al sur de Terranova y a 1.900 de Nueva York.

A las 23 y 40, Fleet vio de pronto frente a sí una enorme masa blanca en medio de la oscuridad. Observó un instante y llamó inmediatamente por teléfono al puente de mando.
—¿Qué sucede? —-habló la voz del oficial que atendió el teléfono.
—Un témpano, frente a proa.
—Está bien.

Prontamente se interrumpió el ruido de las maquinarias y él barco se preparó para retroceder. Fleet observaba con espanto acercarse cada vez más la inmensa montaña de hielo, mucho más alta que el castillo de proa. El marino se hallaba espantado, esperando el encontronazo. Pero luego, ya en el último momento, la proa comenzó a doblar a la izquierda, mientras la montaña de hielo se escurría por el flanco derecho de la nave.

El peligro parecía haberse conjurado. Mas el témpano, con un espolonazo bajo las aguas, había abierto una enorme hendidura en el casco del buque. En el recinto de la caldera N9 6, el fogonero Fred Barret estaba hablando con el segundo oficial de máquina, cuando se encendió la luz roja de .alarma. Se sucedió en seguida un estruendo ensordecedor mientras toda la pared de acero de la embarcación se abrió, dejando pasar un torbellino de espuma blanca…

Así murió el Titanic, el insumergible. A las 2 y 20 del día 15 de abril, el imponente buque, después de haberse empinado, comenzó a deslizarse bajo el agua. Hasta que al fin, en una nube de espuma, las aguas cubrieron el asta de la bandera de popa. Con la nave desaparecieron 1.502 personas.

De este modo, con semejante tragedia, el mundo empezó a conocer qué cosa era un témpano: empezó a conocer su misteriosa vida, su tremendo poder, el peligro mortal que representaba para las travesías a bordo.

Desde un principio, el viaje inaugural del Titaníc es marcado por la tragedia.  Se cuenta que al moverse majestuosamente el inmenso barco de 46,329 toneladas de su amarradero en Southampton, queda junto al trasatlántico New York, que estaba anclado.  D pronto se escucharon voces de alarma al enredarse como cordón las gruesas cuerdas de amarre de ambo barcos, y luego empezaron a ser arrastrados junto por alguna fuerza desconocida.  El Titanic fue detenido justo a tiempo luego que la extraña “succión cesó, y en seguida los remolcadores abrieron camino lentamente al New York para llevarlo de vuelta al amarradero.  Una situación idéntica se presentó sólo unos minutos después, cuando el Teutonic también se enredó en las cuerdas del Titanic ylo siguió de cerca varios grados hasta que el Títanic logró deslizarse.

Posteriormente, el trasatlántico fue remolcado hacia el mar abierto y la tranquilidad volvió a la tripulación a su capitán, Edward-Smith.  La cubierta temblaba casi imperceptiblemente ante el empuje de sus imponente turbinas: era el barco más grande, el mejor y el más seguro que se hubiera construido.  Para garantizar esa seguridad, 15 mamparas transversales lo subdividían de proa a popa y un doble fondo significaba una garantía más contra accidentes.  Era, en la mente de todos los que estaban tanto en tierra como a bordo, lo máximo: el barco insumergible.

Después de una breve visita a Cherburgo, el Títanic salió de Queenstown (ahora Cobh), Irlanda, durante la noche del jueves 11 de abril de 1912 y entró al Atlánti­co, en aguas que el veterano capitán Smith conocía muy bien.  Navegó constantemente hacia el oeste sin ningún incidente; el mar estaba calmado y el clima despejado aunque muy frío, al grado de que la tempe­ratura bajó dramáticamente durante la mañana del domingo 14 de abril, y varios mensajes recibidos por el operador de radio del Titanic advirtieron sobre el peligro de encontrar icebergs.

El barco proseguía su marcha a toda velocidad y sus luces titilaban sobre el agua oscura y tranquila: sus máquinas lo impulsaban a una velocidad constante de nudos.  De pronto, justo antes de la medianoche, un vigía gritó: “¡Iceberg al frente !”

Los pasajeros que aún estaban despiertos no se dieron cuenta de lo que ocurría, porque el impacto había sido suave.  Lawrence Beesley, uno de los sobrevi­vientes, declaró que “no hubo ruido de choque o de otra cosa; no se sintió el choque, ninguna sacudida de un cuerpo pesado chocando con otro…”Se dieron órdenes desesperadas para hacer girar el barco hacia el puerto, pero era demasiado tarde.  Cuando empezaba a girar, un inmenso iceberg raspó su estribor a todo lo largo y luego se deslizó a la popa y se perdió en la noche.  El capitán Smith estaba en el puente antes de que su primer oficial Murdoch pudiera comunicar la orden de: “¡Paren máquinas!” Ordenó cerrar herméticamente todos los compartimentos estancos y luego pidió al cuarto oficial Boxhall que hiciera sondeos.  El joven oficial estaba a punto de retirarse cuando el carpintero del barco llegó al puente para informar: “¡Está haciendo agua rápidamente!”

Sobre la cubierta, y no obstante el intenso frío, algunos pasajeros entusiasmados sostenían una “batalla” con bolas de nieve, usando el hielo que el mortífero témpano había depositado durante el breve en­cuentro con el barco, mientras que otro pasajero, que no quería dejar la comodidad del salón de estar, alargó un vaso y pidió a un amigo que “viera si había llegado un poco de hielo a bordo”.

Algunos pasajeros preguntaron a los camareros por qué se habían parado las máquinas, y éstos les aseguraron que no había motivo de alarma.  Los camareros actuaban de buena fe, pues hasta el momento creían realmente que todo estaba bajo control.  Allá abajo, sin embargo, la historia era diferente.  Los hombres del primer cuarto de calderas se encontraban nadando en fuertes torrentes de agua que se precipitaban a través de una enorme grieta en el costado del barco.  Lograron llegar al siguiente cuarto de calderas, y luego al siguiente, hasta entrar al número 4, que estaba casi a la mitad del buque y donde aún no llegaba el agua.

Al darse cuenta de que el daño era grave, el capitán Smith fue al cuarto de radio, donde los dos operadores de radio, Jack Phillips y Harold Bride, estaban listos para recibir o transmitir señales, y les dijo que el barco había chocado con un iceberg y quería que estuvieran listos para enviar una llamada de auxilio.

Cuando regresó al puente era obvio que el Titanic se hundía lentamente.  El témpano había abierto un corte en la proa de estribor del largo de la tercera parte de la longitud del barco, y el agua helada del Atlántico entraba incontrolable y copiosamente.  A las 00:25, unos minutos después de la colisión, el capitán Smith ordenó que se descubrieran los botes.  Diez minutos después regresó al cuarto de radio para ordenar a los operadores que empezaran a transmitir, agregando perturbado: “Podría ser la última oportunidad”.  Inmediatamente, el llamado urgente crepitó en la noche transmitiendo lo que había ocurrido, dando la señal de llamada MGY del barco y su posición, y pidiendo ayuda urgente.

La señal fue captada por dos trasatlánticos, el Frankfort y el Carpathia, y el capitán de este último preguntó dos veces a su operador si había leído correctamente el mensaje, pues no creía que el “insumergible” Titaníc pudiera hallarse en problemas.  Cuando se confirmó el llamado de auxilio, ordenó a su operador responder que iría al rescate a toda velocidad, y pidió a sus ingenieros que le dieran “toda la información que tenían”.

Mientras tanto, los camareros del Titanic iban de camarote en camarote, tocando a las puertas y pidiendo a los ocupantes que se pusieran ropa adecuada para el frío y se dirigieran a las estaciones de botes con sus chalecos salvavidas.  Todavía ignorantes de la gravedad de la situación, la mayoría de los pasajeros hicieron lo que se les pidió, aunque algunos se negaron a salir del calor de sus camarotes por lo que consideraban simplemente un inesperado y desconsiderado ejercicio de adiestramiento para evacuación.

Los botes fueron colgados y se dio la orden: “¡Mujeres y niños solamente!”.  Al principio hubo renuencia a abandonar el barco porque éste parecía tan seguro, tan cómodo comparado con los frágiles botes.  Beesley declararía después: “El mar estaba tranquilo como un lago interior, excepto por el suave oleaje que no podía provocar movimiento alguno a un barco del tamaño del Titanic.  Permanecer en cubierta, a muchos metros por encima del agua que golpeaba indolentemente contra el costado brindaba una sensación de maravillosa seguridad…”

 Todos se comportaban de manera calmada, casi indiferente.  Hasta ese momento no había aparecido el pánico que reina en otros barcos en circunstancias parecidas ante el peligro de perder la vida ahogados; sólo se presentó una desagradable escena entre los pasajeros de tercera clase, misma que fue controlada rápidamente por los oficiales

Finalmente, los botes empezaron a ser cargados de pasajeros y bajados lentamente, aunque en realidad no los depositaron en el mar, porque el capitán Smith recibió las respuestas a su señal de socorro, especial­mente por parte delCarpathía que informó estar a sólo 60 millas de distancia y aseguró que llegaría en cuatro horas.  Sin embargo, el capitán pronto se dió cuenta de que su barco se hundía más cada minuto que pasaba, y sabía que, al hundirse la proa y levantarse el estribor sería más difícil bajar los botes, algunos de los cuales sólo estaban ocupados a la mitad de su capacidad, pues muchas mujeres se rehusaban a dejar a sus esposos.  La esposa de Isador Strauss fue una de ellas y expresó firmemente: “Donde tú vayas, yo voy”.  Así, permanecieron juntos… y murieron juntos.

Mientras los botes chapoteaban abajo, las notas de Nearer My God to Thee flotaron en la noche, emiti­das por un grupo de músicos del barco que se había reunido en la cubierta con sus instrumentos.  Algunos pasajeros se unieron al canto, otros miraban fijamente sobre el costado del barco para echar una última mirada y prolongada vista hacia los rostros de sus seres amados antes de que se volvieran indistinguibles en la oscuridad.  Las tripulaciones de los botes salvavi­das estaban integradas casi todas por camareros y fogoneros, pues los oficiales y casi todos los marineros permanecieron a bordo para ayudar a los que se quedaban.

Dos horas después de que chocara el trasatlántico, el capitán Smith ordenó: “¡Abandonen el barco! ¡Cada hombre por sí mismo!” El permaneció en el puente y no se le volvió a ver.  A pesar de la orden, Phillips y Bride aún estaban transmitiendo, urgiendo a los barcos que venían en su rescate para que se apresuraran, hasta que la energía falló y salieron a cubierta.

Los de los botes miraban hacia atrás al imponente barco que se hundía.  El barco, de casi 300 metros de largo con cuatro enormes chimeneas y que todavía brillaba con la luz resplandeciente de claraboyas y salones, ahora estaba bajo por las amuras y hundiéndose despacio pero perceptiblemente.  El ángulo se hizo más abierto al levantarse el estribor, luego se inclinó hasta alcanzar una posición casi vertical y permaneció unos momentos así, casi inmóvil.  Al balancearse, todas sus luces se apagaron de repente y se produjo un profundo estruendo cuando toneladas de maquinaria se cayeron y rompieron hacia la proa.  En seguida el enorme trasatlántico se deslizó hacia adelante y hacia abajo, cerrándose las aguas sobre él como una mortaja.

Poco después de las 04:00 horas, el Carpathia que realizó una peligrosa carrera en las aguas a una velocidad hasta entonces desconocida (para él) de 17 nudos, llegó al escenario de la tragedia a las 08:00 horas había rescatado a los ocupantes de todos los botes.  Con él estaba el California, un trasatlántico que se había detenido durante la noche a menos de 10 millas del Titaníc y cuyo capitán sería severamente criticado por no observar los cohetes de auxilio del navío accidentado.

El mundo entero quedó conmocionado cuando se proporcionó el saldo final del desastre.  De las 2,206 personas a bordo, 1,513 murieron o desaparecieron; la mayoría eran miembros de la tripulación y pasajeros varones del mayor desastre marítimo de todos los tiempos.  La investigación dio como resultado la creación de la International Ice Patrol(Patrulla Internacional del Hielo) así como una reglamentación más estricta en cuanto a la provisión de suficientes botes salvavidas para acoger a todas las personas que están a bordo de los barcos.

Datos concretos Titán (Futility) Titanic
Pasajeros 2.177 2.227
Botes salvamento 24 20
Tonelaje 70.000 66.000
Longitud 240 mts. 268 mts.
Velocidad Impacto 24 nudos 23 nudos
Número de hélices 3 3
Lugar de partida Southampton Southampton
Lugar de naufragio 400 millas Terranova 400 millas Terranova
Supervivientes 705 605
Eslora 275 mts. 300 mts.
Velocidad máxima 25 nudos 25 nudos
Botes salvavidas 24 20

Así cuenta el accidente Víctor Suero en su libro: “Historias Asombrosas Pero Reales”: La gran publicidad del Titanic, apoyada en la soberbia inglesa de la época, anunciaba que “Ni Dios podía hundirlo”, pues jamás se había construido un buque de esas características de lujo, capacidad, y seguridad. Sus 14 compartimentos estancos, y su doble fondo, garantizaban (lo cual es sólo una manera de decir, tal como lo mostró la historia) que aquella nave pudiera llevar el mote de insumergible que le habían puesto sus dueños, la compañía inglesa White Star.

El capitán, Ernesl Smith, era un hombre de la mayor experiencia y la tripulación toda fue elegida entre los mejores. Tenían todo a favor. Pero comenzaron a darse una cantidad de hechos que llevaron al desastre. Es posible que allí hayan trabajado juntos la chica del pelo suelto, la casualidad, y el duro trabajador de jeans gastados, el destino. Lo que parece seguro es que, si uno analiza ciertos detalles de lo ocurrido, casi no quedan dudas de que los del Titanio pagaron carísima su soberbia.

A las 21.40 del 14 de abril de 1912 el Messaba, un buque que navegaba por la zona, envió al Titanic un aviso de hielos flotantes. Este mensaje no llegó nunca al puente de mando porque se consideró que “esas cosas” no afectarían a semejante nave. Por lo tanto, siguieron navegando a 22 nudos, casi a toda máquina. Un nuevo navío, el Baltic, también advirtió sobre los hielos con un mensaje de alerta. George Ismay, director ejecutivo de la White Star, se ufanaba mostrando el telegrama aun a los pasajeros, diciendo que lo bueno de estar a bordo de algo como aquello hacía que no den importancia a esos detalles. Todos reían felices y seguían brindando. A las 23.40 se produce el choque, que abre todo un costado del buque a lo largo de cien metros. Pero el capitán Smith ni siquiera se inquieta.

Nada de avisos al pasaje, ni estado general de alerta máxima, ni cambios en la alegre rutina. Aquel barco era “insumergible”, según todos aseguraban. La orquesta seguía tocando y la fiesta a bordo continuaba mientras los pasajeros jugaban con los trocitos de hielo que habían caído sobre la cubierta.

Era insumergible, era insumergible. No había nada que temer. Pero comenzó a hundirse, clavándose en el mar como un cuchillo filoso en la manteca caliente. Sólo había dieciséis botes salvavidas cuando debieron ser 48. ¿Para qué tantos si era insumergible, era insumergible? De todas maneras había que cumplir con las reglas y avisar de la colisión a «Iros buques. La radio emitió el pedido de auxilio pero el Californian, a solamente ocho millas del lugar, no lo recibió porque su radiotelegrafista había desconectado el aparato hacía apenas diez minutos, enojado por el trato altanero que había recibido hasta entonces de sus colegas del Titanic, que alardeaban de su buque y se comportaban como si dieran de una casta superior. La soberbia, el peor de los pecados, se pagaría muy cara. Pero el destino tenía preparadas otras jugadas increíbles.

Murieron 1.513 de las 2.224 personas que iban a bordo. Los sobrevivientes, rescatados hacia las cuatro de la mañana por el transatlántico Carpathia, describieron escenas de valor y confusión. Como el Titanio solo contaba con botes salvavidas para la mitad de sus ocupantes, los oficiales del barco ordenaron que las muje
res y los niños fueran evacuados en primer lugar. Muchos pasajeros y miembros de la tripulación sacrificaron sus puestos. Pero la evacuación fue tan desorganizada que muchos botes fueron soltados antes de estar llenos.

Los pasajeros pobres, inmigrantes amontonados en los entrepuentes de la parte inferior, no pudieron hablar nunca del accidente: la mayoría lo averiguó demasiado tarde, cuando el barco se deslizaba bajo el agua. Murieron junto a aristócratas y magnates, con la orquesta del salón de primera clase tocando hasta el final.

El desastre, uno de los peores de toda la historia naval, provocó reformas importantes. Se estableció la Patrulla Internacional del Hielo para prevenir a los barcos del peligro de los icebergs del Atlántico Norte, y en 1913 se estipuló que los barcos debían llevar botes suficientes para todos los pasajeros

EL RESCATE
Casi dos horas después llegó al sitio de los hechos el “Carpathia”. Su capitán dio orden de subir a bordo a todos los sobrevivientes, descubriendo que sólo alcanzaban la cifra de 711; vale decir, habían sucumbido cerca de mil quinientas personas.

Antes de emprender viaje a Nueva York con los sobrevivientes del holocausto, el “Carpathia” recorrió por última vez el contorno donde se había hundido el “Titanic” y su capitán ordenó un breve servicio fúnebre que fue seguido con profundo recogimiento y silencio por los presentes.

Pronto, también, llegaron hasta la zona del desastre el’ ‘Californian” y, posteriormente, el “Mackay-Bennett”, que se dedicaron a la muy triste tarea de rescatar los cadáveres a la deriva.

Fue precisamente el “Mackay-Bennetf’ el que encontró 306 restos. Al distinguirlos daban la impresión de una bandada de gaviotas posadas sobre el agua. Flotaban en posición vertical, “como si caminaran en el agua”, y la mayor cantidad de cadáveres estaba reunido en un grupo grande, rodeado por escombros del gran barco siniestrado.

Los tripulantes ocuparon toda una jornada para subir los infortunados cuerpos sin vida a cubierta. Fue una labor tensa y amarga. Muchas de las víctimas presentaban aplastado el cráneo y extremidades. Algunas mujeres sujetaban fuertemente a sus pequeños hijos en los brazos. Muchos rostros estaban tan magullados que resultaba imposible el reconocimiento.

Quienes no pudieron ser identificados recibieron inmediatamente sepelio en el mar.

A las 20:00 horas del domingo 21 de abril se oficiaron las honras fúnebres. El ingeniero Fred Hamilton, del “Mackay-Bennetf ‘, las describió de la siguiente forma en su diario de vida:

“El toque a muerto de la campana convoca a todos en el castillo de proa, donde treinta cadáveres van a enviarse a las profundidades; cada uno va envuelto en lona, cosida cuidadosamente, después de agregarle lastre. La luna creciente arroja sobre nosotros una luz tenue, mientras la nave se bambolea entre el gran oleaje. El servicio fúnebre es dirigido por el Reverendo Canon Hind; durante casi una hora se repiten las palabras: ‘Puesto que así lo has dispuesto… entregamos este cuerpo a las profundidades…’ y, a cada intervalo, sigue el ¡plas! al zambullirse el cuerpo lastrado en el mar, cuya profundidad, en ese lugar, es de más de tres kilómetros. ¡Plas! ¡Plas! ¡Plas!”

LA LLEGADA DEL “CARPATHIA” A NUEVA YORK
El jueves 18 de abril arribó a Nueva York el vapor “Carpathia”, de la Compañía Naviera “Cunard”, con los sobrevivientes del’ ‘Titanic”. Más de treinta mil personas se agolparon en las calles para recibir a los protagonistas de tan espantosa tragedia.

El desembarque fue rápido y expedito debido a una eficiente coordinación de las autoridades portuarias. A su vez, la policía tuvo que desplegar todos los esfuerzos posibles para mantener a raya a cientos de periodistas que trataban infructuosamente de acercarse a los sobrevivientes. Asimismo, en el muelle permanecían estacionadas ambulancias y camillas para ciento veinte pasajeros que tuvieron que ser conducidos al Hospital de San Vicente.
En las calles adyacentes, la multitud expectante presenciaba con un silencio sepulcral el paso de las ululantes ambulancias.

Los escasos tripulantes y miembros de la oficialidad del ‘ ‘Titanic” que se salvaron de la catástrofe fueron trasladados de inmediato al vapor “Capland” para ser enviados a Inglaterra.

La prensa neoyorquina se ocupó del tema por largo tiempo, culpando del desastre a la irresponsabilidad de la compañía naviera y fustigando fuertemente a su director general, Joseph Bruce Ismay, quien debió comparecer ante una Comisión del Senado estadounidense encargada de investigar las causas de la tragedia y las responsabilidades que les cabían a sus propietarios y oficiales.

INVESTIGACIÓN DE LOS ORÍGENES DEL NAUFRAGIO
Mr. Ismay, abatido por la magnitud de los acontecimientos, relató varias veces su versión de los hechos y tuvo muchas dificultades para explicar por qué fue uno de los primeros en abordar un bote salvavida, en circunstancias que sólo se permitía embarcar a mujeres y niños. Dijo nerviosamente, y tratando de ser convincente, que cuando había ocupado el bote en que se había logrado salvar, a sus alrededores no se encontraba ninguna señora que hubiera querido ocupar el lugar que él tomó. Pese a su defensa, la prensa lo tildó de cobarde e irresponsable, pues, también, lo acusaron de haber mantenido bajo presión al capitán Smith para que le imprimiera al vapor una velocidad temeraria, pese a las señales de peligro que había recibido.

En el desarrollo de la investigación -más adelante- salió a luz que Mr. Ismay, temeroso de las responsabilidades que iba a tener que afrontar, trató de transbordarse a otro vapor, en alta mar, para regresar a Europa, lo que no consiguió.

Finalmente, las dos comisiones que investigaron el naufragio del “Titanic” -una americana y otra inglesa- llegaron a la misma conclusión. Coincidieron en que el vapor había avanzado a gran velocidad en una zona de alto riesgo, plagada de icebergs. La tripulación -obedeciendo estrictas instrucciones de los propietarios de la compañía- debía cumplir un apretado itinerario en el menor tiempo posible, aun cuando eso significara cruzar a toda máquina bancos de niebla, campos de hielo o flotas de barcos pesqueros. El “Titanic” pagó altísimo precio por la locura de reducir los tiempos de travesía del Atlántico.

Puedes leer un libro sobre esta maravilla flotante del autor Roberto Blanc, que gentilmente lo ha enviado para que sea compartido con los navegantes interesados en el tema:

libro sobre el concorde

Los Hermanos Wright La Conquista del aire El Primer Vuelo Con Motor

       Los Primeros Vuelos Aéreos de los Hermanos Wright    

UN POCO DE HISTORIA: Desde los tiempo mas remotos volar siempre ha sido el gran sueño del hombre, e impulsados por ese deseo de transformarse en pájaros ha hecho que muchos valerosos intrépidos hayan ideado todo tipo de artilugio para luego lanzarse desde lo mas alto de su zona, y muchas veces estrellarse contra el duro piso. Pero debemos agradecer infinitamente a ese grupo de soñadores porque fueron ellos lo que pusieron la semilla inicial para que luego otros mas osados probaran nuevos artefactos voladores.

Como casi todos sabemos, el gran genio del Renacimiento europeo, llamado Leonardo Da Vinci comenzó a esbozar en su cuaderno de anotaciones diarias, las primeras formas de esos artefactos, pero sin llegar a realizar experiencia alguna, pues él estaba mas ocupado con otras prioridades que le daban grandes satisfacciones sin arriesgar su pellejo, como fue el arte y la comida.

Se sabe que los primeros intentos fueron en Francia por el siglo XVIII, los hermanos Montgolfier hicieron las primeras pruebas con globos aerostáticos y otros menos conocidos se han lanzado desde grandes alturas. En 1785, un francés y un americano cruzan el Canal de la Mancha en globo, y no tardarán en realizarse los primeros intentos de volar en avión.

Un inglés de apellido Cagley en 1849 construye un planeador de tres alas, y hace sus pruebas usando como piloto a un niños de solo 10 años y se convierte en el primer aparato en flotar un mínimo tiempo en el aire. Deberán pasar unos 40  años para que en 1890, otro francés,  Clément Ader realice un  primer vuelo de la historia en un aparato propulsado por vapor.

Pero despacio estamos entrando al siglo XX, pero sin olvidarnos de otros grandes inventores, como Lawrence Hardgrave que construye un modelo impulsado por paletas movidas por un motor de aire comprimido que vuela 95 metros, Otto Lilienthal que en 1877 inventa unl planeador con alas curvadas. Samuel Pierpont Langley también se anima y ahora consigue elevar durante un minuto de aeroplano impulsado por vapor y que bajaba lentamente planeando.

Y ahora si llegamos a 1903, Orville Wright realiza el primer vuelo de la historia en un aeroplano propulsado y bajo control humano, durante 12 larguísimos segundos. Trabajando junto a su hermano Wilbur, desarrolla los primeros aviones propulsados por un pequeño motor.

Los Wright eran fabricantes de bicicletas y empezaron diseñando planeadores, con los que realizaron cientosde pruebas; incluso diseñaron su propio túnel de viento.

Según sus experiencias a ellos les faltaba una fuerza poderosa que trate de impulsar con potencia el aeroplano hacia adelante y oro colega llamado Charlie Taylor, les fabricara un motor de gasolina de doce caballos que pesa poco más de ochenta kilos, mas o menos el peso de una persona.

Después de varias pruebas y de estrellarse  varias veces en la arena con su planeador motorizado, consiguieron recorrer unos 31 metros el día 17 de diciembre de 1903 con el Flyer. El brasilero Alberto Santos Dumon, en Francia logrará tres años después un vuelo de 220 metros en 22 segundo.

 Los hermanos Wright eran hijos del obispo estadounidense Milton Wright, ministro de la Iglesia United Brethren (Hermanos unidos), y de Susan Koerner Wright. Wilbur, el mayor, nació en Millville, Indiana, el 16 de abril de 1867 en tanto Orville, en Dayton, Ohio, el  19de agosto de 1871.

Desde niños se interesaron por los juguetes, cometas y objetos mecánicos, y uno de sus preferidos era una hélice que se cargaba con unas gomas elásticas  y lograba elevarse mientras la hélice giraba. Si bien muy tenían personalidades muy distintas, a los hermanos los unía el mimo espíritu inquieto e ingenioso, pues por curiosidad los hacía desarmar, explorar construir nuevos objetos mecánicos.

 En 1889 instalaron su propia imprenta e Dayton, donde editaron y publicaron el diario West Side News, y tres años más tarde, entusiasmados con la aparición de Ir bicicletas, dejaron la imprenta para instalar un taller de reparación que se transformaría en la Wright Cycle Co., que vendía su propio modelo de bicicleta. Los ingresos ayudaban a su manutención mientras ellos investigaban sobre aeroplanos.

Wilbur se interesó en el vuelo cuando se enteró del fatal accidente de Otto Lilienthal mientras investigaba el planeo en 1896. Por aquel entonces, la investigación sobre el vuelo se orientaba a emular el movimiento de las alas de las aves. Mientras observaba el vuelo de un águila, Wilbur comprendió que además de utilizar el planeo, movían las alas para girar. El control del vuelo era vital además de la propulsión. Un aeroplano tenía que poder ladear, subir o bajar, y girar a derecha e izquierda, y dos o tres de estas actividades debían realizarse simultáneamente.

Los hermanos Wright decidieron enfrentarse a los problemas del control del vuelo antes de pensar en la fuerza propulsora. Escribieron a la Smithsonian Institution pidiendo material sobre investigación aeronáutica y leyeron todo lo que pudieron encontrar sobre el tema. En 1899 ya habían diseñado una cometa de dos alas que podían moverse mecánicamente de forma que una tenía más sustentación y la otra menos.

Entre 1900 y 1902 diseñaron tres planeadores biplanos, utilizando un túnel de viento en Dayton para ayudarse en la investigación. Llegaron a diseñar mecanismos fiables que les permitían tener el dominio de los movimientos de los aparatos en el aire, como por ejemplo en los virajes mediante una técnica denominada alabeo. Eso los ayudó luego a conseguir un avión controlable, que comenzaron a construir en 1902.

Los vuelos se iniciaron en una playa llamada Kitty Hawk, en Carolina del Norte, que eligieron después de que el Weather Bureau les proporcionara una lista de lugares ventosos. La arena protegería los planeadores y la soledad del lugar les daría privacidad. La versión final de los planeadores tenía timón trasero para girar a izquierda y derecha, alerones para ascender o descender, y las alas podían plegarse. Una vez que estuvieron satisfechos con los planeadores, diseñaron el motor, una máquina de cuatro cilindros y doce caballos de potencia.

Al primer aparato experimental lo llamaron Flyer. Realizaron su primer vuelo exitoso de prueba el 17 de diciembre de 1903, en Kitty Hawk, estado de Carolina del Norte, en EE.UU. Lo piloteó, acostado sobre la máquina, Orville Wright. Su hermano Wilbur corrió a su lado para mantenerlo equilibrado. Pese a que disponía de motor, emplearon una catapulta para impulsarlo y rieles para que carreteara derecho.

Unavez en el aire, el biplano voló unos 40 metros durante 12 segundos, a un metro del suelo. Lo hizo llevado por su planta impulsora de cuatro cilindros, alimentada a nafta y con un sistema de transmisión por cadena que trasladaba su empuje a las hélices. Ese mismo día realizaron otros tres vuelos, presenciados por cuatro socorristas y un niño de la zona, siendo los primeros de su tipo hechos en público y documentados.

En la última prueba, Wilbur Wright consiguió volar 260 metros en 59 segundos. Al día siguiente, diarios como el Cincinnati Enquirer y el Dayton Daily News publicaron la noticia.

Según algunos biógrafos Orville, ganó la prioridad de manejo con  el lanzamiento de una moneda, el 17 de diciembre de 1903.

portada de una revista sobre los hermanos wright

El Flyer realizó su primer vuelo exitoso en 1903, en Carolina del Norte. Lo piloteó, acostado sobre la máquina, Orville Wright. Su hermano Wilbur corrió a su lado para mantenerla equilibrada.

Esa mañana un fuerte viento de más de 40 kilómetros por hora,  soplaba sobre la franja de dunas que interrumpen el mar. A las nueve de la mañana  los hermanos Wilbur y Orville Wright, inventores y constructores del aparato, ayudados por cinco hombres, arrastraron la mole de 275 kilogramos desde su cobertizo hasta la llanura de arena, al pie de Kill Devil Hill, una elevada duna de 30 metros de altitud. El viento consigue levantar el planeador número 3 de los hermanos Wright en Kitty Hawk (Carolina del Norte). Ambos fueron excelentes pilotos de planeadores, y el año 1902 sometieron a prueba en Kitty Hawk las teorías aeronáuticas que desarrollaron en Dayton. En esta foto tomada por Orville, su hermano Wilbur (al fondo) y Dan Tate, de Kitty Hawk, hacen volar el planeador como una cometa.

17 DE DICIEMBRE DE 1903, LA PRIMERA EXPERIENCIA:

Para conseguir suficiente velocidad para ese primer despegue, habían encendido la máquina en una duna arenosa. Hoy, el viento haría todo el trabajo. Se llevaría el aparato hacia arriba como una cometa: una cometa sin pita, empujada hacia delante por un motor, lista a retar la gravedad y a volar hasta donde quisiera.

Los dos hombres habían diseñado el motor ellos mismos. Habían fabricado cada parte del avión que esperaba por ellos en el cobertizo -experimentando, investigando y probando sus descubrimientos. Ahora sólo faltaba la gran prueba.

El viento no era el único hambriento en esa costa desolada. Wilbur y Orville Wright también lo estaban, pero por el trabajo. El viento sería su amigo, no su enemigo. Les ayudaría en el despegue y suavizaría el aterrizaje.Los dos hermanos sonrieron. Yahabían esperado suficiente tiempo. Era el momento de empezar.

Tomada la decisión, los Wright salieron de su pequeño campo rápidamente. Verificaron el viento otra vez. Colgaron una señal para llamar a los salvavidas desde su base, a una milla de distancia a través de la arena. Los salvavidas habían estado informados del plan desde el principio; no podían quedarse por fuera ahora.

Era tiempo de revisar la aeronave. Los fabricantes la sacaron del cobertizo y la chequearon por todas partes. Las alas, los puntales, los cables que unían los controles: todos estaban en su sitio, como deberían estar. Las hélices se movían fácilmente.

También el control que accionaba el estabilizador frontal que salía por delante de las alas. Los patines con forma de trineo que sostenían la máquina no mostraban ningún signo del accidente que había tenido días antes. La aeronave estaba lista.

Los hermanos Wright la colocaron en la carrilera de lanzamiento y la amarraron con algunos trozos de alambre para mantenerla quieta. Wilbur puso unacuña debajo del ala derecha. A unos pocos pies de distancia, Orville organizó su cámara.

Mientras fijaba los trípodes firmemente en la arena, los salvavidas llegaron al campo sonriendo y hablando a gritos para que los oyeran.Miraban fijamente mientras los dos hermanos prendían el motor de la nave. Funcionó muy suavemente, con vibraciones regulares, calentándose para el momento en que tuviera que correr por la rampa de lanzamiento hacia el vacío.

“Dale Orville”, dijo Wilbur. “Yo ya tuve mi turno, ahora te toca a ti”.

Cautelosamente, Orville se acomodó en la nave, y se extendió cuan largo era en el ala baja. El viento le daba de frente en sus ojos y la arena le pegaba en los párpados. Miró hacia abajo a las pequeñas piedras en el piso bajo su cara.

Era el último chequeo a los controles, moviendo sus caderas de un lado al otro. Sí, el receptáculo donde él estaba se movía con él, torciendo las estructuras de las alas hacia los lados. En la punta del ala derecha estaba Wilbur, esperando para sostener el ala nivelada, a medida que se fuera moviendo por la carrilera. Realmente, ya era el momento de despegar. Orville, con su mano, soltó los alambres que le servían de ancla a la nave.

 Se estaba moviendo hacia delante a una velocidad de caminante. No, más rápido que eso. Con el rabillo de su ojo, Orville podía ver que su hermano tenía que ir corriendo a su lado. Corriendo más rápido. Acelerando la carrera… y, de repente, Wilbur ya no estaba allí. La nave había despegado. ¡Estaba subiendo muy alto ¡Rápidamente, Orville movió la palanca que controlaba el estabilizador frontal.

De repente, ahí estaba el piso, solamente a diez pies debajo de él y subiendo rápidamente Desesperado, Orville haló la palanca hacia atrás.Fue como si le hubieran pegado en el estómago. Con un golpe y un vacío, la nave frenó su caída alocada. La tierra empezó a quedarse lejos, al tiempo que la máquina apuntaba hacia arriba; el paisaje se llenó de cielo. Un ventarrón cogió sus alas con un golpe y las hizo subir todavía más.

Orville movió de nuevo la palanca. Con velocidad acelerada, la máquina se inclinó en el aire. Luego se fue hacia el piso como una golondrina en picada. Otra corrección, y volvió a apuntar hacia el cielo. Y hacia abajo. Y hacia arriba… Y para abajo. Y con un crujido, una sacudida de choque y un montón de arena que volaba, la máquina se estrelló contra el suelo. Y se quedó allí. Medio mareado y sin aliento, Orville salió arrastrándose fuera de la estructura y miró hacia atrás, al punto desde donde había despegado.

La distancia recorrida en aquel primer vuelo con motor dirigido fue de sólo 37 metros, menos que la longitud de la cabina de un jumbo.  Quizá parezca insignificante, pero supuso el inicio de una nueva era.  En menos de setenta años, el hombre llegó a la luna.  Los hermanos Wright habían abierto un camino que otros pronto seguirían. 

La conquista del aire
Solamente había volado ciento veinte pies, y durante doce segundos. Pero esa distancia corta y ese pequeño tiempo, se sumaban a nada menos que a una victoria. Orville y su hermano habían logrado lo que nadie había hecho hasta ese momento. Habían construido una máquina más pesada que el aire, que podía llevar una persona en vuelo libre. Se mantuvo suspendida por su propia fuerza y sus movimientos se podían controlar difícil, pero definitivamente por su piloto. Entre los dos habían diseñado y creado el primer aeroplano de tamaño completo, con éxito.

En las arenas al sur de Kitty Hawk, Carolina del Norte, Orville y Wilbur Wright habían conquistado el aire. Lo ocurrido en aquella jornada quedó señalado para el común de la gente como el inicio de la aviación moderna y así lo registra la mayoría de las páginas históricas. Sin embargo, hay quienes sostienen que no es así. Argumentan que durante las pruebas el Flyer no se elevó por sus propios medios, sino ayudado por rieles y una catapulta. Más allá de las polémicas, los Wright patentaron su avión y siguieron mejorándolo. Durante 1904, efectuaron un centenar de vuelos. En uno de ellos recorrieron casi 40 kilómetros en 38 minutos.

En los años siguientes, realizaron infinidad de pruebas y exhibiciones tanto en su país como en Europa y batieron numerosos récords. A partir de 1908, los aviones de los hermanos Wright ya no necesitaron más de una catapulta para alzar vuelo. El 17 de septiembre de ese año, mostrando un modelo biplaza a militares de su país, Orvalle Wright se accidentó y quedó malherido. Desafortunadamente, su ocasional acompañante, el teniente Thomas Selfridge (1882-1908), se transformó en la primera víctima fatal de la aviación con motores tal cual la conocemos en la actualidad.

A continuación, intentaron vender su aeroplano a los ejércitos francés, británico y americano. Pedían grandes cantidades de dinero pero no ofrecieron ninguna exhibición y se encontraron con la incredulidad de los responsables. No empezaron los vuelos de demostración hasta 1908, ya que antes temían el espionaje, y el mundo empezó a creer en la posibilidad del vuelo tripulado. A los pocos años la aviación europea había superado sus esfuerzos. Wilbur murió en 1812 y Orville en 1948. Ambos permanecieron solteros: el vuelo era su única pasión.

Luego de esa histórica primer experiencia, el piloto Orville comentó «Después  de calentar el motor durante unos minutos, tiré del cable que sujetaba el aparato a la guía, y comenzó a moverse. Wilbur corría (…) sujetando un ala para que mantuviese el equilibrio en la guía (…) El manejo del aparato durante el vuelo fue desastroso, subiendo y bajando continuamente (…) El vuelo duró sólo 20 segundos, pero a pesar de todo fue la primera vez que un artilugio manejado por un hombre había conseguido elevarse por sí mismo gracias a su propia potencia y volar una distancia sin reducir su velocidad y aterrizar poco después en un punto alejado de donde había empezado (…)».

Con estas palabras, publicadas en 1913 en el semanario American Aviation Journal, Orville Wright recordaba el primer vuelo con motor en el biplano Flyer 1,  realizado en diciembre de 1903, iniciando así la historia de la aviación moderna.

Un diario italiano La Domenica ilustra en 1908 el fracaso de Orville Wright y de Thomas Selfridge en unos de sus experimentos que termina con una caída desde unos 30 metros.

SANTOS DUMONT: El brasileño a bordo de la nave 14 bis, de 1906. Muchos consideran que el suyo fue el vuelo inaugural de la aviación, tal como la entendemos hoy.


Cerca de Chicago, EE.UU., se realiza una prueba del planeador de alas múltiples ideado por Octave Chanute (1832-1910). Este ingeniero estadounidense, de origen francés, está considerado entre los pioneros de la aviación, que además contribuyó al éxito de los legendarios hermanos Wright.

CRONOLOGÍA DE LOS PRIMEROS INTENTOS

852 — El hispano musulmán Abas Ibn Firnas se lanza desde una torre de Córdoba con lo que se considera el primer paracaídas de la historia.

875 — El mismo Firnas se hizo unas alas de madera recubiertas de seda y se lanzó desde una torre en Córdoba. Permaneció en el aire unos minutos y al caer se rompió las piernas, pero fue el primer intento conocido científico de realizar un vuelo.

1010 — El inglés Eilmer de Malesbury, monje benedictino, matemático y astrólogo, se lanza con un planeador de madera y plumas desde una torre y vuela 200 metros, pero al caer se rompe las piernas.

1250 — El inglés Roger Bacon hace una descripción del ornitóptero en su libro Secretos del arte y de la naturaleza. El ornitóptero es un artilugio parecido a un planeador, cuyas alas se mueven como las de un pájaro.

1500 — Leonardo da Vinci realiza los primeros diseños de un autogiro que habría de elevarse haciendo girar las aspas impulsado por los brazos. También diseña un ornitóptero como el de Roger Bacon y un planeador.

I709 — El jesuita brasileño Bartolomeo de Gusmao, también conocido como «el padre volador», describe, y probablemente construye, el primer globo de la historia, y se lo enseña y hace una demostración, con el ingenio de papel, en el patio de la Casa de Indias, en Lisboa, al rey Juan V de Portugal.

1783 — El francés Jean Frangois Pilátre de Rozier es el primer hombre en ascender, en un globo de aire caliente, diseñado por Joseph y Etienne Montgolfier. • En diciembre, los franceses Jacques Alexandre-César Charles y Marie-Noél Robert realizan el primer vuelo en un globo aerostático de hidrógeno, hasta una altura de 550 metros.

1785 — El francés Jean Pierre Blanchard y el estadounidense John Jeffries cruzan por primera vez el canal de la Mancha en globo. • Los franceses Frangois Pilátre y Jules Román se convierten en los primeros hombres en morir en un accidente aeronáutico al estrellarse su globo, dos años después de aquel primer ascenso de Pilátre.

1794 — El Servicio de Artillería Francesa crea la primera fuerza aérea del mundo en la forma de una compañía de globos bajo el mando del capitán Coutelle, que entrará en combate ese mismo año en Fleurus, Bélgica. Hasta 1908 no se creará una fuerza aérea dotada de aeroplanos.

1797 — El francés André-Jacques Garnerin realiza el primer descenso en paracaídas desde una aeronave al lanzarse desde un globo a 680 m de altura sobre el parque Mongeau, en París.

1836 — El Gran Globo de Nassau vuela desde Londres hasta Weilburg en Alemania, a 800 Km., en 18 horas.

1849 — El británico George Cayley construye un planeador de tres alas que vuela con un niño de diez años a bordo y se convierte en el primer aparato en volar más pesado que el aire.

Fuente Consultada:
El Diario de National Geographic N°39
Genios de la Humanidad Los Hermanos Wright
PIONEROS Teo Gómez

Evolución y funcionamiento del teléfono Graham Bell Biografía

El término teléfono se refiere al conjunto de aparatos e hilos conductores con los cuales es posible transmitir a distancia la palabra y toda clase de sonidos, por la acción de la electricidad. En la actualidad, los avances en el campo de la telefonía permiten establecer conexiones con determinados dispositivos capaces de cifrar y traducir otro tipo de mensajes complejos, utilizando las líneas telefónicas.

BIOGRAFÍA: Algunos datos sobre la vida Alexander Bell

Nombre del personaje: Alexander Graham Bell
Fecha de nacimiento: 3 de marzo de 1847
Fecha de fallecimiento: 2 de agosto de 1922
Origen: Edimburgo, Escocia
Actividad: Científico e inventor

Nacido Alexander Bell, adoptó el nombre Graham por su admiración por Alexander Graham, un amigo de la familia Bell. Alexander fue educado en la Royal High School de Edimburgo, de la cual se graduó a la edad de trece años. A los 16 años, obtuvo una plaza como maestro adjunto de locución y música en el Weston House Academy en Elgin Moray, en Escocia.

El año siguiente lo pasó en la Universidad de Edimburgo. En 1866 y 1867 fue instructor en el Somersetshire College en Bath, Inglaterra. Cuando estaba aún en Escocia, se dice que Bell se interesó por la acústica; interés originado por la sordera de su madre. El 7 de marzo de 1876, fue concedida una patente en Estados Unidos por el teléfono.

Había dedicado mucho tiempo a la investigación de los sistemas de comunicación existentes, pero aún no había logrado su objetivo: enviar mensajes, con voz humana, por medio de métodos similares a los que se utilizaban en el telégrafo. Estaba agotado, pero no se conformaba.

Luego de varios intentos, algo milagroso ocurrió; realizaba uno de sus curiosos experimentos, cuando escuchó algo similar a la vibración de la voz que emanaba de uno de los alambres que empleaba. No podía creerlo, su sueño se empezaba a convertir en realidad.

El 10 de marzo de 1876, luego de años de lucha por una patente, Alexander Graham Bell envió el primer mensaje telefónico. De esta manera, comprobaba que ya no era necesario que los jinetes entregaran la correspondencia urgente con días de retraso, aunque cabalgaran durante noches y días enteros, ni era imperativo esperar pacientemente un turno en la oficina del telégrafo; desde ese momento la voz empezó a viajar por miles de kilómetros, dando lugar a la más significativa revolución en las comunicaciones.

Sin embargo, aparentemente Bell no fue el primero en crear este aparato, sino solamente el primero en patentarlo, pues el 11 de junio de 2002, el Congreso de Estados Unidos aprobó la resolución 269 por la que reconoció que el inventor del teléfono había sido Antonio Meucci y no Alexander Graham Bell.

Los comienzos

La aplicación de la electricidad al ámbito de las comunicaciones —los primeros experimentos en este sentido se remontan a la etapa final del siglo XVIII— supuso un avance decisivo.

Si el telégrafo había logrado asociar impulsos eléctricos y letras, sistema que, tras un adecuado procedimiento de descodificación, permitía la transmisión de mensajes a larga distancia, el siguiente paso vendría con la unión de la señal eléctrica y la voz humana.

No obstante, en el caso del teléfono, se hacía necesario un elemento intermedio que tradujera ondas sonoras en señales eléctricas y viceversa, un segundo dispositivo capaz de convertir la señal eléctrica en onda de sonido. (foto: primer aparato ideado por Graham Bell)

En 1857, Antonio Meucci (1808-89) (foto) habla inventado una máquina cuyo componente esencial era un elemento vibrador unido a un imán; era el primer aparato telefónico: Aunque Meucci patenté su hallazgo en 1871, el escaso interés mostrado por la compañía a la que le ofreció y las dificultades económicas le hicieron abandonar el proyecto.

Por este motivo, sería Graham Bell (1847-1922) quien, finalmente, tras patentar un aparato semejante en 1876, pasaría a la historia como el verdadero padre del teléfono, y ello a pesar de que surgió inmediatamente una disputa legal que no finalizó hasta 1886 y con resultado favorable para Meucci.

A partir de entonces, los avances más señalados derivaron de la incorporación de bobinas (1913) y de diversas técnicas que hicieron posible mantener más de una conexión sobre la misma línea (1916). Los nombres de Thomas A. Edison, Elisha Gray o Edward Hughes sé encuentran estrechamente vinculados al desarrollo del teléfono.

En una etapa posterior, en los años treinta, se aplicaron cables coaxiales y, ya en la segunda mitad de la centuria, se verificaron las primeras comunicaciones entre continentes y comenzaron las transmisiones vía satélite.

“Una conversación de cinco minutos es tanto como una carta de treinta páginas en papel y muchísimo más inteligente. De todo lo que la civilización del siglo XIX se enorgullecía, nada remotamente comparable a una charla mientras se fuma una pipa tranquilamente”.
Científico escocés anónimo, en 1871.

Miedo del teléfono

Las preocupaciones anunciadas en los periódicos (y tal vez por la Western, que quería mantenerse con su negocio de telegrafía) estaban de moda. ¿Tener un teléfono sería como dejar entrar un espía en su casa? ¿Podría oír la gente que estuviera en la línea, lo que uno conversara? Si la electricidad llevaba las voces por una línea, ¿también podría llevar enfermedades? ¿Podría el teléfono hacerle algún daño? ¿Podría la gente volverse sorda o enloquecer? ¿Qué pensaría Dios de todo esto? Había gente que encontraba versos en la Biblia que parecieran prohibir el uso del teléfono dos años antes de que se hubiera inventado.

Ninguno de los científicos, ni gente de negocios, tomó estas preocupaciones seriamente, pero era importante que fueran explicadas si quería que se estableciera un sistema nacional de teléfono. Entonces Alexander le añadió a su trabajo una campaña de publicidad diseñada para que el teléfono fuera aceptado públicamente. Sabía que era importante para él que su nombre apareciera en los periódicos y sus ideas, ahora que estaban registradas, fueran discutidas y comentadas; era un hombre experimentado, agresivo de palabras y, como muchos buenos profesores, tenía ese toque de personalidad y de convicción.

Uno de sus “trucos”, diseñado especialmente para poner a la gente a hablar, fue puesto en práctica, en mayo de 1876, en una reunión de la Academia Americana de Artes y Ciencias.

En la reunión, Alexander oprimió un botón en su escritorio y la audiencia quedó sorprendida al oír de una caja, sobre la mesa, la melodía de un himno.

En un edificio de la misma calle, el primo de i Mabel, William, tocaba un “órgano telegráfico”.Sus teclas estaban unidas a la línea del telégrafo  en el salón de conferencias. El órgano transmitía cada nota en su frecuencia particular a lengüetas afinadas en la caja y éstas respondían a las señales.

La audiencia académica casi enloquece de admiración. Bell consiguió que su nombre apareciera bastan te destacado en la prensa. Pero, realmente lo que había demostrado no era el teléfono pero sí una aplicación ingeniosa del principio de su telégrafo armónico.

“Entre todos los inventos, había uno que no solo dio más fama a la exposición, sino que colocó el nombre de los Estados Unidos como el de la nación de inventores brillantes. Era un aparato bastante simple el que su inventor, Alexander Graham Bell, presentó públicamente por primera vez allí, bajo el nombre de “teléfono”… Cuando se conoció que el teléfono podría hablar casi tan perfectamente como la boca humana, repitiendo las palabras de una manera audible e inclusive a una distancia bastante considerable, su fama se regó como pólvora”, En la revista científica holandesa De Natuur, de 1876.

Visitantes muy distinguidos se agrupan alrededor de la exhibición de Graham Bell en Filadelfia. Su aparición en la exhibición fue muy importante por dos razones. Primero, ganó publicidad. La exhibición recibió páginas enteras de prensa y revistas. Segundo, fue una oportunidad para presentar el invento a todos los científicos visitantes y a los industriales que tenían suficiente arrojo y cuyo apoyo era vital para hacer que el teléfono fuera una interesante aventura de negocios.

En un exposición internacional sobre la comunicación telefónica, el siguiente en ensayar la nueva maravilla fue el emperador de Brasil. Bell le recitó el famoso Ser o no ser de la obra Hamlet de Shakespeare. El emperador brincó sorprendido: “¡Yo oigo, yo oigo!”, gritó.

Entonces, como ahora, la prensa estaba ansiosa de informar todos los pasos de su visitante real, la sorpresa del emperador fue la gran historia, al día siguiente, en la prensa de Filadelfia. Pero lo que más llamó la atención de Bell fue la reacción de su compañero escocés y científico Sir William Thomson. Sir William pidió permiso para regresar luego con su esposa para otra demostración. El resultado fue que Sir William Thomson vendría a ser el embajador del teléfono de Bell en Inglaterra.

Larga distancia

Sin embargo, la verdadera prueba de la utilidad del teléfono era la posibilidad para llevar las voces por largas distancias, usando las líneas del telégrafo. Bell decidió ampliar su distancia por pequeños pasos. Él y Watson intercambiaron conversaciones a una distancia de dos millas, cinco millas, dieciséis millas.

A pesar de que no era un comerciante consumado, Alexander Bell estaba consciente de las utilidades comerciales que se podían hacer si el teléfono se volviera un medio serio y práctico de comunicación y estaba muy ansioso de llegar a esa meta. Existían dos razones para este Primero, quería hacer suficiente dinero para poder casarse con Mabel. Segundo, como le escribió a ella, “quiero conseguir suficiente para quitarle las partes duras a la vida y que me deje libre para seguir trabajando en las ideas que mas me interesan”. Muchas de estas ideas tenían que ver con la enseñanza a los sordos a la que él estaba dedicando gran parte de su tiempo.

Noticias por teléfono

Verdaderamente, los norteamericanos se despertaron a las posibilidades del teléfono en febrero de 1877 cuando Bell, casi con treinta años de edad, lo demostró a una audiencia en Salem. Massachusetts. Watson estaba en Boston, a catorce millas de distancia; cantaron, conversaron y se enviaron las primeras noticias por teléfono. Esto apareció en el periódico Globe de Boston al día siguiente con este titular: “ENVIADA POR TELÉFONO la primera información para el periódico, por una voz humana, a través de alambres”. La historia fue copiada por todos los periódicos de América del Norte y se reportó en los diarios científicos de Europa.

No todo el mundo estaba entusiasmado. El derrotado Elisha Gray rechazó el teléfono de Alexander. “Solamente crea interés en círculos científicos”, escribió, “como juguete científico es muy bonito pero nosotros, en cierto tiempo, podemos hacer más que hablar con un alambre”. El teléfono, pensaba él, nunca desalojaría al telégrafo. Tampoco había quedado impresionado por la demostración en la exhibición de Filadelfia. Todo lo que había oído y se había dicho era “un débil fantasmagórico sonido timbrado”.

El teléfono también levantó sospechas de los supersticiosos. Se debe recordar que el oír una voz sin cuerpo era una novedad completa; el sonido grabado aún no se había inventado. Las voces sin cuerpo que la gente había escuchado, siempre estaban relacionadas con historias de fantasmas. Para algunos, las voces que venían de un teléfono eran sobrenaturales, de demonios e infernales. Un periódico americano llegó a sugerir que el teléfono era un instrumento del diablo. No fue la primera ni última ve/, que una invención llegó a tener la oposición de mentes obtusas.

Mejoras

Otro problema que debía resolverse era el diseño de un instrumento telefónico más “amigable”. Los modelos que Bell había exhibido incluían una caja grande donde se hablaba, que se colocaba sobre una mesa para luego inclinar la cabeza y poner el oído en la caja para poder oír la respuesta. Bell diseñó modelos mejorados, pero fue el diseño de otro inventor, William Channind, que llegó a ser el primer instrumento de uso general. Era de una sola pieza, que se usaba alternadamente para oír y para hablar. Esto demoraba las conversaciones considerablemente y llevaba a muchas confusiones.

En abril 4 de 1877, un electricista para quien Watson trabajó, Charles Williams, llegó a ser la primera persona en estar “en el teléfono” permanentemente. Se conectó una línea desde su almacén, en Boston, hasta su casa. Pronto más gente quería tener el nuevo invento en sus casas y esto empezó a volverse un problema comercial: ¿deberían los usuarios alquilar los teléfonos o comprarlos de una vez? La decisión, finalmente, fue alquilarlos, a pesar de que quería decir que entraría menos dinero inmediatamente a Bell y a sus asociados.

Pero para lograr que el sistema de teléfono despegara, Bell y sus asociados necesitaban tener un sistema de líneas. Las negociaciones con la Western Union no llegaron a ninguna parte. E! gigante de la industria telegráfica aún estaba ansioso por mantener su negocio de telegrafía y a no demorar sus telegramas al no compartir sus líneas con el teléfono. De todas maneras, como se conoció más adelante, los alambres gruesos de telegrafía no eran adaptables al teléfono. En julio de 1877, Alexander Bell con Gardiner Greene Hubbard y Thomas Sanders, que habían dado la financiación en principio a Bell y a Watson, fundaron la Compañía Bell Telephone.

Otro contrato que afectaría la vida de Alexander se firmaba el mismo mes. En julio 11, Alexander Graham Bell contrajo nupcias con Mabel Gardiner Hubbard. Ellos salieron para Europa en viaje de luna de miel tan extenso que incluiría demostración del teléfono a la reina Victoria por una petición especial del palacio.


La primera centra! telefónica dependía de un operador humano que conectaba la línea de quien llamaba con la línea de su interlocutor. Esto se hacía con unos enchufes sencillos y unas tomas en un tablero de controles. Este tablero podía tener hasta cincuenta líneas. Hecho en Cincinnati, se usó en Drammen, Noruega, de 1880 a 1889.

Funcionamiento del teléfono

En un sistema telefónico, la transmisión se basa en el paso, a través de un circuito, de un flujo de corriente cuyas variaciones de intensidad vienen marcadas por las propias variaciones de resistencia de dicho circuito. El aparato encargado de modificar la resistencia de éste, y, por tanto, la intensidad de la corriente, es el micrófono.

El micrófono lleva incorporado un dispositivo de forma cilíndrica, con pequeños granos de carbón —el carbón altera su grado de conductividad de la electricidad en función del factor presión—.

En uno de sus extremos, el micrófono presenta una pequeña membrana móvil que, como si de un tímpano se tratara, varía su presión sobre los granos de carbón, por efecto de las ondas sonoras. La variación de las ondas sonoras genera variaciones de presión en la membrana, de las que se derivan, a su vez, variaciones de intensidad en la corriente que atraviesa el circuito. La intensidad cambia, por tanto, al tiempo que lo hacen las ondas sonoras.

En el funcionamiento del teléfono entra en juego, asimismo, el principio del electroimán —recordemos que se trata de un núcleo de hierro dulce al que el paso de una corriente eléctrica confiere propiedades magnéticas—.

La disposición de una lámina metálica vibrante junto al electroimán del circuito emisor —donde, según se ha indicado, la intensidad de la corriente eléctrica viene determinada por las variaciones de las ondas sonoras en el micrófono—, permite que aquélla se mueva libremente, en función de la corriente y, por tanto, de las ondas sonoras responsables de dicha alteración. La laminilla metálica actúa como cuerpo vibrante emisor de sonido, el mismo que registra el micrófono.

En la central telefónica existe un generador encargado de suministrar la corriente eléctrica de baja tensión que llega al micrófono, conectado en serie dentro de la línea.

Por su parte, el receptor está conectado en circuito local; la corriente procede del transformador que alimenta la propia línea telefónica. Al unir dos aparatos a través de la central queda constituido un circuito de línea, donde aparecen los dos micrófonos intercalados, no así los receptores, que se activan a partir de las variaciones creadas por aquéllos.

Conexiones telefónicas

La primera conexión telefónica pública se verificó en Estados Unidos en 1878, gracias a la instalación de una centralita de funcionamiento manual, que hacía posible la distribución de las llamadas entre los usuarios de la red. Desde la centralita manual —sistema que, en determinadas áreas de España permaneció en uso hasta hace apenas veinte años—, se establecía la conexión a través de una red de clavijas que se introducían en sus correspondientes tomas. La conmutación automática empezó a popularizarse en los años noventa del siglo XIX, con la introducción del disco marcador, sustituido en épocas recientes por los denominados «generadores de impulsos».

En un principio, la interconexión de teléfonos se realizaba exclusivamente recurriendo al tendido de cables; hoy, este sistema se mantiene a nivel local. Sin embargo, para las comunicaciones a larga distancia se emplean actualmente la radio o satélites artificiales.

En el caso de los cables, la experimentación con nuevas tecnologías está destinada a sustituir los tradicionales hilos eléctricos por otros de fibra óptica; en ellos, la señal no es consecuencia de la corriente eléctrica, sino que se genera a partir de una onda luminosa, lo que se traduce en el incremento de la rapidez y la calidad de la transmisión de impulsos.

Estas ventajas en cuanto a velocidad y calidad se complementan gracias al desarrollo de dispositivos digitales, que funcionan a partir de señales que se generan y se representan mediante secuencias de ceros y unos. La transformación de cualquier señal en una serie de ceros y unos amplía notablemente las posibilidades de la transmisión a través de redes telefónicas; únicamente es preciso que existan aparatos específicos destinados a codificar y descodificar la información inicial y final.

Comunicaciones a larga distancia

En las comunicaciones a larga distancia, la señal eléctrica se transforma en la central de conmutación en ondas de radio ultracortas, que pueden ser enviadas y recogidas por antenas parabólicas para su nueva codificación en señales eléctricas, éstas ya destinadas al aparato receptor. Las señales viajan, como la luz, en línea recta.

Telefonía electromagnética

La principal evolución que en los últimos tiempos ha experimentado el campo de la telefonía se relaciona estrechamente con la creación de aparatos autónomos, provistos de baterías que pueden emitir señales electromagnéticas, no eléctricas. Popularmente, se conocen como teléfonos móviles, portátiles o celulares.

Para hacer frente a la espectacular proliferación de teléfonos móviles producida en los últimos tiempos se ha puesto en marcha una compleja red de antenas retransmisoras, lógicamente ubicadas en lugares altos. La mejora del proceso de captación y reenvío de las señales electromagnéticas marca, sin duda, el  camino de futuros avances. En este sentido, la colocación de las antenas en satélites artificiales en órbita alrededor de la Tierra ofrece múltiples posibilidades.

La transmisión del sonido a través del teléfono

El proceso de transmisión del sonido a través del teléfono se produce del siguiente modo:

1. Al hablar emitimos ondas sonoras que inciden sobre el micrófono instalado en el teléfono.

2. Estas ondas sonoras hacen vibrar una membrana o diafragma.

3. Al producirse esta vibración, el diafragma empuja unos gránulos de carbón por los que pasa la corriente eléctrica.

4. La compresión que ejerce el diafragma sobre los gránulos de carbón modifica la resistencia eléctrica de estos, variando la intensidad de la corriente eléctrica que los atraviesa. El resultado es una señal eléctrica variable, que contiene el mensaje. En los teléfonos modernos, los gránulos de carbón se han sustituido por transductores piezoeléctricos que realizan la misma función.

5. La señal eléctrica se transmite a través del cable de la línea telefónica hasta el aparato receptor, en el que vuelve a convertirse en sonido. Este proceso tiene lugar en el auricular, donde la corriente eléctrica recibida activa un electroimán, que a su vez atrae a una membrana.

Como la señal recibida es variable, el electroimán se activará y desactivará siguiendo las variaciones de la misma, haciendo vibrar la membrana.

6. Estas vibraciones reproducen el sonido original y el mensaje es recibido por la persona que se encuentra a la escucha.

Para que tenga lugar la conversación telefónica es necesario que los aparatos emisor y receptor se encuentren conectados entre sí. Dicha conexión se realiza a través de centrales telefónicas, que conectan a los distintos ruanos a través de un conjunto de líneas.

En un principio, la conexión se realizaba manualmente en as centrales telefónicas, a las que llegaban los cables que provenían de todos los aparatos de una determinada zona.

La persona encargada de ese trabajo se llamaba operadora , al descolgar el teléfono, esta atendía la llamada y conectaba con el teléfono que se solicitaba.

Hoy en día, las conexiones se encuentran automatizadas, las centrales se hallan conectadas a su vez con otras centrales telefónicas similares, constituyendo el conjunto una red telefónica global.

Esta red conecta prácticamente todos los puntos del planeta, de forma que es posible mantener una conversación telefónica con cualquier lugar de manera casi Instantánea.

¿Cómo tiene lugar una conversación telefónica?

Al establecer una comunicación telefónica, lo primero que recibimos es una señal desde la central telefónica a! descolgar el teléfono, que nos indica que nuestra línea está libre y dispuesta para realizar la llamada, A continuación marcamos el número del aparato receptor con el que queremos establecer comunicación.

Este número es un código que permite a la central telefónica identificar al aparato receptor. Una vez identificado el receptor, la central telefónica envía una señal de aviso al mismo. Esta señal alerta a la persona de que se está produciendo una llamada, de forma que el receptor descuelga el teléfono y se establece así la comunicación entre ambos interlocutores.

Si, por el contrario, la línea está ocupada y no es posible establecer la comunicación en ese momento, la central envía al emisor una señal que le informa de tal situación.

El proceso de establecimiento de la llamada telefónica tiene lugar de forma casi instantánea, puesto que las centrales telefónicas se encuentran totalmente automatizadas.

En los comienzos de la telefonía hemos visto que la conexión era realizada por operadores de forma manual. Más tarde se sustituyó esta labor manual por conmutadores automáticos de tipo electromagnético (relés).

En la actualidad se utilizan elementos de conmutación electrónicos capaces de realizar gran cantidad de conexiones de forma automática y simultánea.

PARA SABER MAS…

El 25 de enero de 1915 funcionarios, ejecutivos y directores de la American Telephone and Telegraph Company (AT&T) rodeaban a Alexander Graham Bell, sentado junto a su invento, el teléfono, en el decimoquinto piso del Telephone Building de Nueva York. Al otro lado del país, en San Francisco, Thomas A. Watson también se hallaba a la espera, flanqueado de modo similar por políticos y ejecutivos.

A las 16.30, hora del este, el Dr. Bell levantó el teléfono que tenía delante y dijo: «Mr. Watson, ¿está usted ahí?». Watson presionó el receptor contra su oreja y aseguró a su antiguo jefe que sí, que había oído su pregunta con claridad.

Luego Bell repitió las palabras que había dicho en 1876, cuando Watson y él habían tenido la primera conversación telefónica, entre dos pisos de una pensión de Boston.

Repitió: «Mr. Watson, venga aquí. Quiero verle». La respuesta de Watson llegó desde 4.115 km de distancia: «Tardaría una semana en poder verle». De este modo se estableció la primera comunicación telefónica transcontinental.

La línea telefónica que permitió a Watson y Bell hablar a través del continente pesaba cerca de tres mil toneladas y se aguantaba por unos 130.000 postes de teléfono. La línea principal tenía ramales en Jekyll Island, Georgia y Washington, y operaba como una amplia «party Une», ya que permitía que centenares de personas escucharan una conversación que mantuvieran otras dos en alguna de las cuatro ciudades. Mientras Bell y Watson conversaban, Theodore Vail, presidente de la AT&T, los interrumpió desde Jekyll Island para felicitarlos. Más tarde, el presidente Woodrow Wilson habló desde Washington y declaró: «Parece cosa de fantasía hablar a través del continente».

En marzo, la operación comercial de la línea transcontinental había empezado. Una llamada desde Nueva York a San Francisco costaba 20,70 dólares, por tres minutos, y casi siete dólares por cada minuto adicional.

ALEXANDER BELL Y SU APORTE A LA SORDERA:

La familia Hubbard: En 1870 cuando Bell se traslada a Boston conoció un ahogado bastante adinerado y hombre de negocios que lo iba a respaldar en los próximos años.

Gardiner Greene Hubbard había hecho una fortuna con la instalación y crecimiento de las redes de ferrocarril y con el suministro de agua y gas. Era un abogado prestigioso, un senador de Massachusetts, y un líder típico de negocios de los años de auge en Norteamérica. Había solamente una cosa que empañaba su vida. Uno de sus tres hijos, solamente uno, Mabel, sobrevivió la infancia y cuando tenía cinco años se quedó totalmente sorda por la escarlatina. Las escasas palabras que ella podía pronunciar, eran las pocas que había aprendido cuando gateaba y ya estaban grotescamente distorsionadas.

Hubbard utilizó sus considerables medios e influencia para conseguir la mejor educación posible para Mabel. Estaba decidido a que ella aprendiera a hablar normalmente. Contrató a una institutriz, la envió a una escuela especial en Alemania e inclusive abrió una escuela cerca a su casa para ella. Mabel era muy inteligente. Sobresalía en sus trabajos escolares y se volvió rápidamente una experta leedora de labios. Sin embargo, su lenguaje continuaba muy deficiente.

En 1873, Alexander Graham Bell fue nombrado profesor de lenguaje y elocución de la Escuela de Oratoria de la Universidad de Boston. Esto era un cumplido muy grande a la labor exitosa que hizo en la escuela de Sarah Fuller y a los resultados que había tenido en sus conferencias sobre la ciencia del lenguaje. Entre las personas que fueron a escucharlo a la universidad, estaba Mabel Hubbard ahora de quince años. Alexander la aceptó como una alumna para tratar de mejorar su lenguaje.

Las enseñanzas de Alexander lograron conseguir un éxito que ni ella ni sus padres esperaban.

Señas versus lenguaje

Tanto el nombramiento de Bell para la Escuela de Oratoria y la elección de Hubbard como profesor de Mabel, eran un tributo al método especial de enseñanza que había desarrollado para los sordos. Había y todavía hay, los métodos básicos. Uno es el lenguaje por manos deletreando palabras e ideas con los dedos en una clase de código. Hay muchas versiones del lenguaje de manos, pero la versión más utilizada fue desarrollada en Francia, en el siglo XVIII, del lenguaje que los sordos de París habían desarrollado para ellos mismos. Los signos les permiten a los sordos comunicarse entre ellos y con otros que lo hayan aprendido. Sin embargo, los críticos aducen que esto solamente limita al mundo de los sordos.

Mabel Gardiner Hubbard a la edad de seis años. Un año antes, había sufrido escarlatina. Hoy es una enfermedad que se trata fácilmente pero que en el siglo XIX era muy peligrosa y podía tener complicaciones permanentes: una de éstas era la inflamación que podía esparcirse de la piel hasta el tímpano, produciendo una sordera incurable como lo que le pasó a Mabel.

Éste era el punto de vista de Bell. El lenguaje visible de su padre trataba de mejorar los signos enseñándoles a los sordos vocales y consonantes y así pudieran comunicarse más libremente con gente que tuviera oído y lenguaje normales. Ésta era sólo una entre las muchas técnicas que se estaban usando para enseñar a los niños sordos a hablar y que se conocía como el método ‘oral’. Las discusiones entre quienes preferían el signo y los que preferían el método oral, dividían a los profesores de los sordos.

Los profesores del método oral alegaban que a los niños sordos debía enseñárseles a vivir tan cerca de la normalidad como fuera posible, en un mundo de gente que hablara y oyera y que si ellos tenían inteligencia normal, aprenderían a hablar; además decían que los signos condenaban a los niños sordos a vivir como unos ciudadanos de segunda en una prisión de silencio. No era así, alegaban los profesores que preferían los signos. Éstos permitían a quienes los habían aprendido comunicarse mucho mejor y más honestamente, debido a que el deseo de aprender de los métodos orales limitaban al alumno en los vocabularios y en la habilidad para expresar las ideas.

Había otro ángulo para el argumento. Muchos niños sordos aprendieron a hablar pero su lenguaje sonaba tan diferente que parecían mentalmente impedidos. En el siglo XIX mucha gente pensaba que era mejor para un niño ser mudo a que pensaran que era defectuoso mentalmente.

Los métodos de Alexander Graham Bell trajeron un cambio, al mostrarles a los niños cómo se hacían los amigos y mejorando la calidad del lenguaje de sus alumnos. Pero el alegato de ‘señas o sonidos continuaba y muchos terapistas que creían en las señales, todavía culpan a Alexander Graham Bell por haber popularizado el método oral’.

Bell envía en 1876 el primer mensaje telefónico

CRONOLOGÍA DE LA EVOLUCIÓN

1667 — Robert Hook descubre que los sonidos pueden transmitirse a través de un hilo muy tenso, siempre que se puedan transportar a su través las vibraciones.

1821 — El danés Hans Christian Oersted descubre en 1819 que una aguja imantada se desvía al colocarla cerca de una corriente eléctrica, es decir, que todo campo eléctrico está asociado a un campo magnético.
1844 — Se emite el primer telegrama público con un aparato Morse.

1860 — El alemán Johann Philip Reis hace la primera demostración pública de que se pueden transmitir sonidos a través de un cable mediante un diafragma (una lamina fina de tela o metal) que al vibrar activa una corriente eléctrica.

1876 — Alexander Graham Bell patenta el primer teléfono capaz de transmitir la voz humana usando una corriente continua y un diafragma de metal que tiembla con el sonido y es capaz de interferir en un campo magnético y crear una pequeñísima y suficiente corriente eléctrica que se reproducirá al otro extremo del hilo. El 10 de marzo hace su primera llamada: “Mr Watson, venga, le necesito”.

1878 — Se pone en marcha la primera centralita telefónica del mundo, en New Haven, Connecticut.

1973 — En abril, Martin Cooper, empleado de Motorola, hace la primera llamada con un prototipo de móvil Motorola DynaTac, que se puede llevar en la mano, mientras camina por una calle de Nueva York.

Fuente Consultada:
Genios de la Humanidad Graham Bell
Enciclopedia del Estudiante
Tomo 4 Tecnología de la Informática
El Gran Libro del Siglo XX de Clarín
PIONEROS, Inventos y descubrimientos claves de la Historia – Teodoro Gómez.

Los avances tecnologicos aplicados en la vida cotidiana Cientificos

Los Avances Tecnologicos Aplicados en la Vida Cotidiana

Tecnología en la vida cotidiana: Gracias a las técnicas de producción en masa, los grandes inventos de los ss. XX y XXI forman parte de nuestra vida diaria. La invención de los electrodomésticos llevó a un incremento del tiempo libre en países desarrollados, y el concepto de progreso, en sí mismo, es sinónimo de acceso a las nuevas tecnologías. El microchip tuvo un gran impacto en las comunicaciones desde que Jack Killby y Robert Noy ce lo crearan en 1959, y la nanotecnología combinada con la llegada de Internet facilitó el acceso a la comunicación instantánea global.

LA EVOLUCIÓN TECNOLÓGICA: El ser humano ha recorrido un largo camino desde que el primer Homo sapiens saliera a cazar en África hace millones de años. La tecnología, el uso de materiales naturales y artificiales con un propósito claro, ha progresado enormemente desde el Paleolítico. Aunque es tentador creer que los logros tecnológicos del hombre en los últimos siglos son únicos, es importante mantener una perspectiva histórica.

Como hemos visto en este libro, en los últimos 12.000 años se han experimentado innovaciones revolucionarias para mejorar la vida del hombre. El desarrollo de una herramienta efectiva para matar animales debió de ser revolucionario para el cazador del Neolítico, como nos lo parecen ahora las bombas inteligentes.

El cultivo de cereales en Oriente Medio fue probablemente un acontecimiento de mucha más trascendencia que el desarrollo de los cultivos genéticamente modificados, ya que cambiaron el curso de la historia del ser humano. De manera similar, la llegada de la escritura a Mesopotamia constituye un logro más importante a largo plazo que la aparición del ordenador en tiempos modernos. Son muy numerosos los ejemplos de innovaciones e inventos que han cambiado el curso de la historia de la humanidad.

Sin embargo, la característica común de los tiempos actuales, especialmente desde la Revolución industrial, recae en la velocidad con que la innovación tecnológica se ha diseminado por toda la sociedad. En el siglo XX, la organización de la innovación tecnológica sufrió un cambio profundo. La investigación y el desarrollo ya no se llevaban a cabo de manera individual, sino en grandes organizaciones, como universidades, o laboratorios industriales o gubernamentales. La infraestructura que se necesita hoy para la investigación está mucho más allá del alcance de las personas. Esta tendencia se ha pronunciado especialmente en la segunda mitad del siglo XX, con la institucionalización de la investigación tecnológica y científica.

El siglo XXI trajo aun más cambios en la manera de llevar a cabo las innovaciones tecnológicas. La aparición de Internet y de las comunicaciones rápidas y baratas ha permitido que la investigación se disperse geográficamente, una tendencia que crecerá en los años venideros. La dispersión global de la innovación tecnológica será más rápida y el acceso a tecnologías más avanzadas, especialmente en los bienes de consumo, será más fácil y estará más extendido.

Resulta arriesgado predecir qué tipos de tecnologías aparecerán en el siglo XXI. La creatividad de la mente humana es ilimitada en esencia y, por tanto, solemos equivocamos con las predicciones tecnológicas. No se puede predecir con ningún tipo de certeza qué forma tendrá la tecnología y cómo impactará en la sociedad humana. Después de todo, incluso los científicos más brillantes de principios del siglo XIX no podrían haber imaginado los viajes espaciales ni el microprocesador. Aun así, se puede decir que el progreso tecnológico seguirá avanzando a mayor velocidad en los próximos años y posiblemente hará que la vida sea más fácil para la gran mayoría de la humanidad, con desarrollos revolucionarios en medicina, transporte y comunicaciones.

No obstante, el medio ambiente empieza , protestar, como se hace patente en el calentamiento global y en la disminución de la capa de ozono, por lo que deberíamos ralentizar los avances tecnológicos por el bien de las generaciones futuras. Sí bien en el siglo XXI ya hemos empezado a trabajar por el entorno, deberíamos fomentarlo más en el futuro.

Internet: En 1989 la WWW se inició para el Consejo de Europa de Investigación Nuclear. Nueve años después, un vehículo de seis ruedas, de menor tamaño que una hielera de cervezas, rodaba por la superficie de Marte y fue visto por internet uniendo la imaginación colectiva con la misión Mars Par Finder de la NASA. Al finalizar el 11 de septiembre de 1998, Internet demostraría su eficacia al poner a disposición de millones de usuarios de la World Wide Web, en un simple disco de 3.5 pulgada; en menos de 24 horas, toda la información sobre los escándalos sexuales de Bill Clinton. El forma:: facilitó a sus receptores acceder a cualquier detalle gráfico con sólo oprimir una tecla. Adema; e Reporte Starr, como se conoció al informe sobre el affaire Clinton, tenía la ventaja de estar completo. Ningún otro medio de comunicación lo presentó de esa manera.

La mensajería electrónica, las pantallas y los procesadores de textos reemplazan a las letra; escritas sobre papel. Diccionarios, enciclopedias como la de Oxford y la Británica, diarios y revistas de todo el mundo, catálogos de librerías y de bibliotecas, libros de texto, incluso novelas, museo; estudios de todos los niveles, recuerdan aquellos cursos por correspondencia, sólo que ahora cuerna-con respuesta inmediata. Lo único que se necesita saber es qué se desea, apretar una tecla y liste La computación es un buen ejemplo del conocimiento y la experiencia que tiene la juventud en el uso de la tecnología: el padre tiene que recurrir a su hijo para que le enseñe. Están cambiando los patrones de enseñanza.

Internet constituye un instrumento importante para la movilización de capitales, ya que éste pueden ser colocados en los mercados de valores, bancos de cualquier parte del mundo, moviendo el dinero de manera rápida y segura.

Grandes Inventos en la Historia Lista de Inventos Argentinos

 

LISTA DE LOS INVENTOS MAS DESTACADOS

lista de inventos

1532 Sistema circulatorio pulmonar Miguel Servet Español

1590 Microscopio compuesto Zacharias Janssen Holandés

1593 Termómetro de agua Galileo Italiano

1608 Telescopio Hans Lippershey Holandés

1625 Transfusión de sangre Jean-Baptiste Denis Francés

1629 Turbina de vapor Giovanni Branca Italiano

1642 Máquina de sumar Blaise Pascal Francés

1643 Barómetro Evangelista Torricelli Italiano

1650 Bomba de aire Otto von Guericke Alemán

1656 Reloj de péndulo Christiaan Huygens Holandés

1668 Telescopio reflector Isaac Newton Británico

1672 Máquina de calcular Gottfried Wilhelm Leibniz Alemán

1698 Bomba de vapor Thomas Savery Inglés

1701 Barrena sembradora Jethro Tull Inglés

1705 Motor de vapor Thomas Newcomen Inglés

1710 Piano Bartolomeo Cristofori Italiano

1714 Termómetro de mercurio Daniel Gabriel Fahrenheit Alemán

1717 Campana de buceo Edmund Halley Británico

1725 Estereotipia William Ged Escocés

1745 Botella de Leyden (condensador) Ewald Georg von Kleist Alemán

1752 Pararrayos Benjamin Franklin Estadounidense

1758 Lente acromática John Dollond Británico

1759 Cronómetro marino John Harrison Inglés

1764 Máquina de hilar James Hargreaves Británico

1768 Máquina de tejer Richard Arkwright Británico

1769 Motor de vapor (con condensador separado) James Watt Escocés

1770 Automóvil Nicholas Joseph Cugnot Francés

1775 Submarino David Bushnell Estadounidense

1780 Pluma de acero Samuel Harrison Inglés

1780 Lente bifocal Benjamin Franklin Estadounidense

1783 Globo aerostático Joseph Michel Montgolfier y Jacques Étienne Montgolfier Franceses

1784 Trilladora mecánica Andrew Meikle Británico

1785 Telar mecánico Edmund Cartwright Británico

1787 Barco de vapor John Fitch Estadounidense

1788 Regulador centrífugo o de bolas James Watt Escocés

1791 Turbina de gas John Barber Británico

1792 Gas de alumbrado William Murdock Escocés

1793 Desmotadora de algodón Eli Whitney Estadounidense

1796 Prensa hidráulica Joseph Bramah Inglés

1796 Vacuna contra la viruela Edward Jenner Británico

1798 Litografía Aloys Senefelder Alemán

1798 Cinta sin fin de tela metálica (fabricación de papel) Louis Robert Francés

1800 Telar Jacquard Joseph Marie Jacquard Francés

1800 Batería eléctrica Conde Alessandro Volta Italiano

1801 Telar de patrones Joseph Marie Jacquard Francés

1804 Propulsor de hélice John Stevens Estadounidense

1804 Cohete de carburante sólido William Congreve Británico

1804 Locomotora de vapor Richard Trevithick Británico

1810 Conservación de alimentos (mediante esterilización y vacío) Nicolas Appert Francés

1810 Prensa de imprimir Frederick Koenig Alemán

1814 Locomotora ferroviaria George Stephenson Británico

1815 Lámpara de seguridad Sir Humphry Davy Británico

1816 Bicicleta Karl D. Sauerbronn Alemán

1819 Estetoscopio René Théophile Hyacinthe Laennec Francés

1820 Higrómetro J.F. Daniell Inglés

1820 Galvanómetro Johann Salomon Cristoph Schweigger Alemán

1821 Motor eléctrico Michael Faraday Británico

1823 Electroimán William Sturgeon Británico

1824 Cemento portland Joseph Aspdin Británico

1827 Cerillas o cerillos de fricción John Walker Británico

1829 Máquina de escribir W.A. Burt Estadounidense

1829 Sistema Braille Louis Braille Francés

1829 Máquina de coser Barthélemy Thimonnier Francés

1830 Báscula de romana Thaddeus Fairbanks Estadounidense

1831 Fósforos Charles Sauria Francés

1831 Segadora Cyrus Hall McCormick Estadounidense

1831 Dinamo Michael Faraday Británico

1834 Tranvía eléctrico Thomas Davenport Estadounidense

1836 Revólver Samuel Colt Estadounidense

1837 Telégrafo Samuel Finley Breese Morse Sir Charles Wheatstone Estadounidense Inglés

1838 Código Morse Samuel Finley Breese Morse Estadounidense

1839 Fotografía Louis Jacques Mandé Daguerre y Joseph Nicéphore Niepce William Henry Fox Talbot Franceses Inglés

1839 Caucho vulcanizado Charles Goodyear Estadounidense

1839 Martillo pilón de vapor James Nasmyth Escocés

1839 Bicicleta Kirkpatrick MacMillan Británico

1845 Llanta neumática Robert William Thompson Estadounidense

1846 Imprenta rotativa Richard March Hoe Estadounidense

1846 Algodón pólvora Christian Friedrich Schönbein Alemán

1846 Éter (anestésico) Crawford Williamson Long Estadounidense

1849 Hormigón armado F.J. Monier Francés

1849 Pasador de seguridad Walter Hunt Estadounidense

1849 Turbina de agua James Bicheno Francis Estadounidense

1850 Algodón mercerizado John Mercer Británico

1851 Rifle de retrocarga Edward Maynard Estadounidense

1851 Oftalmoscopio Hermann Ludwig Ferdinand y Helmholtz Alemanes

1852 Dirigible no rígido Henri Giffard Francés

1852 Giróscopo Jean Bernard Léon Foucault Francés

1853 Ascensor (con freno) Elisha Graves Otis Estadounidense

1855 Jeringa hipodérmica Alexander Wood Escocés

1855 Fósforos de seguridad J.E. Lundstrom Sueco

1855 Mechero de gas Bunsen Robert Wilhelm Bunsen Alemán

1856 Convertidor Bessemer (acero) Sir Henry Bessemer Británico

1858 Cosechadora Charles y William Marsh Estadounidenses

1859 Espectroscopio Gustav Robert Kirchhoff y Robert Wilhelm Bunsen Alemanes

1860 Motor de gas Étienne Lenoir Francés

1861 Horno eléctrico William Siemens Británico

1861 Ametralladora Richard Jordan Gatling Estadounidense

1861 Kinematoscopio Coleman Sellers Estadounidense

1865 Prensa rotativa de bobinas William A. Bullock Estadounidense

1865 Cirugía antiséptica Joseph Lister Británico

1866 Papel (de pasta de madera, proceso de sulfatación) Benjamin Chew Tilghman Estadounidense

1867 Dinamita Alfred Bernhard Nobel Sueco

1868 Pila seca Georges Leclanché Francés

1868 Máquina de escribir Carlos Glidden y Christopher Latham Sholes Estadounidenses

1868 Freno neumático George Westinghouse Estadounidense

1870 Celuloide John Wesley Hyatt e Isaiah Hyatt Estadounidenses

1874 Telégrafo cuadroplexo Thomas Alva Edison Estadounidense

1876 Teléfono Alexander Graham Bell Estadounidense

1877 Motor de combustión interna (cuatro tiempos) Nikolaus August Otto Alemán

1877 Gramófono (fonógrafo) Thomas Alva Edison Estadounidense

1877 Micrófono Emile Berliner Estadounidense

1877 Soldadura eléctrica Elihu Thomson Estadounidense

1877 Vagón frigorífico G.F. Swift Estadounidense

1878 Tubo de rayos catódicos Sir William Crookes Británico

1879 Máquina registradora James J. Ritty Estadounidense

1879 Lámpara de hilo incandescente Thomas Alva Edison Sir Joseph Wilson Swan Estadounidense Británico

1879 Motor de automóvil (dos tiempos) Karl Benz Alemán

1879 Lámpara de arco Charles Francis Bush Estadounidense

1884 Turbina de vapor Charles Algernon Parsons Inglés

1884 Rayón (nitrocelulosa) Conde Hilaire Bernigaud de Chardonnet Francés

1884 Turbina de vapor multieje Charles Algernon Parsons Británico

1884 Disco de Nipkow (dispositivo mecánico de exploración de televisión) Paul Gottlieb Nipkow Alemán

1884 Estilográfica Lewis Edson Waterman Estadounidense

1885 Grafófono (máquina de dictar) Chichester A. Bell y Charles Sumner Tainter Estadounidenses

1885 Transformador de CA William Stanley Estadounidense

1885 Submarino con propulsión eléctrica Isaac Peral Español

1886 Linotipia Ottmar Mergenthaler Estadounidense

1887 Llanta neumática inflable J.B. Dunlop Escocés

1887 Gramófono (grabaciones en disco) Emile Berliner Estadounidense

1887 Manguito incandescente para gas Barón Carl Auer von Welsbach Austriaco

1887 Mimeógrafo Albert Blake Dick Estadounidense

1887 Monotipia Tolbert Lanston Estadounidense

1887-1900 Morfología de las neuronas Santiago Ramón y Cajal Español

1888 Máquina de sumar impresora por teclas William Steward Burroughs Estadounidense

1888 Cámara Kodak George Eastman Estadounidense

1888 Kinetoscopio William Kennedy Dickson Thomas Alba Edison Escocés Estadounidense

1889 Turbina de vapor Carl Gustaf de Laval Sueco

1890 Rayón (cuproamonio) Louis Henri Despeissis Francés

1891 Planeador Otto Lilienthal Alemán

1891 Goma sintética Sir William Augustus Tilden Británico

1892 Motor de CA Nikola Tesla Estadounidense

1892 Cámara de tres colores Frederick Eugene Ives Estadounidense

1892 Rayón (viscosa) Charles Frederick Cross Británico

1892 Botella de vacío (vaso de Dewar) Sir James Dewar Británico

1892 Motor diesel Rudolf Diesel Alemán

1893 Célula fotoeléctrica Julius Elster y Hans F. Geitel Alemanes

1893 Automóvil a gasolina Charles Edgar Duryea y J. Frank Duryea Estadounidenses

1895 Cinematógrafo Louis Jean Lumière y Auguste Marie Lumière Charles Francis Jenkins Franceses Estadounidense

1895 Rayos X Wilhelm Conrad Roentgen Alemán

1895 Rayón (acetato) Charles Frederick Cross Británico

1895 Telegrafía sin hilos Guglielmo Marconi Italiano

1896 Avión experimental Samuel Pierpont Langley Estadounidense

1898 Papel fotográfico sensible Leo Hendrik Baekeland Estadounidense

1900 Dirigible rígido Graf Ferdinand von Zeppelin Alemán

1902 Radioteléfono Valdemar Poulsen y Reginald Aubrey Fessenden Danés Estadounidense

1903 Aeroplano Wilbur Wright y Orville Wright Estadounidenses

1903 Electrocardiógrafo Willem Einthoven Holandés

1904 Tubo rectificador de diodo (radio) John Ambrose Fleming Británico

1906 Girocompás Hermann Anschütz-Kämpfe Alemán

1906 Baquelita Leo Hendrik Baekeland Estadounidense

1906 Tubo amplificador de triodo (radio) Lee De Forest Estadounidense

1908 Cámara cinematográfica de dos colores G. Albert Smith Británico

1909 Salvarsán Paul Ehrlich Alemán

1910 Hidrogenación del carbón Friedrich Bergius Alemán

1910 Brújula y estabilizador giroscópicos Elmer Ambrose Sperry Estadounidense

1910 Celofán Jacques Edwin Brandenberger Suizo

1911 Aire acondicionado W.H. Carrier Estadounidense

1911 Vitaminas Casimir Funk Polaco

1911 Lámpara de neón Georges Claude Francés

1912 Lámpara de vapor mercúrico Peter Cooper Hewitt Estadounidense

1913 Estatorreactor René Lorin Francés

1913 Tubo de electrones multirrejilla Irving Langmuir Estadounidense

1913 Gasolina craqueada William Meriam Burton Estadounidense

1913 Radiorreceptor heterodino Reginald Aubrey Fessenden Canadiense

1913 Tubo de rayos X William David Coolidge Estadounidense

1915 Arranque automático de automoción Charles Franklin Kettering Estadounidense

1916 Rifle Browning (automático) John Moses Browning Estadounidense

1916 Lámpara incandescente rellena de gas Irving Langmuir Estadounidense

1919 Espectrómetro de masa Sir Francis William Aston Arthur Jeffrey Dempster Británico Estadounidense

1921 Insulina Frederick Grant Banting Charles Herbert Best John James Rickard Canadiense Canadiense Británico

1922-26 Películas cinematográficas con sonido T.W. Case Estadounidense

1923 Iconoscopio de televisión Vladímir Kosma Zworykin Estadounidense

1923 Autogiro Juan de la Cierva Español

1925 Congelación rápida de alimentos Clarence Birdseye Estadounidense

1925 Tubo disector de imágenes de televisión Philo Taylor Farnsworth Estadounidense

1926 Cohete de carburante líquido Robert Hutchings Goddard Estadounidense

1928 Penicilina Sir Alexander Fleming Británico

1930 Nailon (poliamidas sintéticas generadoras de fibras) Wallace Hume Carothers Estadounidense

1930 Batisfera Charles William Beebe Estadounidense

1930 Freón (compuestos de flúor de baja temperatura de ebullición) Thomas Midgley y colegas Estadounidense

1930 Motor de turbina de gas moderno Frank Whittle Británico

1930 Neopreno (goma sintética) Padre Julius Arthur Nieuwland y Wallace Hume Carothers Estadounidenses

1931 Ciclotrón Ernest Orlando Lawrence Estadounidense

1931 Analizador diferencial (computadora analógica) Vannevar Bush Estadounidense

1931 Generador de Van de Graaff Robert Jemison Van de Graaff Estadounidense

1932 Microscopio de contraste de fase Frits Zernike Holandés

1932 Sulfonamida Gerhard Domagk Alemán

1933 Modulación de frecuencia (FM) Edwin Howard Armstrong Estadounidense

1935 Buna (caucho sintético) Científicos alemanes Alemanes

1935 Radiolocalizador (radar) Sir Robert Watson-Watt Británico

1935 Cortisona Edward Calvin Kendall Tadeus Reichstein Estadounidense Suizo

1935 Microscopio electrónico Científicos alemanes Alemanes

1936 Helicóptero de dos rotores Heinrich Focke Alemán

1937 Xerografía Chester Carlson Estadounidense

1937 Nailon Wallace Hume Carothers Estadounidense

1939 DDT Paul Müller Suizo

1939 Helicóptero Igor Sikorski Estadounidense

1940 Televisión en colores Guillermo González Camarena Mexicano

1940 Betatrón Donald William Kerst Estadounidense

1941 Motor aeronáutico de turborreacción Frank Whittle Británico

1942 Misil guiado Wernher von Braun Alemán

1942 Reactor nuclear Enrico Fermi Estadounidense

1944 Estreptomicina Selman A. Waksman Estadounidense

1944 V-2 (bomba impulsada por cohete) Científicos alemanes Alemanes

1945 Bomba atómica Científicos del gobierno de EEUU Estadounidenses

1946 Computadora digital electrónica John Presper Eckert, Jr. y John W. Mauchly Estadounidenses

1947 Holografía Dennis Gabor Británico

1947 Cloromicetina Mildred Rebstock Estadounidense

1947 Cámara Polaroid Land Edwin Herbert Land Estadounidense

1947 Batiscafo Auguste Piccard Suizo

1947 Horno de microondas Percy L. Spencer Estadounidense

1948 Contador de centelleo Hartmut Kallmann Alemán

1948 Aureomicina Benjamin Minge Duggar y Chandra Bose Subba Row Estadounidenses

1948 Transistor John Bardeen, Walter Houser Brattain y William Shockley Estadounidenses

1949 Avión a chorro (estatorreactor) René Leduc Francés

1950 Televisión en color Peter Carl Goldmark Estadounidense

1952 Bomba de hidrógeno Científicos del gobierno de EEUU Estadounidenses

1952 Cámara de burbujas (detector de partículas nucleares) Donald Arthur Glaser Estadounidense

1953 Máser Charles Townes Estadounidense

1954 Batería solar Científicos de Bell Telephone Laboratory Estadounidenses

1954 Vacuna contra la poliomielitis Jonas Salk Estadounidense

1955 Diamantes sintéticos Científicos de General Electric Estadounidenses

1955 Datación mediante carbono W.F. Libby Estadounidense

1956 Aerodeslizador (hovercraft) Christopher Cockerell Inglés

1956 Primer prototipo de motor rotatorio Felix Wankel Alemán

1956 Videocinta Charles Ginsberg y Ray Dolby Estadounidenses

1956 Fregona Manuel Jalón Corominas Español

1957 Reactor atómico enfriado por sodio Científicos del gobierno de EEUU Estadounidenses

1957 Satélite terrestre artificial Científicos del gobierno de la URSS Soviéticos

1958 Satélite de comunicaciones Científicos del gobierno de EEUU Estadounidenses

1959 Circuitos integrados Jack Kilby y Robert Noyce Estadounidenses

1960 Láser Charles Hard Townes, Arthur L. Schawlow y Gordon Gould Estadounidenses

1960 Síntesis de la clorofila Robert Burns Woodward Estadounidense

1960 Píldora anticonceptiva Gregory Pincus, John Rock y Min-chueh Chang Estadounidenses

1962 Diodo emisor de luz (LED) Nick Holonyak, Jr. Estadounidense

1964 Pantalla de cristal líquido George Heilmeier Estadounidense

1966 Corazón artificial (ventrículo izquierdo) Michael Ellis DeBakey Estadounidense

1967 Transplante de corazón humano Christiaan Neethling Barnard Surafricano

1970 Primera síntesis completa de un gen Har Gobind Khorana Estadounidense

1971 Microprocesador Ted Hoff Estadounidense

1971 Generación de imágenes por resonancia magnética nuclear Raymond Damadian Estadounidense

1972 Calculadora electrónica de bolsillo J.S. Kilby y J.D. Merryman Estadounidenses

1972 Primer generador de energía magnetohidrodinámico Científicos del gobierno de la URSS Soviéticos

1973 Laboratorio espacial orbital Skylab Científicos del gobierno de EEUU Estadounidenses

1974 ADN recombinante (ingeniería genética) Científicos estadounidenses Estadounidenses

1975 TAC (tomografía axial computerizada) Godfrey N. Hounsfield Británico

1975 Fibra óptica Bell Laboratories Estadounidense

1976 Supercomputadora J.H. Van Tassel y Seymour Cray Estadounidenses

1978 Síntesis de los genes de la insulina humana Roberto Crea, Tadaaki Hirose, Adam Kraszewski y Keiichi Itakura Estadounidenses

1978 Transplante de genes entre mamíferos Paul Berg, Richard Mulligan y Bruce Howard Estadounidenses

1978 Corazón artificial Jarvik-7 Robert K. Jarvik Estadounidense

1978 Vacuna sintética contra la malaria Manuel Patarroyo Colombiano

1979 Disco compacto Joop Sinjou Toshi Tada Doi Holandés Japonés

1979 Reparación de defectos genéticos en células de ratón mediante técnicas de ADN recombinante y micromanipulación W. Francés Anderson y colegas Estadounidenses

1981 Sistema de transporte espacial (lanzadera espacial) Ingenieros de la NASA Estadounidenses

1981 Microscopio de túnel de barrido Gerd Binnig Heinrich Rohrer Alemán Suizo

1986 Superconductores hipertérmicos J. Georg Bednorz Karl A. Müller Alemán Suizo

1989 El Satélite Explorador de Fondo Cósmico (COBE) mostró que las irregularidades en la radiación de fondo de microondas son restos de regiones no uniformes presentes en el universo poco después del Big Bang Equipo dirigido por George Smoot Estadounidenses

1993 Telescopio Keck, el mayor telescopio reflector del mundo Universidad de California, California Instituto de Tecnología Estadounidense

 

1994 Pruebas de la existencia del quark top Fermi National Accelerator Laboratory, Illinois (Fermilab) Estadounidense

Guerra del Pacífico Chile Bolivia Causas y Consecuencias

RESUMEN GUERRA DEL PACÍFICO CHILE-BOLIVIA POR EL SALITRE

La Guerra del Pacífico, que algunoa historiadores la llaman Guerra del Guano y del Salitre fue el evento el mas amargo de la historia de Bolivia. Esta guerra comenzó en 1879, y enfrentó a Chile contra una alianza entre Bolivia y Perú, y se inicia cuando en 1878 el general boliviano Hilarión Daza, que conducía una dictadura, decide aumentar los impuestos a las exportaciones de dos empresas chilenas (FFCC y Compañia de Salitre) que explotaban los recursos en la zona boliviana de Antofagasta.

Para Chile ese aumento contradecía con lo pactado en un Tratado de Paz y Amistad en el año 1874, por lo que lo considera una violación a sus derechos, negándose a cumplir con la nueva disposición. Como respuesta Daza confisca los yacimientos explotados, rompiendo las relaciones diplomáticas, por lo que Chile decide ocupar los territorios militarmente, declarándole la guerra a Bolivia el 5 de abril de 1879.

La guerra se desarrolló en el océano Pacífico, en el desierto de Atacama y en los valles y serranías del Perú. Bolivia pierde el conflicto frente a un poderoso Chile, que se anexa un territorio territorio, que era su único punto de acceso al océano Pacifico y enormes riquezas minerales. Privada para siempre de esta región capital, Bolivia no ha logrado jamás a arrancar económicamente y hasta estos días trata de conseguir acuerdos con otros países limítrofes como Perú para poder intergrarse al comercio internacional mediante un puerto que le abra las puertas al mundo.

Luego de cinco años de guerra, los países de Bolivia y Chile firman, el 4 de abril de 1884, un pacto de tregua donde convienen en un cese de fuego y la reapertura de las relaciones comerciales. Chile como gesto de cordialidad ofrece a Bolivia unas ventajas fiscales en la ciudad de Antofagasta y se compromete a construir una línea de ferrocarril uniendo la costa del océano Pacífico a La Paz.

Guerra del Pacífico: Bolivia-Perú y Chile

Guerra del Pacífico: Bolivia-Perú y Chile

Los ejércitos de la alianza Bolivia-Perú llegaron a 12.000 soldados, mientras que Chile tenía
menos de 400o, pero bien preparados y con equipamientos modernos.

Las batallas mas importantes fueron la de Angamos, en octubre 1879 donde Chile logra controlar la zona del océano. Ese mismo año bolivia tuvo dos derrotas la de Pisagua y Tarapacá y la última de Tacna en 1880. La siguiente estapa fue contra las tropas de Perú, donde caen derrotada en Arica el 7 de Junio de 1880, para luego tomar la capital Lima en 1881. La guerra finaliza con firma del Tratado de Ancón en 1883.

CRÓNICA DE LA ÉPOCA I

El 14 de febrero la nave de guerra chilena Blanco Encalada apareció frente a Antofagasta. Su presencia en ese lugar significa el comienzo de la guerra. La presencia chilena es la respuesta al intento de Bolivia de cobrar 10 centavos por quintal de salitre explotado por una compañía británico-chilena. El aumento del impuesto a los exportadores de salitre, adoptado unilateralmente por el gobierno boliviano, desconociendo convenios anteriores, empujó a Chile a declarar la guerra. Perú, por el pacto secreto de 1873 , interviene como aliada de Bolivia. En noviembre los chilenos han desembarcado en Pisagua lo que les ha permitido capturar la provincia de Tarapacá y sus yacimientos salitreros.

CRÓNICA DE LA ÉPOCA II

La Guerra del Pacífico llegó a su fin con la firma de un tratado. La resistencia militar peruana, bajo el mando del coronel Andrés A. Cáceres Dorregaray en la región sur y centro andina venía obteniendo varias victorias contra lasfuerzasinvasoras chilenas. Pero en la batalla de Buamachuco, el 10 de julio, sufrió una decisiva derrota militar. Luego, un grupo de dirigentes peruanos del que se sospecha que actuaron de acuerdo a directivas del mando militar enemigo, determinó con una serie de medidas el final del conflicto, impusieron al general de brigada Miguel Iglesias como nuevo presidente y firmaron un tratado de paz con Chile. La guerra finalizó oficialmente el 20 de octubre con la firma del lutado de Ancón. Éste dispone que el departamento de Tararira pasa a manos chilenas, y las provincias de Arica y Tacna quedan bajo administración chilena por un lapso de 10 años. Después de ese período un plebiscito decidiría si quedan bajo soberanía de Chile o vuelven a ser peruanas. Chile además obtuvo la Puna de Atacama, por la que tenía una permanente disputa con Bolivia. El Chile boliviano no pierde solamente 120 mil metros cuadrados de territorio, sino que se queda sin los 400 kilómetros de costa y sin salida al mar, una pérdida que sin dudas redundará en muchas otras.

PARA ENTENDER MEJOR:
Antecedentes de la Época:
Hacia 1825 las guerra por la independencia de las colonias españolas americanas habían finalizado y los antiguos virreinatos desaparecieron y surgieron nuevos países que debían organizarse políticamente y económicamente para comenzar el nuevo camino hacia el progreso.

Como consecuencia de tantos años de batallas, los militares fueron ocupando un lugar más importante en las sociedades latinoamericanas y, una vez finalizada la guerra con España, intervinieron activamente en la política. En comparación con la etapa colonial, las décadas posteriores a la independencia estuvieron teñidas por la violencia, pues abundaron las luchas civiles y los conflictos entre los nuevos países, cuyas fronteras todavía no estaban bien definidas.

En las luchas civiles latinoamericanas se enfrentaron a menudo sectores conservadores y liberales. Los conservadores pretendían mantener una rígida jerarquía social, eran poco favorables a los cambios, no veían con buenos ojos la llegada de ideas innovadoras de Europa y, por lo general, defendían los intereses de las zonas rurales, donde estaban sus propiedades. Por el contrario, los liberales eran partidarios de abrir un poco más la participación ía grupos no tan adinerados pero instruidos, admiraban los avances de las sociedades europeas que esperaban imitar en sus países, y representaban mejor los intereses de los habitantes de las ciudades.

La guerra había empobrecido a América latina y destruído su riqueza. Hacia 1850, algunos países como Venezuela, Chile o la región del Río de la Plata habían logrado recuperarse y mejorar su economía con respecto a los tiempos de la colonia, gracias a la exportación de productos agropecuarios.

Las discusión de las fronteras de los nuevos países de América del sur, que inicialmente se respetaron los antiguos límites de la Capitanía General de Chile, comenzó a ser un tema espinoso cuando la demanda mundial de los recursos naturales de esas zonas, como fueron los minerales comenzó a incrementarse, y esas exportaciones se convirtieron en importantes fuentes de ingresos para esos estados, necesitados de recursos económicos. Perú y Bolivia también tenían discusiones con algunos límites en la región del guano de Tarapacá.

Como se vé, en estos países como Bolivia, Perú y México la minería, que era la actividad económica más importante, se encontraba en declinación, porque faltaba dinero para invertir en las minas y aumentar su producción, por lo que muchas veces se permitía la explotación de esos recursos a empresas extranjeras, que eran quienes poseían el capital necesario para dichas inversiones. Bolivia era el caso, en donde se permitía extraer el nitrato de Antofagasta por empresas chilenas, que lamentablemente terminaron en una guerra, que la ha perjudicado a hasta hoy.

A los fines de no obstaculizar el desarrollo de los países en vía de crecimiento, se pactaron tratados para la explotación de los minerales en distintas regiones, como por ejemplo el de 1874, donde Chile cedía sus derechos entre los paralelos 23 y 25, a cambio de que Bolivia no aumentara los impuestos a las empresas chiles por 25 años, acuerdo que generó la Guerra del Pacífico

LA REALIDAD DEL COMERCIO: Mientras la independencia política trajo independencia económica a América Latina, los viejos patrones fueron restablecidos rápidamente. En lugar de España y Portugal, Gran Bretaña dominaba la economía del continente.

Los comerciantes británicos se trasladaban en gran número, mientras los inversionistas ingleses vertían su capital generosamente, especialmente en la minería. Muy pronto los viejos esquemas comerciales volvieron a ponerse en práctica. Dado que América Latina había servido como una fuente de materia prima y suministro alimenticio a las naciones industrializadas de Europa y Estados Unidos, muy pronto las exportaciones hacia el Atlántico Norte se incrementaron notablemente, en particular las de rigo, tabaco, lana, azúcar, café y pieles.

Al mismo tiempo, los bienes de consumo terminados, especialmente los textiles, fueron importados en notables cantidades, lo que provocó el declive de la producción industrial en América Latina. La sobreexportación de materias primas e importación de productos manufacturados aseguraba la prolongada dominación de la economía latinoamericana por parte de extranjeros.

Eduardo Galeano, en su famoso libro: “La venas abiertas de América Latina” explica:

“Poco después del lanzamiento internacional del guano (que se usaba como fertlizante en Europa) , la química agrícola descubrió que eran aún mayores las propiedades nutritivas del salitre, y en 1850 ya se había hecho muy intenso su empleo como abono en los campos europeos.

Las tierras del viejo continente dedicadas al cultivo del trigo, empobrecidas por la erosión, recibían ávidamente los cargamentos de nitrato de soda provenientes de las salitreras peruanas de Tarapacá y, luego, de la provincia boliviana de Antofagasta. Gracias al salitre y al guano, que yacían en las costas del Pacífico «casi al alcance de los barcos que venían a buscarlos», el fantasma del hambre se alejó de Europa.

La explotación del salitre rápidamente se extendió hasta la provincia boliviana de Antofagasta, aunque el negocio no era boliviano sino chileno. Cuando el gobierno de Bolivia pretendió aplicar un impuesto a las salitreras que operaban en su suelo, los batallones del ejército de Chile invadieron la provincia para no abandonarla jamás.

Hasta aquella época, el desierto había oficiado de zona de amortiguación para los conflictos latentes entre Chile, Perú y Bolivia. El salitre desencadenó la pelea. La guerra del Pacífico estalló en 1879 y duró hasta 1883. Las fuerzas armadas chilenas, que ya en 1879 habían ocupado también los puertos peruanos de la región del salitre, Patillos, Iquique, Pisagua, Junín, entraron por fin victoriosas en Lima, y al día siguiente la fortaleza del Callao se rindió.

La derrota provocó la mutilación y la sangría de Perú. La economía nacional perdió sus dos principales recursos, se paralizaron las fuerzas productivas, cayó la moneda, se cerró el crédito exterior. Bolivia, por su parte, no se dio cuenta de lo que había perdido con la guerra: la mina de cobre más importante del mundo actual, Chuquicamata, se encuentra precisamente en la provincia, ahora chilena, de Antofagasta.”

Los problemas fronterizos heredados de la época colonial provocaron en 1879 el estallido de la guerra del Pacífico contra Perú y Solivia por el control de la zona salitrera de Atacama. La victoria final chilena en 1883 extendió la soberanía del país sobre el territorio de Tarapacá, Tacna y Arica (el tratado de Lima, de 3 de junio de 1929, estableció la soberanía de Perú sobre Tacna y la de Chile sobre Arica).

CRÓNICA DE LA EPOCA III:

La economía boliviana desde hace tiempo se encuentra administrada en sus sectores más sensibles por intereses extranjeros. Al crearse en 1871 el Banco Nacional de Bolivia, su dirección recayó en manos de familias prominentes de la política chilena, como los Edwards y los Concha y Toro, más tarde aliados con la oligarquía de la plata boliviana representada por los sucesores de Aniceto Arce y Pacheco.

En este sentido, cuando en 1873 se formó la Compañía de Huanchanca para la explotación de plata, se hizo con el aporte de capitalistas chilenos que suscribieron las dos terceras partes de las acciones y controlaron cuatro de los cinco puestos del directorio de la empresa. Un año después, el canciller de Bolivia, Mariano Baptista, firmó el tratado con Chile que exoneraba a éste del pago de impuestos por 25 años en Atacama. Es precisamente la violación de esta cláusula por el actual presidente boliviano, Hilarión Daza, lo que acaba de encender la mecha bélica.

En contrapartida, la estrategia de alianzas de la élite minera de la plata con Chile resulta perjudicial para los intereses peruanos y argentinos ya que, al aplicar una política de comercialización exclusiva por el puerto de Antofagasta, Bolivia atenta contra el comercio de los otros países de la región.

Por ello, en el caso del Perú el problema se centra en las relaciones comerciales, en particular por la rivalidad entre los puertos del Pacífico: Callao y Valparaíso. El Tratado de Alianza defensiva por el cual Perú está aliado a Bolivia es de 1873 y el interés peruano de comprometerse en una defensa mutua ante un ataque externo no es tanto el temor a Chile -país con el que no tiene frontera- sino la preocupación frente a la actitud de Bolivia.

En más de seis oportunidades, según afirman políticos peruanos, se discutió en la agenda boliviana la alternativa de promover una alianza entre Bolivia y Chile en contra de Perú. Para este último la alianza con Bolivia tiene sentido dentro de una estrategia más amplia que contemple la participación de la Argentina ya que la unión de la armada peruana y la argentina pueden llegar a neutralizar efectivamente los propósitos agresivos chilenos.

Por su parte en la Argentina la situación de la frontera indígena, las pretensiones chilenas sobre la Patagonia y la demarcación de límites territoriales en la Cordillera de los Andes concentran la preocupación del gobierno.

Asimismo, la disputa en el norte por el territorio de Tarija no es menor. Frente a este panorama, y en una evaluación de los resultados de un posible conflicto bélico con Chile, el Senado argentino ha visto con buenos ojos la posibilidad de firmar una alianza con Perú y con ello frenar las aspiraciones de Chile. Sin embargo, el clima hostil que se vive no colabora en dirección a una salida negociada ya que la diplomacia boliviana parece boicotear tal desenlace.

Los argumentos esgrimidos actualmente por Bolivia resultan incoherentes: por un lado reconoce el “utis posidetis”, es decir, las fronteras establecidas a fines de la época colonial, reclamando a Chile Atacama; pero por el otro desconoce el mismo principio al momento de reconocer Tarija para la Argentina. No es tanto la localidad norteña lo que preocupa a la cancillería argentina, sino el desconocimiento del “utis posidetis” ya que es la base sobre la cual se sustentan los derechos argentinos en la querella con Chile por la Patagonia.

En definitiva, ningún pronóstico es optimista respecto de la coyuntura y estamos frente al estallido de una guerra en el Pacífico. Bolivia y Chile así lo han manifestado. Perú se encuentra atado a un compromiso al que no puede renunciar, y la Argentina ante un posible conflicto se mantendrá neutral mientras se garantice la integridad territorial conservando la Patagonia y los límites cordilleranos preestablecidos.

Fuente Consultada:
Diario Bicentenario Fasc. N°4 Período 1870-1879