Biografía de Albert Einstein

Biografia de Freud Sigmund y Su Teoria del Psicoanalisis

Biografía de Freud Sigmund
La Teoría del Psicoanalisis

Biografia de Sigmund Freud (1856-1939): Neurólogo y psiquiatra austriaco (Freiberg 6-5-1856-Londres 1939).

Se lo considera como  el fundador del psicoanálisis, fue el descubridor de las motivaciones inconscientes que condicionan la conducta humana.

Al descubrir el papel del inconsciente en la vida del hombre, el psicoanálisis constituye una de las grandes revoluciones intelectuales del siglo XX.

Extendió la investigación psicoanalítica a los dominios del arte, de la etnología y de la historia de las civilizaciones.

Entre sus numerosas obras sobresalen:  La interpretación de los sueños, Psicopatología de la vida cotidiana, Tótem y tabú.

Estudió y se doctoró en la Universidad de Viena, donde vivió hasta poco antes de su muerte.

Dedicó sus primeras investigaciones a la fisiología del sistema nervioso y descubrió los efectos anestésicos de la cocaína.

Se dedicó al estudio de la neuropatología.

En 1885 estudió en París, con Charcot, la aplicación de la hipnosis al tratamiento de la histeria.

En 1887 se casó y tuvo seis hijos; uno de ellos, su hija Anna, ha sido una de las figuras más destacadas del psicoanálisis.

Biografia de Freud Sigmund
Biografia de Freud Sigmund

Sigmund Freud devolvió a la humanidad una parte de ella que había permanecido largo tiempo olvidada: el inconsciente. Su descubrimiento tendría repercusiones hasta en las artes, con la llegada del surrealismo.

La teoría psicoanalítica tiene su expresión principalmente en las siguientes obras de Freud: La interpretación de los sueños, Tres contribuciones a la teoría sexual, Introducción al sicoanálisis y El yo y el ello.

Los cambios que tuvieron lugar a finales del siglo XIX, cambios que dieron lugar a descubrimientos científicos en el orden morfológico y funcional, sirvieron de base para el trabajo que realizó Freud.

La contribución de Sigmund Freud al estudio de la naturaleza humana no puede ser subestimada.

La presencia de Freud supuso la revalorización del conjunto humano frente a una etapa de franca materialización.

Durante el ejercicio de su carrera, por ejemplo, no tardó mucho en llegar a la conclusión de que para curar las enfermedades mentales es preciso conocer su naturaleza, y de que para comprender un fenómeno biológico debe ejercerse una observación sistemática sobre él.

Naturalmente que esto supuso desviaciones e incluso arbitrariedades. Con todo, y ésta es una de las características esenciales, logró que el psicoanálisis fuera un método válido de investigación.

biografia de freud sigmund

El inconsciente es, para Freud, aquella parte de la mente inaccesible a nuestro pensamiento consciente. En él se reúnen todos los deseos y pulsiones reprimidos

El psicoanálisis, la metodología inaugurada por Freud, trataba de explicar en términos psicológicos el comportamiento humano, y, por primera vez, éste era capaz de cambiarse en determinadas circunstancias.

En consecuencia, preconizó la unidad de «tratamiento-investigación» y tales principios supusieron la primera teoría comprensible de la personalidad basada en la observación; Freud fue el primero en intentar dirimir aquello de especulación que existía entre las relaciones humanas.

linea divisoria

BREVE FICHA BIOGRAFICA

• Nació el 6 de mayo de 1856, en Freiberg (Moravia, actual Príbor-República Checa).
• A los cuatro años su familia se estableció en Viena.
• En 1873 ingresó en la Universidad de Medicina.
• En 1881 terminó sus estudios.
• En 1885 fue nombrado profesor de Neuropatología en la Universidad de Viena.
• En el mismo año obtuvo una beca para estudiar en París y una vez allí empezó a ocuparse de los trastornos mentales.
• En 1886 se estableció como médico privado en Viena.
• Al año siguiente se casó con Martha Bernays.
• En 1895 comenzó a utilizar el término «psicoanálisis».
• Entre 1896 y 1900 elaboró el método psicoanalítico.
• En 1897 empezó a analizar su propio subconsciente.
«Estamos progresando. En la Edad Media me habrían quemado y ahora se conforman con quemar mis libros.»

Reconocimiento mundial:

Desde 1899 hasta 1929 publicó «El yo y el ello», «Tótem y tabú», «El malestar de la cultura» y «La interpretación de los sueños», una de sus obras más importantes.

• En 1902 fue nombrado profesor titular de la Universidad de Viena.

• En 1908, junto a un grupo de investigadores y de alumnos, formó la Sociedad Psicoanalítica de Viena.

• En 1938, cuando los nazis ocuparon Austria, se trasladó con su familia a Londres.

• Murió el 23 de setiembre de 1939 en Londres.

linea divisoria

LA ÉPOCA DE FREUD SIGMUND:

En la Viena de unes del siglo XIX, adonde Sigmund Freud llegó con su familia en 1860, se dio de forma traumática la crisis de la modernidad.

De 1860 a 1918, la capital austriaca fue el escenario del esplendor de la burguesía triunfante y de la decadencia de la racionalidad moderna.

El imperio austro-húngaro, bajo el reinado de Francisco José, terminó por disolverse ante las nuevas corrientes políticas.

La pesadilla empezó a tomar forma con el ascenso del antisemitismo, representado por un personaje como Lueger que ganó la alcaldía de la ciudad en 1897, y del pangermanismo, dirigido por Van Schónerer.

Aquella Viena de fin de siglo alumbró los sueños de una cosecha irrepetible de artistas, escritores e intelectuales.

En el nuevo paisaje urbano también surgió el esfuerzo historicista, como una vuelta a los estilos tradicionales, del proyecto arquitectónico y urbanístico de la Ringstrasse (1860-1890).

Biografia de Freud Sigmund

Pero el racionalismo de Otto Wagner se opuso frontalmente a la tradición y sentó las bases de la nueva arquitectura austríaca, con Loos y Olbrich en primera línea secesionista.

La profunda carga de simbolismo en las pinturas que Klimt había realizado para decorar el edificio de la Universidad también dio mucho que hablar.

El mundo de la composición musical estaba convulsionado. Gustav Mahler, ecléctico, mezclaba estilos, Richard Strauss transitaba por el postwagnerismo y Arnold Schónberg proclamaba la emancipación de la disonancia, destruyendo el lenguaje musical moderno.

Por su parte, el periodista Karl Krauss puso la nota satírica como editor de la revista La antorcha, todo un «anti-periódico» que fundó en 1899 para enojar a los burgueses.

Fue un cronista de excepción de la sociedad vienesa en tiempos de crisis del lenguaje.

La ebullición cultural de Viena se completaba con las tertulias en los cafés, que fueron convertidos en objeto artístico: tarjetas postales.

Sólo faltaba la interpretación de los sueños, a cargo del doctor Freud.

Para entonces, con el siglo XX en una marcha más que convulsionada –entre 1914 y 1918 se produjo la Primera Guerra Mundial-, el sistema que Freud había propuesto para explicar la psicología del hombre ya había alcanzado la fama.

Freud pasó su infancia en Viena, pues los negocios desafortunados de su padre, comerciante de telas, obligaron a toda la familia a emigrar a la capital austrohúngara.

Ser judío en la década de 1860 implicaba múltiples restricciones, principalmente al momento de la inscripción en una profesión, ya que la abolición de las leyes discriminatorias era todavía parcial y reciente (julio de 1848).

Sigmund Freud mantuvo toda su vida relaciones complejas con el judaismo, tomando distancia (ya que se presentaba a sí mismo como ateo) y a la vez, manteniéndose fiel a una tradición ancestral, perceptible por ejemplo en las referencias culturales de sus diversas obras.

En octubre de 1873, el joven Freud ingresó en la facultad de medicina de Viena, obteniendo su diploma en marzo de 1881.

En una época en que la investigación médica gozaba de gran prestigio, Sigmund Freud fue orientado hacia la medicina general por su maestro Ernst Brücke (imagen abajo), principalmente porque el estudiante carecía de medios financieros.

bruke psicoanalis

Brücke obtuvo entonces una beca de estudios para su alumno, que partió a París en octubre de 1885, para asistir a los cursos de Jean Martin Charcot, que impartía un seminario renombrado en el manicomio de la Salpétriére.

De regreso en Viena, comenzó a difundir las ideas de Charcot (imagen abajo), que tradujo al alemán.

Sin embargo, los médicos vieneses acogían con reservas las teorías del francés, principalmente aquella sobre la posibilidad de una histeria masculina, ya que desde la Antigüedad esta enfermedad estaba asociada a la disfunción de los órganos femeninos.

charcot psicoanalisis

El segundo encuentro determinante para el futuro profesional de Freud fue con el neurólogo Josef Breuer, a fines de la década de 1870: con el caso de Anna O., una paciente de Breuer que manifestaba síntomas histéricos, el joven siquiatra descubrió, en 1882, el principio  de la cura por la palabra (talking cure), que sería el fundamento del psicoanálisis.

El uso de la cocaína como antidepresivo y, luego, de la hipnosis, dio lugar a otros métodos: en la década de 1890, Freud, que había abierto un consultorio, pedía a sus pacientes recostarse sobre un diván y hablar libremente; no ver al analista según él, era una condición necesaria para el tratamiento analítico, y la posición horizontal venía ya desde el antiguo procedimiento hipnótico.

Fue mediante tanteos que se estableció la técnica freudiana, fundada en las asociaciones de ideas.

Así, el término «psicoanálisis» se emplearía por primera vez en marzo de 1896.

***************************

El complejo de Edipo: «He encontrado en mí, como por otra parte en todos, sentimientos de amor hacia mi madre y de celos hacia mi padre, sentimientos que son, pienso, comunes a todos los niños […]

Se puede comprender entonces […] el poder cautivante de Edipo rey.

Cada espectador (de la leyenda griega) fue un día, en germen, y en su fantasía, un Edipo, y se espanta retrospectivamente ante el cumplimiento de un sueño traspuesto en la realidad». (Freud en una carta a Fliess, octubre de 1897). Esta teoría fue presentada por primera vez en La interpretación de los sueños.

El complejo de Electra: Freud no pudo explicar cómo se desarrollaba el superego en las niñas, debido a que, naturalmente, éstas no pueden ser castradas.

Sus prejuicios sociales le llevaron a elaborar una teoría, llamada complejo de Electra, en la que la vinculación de la niña con sus progenitores se establece en relación a una envidia del pene «ausente» en ella.

La mujer es un ser deficiente, castrado, por lo que, según Freud, nunca podrá desarrollar un superego fuerte, lo que justifica su debilidad moral y su mayor tendencia al sentimentalismo.


La explicación del escaso papel social de la mujer a lo largo de la historia encuentra su respaldo en una base natural, científica, que constituye un factum del desarrollo humano.

Definidas por Freud como el continente oscuro, las mujeres están condenadas al ámbito de lo privado, donde cohabitarán con hombres que representarán simbólicamente al padre que no pudieron conquistar.

La crítica feminista sobre las ideas de género de Freud será, en este sentido, implacable.

**********************

En 1930 recibió el premio Goethe, y en 1938, al ser ocupada Austria por los nazis, a causa de su origen judío tuvo que huir a Inglaterra.

Las aportaciones de la obra freudiana, caracterizada por un claro determinismo psíquico, son abundantes.

Sobresale la diferenciación entre el consciente, el preconsciente y el inconsciente, factores decisivos para comprender tanto los conflictos psíquicos (caso del complejo de Edipo) como la ansiedad y los mecanismos de defensa.

Elaboró también una teoría de la sexualidad en el campo individual (con la libido como impulso fundamental y fuerza creadora frente a la cual enunció posteriormente otro principio destructor) y, en el terreno socio-cultural, una teoría filogenética expuesta en obras como Tótem y tabú, El malestar en la civilización, El futuro de una ilusión y Moisés y el monoteísmo.

Tras la ocupación de Austria por los nazis, Sigmund Freud abandonó el país; murió el 23 de septiembre de 1939 en Londres.

Desde el punto de vista médico, el interés de Freud se centró fundamentalmente en conocer cómo el cuerpo podía ser afectado por la mente, creando enfermedades mentales, tales como la neurosis y la histeria, y en la posibilidad de encontrar una terapia para estas patologías.

******* 00000 ******

 LA INTERPRETACIÓN DE LOS SUEÑOS:

Freud propuso que los sueños se origina a partir de conflictos internos entre los deseos inconcientes y las prohibiciones que actuan frente a los mismos y que aprendemos de la sociedad.

Así pues, todos los sueños serían deseos insatisfechos cuyo contenido apatece disfrazado simbólicamente.

El contenido del sueño se transforma en el contenido manifiesto (el argumento) que debe ser explicado para desvelar así supuestamente los deseos inconscientes de la persona.

Los sueños son metáforas o elementos simbólicos de nuestros sentimientos reales.

La interpretación de los sueños constituyó el método preferido por Freud pata comptender los conflictos y para ayudat a las personas a que hablen sin limitaciones respecto a sus sueños.

Bajo su punto de vista, los sueños se refieren al pasado y al presente de la persona, y se originan en regiones desconocidas.

Cada sueño es un intento de realización. Los sueños son «la autopista al inconsciente».

Durante los sueños tienen lugar varios procesos, tal como la condensación, en la que las distintas cuestiones son teducidas a imágenes únicas como pueden ser una puerta abierta o un río que fluye con aguas profundas.

Los psicoanalistas están especialmente interesados en el proceso de desplazamiento, en el que las cosas y ciertas actividades se intercambian entre sí.

Después está el proceso de transformación, en el que las personas se transforman en grandes o pequeñas, ancianas o jóvenes, poderosas o débiles.

Freud Sigmund y sus discipulos

Freud junto a algunos de sus discípulos: Sándor Ferenczi y Hanns Sachs, ambos en primer plano, Otto Rank, Kant Abraham, Max Eltingon y Ernest Jones, durante el Congreso Internacional de Psicoanálisis celebrado en Berlín en 1922

La teoría freudiana permite establecer diversas predicciones respecto a los sueños.

Así, en comparación con las mujeres los hombres deberían presenta! más sueño; de ansiedad respecto a la castración, mientras que las mujeres deberían tener más sueños de envidia del pene.

Asimismo, los hombres deberían presentar en sus sueños más hombres extraños con los que tendrían que luchar (el padre en la fase edípica del desarrollo).

Los críticos de todo este esquema señalan que si los sueños fueran simplemente deseos insatisfechos, ¿por qué tantos sueños son negativos?.

Además, Freud fundamentó su teoría en los pocos sueños (menos del 10 por 100) que los pacientes recuerdan y expresan verbalmente con claridad.

Y en tercer lugar, hay un problema importante de habilidad en la interpretación de los sueños debido a que los distintos terapeutas ofrecen interpretaciones muy diferentes.

******* 00000 *******

Jung Carl Gustav

«El concepto de sexualidad de Freud es completamente elástico tan vago que en realidad puede incluir casi cualquier cosa.»
Carl G. Jung, 1960

Nacimiento de la psicología analítica:

Siquiatra suizo, Carl Gustav Jung (1875-1961) representa una figura clave en la etapa inicial del psicoanálisis. Tras finalizar sus estudios de medicina en 1900, comenzó a investigar los trabajos de Freud y llegó a ser considerado en esa época como su delfín.

Sin embargo, en Transformaciones y símbolos de la libido, publicada en 1912, reveló sus primeras divergencias con las tesis freudianas.

Al año siguiente se consumó la ruptura entre ambos y Jung dio a su método el nombre de psicología analítica.

Más allá del inconsciente individual, introdujo un inconsciente colectivo, noción que profundizó en otra de sus obras, Tipos psicológicos (1920), donde propone la distinción de tipos de personalidad extrovertida-introvertida.

Contrariamente a Freud, Jung no reconoce a la infancia un papel determinante en la eclosión de las alteraciones síquicas de la edad adulta, que él define según una dialéctica entre la persona y el mundo exterior.

Jung realizó un gran aporte en el análisis y la simbología de los sueños, e ¡ncursionó, además, en otros campos de las humanidades, desde el estudio de las religiones, la filosofía y la sociología, hasta la crítica del arte y la literatura.

Aspectos Básicos de la Teoría Freudana:

Freud cambió nuestra manera de pensar y de hablar de nosotros mismos.

Muchas de sus ideas básicas han sido popularizadas y muchos de los términos utilizados en sus teorías han pasado a formar parte del lenguaje cotidiano, tal como «anal obsesivo», «símbolo fálico» o «envidia de pene».

Freud fue un pensador muy original y es indudablemente uno de los más importantes de los siglos XIX y XX.

Desarrolló varias teorías muy controvertidas respecto al desarrollo de la personalidad y acerca de la salud y la enfermedad mentales.

Aspectos básicos de la teoría freudiana:

Las teorías freudianas se fundamentan en varios supuestos.

• El comportamiento es el resultado de diversas luchas y compromisos entre motivos, impulsos y necesidades potentes y, a menudo, inconscientes.

• El comportamiento puede reflejar un motivo de manera sutil o disfrazada.

• Un mismo comportamiento puede reflejar diferentes motivos en momentos distintos o en personas diferentes.

• Las personas pueden ser más o menos conscientes de las fuerzas que dirigen su comportamiento y de los conflictos subyacentes.

• El comportamiento está gobernado por un sistema energético que posee una cantidad relativamente fija de energía en cada momento.

• El objetivo del comportamiento es la obtención de placer (reducción ele la tensión, liberación de la energía), en lo que constituye el principio del placer.
• Las personas están condicionadas principalmente por los instintos sexual y de agresión.

• La expresión de estos condicionamientos puede entrar en conflicto con las exigencias de la sociedad, de manera que la energía que tiene que ser liberada para la realización de los impulsos debe encontrar otros canales de salida.

• Todos tenemos un instinto de vida (eros) y un instinto de muerte (thanatos).

******* 00000 *******

CRONOLOGIA DE SU VIDA:

1856: Nacimiento de Sigmund Freud en Freiberg, el 6 de mayo.

1876-1882: Estudios bajo la dirección de Ernst Brücke en la universidad de Viena.

1885-1886: Estancia en París; frecuenta los cursos de Charcot en la Salpétriére.

1886: Se casa con Martha Bernays.

1891: Se instala en el 19 de Berggasse.

1896: Invención de la palabra «psicoanálisis».

1900: Publicación de La interpretación de los sueños.

1902: Inicios de la «Sociedad psicológica del miércoles», que se convierte en  en la «Sociedad psicoanalítica de Viena».

1906: Comienza correspondencia entre  Freud y Jung.

1908: Primer Congreso internacional de  psicoanálisis en Salzburgo.

1909: Conferencias en la Clark University  (publicadas bajo el título Cinco | lecciones sobre el psicoanálisis).

1913: Aparición de Tótem y tabú. Ruptura con Jung.

1914-1918: Primera Guerra mundial.

1919: Tratado de Saint-Germain-en-Laye, el  de septiembre, que desmantela el  imperio de Austria-Hungría.

1920: Muerte de Sophie, hija de Freud.

1927: El porvenir de una ilusión.

1930: El malestar en la cultura.

1938: Los libros de Freud son quemados en Berlín. Anschluss y huida de Freud a Londres (junio).

1939: Muerte de Freud de cáncer,  el 23 de septiembre.

************* 000000 *************

El Psicoanálisis de Sigmund Freud

El Psicoanalisis de Freud

Origen y difusión del psicoanálisis: El psicoanálisis es un método para el tratamiento de las neurosis (trastornos mentales menores) que evolucionó hasta convertirse en una psicología general.

Su creador fue Sigmund Freud (1856-1939). (imagen).

Freud inició su carrera profesional como investigador en el instituto fisiológico de Ernst Vón Brücke, en Viena, pero las necesidades económicas lo obligaron a establecer una consulta privada (a partir de 1886).

La insatisfacción con los métodos existentes para el tratamiento de las neurosis lo llevó a abandonar la hipnosis y otros medios de sugestión, en favor de la «libre asociación».

Pidiendo a los pacientes que expresaran cualquier idea que les pasara por la mente, Freud esperaba descubrir el origen de sus trastornos neuróticos que, según creía, estaban generados por acontecimientos traumáticos en la primera infancia.

La primera obra psicoanalítica, Estudios sobre la histeria, que Freud escribió en colaboración con Josef Breuer, apareció en 1895.

A medida que Freud fue desarrollando sus ideas, un pequeño grupo de médicos interesados comenzó a reunirse en su casa y, en 1907, formaron la primera sociedad psicoanalítica.

En 1910 se fundó la Asociación Psicoanalítica Internacional y, cuando comenzó la Primera Guerra Mundial, había sociedades psicoanalíticas en Zurich, Munich, Berlin, Budapest, Inglaterra y Estados Unidos.

El interés por las teorías del psicoanálisis se vio favorecido por la elevada incidencia de neurosis de guerra entre los miembros de las fuerzas armadas.

En los años 20, el psicoanálisis ejercía ya su influencia sobre los círculos intelectuales de toda Europa y América.

La insistencia de Freud acerca de la importancia del desarrollo sexual del individuo abrió las puertas a un tratamiento más libre del sexo.

Su concepto del subconsciente y su redescubrimiento de la importancia de los sueños alentó a pintores, escultores y escritores a. experimentar con el azar y la irracionalidad. Movimientos tales como el dadaísmo o el surrealismo deben mucho al psicoanálisis.

Aunque muchas teorías freudianas no han soportado la prueba del tiempo, Freud ha ejercido una influencia integrablemente poderosa sobre la forma en que el ser humano considera su propia naturaleza.

Freud y el problema del poder

Fuente Consultada: El estallido científico de Trevor I. Williams

Gran Enciclopedia Universal Tomo 17 Entrada: Freud Sigmund Editorial Espasa
Raíces de la Sabiduría de Helen Buss Mitchell Editorial Cengage

Enlace Externo: Sitio web de la Casa Museo Freud en Londres (en inglés)

Biografía de Pauli Wolfgang Principio de Exclusión

BIOGRAFÍA DE PAULI, WOLFGANG
Físico austríaco-estadounidense

Wolfgang Pauli (1900-1958), físico estadounidense de origen austríaco, premiado con el Nobel y conocido por su definición del principio de exclusión en mecánica cuántica. Además su hipótesis, en 1931, de la existencia del neutrino, una partícula subátomica, constituyó una contribución fundamental al desarrollo de la teoría mesónica.

Fisico Pauli Wolfgang

Pauli formuló el principio de exclusión, que establece que dos electrones no pueden ocupar el mismo estado energético de forma simultánea en un átomo. Por este descubrimiento recibió, en 1945, el Premio Nobel de Física.

Se doctoró en 1921 en la Universidad de Munich y fue asistente en la Universidad de Gotinga. Continuó su formación en Copenhague, bajo la tutela de Niels Bohr. Trabajó inicialmente en la Universidad de Hamburgo y, luego, se mantuvo por espacio de veinticinco años como profesor de física teórica en la Escuela Politécnica Federal de Zurich.

Se le distingue como uno de los fundadores de la mecánica cuántica, junto con Heisenberg y Planck; adquirió gran prestigio por su principio de exclusión, enunciado en 1924, conocido también como principio de Pauli, según el cual dos partículas similares no pueden existir en el mismo estado, es decir, que ambas no pueden tener la misma posición y la misma velocidad, dentro de los límites fijados por el principio de incertidumbre de Heisenberg.

En otros términos, en un mismo átomo no pueden existir dos electrones con el mismo conjunto de números cuánticos –sabiendo que cada átomo queda descrito por completo una vez se han especificado sus cuatro números cuánticos– de donde resulta que al menos uno de ellos debe ser diferente. Mediante el Principio de Pauli se logró interpretar las propiedades químicas de los elementos cuando se agrupan ordenadamente por su número atómico creciente.

Pauli recibió el premio Nobel de física a la edad de 45 años, en 1945, «por el descubrimiento del principio de exclusión». Al año siguiente, recibió la nacionalidad norteamericana y trabajó a partir de ese momento en el Instituto de Estudios Avanzados de Princeton, regresando posteriormente a Zurich.

DESCRIPCIÓN DE LA UBICACIÓN DE LOS LOS ELECTRONES EN UN ÁTOMO:

El núcleo y la disposición de los electrones a su alrededor, son los componentes cruciales que dictan la forma como se comporta un elemento.

Si pudiésemos tomar millones de fotografías de los electrones que orbitan alrededor del núcleo de un átomo, éstos aparecerían cada vez en una posición ligeramente diferente. Las distintas posiciones forman series de hasta 7 anillos de nubes u «órbitas» alrededor del núcleo, donde las posibilidades de encontrar un electrón son altas. En los átomos más pequeños, hidrógeno y helio, existe sólo una pequeña órbita cercana al núcleo. Los átomos del helio tienen dos electrones y los del hidrógeno uno, por lo que la opción de hallar un electrón en un punto determinado de esta órbita es dos veces mayor en el átomo de helio que en el de hidrógeno.

Existe siempre un límite al número de electrones que cada órbita puede albergar. En la órbita interior hay espacio sólo para dos, por lo cual, si un átomo tiene más electrones, éstos se desplazan a una segunda órbita, más retirada del núcleo. Esta segunda órbita puede albergar hasta 8 electrones. La tercera también puede mantener 8 electrones, e incluso más -hasta 18-,si existe otra órbita. Sólo excepcionalmente la órbita externa presenta más de 8 electrones.

//historiaybiografias.com/archivos_varios5/atomo_pauli.jpg

Los átomos con 8 electrones en su órbita externa son muy estables y lentos para reaccionar con otros elementos, debido a que se requiere mucha energía para adicionar un electrón o para desplazarlo. Los átomos con un solo electrón en su órbita externa, como los del hidrógeno, sodio y potasio, son muy reactivos debido a que su electrón se remueve con facilidad.

de igual modo, los átomos a los que les falta uno de los 8 electrones son muy reactivos, pues aceptan con rapidez otro electrón en su órbita externa. El fluoruro (un átomo de flúor con un electrón obtenido de otro átomo) que encontramos en la crema dental protege los dientes al eliminar y remplazar un componente del esmalte dental que es afectado por los ácidos en los alimentos.

Puede Ampliar Este Tema Aquí

Fuente Consultada:
Historia Universal de la Civilización  Editorial Ramón Sopena Tomo II del Renacimiento a la Era Atómica

Biografía de Eddington Arthur y Sus Trabajos Cientificos

Biografía de Eddington Arthur  y Sus Trabajo Científico

BIOGRAFÍA DE EDDINGTON, Sir ARTHUR STANLEY (1882-1944): Astrónomo y físico británico, que realizó un importante trabajo en el campo de la relatividad y de la astronomía.

Eddington nació en Kendal, por entonces en Westmorland (actualmente Cumbria) y estudió en el Owens College (actualmente Universidad de Manchester) y en el Trinity College de la Universidad de Cambridge.

Fue ayudante jefe en el Real observatorio de Greenwich desde 1906 a 1913, año en que fue catedrático de astronomía en Cambridge.

En la década de los años veinte, este astrofísico inglés demostró que el interior del Sol era mucho más caliente de lo que se había pensado hasta entonces.

Supuso al astro como una enorme y extremadamente caliente esfera de gas, con características similares a las de los gases estudiados en la Tierra.

Eddigton Arthur Stanley

Arthur Eddihton: famoso físico del siglo XX, cuyo trabajo mas destacado fue sobre la evolución y la constitución de las estrellas. Su trabajo en astronomía quedó reflejado en su clásico libro La constitución interna de las estrellas, que se publicó en 1926.

Sometido a la acción de la gravedad, su materia tendría que estar atraída hacia el centro y, por tratarse solamente de gas, no tardaría en colapsarse en un cuerpo mucho más pequeño.

Ya que el Sol no entra en colapso e inclusive conserva medidas superiores a las establecidas para esa gravedad, debería existir alguna fuerza que impulse la expansión de la sustancia solar y resista a la tendencia de contracción.

El único fenómeno que podría explicar esta situación, según Eddington, sería el calor, ya que si se aumenta la temperatura, los gases se expanden y aumentan de volumen.

Por lo tanto, el Sol permanece en un estado de equilibrio, con un calor interior tal que tiende a expandirlo, pero con una fuerza gravitatoria que lo induce a contraerse.

Fue unastrónomo y físico británico, que realizó un importante trabajo en el campo de la relatividad y de la astronomía.

Concluyó que cuanto mayor es la masa de una estrella, mayor es la cantidad de calor que debe producir para no entrar en colapso, y que la cantidad de calor debe crecer con mayor rapidez que la masa.

Eddington se opuso a las teorías de su discípulo, Chandrasekhar, sobre la posibilidad de que existiera una estrella cuya masa alcanzara cierto límite y dejara de contraerse hasta llegar a un estado final como las estrellas enanas blancas.

Sus principales obras son: Espacio, Tiempo y Gravitación; Estrellas y Átomos; La Naturaleza del Mundo Físico; El Universo en Expansión y Nuevos Senderos de la Ciencia.

Fuente Consultada:
Historia Universal de la Civilización  Editorial Ramón Sopena Tomo II del Renacimiento a la Era Atómica

Temas Relacionados

• Implicancias de Teoria de la Relatividad
• Experimento de Michelson Morley Resumen Explicación
• El Principio de Equivalencia Teoría de la Relatividad General
• El Espacio Curvo Teoría de Relatividad Curvatura Espacial
• ¿Por que es Famoso Einstein?

Enlace Externo:• Origen y evolución del Universo

Biografía de Doppler Christian Resumen Descripcion del Efecto

Biografía de Doppler Christian
Breve Explicación del Efecto Doppler

Christian Doppler (1803-1853), físico y matemático austriaco, nacido en Salzburgo. Estudió en dicha ciudad y posteriormente en Viena. Fue profesor en el Instituto técnico de Praga (Checoslovaquia) y en el Instituto politécnico de Viena, y ocupó el cargo de director del Instituto de Física de la Universidad de Viena en 1850. Describió el fenómeno físico que se conoce hoy como efecto Doppler en su artículo monográfico sobre los colores de la luz de las estrellas dobles, Acerca de la luz coloreada de las estrellas dobles (1842).

Doppler cientifico

Recibió su primera educación en Salzburgo y Viena, en donde llegó a ser profesor de física experimental. En 1850, fue nombrado director del Instituto de Física.

Doppler se preguntó por qué razón el sonido se percibía  de modo distinto, según la fuente se alejara o se acercara al receptor; en su época ya se sabía que el sonido está compuesto por una serie de ondas que se desplazaban en un medio determinado, y el físico encontró que, por ejemplo, cuando una locomotora se acercaba al punto donde estaba situado un observador, cada onda sónica sucesiva se captaba casi superpuesta a la anterior (un sonido agudo), de modo que el oído la captaba con frecuencia creciente; al alejarse, por el contrario, la frecuencia se espaciaba cada vez más (un sonido grave).

Doppler había relacionado matemáticamente la velocidad y la tonalidad del sonido y, para probar su teoría, consiguió que una locomotora arrastrase un vagón cargado con trompetistas hacia el punto de observación y luego se alejara de él, a velocidades diferentes.

En el punto de observación ubicó un grupo de músicos de fino oído, encargados de registrar los cambios que se producían en el diapasón a medida que el tren iba o venía. La medición de dichos cambios en la tonalidad, en realidad en la intensidad aparente del ruido (la relación entre frecuencia y velocidad), es lo que hoy se conoce como efecto Doppler, divulgado por primera vez en 1842.

Doppler también dejó planteada la analogía entre el sonido que emite una fuente móvil y la luz que proviene de una estrella en movimiento, ya que la luz también se transmite por medio de ondas, si bien mucho más finas que las sónicas. El físico francés Armand Fizeau (1819-1896), hizo notar que el llamado efecto Doppler tendría que funcionar en el desplazamiento de todo tipo de ondas en movimiento, incluyendo las de la luz.

Gracias a los experimentos de Doppler sabemos que si una estrella se mantuviera estática con respecto a la Tierra, las líneas oscuras de su espectro luminoso deberían permanecer en un mismo sitio, pero que si se está alejando de nosotros, la luz que emite va alargando su longitud de onda (algo equivalente al sonido grave en el experimento del tren) y las líneas oscuras se desplazarían hacia el extremo rojo del espectro.

Entre más grande sea ese desplazamiento, mayor es la rapidez con que la estrella se aleja. Por el contrario, si se estuviera acercando, la luz emitiría ondas cada vez más cortas (el tono agudo) y las líneas del espectro estarían acercándose al violeta.

DESCRIPCIÓN DEL EFECTO DOPPLER:

El efecto Doppler es el cambio en la frecuencia percibida de cualquier movimiento ondulatorio cuando el emisor, o foco de ondas, y el receptor, u observador, se desplazan uno respecto a otro.

efecto doppler

El móvil (auto) de la imagen superior se desplaza hacia la derecha. Cuando se acerca al niño se observa que la onda del sonido se «comprime», la longitud de onda se corta y la frecuencia es alta, es decir un sonido agudo. A su vez para el caso del niño de la izquierda la situación es inversa, es decir la frecuencia del sonido será mas baja y el sonido que reciba sera grave.

//historiaybiografias.com/archivos_varios5/efecto_dopler1.jpg

Explicación del Foco en reposo y observador en movimiento: La separación entre dos frentes de onda permanece constante en todo momento. Aunque la velocidad de las ondas en el medio v también es constante, la velocidad relativa vrel. percibida por el observador que viaja a una velocidad vR depende de si este se aleja o se acerca al foco. Cuando el foco se mueve y el observador está detenido el caso es el mismo. La velocidad del sonido en el aire es de 340 m/s.

Fuente Consultada:
Historia Universal de la Civilización  Editorial Ramón Sopena Tomo II del Renacimiento a la Era Atómica

Biografia de Ramon Cajal Santiago y Su Obra Científica

Biografía de Ramón Cajal Santiago y Su Obra Científica

Un histólogo español recibe en 1906 el premio Nobel de Medicina y Fisiología. Con este prestigioso galardón se reconocen sus investigaciones sobre las leyes que rigen las conexiones de las células nerviosas del cerebro humano.

Santiago Ramón y Cajal, médico especializado en histología, investigó la morfología, las conexiones y el funcionamiento de las células nerviosas del cerebro humano.

Nacido en Petilla de Aragón, en 1852, estableció la teoría neuronal, según la cual el tejido nervioso estaba compuesto en su totalidad por células nerviosas y sus conexiones, y descubrió los vínculos de las células de la masa gris cerebral y de la médula espinal.

BIOGRAFIA

Santiago Ramón y Cajal nace en Petilla de Aragón el 1º de mayo de 1852, hijo de Justo Ramón y Antonia Cajal.

Toda su niñez y adolescencia van a estar marcados por los continuos cambios de residencia entre las distintas poblaciones del Alto Aragón, traslados motivados por la profesión de médico que ejercía su padre.

Su formación se inició en Valpalmas, donde acudió a la escuela local, aunque de hecho su primer maestro fue su propio padre, que le enseñó a leer y a escribir, le inició en la aritmética, en geografía y en francés.

En el año 1860 su padre es nombra do médico en Ayerbe, y toda la familia se traslada a dicha localidad.

Allí se convirtió en un pésimo estudiante y se acentuaron sus travesuras al verse más desatendido por su padre. Por estos motivos le enviaron a estudiar el bachillerato al colegio de los Escolapios de Jaca en 1861.

El régimen de terror imperante en dicha institución hizo sus padres cambiar de opinión y le mandaron a estudiar al instituto de Huesca. Durante estos años y por orden expresa de su padre, compagina los estudios con el trabajo en una barbería.

ramon y cajal santiago cientifico

Santiago Ramón y Cajal (1852-1934): histólogo español obtuvo el Premio Nobel de Fisiología y Medicina en 1906.

Pionero en la investigación de la estructura fina del sistema nervioso, Cajal fue galardonado por haber aislado las células nerviosas próximas a la superficie del cerebro. 

En 1892 se instaló en Madrid y fue nombrado catedrático de histología de la universidad de Madrid, donde trabajó y prolongó su labor científica hasta su muerte.

En 1873, ganó por oposición una plaza de Sanidad Militar y al siguiente año fue destinado a Cuba con el grado de capitán. Se doctoró en Madrid en 1877.

En 1879 fue, por oposición, director de Museos Anatómicos de la Universidad de Zaragoza; catedrático de Anatomía en la Universidad de Valencia (1883).

Fruto de sus trabajos fue el Manual de Histología y técnica micrográfica (1889). Catedrático de Histología en la Universidad de Barcelona (1887), dio a conocer poco después sus grandes descubrimientos sobre las células nerviosas.

En 1892 obtuvo la cátedra de Histología normal y Anatomía patológica de la Universidad de Madrid.

El Gobierno español creó el Laboratorio de Investigaciones Biológicas y la revista Trabajos de Laboratorio, que substituyó a la Revista trimestral de Micrografia, publicada por él desde 1897, y le encomendó la dirección de ambos.

Entre 1899 y 1920 dirigió el Instituto Nacional de Higiene; en 1906 compartió con C. Golgi el premio Nobel de Medicina por sus investigaciones acerca de la estructura del sistema nervioso.

Además de la obra citada, deben mencionarse entre las fundamentales las siguientes; Textura del sistema nervioso del hombre y de los vertebrados (1899-1904), Estudios sobre degeneración y regeneración del sistema nervioso (1913-14), Reglas y consejos sobre investigación biológica.

clase de disección dada por Ramón Cajal

LA ACTIVIDAD DE LAS NEURONAS: Estudió la morfología y las conexiones de las neuronas, y observó que las células nerviosas tenían una forma de unión especial, llamada sinapsis, que no ocurre por contacto directo sino por una especie de zona de unión entre las terminaciones de las unas y las otras.

También estudió la degeneración y regeneración de las células nerviosas, dado que la neurona es una célula nerviosa que, una vez madura, no tiene capacidad de división. Por esta razón el número de neuronas es siempre el mismo desde el nacimiento. Así, estableció la individualidad de las neuronas como unidades nerviosas.

SOBRE SU TRABAJO CIENTÍFICO:

Teoría de la neurona: 1889: De todas las células, las nerviosas parecen las más complejas, y de todos los órganos y sistemas de órganos, el cerebro y el sistema nervioso parecen los más complejos.

Además, de todas las partes del cuerpo humano, el cerebro y el sistema nervioso son, o deberían ser, los más interesantes, puesto que determinan nuestra condición de humanos.

Waldeyer-Hartz (véase 1888) fue el primero en sostener que el sistema nervioso estaba constituido por células separadas y por sus delicadas extensiones.

Estas últimas, señalaba, se aproximaban entre sí pero no llegaban a tocarse y mucho menos a juntarse, de modo que las células nerviosas permanecían separadas.

Llamó a las células nerviosas neuronas, y su tesis de que el sistema nervioso está compuesto por neuronas separadas es la llamada teoría de la neurona.

El histólogo italiano Camillo Golgi (Í843 o 1844-1926) había ideado quince años antes un sistema de tinción con compuestos de plata, que ponía al descubierto la estructura de las neuronas con todo detalle.

Utilizando esa tinción, pudo demostrar que la tesis de Waldeyer-Hartz era correcta.

En efecto, mostró que en las neuronas se operaban complejos procesos, pero que los de una no afectaban a los de sus vecinas, pese a estar muy próxima a ellas.

Los delgados espacios que las separaban se llaman sinapsis (es curioso que esta palabra derive de la griega que significa «unión», pues a simple vista parece que se unen, pero en realidad no es así).

Santiago Ramón y Cajal (1852-1934) perfeccionó la tinción de Golgi, y en 1889 desentrañó la estructura celular del cerebro y del bulbo raquídeo con detalle, fundamentando sólidamente la teoría de la neurona.

Por sus trabajos sobre la teoría de la neurona, Golgi y Ramón y Cajal compartieron el premio Nobel de medicina y fisiología en 1906.

En 1904 concluye su gran obra Textura del sistema nervioso del hombre y de los vertebrados. Dos años después, en 1906, recibe junto al histólogo italiano Golgi el premio Nobel de Fisiología y Medicina.

SUS OBRAS: Su labor incesante durante toda su vida se ve plasmada en otras obras como Estudios sobre degeneración y regeneración del sistema nervioso (1913-14), Manual técnico de anatomía patológica (1918) y la creación de nuevos métodos como el del formal urano para la tinción del aparato endoneuronal de Golgi y la técnica del oro sublimado.

En 1922 se jubila como catedrático y le es concedida la medalla de Echegaray. Durante sus últimos años sigue publicando nuevas obras como Técnica micrográfica del sistema nervioso y ¿Neuronismo o reticulismo?, considerada como su testamento científico.

Su vida concluyó en Madrid el 17 de octubre de 1934 pero su obra siguió y sigue viva gracias a la creación de la institución científica que lleva su nombre.

ramon y cajal

En 1952 se rindió un homenaje a don Santiago en «Hipócrates Sacrum» en Montpellier; sus discípulos, doctor Turchini y doctor Paulís, muestran una abundante ilustración sobre la vida de Ramón y Cajal.

A pesar de la natural aversión que Ramón y Cajal sentía por la relación social, su extraordinaria popularidad y prestigio mundiales le obligaron a frecuentar los círculos selectos, políticos, intelectuales y distinguidos de la época. Tuvo ocasión así de relacionarse con las personalidades más destacadas de la nación: José Echegaray, Menéndez y Pelayo, Benito Pérez Galdós, José Canalejas, conde de Romanones, Pelayo, Maura, Silvela y tantos otros

SU OBRA DURANTE LA PRIMERA GUERRA MUNDIAL: En 1914 el cruel estallido de la Primera Guerra Mundial conmovió a toda Europa. Aunque España guardó neutralidad, en su interior se vivía una política muy agitada. Pero ajenos, o casi ajenos, a los tristes acontecimientos europeos y españoles, don Santiago y sus colaboradores continuaban sin desfallecer sus investigaciones en el laboratorio. Las dificultades eran mayores que en tiempos pasados.

Trabajaban aislados, porque la guerra había roto toda comunicación entre los sabios europeos. Desconocían, pues, cuantos adelantos científicos se producían en el mundo. Los materiales y el equipo, que debían importarse, habían elevado excesivamente su costo y aumentado las dificultades de obtención.

También la cuestión de imprenta había elevado sus precios hasta hacerlos prácticamente inasequibles a las posibilidades del laboratorio. Todo eran problemas para don Santiago. No obstante, el tesón y la voluntad hicieron milagros y el equipo de investigadores logró varios descubrimientos importantes.
Una vez terminada la guerra y restablecida la comunicación en el mundo científico, Ramón y Cajal sufrió las mayores tristezas. Los que eran sus mejores amigos, admiradores y seguidores de su obra, habían muerto. Así, van Gebuchten, Waldeyer, Retzius, Ehrlich, Krause y Edinger. Sólo quedaban algunos científicos americanos interesados en sus investigaciones, pero no conocían el español.

Y entonces puso rápidamente manos a la obra, para remediar aquel error de previsión suyo. Hizo que se tradujesen al alemán, francés e inglés los trabajos más importantes suyos y de sus colaboradores, aunque tuvo que pasar por la amarga decepción de que, en general, sus trabajos quedaban desconocidos, pues eran varios los científicos que se atribuían descubrimientos hechos por él años antes.

UN GRAN CURIOSO PRECOZ: Las continuas travesuras de Santiaguo tenían la virtud de acabar la paciencia del maestro, y no era para menos. Como castigo solía mandarlo al «cuarto oscuro», habitación casi subterránea habitada por abundantes ratas. A los demás chicos este castigo les horrorizaba, pero al indómito Santiaguo le servía para preparar con calma y tranquilidad las travesuras del día siguiente.

Fue en una de aquellas solitarias estancias en el «cuarto oscuro» cuando descubrió lo que él creyó algo nuevo, el principio de la cámara oscura. Pero se trataba de un descubrimiento físico ya hecho por Leonardo de Vinci. El cuarto tenía un solo ventanuco que daba a la plaza del pueblo, en la que batía el sol. Un día, estaba Santiagué mirando distraídamente el techo, cuando se dio cuenta de que el rayo de luz que penetraba por la rendija del ventanuco proyectaba en el techo, cabeza abajo y con sus propios colores, las personas, carretas y caballerías que pasaban por el exterior.

Quiso ensanchar la rendija y las figuras se desdibujaron y hasta se desvanecieron. Entonces la hizo más estrecha con la ayuda de papeles y observó que cuanto más pequeña era la rendija más vigorosas y detalladas se hacían las figuras. El descubrimiento le dio qué pensar y acabó por convencerse, con sus infantiles conclusiones, de que la física era una ciencia maravillosa.

A partir de aquel día Santiagué sacó el máximo provecho de sus castigos, pues se dedicó a calcar sobre papel las vivas y coloreadas figuras que llegaban hasta su prisión para aliviar su soledad. No es de extrañar que si hasta entonces el «cuarto oscuro» no había sido para él un castigo penoso, menos lo fuese desde que hizo su descubrimiento, llegando a tomar verdadero cariño a su cárcel y sus sombras brillantes.

monumento de ramon y cajal
La gloria se hizo piedra en este monumento de Victorio Macho. La fuente de la vida y de la muerte mezclan sus aguas, mientras los ojos del sabio quieren escudriñar el hondo misterio que les junta.

Ramón y Cajal ha escrito una serie de consejos para ser realmente dichosos», hay en ellos en dosis bastantes equivalentes, su bondad de siempre, su escepticismo de ancianidad y la ironía que, como un barniz, los encubre por igual.

Son los siguientes:

«1. Sé indulgente «con la pobre bestia humana», según frase de Renán, y conténtate buenamente con lo que pueda dar de sí.

»2. A título provisional, considera con zoólogos y anatómicos que el hombre tiene más de mono que de ángel, y que carece de títulos para envanecerse y engreirse. Se imponen, pues, la piedad y la tolerancia.

»3. Inspírate, si puedes, en las conocidas máximas griegas: «Obrar a tiempo» (Chilón), «Y en todo lo medida» (Solón), frase traducida por los latinos con el manoseado nihil nimis (de nada demasiado).

»4. No contestes jamás a invectivas e insultos groseros y aparta inexorablemente de tu trato a los malintencionados y envidiosos.

»5. Vive de ti mismo, y aun ensimismado, si te ocupas en la ciencia o en cualquier trabajo intelectual socialmente útil.

»6. Distrae tus cavilaciones y enojos (que nunca faltan) con el estudio de la Historia, la literatura y, si es posible, con la práctica del dibujo y la fotografía.

»7. Huye de las pasiones vehementes, que absorben, esclavizan y esterilizan el espíritu.

»8. Aprende a callar; alaba cuanto digan bueno tus amigos y adversarios, y si hablas, hazlo con mesura, modestia y oportunidad.

»9. Jamás mortifiques a nadie con verdades desagradables para su orgullo o sus pretensiones. Maneja la verdad como la dinamita, que a menudo destruye aun a quien la manipula con precauciones.

»10. Sigue a Gracián cuando sentencia: «Sólo el honrador es honrado».

»11. Si eres heterodoxo o escéptico, no te mofes de los sentimien tos religiosos de nadie, siquiera sea por respeto a las creencias de tus antepasados.

»12. Y por si el Supremo Hacedor ha forjado la vida como un ensayo o esbozo, precursor de más serias y sublimes empresas ultra terrenas, ríete, como el irónico Luciano, de las incongruencias, con tradicciones y absurdos de filósofos, políticos y poetas. De acuerdo con el gran Humorista que nos creó, tómalo todo a broma, porque sólo la alegría es garantía de salud y longevidad.»

¿Un resumen de su propia vida? Parece que no… Más bien, un pergeño de lo que hubiera querido hacer de ella, cuando ya se aproximaba a su término. A sus veinte años, quería otra cosa muy diferente: no vacilaba en manipular dinamita…

Fuente Consultada:
Gran Enciclopedia Universal Espasa Calpe Tomo 32 Entrada: Ramón y Cajal
Celebridades Biblioteca Hispania Ilustrada Edit. Ramón Sopena
Historia y Cronología de la Ciencia y Los Descubrimientos Isaac Asimov

Funcionamiento de Olla a Presión:Historia de Papin Denis

Funcionamiento de Olla a Presión
Historia de Papin Denis

FUNCIONAMIENTO: Las ollas a presión suponen un enorme ahorro de tiempo en la cocina, ya que, permiten cocer los alimentos en un plazo mucho menor del requerido normalmente. El tiempo necesario para la cocción depende mucho de la temperatura del alimento y del ambiente que lo rodea. Por ejemplo, un trozo de carne tarda mucho más en asarse en un horno a fuego lento que si se aumenta la temperatura. Sin embargo, si ésta se aumenta demasiado, la carne se quema, en vez de cocerse como es debido.

Lo mismo ocurre cuando los alimentos se cuecen en agua. Por ejemplo, un huevo metido en agua a 80°C, tarda mucho más en cocerse que si el agua está hirviendo. Así, pues, el tiempo de cocción depende de la temperatura. Si se mide la temperatura a intervalos durante la cocción del huevo, se ve que aquélla aumenta, hasta que el agua comienza a hervir, y entonces permanece constante a 100°C

El proporcionarle mas calor no altera la temperatura: lo único que ocurre es que el agua hierve más vigorosamente. Bajo condiciones atmosféricas normales, el agua pura hierve a 100°C. Sin embargo, el punto de ebuffieión del agua varía con la presión. En la cumbre de una montaña elevada, donde el aire está enrarecido y la presión es inferior a la normal, el agua hierve a una temperatura más baja. Si por algún procedimiento se aumenta la presión del gas sobre el agua, su punto de ebullición sube.

Esto es exactamente lo que ocurre en las ollas a presión. Aumenta la presión del gas dentro de ellas y, por lo tanto, el punto de ebullición del agua que contienen, con lo cual los alimentos se cuecen más rápidamente a temperaturas más altas.

El agua hierve a 100 °C, a la presión atmosférica normal (1,03 kg. por centímetro cuadrado) . Si se aumenta la presión a 1,4 kg./cm2., hierve a 108 °C; si se incrementa a 1,75 kg./cm., lo hará a 115°C., y así sucesivamente. De hecho, algunas ollas trabajan a una presiones dos veces mayor que la atmosférica.

Las ollas a presión tienen que ser lo bastante sólidas para soportar las fuertes presiones, y la tapa ha de cerrar herméticamente, para que la presión interior se mantenga sin que se produzcan fugas.

La tapa lleva un punto débil, colocado deliberadamente para que actúe como dispositivo de seguridad, ya que, en caso de que se obstruyera la válvula de seguridad a través de la cual escapa normalmente el vapor, la olla podría convertirse en una bomba, de no existir dicho dispositivo, pues a medida que se siguiera aplicando calor la presión iría aumentando, hasta que, finalmente, explotaría.

Pero la olla no es tal arma mortífera y no ocurre eso, ya que, cuando la presión aumenta demasiado, la válvula de seguridad se abre y escapa el exceso de gas. En el centro de la tapa, hay un orificio en el que se asienta un manómetro de aguja, que lleva un peso. Se comienza la cocción sin colocar la válvula.

corte de una olla a presión

Corte de una olla a presión

El agua hierve a la presión atmosférica y la olla va llenándose de vapor, hasta que, por fin, brota un chorro de éste por el orificio. Entonces, se coloca el manómetro y el orificio queda bloqueado.

Esto impide que escape el vapor y, con ello, aumenta la presión. A medida que esto ocurre, el vapor acciona sobre el dispositivo, hasta que brota una nube que indica que la presión deseada se ha alcanzado. En este momento, debe regularse el gas o la electricidad, para mantener la presión.

Cuando se ha acabado la cocción, hay que enfriar la olla bajo la canilla de agua. El agua fría elimina calor de aquélla, y una parte del vapor interior se condensa en forma de gotitas acuosas. Con lo cual, al reducirse la cantidad de vapor, la presión disminuye. Entonces se puede abrir la olla.

Fuente Consultada: Enciclopedia de la Ciencia y la Tecnología TECNIRAMA N°126

SOBRE LA VIDA Y OBRA DE DENIS PAPIN: Uno de los trece hijos de un burgués protestante de Blois, llamado Denis Papin se orienta primero hacia la medicina, mostrando en la facultad de Angers un interés precoz por la mecánica y la cuestión de la conservación de los cadáveres. Su habilidad manual hace que repare en él un abate muy conocido, que lo recomienda a Christiaan Huygens, «inventor del reloj de péndulo», como se lo presentaba entonces.

Retrato de Denis Papin (1647-1714). Trabajó con Robert Boyle en la investigación sobre el aire. Es recordado por sus inventos y es considerado uno de los grandes pioneros de la máquina de vapor moderna. La máquina de vapor de Papin se compone de un cilindro con un pistón que es levantado por la presión del vapor, y es descendente produciendo el trabajo.

Pilar de la Academia Real de Ciencias, dotado por el Rey de 1.200 libras de renta, el sabio holandés se instaló en la Biblioteca real, donde procedió a realizar múltiples experiencias. Es allí donde el joven Papin, brillante posdoctorado estilo siglo XVII, se inicia en la tecnología de la «bomba al vacío», al tiempo que lleva a cabo investigaciones inéditas sobre la conservación de los alimentos. Para el gran asombro de Huygens, logra mantener una manzana en condiciones, bajo vacío, ¡durante cinco meses!.

Como los laboratorios de física no eran muy numerosos en 1675, no es nada sorprendente encontrar al joven oriundo de Blois en Londres, en casa de Robert Boyle, aristócrata de fortuna apasionado por la mecánica.

Provisto de un contrato bastante ventajoso pero que estipula el secreto, Papin construye para su amo bombas de un nuevo género (dos cilindros hermanados conducidos por una palanca común que permite una aspiración continua), con las cuales termina por efectuar las experiencias él mismo. Boyle nunca ocultará lo que le debe a su técnico francés, a quien cita con abundancia en sus publicaciones pero cuyos textos, aclara, reescribe sistemáticamente.

Es en ese laboratorio donde la gloria viene a coronar la doble obsesión, mecánica y culinaria, de Papin. Al adaptar una sopapa de seguridad, que inventa para la ocasión, sobre un recipiente metálico herméticamente cerrado con dos tornillos, crea el «digestor», o «baño maría de rosca», que se convertirá en la olla a presión, cuyo vapor pronto silba en las cocinas del Rey de Inglaterra y en la sala de sesiones de la Academia real de París.

Dice Denis: «Por medio de esta máquina , la vaca más vieja y más dura puede volverse tan tierna y de tan buen gusto como la carne mejor escogida», y en la actualidad no se concibe adecuadamente el impacto que podía tener una declaración semejante: en 1680, a los treinta y tres años, Papin es elegido miembro de la Royal Society, como igual de sus famosos empleadores, incluso si su nivel de vida sigue siendo el de un técnico.

Aunque en 1617 se haya instalado en Inglaterra un sistema de patentes, a Papin no le parece de ninguna utilidad interesarse en eso. Mientras los artesanos ingleses hacen fortuna fabricando su marmita, él solicita a Colbert una renta vitalicia… que le es negada.

De todos modos, ahí lo tenemos, lanzado en el jet set intelectual de la época. Lo vemos disertando sobre la circulación de la sangre en casa de Ambrose Sarotti, en Venecia, experimentando con Huygens en París sobre la bomba balística (un pesado pistón puesto en movimiento por una carga de pólvora) y lanzando en Londres su candidatura al secretariado de la Royal Society.Por desgracia, el elegido será Halley.

Fatigado, sin dinero, Papin agobia a la Royal Society con candidos pedidos, antes de desaparecer definitivamente en 1712.

Fuente Consultada: Una Historia Sentimental de las Ciencias Nicolas Witkowski

La Electrolisis del Agua-La Descomposición en Oxigeno e Hidrogeno

Electrólisis:Descomposición Del Agua en Oxígeno e Hidrógeno

LA  ELECTRÓLISIS  DEL AGUA: El agua (H2O) tiene una molécula que se compone de dos átomos de hidrógeno y un átomo de oxígeno.

Por tanto, no es de extrañar que se haya pensado en utilizarla como materia prima para la obtención de alguno de los dos elementos, especialmente teniendo en cuenta su abundancia, ya que constituye casi el 7 % de la masa de la Tierra.

Normalmente, el agua se utiliza para obtener hidrógeno, ya que el oxígeno se puede producir más económicamente por otros medios (por ejemplo, licuando el aire y destilándolo a continuación).

Entre los diversos métodos con que hoy cuenta la química para descomponer el agua se halla la electrólisis, procedimiento que implica la utilización de energía eléctrica y que, por tanto, no es de los más económicos.

No obstante, al obtenerse simultáneamente oxígeno como subproducto, el método no resulta, en realidad, tan costoso, y mucho menos para aquellos países, como los escandinavos, que disponen de energía eléctrica a bajo precio.

A primera vista, se diría que el agua no se puede descomponer por electrólisis, pues para que se verifique el transporte de electrones en el seno de un líquido es necesario que éste contenga iones, (átomos o grupos atómicos con carga), y el agua no los contiene.

Esto último no es rigurosamente cierto, puesto que el agua, aunque poco, está ionizada, según  la siguiente reacción:

H2O <===>  H+ + OH—

Es decir, parcialmente se encuentra en forma de iones hidrógeno (H+) e iones oxidrilo (OH—).

Pero, además, este fenómeno (la ionización del agua) se acentúa agregándole ciertos reactivos que, en teoría, pueden ser: una sal, un ácido o un álcali (base).

En la práctica, la utilización de sales presenta el inconveniente de que se producen reacciones que atacan los electrodos, por lo cual habría que utilizar electrodos inertes, de grafito o de platino.

Si se utilizan ácidos (sulfúrico o clorhídrico) sucede algo análogo, ya que la descarga de los aniones correspondientes (S04=,Cl-) es de gran actividad.

Por último, la utilización dé bases, como la soda (Na OH) o el carbonato sódico (CO3 Na2), casi no presenta inconvenientes y, por ello, es la que se practica.

Puesto que hay que partir del punto de que la energía eléctrica es costosa, se precisa estudiar minuciosamente el método, o lo que es lo mismo, el diseño de la cuba electrolítica o célula, para obtener rendimiento máximo con mínima energía.

electrolisis

La potencia de cualquier aparato eléctrico y, por tanto, la de la cuba, se obtiene mediante la siguiente expresión (Ley de Joule):

W= I x V

en donde I es la intensidad de corriente y V, el voltaje.

La intensidad de la corriente en amperios necesaria para producir una determinada cantidad de hidrógeno se sabe con facilidad, teniendo en cuenta las leyes de la electrólisis, de Faraday (96.500 culombios depositan un equivalente  gramo  de   cualquier   sustancio),   y  que   1   amperio= 1 culombio/segundo

Por   un   razonamiento   sencillo  se  desegundo, mostraría que,durante una horc,  1.000 amperios pueden liberar cerca de medio metro cúbico de hidrógeno.

En cuanto al voltaje de la corriente, interviene una serie de factores, que son los que, en realidad, determinan ios características a las que se ha de ajustar la célula electrolítica.

Se ha comprobado experimentalmente que el voltaje necesario se compone de tres factores, o sea:

V=V1+V2 + V3

V1 es el  voltaje necesario para descomponer el  agua;
V2  es  la sobretensión  de  los electrodos,  y
V3  es la caída óhmica a  lo largo de la cuba electrolítica.

Para obtener el mínimo consumo de electricidad (o sea, la potencia, en vatios, mínima) en la liberación del hidrogene es evidente que, siendo fija la intensidad de la corriente, hay que disminuir lo más posible el voltaje (V).

Pero V1 es una  cantidad constante y,  por tanto,  no se  puede actuar sobre ella. Quedan así por examinar V2 y V3.

En la sobretensión (V2) influyen los siguientes factores: la  naturaleza  de  los  electrodos  (los  que  producen  mencr sobretensión   son   los  de   níquel   y  hierro),   la   temperatura del  baño,   la  viscosidad del  electrolito,  la  densidad  de   le corriente que atraviesa el baño, etc.

En la caída óhmica (V3), y teniendo en cuenta que hay que introducir en la cuba unos diafragmas para evitar que se mezclen el hidrógeno y el oxígeno producidos , influyen la longitud de la cuba (l1), el coeficiente de resistividad del electrodo, el espesor del diafragma (l2), el coeficiente de resistividad de éste, la resistividad del electrolito, etc.

Del estudio de las variables anteriores se deduciría que le célula electrolítica ideal debería tener unos electrodos en forma de láminas muy grandes —para que admitan muchos amperios—, colocados bastante próximos, para que li fuera mínima; entre ellos se colocaría el diafragma c película metálica de pequeño espesor —para que l¡¡ sea mínimo— y con unos orificios de diámetro suficiente, para no ofrecer resistencia al paso de los iones.

En la práctica, existe una serie de células que presente diversas ventajas e inconvenientes, como resultado de haberse tenido en cuenta, en mayor o menor grado, las variables que intervienen en el proceso, algunas de las cuales no se pueden armonizar.

Una de las más utilizadas es la «Schmidt-Oerlikon» que trabaja a 2,3 voltios y consume 6 kwh por cada metro cúbico de hidrógeno liberado (simultáneamente se libere 0,5 m3 de oxígeno).

Conceptos básicos de lubricantes-Disminuir el Rozamiento

Conceptos Básicos de Lubricantes
Disminuir el Rozamiento

FUNCIÓN DE LOS LUBRICANTES: Los lubricantes son productos que presentan la propiedad de disminuir el coeficiente de rozamiento entre dos superficies, que se deslizan una sobre otra con movimiento relativo.

lubricar concepto basico

Es fácil comprender que» tengan una importante aplicación en todos los aparatos mecánicos donde hay movimiento de piezas, puesto que ejercen una doble función: a) mecánica, de disminuir la carga, al reducir el coeficiente de rozamiento, y b) térmica, de evitar que se eleve lo temperatura de la máquina, puesto que absorbe y elimina el  calor producido en  el  roce.

Así como el consumo de ácido sulfúrico indica el grado de industrialización de un país, el de lubricantes da el índice de mecanización; este último también se puede saber partiendo del consumo de carburantes. Lubricantes y carburantes presentan un consumo proporcional: el de los primeros es el 3,5 % de los segundos.

Según lo anterior, el país más mecanizado del mundo es Estados Unidos, que en el año 1964 consumió lubricantes a razón de 25 kilogramos por habitante.

Veamos ahora cuál es el concepto de coeficiente de rozamiento. Si se supone una pieza de peso V, que está deslizándose sobre una superficie S (véase figura), para que el movimiento no cese sólo será necesario aplicar una fuerza F que compense el rozamiento.

fuerza de rozamiento y lubricantes

Es evidente que, cuanto mayor sea el peso P, más grande tiene que ser F. Entonces, se define como coeficiente de rozamiento Ω a la relación  entre  la   fuerza aplicada   (F)  y  la   presión   (P)   que ejerce el cuerpo sobre la superficie que ocupa, o sea:

formula rozamiento

Cuanto más grande sea el coeficiente de rozamiento de una pieza de un material determinado, mayor será la fuerza que se necesita para desplazarlo.

Para dar una idea de cómo pueden disminuir los lubricantes las resistencias de rozamiento, baste decir que, en el vacío, los metales pulimentados tienen un coeficiente de rozamiento mil veces superior al que presentan agregándoles   un   lubricante.

Las condiciones generales que debe reunir un lubricante son las siguientes:

1) buena circulación, para que la refrigeración de las partes en rozamiento sea eficaz;

2) viscrosidad suficientemente alta, para que trabaje en régimen hidrodinámico (régimen estable);

3) Untuosidad, para que se reparta bien por la superficie a lubricar.

Todas estas condiciones se dan en determinados tipos de aceites, como los que se obtienen en la destilación y el fraccionamiento del petróleo.

Ello no quiere decir que los aceites vegetales sean malos lubricantes; pueden ser, incluso, mejores que los minerales, pero durante corto plazo, porque su estabilidad es muy inferior. No obstante, estas buenas cualidades de los aceites vegetales se aprovechan para mejorar los lubricantes dé petróleo.

Así, es muy frecuente añadir ácido palmítico al aceite mineral, para que el lubricante adquiera la untuosidad y adherencia a las superficies metálicas que aquel producto le confiere; por ejemplo, la adición de un 0,5 % de ácido palmítico al aceite mineral determina, una disminución del coeficiente de rozamiento en los metales, que oscila  entre  el   30′ %   y  el   40 %.

Un  lubricante que trabaje en condiciones de gran presión necesita  aditivos de los siguientes tipos:

a)    ácidos grasos (palmítico, esteárico, etc.), para que. soporte presiones de arranque elevadas; por ejemplo, en la caja de cambios de los motores se producen presiones de hasta 28  toneladas por centímetro cuadrado;
b)    polímeros, para, que la variación de la viscosidad con la   temperatura   sea   mínima;
c)    productos antigripantes (palmitato de plomo, oleato de plomo,  grafito,  azufre,  etc.).

Hoy se fabrican lubricantes más amigables con el medio ambiente, que duran más tiempo en el motor. Se habla de los lubricantes sintéticos, semisintéticos, los hechos con bases más refinadas, lo cual permite que el motor, como el medio ambiente, tengan mejor cuidado. Ya no son lubricantes para  5.000 kilómetros, ese mito se rompió hace tiempo, los productos de hoy permiten 10.000 kilómetros en condiciones normales de trabajo

Las principales funciones de los aceites lubricantes son:

  • Disminuir el rozamiento.
  • Reducir el desgaste
  • Evacuar el calor (refrigerar)
  • Facilitar el lavado (detergencia) y la dispersancia de las impurezas.
  • Minimizar la herrumbre y la corrosión que puede ocasionar el agua y los ácidos residuales.
  • Transmitir potencia.
  • Reducir la formación de depósitos duros (carbono, barnices, lacas, etc.)
  • Sellar

Fuente Consultada:
TECNIRAMA Enciclopedia de la Ciencia y la Tecnología N°96

Guerra del Pacífico. Conflicto Chile Bolivia, Causas y Consecuencias

RESUMEN GUERRA DEL PACÍFICO CHILE-BOLIVIA POR EL SALITRE

La Guerra del Pacífico, que algunos historiadores la llaman Guerra del Guano y del Salitre fue el evento mas amargo de la historia de Bolivia.

Esta guerra comenzó en 1879, y enfrentó a Chile contra una alianza entre Bolivia y Perú, y se inicia cuando en 1878 el general boliviano Hilarión Daza, que conducía una dictadura, decide aumentar los impuestos a las exportaciones de dos empresas chilenas (FFCC y Compañia de Salitre) que explotaban los recursos en la zona boliviana de Antofagasta.

Guerra del Pacífico. Conflicto

Para Chile ese aumento contradecía con lo pactado en un Tratado de Paz y Amistad en el año 1874, por lo que lo considera una violación a sus derechos, negándose a cumplir con la nueva disposición.

Como respuesta Daza confisca los yacimientos explotados, rompiendo las relaciones diplomáticas, por lo que Chile decide ocupar los territorios militarmente, declarándole la guerra a Bolivia el 5 de abril de 1879.

La guerra se desarrolló en el océano Pacífico, en el desierto de Atacama y en los valles y serranías del Perú.

Bolivia pierde el conflicto frente a un poderoso Chile, que se anexa un territorio territorio, que era su único punto de acceso al océano Pacifico y enormes riquezas minerales.

Privada para siempre de esta región capital, Bolivia no ha logrado jamás a arrancar económicamente y hasta estos días trata de conseguir acuerdos con otros países limítrofes como Perú para poder intergrarse al comercio internacional mediante un puerto que le abra las puertas al mundo.

Luego de cinco años de guerra, los países de Bolivia y Chile firman, el 4 de abril de 1884, un pacto de tregua donde convienen en un cese de fuego y la reapertura de las relaciones comerciales.

Chile como gesto de cordialidad ofrece a Bolivia unas ventajas fiscales en la ciudad de Antofagasta y se compromete a construir una línea de ferrocarril uniendo la costa del océano Pacífico a La Paz.

Guerra del Pacífico: Bolivia-Perú y Chile

Guerra del Pacífico: Bolivia-Perú y Chile

Los ejércitos de la alianza Bolivia-Perú llegaron a 12.000 soldados, mientras que Chile tenía menos de 400o, pero bien preparados y con equipamientos modernos.

Las batallas mas importantes fueron la de Angamos, en octubre 1879 donde Chile logra controlar la zona del océano.

Ese mismo año bolivia tuvo dos derrotas la de Pisagua y Tarapacá y la última de Tacna en 1880.

La siguiente estapa fue contra las tropas de Perú, donde caen derrotada en Arica el 7 de Junio de 1880, para luego tomar la capital Lima en 1881.

La guerra finaliza con firma del Tratado de Ancón en 1883.

CRÓNICA DE LA ÉPOCA I

El 14 de febrero la nave de guerra chilena Blanco Encalada apareció frente a Antofagasta. Su presencia en ese lugar significa el comienzo de la guerra.

La presencia chilena es la respuesta al intento de Bolivia de cobrar 10 centavos por quintal de salitre explotado por una compañía británico-chilena.

El aumento del impuesto a los exportadores de salitre, adoptado unilateralmente por el gobierno boliviano, desconociendo convenios anteriores, empujó a Chile a declarar la guerra.

Perú, por el pacto secreto de 1873 , interviene como aliada de Bolivia. En noviembre los chilenos han desembarcado en Pisagua lo que les ha permitido capturar la provincia de Tarapacá y sus yacimientos salitreros.

CRÓNICA DE LA ÉPOCA II

La Guerra del Pacífico llegó a su fin con la firma de un tratado.

La resistencia militar peruana, bajo el mando del coronel Andrés A. Cáceres Dorregaray en la región sur y centro andina venía obteniendo varias victorias contra lasfuerzasinvasoras chilenas.

Pero en la batalla de Buamachuco, el 10 de julio, sufrió una decisiva derrota militar.

Luego, un grupo de dirigentes peruanos del que se sospecha que actuaron de acuerdo a directivas del mando militar enemigo, determinó con una serie de medidas el final del conflicto, impusieron al general de brigada Miguel Iglesias como nuevo presidente y firmaron un tratado de paz con Chile.

La guerra finalizó oficialmente el 20 de octubre con la firma del lutado de Ancón.

Éste dispone que el departamento de Tararira pasa a manos chilenas, y las provincias de Arica y Tacna quedan bajo administración chilena por un lapso de 10 años.

Después de ese período un plebiscito decidiría si quedan bajo soberanía de Chile o vuelven a ser peruanas. Chile además obtuvo la Puna de Atacama, por la que tenía una permanente disputa con Bolivia.

El Chile boliviano no pierde solamente 120 mil metros cuadrados de territorio, sino que se queda sin los 400 kilómetros de costa y sin salida al mar, una pérdida que sin dudas redundará en muchas otras.

PARA ENTENDER MEJOR:

Antecedentes de la Época:

Hacia 1825 las guerra por la independencia de las colonias españolas americanas habían finalizado y los antiguos virreinatos desaparecieron y surgieron nuevos países que debían organizarse políticamente y económicamente para comenzar el nuevo camino hacia el progreso.

Como consecuencia de tantos años de batallas, los militares fueron ocupando un lugar más importante en las sociedades latinoamericanas y, una vez finalizada la guerra con España, intervinieron activamente en la política.

En comparación con la etapa colonial, las décadas posteriores a la independencia estuvieron teñidas por la violencia, pues abundaron las luchas civiles y los conflictos entre los nuevos países, cuyas fronteras todavía no estaban bien definidas.

En las luchas civiles latinoamericanas se enfrentaron a menudo sectores conservadores y liberales.

Los conservadores pretendían mantener una rígida jerarquía social, eran poco favorables a los cambios, no veían con buenos ojos la llegada de ideas innovadoras de Europa y, por lo general, defendían los intereses de las zonas rurales, donde estaban sus propiedades.

Por el contrario, los liberales eran partidarios de abrir un poco más la participación los grupos no tan adinerados pero instruidos, admiraban los avances de las sociedades europeas que esperaban imitar en sus países, y representaban mejor los intereses de los habitantes de las ciudades.

La guerra había empobrecido a América latina y destruído su riqueza.

Hacia 1850, algunos países como Venezuela, Chile o la región del Río de la Plata habían logrado recuperarse y mejorar su economía con respecto a los tiempos de la colonia, gracias a la exportación de productos agropecuarios.

Las discusión de las fronteras de los nuevos países de América del sur, que inicialmente se respetaron los antiguos límites de la Capitanía General de Chile, comenzó a ser un tema espinoso cuando la demanda mundial de los recursos naturales de esas zonas, como fueron los minerales comenzó a incrementarse, y esas exportaciones se convirtieron en importantes fuentes de ingresos para esos estados, necesitados de recursos económicos.

Perú y Bolivia también tenían discusiones con algunos límites en la región del guano de Tarapacá.

Como se ve, en estos países como Bolivia, Perú y México la minería, que era la actividad económica más importante, se encontraba en declinación, porque faltaba dinero para invertir en las minas y aumentar su producción, por lo que muchas veces se permitía la explotación de esos recursos a empresas extranjeras, que eran quienes poseían el capital necesario para dichas inversiones.

Bolivia era el caso, en donde se permitía extraer el nitrato de Antofagasta por empresas chilenas, que lamentablemente terminaron en una guerra, que la ha perjudicado a hasta hoy.

A los fines de no obstaculizar el desarrollo de los países en vía de crecimiento, se pactaron tratados para la explotación de los minerales en distintas regiones, como por ejemplo el de 1874, donde Chile cedía sus derechos entre los paralelos 23 y 25, a cambio de que Bolivia no aumentara los impuestos a las empresas chiles por 25 años, acuerdo que generó la Guerra del Pacífico

• ►LA REALIDAD DEL COMERCIO:

Mientras la independencia política trajo independencia económica a América Latina, los viejos patrones fueron restablecidos rápidamente. En lugar de España y Portugal, Gran Bretaña dominaba la economía del continente.

Los comerciantes británicos se trasladaban en gran número, mientras los inversionistas ingleses vertían su capital generosamente, especialmente en la minería.

Muy pronto los viejos esquemas comerciales volvieron a ponerse en práctica.

Dado que América Latina había servido como una fuente de materia prima y suministro alimenticio a las naciones industrializadas de Europa y Estados Unidos, muy pronto las exportaciones hacia el Atlántico Norte se incrementaron notablemente, en particular las de rigo, tabaco, lana, azúcar, café y pieles.

Al mismo tiempo, los bienes de consumo terminados, especialmente los textiles, fueron importados en notables cantidades, lo que provocó el declive de la producción industrial en América Latina.

La sobreexportación de materias primas e importación de productos manufacturados aseguraba la prolongada dominación de la economía latinoamericana por parte de extranjeros.

Eduardo Galeano, en su famoso libro: «La venas abiertas de América Latina» explica:

«Poco después del lanzamiento internacional del guano (que se usaba como fertlizante en Europa) , la química agrícola descubrió que eran aún mayores las propiedades nutritivas del salitre, y en 1850 ya se había hecho muy intenso su empleo como abono en los campos europeos.

Las tierras del viejo continente dedicadas al cultivo del trigo, empobrecidas por la erosión, recibían ávidamente los cargamentos de nitrato de soda provenientes de las salitreras peruanas de Tarapacá y, luego, de la provincia boliviana de Antofagasta.

Gracias al salitre y al guano, que yacían en las costas del Pacífico «casi al alcance de los barcos que venían a buscarlos», el fantasma del hambre se alejó de Europa.

La explotación del salitre rápidamente se extendió hasta la provincia boliviana de Antofagasta, aunque el negocio no era boliviano sino chileno.

Cuando el gobierno de Bolivia pretendió aplicar un impuesto a las salitreras que operaban en su suelo, los batallones del ejército de Chile invadieron la provincia para no abandonarla jamás.

Hasta aquella época, el desierto había oficiado de zona de amortiguación para los conflictos latentes entre Chile, Perú y Bolivia.

El salitre desencadenó la pelea. La guerra del Pacífico estalló en 1879 y duró hasta 1883.

Las fuerzas armadas chilenas, que ya en 1879 habían ocupado también los puertos peruanos de la región del salitre, Patillos, Iquique, Pisagua, Junín, entraron por fin victoriosas en Lima, y al día siguiente la fortaleza del Callao se rindió.

La derrota provocó la mutilación y la sangría de Perú. La economía nacional perdió sus dos principales recursos, se paralizaron las fuerzas productivas, cayó la moneda, se cerró el crédito exterior. Bolivia, por su parte, no se dio cuenta de lo que había perdido con la guerra: la mina de cobre más importante del mundo actual, Chuquicamata, se encuentra precisamente en la provincia, ahora chilena, de Antofagasta.»

Los problemas fronterizos heredados de la época colonial provocaron en 1879 el estallido de la guerra del Pacífico contra Perú y Solivia por el control de la zona salitrera de Atacama.

La victoria final chilena en 1883 extendió la soberanía del país sobre el territorio de Tarapacá, Tacna y Arica (el tratado de Lima, de 3 de junio de 1929, estableció la soberanía de Perú sobre Tacna y la de Chile sobre Arica).

CRÓNICA DE LA EPOCA III:

La economía boliviana desde hace tiempo se encuentra administrada en sus sectores más sensibles por intereses extranjeros.

Al crearse en 1871 el Banco Nacional de Bolivia, su dirección recayó en manos de familias prominentes de la política chilena, como los Edwards y los Concha y Toro, más tarde aliados con la oligarquía de la plata boliviana representada por los sucesores de Aniceto Arce y Pacheco.

En este sentido, cuando en 1873 se formó la Compañía de Huanchanca para la explotación de plata, se hizo con el aporte de capitalistas chilenos que suscribieron las dos terceras partes de las acciones y controlaron cuatro de los cinco puestos del directorio de la empresa.

Un año después, el canciller de Bolivia, Mariano Baptista, firmó el tratado con Chile que exoneraba a éste del pago de impuestos por 25 años en Atacama.

Es precisamente la violación de esta cláusula por el actual presidente boliviano, Hilarión Daza, lo que acaba de encender la mecha bélica.

En contrapartida, la estrategia de alianzas de la élite minera de la plata con Chile resulta perjudicial para los intereses peruanos y argentinos ya que, al aplicar una política de comercialización exclusiva por el puerto de Antofagasta, Bolivia atenta contra el comercio de los otros países de la región.

Por ello, en el caso del Perú el problema se centra en las relaciones comerciales, en particular por la rivalidad entre los puertos del Pacífico: Callao y Valparaíso.

El Tratado de Alianza defensiva por el cual Perú está aliado a Bolivia es de 1873 y el interés peruano de comprometerse en una defensa mutua ante un ataque externo no es tanto el temor a Chile -país con el que no tiene frontera- sino la preocupación frente a la actitud de Bolivia.

En más de seis oportunidades, según afirman políticos peruanos, se discutió en la agenda boliviana la alternativa de promover una alianza entre Bolivia y Chile en contra de Perú.

Para este último la alianza con Bolivia tiene sentido dentro de una estrategia más amplia que contemple la participación de la Argentina ya que la unión de la armada peruana y la argentina pueden llegar a neutralizar efectivamente los propósitos agresivos chilenos.

Por su parte en la Argentina la situación de la frontera indígena, las pretensiones chilenas sobre la Patagonia y la demarcación de límites territoriales en la Cordillera de los Andes concentran la preocupación del gobierno.

Asimismo, la disputa en el norte por el territorio de Tarija no es menor.

Frente a este panorama, y en una evaluación de los resultados de un posible conflicto bélico con Chile, el Senado argentino ha visto con buenos ojos la posibilidad de firmar una alianza con Perú y con ello frenar las aspiraciones de Chile.

Sin embargo, el clima hostil que se vive no colabora en dirección a una salida negociada ya que la diplomacia boliviana parece boicotear tal desenlace.

Los argumentos esgrimidos actualmente por Bolivia resultan incoherentes: por un lado reconoce el «utis posidetis», es decir, las fronteras establecidas a fines de la época colonial, reclamando a Chile Atacama; pero por el otro desconoce el mismo principio al momento de reconocer Tarija para la Argentina.

No es tanto la localidad norteña lo que preocupa a la cancillería argentina, sino el desconocimiento del «utis posidetis» ya que es la base sobre la cual se sustentan los derechos argentinos en la querella con Chile por la Patagonia.

En definitiva, ningún pronóstico es optimista respecto de la coyuntura y estamos frente al estallido de una guerra en el Pacífico. Bolivia y Chile así lo han manifestado.

Perú se encuentra atado a un compromiso al que no puede renunciar, y la Argentina ante un posible conflicto se mantendrá neutral mientras se garantice la integridad territorial conservando la Patagonia y los límites cordilleranos preestablecidos.

Fuente Consultada:
Diario Bicentenario Fasc. N°4 Período 1870-1879

Enlace Externo: Tratados de Paz: Chile-Bolivia

Bibliografia:

Contreras Carranza, Carlos (2012). La economía pública en el Perú después del guano y del salitre. Lima: Banco Central de Reserva del Perú e Instituto de Estudios Peruanos. ISBN 978-9972-51-349-7.

Dellepiane, Carlos (1977). Historia Militar del Perú 2. Lima, Perú: Ministerio de Guerra del Perú, Biblioteca Militar.

Ekdahl, Wilhelm (1919-1). Historia militar de la Guerra del Pacífico I. Galería Alessandri 20, Santiago de Chile: Sociedad de imprenta y litografía Universo. Consultado el 21 de mayo de 2017.

Biografia Marie Curie-Historia de sus Investigaciones y Aportes Cientificos

Biografía de Marie Curie
Historia de sus Trabajos e Investigaciones Científicas

En 1902, en un precario laboratorio montado en una cochera de la calle Lhomond de París, Francia, un matrimonio de físicos observa con asombro un trozo de piedra que brilla en la oscuridad.

La noticia conmociona a los científicos.

Comienza aquí la era atómica.

El científico que aisló el radio fue la polaca Marie Skolodowska, quien tras casarse con Pierre Curie, adoptó el apellido de su esposo convirtiéndose en Marie Curie.

Una investigadora magnífica, científica francesa de origen polaco. Fue la primera mujer en recibir un Premio Nobel Nacida en Polonia, en 1891 se trasladó a París y se incorporó a la Universidad de La Sorbona.

Conoció a Fierre Curie y se casaron en 1895.

Interesada en los recientes descubrimientos de los nuevos tipos de radiación, comenzó a estudiar las radiaciones aei uranio y, utilizando las técnicas piezoeiéctricas inventadas por su mando, midió las radiaciones en la pechblenda, un mineral que contiene uranio.

Al ver que las radiaciones del mineral eran más intensas que las del propio uranio, se dio cuenta de que tenía que haber elementos desconocidos, más radiactivos.

Fue la primera en utilizar el término «radiactivo».

marie curie biografia

En 1898 el matrimonio anunció el descubrimiento de dos nuevos elementos: el polonio y el radio.

En 1903, junto a su esposo, compartió con Becquerel el Premio Nobel de Física por el descubrimiento de los elementos radiactivos.

A la muerte de su marido (1906) lo reemplazó en las clases en la Universidad de París.

En 1911 recibió el Nobel de Química por sus investigaciones sobre el radio y sus compuestos.

Fue directora del Instituto de Radio de París en 1914 y fundó el Instituto Curie. Sufrió una anemia perniciosa causada por las largas exposiciones a la radiación.

Animados por el descubrimiento de Roentgen de los rayos X, ambos se entregaron al estudio de estas emisiones, que Marie Curie llamó radiaciones.

Durante 1898, detectaron en un trozo de uranio un poquito de polvo más radiactivo que el uranio. Marie, en recuerdo de su tierra, lo llamó polonio.

En diciembre de ese mismo año observaron otra sustancia altamente radiactiva y la llamaron radio. Cuatro años más tarde, tras arduos trabajos, Marie y Pierre Curie lograron aislar el radio.

Apenas un trocito de piedra de 0,1 gramos que emitía una luminosidad azul en la oscuridad.

https://historiaybiografias.com/linea_divisoria1.jpg

BREVE FICHA BIOGRAFICA

•  Pierre Curie nació en 1859, en París (Francia).

• A los dieciocho años se graduó en Física y comenzó a trabajar como jefe de laboratorio en la Escuela de Física y Química de la ciudad de París.

• Manya Sklodowska (conocida después como Marie Curie) nació en Varsovia (Polonia), el 7 de noviembre de 1867.

• A los veinticuatro años se trasladó a París a estudiar Física y Matemática y luego entró como asistente en el laboratorio donde trabajaba Pierre.

• Maric y Pierre se enamoraron y se casaron en 1895. El matrimonio tuvo dos hijas: Irene y Eve.

• Mientras Pierre continuó  sus proyectos de investigación, Marie empezó a estudiar la radiaciones atómicas.

• En 1898 descubrieron el radio y el polonio. Este suceso dio lugar al nacimiento de una nueva rama en las ciencias: la radiactividad.

• En 1903 compartieron el premio Nobel de Física con el físico Antoine Becquerel.

becquerel fisico radioactividad

• Grandes descubrimientos

• En 1906 Pierre murió en un accidente y Marie lo reemplazó en la universidad. Así empezó a enseñar las materias que él dictaba, lo que la convirtió en la primera mujer en dar cátedra en la Sorbona (Francia).

• En 1911 logró aislar el radio en su estado más puro y por este trabajo recibió su segundo premio Nobel, el de Química.

•  En 1918 dirigió el Laboratorio Curie en el Instituto del Radio, en París en donde también investigaba la aplicación de la radiactividad en el tratamiento contra el cáncer.

• Murió enferma de leucemia, el 4 de julio de 1934.

https://historiaybiografias.com/linea_divisoria1.jpg

Modelo de Vida

TEMAS TRATADOS:

1-Biografia de la Madre Teresa de Calculta
2-Biografia del Dr. Esteban Maradona
3-Biografia de Yukio Seki (kamikaze japones)
4-Biogria de Madame Curie
5-Biografia de Irena Sendler
6-Biografia del Dr. Naki

https://historiaybiografias.com/linea_divisoria1.jpg

COMPLETA BIOGRAFÍA DE MARIE CURIE

La vida, la obra de Pierre y Marie Curie están indisolublemente unidas a la historia de la radiactividad y del descubrimiento del radio, de tal manera que una no se entiende sin la otra.

La biografía del radio es la biografía de los Curie.

Lo demás casi no cuenta.

Es la historia bella y heroica de un hombre y una mujer que se unieron en el amor y en el trabajo para lograr una de las páginas mejor acabadas de la historia de la ciencia.

Sus caminos separados se unieron en el verano de 1895, después de un pintoresco viaje de bodas en bicicleta por la íle de France.

Investigadora francesa, de origen polaco, cuyo apellido de soltera fue Sklodowska.

Nació en Varsovia y murió  en Sallanches (1867-1934).

Colaboró con su esposo, Pierre Curie, en la investigación de los fenómenos de radiación, descubierta por el profesor Henri Becquerel.

Por estos trabajos Becquerel compartió el premio Nobel de Física (1903) con el matrimonio.

Fallecido Pierre Curie, Marie prosiguió los estudios iniciados en común y, en 1911, obtuvo el premio Nobel de Química, por el descubrimiento de los elementos radiactivos radio y polonio.

Pierre fue un físico francés, n. y m. en París (1859-1906). Educado en la Sorbona.

Descubrió en 1883 la piezoelectricidad.

Empezó su estudio de los cuerpos radiactivos en 1896 en unión con su esposa Marie Curie, con la que recibió el premio Nobel de Física en 1903.

Pierre Curie era hijo de un médico parisiense.

Había nacido en 1859.

De carácter idealista, sobrio, trabajador, después de cursar sus estudios de ciencias físicas fue nombrado profesor de la escuela municipal de Física y Química de París, con un sueldo discreto y con muy pocos medios para desarollar su afán investigador.

A sus treinta y cuatro años era ya algo conocido en los medios científicos por haber descubierto, en colaboración con su hermano Jacques, el fenómeno de la piezoelectricidad, comprobando la aparición de cargas eléctricas en una lámina de cristal de cuarzo cuando es sometida a tracciones y compresiones.

También era tenida en cuenta la ley fundamental de Curie en magnetismo, al hallar la relación entre la imanación y la temperatura.

Pero su vida transcurría casi sin pena ni gloria, con su modestia, con su deseo de pasar inadvertido, sin el prurito de mejorar la posición, con las clases entre amenas y aburridas de la escuela.

Marie Sklodowska nació ocho años más tarde que Pierre Curie, en 1867.

También su niñez y su juventud conocieron el ambiente científico y las estrecheces económicas.

Marie Curie

Su padre era profesor de matemáticas y física del instituto de Varsovia.

Al estudiar con ilusión las asignaturas de la Ciencia en los cursos secundarios, deseaba igualmente especializarse en los misterios que circundan al mundo científico.

Tuvo por aquel entonces ocasión de vivir los días de zozobra, tantas veces repetidos, del valeroso pueblo polaco frente a las exigencias territoriales e ideológicas del zarismo.

Cuando hace dos años que su hermana mayor, Bronia, finalizara sus estudios de medicina, decide trasladarse a París, de cuyo mundillo científico tiene las mejores referencias.

Tendrá que vivir en una modestísima pensión y sufrir dificultades sin cuento.

Muy cerca estuvo de tener que renunciar a sus estudios de matemáticas y física superiores por la falta total de medios con que sostenerse; la beca universitaria conseguida para ella por una amiga polaca ayudó mucho a la agravada situación….

Estudiaba durante el día y daba clases por la noche, apenas ganando para su subsistencia.

En 1893 recibió su licenciatura en Física y comenzó a trabajar en un laboratorio industrial del profesor Lippmann.

Entre tanto, continuó sus estudios en la Universidad de París y obtuvo un segundo título en 1894, luego seguría su doctorado.

LA HISTORIA DE SU DESCUBRIMIENTO:

En medio de un desorden increíble en el «hangar» que les servía de laboratorio en la Escuela de física y química de París, Pierre y Marie Curie se afanaban.

Desde que conocieron los trabajos del físico Henri Becquerel, que descubrió la radiactividad, dedicaron toda su energía al estudio de esta radiación.

A partir de la pechblenda, un mineral de uranio, lograron aislar en 1898 dos nuevos elementos, el radio y el polonio, este último fue nombrado así por Marie en recuerdo de su país natal.

En 1903, ambos sabían que sus trabajos habían llamado la atención de la comunidad científica.

En junio, Marie presentó su tesis sobre las propiedades atómicas del uranio ante un jurado absorto.

En el transcurso del mismo mes, la célebre Royal Institution británica los invitó a presenta: un ciclo de conferencias.

En noviembre, la Royal Society de Londres les concedió la medalla Davy.

Finalmente, el 10 de diciembre, la Academia de Ciencias de Estocolmo, en Suecia, anunció públicamente que se les había otorgado el premio Nobel de física, junto con Henri Becquerel. Una pareja discreta de científicos accedía así a la celebridad.

En su laboratorio, Pierre y Marie Curie formaban una pareja totalmente dedicada a la ciencia.

Estaban convencidos de que ésta debía ayudar a la humanidad a vivir mejor:

Fue este humanismo, así como sus investigaciones los que forjaron su renombre mundial.

Una joven brillante:

Marja Skíodowska nació el 7 de noviembre de 1867 en Varsovia, que entonces estaba ocupada por los rusos.

Al terminar sus estudios secundarios en forma brillante, Marja soñaba con abrazarla carrera científica, pero en Polonia las mujeres no estaban autorizadas a ingresar en la universidad.

Sus padres lamentablemente no le podían ofrecer estudios en el extranjero: su hermana Bronja iría a París a estudiar medicina.

Marja permaneció en Polonia dando lecciones particulares a los niños de familias acomodadas, mientras que en el mayor secreto, en las tardes, impartía cursos a los obreros en la universidad libre polaca.

En 1891, sin hablar una palabra de francés, viajó a París para encontrarse con su hermana. En la Sorbona, Marja siguió cursos de física.

Era una estudiante brillante y aprobó en 1893 su licenciatura, ocupando el primer lugar.

Al año siguiente fue segunda en la licenciatura de matemáticas.

Por intermedio de un amigo polaco conoció a Pierre Curie, ocho años mayor que ella, físico en la Escuela de física y química de París, con el que se casó en julio de 1895.

Un Científico Precoz

Como su joven esposa, que adoptó el nombre de Marie, Pierre Curie manifestó prematuramente excepcionales aptitudes intelectuales.

Nacido en París el 15 de mayo de 1859 en el seno de una familia protestante, obtuvo su licenciatura en física a los dieciocho años e ingresó en la Facultad de ciencias en calidad de ayudante.

Junto con su hermano Paul Jacques, que trabajaba en el laboratorio de mineralogía de la Sorbona, estudió los cristales y descubrió el fenómeno de la piezoelectricidad.

Gracias a innumerables observaciones científicas realizadas, los hermanos elaboraron un electrómetro de cuadrante, que llegó a ser el electrómetro Curie.

En 1883, Pierre fue nombrado jefe de trabajos en la nueva Escuela de física y química de París.

Allí se dedicó al estudio de los cristales, introduciendo en el campo de la física las nociones de simetría, que fueron adoptadas rápidamente por los cristalógrafos.

Su tesis doctoral presentada en 1895, que versaba sobre las propiedades magnéticas de los cuerpos a diversas temperaturas, lo llevó a formular la llamada ley de Curie.

«En interés de toda la humanidad»
«Renunciando a la explotación de nuestro descubrimiento, nosotros hemos renunciado a la fortuna que habría podido, después de nosotros, ser transmitida a nuestros niños. Yo he debido defender nuestras concepciones frente a nuestros amigos, quienes pretendían, no sin una razón valiosa, que si hubiéramos garantizado nuestros derechos, habríamos conseguido los medios financieros necesarios para la creación de un Instituto del radio satisfactorio. […] La humanidad tiene ciertamente necesidad de hombres prácticos que saquen el máximo partido de su trabajo sin olvidar el bien general, salvaguardando sus propia: intereses. Pero tiene también necesidad de soñadores para quienes las prolongaciones desinteresadas de una empresa son tan cautivadoras que les resulta imposible a mirar por sus propios beneficios materiales. […] Sin embargo, una sociedad bien organizada debería siempre asegurar a sus trabajadores los medios eficaces para cumplir su función en una vida desembarazada de las preocupaciones materiales y libremente consagrada al servicio de a investigación científica».
Marie Curie, Notas autobiográficas.

La labor incesante:

Tras conocer a Marie, Pierre dejó de lado una parte de sus trabajos sobre los cristales y junto con ella se consagraron únicamente en los fenómenos de la radiactividad.

En la penumbra del «hangar» de la calle Lhomond, la pareja pasaba días estudiando sin descanso las propiedades del radio y midiendo cada vez con mayor precisión las radiaciones.

Ni la notoriedad que les valió el premio Nobel, ni aun la educación de sus dos hijas, Irene y Eve, nacidas en 1897 y en 1904, los apartaba de este paciente trabajo al que dedicaron toda su vida.

Cuando abandonaban su laboratorio era sólo para impartir cursos: Pierre en la Escuela de física, Marie en la Escuela normal superior de Sévres.

Pierre y Marie Curie estaban convencidos que las investigaciones realizadas tendrían aplicaciones promisorias, razón por la cual huían de lo mundano y rehusaban los honores.

En conjunto con el Dr. Danlos, del hospital Saint-Louis, la pareja afinaba sus mediciones y multiplicaba los experimentos para revelar las facultades terapéuticas de las radiaciones del radio, susceptibles de tratarlos tumores cancerosos.

Sin embargo, esta unión orientada por completo al trabajo sufrió un quiebre súbito en 1906.

El 19 de abril, al abandonar la facultad de ciencias y caminando por la calle Dauphine, un coche a caballo arrolló a Pierre y murió enseguida.

A petición del Consejo de la facultad de ciencias Marie aceptó seguir con la enseñanza de su marido.

El 5 de noviembre asumió la cátedra bajo la mirada curiosa del público.

Era la primera vez que en Francia una mujer accedía a un puesto universitario.

Si: pronunciar elogio alguno a quien ella reemplazaba, como la tradición lo exigía, Marie  inició de inmediato su clase, reanudándose donde Pierre se había detenido:

«Cuando consideramos los progresos logrados en los dominios de la física durante los diez últimos años, nos sorprende el gran avance de nuestras ideas en lo concerniente a h electricidad y a la materia…».

Grandeza y miseria: el año 1911

La «viuda célebre», como se la llamó era adelante, proseguía sus investigaciones sobre la radiactividad junto con su asistente André Debierne.

A fines de 191″ sus amigos, entre ellos Pierre Perrin y Paul Langevin, la animaron para que postular; a un puesto en la Academia de Ciencias.

Siempre modesta, Marie aceptó sin gran entusiasmo, en tanto una campaña a prensa se desencadenó contra ella.

En las columnas de los diarios de extrema derecha se cuestionaba la posible e inconveniente nominación de una mujer en la prestigiosa Academia.

Por su condición femenina, de origen polaco, agnóstica y por haber aplaudido la rehabilitación de Dreyfus, Marie Curie fue el blanco de los panfletistas xenófobos y antisemitas.

En la Academia de Ciencias fueron numerosos los que quisieron evitar el escándalo.

El 23 de enero, por sólo dos votos, los académicos prefirieron a Edouard Branly, competidor de Marie Curie.

Profundamente herida por esta cobardía de la comunidad científica, debió afrontar algunos meses más tarde un nuevo ataque, más calumnioso aún.

En noviembre se lanzó una acusación contra Marie de mantener una relación con el físico Paul Langevin.

En la Actiott frangaise, Léon Daudet transformó este sórdido rumor en un segundo caso Dreyfus y alborotó a los periodistas que la asediaron en su domicilio.

Sin embargo, el año 1911 terminó con una noticia feliz.

Los jurados de Estocolmo, quizá sensibles a los ataques de los que Marie Curie había sido víctima, decidieron concederle el premio Nobel de química por sus trabajos sobre la determinación de la masa atómica del radio.

Pero este brillante reconocimiento no bastó para consolarla: Marie prefirió abandonar Francia y se instaló en Inglaterra durante un año.

LA TRAGEDIA

El 19 de abril de 1906 era un día lluvioso. A las 14 y 30 Pedro Curie salía de la Facultad de Ciencias y, cuando cruzaba distraídamente la Rué Dauphine, se encontró de pronto frente a un gran carro que se le venía encima.

Sorprendido, intentó tomarse de la pechera del caballo, pero resbaló sobre el pavimento mojado y cayó bajo las ruedas; el carro, con su peso de seis toneladas, le pasó por encima, causándole la muerte.

Pedro Curie había nacido en 1859. María no se dejó abatir por el cruel dolor y se dedicó con más ahínco aún a su trabajo. Un mes más tarde le fue confiada la cátedra de su esposo en la Sorbona.

En 1911 se le confirió el Premio Nobel de Química; nadie más en el mundo había recibido dos de estos premios.

Tras haber fundado el gran «Instituto del Radio» en París, María Curie falleció el 4 de julio de 1934, en un sanatorio de Alta Saboya, víctima de una prolongada exposición al radio, el elemento que después de la gloria le trajo la muerte. María Curie había nacido en 1867.

LA CIENCIA AL SERVICIO DE LA HUMANIDAD

A su regreso, Marie Curie reanudó su trabajo, cuya mayor preocupación era su valoración en el ámbito médico.

En 1914, el Instituto Pasteur y la universidad de París fundaron el Instituto del radio.

Durante la Primera Guerra mundial, los tratamientos con rayos X demostraron su eficacia.

Para ir en ayuda de los heridos, Marie Curie equipó veinte vehículos con material radiológico, los «pequeños Curies».

Con su hija Irene, que trabajaba entonces a su lado, lanzó un amplio programa de equipamiento hospitalario y veló por la formación de 150 enfermeras.

Culminada la guerra, Marie Curie se instaló en su Instituto y se empeñó en conseguir una provisión sistemática de radio, cuyo precio era tal que se lanzaban suscripciones a escala mundial para permitir abastecer los laboratorios.

En Estados Unidos se organizó en 1921 una extensa colecta en beneficio de la recién creada

Fundación Curie y, durante un viaje triunfal, Marie Curie recibió de manos del presidente estadounidense un gramo de radio puro.

La afamada científica no cesó en promover la investigación, cuyos frutos debían ser beneficiosos para la humanidad.

Al tiempo que participaba en los trabajos de la Comisión de cooperación internacional, ella procuraba distribuir los fondos recaudados y destinarlos a obras universitarias, ofreciendo becas de estudio, ayudando a diferentes laboratorios, principalmente en su Polonia natal.

Cansada y afectada por la enfermedad que la consumía, una leucemia a causa de la prolongada exposición a las radiaciones, Marie Curie murió en julio de 1934.

Esposo Curie

Los esposos Curie en el laboratorio

Una familia de premios Nobel

Marie Curie es la única persona que ha recibido dos premios Nobel, y quizá los jurados de Estocolmo pensaron en ella cuando en diciembre de 1935, un año después de su fallecimiento, decidieron otorgar el premio Nobel de química a su hija y a su yerno, Irene y Frédéric Joliot-Curie.

Irene trabajaba en el Instituto del radio, donde conoció a un joven investigador, Frédéric Joliot.

Casados en 1927, se dedicaron juntos, como lo hicieron Pierre y Marie, a la investigación sobre la radiactividad y lograron transformar átomos en isótopos radiactivos desconocidos en estado natural.

Este descubrimiento de la radiactividad artificial, que les valió el Nobel, constituía un adelanto notable para la física nuclear.

El año siguiente, Irene Joliot-Curie sería, junto con Suzanne Lacore y Cécile Brunschwicg, una de las primeras mujeres ministras. En el gobierno del Frente Popular fue nombrada subsecretaría de Estado de la investigación científica.

Marie es profesora

A Primera mujer que llegó a enseñar en la Sorbona, Mane Curie asumió la cátedra el 5 de noviembre de 1906. Ese día el grupo más selecto de París presionaba en la secretaría de la facultad para obtener una tarjeta de invitación.

• ►CRONOLOGÍA:

1859: Nacimiento de Pierre Curie en París, el 15 de mayo.

1867: Nacimiento de Marja Sklodowska en Varsovia, el 7 de noviembre.
1891: Llegada de Marja a París.

1895: Wilhelm Conrad Roentgen descubre los rayos X. Pierre Curie obtiene su doctorado y se casa con Marja.

1897: Nacimiento de Irene, primera hija de Pierre y Marie Curie, el 12 de septiembre.

1898: Descubrimiento del radio y del polonio.

1903: El premio Nobel de física es otorgado a Henri Becquerel y a Pierre y Marie Curie.

1904: Pierre es nombrado profesor de física en la Sorbona. Nacimiento de Eve, segunda hija de los Curie.

1906: Muerte accidental de Pierre Curie. Marie es la primera mujer que enseña en la Sorbona.

1911: Marie Curie recibe el premio Nobel de química.

1914: Fundación del Instituto del radio.

1914 – 18: Marie instruye a enfermeras en radiología para cuidar los heridos de guerra.

1921: Nacimiento de la Fundación Curie, para el tratamiento del cáncer.

1922: El 7 de febrero, Marie Curie ingresa en la Academia de medicina.

1926: Frédéric Joliot es empleado en el Instituto del radio.

1924: Matrimonio de Frédéric Joliot y de Irene Curie.

1934: Muerte de Marie Curie.

1935: Irene y Frédéric Joliot-Curie reciben el premio Nobel de química.

https://historiaybiografias.com/linea_divisoria6.jpg

AMPLIACIÓN COMPLEMETARIA

La química y física Marie Sklodowska de Curie (1867-1934) fue la única mujer galardonada con dos premios Nobel.

El primero, de Física, fue otorgado en 1903 y compartido con su esposo Pierre ‘Curie (1859-1906) y con Antoine-Henri Becquerel (1852-1908), por haber descubierto la radiactividad (es decir, la emisión de radiaciones por parte de algunos núcleos atómicos).

El segundo, de Química, le fue concedido en 1911 por el hallazgo de dos elementos radiactivos de gran importancia: el polonio y el radio.

El radio resultó ser de vital importancia en las primeras terapias radiantes aplicadas para la lucha contra el cáncer.

Lamentablemente, Marie muere de leucemia, una enfermedad cuyo origen probable haya sido la exposición excesiva a las radiaciones.

La paradoja ocurrida en la vida de esta mujer, sencilla y trabajadora, se repite aun hoy con el uso de los radioisótopos: éstos han mejorado notablemente la calidad de vida del hombre, pero a su vez han producido terribles tragedias.

Los radioisótopos se usan con múltiples fines pacíficos, entre ellos, obtener energía eléctrica en las centrales nucleares, o bien, en medicina, para mejorar las técnicas de diagnóstico por imágenes y de laboratorio; también se aplican en el tratamiento de enfermedades cancerosas y en la esterilización de material descartable (jeringas, agujas, cánulas, etc).

Además, nuevos proyectos han permitido que la radiactividad se emplee también en otras áreas: por ejemplo, para tratar los residuos cloacales y en el caso de las técnicas de radio preservación (usadas a veces para irradiar alimentos y así evitar su putrefacción).

Cabe recordar que en nuestro país, la Comisión Nacional de Energía Atómica (CNEA) instaló en 1970 una planta de irradiación en el Centro Atómico Ezeiza.

Técnicamente, la irradiación de alimentos consiste en un proceso en el que el alimento absorbe radiaciones ionizantes, es decir que producen iones; de esta manera se inhibe el crecimiento de brotes en bulbos, tubérculos y raíces y se eliminan parásitos, bacterias y toxinas.

Si la cantidad de irradiación es lo suficientemente alta, se puede lograr la esterilización del alimento. Mediante esta técnica es posible conservar alimentos frescos (frutas, verduras, carnes) y también aquellos desecados, como huevos en polvo, cacao soluble y vegetales deshidratados.

Aunque estas prácticas están autorizadas por varios países, entre ellos el nuestro, no todos aprueban el uso de la irradiación de alimentos, en particular, y el uso de los radioisótopos, en general.

Este desacuerdo responde, tal vez, a los perjuicios ocasionados por la radiactividad a través de la historia.

Prueba de ello son las bombas de neutrones, lanzadas en 1945 sobre las poblaciones japonesas de Hiroshima y Nagasaki, o el terrible accidente nuclear ocurrido en la central energética de Chernobyl, Ucrania, en 1986.

PARA SABER MAS…
EL ELEMENTO MISTERIOSO: UN ELEMENTO MISTERIOSO

Mientras los esposos Curie trabajaban en la Universidad, en la cámara oscura del modesto laboratorio parisiense del profesor Enrique Becquerel, ocurrió un hecho extraordinarias sales de uranio que el profesor había dejado en la penumbra, en un paquete, sobre una placa fotográfica, impresionaron a ésta, atravesando el papel que las envolvía.

Becquerel intuyó inmediatamente que las sales de uranio emitían rayos espontáneamente; además, examinando la pecblenda, el principal uranífero, observó que ésta manifestaba una acción fotográfica mucho mayor de la que pudiera haber correspondido a su contenido de uranio.

Dedujo que la pechblenda debía contener otro elemento dotado de una fuerza de impresión de las placas muy superior a la del uranio.

becquerel quimicoBecquerel conocía a los Curie y su capacidad y le habló a María de su descubrimiento y le preguntó si quería ocuparse de las investigaciones.

Entusiasmada, María aceptó y hasta convenció a su marido:

«Estoy segura —le dijo— de que la impresión de la placa depende de un elemento desconocido.»

Consultaron a Mendeleiev, el creador de la tabla de los elementos, y éste, desde San Petersburgo, respondió que en sus tablas existía un espacio disponible para un ele mentó de ese tipo.

Los Curie, entonces, decidieron dedicarse a la investigación del nuevo elemento.

Les fue cedido un pequeño depósito en la planta baja de la Escuela de Física.

Se trataba de un local húmedo, donde se guardaban las máquinas fuera de uso.

Los Curie escribieron al gobierno austríaco, que era el propietario de las mina de pechblenda deSan Joachimsthal, en Bohemia, y, algunos días más tarde, descargaban desde un carro, en el patio frente al depósito, una tonelada de residuos de pechblenda Comenzó para los Curie una labor agotadora.

Se pasaban días enteros revolviendo la masa de pechblenda en ebullición con una gran barreta de hierro.

Los sofocantes vapores transformaban el local en un verdadero infierno.

El humo acre irritaba los ojos y la garganta, pero los dos sabios proseguían heroicamente su labor, día tras día.

Mientras tanto, la tonelada de pechblenda quedó reducida a unos cincuenta kilos y, en julio de 1898, los Curie aislaban un nuevo elemento, trescientas veces más activo que el uranio.

María resolvió denominarlo «polonio», tomando este nombre del de su patria.

El fatigoso trabajo prosiguió: sobre las desvencijadas mesas se acumulaban productos cada vez más concentrados y más ricos en uranio, reducidos finalmente a unos pocos gramos.

En 1902, más de cuatro años después de comenzar las investigaciones, María fue la primera persona que pudo contemplar en una probeta una pizca de polvo blanco, opaco, parecido a la sal de cocina: el radio.

La gran meta había sido alcanzada y los esposos Curie pudieron anunciar al mundo la existencia de un nuevo elemento, ¡dos millones de veces más radiactivo que el uranio!.

El descubrimiento maravilló al mundo entero: los Curie se hicieron famosos y recibieron toda clase de honores.

Algunos meses más tarde obtenían el Premio Nobel, juntamente con Becquerel, que había indicado la senda de las investigaciones.

María era feliz: su primera hija, frene, nacida durante el glorioso y terrible período de las investigaciones, contaba ya siete años (ella también llegaría a ser una científica ilustre y recibió el Premio Nobel en 1935).

En 1904 nacía la segunda hija, Eva, y un año más tarde Pedro Curie fue electo académico de Francia y nombrado profesor de física en la Sorbona.

Todo se desarrollaba de la mejor manera posible.

Fuente Consultada:
QUÍMICA I Polimodal Alegría-Bosack-Dal Fávero-Franco-Jaul-Ross
Enciclopedia del Estudiante Tomo IV CODEX

LA MUJER EN LA HISTORIA

Principio de Bernoulli: Teorema de la Hidrodinamica Resumen y Teoria

Principio de Bernoulli – Teorema de la Hidrodinámica

INTRODUCCIÓN GENERAL:

Se denominan fluidos aquellos cuerpos cuyas moléculas tienen entre sí poca o ninguna coherencia y toman la forma de la vasija que los contiene, como los líquidos y los gases.

Muchos de dichos cuerpos fluyen con bastante facilidad y raramente permanecen en reposo.

La rama de la ciencia que trata de los fluidos en movimiento se conoce con el nombre de Hidrodinámica.

Como ejemplo, se puede citar el agua que circula por una tubería, o la corriente de aire que se origina sobre las alas de un avión en vuelo.

El comportamiento de un fluido en movimiento es, naturalmente, más complicado que el de un fluido en reposo.

En Hidrostática (rama que trata de los fluidos en reposo), lo más importante de conocer, acerca del fluido, es la presión que actúa sobre el mismo.

Un buzo experimenta tanto mayor aumento de presión cuanto mayor es la profundidad a la que está sumergido en el agua; la presión que soporta a una determinada profundidad es, simplemente, la suma del peso del agua por encima de él, y la presión del aire sobre la superficie del agua.

Cuando el agua se pone en movimiento, la presión se modifica.

Es casi imposible predecir cuál es la presión y la velocidad del agua, por lo que el estudio de los fluidos en movimiento es muchísimo más complicado que el de los fluidos en reposo.

Un buzo que se mueve a lo largo, y en el mismo sentido que una corriente submarina, probablemente no nota que la presión alrededor de él cambia.

Pero, de hecho, al ponerse el agua en movimiento, la presión disminuye y, cuanto mayor es la velocidad, mayor es la caída de presión.

Esto, en principio, sorprende, pues parece que un movimiento rápido ha de ejercer una presión mayor que un movimiento lento.

El hecho real, totalmente opuesto, fue primeramente expresado por el matemático suizo Daniel Bernoulli (1700-1782).

Si un fluido comienza a moverse, originando una corriente continua, debe existir alguna causa que origine dicho movimiento.

Este algo es una presión.

Una vez el fluido en movimiento, la presión cambia, bien sea aumentando o disminuyendo.

Supongamos que aumenta. Al aumentar la presión, crece la velocidad del fluido, que origina un nuevo aumento en la presión; este aumento hace crecer el valor de la velocidad, y así sucesivamente.

PRINCIPIO DE LA HIDRODINÁMICA: EXPLICACIÓN RESUMIDA DE LA TEORÍA:

A continuación estudiaremos la circulación de fluidos incompresibles, de manera que podremos explicar fenómenos tan distintos como el vuelo de un avión o la circulación del humo por una chimenea.

El estudio de la dinámica de los fluidos fue bautizada hidrodinámica por el físico suizo Daniel Bernoulli, quien en 1738 encontró la relación fundamental entre la presión, la altura y la velocidad de un fluido ideal.

El teorema de Bernoulli demuestra que estas variables no pueden modificarse independientemente una de la otra, sino que están determinadas por la energía mecánica del sistema.

Supongamos que un fluido ideal circula por una cañería como la que muestra la figura.

Concentremos nuestra atención en una pequeña porción de fluido V (coloreada con celeste): al cabo de cierto intervalo de tiempo Dt (delta t) , el fluido ocupará una nueva posición (coloreada con rojo) dentro de la Al cañería. ¿Cuál es la fuerza “exterior” a la porción V que la impulsa por la cañería?

Sobre el extremo inferior de esa porción, el fluido “que viene de atrás” ejerce una fuerza que, en términos de la presiónp1, puede expresarse como p1 . A1, y está aplicada en el sentido del flujo.

Análogamente, en el extremo superior, el fluido “que está adelante” ejerce una fuerza sobre la porción V que puede expresarse como P2 . A2, y está aplicada en sentido contrario al flujo.

Es decir que el trabajo (T) de las fuerzas no conservativas que están actuando sobre la porción de fluido puede expresarse en la forma:

T=F1 . Dx1- F2. Dx2 = p1. A1. Dx1-p2. A2. Ax2

Si tenemos en cuenta que el fluido es ideal, el volumen que pasa por el punto 1 en un tiempo Dt (delta t) es el mismo que pasa por el punto 2 en el mismo intervalo de tiempo (conservación de caudal). Por lo tanto:

V=A1 . Dx1= A2. Dx2 entonces T= p1 . V – p2. V

El trabajo del fluido sobre esta porción particular se “invierte” en cambiar la velocidad del fluido y en levantar el agua en contra de la fuerza gravitatoria. En otras palabras, el trabajo de las fuerzas no conservativas que actúan sobre la porción del fluido es igual a la variación de su energía mecánica Tenemos entonces que:

T = DEcinética + AEpotencial = (Ec2 — Ec1) + (Ep2 — Ep1)

p1 . V — P2 . V = (1/2 .m . V2² — 1/2 . m. V1²) + (m . g . h2 — m . g . h1)

Considerando que la densidad del fluido está dada por d=m/V podemos acomodar la expresión anterior para demostrar que:

P1 + 1/2 . d. V1² + d . g. h1= P2 + 1/2 . d. V2² + d . g . h2

Noten que, como los puntos 1 y 2 son puntos cualesquiera dentro de la tubería, Bernoulli pudo demostrar que la presión, la velocidad y la altura de un fluido que circula varian siempre manteniendo una cierta cantidad constante, dada por:

p + 1/2. d . V² + d. g. h = constante

Veremos la cantidad de aplicaciones que pueden explicarse gracias a este teorema.

https://historiaybiografias.com/linea-divisoria6.jpg

Analogía con el Fluido Humano.

Una multitud de espectadores pretende salir de una gran sala de proyecciones al término de la función de cine.

El salón es muy ancho, pero tiene abierta al fondo sólo una pequeña puerta que franquea el paso a una galería estrecha que conduce hasta la calle. La gente, impaciente dentro de la sala, se agIomera contra la puerta, abriéndose paso a empujones y codazos.

La velocidad con que avanza este “fluido humano” antes de cruzar la puerta es pequeña y la presión es grande.

Cuando las personas acceden a la galería, el tránsito se hace más rápido y la presión se alivia. Si bien este fluido no es ideal, puesto que es compresible y viscoso (incluso podría ser turbulento), constituye un buen modelo de circulación dentro de un tubo que se estrecha.

Observamos que en la zona angosta la velocidad de la corriente es mayor y la presión es menor.

https://historiaybiografias.com/linea-divisoria6.jpg

APLICACIONES PRÁCTICAS:

EL TEOREMA DE TORRICELLI

Consideremos un depósito ancho con un tubo de desagote angosto como el de la figura.

Si destapamos el caño, el agua circula. ¿Con qué velocidad? ¿Cuál será el caudal?.

En A y en B la presión es la atmosférica PA=PB=Patm.

Como el diámetro del depósito es muy grande respecto del diámetro del caño, la velocidad con que desciende la superficie libre del agua del depósito es muy lenta comparada con la velocidad de salida, por lo tanto podemos considerarla igual a cero, VA = 0

La ecuación de Bernoulli queda entonces:

d. g. hA + pA= 1/2 . d. hB + pB

entonces es:

g . hA = 1/2 . vB² + g. hB de donde VB²= 2. .g . (hA-hB)

de donde se deduce que:

VB² = 2. g(hA – hB)

Este resultado que se puede deducir de la ecuación de Bernoulli, se conoce como el teorema de Torricelli, quien lo enunció casi un siglo antes de que Bernoulli realizara sus estudios hidrodinámicos.

La velocidad con que sale el agua por el desagote es la misma que hubiera adquirido en caída libre desde una altura hA, lo que no debería sorprendernos, ya que ejemplifica la transformación de la energía potencial del líquido en energía cinética.

EL GOL OLÍMPICO

A: Una pelota que rota sobre si misma arrastra consigo una fina capa de aire por efecto del rozamiento.

B: Cuando una pelota se traslada, el flujo de aire es en sentido contrario al movimiento de la pelota.

C: Si la pelota, a la vez que avanza en el sentido del lanzamiento, gira sobre sí misma, se superponen los mapas de las situaciones A y B.

El mapa de líneas de corrientes resulta de sumar en cada punto los vectores VA y VB. En consecuencia, a un lado de la pelota, los módulos de las velocidades se suman y, al otro, se restan. La velocidad del aire respecto de la pelota es mayor de un lado que del otro.

D: En la región de mayor velocidad, la presión (de acuerdo con el teorema de Bernoulli) resulta menor que la que hay en la región de menor velocidad. Por consiguiente, aparece una fuerza de una zona hacia la otra, que desvía la pelota de su trayectoria. Éste es el secreto del gol olímpico.

EL AERÓGRAFO

Las pistolas pulverizadoras de pintura funcionan con aire comprimido.

Se dispara aire a gran velocidad por un tubo fino, justo por encima de otro tubito sumergido en un depósito de pintura.

De acuerdo con el teorema de Bernoulli, se crea una zona de baja presión sobre el tubo de suministro de pintura y, en consecuencia, sube un chorro que se fragmenta en pequeñas gotas en forma de fina niebla.

FUERZA DE SUSTENTACIÓN:

Cualquier cuerpo que se mueve a través del aire experimenta una fuerza que proviene de la resistencia del aire.

Ésta puede dividirse en dos componentes que forman entre sí un ángulo recto. A uno se lo llama sustentación y se dirige verticalmente hacia arriba.

El otro, llamado resistencia, actúa horizontalmente y en sentido opuesto a la dirección de desplazamiento del cuerpo.

La fuerza de sustentación se opone al peso y la resistencia se opone al movimiento del cuerpo. Para que un cuerpo pueda volar la fuerza de sustentación debe superar al peso y la resistencia debe ser tan reducida que no impida el movimiento.

Para obtener un resultado óptimo necesitamos un cuerpo con una alta relación entre la fuerza de sustentación y la resistencia.

El índice más elevado se obtiene mediante un cuerpo diseñado especialmente que se denomina «perfil aerodinámico».

Por razones prácticas no es posible obtener un perfil aerodinámico perfecto en un aeroplano pero las alas se diseñan siempre de modo que suministren la sustentación que sostiene a la máquina en el aire.

En un corte transversal un perfil aerodinámico exhibe una nariz redondeada, una superficie superior fuertemente curvada, la inferior más achatada y una cola aguzada.

El perfil se inclina formando un ligero ángulo con la dirección del flujo de aire.

La fuerza ascendente se obtiene de dos modos: por encima del perfil aerodinámico el aire se mueve más rápido a causa de su forma curva.

Por el principio descubierto por Bernoulli y resumido en una ecuación matemática, la presión de un fluido disminuye en relación con el aumento de su velocidad y viceversa.

De ese modo, la presión del aire que se mueve en la parte superior del perfil decrece creando una especie de succión que provoca el ascenso del perfil aerodinámico.

Por otra parte el aire que fluye bajo el perfil angulado aminora su velocidad de manera que la presión aumenta.

Esta acción eleva el perfil aerodinámico, dándole mayor poder de sustentación.

La fuerza de sustentación total depende del tipo de perfil, de la superficie de las alas, de la velocidad del flujo y de la densidad del aire.

La fuerza ascensional disminuye con la altitud, donde el aire es menos denso, y aumenta con el cuadrado de la velocidad del aeroplano y también con la mayor superficie de las alas.

El ángulo que forma el perfil aerodinámico con el flujo de aire se llama ángulo de incidencia.

A mayor ángulo, mayor fuerza ascensorial hasta llegar a un punto crítico, después del cual la fuerza ascensorial diminuye bruscamente.

El flujo de aire que hasta el momento había sido suave, se descompone repentinamente en forma de remolinos.

Cuando ello ocurre se dice que el avión se ha desacelerado, y de ser así el avión comienza a caer, pues las alas ya no lo pueden sostener. Es muy peligroso en caso que al avión se encuentre cerca de la tierra.

Flujo de Aire en el Ala de un Avión

diagrama fuerza ascensorial

El diagrama muestra una sección en corte del ala de un aeroplano, según un diseño aerodinámico. El aire fluye por encima y por debajo del ala, pero fluye más rápido por encima de la parte superior porque está más curvada, presentando un largo mayor.

El flujo de aire más rápido ejerce menos presión; además, se produce otra presión hacia arriba, resultante de la menor velocidad del aire por debajo del ala, que la proveerá de fuerza ascensional. Ésta es la base del vuelo del aeroplano.

Fuente Consultada: Enciclopedia NATURCIENCIA Tomo 1

Enlace Externo: Principio de Bernouille

La Gran Ciencia: Los Grandes Proyectos Cientificos del Mundo

La Gran Ciencia – Grandes Proyectos Científicos del Mundo

¿QUE ES LA GRAN CIENCIA?

Tipo de práctica científica que se inició y desarrolló durante el siglo XX y que requiere de grandes recursos de infraestructura y personal, y, por consiguiente, económicos.

Por este motivo, es necesario tomar decisiones políticas de cierta envergadura para iniciar o mantener proyectos de Gran Ciencia.

No estaría de más, por consiguiente, que todos —científicos, políticos o simples ciudadanos— deberíamos conocer no sólo la existencia e importancia de este tipo de ciencia, sino sus mecanismos más notorios.

Para contribuir a esta labor de educación social, en una era en la que la ciencia es cuestión de Estado, incluyo aquí este concepto.

El nacimiento de la Gran Ciencia tiene que ver especialmente con la física de las partículas elementales (ahora denominada de altas energías).

Buscando instrumentos que fuesen capaces de suministrar cada vez mayor energía a partículas atómicas, para que éstas pudiesen chocar con el núcleo atómico, lo que a su vez debería permitir ahondar en su estructura y en la de los elementos que lo forman —esto es lo que había hecho Ernest Rutherford (1871-1937) en 1911 cuando propuso su modelo atómico: lanzó núcleos de helio sobre láminas delgadas de oro—, físicos británicos primero, y estadounidenses después abrieron la puerta de la Gran Ciencia.

Biografía Rutherford: Modelo Atomico de la Configuración del Atomo

En 1932, John Cockcroft (1897-1967) y Ernest Walton (1903-1995), del Laboratorio Cavendish en Cambridge, utilizaban un multiplicador voltaico que alcanzaba los 125.000 voltios para observar la desintegración de átomos de litio.

En realidad no era una gran energía: cuatro años antes Merle Tuve (1901-1982) había utilizado un transformador inventado por Nikola Tesla (1856-1943) para alcanzar, en el Departamento de Magnetismo Terrestre de la Carnegie Institution de Washington, los tres millones de voltios.

En 1937, Robert Van de Graaff (1901-1967) logró construir generadores de cerca de cinco metros de altura, que producían energías de cinco millones de voltios.

Fue, sin embargo, Ernest O. Lawrence (1901-1958) el principal promotor de la Gran Ciencia en la física de partículas elementales.

A partir de 1932, Lawrence comenzó a construir ciclotrones, máquinas circulares en las que las denominadas partículas elementales iban ganando energía durante cada revolución, lo que les permitía acumular suficiente energía.

El primer ciclotrón medía apenas treinta centímetros de diámetro.

Pero aquello sólo era el comienzo: en 1939 Berkeley ya contaba con un ciclotrón de metro y medio de diámetro, en el que los electrones podían alcanzar una energía equivalente a dieciséis millones de voltios (16 Mev).

Y en septiembre de ese año Lawrence anunciaba planes para construir uno nuevo que llegase a los 100 MeV.

Imagen del Acelerador de Partículas del CERN

En abril de 1940, la Fundación Rockefeller donaba 1,4 millones de dólares para la construcción de aquella máquina, el último de sus ciclotrones, que iba a tener más de cuatro metros y medio de diámetro.

En la actualidad los grandes aceleradores tienen kilómetros de radio, y cuestan miles de millones de dólares.

Aquí tenemos una de las características que con mayor frecuencia se encuentra en la Gran Ciencia: mayor tamaño, mayor potencia, mayor costo económico. No sólo es el tamaño de las máquinas implicadas lo que caracteriza a la Gran Ciencia.

Alrededor de los ciclotrones de Lawrence se agrupaban físicos, químicos, ingenieros, médicos y técnicos de todo tipo.

En varios sentidos el laboratorio de Berkeley se parecía más a una factoría que a los gabinetes y laboratorios de otras épocas, el de Lavoisier (1743-1794) en París, el de Liebig (1803-1873) en Giessen o el de Maxwell (183 1-1879) en Cambridge.

La segunda guerra mundial dio un nuevo impulso a este modo, «gigantesco», de organización de la investigación científica.

Para llevar adelante proyectos como el del radar o el Manhattan se necesitaban científicos, por supuesto, pero no bastaba sólo con ellos.

Era imprescindible también disponer, además de otros profesionales (ingenieros, muy en particular), de una estructura organizativa compleja, en la que no faltase el modo de producción industrial.

Un Proyecto Especial en la Historia de la Ciencia y Tecnología Fue El Envío de Astronautas a la Luna

Los grandes recursos económicos que requiere la Gran Ciencia no siempre están a disposición de naciones aisladas.

En la Europa posterior a la segunda guerra mundial, la construcción de grandes aceleradores de partículas era demasiado costosa como para que cualquier nación pudiese permitirse el lujo de construir uno lo suficientemente potente como para poder aspirar a producir resultados científicos de interés.

Así nació el Centre Européen de Recherches Nucléaires (CERN) de Ginebra, fundado en 1952 por doce naciones europeas. La Gran Ciencia fomentaba en este caso la internacionalización.

De hecho, el CERN sirvió de experiencia de asociación política europea; el ambiente político estaba listo para este tipo de experiencias, que culminarían años más tarde en la creación de la Comunidad Económica Europea, que con el tiempo se convertiría en la actual Unión Europea.

La Gran Ciencia puede llegar a ser tan grande que incluso naciones del potencial económico e industrial de Estados Unidos se vean obligadas a abrir algunos de sus proyectos científicos a otros países.

Esto ha ocurrido, por ejemplo, con el telescopio espacial Hubble construido por la National Aeronautics and Space Administration (NASA).

El telescopio Hubble fue lanzado el 24 de abril de 1990, utilizando para ello una de las aeronaves Discovery, pero la idea de poner un gran telescopio en órbita alrededor de la Tierra para evitar la pantalla de radiaciones que es la atmósfera terrestre había surgido cuatro décadas antes.

En esos cuarenta años hubo que vencer muchas dificultades; algunas de carácter técnico, por supuesto, pero otras de orden financiero y político.

En 1974, por ejemplo, la Cámara de Representantes estadounidense eliminó del presupuesto el proyecto del telescopio, a pesar de que ya había sido aprobado en 1972. El motivo es que era demasiado caro.

Tras muchas gestiones se llegó al compromiso de que el proyecto saldría adelante únicamente si se internacionalizaba, involucrando a la Agencia Espacial Europea (European Space Agency; ESA).

GRAN CIENCIA, APOLO

Transbordadores Espaciales y Una Estación Espacial en Orbita Otra de las Grandes Obras Tecnológicas de la Historia

Por supuesto, no se dio este paso por un repentino ataque de fervor ecuménico de los representantes estadounidenses, sino porque la ESA se debería hacer cargo del quince por ciento del presupuesto, con lo que éste se abarataría sustancialmente para Estados Unidos.

Finalmente la agencia europea, formada por un consorcio de naciones entre las que se encuentra España, participó en el proyecto, encargándose en particular de la construcción de una cámara para fotografiar objetos que emiten una radiación débil.

En más de un sentido se puede decir que el mundo de las naciones individuales se está quedando demasiado pequeño para la Gran Ciencia.

Una muestra más de esa tendencia, la globalización, que parece estar caracterizando al mundo de finales del siglo XX.

Biografia de Sigmund Freud y La Teoria del Psicoanalisis Historia (301)

Biografía de Sigmund Freud
La Teoría del Psicoanalisis

Biografia de Sigmund Freud (1856-1939):: Neurólogo y psiquiatra austriaco (Freiberg 6-5-1856-Londres 1939). Se lo considera como  el fundador del psicoanálisis, fue el descubridor de las motivaciones inconscientes que condicionan la conducta humana.

Al descubrir el papel del inconsciente en la vida del hombre, el psicoanálisis constituye una de las grandes revoluciones intelectuales del siglo XX.

Extendió la investigación psicoanalítica a los dominios del arte, de la etnología y de la historia de las civilizaciones. Entre sus numerosas obras sobresalen:  La interpretación de los sueños, Psicopatología de la vida cotidiana, Tótem y tabú.

Estudió y se doctoró en la Universidad de Viena, donde vivió hasta poco antes de su muerte. Dedicó sus primeras investigaciones a la fisiología del sistema nervioso y descubrió los efectos anestésicos de la cocaína.

Se dedicó al estudio de la neuropatología. En 1885 estudió en París, con Charcot, la aplicación de la hipnosis al tratamiento de la histeria. En 1887 se casó y tuvo seis hijos; uno de ellos, su hija Anna, ha sido una de las figuras más destacadas del psicoanálisis.

freud sigmund

Sigmund Freud devolvió a la humanidad una parte de ella que había permanecido largo tiempo olvidada: el inconsciente. Su descubrimiento tendría repercusiones hasta en las artes, con la llegada del surrealismo.

La teoría psicoanalítica tiene su expresión principalmente en las siguientes obras de Freud: La interpretación de los sueños, Tres contribuciones a la teoría sexual, Introducción al sicoanálisis y El yo y el ello.

Los cambios que tuvieron lugar a finales del siglo XIX, cambios que dieron lugar a descubrimientos científicos en el orden morfológico y funcional, sirvieron de base para el trabajo que realizó Freud.

La contribución de Sigmund Freud al estudio de la naturaleza humana no puede ser subestimada.

La presencia de Freud supuso la revalorización del conjunto humano frente a una etapa de franca materialización.

Durante el ejercicio de su carrera, por ejemplo, no tardó mucho en llegar a la conclusión de que para curar las enfermedades mentales es preciso conocer su naturaleza, y de que para comprender un fenómeno biológico debe ejercerse una observación sistemática sobre él.

Naturalmente que esto supuso desviaciones e incluso arbitrariedades. Con todo, y ésta es una de las características esenciales, logró que el psicoanálisis fuera un método válido de investigación.

biografia de freud

El inconsciente es, para Freud, aquella parte de la mente inaccesible a nuestro pensamiento consciente. En él se reúnen todos los deseos y pulsiones reprimidos

El psicoanálisis, la metodología inaugurada por Freud, trataba de explicar en términos psicológicos el comportamiento humano, y, por primera vez, éste era capaz de cambiarse en determinadas circunstancias.

En consecuencia, preconizó la unidad de «tratamiento-investigación» y tales principios supusieron la primera teoría comprensible de la personalidad basada en la observación; Freud fue el primero en intentar dirimir aquello de especulación que existía entre las relaciones humanas.

LA ÉPOCA DE FREUD SIGMUND: En la Viena de unes del siglo XIX, adonde Sigmund Freud llegó con su familia en 1860, se dio de forma traumática la crisis de la modernidad.

De 1860 a 1918, la capital austriaca fue el escenario del esplendor de la burguesía triunfante y de la decadencia de la racionalidad moderna.

El imperio austro-húngaro, bajo el reinado de Francisco José, terminó por disolverse ante las nuevas corrientes políticas.

La pesadilla empezó a tomar forma con el ascenso del antisemitismo, representado por un personaje como Lueger que ganó la alcaldía de la ciudad en 1897, y del pangermanismo, dirigido por Van Schónerer.

Aquella Viena de fin de siglo alumbró los sueños de una cosecha irrepetible de artistas, escritores e intelectuales.

En el nuevo paisaje urbano también surgió el esfuerzo historicista, como una vuelta a los estilos tradicionales, del proyecto arquitectónico y urbanístico de la Ringstrasse (1860-1890).

Pero el racionalismo de Otto Wagner se opuso frontalmente a la tradición y sentó las bases de la nueva arquitectura austríaca, con Loos y Olbrich en primera línea secesionista.

La profunda carga de simbolismo en las pinturas que Klimt había realizado para decorar el edificio de la Universidad también dio mucho que hablar.

El mundo de la composición musical estaba convulsionado. Gustav Mahler, ecléctico, mezclaba estilos, Richard Strauss transitaba por el postwagnerismo y Arnold Schónberg proclamaba la emancipación de la disonancia, destruyendo el lenguaje musical moderno.

Por su parte, el periodista Karl Krauss puso la nota satírica como editor de la revista La antorcha, todo un «anti-periódico» que fundó en 1899 para enojar a los burgueses.

Fue un cronista de excepción de la sociedad vienesa en tiempos de crisis del lenguaje.

La ebullición cultural de Viena se completaba con las tertulias en los cafés, que fueron convertidos en objeto artístico: tarjetas postales.

Sólo faltaba la interpretación de los sueños, a cargo del doctor Freud. Para entonces, con el siglo XX en una marcha más que convulsionada –entre 1914 y 1918 se produjo la Primera Guerra Mundial-, el sistema que Freud había propuesto para explicar la psicología del hombre ya había alcanzado la fama.

Freud pasó su infancia en Viena, pues los negocios desafortunados de su padre, comerciante de telas, obligaron a toda la familia a emigrar a la capital austrohúngara.

Ser judío en la década de 1860 implicaba múltiples restricciones, principalmente al momento de la inscripción en una profesión, ya que la abolición de las leyes discriminatorias era todavía parcial y reciente (julio de 1848).

Sigmund Freud mantuvo toda su vida relaciones complejas con el judaismo, tomando distancia (ya que se presentaba a sí mismo como ateo) y a la vez, manteniéndose fiel a una tradición ancestral, perceptible por ejemplo en las referencias culturales de sus diversas obras.

En octubre de 1873, el joven Freud ingresó en la facultad de medicina de Viena, obteniendo su diploma en marzo de 1881. En una época en que la investigación médica gozaba de gran prestigio, Sigmund Freud fue orientado hacia la medicina general por su maestro Ernst Brücke (imagen abajo), principalmente porque el estudiante carecía de medios financieros.

bruke psicoanalis

Brücke obtuvo entonces una beca de estudios para su alumno, que partió a París en octubre de 1885, para asistir a los cursos de Jean Martin Charcot, que impartía un seminario renombrado en el manicomio de la Salpétriére.

De regreso en Viena, comenzó a difundir las ideas de Charcot (imagen abajo), que tradujo al alemán. Sin embargo, los médicos vieneses acogían con reservas las teorías del francés, principalmente aquella sobre la posibilidad de una histeria masculina, ya que desde la Antigüedad esta enfermedad estaba asociada a la disfunción de los órganos femeninos.

charcot psicoanalisis

El segundo encuentro determinante para el futuro profesional de Freud fue con el neurólogo Josef Breuer, a fines de la década de 1870: con el caso de Anna O., una paciente de Breuer que manifestaba síntomas histéricos, el joven siquiatra descubrió, en 1882, el principio  de la cura por la palabra (talking cure), que sería el fundamento del psicoanálisis.

El uso de la cocaína como antidepresivo y, luego, de la hipnosis, dio lugar a otros métodos: en la década de 1890, Freud, que había abierto un consultorio, pedía a sus pacientes recostarse sobre un diván y hablar libremente; no ver al analista según él, era una condición necesaria para el tratamiento analítico, y la posición horizontal venía ya desde el antiguo procedimiento hipnótico.

Fue mediante tanteos que se estableció la técnica freudiana, fundada en las asociaciones de ideas. Así, el término «psicoanálisis» se emplearía por primera vez en marzo de 1896.

*******

El complejo de Edipo: «He encontrado en mí, como por otra parte en todos, sentimientos de amor hacia mi madre y de celos hacia mi padre, sentimientos que son, pienso, comunes a todos los niños […] Se puede comprender entonces […] el poder cautivante de Edipo rey. Cada espectador (de la leyenda griega) fue un día, en germen, y en su fantasía, un Edipo, y se espanta retrospectivamente ante el cumplimiento de un sueño traspuesto en la realidad». (Freud en una carta a Fliess, octubre de 1897). Esta teoría fue presentada por primera vez en La interpretación de los sueños.

******

El complejo de Electra: Freud no pudo explicar cómo se desarrollaba el superego en las niñas, debido a que, naturalmente, éstas no pueden ser castradas. Sus prejuicios sociales le llevaron a elaborar una teoría, llamada complejo de Electra, en la que la vinculación de la niña con sus progenitores se establece en relación a una envidia del pene «ausente» en ella. La mujer es un ser deficiente, castrado, por lo que, según Freud, nunca podrá desarrollar un superego fuerte, lo que justifica su debilidad moral y su mayor tendencia al sentimentalismo.
La explicación del escaso papel social de la mujer a lo largo de la historia encuentra su respaldo en una base natural, científica, que constituye un factum del desarrollo humano. Definidas por Freud como el continente oscuro, las mujeres están condenadas al ámbito de lo privado, donde cohabitarán con hombres que representarán simbólicamente al padre que no pudieron conquistar. La crítica feminista sobre las ideas de género de Freud será, en este sentido, implacable.

*******

En 1930 recibió el premio Goethe, y en 1938, al ser ocupada Austria por los nazis, a causa de su origen judío tuvo que huir a Inglaterra.

Las aportaciones de la obra freudiana, caracterizada por un claro determinismo psíquico, son abundantes.

Sobresale la diferenciación entre el consciente, el preconsciente y el inconsciente, factores decisivos para comprender tanto los conflictos psíquicos (caso del complejo de Edipo) como la ansiedad y los mecanismos de defensa.

Elaboró también una teoría de la sexualidad en el campo individual (con la libido como impulso fundamental y fuerza creadora frente a la cual enunció posteriormente otro principio destructor) y, en el terreno socio-cultural, una teoría filogenética expuesta en obras como Tótem y tabú, El malestar en la civilización, El futuro de una ilusión y Moisés y el monoteísmo.

Tras la ocupación de Austria por los nazis, Sigmund Freud abandonó el país; murió el 23 de septiembre de 1939 en Londres.

Desde el punto de vista médico, el interés de Freud se centró fundamentalmente en conocer cómo el cuerpo podía ser afectado por la mente, creando enfermedades mentales, tales como la neurosis y la histeria, y en la posibilidad de encontrar una terapia para estas patologías.

******* 00000 ******

 LA INTERPRETACIÓN DE LOS SUEÑOS: Freud propuso que los sueños se origina a partir de conflictos internos entre los deseos inconcientes y las prohibiciones que actuan frente a los mismos y que aprendemos de la sociedad.

Así pues, todos los sueños serían deseos insatisfechos cuyo contenido apatece disfrazado simbólicamente. El contenido del sueño se transforma en el contenido manifiesto (el argumento) que debe ser explicado para desvelar así supuestamente los deseos inconscientes de la persona. Los sueños son metáforas o elementos simbólicos de nuestros sentimientos reales.

La interpretación de los sueños constituyó el método preferido por Freud pata comptender los conflictos y para ayudat a las personas a que hablen sin limitaciones respecto a sus sueños.

Bajo su punto de vista, los sueños se refieren al pasado y al presente de la persona, y se originan en regiones desconocidas. Cada sueño es un intento de realización. Los sueños son «la autopista al inconsciente».

Durante los sueños tienen lugar varios procesos, tal como la condensación, en la que las distintas cuestiones son teducidas a imágenes únicas como pueden ser una puerta abierta o un río que fluye con aguas profundas.

Los psicoanalistas están especialmente interesados en el proceso de desplazamiento, en el que las cosas y ciertas actividades se intercambian entre sí. Después está el proceso de transformación, en el que las personas se transforman en grandes o pequeñas, ancianas o jóvenes, poderosas o débiles.

Freud Sigmund y sus discipulos

Freud junto a algunos de sus discípulos: Sándor Ferenczi y Hanns Sachs, ambos en primer plano, Otto Rank, Kan1 Abraham, Max Eltingon y Ernest Jones, durante el Congreso Internacional de Psicoanálisis celebrado en Berlín en 1922

La teoría freudiana permite establecer diversas predicciones respecto a los sueños. Así, en comparación con las mujeres los hombres deberían presenta! más sueño; de ansiedad respecto a la castración, mientras que las mujeres deberían tener más sueños de envidia del pene.

Asimismo, los hombres deberían presentar en sus sueños más hombres extraños con los que tendrían que luchar (el padre en la fase edípica del desarrollo).

Los críticos de todo este esquema señalan que si los sueños fueran simplemente deseos insatisfechos, ¿pot qué tantos sueños son negativos?.

Además, Freud fundamentó su teoría en los pocos sueños (menos del 10 por 100) que los pacientes recuerdan y expresan verbalmente con claridad.

Y en tercer lugar, hay un problema importante de habilidad en la interpretación de los sueños debido a que los distintos terapeutas ofrecen interpretaciones muy diferentes.

******* 00000 *******

Jung Carl Gustav

«El concepto de sexualidad de Freud es completamente elástico tan vago que en realidad puede incluir casi cualquier cosa.»
Carl G. Jung, 1960

Nacimiento de la psicología analítica: Siquiatra suizo, Carl Gustav Jung (1875-1961) representa una figura clave en la etapa inicial del psicoanálisis. Tras finalizar sus estudios de medicina en 1900, comenzó a investigar los trabajos de Freud y llegó a ser considerado en esa época como su delfín.

Sin embargo, en Transformaciones y símbolos de la libido, publicada en 1912, reveló sus primeras divergencias con las tesis freudianas.

Al año siguiente se consumó la ruptura entre ambos y Jung dio a su método el nombre de psicología analítica. Más allá del inconsciente individual, introdujo un inconsciente colectivo, noción que profundizó en otra de sus obras, Tipos psicológicos (1920), donde propone la distinción de tipos de personalidad extrovertida-introvertida.

Contrariamente a Freud, Jung no reconoce a la infancia un papel determinante en la eclosión de las alteraciones síquicas de la edad adulta, que él define según una dialéctica entre la persona y el mundo exterior.

Jung realizó un gran aporte en el análisis y la simbología de los sueños, e ¡ncursionó, además, en otros campos de las humanidades, desde el estudio de las religiones, la filosofía y la sociología, hasta la crítica del arte y la literatura.

Aspectos Básicos de la Teoría Freudana:

Freud cambió nuestra manera de pensar y de hablar de nosotros mismos.

Muchas de sus ideas básicas han sido popularizadas y muchos de los términos utilizados en sus teorías han pasado a formar parte del lenguaje cotidiano, tal como «anal obsesivo», «símbolo fálico» o «envidia de pene».

Freud fue un pensador muy original y es indudablemente uno de los más importantes de los siglos XIX y XX.

Desarrolló varias teorías muy controvertidas respecto al desarrollo de la personalidad y acerca de la salud y la enfermedad mentales.

Aspectos básicos de la teoría freudiana:

Las teorías freudianas se fundamentan en varios supuestos.

• El comportamiento es el resultado de diversas luchas y compromisos entre motivos, impulsos y necesidades potentes y, a menudo, inconscientes.

• El comportamiento puede reflejar un motivo de manera sutil o disfrazada.

• Un mismo comportamiento puede reflejar diferentes motivos en momentos distintos o en personas diferentes.

• Las personas pueden ser más o menos conscientes de las fuerzas que dirigen su comportamiento y de los conflictos subyacentes.

• El comportamiento está gobernado por un sistema energético que posee una cantidad relativamente fija de energía en cada momento.

• El objetivo del comportamiento es la obtención de placer (reducción ele la tensión, liberación de la energía), en lo que constituye el principio del placer.
• Las personas están condicionadas principalmente por los instintos sexual y de agresión.

• La expresión de estos condicionamientos puede entrar en conflicto con las exigencias de la sociedad, de manera que la energía que tiene que ser liberada para la realización de los impulsos debe encontrar otros canales de salida.

• Todos tenemos un instinto de vida (eros) y un instinto de muerte (thanatos).

******* 00000 *******

CRONOLOGIA DE SU VIDA:

1856: Nacimiento de Sigmund Freud en Freiberg, el 6 de mayo.

1876-1882: Estudios bajo la dirección de Ernst Brücke en la universidad de Viena.

1885-1886: Estancia en París; frecuenta los cursos de Charcot en la Salpétriére.

1886: Se casa con Martha Bernays.

1891: Se instala en el 19 de Berggasse.

1896: Invención de la palabra «psicoanálisis».

1900: Publicación de La interpretación de los sueños.

1902: Inicios de la «Sociedad psicológica del miércoles», que se convierte en  en la «Sociedad psicoanalítica de Viena».

1906: Comienza correspondencia entre  Freud y Jung.

1908: Primer Congreso internacional de  psicoanálisis en Salzburgo.

1909: Conferencias en la Clark University  (publicadas bajo el título Cinco | lecciones sobre el psicoanálisis).

1913: Aparición de Tótem y tabú. Ruptura con Jung.

1914-1918: Primera Guerra mundial.

1919: Tratado de Saint-Germain-en-Laye, el  de septiembre, que desmantela el  imperio de Austria-Hungría.

1920: Muerte de Sophie, hija de Freud.

1927: El porvenir de una ilusión.

1930: El malestar en la cultura.

1938: Los libros de Freud son quemados en Berlín. Anschluss y huida de Freud a Londres (junio).

1939: Muerte de Freud de cáncer,  el 23 de septiembre.

************* 000000 *************

El Psicoanálisis de Sigmund Freud

El Psicoanalisis de Freud Origen y difusión del psicoanálisis: El psicoanálisis es un método para el tratamiento de las neurosis (trastornos mentales menores) que evolucionó hasta convertirse en una psicología general.

Su creador fue Sigmund Freud (1856-1939). (imagen).

Freud inició su carrera profesional como investigador en el instituto fisiológico de Ernst Vón Brücke, en Viena, pero las necesidades económicas lo obligaron a establecer una consulta privada (a partir de 1886).

La insatisfacción con los métodos existentes para el tratamiento de las neurosis lo llevó a abandonar la hipnosis y otros medios de sugestión, en favor de la «libre asociación».

Pidiendo a los pacientes que expresaran cualquier idea que les pasara por la mente, Freud esperaba descubrir el origen de sus trastornos neuróticos que, según creía, estaban generados por acontecimientos traumáticos en la primera infancia.

La primera obra psicoanalítica, Estudios sobre la histeria, que Freud escribió en colaboración con Josef Breuer, apareció en 1895.

A medida que Freud fue desarrollando sus ideas, un pequeño grupo de médicos interesados comenzó a reunirse en su casa y, en 1907, formaron la primera sociedad psicoanalítica.

En 1910 se fundó la Asociación Psicoanalítica Internacional y, cuando comenzó la Primera Guerra Mundial, había sociedades psicoanalíticas en Zurich, Munich, Berlin, Budapest, Inglaterra y Estados Unidos.

El interés por las teorías del psicoanálisis se vio favorecido por la elevada incidencia de neurosis de guerra entre los miembros de las fuerzas armadas.

En los años 20, el psicoanálisis ejercía ya su influencia sobre los círculos intelectuales de toda Europa y América. La insistencia de Freud acerca de la importancia del desarrollo sexual del individuo abrió las puertas a un tratamiento más libre del sexo.

Su concepto del subconsciente y su redescubrimiento de la importancia de los sueños alentó a pintores, escultores y escritores a. experimentar con el azar y la irracionalidad. Movimientos tales como el dadaísmo o el surrealismo deben mucho al psicoanálisis.

Aunque muchas teorías freudianas no han soportado la prueba del tiempo, Freud ha ejercido una influencia integrablemente poderosa sobre la forma en que el ser humano considera su propia naturaleza.

Fuente Consultada: El estallido científico de Trevor I. Williams

Fuente Consultadas:
Gran Enciclopedia Universal Tomo 17 Entrada: Freud Sigmund Editorial Espasa
Raíces de la Sabiduría de Helen Buss Mitchell Editorial Cengage

Implicancias de Teoria de la Relatividad:Resumen de las Consecuencias

Implicancias de la Teoría Especial de la Relatividad – Resumen de las Consecuencias

albert einstein

1905:Año Maravilloso El Efecto Fotoeléctrico El Movimiento Browiano Antecedentes de la Física – Implicancias de la Teoría  –  Explicación Simple de la Teoría

Las implicaciones de la relatividad especial

La teoría especial de la relatividad no negaba las teorías de Newton o de Galileo, simplemente las corregía. La relatividad sólo se hacía evidente a velocidades cercanas a la velocidad de la luz.

albert eisntein

A velocidades “normales”, las diferencias en los resultados al utilizar las transformaciones de Galileo y las transformaciones de Lorentz, son tan pequeñas que no se pueden detectar, y es por eso que las implicaciones de la relatividad especial nos parecen tan poco intuitivas.

Pero si fuéramos capaces de generar una velocidad suficiente (digamos 3/4 de la velocidad de la luz, por ejemplo), empezaríamos a notar los efectos predichos por la relatividad:  

•  los relojes en movimiento irían más lentos que los estacionarios (no porqué el reloj funcionara más despacio, sino por el tiempo en sí.  

•  los objetos en movimiento se contraerían en la dirección del movimiento.  

•  cuanto más rápido se moviera un objeto, más masa tendría.  

Estos efectos están presentes en nuestra vida diaria, pero son tan increíblemente pequeños que los podemos ignorar perfectamente.

Este es el

 porqué de que las transformaciones de Galileo funcionan tan bien, y las podemos seguir utilizando en nuestros sistemas de referencia que se mueven con velocidades relativamente pequeñas.

galileo galilei

La relatividad especial también demostraba que la velocidad de la luz es el límite de velocidad universal.

De acuerdo con las ecuaciones, cuanto más rápido se mueve un objeto, tanto más se contrae, y más se ralentiza el tiempo, hasta que a la velocidad de la luz, el objeto se ha contraído hasta perder existencia, y el tiempo se ha detenido.

En ese punto, nada puede ir más deprisa, y no hay manera de medir, además, su velocidad, ya que el tiempo se ha detenido.

La teoría especial también nos lleva a un concepto que es el preferido de los entusiastas de la ciencia ficción, y a menudo mal entendido por casi todo el mundo: el Continuo Espaciotemporal.

Las transformaciones de Einstein utilizan tres variables para localizar un suceso en el espacio (x, y, z) y una para localizar el suceso en el tiempo (t).  

En 1908, el matemático ruso Hermann Minkowski demostró ante una audiencia en Colonia, Alemania, que estas cuatro variables describían no un espacio tridimensional y una variable temporal, sino una única geometría cuatridimensional, llamada espacio-tiempo.

En la geometría espacio-tiempo, un objeto no tiene largo, ancho y alto, sino que tiene existencia con propiedades definibles de largo, ancho, alto y tiempo, todas ellas interdependientes.

El tiempo es una constante sólo en los sistemas que permanecen en reposo uno con respecto a otro.

Por supuesto, en nuestro mundo diario nos movemos siempre con respecto a otros sistemas, pero, hasta que comencemos a movernos a velocidades cercanas a la velocidad de la luz, no es necesario tener en cuenta la corrección temporal cuando conducimos por la autopista.  

E = mc2

Esta ecuación, por la que Einstein será recordado para siempre. fue el tema de su cuarto artículo de 1905, titulado «Depende la inercia de un objeto de su energía?”.

Contrariamente a lo que se cree, E=mc² no es la fórmula de la bomba atómica (basta con tratar de construir una utilizándola), sino una descripción de la relación entre masa y energía, dos cantidades que eran consideradas lo bastante independientes como para tener sus propias leyes de conservación.

Pero en este artículo, escrito casi como un corolario de la teoría especial de la relatividad, Einstein demostró que son simplemente dos caras de la misma moneda.

Parece una consecuencia razonable de la relatividad el suponer que si el tiempo y el espacio cambian con el movimiento, también lo haga la masa, pero la idea era lo sufi­cientemente extraña para que Einstein se preguntara si “el buen Dios no se estaba riendo y me ha llevado a un callejón sin salida”.

Pero el argumento estaba bien fundado, y el artículo de Einstein demostraba que la masa de un cuerpo reflejaba verdaderamente su contenido en energía.

La correlación está realizada utilizando, una vez más, la velocidad de la luz al cuadrado, lo que explica por qué no percibimos que nuestra masa varíe cuando caminamos por la calle: el cambio es tan pequeño que se puede considerar inexistente.

Las implicaciones de la equivalencia masa-energía son inmediatamente obvios: un breve vistazo a la ecuación revela que hay una enorme cantidad de energía representada incluso en las masas más pequeñas.

Pero los contemporáneos de Einstein poco podían hacer más que especular en cómo podía ser liberada esa energía, y, de hecho, muchos de ellos dudaron de que esa ecuación tuviera alguna finalidad práctica.

En aquel tiempo, al menos, sirvió para consolidar dos leyes de conservación, de espacio y de tiempo, en una. 

Fuente Consultada:
Einstein y Su Teoría de la Relatividad  Dr. Donald Goldsmith y Robert Libbon – Física Para Poetas – Einstein el Gozo de Pensar M. Balibar