Los Hermanos Wright

Records de la Aviación Civil Altura, Velocidad y Distancia

Primeros Records de Altura, Velocidad y Distancia de la Aviación Civil

Records de Distancia y Velocidad:

Al compás de la emulación deportiva y las ansias de superación, y mientras las máquinas se perfeccionaban, se fueron registrando marcas de las que mencionaremos las más notables de la primera época.

1921. Adriana Bolland atravesó la cordillera de los Andes, de Mendoza a Santiago de Chile.

1926. Pelletier-Doisy voló de París a Pekín en 6 días y 18 horas.

1926. Arrachart marcó el record de distancia sin escalas (París-Basora, 4.305 kilómetros) en 26 horas y 25 minutos.

1927. Pinedo voló 40.540 kilómetros en 44 etapas alrededor del Atlántico.

1930. Mariza Hilsz. Record cubriendo el circuito París-Saigón-París.

1930. Costes y Bellonte. Cruzaron por primera vez el Atlántico de París a Nueva York.

1930. Mermoz cruzó el Atlántico Sur.

1931. Balbo (al frente de una escuadrilla de aviones) atravesó el Atlántico Norte.

1931. Marisa Bastie. Batió el record para avionetas, con un vuelo de 2 889 kilómetros.

1931. Herndon y Pangborn cruzaron por primera vez el océano Pacífico de Tokio a California (7.700 kilómetros).

1932. Amelia Earhart fue la primera aviadora que atravesó sola el Atlántico.

1933. Willy Post. Gira alrededor del mundo (25.000 kilómetros) en 7 días y 18 horas.

1934. Agello señaló el record de velocidad en hidroavión con 209 kilómetros por hora.

1934. Marisa Hilsz. Vuelo París-Tokio-París.

1934. Scott y Campell Black ganaron la carrera Londres-Melbourne (18.160 kilómetros) en 2 días y 23 horas.

1934. Agello, con un avión italiano, alcanzó una velocidad de 709 kilómetros.

1935. Batten. Record sensacional, Londres Australia, en 5 días.

1938. Huguez dio la vuelta al mundo trazando un casquete boreal en menos de 80 horas, que comprendió las ciudades de Nueva York, París, Moscú, Omsk, Yakutsk, Fairbanks, Minneápolis y retorno a Nueva York.

1939. Udet (general alemán) cubrió 100 kilómetros a un promedio de 634,32 kilómetros por hora.

https://historiaybiografias.com/linea_divisoria6.jpg

PIONEROS DEL VUELO CIVIL

grandes aviadores de la historia

https://historiaybiografias.com/linea_divisoria6.jpg

lindergh, Espíritu de San Luis

Carlos Lindbergh, un muchacho norteamericano aficionado a la aviación, se propuso allá por 1927 intentar la travesía del Atlántico en su avioncito de turismo denominado Espíritu de San Luis. Con sobrecarga de nafta que hacía peligrar el vuelo despegó del campo de Roosevelt, en Nueva York, la noche del 20 de mayo del año citado. A propósito de su aventura se hicieron los más pesimistas comentarios. Se le tildó de loco, de inconsciente… eAntes y durante su hazaña se le llamó «el tonto volador». Lo cierto fue que a la mañana siguiente, a las 22 y 24 (hora francesa), aterrizaba en el aeródromo de Le Bourget, en París. Había cubierto la distancia entre las dos ciudades en 33 horas y 39 minutos. Asombro del mundo. Aquel aviador con cara de chiquillo pasó a ser una de las más legítimas glorias de los Estados Unidos.

RECORDS DE ALTURA: Recordaremos también aquí las primeras marcas famosas hasta las vísperas de la guerra de 1939, pues de allí en adelante fueron vertiginosas, como veremos. Las registradas por la Federación Aeronáutica Internacional fueron:

1909. (Agosto) Latharn, 155 metros.

1909. (Octubre) Lambert, 300 metros.

1909. (Diciembre) Latharn, 453 metros.

1910. (Enero) Latharn, 1.000 metros.

1910. Paulham, 1.209 metros, en Los Angeles.

1910. Brookins, en Atlantic City, 1.900 metros.

1910. León Morand, en Francia, 2.587 metros.

Hubo cuatro records más ese año y fueron:
Henry Wijnmalen, 2.780 metros.
Drexel, 2.882 metros.
Johnston, 2.960 metros.
Legagneux, 3.100 metros.

Legagneux era francés, y Francia retuvo el record logrado ese año de las marcas de altura hasta 1913, superándolas constantemente. En efecto: Roland Garros llegó a los 5.610 metros y Edmond Perreyron a 6.000. En 1913 Legagneux batió todos los records con 6.120 metros.

Al iniciarse el año 1914, nuestro compatriota, el célebre aviador Jorge Newbery, con un aparato Morane Saulnier, logró la altura de 6.100 metros.

Desde allí hasta 1920 dejaron de registrarse las pruebas, pero la guerra obligó a los pilotos a una frenética lucha de superación, como se comprobó al reanudarse las competencias.

Veamos:
1920. Schroeder (norteamericano), 10.093 metros.

1920. MacReady (norteamericano), 10.518 metros.

1923. Sadi Lecointe (francés), 10.727 metros.

Francia retuvo el record hasta 1927, y las marcas fueron superadas como sigue:

1927. Champio (norteamericano), 11.710 metros.

1929. Souceck (norteamericano), 11.930 metros.

1929. Willi Newenhofen (alemán), 12.739 metros.

1930. Apollo Soneck (norteamericano), 13.157 metros.

1932. Cyril Uwins (inglés), 13.404 metros.

1933. Lemoine (francés), 13.661 metros.

1933. Renato Donati (italiano), 14.433 metros.

Italia retuvo el record dos años.

1936. Georges Detré (francés), 14.843 metros.

1936. Swain (inglés), 15.223 metros.

1937. Mario Pezzi (italiano), 15.655 metros.

Este record fue considerado imbatible, pero poco tardó el piloto inglés Adam en superarlo.

1937. Adam (inglés), con un Brístol 138, llegó a 16.440 metros.

Italia había perdido el record, pero lo recuperó, como se verá.

1938. Pezzi llegó a los 17.083 metros de altura.

 aviadores franceses Costes y Bellonte

Los aviadores franceses Costes y Bellonte, que el 1º de septiembre de 1930 unieron en un vuelo las ciudades de París y Nueva York.

EL VUELO POR LA ESTRATOSFERA

La resistencia del aire (y su mayor densidad en ciertos casos) conspira contra la posible velocidad de los aviones. Por el contrario, a menor densidad es mayor la rapidez del deslizamiento.

Basado en estas observaciones, el ilustre sabio y aeronauta Augusto Piccard afirmó, en cierta ocasión, que la estratosfera, por razón de su escasa densidad, sería en el futuro la ruta del cielo donde los aviones alcanzarían velocidades fantásticas.

Claro estaba —y lo reconocía— que para ello habría que vencer primero algunos graves inconvenientes, que fueron puntualizados en «La Gazzeta dello Sport«, de Milán, por el técnico italiano S. Trevisán, «El problema del vuelo de altura —decía— es muy complicado.  Como se sabe, en el motor de explosión, la mezcla ideal requiere cierta relación entre el volumen del aire y el del carburante que la componen.

Es también sabido que no cambia en forma apreciable el aporte del carburante cuando el motor funciona a régimen normal, en tanto que se reduce notablemente el volumen del aire debido a la disminución de la densidad atmosférica. Y así, a medida que la mezcla se vuelve más rica en carburante, el motor rinde cada vez menos.

La hélice, cuyo buen desempeño ha sido calculado para funcionar en aire denso, al hacerlo casi en el vacío, en vuelos de gran altura, la acción de sus paletas resulta de muy escaso rendimiento. La menor resistencia del aire para la marcha del avión es una ventaja que no compensa, ni con mucho, el resultado por demás deficiente del grupo motopropulsor.

También constituye la bajísima temperatura un gran inconveniente para el avión que vuela a muy elevada altura: el lubricante se torna demasiado viscoso, las barras y los cables metálicos del comando se vuelven demasido tensos, las substancias de engrasamiento se congelan, se forma hielo sobre las partes del avión expuestas al aire, etc.»

Todos estos inconvenientes fueron superados por la técnica moderna. Los aparatos para los vuelos por la estratosfera son herméticamente cerrados y tienen dispositivos para provisión de oxígeno, además de calefacción. En cuanto al aviador, lleva un traje que constituye una coraza neumática que lo preserva del frío.

Lo cierto es que se cumplieron las predicciones de Piccard, y que los vuelos de gran distancia se efectúan por la estratosfera a velocidades vertiginosas.

hermanos piccard

Los profesores Augusto y Juan Félix Piccard, belga el primero y suizo el segundo, hermanos y compañeros de aventuras en arriesgadísimas pruebas de exploración científica. El objetivo de sus vuelos a la estratosfera no fue otro que el de estudiar los rayos cósmicos y otros fenómenos del espacio, cuyas conclusiones fueron de enorme utilidad para la aviación. Juan Félix insistió por largos años en esta clase de ascensiones, incluso acompañado por su esposa, en tanto que Augusto se dedicó a la exploración de las grandes profundidades del mar en una esfera de su invención.

traje para el vuelo en la estratofera

Arriba uno de los trajes usados por los aviadores para los vuelos por las altas regiones del espacio. Adviértense en este equipo el casco protector con anteojos, la máscara inhaladora, las riendas del paracaidas y las guarniciones de la silla eyectable

turbina de un avion

 Una turbina que accionada por el gas proveniente de las cámaras de combustión proporciona una energía con infinitamente mayor regularidad  que los pistones del motor de explosión, sacudidos por un movimiento alternativo generador de molestas vibraciones.

https://historiaybiografias.com/archivos_varios5/globo-piccard1.jpg

El globo estratosférico del profesor Augusto Piccard, con el que alcanzó en 1932 una altura de más de 17.000 metros.

Explotación Agricola en Europa del Siglo XIX Economía

EL PREDOMINIO DE LA ECONOMÍA AGRÍCOLA
EN EUROPA EN EL SIGLO XIX

La Europa de principios del siglo XIX era aún una Europa campesina cuya vida económica dependía estrechamente de las fluctuaciones de sus principales producciones agrícolas. La ausencia de excedentes mantenidos limitaba el desarrollo de las ciudades, que permanecían muy ligadas al campo. Las frecuentes malas cosechas de cereales, patatas, legumbres, ocasionaban grandes subidas de precio. Las crisis estacionales o anuales, engendradas por las malas cosechas o por la deficiencia de las relaciones comerciales y de los medios de transporte, se conjugaron a partir de 1817 con una larga etapa de depresión y de hundimiento de los precios, que sucedió al favorable período precedente.

LA POBLACIÓN: A partir de 1801, la población mundial ha crecido con más rapidez que nunca. Sólo en el siglo XIX se duplicó con creces; la anterior duplicación tardó cuatro veces más. Desde el siglo XVII la curva de crecimiento se ha ido haciendo cada vez más empinada. Sin embargo, las cosas no son tan sencillas como parece deducirse de esta imagen general. Algunos países han crecido con más rapidez que otros, y lo mismo puede decirse de los continentes.

El resultado ha sido un cambio en el orden de las naciones, atendiendo a su número de habitantes. Empecemos por Europa: en 1801, Francia reunía bajo su bandera más habitantes que ningún otro país al oeste de Rusia; en 1914 ocupaba la cuarta posición, por detrás de Alemania, Austria-Hungría y Gran Bretaña. El crecimiento de los Estados Unidos fue aún más rápido: en 1900 sus habitantes habían ocupado ya todo el continente (que en 1801 aún seguía inexplorado en gran parte) y su número había ascendido de 6 a 76 millones, lo que representa un aumento del 1.150 por 100.

Se dispone  de   información   mucho   más completa y exacta acerca de los países de Europa y América que de los de Asia y África; no obstante, parece comprobado que la población creció en todas las partes del mundo durante el siglo XIX: en China, por ejemplo, el aumento superó el 40 por 100, llegándose a los 475 millones; Japón pasó de unos 28 millones a unos 45, y la India de 175 a 290 millones. Se trata, en todos los casos, de incrementos muy grandes.

LA AGRICULTURA CONTINUA PREDOMINANDO
Salvo algunas excepciones, los métodos de explotación agrícola permanecían anticuados, ya que la mayoría de los grandes propietarios se desinteresaron de ello y no trataron de aumentar sus rentas por medio de la comercialización de sus productos. En cuanto a los pequeños cultivadores, sin instrucción, apartados de la escena política por los regímenes censatarios, no disponían de capital suficiente para introducir innovaciones.

agricultura en europa

Falta de abono, la tierra se convertía en  barbecho  cada   tres   años;   falta   también de maquinaria (se sembraba a mano, se trillaba con el mayal, se segaba con la hoz), una gran parte del suelo se desperdiciaba y los rendimientos obtenidos eran muy escasos. El desconocimiento de los métodos de conservación de la carne, el estado de los animales, desnutridos y sujetos a epidemias, impedía toda explotación ganadera racional, utilizándose el ganado, sobre todo, para los trabajos agrícolas.

Las crisis de subsistencias probaba trágicamente que el destino de millones de  hombres  dependía aún de las cosechas  de   trigo;   por  eso la agricultura estaba orientada hacia los productos de más corriente consumo, y, en pri mer lugar, hacia los cereales, como el trigo el centeno, la cebada, la avena y el alforjón.

La ausencia  de  excedentes  obligaba  a  la: diferentes naciones e incluso a las regione: a  vivir  replegadas  sobre  sí  mismas.   Uni camente  los   productos   exóticos   (especias café) daban lugar a un tráfico importante Sin embargo, este medio siglo conoció cier tos progresos agrícolas, de los que Inglate rra fue la principal beneficiaria. Más  adelantada que sus vecinos, había experimentado, desde el siglo XVIII , nuevos métodos; 2.000 lores, propietarios del tercio de la superficie cultivable, transformaron hectáreas de tierra de labor en fértiles praderas, en las que practicaron una ganadería moderna con selección de razas (la raza Durham llegó a ser la primera de Europa).

Los decretos para la formación de «acotados» (reunión de tierras rodeadas por vallas), concluidos en 1840, los «cornlaws», leyes que prohibían la entrada de trigos extranjeros, habían enriquecido   a   estos   grandes   propietarios que llevaron a cabo una verdadera revolución sustituyendo el barbecho por el cultivo de plantas herbáceas, de trébol, de alfalfa y otras análogas, alternando con los cereales; la utilización de los abonos (cal, guano, fertilizantes industriales descubiertos por Liebig), la mejora de los arados, la desecación de los pantanos, reforzaron esta revolución agraria.

Las Corn Laws fueron aranceles a la importación para apoyar los precios del grano británico doméstico contra la competencia de importaciones, vigentes entre 1815 y 1846.

PEQUEÑAS PROPIEDADES Y GRANDES DOMINIOS: Además  del  tipo inglés (que acabamos de ver mas arriba),  se podían  distinguir otras dos modalidades  de  agricultura en Europa.  Una de ellas predominaba en Francia, Países Bajos, Suiza y norte de Italia; la supresión de las servidumbres señoriales   había   emancipado   jurídicamente   al campesinado, pero éste, dueño en su inmensa mayoría, de pequeñas o medias propiedades, vegetaba y se mantenía gracias a la supervivencia de las prácticas comunales y a la ayuda de trabajos artesanos.

Sin embargo, en estos países fueron realizados importantes   trabajos   de  desecación   (particularmente en Holanda, donde los «polders» alcanzaron una gran extensión) que permitieron acrecentar la superficie cultivable. El rercer tipo de agricultura, el de los grandes dominios   señoriales,  reinaba  en  la  mayor parte de Europa; en el sur de Italia y en Toscana, la aristocracia terrateniente practicaba el absentismo, dejando a los administradores el cuidado de ocuparse de sus inmensas propiedades, y éstos las hacían explotar por los jornaleros a los que apenas les quedaba para vivir. Los grandes propietarios españoles practicaban también la aparcería; pero tenían que hacer frente a la Mesta, poderosa asociación de ganaderos que monopolizaba inmensas extensiones de tierras, oponiéndose al desarrollo de la agricultura.

En Prusia y en Europa Oriental, las reformas napoleónicas fueron abandonadas después de Waterloo y los campesinos tuvieron que devolver a los nobles el tercio de sus tierras, cayendo nuevamente en un estado de semi-servidumbre. Sin embargo, algunos pequeños hidalgos prusianos intentaron modernizar sus posesiones siguiendo el ejemplo de los lores ingleses.

Por último, en Rusia, la tierra estaba en manos de la corona y de los nobles; una parte de sus inmensos dominios era explotada directamente, y la otra repartida en parcelas entregadas a las familias de los siervos a cambio de los servicios que prestaban trabajando las tierras de su señor. Rusia era entonces la mayor exportadora de trigo de Europa, pero las exportaciones se hacían en detrimento de la población, que vivía en condiciones miserables. Esta oposición entre la Europa Occidental y los países orientales, próximos todavía a las estructuras feudales, había de durar hasta nuestros días.

Los Satélites Artificiales Argentinos Historia Plan Espacial

SATELITE ARTIFICIAL ARGENTINO
HISTORIA PLAN ESPACIAL

Los vehículos espaciales, como por ejemplos los satélites artificiales,  resultan instrumentos impresindibles para el avance científico y tecnológico de la imanidad. Son numerosos los fines con que se utilizan; ellos, cabe destacar los fines científicos, medioambienles, de comunicaciones, de navegación y militares. Mientras ue los satélites giran en órbita alrededor de nuestro planeta, las sondas se han liberado de la atracción gravitatoria de la Tierra y se desplazan en trayectorias variadas.

Los satélites recorren distintos tipos de órbitas, a diferentes alturas con respecto a la superficie terrestre. Tienen tamaños muy variables; algunos pueden llevar tripulantes a bordo.

Los de mayor envergadura se ubican en órbitas bajas entre 250 y 450 km, como por ejemplo, el transbordador espacial norteamericano y la estaciónespacial Mir, que permiten transportar astronautas, satélites y equipos de mantenimiento y reparación.  También se encuentra el telescopio espacial Hubble, que estudia la luz procedente de los objetos más alejados del Universo.

https://historiaybiografias.com/linea_divisoria4.jpg

La creación de la Comisión Nacional de Actividades Espaciales (CONAE) en 1991 le dio nuevo impulso a la presencia argentina en el espacio. Desde 1961, durante tres décadas, un organismo similar, que dependía de la Fuerza Aérea, realizó más de 150 lanzamientos. En su mayoría, cohetes y globos destinados al estudio de la atmósfera, aunque también hubo estudios con animales, como ratas y monos. La CONAE, en colaboración con la NASA y agencias europeas, puso en órbita los satélites SAC C (2000) y SAC D (2011).

Mono Juan Enviado al Espacio Por Argentina, Murió en el zoologico de Córdoba.

El mono Juan: El 23 de diciembre de 1969, la Argentina se convirtió en el cuarto país del mundo, después d’ la URSS, Estados Unidos y Francia, en poner un mono en el espacio. El tripulante, de la especie caí, había nacido en Misiones y fue bautizado como Juan. Realizó un vuelo suborbital (a 82 km de altura) a bordo del cohete Canopus II, lanzado desde El Chamical, La Rioja. Fue todo un desafío. Diseñaron una butaca de modo que los efectos de la  aceleración ingresen a su cuerpo de manera transversal. En la cápsula, la temperatura debía ser de no más de 25° C, cuando en la punta de la ojiva hacía 800°C. Al mono lo sedaron y lo constiparon. El vuelo duró cinco minutos. El mono Juan ascendió a 82 kilómetros. Murió en un zoológico de Córdoba.

ANTES DE SEGUIR HABLAREMOS SOBRE HISTORIA Y CONCEPTOS BÁSICOS

INTRODUCCIÓN:
CIENCIA Y SOCIEDAD
A lo largo del siglo XX la Humanidad ha conocido un impresionante desarrollo de la investigación científica que, a diferencia del pasado, ha encontrado muy rápidamente aplicaciones tecnológicas. En la base del gran crecimiento económico de los países industriales está esa revolución científico-técnica que ha inundado de nuevos inventos las industrias, los hogares y la vida cotidiana de los seres humanos.

Los avances  relacionados con la electrónica tuvieron su influencia en varios ámbitos. Los electrodomésticos establecieron un cambio fundamental en el hogar al aportar una notable mejora en la calidad de la vida cotidiana.

Con la invención del telégrafo en 1838, cuyos primeros clientes fueron las compañías ferroviadas, empezó el desarrollo de las comunicaciones. La transmisión de la voz, la imagen y el pensamiento influyó de manera determinante sobre la vida individual y colectiva.

La radio, el cine, el teléfono, la televisión y la computadora simbolizan este siglo XX de la denominada aldea global, donde las sociedades industrializadas cayeron en la red de los medios de comunicación de masas. El sector de los bienes y servicios culturales, conocido también como las industrias culturales, comunicacionales, creativas o de contenido, pasó a ser objeto de consumo masivo.

A la vez, dicho sector mostró claramente su doble faceta de recurso económico y fuente de identidad y cohesión social. El reto era llegar a armonizar los flujos de comunicaciones e informaciones y sus dispositivos técnicos con la calidad de vida de cada uno de los consumidores.

El consumo de información y la emergencia del hogar electrónico se vieron convertidos en dos cuestiones de capital importancia, que guardaban una estrecha relación con las nuevas tecnologías de la información. La implantación de tecnologías integradas en los hogares no tardaría en causar efecto en los hábitos y costumbres del ámbito doméstico.

Todo el planeta es hoy en día un sistema interconectado por redes televisivas, informáticas, telefónicas, y cualquier información es emitida y recibida en segundos. Nos sentimos copartícipes de todo lo que sucede en el mundo.

Como consecuencia de todos estos cambios, la sociedad presenta características diferentes de la de nuestros abuelos. La de hoy es una sociedad esencialmente urbana, con un nuevo papel de la mujer y con un tipo de familia más reducida y más móvil.

CONCEPTO DE LOS SATELITES ARTIFICIALES: La comunicación vía satélite ha revolucionado por completo la manera de conocer los hechos y los acontecimientos ocurren en la Tierra. Su utilización permite escuchar y ver todo lo que sucede «en tiempo real», es decir, en el momento en que se está produciendo el acontecimiento.

Las características que distinguen un satélite de telecomunicaciones y lo hacen interesante para muchas aplicaciones prácticas son:

1) la visibilidad, desde el satélite, de todos los puntos de la región que cubre la antena de a bordo; esto permite servir con la misma facilidad regiones o ciudades de alto desarrollo y zonas dispersas o de difícil acceso;

2) la posibilidad de unir simultáneamente mediante el satélite muchas estaciones en tierra;

3)  la flexibilidad de crecimiento del sistema, ya que, si se desea conectar con una nueva localidad, basta construir en ella una estación terrestre;

4) la flexibilidad de distribución de la capacidad total de comunicación del satélite entre las diversas estaciones de tierra, lo que permite atender demandas no permanentes, como las que surgen de las concentraciones de personas en zonas de veraneo durante las vacaciones o de situaciones de emergencia debidas a desastres naturales o averías de la red terrestre;

5) la posibilidad de efectuar conexiones con medios móviles (embarcaciones, aviones, automóviles) o con estaciones transportables.

El primer satélite de telecomunicaciones fue lanzado por Estados Unidos en 1958: era el SCORE, que difundió un mensaje de felicitación del presidente Eisenhower.

El SCORE se precipitó a la atmósfera casi un mes después de su partida. En 1960 se lanzó primero el Currier, un satélite también estadounidense, capaz de captar señales y retransmitirlas; luego fue el Eco-1, que no era más que una esfera cubierta de aluminio de 166 kg de peso.

Desde su órbita reflejaba las señales de radio y televisión y las dirigía a la superficie terrestre. Una segunda esfera de este tipo fue lanzada en 1964 con resultados decepcionantes, por lo que esta vía se abandonó.

En cambio, se obtuvieron buenos resultados con el lanzamiento del Telstar-1 el 10 de julio de 1962, a una órbita inclinada 44,8° respecto al ecuador. Podía gestionar 600 conversaciones telefónicas o un canal de televisión.

Para colocar un satélite en órbita es importante realizar una serie de precisos test de desprendimientos entre el cohete y el satélite. Por otro lado durante el despegue aparecen una secuencia de sacudidasd y vibraciones bruscas que podrían perjudicar el equipamiento.

Hay algunos componentes escenciales y muy delicados como los paneles solares y las antes de de cominicación que también sufren estas vibraciones, por lo que hay que ser muy cuidadoso con los controles, pues un error de este tipo pondría en juego el éxito de la misión, luego de años de trabajo y de gasto de dinero.

Una vez que el satélite ya entró en la atmosfera, cohete debe soltar el o los dos satélites que transporta.

En el caso de Argentina uno de ellos, es el ARSAT-1, para lo que necesita un perfecto desempeño comunicacional (envío de la orden y recepción por el lanzador) y mecánico, es decir, que nada se trabe e impida así la separación del satélite del cohete. El satélite acompañante es el ISDLA-1, de Loral (Estados Unidos-Canadá).

ORBITA GEOESTACIONARIA

Los satélites geoestacionarios se mantienen a una distancia de 38.500 km girando a la misma velocidad que la Tierra, por ello siempre se observan en el mismo punto sobre el ecuador terrestre. Se utilizan para establecer comunicaciones telefónicas y televisivas.

LOS SATÉLITES ARTIFICIALES EN ARGENTINA:
Antes de hablar sobre los tipos y características de nuestros satélites, vamos a hacer una breve introducción histórica sobre los institutos públicos y empresas nacionales que se dedican a la investigación y a este tipo de tecnología.

Desde hace mas de una década en la Argentina, el Estado ha decidido invertir una importante cantidad de recursos en el sector a través de instituciones existentes, como la Comisión Nacional de Actividades Espaciales (CONAE) e INVAP, la empresa rionegrina de alta tecnología, y creando nuevas, como ARSAT, el Centro de Ensayos de Alta Tecnología (CEATSA) y la construcción de lanzadores a través de VENG (Vehículo Espacial de Nueva Generación).

En relación a las instituciones referentes, dos de ellas definen las misiones espaciales del país: ARSAT, como responsable del Sistema Satelital Geoestacionario Argentino de Telecomunicaciones y CONAE como responsable del Plan Espacial Nacional.

Este último es el organismo del Estado argentino que diseña, ejecuta, controla, gestiona y administra las actividades y emprendimientos espaciales dedicados a la observación de la Tierra desde el espacio.

Por su parte, INVAP, que es una empresa dedicada al diseño y construcción de sistemas tecnológicos complejos, es el integrador principal de los proyectos satelitales de CONAE y ARSAT.

INVAP empresa de alta tecnología

INVAP es una empresa creada por convenio entre la Comisión Nacional de Energía Atómica de Argentina y el Gobierno de la Provincia de Río Negro. Su sede principal se encuentra en San Carlos de Bariloche y ocupa a 360 empleados de manera directa y a más de 700 si sumamos a los de las empresas asociadas, contratistas y proveedores.

Un Poco de Historia Argentina….

Despúes de la Segunda Guerra Mundial, durante el gobierno de Juan Perón, se contrata un grupo de destacados profesionales en el ramo de la aeronaútica, que habína participado en Alemania en diversos proyectos aeroespaciales para la aplicación bélica. Se destacan Kurt Tank, creador del Pulqui II, y Ricardo Dyrgalla, el ingeniero polaco que desarrolló el primer motor cohete argentino, que fue probado con éxito en el misil Tábano en campo de pruebas del noroeste cordobés. (ver: Científicos Alemanes en Argentina)

En 1947 se construye el  primer motor de cohete de combustible líquido, en 
1947 y mas tarde se creala Sociedad Argentina Interplanetaria, la primera en América latina, en 1949. Argentina también fue el cuarto país en colocar un ser vivo en vuelo suborbital y regresarlo a Tierra.

A través de la Comisión Nacional de Investigaciones Espaciales (Cnie), creada en 1960, cuyo primer presidente fue Teófilo Tabanera  (de ahí el nombre del Centro Espacial en Córdoba) se lanza el primer el cohete Alfa Centauro, y de ahí en mas se continua con el desarrollo y lanzamientos de distintos cohete hasta el cierre del famoso Plan Condor II. Como veremos mas abajo, también se cierra la Cnie y se reemplaza por la Conae.

Vamos ahora a transcribir lo que publica Diego Hurtado en su libro «La Ciencia Argentina», explicando con claridad los acontecimientos históricos.

Además del desarrollo nuclear, otro de los temas conflictivos que colisionó con la política exterior de Menen fue el proyecto Cóndor II. Excede el marco del presente libro repasar en detalle la compleja trama de presiones desplegadas por Estados Unidos, que desencadenó el proceso por el cual se canceló este desarrollo con un desenlace más bien humillante.

Alcanza con señalar la perspectiva diplomática argentina que se propuso reducir a cero cualquier posible confrontación con Estados Unidos, complementada por la absoluta ausencia de la problemática del desarrollo científico y tecnológico como variable de la política exterior y por la falta de unidad política de aquellos sectores que favorecían el desarrollo de tecnología espacial.

En mayo de 1991, el entonces ministro de Defensa Erman González anunció en un discurso televisado por el canal ATC el desmantelamiento del misil Cóndor II, el cierre de la CNIE y la creación de la Comisión Nacional de Actividades Espaciales (CONAE).

El nuevo organismo quedaría a cargo de todos los emprendimientos en materia espacial con fines pacíficos y estaría bajo control presidencial y parlamentario. La intención era crear una agencia espacial con las características de una agencia civil. Al frente de la CONAE fue puesto el astrónomo Jorge Sahade.

A través de la CONAE, el empleo de la tecnología espacial con fines pacíficos pasó a ser considerado política de Estado. A cambio del desmantelamiento del proyecto Cóndor II, Estados Unidos se comprometió a transferir tecnología para el desarrollo de satélites.

El proyecto Cóndor II, era un plan para desarrollar misiles balísticos, pero también lanzadores satelitales que hubiesen colocado al país en la autopista del desarrollo espacial.

En agosto de 1991, la CONAE firmó un acuerdo de colaboración con la NASA. Al mes siguiente, la empresa INVAP anunció que colaboraría con la NASA en la construcción del satélite SAC-B. Especializada en su origen en el desarrollo de tecnología nuclear, INVAP se integraría al desarrollo de satélites y desarrollaría el sistema de guía, incluidos los instrumentos de precisión. Por su parte, la NASA se encargaría de la puesta en órbita. En febrero 1994, el New York Times se refería a la empresa argentina como «una pequeña versión argentina de una compañía de Silicon Valley» y comentaba su exitosa incursión en el desarrollo de tecnología espacial.

En 1994 se redactó el Plan Espacial «Argentina en el Espacio 1995-2006». Varotto cuenta que este programa «fue aprobado luego de pasar un examen bastante riguroso que terminó con una reunión de gabinete completo». Y agrega: «Se decidió concentrar los recursos en ir arriba para mirar para abajo». El plan se centraba en la recolección de información del territorio argentino, tanto continental como marítimo.

La idea era que esta información, combinada con la que se obtuviera por otros medios, «contribuya a la optimización de actividades de determinadas áreas socio-económicas». Finalmente, en 1997 se decidió que en la próxima revisión del plan espacial, la CONAE debería comenzar a trabajar en el problema del acceso al espacio, esto es, ¡en el desarrollo de un cohete lanzador!

Con el LUSAT I, lanzado en 1990 comienza la historia de los satélites artificiales  de la Argentina, fue el primer satélite argentino, que fue un proyecto de radioaficionados. Después de 20 años en órbita, con la batería ya agotada, continuó funcionando.

SATÉLITES SAC-A Y SAC-B
La CONAE realizó dos misiones en los años noventa. El cohete PegasusXL llevó al primer satélite argentino, el SAC-B, hacia el espacio en noviembre de 1996. Tenía instrumentos de la CONAE, la NASA y la ASI (agencia espacial de Italia).

Su objetivo era realizar estudios sobre las fulguraciones solares y los rayos gamma. Sin embargo, aunque alcanzó los 550 km de altura, fallaron los mecanismos del PegasusXL y no pudo entrar en órbita. Mejor suerte tuvo la misión SAC-A, que se concretó en 1998. El transbordador Endeavour puso en órbita a este satélite, que alcanzó los 389 km de altura. Diseñado para poner a prueba diversos instrumentos creados en el país volvió a la Tierra en agosto de 1999.

satelite argentino sac a

El satélite SAC-C
Argentina en su Plan Espacial Nacional – «Argentina en el Espacio 1995-2006» , establece los objetivos que deben orientar el trabajo de la Comisión Nacional de Actividades Espaciales (Conae). Como componente fundamental de ese plan, se deben realizar proyectos satelitales que cumplan el objetivo de «proveer a través de misiones satelitales propias, las plataformas, cargas útiles y servicios para satisfacer requerimientos específicos de nuestro país en las áreas de teleobservación, comunicaciones y ciencias básicas, que no se ven satisfechos por la oferta de sistemas existentes».

satelite argentino sac c

SATÉLITE SAC-C
En noviembre de 2000, el cohete Delta despegó de la base Vanderburg, de la Fuerza Aérea de Estados Unidos, y puso en órbita el satélite SAC-C. Integra la Constelación Matutina junto a los satélites EO-1 y Landsat 7. Órbita a 705 km de altura, desde donde toma imágenes de todo el mundo para enviarlas al Centro Espacial Teófilo Tabanera, ubicado en Falda del Carmen (Córdoba). Estas imágenes tienen varios propósitos, como el estudio de la atmósfera o la prevención de catástrofes naturales. Posee cámaras de teleobservación e instrumentos científicos de la CONAE, la NASA y las agencias espaciales de Francia y Dinamarca.

A partir de este objetivo, la Conae llevó adelante el diseño, construcción y puesta en órbita del SAC-C, el primer satélite argentino de observación de la Tierra, cuyo lanzamiento se produjo el 21 de noviembre de 2000, con un lanzador Delta 7320, desde la Base Aérea de Vandenberg, en California, Estados Unidos.

Este satélite cumple funciones muy importantes: produce imágenes del territorio que pueden ser utilizadas para la agricultura y para el estudio del medio ambiente terrestre y marino. Además, permite estimar con precisión los alcances de catástrofes naturales o provocadas por el hombre y aporta materiales para realizar estudios científicos y tecnológicos que, entre otras cosas, contribuirán a mejorar el diseño y la fabricación de nuevos satélites. El satélite se controla desde el Centro Espacial Teófilo Tabanera, ubicado en Córdoba. Allí se reciben los datos que envía el satélite y se los distribuye entre los usuarios.

Desde el punto de vista productivo, el aspecto interesante de este proyecto es la articulación entre una decisión de un agencia del Estado nacional -la Conae- y varias empresas del país, que son las que construyeron el satélite. El principal contratista es el Invap, una empresa de alta tecnología, encargada de la construcción del satélite propiamente dicho y de algunos de los instrumentos que contiene y que permiten realizar las observaciones y la transmisión de datos.

conrado varoto

El físico, doctorado en el Instituto Balseiro (1968), Conrado Franco Varotto es el actual ditector de la CONAE. Nació en Brugine  (Italia), el 13 de agosto de 1941, pero desde pequeño vivió en Argentina.

SATELITES ARGENTINOS EN ÓRBITA

satelite sac d

SAC-D también conocido como Aquarius, lanzado el 10 de junio de 2011. Es un satélite argentino de observación climática y oceanográfica, construido por INVAP. Pertenece a una serie de satélites grande y complejos, y solo hay planes para poner dos o tres mas en órbita. La idea mundial es comenzar a colocar satélites mas perqueños de no mas ed 200 Kg. y que trabajen en red.

 

PADE: Proyecto PADE entró en órbita terrestre el día 6 de Diciembre del año 2001, utilizámdose el transbordador Endeavour.Despúes de cumplir una corta pero exitosa misión con experimentos del medioambiente espacial, regresó a la Tierra 15 días mas tarde.

SAC-C: Desde la base norteamericana Vandenberg en California, el día 21 de noviembre de 2000, fue puesto en órbita el SAC-C, satélite argentino de teleobservación.Tiene una cámara MMRS con una resolución de 175 metros, la HRTC 35 metros, y la HSTC 300 metros. Hoy se encuentra en operación.

SAC-A: Desarrollado por la CONAE y construído por la empresa de Río Negro INVAP, fue puesto en órbita el 14 de Diciembre de 1998, con el Endeavour. Se utilizó para el seguimiento de las ballenas Franca Austral y mediante el analisis fotográfico se estudian los ciclos de inundaciones y sequías. Fuera de uso e incinerado por la atmósfera terertre.

NAHUEL 1-A: Fue construído totalemnete en el exterior y puesto en órbita en Enero de 1997, por medio del cohete Ariane
Su objetivo principal es de las telecomunicaciones. Actualmente se encuentra en operaciones.-

SAC-B: Pensado como satélite cientifico, para realizar mediciones de radiaciones electromágneticas en el espacio y de partículas. El 4 de Noviembre de 1996 fue puesto en órbita por medio del cohete Pegasus XL, que a su vez partió desde el fuselaje de un avión L-1011 en vuelo. Cayó a Tierra en el año 2002 y fue un fracaso por que una etapa del cohete lanzador no se desprendió del satélite. Diseñado por la CONAE Y construído por INVAP.

MU-SAT: Fue puesto en órbita el 29 de Agosto de 1996; mediante el cohete de origen ruso. Fue un proyecto desarrollado por la Asociación de Investigaciones Tecnológicas de Córdoba y el Instituto Universitario Aeronáutico, con científicos que trabajaron en el antiguo programa Condor II, importante programa que fue desechado por la «sugerencia» de EE.UU.
Fotografió diversas zonas del país con imágenes de baja resolución, para seguimientos meteorológicos y de masas hídricas.
Durante el primer año se lograron gran cantidad de fotos e información y aún continúa en órbita. Pesa 30 kilos y era un cuboide de 34x34x43 centímetros.

LUSAT 1: Es el Primer Objeto Argentino puesto en órbita. Fue un proyecto casi amateur, desarrollado por un grupo de radioficionados argentinos. Se puso en órbita utiliando un cohete Ariane, en Enero de 1990. Construído en parte en Argentina y el resto en AMSAT NA en Boulder, Colorado.  Su misión es la de proveer comunicaciones en packet a todos los radioaficionados del país y del mundo.A pesar de que sus baterías operan a una fracción del poder inicial, el Lusat aún funciona.

Respecto a su fabricación, es igual al ARSAT 1, desarrollado por la CONAE y fabricado por INVAP. Es importante destacar que el mundo solo 8 países construyen satélites geoestacionarios. Ellos son China Rusia,EE.UU.,Alemania, Francia, Japón, India , Israel y Argentina.

Arsat-1, el primer satélite argentino

Satélite Argentino AR-SAT1

Imagen en Órbita del Satélite Argentino AR-SAT1

El primer satélite geoestacionarioargentino. Con una potencia de 3.400 watts, y pensado para una vida útil de 15 años, fue desarrollado a lo largo de siete años y fabricado en la ciudad de San Carlos de Bariloche por las estatales Invap y la empresa Argentina de Soluciones Satelitales (ArSat). Con su lanzamiento en octubre de 2014, el ARSAT-1 tiene por objetivo brindar servicios de TV, Internet, telefonía y datos.Los servicios del ARSAT-1 incluyen Internet en lugares remotos, transporte de señales para canales de TV, redes de datos para organismos públicos y privados, conectividad en radiobases para operadores celulares y telefonía corporativa, entre otros.Una vez en órbita, se despliegan los paneles solares, con los que alcanza los 16,42 metros de largo y una antena de comunicaciones de 2 metros de diámetro. Se utilizó como material base la fibra de carbono reforzada con plástico (CFRP), titanio y aluminio. El CFRP es un material ampliamente usado que se consigue a partir de fibras de carbono y resina epoxy.

CARACTERÍSTICAS:

caracteristicas del satelite argentino arsat

INVAP: La empresa de tecnología INVAP es la única del país certificada por la NASA para participar de sus proyectos espaciales. Fabricó el «bus», o satélite propiamente dicho, y varios instrumentos utilizados en las misiones de la CONAE. Su origen es un acuerdo firmado en los años setenta entre la Comisión Nacional de Energía Atómica (CNEA) y el gobierno de Río Negro.

Sus productos se utilizan, además, en la producción de energía nuclear y eólica, y en medicina. A esta empresa se sumaron la experiencia de los ingenieros satelitales de ARSAT en operar satélites geoestacionarios de telecomunicaciones quienes, además de especificar los satélites, también siguieron técnicamente todo el proyecto, controlando tanto el diseño como los procesos utilizados y los ensayos medioambientales. 

Para los ensayos mediambientales se creó CEATSA, operativo desde fines de 2012 y con sede en Bariloche. De este modo se logró evitar los costos de ensayar el ARSAT-1 en Europa. Este modernos y novedoso laboratorio se  convirtió en el segundo laboratorio para realizar ensayos medioambientales en satélites de esta magnitud en Latinoamérica. Se hicieron los ensayos de vibración, acústicos y termovacío, todo superados exitosamente. También se hicieron pruebas de propiedades de masa, compatibilidad electromagnética y medición de antenas, todos ensayos estándares exigidos por la industria aeroespacial.

El lanzamiento se hizo desde el centro espacial Guayana, el día 16 de octubre d 2014, convirtiendosé Argentina en el primer país latinoamericano en tener en órbita un satélite geoestacional de construcción propia. La puesta en órbita estuvo a cargo de la compañia Arianespace, conformada por el Centro Nacional de Estudios Espacial francés y todas las empresas espaciales europeas.

Arsat-2 , otro satélite argentino

arsat 2

La características generales son similares a su predecesor. Fue desarrollado para brindar servicios de telecomunicaciones sobre el continente americano en tres coberturas: sudamericana, norteamericana y hemisférica, pero con explotación comercial por su posición privilegiada, su cobertura transcontinental, sus tres antenas y su emisión en dos bandas (Ku y C).  Seguramente que a corto plazo favorecerá la industria argentina de generación de contenidos audiovisuales. El tamaño del cuerpo es una especie de cubo de 2.0 m. de lado y cuando extiende sus paneles solares se tranforma en un aparato de 16,42 m.La computadora de vuelo principal fue desarrollada y fabricada en el país.

Idem al anterior, ARTSAT 2, fue desarrollado por la CONAE y fabricado por INVAP. Es importante destacar que el mundo solo 8 países construyen satélites geoestacionarios. Ellos son China Rusia,EE.UU.,Alemania, Francia, Japón, India , Israel y Argentina.

El lanzamiento está previsto para septiembre de 2015, desde el Centro Espacial en la Guayanas francesas, por la empresa Arianespace, la misma que puso el ARSAT 1 en órbita en 2104.


Fuente Consultada:
Sitio WEb de SATÉLITES ARSAT
«La Ciencia Argentina» de Diego Hurtado
Revista TIME El Siglo de la Ciencia de Clarín
Sitio Web del Diario «La Nación»

Uso de Computadoras en la Segunda Guerra Mundial

PRIMEROS SISTEMAS DE CÁLCULO RÁPIDO APLICADOS EN LA GUERRA MUNDIAL

El cerebro humano es la más eficaz de las máquinas de computar, pero es también la más lenta. La sucesión de imágenes que llamamos vista, atraviesa velozmente el cerebro a razón de sólo ocho a trece veces por segundo. La velocidad más efectiva de un mecanógrafo profesional  es sólo, de  cuatro letras o cifras por segundo. Compárese el alcance de la velocida humana con la de una máquina electrónica cue puede engullir 60.000 datos por segundo.

Era inevitable que el cerebro mecánico tuviese que reemplazar en las oficinas al cerebro humano. Ciertos servicios nuevos como cálculo y análisis de impuestos a los réditos, seguro médico, fondos para jubilaciones, seguridad social, censos de la población de la nación entera, y cómputo de votos, exigían máquinas matemáticas, y así nacieron las primeras máquinas que procesaban información usando tarjetas perforadas.

En realidad el  paso decisivo para la construcción de un ordenador electrónico, en el sentido moderno, lo dio Von Neumann ( con el concepto de software almacenado en una memoria)  se dió a partir del conflicto bélico mundial, en donde era necesario realizar miles y miles de cálculos exactos en el menor tiempo posible, por ejemplo para determinar el ángulo de inclinación de un arma para dar en el blanco del enemigo.

Para ello se valió de los grandes adelantos de la electrónica en esos momentos. En 1944 se construyó el primer ordenador utilizado con fines prácticos: el ENIAC. Como en tantas otras ciencias, este avance vino provocado por las necesidades militares que surgieron con la segunda güera mundial. En 1952 aparecen, sólo a título experimental, los ordenadores MANIAC-I y MANIAC-II. Sin lugar a dudas, podemos afirmar que ese fue el nacimiento de unas máquinas que aún no sabemos, y ni tan siquiera prevemos, hasta dónde pueden llegar.

Estas primeras máquinas computadoras robot, que nacieron en la segunda Guerra Mundial, costaban cada una cinco o más millones de dólares, se han modificado y mejorado cada cinco años. Cada nueva máquina lucía habilidades nuevas y nueva velocidad. Cada una es una creación especial y se les ha dado nombres especiales: ENIAC, MARK I, II, III, BIZMAC, NORC, UNIVAC, ERMA, ZEPHIR. Se las construía en todo el mundo y siempre el último modelo era más imponente que el anterior.

La primera de las computadoras  electrónicas fue la ENIAC de Goldstein, creada en 1944 para calcular tablas de bombardeos y fuego. Resolvió el problema de la trayectoria de una granada en menos tiempo del que la granada necesitaba para llegar al blanco. Esta máquina aconsejó a los ingenieros estadounidenses que no perdieran el tiempo en un cañón eléctrico al cual los alemanes habían dedicado valiosos años y enorme cantidad de dinero. ENIAC demostró que no podía realizarse.

ENIAC, Computadora Electrónica

Las limitaciones de ENIAC, sin embargo, fueron graves. Podía recordar solamente veinte números por vez. El hecho de emplear tarjetas perforadas retardaba el funcionamiento. Podía dar cabida únicamente a 24.000 tarjetas por hora. Había mucho que mejorar y los mejoramientos llegaron.

El siguiente cerebro gigante, MARK I, pudo almacenar 400.000 dígitos, comparado con los 3000 dígitos de capacidad de la ENIAC. MARK I realizaba las sumas en sólo 20.000 microsegundos, comparado con los 300.000 microsegundos de tiempo de la ENIAC. MARK I, en realidad, tenía más de todo: 700.000  piezas y más  engranajes que  10.000 relojes.

MARK I, Computadora Electrónica

El paso decisivo para la construcción de un ordenador electrónico, en el sentido moderno, lo dio Von Neumann ya entrado el siglo XX, al permitir que los programas fuera internos a la máquina. Para ello se valió de los grandes adelantos de la electrónica en esos momentos. En 1944 se construyó el primer ordenador utilizado con fines prácticos: el ENIAC. Como en tantas otras ciencias, este avance vino provocado por las necesidades militares que surgieron con la segunda güera mundial. En 1952 aparecen, sólo a título experimental, los ordenadores MANIAC-I y MANIAC-II. Sin lugar a dudas, podemos afirmar que ese fue el nacimiento de unas máquinas que aún no sabemos, y ni tan siquiera prevemos, hasta dónde pueden llegar.

En 1952, la capacidad de almacenamiento saltó a 3 millones de datos individuales. El tiempo de suma se redujo a 60 microsegundos. En 1954, la capacidad de almacenamiento aumentó a 50 millones de dígitos, y el tiempo de suma se redujo a 14 microsegundos. Y las máquinas siguieron siendo siempre nás veloces.

MARK II fue diez veces más rápida rué la ENIAC; MARK III fue veinticinco veces mas ligera que MARK II. El modelo más reciente puede acumular datos equivalentes a 465.000 tarjetas perforadas y manejar 3.600.000 cómputos distintos por minuto.

La UNIVAC,  capaz  de   realizar  100.000   multiplicaciones por segundo,   podía hacer en  dos minutos mismo que un   hombre en toda su vida   usando una buena   calculadora de pupitre.   Su primer   trabajo fué analizar 12 millones de detalles individuales reunidos por 132.000 recopiladores sobre las formas y condiciones de vida de 150 millones de norteamericanos. Hace un promedio de 60.000. reservas de aviones por día e imprime por minuto 600 renglones de respuestas en un papel.

ZEPHIR es un genio mecánico del idioma, del tamaño de un ropero, que automáticamente traducía del inglés a tres idiomas extranjeros.

Al IBM 704 se le reconoce ahora un vocabulario de 60.000 palabras, comparado con el de 5000 palabras del común de las personas. Tiene 1.179.648 células memorizadoras, lo cual implica haber dejado muy atrás los 200 caracteres por segundo de la primera máquina perforadora electrónica.

En la construcción del «empleado bancario» ERMA, de 25 toneladas, se tardó cinco años, pero ha transformado el trabajo bancario en los Estados Unidos. En lugar de voluminosos archivos de notas y fichas del Mayor, el cajero pagador de un banco tiene solamente un sencillo teclado en su mostrador. Oprimiendo el número de la cuenta del cliente, el pagador acciona el equipo central (dos tambores rotativos de cilindros de aluminio rociados con óxido de hierro archivan magnéticamente toda clase de informes) poniendo a la vista en el acto el saldo del cliente.

A mediados de 1958 ya 1700 empresas usaban cerebros electrónicos, y había pedidos pendientes por 3000 más, a precios que oscilaban entre medio millón y cuatro millones de dólares cada una.

Nace el minúsculo gigante
Los cerebros gigantes continuaron engrandeciéndose hasta que su mismo tamaño se convirtió en un grave problema. Una llamada telefónica transcontinental, por ejemplo, requería 12.300 tubos de vacío además de 112.000 resistencias y 97.000 condensadores. Los grandes lechos de tubos de vacío exigían costosos  acondicionadores  de aire  para  mantenerlos fríos. El mismo tubo de vacío, que fue el iniciador fe la era electrónica, se convirtió en el freno del progreso.

Abocados a este problema, los Laboratorios Telefónicos Bell volvieron a los cristales. Los investigadores supusieron que podría haber uno o dos recursos que quedaron inadvertidos en la galena, u otro material descartado que se utilizase antes de inventarse el tubo al vacío. Su corazonada resultó ser acertada. En 1948 anunciaron la invención del transistor.

Tan pequeño como la uña de un dedo, este trozo de germanio con dos «bigotes» de alambre realizaba todas las funciones de un tubo electrónico. Ya no se necesitaba hacer que los electrones saliesen de los electrodos ni usar ningún costoso sistema de enfriamiento para los tubos calientes. Con 70.000 horas de vida, el triple de los tubos de vacío, el transistor era duradero, seguro y reducido de tamaño.

El tipo de transistor de conexión estaba hecho de simples cristales de germanio metálico. Tenía tres zonas de cristales, que diferían en cuanto a la resistencia al paso de la corriente eléctrica, con las diferencias debidas a cantidades de impurezas insignificantes, pero medidas muy cuidadosamente.

primer transistor

Funcionaba de acuerdo con el mismo principio que un tubo de vacío, que tiene un emisor y un recector (un ánodo y un cátodo). Cualquier variación en la corriente del emisor provocaba una variación mucho mayor en la corriente del colector 7 en consecuencia, hay amplificación.

De igual manera las impurezas de un transistor provocan la variación en la corriente y de este modo controlan y amplifican el flujo de electrones. Para amplificar una señal común, un transistor requiere «clámente un millonésimo de la energía utilizada per un tubo de vacío similar.

Con la aparición del transistor los cerebros gigantes redujeron su tamaño desde el de una casa al de una valija. Los datos guardados en 1.600 gavetas de archivo pudieron entonces condensarse en un espacio de 0,5 metros cúbicos.

Con toda su capacidad para computar y su reducción de tamaño, los cerebros electrónicos han conseguido hacer el trabajo corriente de oficina con una velocidad diez mil veces mayor en los últimos diez años. Los cerebros electrónicos, comenzaron a realizar todas las operaciones comunes. Podían entregar paquetes, escoger y envolver comestibles, cobrar monedas, seleccionar libros de las librerías, y actuar como secretarios de directores y gerentes muy ocupados.

Hoy todo esta evolución es historia y parece anecdótico, pero en aquel momento el mundo estaba asombrado, pues en el tiempo que tardaba un ser humano en apuntar un simple número, ese pequeño adminículo podía multiplicar dieciséis cantidades grandes, elevar al cuadrado el resultado, consultar una tabla de cifras en una pulgada cuadrada de puntos, elegir la cifra exacta e incluirla en el cálculo final….era una maravilla de la ciencia, que había nacido lamentablemente por las exigencias de una onminosa guerra que se llevó mas de 50.000.000 millones de personas, gran parte de ellas civiles inocentes.

LAS COMPUTADORAS COMO DECIFRADORAS DE CÓDIGOS

Durante la S.G.M. Alemania había logrador inventar un sistema de enciptamiento de la información enviada que resultaba sumamente díficil para los aliados poder resolverlo, pues las posibilidades de encriptación de esa información era del orden de billones de posibilidades. A ese sistema se lo utilizaba mediante una máquina creada para tal fin, llamada  Máquina Enigma.

En cierto momento de la guerra una de esas máquinas fue capturada y se le pidió al matemático Alan Turing que se encargase junto a un equipo de cientificos estudiar y descubrir el sistema de codificación de Enigma, para aventajar a los alemanes en sus movimientos estratégicos. Para ello creó una máquina mecánica como la que se observa en la figura de abajo.

Máquina de Turing

Solía decirse que la Primera Guerra Mundial fue la guerra de los químicos y la Segunda Guerra Mundial la de los físicos. De hecho, de acuerdo con la información revelada en las últimas décadas, quizás sea verdad que la Segunda Guerra Mundial fue también la guerra de los matemáticos, y que en el caso de una tercera guerra su contribución sería aún más importante.

Debido a la naturaleza secreta del trabajo llevado a cabo en Bletchley por Turing y su equipo, su contribución inmensa al esfuerzo de la guerra no pudo ser reconocida públicamente, ni siquiera muchos años después de la guerra.

A lo largo de toda su carrera como descifrador, Turing nunca perdió de vista sus objetivos matemáticos. Las máquinas hipotéticas habían sido reemplazadas por máquinas reales, pero las preguntas esotéricas seguían vigentes.

Cerca del final de la guerra Turing ayudó a construir el Colossus, una máquina totalmente electrónica compuesta de 1.500 válvulas que eran mucho más rápidas que los relés electromecánicos empleados en las bombas. Colossus era un computador en el sentido moderno de la palabra, y su velocidad adicional y sofisticación hicieron que Turing lo considerara un cerebro primitivo: tenía memoria, podía procesar información y los estados dentro del computador se asemejaban a estados mentales. Turing había transformado su máquina imaginaria en el primer computador real.

Máquina Colossus

CRONOLOGÍA DEL ORDENADOR ELECTRÓNICO

1642 Pascal diseñó la primera máquina de calcular basada en ruedas dentadas que sólo podía sumar y restar.

1694 El matemático Leibniz diseña una máquina ampliando los estudios de Pascal. Esta calculadora, además de sumar y restar, también multiplicaba, dividía e incluso extraía raíces cuadradas. Debido a la falta de tecnología en esa época la difusión de esta máquina fue escasa.

1822 Babbage establece los principios de funcionamiento de los ordenadores electrónicos en un proyecto de máquina denominada «máquina diferencial», que podía resolver polinomios de hasta 8 términos.

1833 Un nuevo trabajo de Babbage, la «máquina analítica», puede considerarse como un prototipo de los actuales ordenadores electrónicos.

1944  John Von Neuman propone la idea de «programa interno» y desarrolla un fundamento teórico para la construcción de un ordenador electrónico.

1945   Entra en funcionamiento el ENIAC (Electronic Numerical Integrator and Calculator), su primera utilización fue para la construcción de tablas para el cálculo de trayectoria de proyectiles.

1952 Se construyen los ordenadores MANIAC-I y MANIAC-II, con lo que se termina la prehistoria de la informática.

Fuente Consultada:
Grandes Inventos de la Humanidad Beril Becker
Gran Enciclopedia de la Informática Tomo I Historia de las Computadoras

 

Historia de la Automatizacion Causas y Evolución

Historia de la Automatización Industrial

Bajo la presión de la segunda Guerra Mundial se introdujo en las fábricas toda clase de elevadores de horquilla y transportadores para acelerar la marcha de los materiales. Estos se convirtieron en parte integral de la línea de montaje, llevando artículos de una máquina a otra. Inevitablemente, el paso siguiente fue la mano de hierro que comprimiese todas las operaciones mecánicas en una corriente continua.

Una mano humana ejecuta siete movimientos básicos que se combinan cuando toma un objeto, lo hace girar, lo mueve o lo levanta. Treinta juntas son mantenidas bajo el control de las tensiones equilibradas de cincuenta músculos mediante pulsaciones indicadoras que recorren las líneas de sus nervios.

Ford fue el primero que trató de construir, dentro de una fabrica, una máquina cuya constitución interna imitase un organismo viviente. El brazo móvil mecánico, con su mano, fue el primer mecanismo de un robot que actuaba exactamente como los órganos sensoriales. Era un brazo flexible, articulado.

En el extremo tenía una grapa compleja parecida a una mano de acero. La grapa asía la pieza en que se trabajaba  y la  colocaba en la herramienta.Este elemento estaba regido a la distancia por un rollo de papel horadado, como el rollo de música de una pianola. Los agujeros permitían que los contactos eléctricos se hicieran únicamente en los puntos prefijados.

Estos determinaban todos los movimientos separados: a qué velocidad tenía que moverse, cuándo los dedos tenían que cerrarse, a qué distancia debía llegar el brazo móvil, dónde y cómo tendría que colocar el material de trabajo.

El brazo móvil fue un acontecimiento espectacular. Economizó tiempo, dinero y trabajo humano. El cerebro mecánico que apuntó hacia objetivos militares durante la guerra ahora aceleraba la producción de un automóvil Ford. Los ingenieros comenzaron a preguntarse por qué los mecanismos serviles no podían dar órdenes a todas las otras máquinas de la planta y regir la fábrica entera.

automatizar fabrica siglo xix

FÁBRICA AUTOMÁTICA
Para el nuevo salto hacia el futuro se disponía de todos los inventos electrónicos. La automatización de toda una   fábrica   fue una   aventura   en que debería  jugarse un billón  de dólares.   Ford   decidió correr el riesgo.

La automatización significaba más que la interconexión de las máquinas existentes. Fue necesario volver a diseñar y volver a construir todas las máquinas y hacer que la fábrica entera estuviese gobernada por dispositivos eléctricos preestablecidos.

El monstruo de múltiples brazos tenía una cuadra de largo y ejecutaba 540 operaciones mecánicas. Había 265 taladros automáticos, 6 fresadoras, 21 barrenadoras, 56 escariadoras, 101 avellanadores, 106 terrajas de contratuercas y 133 inspecciones.

Las mediciones empezaron a realizarse por medio de pulsaciones eléctricas, en lugar de dientes metálicos. La manipulación se hizo con condensadores eléctricos en lugar de levas. Los movimientos fueron comandados por alambres de conexión y no por palancas.

El capataz fue una cinta magnética que daba una serie de órdenes en forma de sí y de no a los tubos electrónicos, que a su vez la retransmitían cual soldados de centinela a los lugares de trabajo. A   los   músculos   mecánicos   se   acoplaron   cerebros electrónicos.

La automatización hizo anticuados todos los conceptos normales de la producción en masa. El trabajo se realiza en una fábrica con rapidez mil veces superior a lo que lo pueden hacer las manos humanas. Lo que empezó siendo una barra de metal se taladró, horadó, fresó, acepilló, troqueló, aserró, cizalló, trituró y afiló; y mientras tanto daba saltos mortales el tiempo bajo los transportadores aéreos y salía finalmente   convertido   en   150   motores  terminados por hora.

El éxito de la operación Ford contribuyó a que la automatización se extendiera velozmente por todo el territorio de los Estados Unidos. El sistema telefónico es automatizado casi en un 90 por ciento. En cintas perforadas se registran los números llamados y la ciudad, la hora en que comenzó la llamada y la hora en que terminó. Las computadoras reúnen, traducen, clasifican y resumen toda la información facturable.

Un sencillo cable coaxil simultáneamente cientos de conversaciones telefónicas individuales, programas radiales y de televisión. Estaciones amplificadoras que no requieren personal para su atención envian a todo el país todo tipo de comunicaciones.

En la industria petrolera, las unidades de destilación comenzaron tratando 5,5 millones de galones de petróleo no refinado por día mediante el control automático que cuida la circulación del petróleo, su temperatura, su presión y el envase. En las fábricas ie lámparas eléctricas, un río de vidrio corre durante las 24 horas del día, saliendo 1200 lamparitas por minuto.

Cada industria sintió el impacto de la automatización. Con mediciones electromagnéticas se determinó tensión, dureza e imperfecciones de las chapas de hierro. Las células fotoeléctricas estudiaron el pulido, la incandescencia y la transparencia de papeles y tejidos. La automatización no sólo moldeaba un producto, sino que medía su peso, su presión y su espesor, imprimiendo los datos al momento en un rollo de papel. Determinaba por anticipado la clase de operación requerida y hacía sus propias correcciones.

Los métodos de fabricación fueron transformados completamente por el potencial de esta nueva técnica automática. En las radios, por ejemplo, se eliminaron todos los pequeños trozos de cable y soldadura. Las piezas componentes se rediseñaron por completo.

En lugar de cables, se grabaron circuitos extendiendo el metal fundido en moldes plásticos acanalados. Se dispusieron seis distintos circuitos en obleas de cerámica de una pulgada, formando una estructura rígida de aparato radiotelefónico.

La máquina insertadora cortaba, modelaba, insertaba, agruaba y soldaba mecánicamente. Los que habían sido gabinetes en secciones se convirtieron en cajas moldeadas en una sola pieza.

Con esta simplificación se pudo realizar 10.000 montajes por día. Con los viejos métodos, un obrero tardaba un día entero en hacer un solo montaje.  Pronto comenzó a tomar posesión de los depósitos. Las máquinas entregaban mercaderías a los autómatas de depósito que se deslizaban por pasillos, cumpliendo y rotulando pedidos, almacenando mercaderías del stock y entregando planillas con todos los datos.

Todas las operaciones se dirigían por radio desde una oficina central. Los cerebros electrónicos llevaban cuenta exacta de la venta, llenaban listas de pagos de sueldos y jornales, calculaban y enviaban facturas y ordenaban la producción.

Importancia de la Automatización

Fuente Consultada:
Grandes Inventos de la Humanidad Beril Becker

Historia del Uso de la Corriente Alterna Edison Vs. Tesla Disputa

Historia del Uso de la Corriente Alterna
Disputa de Edison Vs. Tesla

Hacia 1880, la ciudad de Nueva York tenía por la noche un aspecto muy diferente al de hoy. Calles y casas estaban, en general, iluminadas con lámparas de gas o de aceite. Pocos años antes, Edison había presentado su práctica lámpara incandescente. Sin embargo, no había un sistema público de energía eléctrica, aunque las calles del bajo Manhattan estaban festoneadas con gran número de alambres eléctricos para circuitos telefónicos y telegráficos.

El primer sistema comercial de energía eléctrica, desarrollado por Thomas Edison, era estrictamente un sistema de corriente continua. La mayoría de los científicos estaban convencidos que la corriente alterna no era segura ni práctica para uso comercial y que no tenía ninguna ventaja compensadora.

Cuando se considera que la distribución práctica de la energía eléctrica se inició con la corriente continua y que sus sistemas predominaron muchos años, es sorprendente que alguna vez llegara a nosotros la corriente alterna. Ahora, sin embargo, los sistemas de energía eléctrica están basados casi exclusivamente en corrientes alternas.

Es evidente que hay algunas propiedades de la corriente alterna que la hacen particularmente valiosa en situaciones comerciales modernas.

MlCHAEL FARADAY
PRIMEROS PASOS….Conocido como el «príncipe de los experimentadores». Faraday había sido el creador de un sorprendente número de cosas nuevas, incluyendo la iluminación a gas; pero se lo recuerda únicamente como el inventor de la dínamo.

Ya en 1821, demostró que un alambre   cargado podía   girar continuamente   en torno de un imán y que podía hacerse que girase alrededor de un alambre que transportaba corriente. De estos primeros experimentos resultó una idea que siguió dándole vueltas en el cerebro curante los diez años siguientes. ¿Sería posible que un imán produjera electricidad?

Faraday Cientifico

Lo que indujo a Faraday a concentrarse en este problema fue su convencimiento de que en el espacio que rodeaba a un imán o a un alambre cargado vibraban líneas invisibles de fuerza que se movían hacia fuera en círculos. Sabía que consiguiendo que lesas líneas invisibles de fuerza hicieran girar una rueda, habría dominado esos poderes invisibles.

Era una idea audaz y original la de conseguir que un campo magnético saltara por el espacio desde luna bobina primaria a una bobina secundaria. Fracasaron los ensayos que, con intermitencias, hizo durante diez años. No logró inducir una corriente continua en una bobina secundaria, hasta que de pronto comprendió la verdad en la tarde del 17 de octubre de 1831: para conseguir una corriente continua era necesario tener en movimiento continuo las bobinas  o   imanes   que   cortasen   las líneas   de fuerza.

En pocos días construyó la primera dínamo. Montó un disco de cobre de 30 centímetros, que podía hacerse girar mediante una manivela. Los bordes exteriores pasaban entre los polos de un gran imán mientras giraba. Unas escobillas iban desde el disco le cobre a la segunda bobina, que tenía un galvanómetro. Mientras hacía girar la manivela, la aguja del galvanómetro anunciaba triunfalmente el hecho de que la corriente pasaba sin cesar.

Faraday consiguió convertir la fuerza mecánica en corriente. La primera dínamo (o generrador de energía eléctrica) había nacido.

Dinamo, generador de energía electrica

Faraday ignoraba que el año anterior, Joseph Henry, desde Estados Unidos, había escrito a un amigo: «Últimamente he logrado producir movimiento en una pequeña máquina mediante una fuerza que, a mi juicio, hasta ahora no ha sido aplicada en mecánica: mediante atracción y repulsión magnética«. Henry no dio este hecho a la publicidad y con ello hizo perder a Estados Unidos en honor de haber descubierto la dínamo.

En las décadas   que siguieron,   la dínamo   experimental   de Faraday se   transformó,   poco a poco, en el tipo   de   motor-generador   conocido   actualmente. En lugar   del disco   de cobre, se hizo   girar bobinas entre los polos.   Un simple anillo   se transformó   en una serie de bobinas como  un inducido.

Un electroimán reemplazó   al imán permanente.   Los   núcleos de hierro   de los inducidos   se cortaron   en láminas aisladas, para   conseguir un campo   mayor de intensidad. En 1873,   Z. T. Gramme, de Viena, hizo que un motor   eléctrico girase   accionado   por una   máquina   de vapor y   generó corriente   eléctrica.

Fue entonces   cuando   Edison   pensó   en valerse   de una máquina   de vapor   para   hacer   rotar una   dínamo enorme y con   ello conseguir   una corriente   directa que pasara en forma constante a través de los cables tendidos   por   debajo   de   tierra,   hasta   las   bombitas eléctricas de los edificios. Estaba dispuesto entonces a iniciar los experimentos conducentes a mejorar la lámpara eléctrica, objetivo que logró luego de ensayar 1200 variantes de materiales para el filamento.

Mas tarde Edison se abocó al estudio de generación de corriente eléctrica o generadores y para ello, añadió bastantes espiras de alambre en las bobinas de los primitivos generadores que rodeaban al inducido, hizo los imanes suficientemente grandes y aceleró la rotación del inducido lo necesario para conseguir una fuente barata de energía eléctrica.

EdisonLuego Edison analizó en que si se distribuía la energía por una ciudad era necesario colocar un medidor de consumo. Pensó en el problema práctico de colocar un medidor en cada edificio, a fin de conocer el consumo de corriente eléctrica.

Basándose en que la velocidad de rotación de una dínamo es directamente proporcional a la corriente, construyó un medidor consistente en un pequeño motor desmultiplicado de tal manera que una fracción de una vuelta de la aguja indicadora representase un número enorme de revoluciones. Hubo que resolver otros problemas, tales como la fabricación de fusibles seguros y artefactos livianos.

Toda la provisión de lamparitas, artefactos y electricidad fue gratuita durante un período de cinco meses en todos los edificios que accediesen a cambiar el gas por electricidad. Finalmente, todo estuvo listo y se dio paso a la corriente.

Los periodistas que vieron toda una manzana de la ciudad iluminada con 2.300 lamparitas eléctrica: comprendieron que la era de la iluminación de ga tocaba a su término. Escribieron que no había ninguna llama vacilante ni olor nauseabundo a gas expresando su atónita sorpresa ante las «resplande cientes herraduras que brillaban dentro de los globo en forma de peras».

La lámpara eléctrica de Edison abrió el camine a la nueva era eléctrica. De los inducidos de 1e central eléctrica entregaban una corriente de 60 ciclos y de 120 voltios que fue la común en todos los hogares de Estados Unidos. Cada libra de carbón producía al consumirse un kilovatio hora de electricidad. Una habitación se iluminaba con sólo hacer girar un interruptor, todo porque una bobina de alambre hacía cosas de magia en un imán.

La lámpara de filamento carbónico se convirtic en lámpara de tungsteno cuando William Coolidge, de la General Electric, descubrió que un pedazo de tungsteno tratado especialmente podía estirarse en forma de metal flexible.

Irving Langmuir añadió un gas que retardaba la evaporación del tunsgteno y consiguió que ardiese a mayor temperatura, a fin de que de una simple lamparita se obtuviese más luz. Ahora el Hombre Mecánico abriría sus ojos brillantes   dondequiera   una  habitación necesitara luz.

iluminador electrico de gran potencia

PROYECTOR ELÉCTRICO DE 1,50 METROS, QUE ILUMINA LOS OBTETOS SITUADOS A 16 KILÓMETROS DE DISTANCIA

LA ERA DE LA ENERGÍA ELÉCTRICA:

La central eléctrica de Edison dio el impulso inicial a una nueva era de la energía.Resultó evidente que no se aprovechaba toda la energía de que era capaz la primera central eléctrica. La iluminación eléctrica sólo por períodos exigía el total de la energía. Hubo una enorme reserva, que se podía destinar a otros propósitos.

¿Por   qué   no aplicarla   para   hacer   caminar   las ruedas de los tranvías, en vez de emplear caballos? Esto apuntaba hacia un motor eléctrico.

La corriente que pasa por las bobinas de un inducido lo hace girar en virtud de la forma en que lo atraen y repelen los polos norte y sur de un imán permanente. Con un inducido conectado a las ruedas de los tranvías, era posible hacer girar éstas. Todo lo que se necesitaba era agregar un tercer cable a los que pasaban por debajo de tierra, para que sirviese de nueva línea de transmisión y suministrase la energía que necesitaba el motor eléctrico.

Los cincuenta mil caballos cuyos cascos repiqueteaban en los empedrados de Broadway conocieron pronto un sonido nuevo: el ruido metálico del primer tranvía eléctrico.

El tercer cable tardó poco en suministrar energía a los hogares y a los nuevos trenes elevados. El nuevo sistema de transporte permitió la expansión de la ciudad. Los trabajadores no necesitaron ya vivir a distancias que pudieran recorrer a pie para ir a sus oficinas y fábricas. Mientras tanto, los barrios céntricos de las ciudades comenzaron a crecer en sentido vertical, a medida que los motores nuevos accionaban los ascensores de edificios altos.

Los motores eléctricos lograron contener más energía con tamaños menores. Se tornaron tan potentes como para ser unidos directamente a las máquinas de las fábricas. Entraron en los hogares en aspiradoras de alfombra. El proceso sigue continuando ante nuestra vista, mediante el agregado de motores a lavadoras, mezcladoras, batidoras, refrigeradoras y acondicionadoras de aire.

generadores de corriente electrica

Con su sala de turbinas de vapor construida a orillas del rio, completo aislamiento de todo el equipo eléctrico, disposiciones hidráulicas para eliminar las cenizas, instalación de calderas con recalentadores de vapor formados de seis tubos colocados sobre la cámara de combustión, extenso empleo de motores para llevar a efecto las operaciones precisas con las válvulas y perfecta maquinaria para facilitar el transporte del carbón, esta estación central de «Hell Gate», Nueva York, de la Compañía United Electric Light y Power, no tiene rival.

La Corriente Alternada

Aunque la electricidad, en su avance arrollador por el mundo hacía adeptos continuamente, la central  eléctrica  de  Edison  reveló  un notorio  defecto.

Las luces eléctricas, que eran brillantes y constantes cerca de la usina, se debilitaban y oscilaban a tres kilómetros de distancia.

Los generadores de corriente eléctrica no proporcionaban más   de 500 voltios   y esta   energía   no se podía  «impulsar» a  mucha   distancia de la   central eléctrica. Si se sobrepasaba los 500 voltios, la energía se derrochaba en lluvias de crujientes chispas azules que partían de las piezas   sobrecargadas del generador. Se vio con   claridad que hacía   falta un   generador de nuevo tipo, que fuese capaz de suministrar energía a distancias largas.

Tesla NikolaUn inventor servio, Nikola Tesla, que trabajó a las órdenes de Edison desde que llegó a este país, se convenció de que la solución estaba en la corriente alternada, que podía generarse en voltajes muy altos.

Edison creyó que esta corriente era demasiado peligrosa. Tesla argüyó que podría reducirse el voltaje, hasta llegar a 120 voltios para uso doméstico, mediante transformadores escalonados.

A todo esto, el transformador, inventado en 1886, resultó ser mucho más flexible de lo que todos imaginaban.   Fue posible pasar   energía de alto voltaje de un circuito a otro circuito con voltaje más bajo, pero con la misma frecuencia (número de revoluciones de una armadura), sin que se moviese ninguna pieza.

El aumento y disminución de los voltajes fue fácil y seguro. Todo lo que se necesitaba era aumentar o disminuir en el secundario el número de espiras de alambre   con relación   al primario, una   ley sencilla que databa de los días de Faraday.

Tesla llevó su patente a George Westinghouse, quien prosperaba mucho con su nuevo freno de aire, que dio seguridad a los ferrocarriles. Westinghouse adivinó en el acto la importancia del generador de corriente alterna. Calculó que el costo de transmisión de esa energía sería sólo el diez por ciento de lo que costaba la corriente continua de Edison.

Los voltajes altos exigían cables más delgados, lo cual permitía muy grandes economías por razón de costosnormal de 120 voltios a distancias que llegaban a 400 kilómetros.

Pronto resultó evidente que mediante centrales hidroeléctricas podían distribuirse 80.000 voltios a ciudades y granjas del campo desde 500 a 1.000 kilómetros. Si fallaba la caída natural del agua, siempre había turbinas de vapor como reserva, para prestar el servicio.

Valida de estos medios, la energía eléctrica se abarató tanto que pudo competir con la energía del vapor, y pronto las fábricas empezaron a usarlas como fuente de potencia. Se instalaron en fábricas nuevos motores de eficacia mayor, en lugar de los ejes, correas y poleas exigidos por la máquina de vapor. La fábrica no sólo adquirió un aspecto más limpio y ordenado, sino que también dispuso de una mayor velocidad.

Se acoplaron motores a máquinas que ahora podían aumentar su velocidad de. rotación hasta 400 revoluciones -por minuto. Conectando motores de diferentes tamaños, sólo se necesitaba una energía mínima. Las fábricas economizaron el costo del anterior movimiento constante de las correas, los ejes y las cadenas que se empleaban con la energía de vapor.

Más o menos en 1920, el Hombre Mecánico unió casi todas las aldeas y ciudades de Estados Unidos a su red de conductores. Los nuevos mapas del mundo se llenaron pronto de puntos, a medida que se desprendían poblaciones nuevas de los centros congestionados y se poblaban los lugares intermedios entre ciudades, y las regiones antes agrestes y rurales. Haciendo el trabajo de cien millones de caballos, la electricidad ayudó a transformar Estados Unidos de una nación minúscula en una nación gigantesca.

Tal como la máquina de vapor revolucionó la navegación, y el motor de nafta debía pronto transformar el transporte por carreteras, la energía eléctrica infundió vida nueva a los ferrocarriles, las fábricas y las granjas de Estados Unidos.

Fuente Consultada:
Grandes Inventos de la Humanidad Beril Becker

https://historiaybiografias.com/linea_divisoria3.jpg

LECTURA COMPLEMENTARIA:
La importancia de la electricidad como medio de transportar energía: Es difícil encontrar aplicación de la electricidad que demuestre más claramente su completa sumisión al hombre como la que se relaciona con el transporte de la energía o fuerza motriz. Desde tiempo inmemorial el hombre ha utilizado recursos que reemplazasen al esfuerzo que puede producir su brazo; el empleo de la fuerza de los animales es muy antiguo, y hay muestras evidentes de que también aprovechó la energía producida al caer el agua.

de todas maneras, en cada caso, siempre coincidían el lugar de producción y el de aplicación de la energía. La rueda hidráulica y el molino de nuestros antepasados estaban instalados al lado mismo del salto de agua. De este modo, muy pocos de nuestros grandes recursos hidráulicos podían ser aprovechados, pues la mayoría de los grandes saltos de agua están situados en lugares inaccesibles de las regiones montañosas, a los cuales sería imposible, o por lo menos muy costoso, transportar las primeras materias.

La fuerza motriz, invisible, va desde la escarpada montaña a la populosa ciudad Los progresos y desarrollo de la máquina de vapor y su creciente importancia han hecho se piense en buscar un medio de transmitir la energía al lugar del consumo desde el punto donde pueda producirse económicamente, ya por estar próximo el combustible o ser más fácil el acarreo desde la mina.

generador de energia electrica

UN GRAN GENERADOR ELÉCTRICO DE TURBINA: Uno de los generadores, de 55.000 caballos de fuerza, en la instalación hidroeléctrica de Queenston-Chippawa. Las turbinas de esta clase reposan sobre una especie de cojinetes o almohadillado de agua, tan delicadamente dispuesto, que si no se frena, tarda doce horas en pararse por completo, a contar desde el momento en que se corta la marcha.

Cuando la instalación de una máquina de vapor puede hacerse a la orilla de un estuario o un puerto, el carbón se transporta por mar a un coste relativamente bajo; pero dentro de las ciudades la conducción es carísima. El mismo agente que permite al hombre hablar a gran distancia con sus semejantes, puede ahora emplearse para transmitir la energía desde los saltos de agua en las montañas o las minas de carbón a la distante ciudad o centro consumidor. Las empresas industriales pueden así establecer las fábricas en aquellos lugares donde los jornales son menos elevados y la primera materia más abundante, puesto que es factible producir la energía necesaria a cientos de kilómetros.

De esta manera también pueden elegirse locales propios y convenientes para las fábricas y las centrales eléctricas donde se genera la energía, ligándose los dos centros por una línea de transmisión que abastece de fuerza eléctrica de un extremo a otro. Pero todavía la ingeniería moderna no es capaz de suministrar por este medio la fuerza motriz a las distancias que envía la voz humana.

La longitud a que puede transmitirse la energía económicamente en la actualidad es de 440 kilómetros en números redondos, y el alcanzar mayor distancia es uno de los grandes problemas que estudian los técnicos en nuestro siglo.

La transmisión eléctrica ha hecho posible la centralización de las grandes instalaciones productoras de fuerza motriz, y de este modo se ha conseguido convertir mucho más económicamente la energía química del carbón en eléctrica a bajo coste. La posibilidad de transportar la energía a grandes distancias permitió la instalación de enormes centrales conteniendo máquinas generatrices y convertidores de tal tamaño, que el coste de la producción por unidad de energía es tan bajo que permite sea consumido por las personas de recursos más modestos.

Debido precisamente a la con solidación y seguridad de estas grandes centrales, transmitiendo la energía a cualquier punto de la zona que las rodea por medios económicos y eficaces, ha sido posible la utilización de la electricidad en las fábricas, talleres y las viviendas.

En las instalaciones industriales más modernas se han suprimido los antiguos ejes, poleas y correas, acoplando motores eléctricos a los diversos mecanismos. La gran cantidad de energía economizada por esta disposición, sin duda mucho más apropiada y flexible para transmitir el movimiento, se emplea en aumentar el número de máquinas trabajando.

El coste de los edificios es así menor, y pueden construirse agrupados o separadamente, segrtn se quiera o convenga, sin tener que ajustarse a la posición del eje transmisor, lo que permite instalar las máquinas en la mejor posición, para disminuir acarreos innecesarios con el producto manufacturado, La eliminación de las correas deja mayor espacio libre, facilita el trabajo de los puentes-grúas o transbordadores, evita el polvo que se removía durante la marcha y, finalmente, también permite un alumbrado mejor.

La ausencia de cojinetes y aparatos para la lubricación de los mismos libra del goteo continuo de aceite, y todo esto trae consigo una mayor limpieza en las operaciones, mejorando, por consiguiente, las condiciones de salubridad durante el tiempo de estancia de los obreros en el trabajo y disminuyendo además múltiples daños al producto acabado.

La electricidad, aplicada al movimiento de la maquinaria, da mayor rendimiento, produce la fuerza con más flexibilidad que con el antiguo sistema de ejes transmisores, de tal suerte que pueden ponerse en marcha o hacer parar individualmente los aparatos sin que se note el menor cambio en la velocidad de los otros.

Pueden llevarse a efecto muchas operaciones delicadas que necesitan una velocidad igual. La sencillez con que puede regularse ésta, así como ampliar la fuerza motriz, facilita el aumento de producción y hace disminuir el coste de la materia elaborada. Son mucho menos frecuentes los accidentes donde se ha adoptado este sistema. Este hecho, unido a la disminución de ruido, mejor iluminación y mayor espacio, son de gran importancia para patronos y obreros, pues éstos tienen que encontrarse así en mejor disposición para el trabajo.

Las fábricas ya no se ven obligadas a esparcir el humo que lanzan sus chimeneas o el polvillo de sus ventiladores sobre las casas que las rodean, desde que aparatos eléctricos pueden evitarlo, o recoger, como por ejemplo, el polvo, de tanto valor en las fábricas de cemento.

El ozonizador eléctrico instalado en los tubos de salida de vapores que producen mal olor los evita, y permite ejecutar estas operaciones, molestas y desagradables, en locales situados dentro de la población, sin temer a que se opongan sus habitantes. En las fábricas donde es preciso mover hierros de varias formas, grandes y potentes electroimanes, instalados dentro o fuera de los talleres, transportan los materiales de un lado a otro en todo tiempo, ya llueva o nieve, aumentando así su capacidad productora.

Una de las aplicaciones más importantes de la fuerza eléctrica es la que se relaciona con la tracción. Al presente hay dos medios para poder hacer marchar los trenes en nuestros ferrocarriles: la máquina de vapor y la locomotora eléctrica. Necesariamente, la locomotora de vapor se irÁ abandonando poco a poco, debido a su limitado espacio para generar la fuerza precisa con la amplitud y rendimiento conveniente, mientras que
en el tractor eléctrico la energía llega de una estación central capaz de producirla en la cantidad que se requiera.

Una instalación móvil de vapor está sujeta a rápida y elevada depreciación, necesitando un coste de conservación mayor que la sencilla locomotora eléctrica. El molesto humo y el vapor desaparecen con el tractor eléctrico, y esto, que es de la mayor importancia en el caso de las líneas subterráneas de las grandes ciudades, fué frecuentemente la principal razón del cambio de la tracción de vapor por la eléctrica.

El empleo de la tracción eléctrica por todas partes en las líneas de tranvías y metropolitanos subterráneos se debe, como hemos dicho, principalmente a esta propiedad especial de no producir humo, y  también a la de poder establecer motores encada coche y así mover uno o varios, formando trenes según las necesidades del tráfico.

Las aplicaciones eléctricas han hecho incalculables beneficios mejorando las condiciones de la vida, pues por ellas, en muchas ciudades industriales, los s obreros pueden habitat en la parte más sana de los alrededores, sin perder demasiado tiempo en trasladarse desde su casa al almacén, tienda o taller donde prestan sus servicios.

Aquellos que viven en poblaciones extremadamente densas, por otro lado, pueden salir económicamente al campo para deseansar del torbellino de la ciudad. Las relaciones sociales, el cambio comercial, el mismo paisaje, todos ellos perderían extraordinariamente sin el motor sin humo. Las rápidas líneas de tranvías interurbanas, en regiones menos pobladas, transportan pasajeros y mercancías a las granjas situadas en su ruta. De este modo se tienen medios económicos y convenientes para efectuar las diversas transacciones entre los productores y los que consumen en las ciudades.

El transporte de pasajeros y mercaderías por medio de las líneas eléctricas, el teléfono y el telégrafo, acortan las distancias de tal suerte, que los habitantes del campo están en íntima comunicación entre sí, pudiendo aprovecharse de estas grandes mejoras.

Fuente Consultada:
Colección Moderna de Conocimientos Universales – La Era de la Eléctricidad – Tomo II – Editores W.M. Jackson, Inc.

 

Aliscafos: Funcionamiento y Usos Lanchas Flotantes

Aliscafos: Funcionamiento y Usos Lanchas Flotantes

La velocidad de un barco, incluso cuando se trata de una nave de combate, está muy limitada por las enormes fuerzas de fricción que se desarrollan entre su casco y el agua en la que flota. Parece, sin embargo, que el desarrollo del aliscafo (aliscafo, hidroplano o hidrofoil), basado en principios totalmente nuevos, puede proporcionar un medio de vencer las limitaciones de velocidad impuestas por el agua.

Las relaciones que existen entre los aliscafos y las embarcaciones ordinarias son similares a las que existen entre los aeroplanos y los globos dirigibles. Tanto los globos dirigibles como los barcos ordinarios se trasladan (en el aire y en el agua, respectivamente), y casi toda la potencia suministrada por sus motores se emplea en vencer «la resistencia al avance entre su superficie externa y el agua o aire que los rodea.

aliscafo

En contraposición, tanto los aeroplanos como los aliscafos emplean sus planos inclinados, esquíes o aletas, para desviar parte del aire o del agua hacia abajo. De esta forma, la potencia desarrollada por sus motores se emplea no sólo para impulsar la nave venciendo la resistencia al avance, sino también para sustentarla.

Esta fuerza de elevación sostiene el aeroplano (que es, por supuesto, mucho más pesado que el aire) en el vuelo, mientras que en los aliscafos se emplea para elevar el casco de la nave sobre la superficie del agua, produciendo una drástica reducción de la resistencia al avance, con el correspondiente aumento de velocidad. Sin embargo, cuando están parados, los aliscafos flotan sobre el agua de forma análoga a una embarcación normal, y sólo cuando se impulsan a gran velocidad reducen la superficie de contacto con el agua, al elevarse.

aliscafo PT 10

El PT.10, primer aliscafo construido para el transporte de pasajeros, fue botado en 1952. Esta embarcación, equipada con pianos en «V», puede transportar a   30  personas.

En el momento en que un aliscafo alcanza la velocidad adecuada, su casco se eleva sobre la superficie del agua, creando perturbaciones aerodinámicas mucho menores que una embarcación corriente que se trasladara a la mitad de la velocidad, en condiciones comunes. Los aliscafos son, por tanto, muy adecuados para el servicio en ríos y lagos, donde las perturbaciones excesivas pueden causar grandes perjuicios en las orillas y a otras embarcaciones. De hecho, hasta hace poco, este tipo de embarcación se ha utilizado sólo en aguas interiores o resguardadas.

Se han empleado, por ejemplo, para viajar por los ríos soviéticos y para cruzar los lagos suizos, siendo especialmente adecuados para viajes cortos, ya que consumen, como mínimo, el doble que las embarcaciones ordinarias. Al principio, se encontró cierta oposición al empleo de estas embarcaciones en aguas abiertas, ya que existían dudas sobre su comportamiento en condiciones climatológicas adversas, y no se sabía si serían más vulnerables a las grandes olas que las embarcaciones corrientes, en caso de ser sorprendidas por una tormenta en el mar.

Las primeras experiencias en los años 60 de un grupo de investigadores en los EE. UU. han demostrado que un aliscafo navegando por el océano es, en realidad, una realización práctica. El viaje de 370 kilómetros entre Port Everglades, en Florida, y las Bahamas con este tipo de embarcación, se puede realizar en unas tres horas, siendo más rápido que los buques de vapor y más económico que los aviones.

Aunque los aliscafos viajan más rápidamente que las embarcaciones ordinarias de tamaño parecido, este aumento de velocidad se consigue sin pérdida de comodidad para los pasajeros, e incluso se afirma que el viaje en aliscafo es mucho más suave. Esta ventaja adicional sobre los viajes ordinarios por agua se deriva del hecho de que el casco del aliscafo se eleva sobre la superficie.

Como sólo los planos (esquíes o aletas) reciben los golpes de agua directamente, las elevaciones y descensos, así como el balanceo experimentado por el barco, se reducen considerablemente. También se reducen en alto grado las vibraciones debidas a los motores.

DISEÑO DEL ALISCAFO
Aunque el agua es unas 815 veces más densa que el aire, los aliscafos tienen muchos puntos en común con los aeroplanos. Los planos inclinados no sólo crean un impulso hacia arriba, como consecuencia de desplazar el agua hacia abajo, sino que la presión hidrostática en la zona inmediatamente superior al plano se reduce, como consecuencia del movimiento. Por lo tanto, sobre ambas superficies del plano se crean fuerzas que tienden a elevarlo, trasmitiendo su impulso al casco unido a él.

La zona de bajas presiones que se crea por encima del plano puede, en ciertas circunstancias, provocar la formación de burbujas de vapor bajo la superficie del agua (un líquido se puede vaporizar haciendo descender su presión, lo mismo que elevando su temperatura).

La formación de estas burbujas no constituye en sí un problema serio; pero, una vez que se han formado, pueden alcanzar la parte posterior del aliscafo. Allí se deshacen, provocando pequeñas ondas de choque que pueden dañar las superficies metálicas. Esto se evita, en gran parte, empleando perfiles especiales, muy finos, para los planos, lo cual requiere el uso de materiales muy costosos, tales como el titanio. Para reducir el peso al mínimo, las embarcaciones se fabrican, en general, con ligeras aleaciones de aluminio.

La gran diferencia de densidad entre el aire y el agua puede provocar una falta de estabilidad si el plano, o parte de él, se eleva momentáneamente fuera del agua. Esta dificultad no es corriente en aguas resguardadas, donde las olas no son grandes, pero es uno de los problemas a resolver antes de que los aliscafos puedan navegar con seguridad por los océanos. Si el ángulo de los planos permanece fijo, el impulso ascendente aumenta a medida que el plano se hunde en el agua. Por lo tanto, el barco mantiene automáticamente su elevación, pero sigue las ondulaciones de las olas.

Sin embargo, puede conseguirse un desplazamiento suave si el ángulo de los planos (o su incidencia) es alterable; en algunas embarcaciones, el ajuste de este ángulo se realiza por un dispositivo automático sensible. De esta forma, la quilla de la nave puede mantenerse a calado constante.

Se han desarrollado varios tipos diferentes de aliscafos, con el fin de conseguir estabilidad. Los sistemas principales emplean planos en «V», grupos de planos dispuestos en escalera y diversos sistemas con control de inclinación. En los dispositivos que emplean planos en «V», el sistema de planos principal se monta ligeramente delante del centro de gravedad de la embarcación, disponiendo un segundo plano en «V» próximo a la popa.

Como puede observarse en el esquema, los extremos de los planos emergen del agua, incluso cuando la embarcación «vuela» sobre aguas quietas. Esto es indispensable para estabilizar la nave cuando atraviesa aguas revueltas o cuando gira.

En el sistema en escalera, una serie de planos se disponen, uno sobre otro, como los peldaños de una escalera, sobre un soporte. A medida que el casco de la nave se eleva de forma gradual sobre la superficie del agua, a causa de la velocidad creciente, algunos de los planos emergen. Esto significa que se dispone dé un área extensa para producir la elevación cuando la velocidad es baja; pero, a medida que la velocidad aumenta, la fuerza precisa para el avance de la nave se reduce, ya que el área de los planos sumergidos es menor. Del mismo modo que en los sistemas en «V», la estabilidad es mantenida por los planos que se sumergen y emergen del agua.

Existen muchas variaciones en los sistemas de incidencia controlada. En general, las naves equipadas con este tipo de sistema llevan planos totalmente sumergidos a popa, y la estabilidad se consigue por una serie de dispositivos diferentes, con distintos tipos de flotadores ajustables, montados cerca de la proa. Algunos tipos poseen alas o flotadores que se deslizan sobre la superficie, mientras que en otros la estabilidad se consigue por diversos mecanismos automáticos, que ajustan el ángulo de incidencia para compensar las variaciones en la superficie del agua. Con el fin de que los planos trabajen con eficacia, es esencial que su superficie sea lisa. Pero casi todas las superficies sumergidas en el mar se recubren de lapas y otros pequeños organismos marinos.

Por ello, es preciso limpiar, al menos una vez al mes, los planos y todas las partes asociadas situadas debajo del agua. Sólo con los adelantos conseguidos hasta el presente no parece probable que puedan construirse grandes embarcaciones fundamentadas en el principio del aliscafo.

La principal dificultad con que se tropieza en el diseño de los aliscafos, incluso los de tipo más pequeño, es la acomodación de los planos para amarrar las naves. Con embarcaciones pequeñas, el problema no es grave, ya que pueden ser retráctiles. Sin embargo, con los grandes buques, dotados de sus correspondientes planos de gran tamaño, existe un peligro real de que éstos puedan dañar la obra del puerto al entrar el barco.

El mayor aliscafo construido hasta la fecha es un barco soviético de 107 toneladas, con capacidad para 300 pasajeros. De esta embarcación se afirma que puede alcanzar velocidades de 80 kilómetros por hora.

Vista Inferior de los Aliscafos Con Sistemas Distintos

APLICACIONES
Aunque la mayoría de los aliscafos que se encuentran en servicio está destinada al trasporte de pasajeros a lo largo de los ríos o a través de lagos, existen ya posibles aplicaciones para naves rápidas, basadas en el principio del aliscafo. Estas embarcaciones presentan un interés militar indudable, en especial para destruir submarinos. Otra aplicación interesante se encuentra en el campo de los vehículos anfibios y lanchas de desembarco.

El establecer una cabeza de playa ha sido siempre una operación peligrosa, ya que las lentas lanchas de desembarco son, con frecuencia, un blanco fácil. Estas naves, equipadas con planos retráctiles,  serían, por tanto, unos instrumentos valiosos.

Fuente Consultada:
Enciclopedia de la Ciencia y la Tecnología Fasc. N°72 Los Aliscafos

Biografia de Cavendish Trabajo Cientifico Vida y Obra

Biografía de Cavendish Trabajo Científico

Enrique Cavendish nació en Niza (Francia), en 1731. A la edad de 11 años íue enviado a la escuela en Hackney (Londres). En 1749 pasó a Cambridge, pero salió de allí sin haber obtenido ningún título. Perteneció a la Royal Society desde 1760 y, a partir de ese año, se dedicó, por su cuenta, al estudio de las matemáticas y de la física. Seis años después publicó trabajos sobre las propiedades del hidrógeno y del ácido carbónico.

Enrique Cavendish

Gran científico británico nacido el 10 de octubre de 1731. No muy famoso, pero destacado porque fue el primero en medir la densidad y composición de la atmosfera terrestre. Analizó la densidad media del nuestro planeta, descubrió el gas argón, inventó el pendulo de torsión, y propuso la ley de atracción electrica entre cargas de distinto signo. LLegó a poner en riego su vida al realizar experimentos con corrientes elétricas. Tenía una vida muy excentrica, y gozaba de una excelente posición social y económica.

Al mismo tiempo, investigaba las propiedades del calor, llegando independientemente a los conceptos de calor latente y calor específico, pero nunca se atrevió a publicar los resultados de sus investigaciones. También descubrió el nitrógeno, describiendo sus propiedades más importantes.

La  mayor contribución  de Enrique  Cavendish a la ciencia fue el descubrimiento de la composición del agua. Debe recordarse que la teoría del flogisto desorientó a los químicos durante algún tiempo, y que él, como muchos de sus contemporáneos, la apoyó.

Primero realizó experimentos sobre la composición del aire, demostrando que era constante. Luego mezcló dos partes de aire inflamable (hidrógeno) con una de aire desflogisticado (oxígeno) en el interior de un globo de cristal, haciendo explotar la mezcla por medio de una chispa eléctrica.

Otros químicos de su tiempo no se habían fijado en el rocío o empañamiento que se produce en las paredes de cristal del globo después de esta explosión. Cavendish comprobó que el peso del globo no había variado. Comprendió que los gases se habían combinado, dando agua. Como no publicó sus investigaciones, se suscitó una controversia, puesto que algunos atribuían el descubrimiento a Jacobo Watt, el inventor de la máquina de vapor.

En conexión con este experimento, descubrió la composición del ácido nítrico. A veces, las gotas de condensación que quedaban en ‘ las paredes del recipiente eran ligeramente acidas, y, al analizarlas, comprobó que tenían ácido nítrico. Explicó este hecho mediante la hipótesis de que el ácido se formaba por combinación del nitrógeno con los otros dos gases. El nitrógeno se encontraba allí como impureza.

Esto pudo demostrarlo añadiendo más nitrógeno, con lo cual se formaba más ácido nítrico. En sus años postreros viajó por toda Inglaterra, tomando nota de las formaciones rocosas y del paisaje. Su último gran experimento fue el descubrimiento de la atracción gravitatoria entre los cuerpos, lo que equivale a pesar la Tierra, como es denominado en algunas oportunidades.

obra cientifica de cavendish

El globo de explosión (reacción) que Cavendish usó se llenaba con los gases y se pesaba de la manera mostrada. Entonces se hacía explotar la mezcla por medio de una chispa eléctrica. Averiguó que el peso no cambiaba y que los gases desaparecían, quedando unas gotas de agua condensada en  las  paredes del  globo.  Se  basó en este experimento   para    explicar   ta    composición    del    agua.

Ampliar Sobre El Peso de la Tierra de Cavendish

Procesos Para Obtener Metales desde Minerales

Procesos Para Obtener Metales desde Minerales

Es muy raro encontrar metales puros en la corteza terrestre. Casi siempre están combinados con otros elementos como compuestos metálicos. El hierro, por ejemplo, puede combinarse con el oxígeno o con el azufre, para formar óxidos o sulfuros. La cantidad de metales que existen en la corteza terrestre es relativamente pequeña. Si estuvieran esparcidos al azar, no se encontraría nunca una concentración suficiente de ninguno de ellos para emprender una explotación rentable. Sería necesario tratar enormes cantidades de roca para obtener una cantidad muy pequeña de metal.

Por fortuna, una serie de procesos geológicos, a lo largo de la historia de la Tierra, ha concentrado los compuestos metálicos. Cuando una roca contiene tal cantidad de metal que valga la pena extraerlo, se le da el nombre de mineral. Existen tres tipos de roca: ígnea (que procede de materiales fundidos), sedimentaria (formada con fragmentos desmenuzados de una roca anterior) y metamórfica (roca alterada por la temperatura y la presión).

Los tres tipos pueden contener minerales, aunque el metal se haya concentrado en ellos por diversas causas. La concentración de metal necesaria para que una roca se considere como mena o mineral explotable depende del metal de que se trate.

Por ejemplo, una roca que contenga cobre constituye una mena si un 0,7 % de su volumen está compuesto de cobre; en cambio, un porcentaje tan bajo en el caso del aluminio no permite una extracción rentable, pues la concentración de este metal debe ser, por lo menos, de un 30 %. Tales cifras dependen, en gran parte, de la relativa rareza de los metales; pero también, en cierta medida, de la demanda comercial.

Las rocas ígneas se han formado por solidificación de magmas — rocas en estado fundido—. Durante el proceso, ciertos materia’ les se solidifican antes que otros. En el conjunto semifluido, estos minerales pueden irse al fondo y separarse, como una capa, en la fase temprana del proceso. El mineral puede ser rico en un metal determinado. Por ejemplo, el mineral cromita contiene cromo, como indica su nombre.

Al formarse posteriormente los minerales que contienen metal, pueden cristalizar en los huecos que quedan entre los minerales más antiguos, formando así una separación de utilidad para el explorador y el minero. El último magma solidificado (magma residual) puede haberse enriquecido con titanio, hierro u otros metales, que forman depósitos aprovechables.

Los más útiles, entre los depósitos magmáticos, están relacionados con grandes intrusiones de magma básico en el interior de la corteza.   El magma básico, en su estado original, tiene únicamente una pequeña cantidad de sílice y grandes proporciones de ciertos metales: hierro, titanio, cromo.

METALURGIA: El campo de acción que abarca la metalurgia es verdaderamente amplio. Tanto es así que, dentro de esta actividad, existen numerosas especialidades, las cuales, aun dirigidas al mismo fin, presentan métodos y técnicas de distintas características. En principio, la metalurgia puede dividirse en dos ramas: la metalurgia de materiales férreos (hierro y acero, fundamentalmente) y la de materiales no férreos (en la que se incluye el resto de los metales). El hecho de que el hierro y el acero sean considerados aparte es índice de la magnitud e importancia que reviste la industria siderúrgica en el mundo entero.

El hierro es, sin duda, el metal más útil, y, después del aluminio, es también el más abundante, formando un 4 %, aproximadamente, de la corteza terrestre. Con pocas excepciones, tales como el oro, los metales no se presentan en la naturaleza en estado metálico, sino que aparecen formando parte de un mineral, que puede ser un óxido, un sulfuro, u otra combinación química cualquiera del metal en cuestión.

Minerales de Hierro

El mineral ha de ser extraído de la mina y, después, será sometido a un tratamiento adecuado. En el proceso de extracción, el técnico en metalurgia juega un importante papel, relacionado con la elección del método más apropiado para cada mineral.

Cualquiera que sea el procedimiento utilizado en la extracción de un mineral de la mina o yacimiento en donde aparezca, aquél se presenta siempre en bloques de gran tamaño; por lo general, está acompañado de ganga, material terroso de dónde el mineral ha de ser separado. Generalmente, la primera operación que, se efectúa consiste en triturar el material de partida para reducirlo a un tamaño conveniente.

La etapa siguiente es la separación de la ganga, que algunas veces se realiza por el procedimiento de flotación, basado en el hecho de que los distintos minerales se mojan de modo diferente. Por ello, en un baño líquido, bajo las condiciones adecuadas, puede hacerse que el mineral flote, mientras la ganga se va al fondo, o viceversa, siendo posible, de este modo, efectuar su separación.

Es tarea del químico metalúrgico, en este caso, determinar experimentalmente en el laboratorio, valiéndose de pequeñas muestras, las condiciones óptimas de separación, así como las operaciones de control que se cumplirán en el proceso a escala industrial.

La etapa siguiente consiste en la obtención del metal no refinado a partir del mineral, proceso conocido con el nombre de fundición. Los hornos de fundición utilizados con este propósito difieren, en cuanto a su diseño, en relación con el mineral a ser tratado en particular.

Los más conocidos son los altos hornos, utilizados en la separación y obtención del hierro.

En este proceso, corresponde al técnico en metalurgia asegurar que todas las operaciones se lleven a cabo propiamente. Para ello, ha de analizar el mineral de hierro de partida y calculará las cantidades correctas, de coque y piedra caliza, necesarias para que el proceso de reducción se efectúe normalmente. Asimismo, ha de examinar la calidad del hierro bruto obtenido.

El metal no refinado, o bruto, conseguido en el proceso de fundición debe, entonces, ser purificado o refinado, lo cual puede realizarse de distintos modos. En unos casos, el metal se funde de nuevo, haciendo que al mismo tiempo pase una corriente de aire, con objeto de oxidar las impurezas que lo acompañan.

Para refinar el cobre, al metal ción, así como encontrar el medio de recuperar, del barro depositado en el fondo, los productos metálicos rentables. Al terminar el proceso de refinación, se cuenta ya con un metal de relativa pureza. El metal así obtenido puede ser utilizado directamente o fundido de nuevo, junto con otro u otros metales, para formar una aleación. Al producto final hay que darle, entonces, la forma que ha de tener al ser utilizado.

Para ello es necesario volver a fundir el metal, y, una vez líquido, verterlo en los moldes de la forma apropiada. Estas tareas se llevan a cabo en una fundición, y, aquí, el técnico metalúrgico es el responsable del control de dichos procesos, así como del de aleación. También debe ser un experto en el diseño de moldes y capaz de darse cuenta de las posibles fallas que puedan presentar las estructuras metálicas, como, asimismo, rectificarlas.

Cuando al producto final no se le da una forma especial, suele obtenerse bajo el aspecto de barras o lingotes, que han de sufrir tratamientos posteriores, tales como el laminado, forja, o cualquier otro tipo de tratamiento mecánico.
El metal o aleación puede laminarse, ahora, para darle una forma de plancha, o forjarse mediante un martillo mecánico; hilarse, para constituir un alambre, haciéndolo pasar a través de una serie de agujeros de tamaños decrecientes.

Todos estos procesos han de efectuarse del modo más rápido y económico, y las condiciones óptimas serán fijadas por un especialista en metalurgia. Él debe, por ejemplo, calcular hasta qué punto un lingote puede ser laminado sin que sea necesario templar el metal en un horno apropiado, ya que muchos metales se vuelven duros, siendo frágiles a la vez, y se fracturarán si se los trabaja demasiado.

Por otra parte, el proceso de templado consume tiempo y dinero, por lo cual ha de decidirse si su aplicación resulta rentable. Uno de los campos más importantes, dentro de la metalurgia, es el de la investigación, que puede ser de investigación aplicada —que se refiere a problemas directamente relacionados con la industria y con el perfeccionamiento de los productos—, o de investigación básica, que estudia los principios fundamentales del comportamiento de los metales.

Las industrias requieren, con frecuencia, la presencia de especialistas en metalurgia, para resolver cualquiera de los problemas reseñados, que pueden suscitarse en los procesos de producción. También recurren a ellos para realizar trabajos más rutinarios, tales como los de verificación y control de la calidad del producto obtenido.

La mayor parte de los instrumentos y métodos utilizados son, sin embargo, los mismos, cualquiera que sea la naturaleza de la investigación propuesta, y sólo la interpretación de los resultados conseguidos puede, en algunos casos, ser distinta. Un industrial, por ejemplo, puede estar únicamente interesado, en medir la resistencia del metal que produce, con objeto de comprobar si se halla dentro de los límites que le son exigidos. Mediante la investigación básica, es posible detectar los cambios que se produzcan en dicha propiedad, los cuales pueden indicar que ha tenido lugar alguna modificación en la estructura íntima del metal, hecho imperceptible a simple vista, pero que puede resultar de extraordinaria importancia en el futuro comportamiento de aquél.

Uno de los instrumentos más importantes empleados por el técnico metalúrgico es el microscopio, especialmente el electrónico, que, debido a sus 100.000, o más, aumentos, es de gran utilidad para el estudio de las estructuras de los metales. La investigación de la corrosión y el desarrollo de aleaciones que sean resistentes a ella es otro importante campo de estudio, que se halla dentro del dominio de la metalurgia. La mayoría de los metales resultan atacados y corroídos bajo  ciertas  condiciones:   el  agua  del  mar ataca el metal de las calderas y tuberías, y la humedad de la tierra corroe los cables eléctricos subterráneos.

Los daños ocasionados por la corrosión cuestan muchos millones de dólares al año. En el- futuro, los trabajos de investigación en estos temas serán aún más interesantes, dado que, tanto en el campo espacial como en el nuclear, se necesitan materiales de especiales características, que resistan condiciones extraordinarias de presión, temperatura, radiación, etc.

Fuente Consultada
Revista TECNIRAMA (CODEX) Enciclopedia de la Ciencia y Tecnologia N°96

Evolución y Funcionamiento del Teléfono Biografía de Graham Bell

Evolución y Funcionamiento del Teléfono- Biografía de Graham Bell

El término teléfono se refiere al conjunto de aparatos e hilos conductores con los cuales es posible transmitir a distancia la palabra y toda clase de sonidos, por la acción de la electricidad.

En la actualidad, los avances en el campo de la telefonía permiten establecer conexiones con determinados dispositivos capaces de cifrar y traducir otro tipo de mensajes complejos, utilizando las líneas telefónicas.

BREVE FICHA BIOGRAFÍA: Algunos datos sobre la vida Alexander Bell

Nombre del personaje: Alexander Graham Bell
Fecha de nacimiento: 3 de marzo de 1847
Fecha de fallecimiento: 2 de agosto de 1922
Origen: Edimburgo, Escocia
Actividad:
Científico e inventor

•  Nació en Edimburgo (Escocia), el 3 de marzo de 1847.

• Con solo nueve años ideó una desgranadora automática de trigo. Desde entonces, no paró de idear nuevos objetos.

• Estudió en Londres y luego se trasladó a los Estados Unidos en 1871.

• Desde muy joven, sintió curiosidad por saber cómo se comunicaban las personas entre sí. Tomando como ejemplo a su padre, que había desarrollado un sistema de comunicación para quienes tenían problemas para hablar, fundó una escuela para sordomudos en Boston (Massachusetts), en 1872. Pero tuvo que cerrarla al poco tiempo, por falta de profesores calificados.

• En 1874 empezó a experimentar lo que sería poco después su invento más importante: el teléfono.

• Bell construyó un modelo de teléfono en 1875. El aparato tenía una bobina, un brazo magnético y una membrana tensada.

Sus inventos
•  1880, recibió el premio Volta por su invento.

• La muerte de uno de sus hijos, que nació con problemas respiratorios, lo llevó a crear la Cámara de Vacío, precursora del pulmón artificial.

• En su laboratorio llamado «Volta», imaginó otros aparatos, entre ellos: el fotófono, que transmite sonidos por rayos de luz; el audiómetro, para medir la agudeza del oído y el primer cilindro de cera para grabar.

• Murió el 2 de agosto de 1922, en Baddeck (Canadá).

BIOGRAFIA DE ALEXANDER BELL

Nacido Alexander Bell, adoptó el nombre Graham por su admiración por Alexander Graham, un amigo de la familia Bell.

Alexander fue educado en la Royal High School de Edimburgo, de la cual se graduó a la edad de trece años.

A los 16 años, obtuvo una plaza como maestro adjunto de locución y música en el Weston House Academy en Elgin Moray, en Escocia.

El año siguiente lo pasó en la Universidad de Edimburgo. En 1866 y 1867 fue instructor en el Somersetshire College en Bath, Inglaterra.

Cuando estaba aún en Escocia, se dice que Bell se interesó por la acústica; interés originado por la sordera de su madre.

El 7 de marzo de 1876, fue concedida una patente en Estados Unidos por el teléfono.

Había dedicado mucho tiempo a la investigación de los sistemas de comunicación existentes, pero aún no había logrado su objetivo: enviar mensajes, con voz humana, por medio de métodos similares a los que se utilizaban en el telégrafo.

Estaba agotado, pero no se conformaba.

Luego de varios intentos, algo milagroso ocurrió; realizaba uno de sus curiosos experimentos, cuando escuchó algo similar a la vibración de la voz que emanaba de uno de los alambres que empleaba. No podía creerlo, su sueño se empezaba a convertir en realidad.

El 10 de marzo de 1876, luego de años de lucha por una patente, Alexander Graham Bell envió el primer mensaje telefónico.

De esta manera, comprobaba que ya no era necesario que los jinetes entregaran la correspondencia urgente con días de retraso, aunque cabalgaran durante noches y días enteros, ni era imperativo esperar pacientemente un turno en la oficina del telégrafo; desde ese momento la voz empezó a viajar por miles de kilómetros, dando lugar a la más significativa revolución en las comunicaciones.

Sin embargo, aparentemente Bell no fue el primero en crear este aparato, sino solamente el primero en patentarlo, pues el 11 de junio de 2002, el Congreso de Estados Unidos aprobó la resolución 269 por la que reconoció que el inventor del teléfono había sido Antonio Meucci y no Alexander Graham Bell.

Bell también investigó el vuelo de raros artefactos, como experimento preliminar de aerodinámica, para la construcción de aviones, Alexander Graham Bell diseñó y voló cometas de diferentes formas.

Los armazones estaban construidos con triángulos tridimensionales tetraédricos, capaces de soportar un peso considerable.

«Me he pasado la vida entera haciendo experimentos con cometas. Desconozco la razón, aunque quizás obedezca a la íntima conexión existente con el problema de las máquinas voladoras», explicó el investigador en un discurso de 1903, en la Academia de Ciencias de Washington.

«Todos estamos interesados en la locomoción aérea —escribió en National Geographic—, y estoy seguro de que cualquiera que haya observado con atención el vuelo de los pájaros no dudará ni por un momento de la posibilidad de volar que tienen los cuerpos específicamente más pesados que el aire.

Para decirlo en palabras de un viejo escritor, ‘no podemos considerar imposible lo que ya se ha hecho'».

bell

Los comienzos

La aplicación de la electricidad al ámbito de las comunicaciones —los primeros experimentos en este sentido se remontan a la etapa final del siglo XVIII— supuso un avance decisivo.

Si el telégrafo había logrado asociar impulsos eléctricos y letras, sistema que, tras un adecuado procedimiento de descodificación, permitía la transmisión de mensajes a larga distancia, el siguiente paso vendría con la unión de la señal eléctrica y la voz humana.

No obstante, en el caso del teléfono, se hacía necesario un elemento intermedio que tradujera ondas sonoras en señales eléctricas y viceversa, un segundo dispositivo capaz de convertir la señal eléctrica en onda de sonido. (foto: primer aparato ideado por Graham Bell)

En 1857, Antonio Meucci (1808-89) (foto) habla inventado una máquina cuyo componente esencial era un elemento vibrador unido a un imán; era el primer aparato telefónico: Aunque Meucci patenté su hallazgo en 1871, el escaso interés mostrado por la compañía a la que le ofreció y las dificultades económicas le hicieron abandonar el proyecto.

Por este motivo, sería Graham Bell (1847-1922) quien, finalmente, tras patentar un aparato semejante en 1876, pasaría a la historia como el verdadero padre del teléfono, y ello a pesar de que surgió inmediatamente una disputa legal que no finalizó hasta 1886 y con resultado favorable para Meucci.

A partir de entonces, los avances más señalados derivaron de la incorporación de bobinas (1913) y de diversas técnicas que hicieron posible mantener más de una conexión sobre la misma línea (1916).

Los nombres de Thomas A. Edison, Elisha Gray o Edward Hughes sé encuentran estrechamente vinculados al desarrollo del teléfono.

En una etapa posterior, en los años treinta, se aplicaron cables coaxiales y, ya en la segunda mitad de la centuria, se verificaron las primeras comunicaciones entre continentes y comenzaron las transmisiones vía satélite.

«Una conversación de cinco minutos es tanto como una carta de treinta páginas en papel y muchísimo más inteligente. De todo lo que la civilización del siglo XIX se enorgullecía, nada remotamente comparable a una charla mientras se fuma una pipa tranquilamente».
Científico escocés anónimo, en 1871.

Miedo del teléfono

Las preocupaciones anunciadas en los periódicos (y tal vez por la Western, que quería mantenerse con su negocio de telegrafía) estaban de moda.

¿Tener un teléfono sería como dejar entrar un espía en su casa? ¿Podría oír la gente que estuviera en la línea, lo que uno conversara?.

Si la electricidad llevaba las voces por una línea, ¿también podría llevar enfermedades?.

¿Podría el teléfono hacerle algún daño? ¿Podría la gente volverse sorda o enloquecer?.

¿Qué pensaría Dios de todo esto? Había gente que encontraba versos en la Biblia que parecieran prohibir el uso del teléfono dos años antes de que se hubiera inventado.

Ninguno de los científicos, ni gente de negocios, tomó estas preocupaciones seriamente, pero era importante que fueran explicadas si quería que se estableciera un sistema nacional de teléfono.

Entonces Alexander le añadió a su trabajo una campaña de publicidad diseñada para que el teléfono fuera aceptado públicamente.

Sabía que era importante para él que su nombre apareciera en los periódicos y sus ideas, ahora que estaban registradas, fueran discutidas y comentadas; era un hombre experimentado, agresivo de palabras y, como muchos buenos profesores, tenía ese toque de personalidad y de convicción.

Uno de sus «trucos», diseñado especialmente para poner a la gente a hablar, fue puesto en práctica, en mayo de 1876, en una reunión de la Academia Americana de Artes y Ciencias.

En la reunión, Alexander oprimió un botón en su escritorio y la audiencia quedó sorprendida al oír de una caja, sobre la mesa, la melodía de un himno.

En un edificio de la misma calle, el primo de Mabel, William, tocaba un «órgano telegráfico».

Sus teclas estaban unidas a la línea del telégrafo  en el salón de conferencias.

El órgano transmitía cada nota en su frecuencia particular a lengüetas afinadas en la caja y éstas respondían a las señales.

La audiencia académica casi enloquece de admiración.

Bell consiguió que su nombre apareciera bastan te destacado en la prensa. Pero, realmente lo que había demostrado no era el teléfono pero sí una aplicación ingeniosa del principio de su telégrafo armónico.

«Entre todos los inventos, había uno que no solo dio más fama a la exposición, sino que colocó el nombre de los Estados Unidos como el de la nación de inventores brillantes.

Era un aparato bastante simple el que su inventor, Alexander Graham Bell, presentó públicamente por primera vez allí, bajo el nombre de «teléfono»…

Cuando se conoció que el teléfono podría hablar casi tan perfectamente como la boca humana, repitiendo las palabras de una manera audible e inclusive a una distancia bastante considerable, su fama se regó como pólvora», En la revista científica holandesa De Natuur, de 1876.

Visitantes muy distinguidos se agrupan alrededor de la exhibición de Graham Bell en Filadelfia. Su aparición en la exhibición fue muy importante por dos razones. Primero, ganó publicidad.

La exhibición recibió páginas enteras de prensa y revistas. Segundo, fue una oportunidad para presentar el invento a todos los científicos visitantes y a los industriales que tenían suficiente arrojo y cuyo apoyo era vital para hacer que el teléfono fuera una interesante aventura de negocios.

En un exposición internacional sobre la comunicación telefónica, el siguiente en ensayar la nueva maravilla fue el emperador de Brasil. Bell le recitó el famoso Ser o no ser de la obra Hamlet de Shakespeare.

El emperador brincó sorprendido: «¡Yo oigo, yo oigo!», gritó.

Entonces, como ahora, la prensa estaba ansiosa de informar todos los pasos de su visitante real, la sorpresa del emperador fue la gran historia, al día siguiente, en la prensa de Filadelfia.

Pero lo que más llamó la atención de Bell fue la reacción de su compañero escocés y científico Sir William Thomson. Sir William pidió permiso para regresar luego con su esposa para otra demostración.

El resultado fue que Sir William Thomson vendría a ser el embajador del teléfono de Bell en Inglaterra.

Larga distancia

Sin embargo, la verdadera prueba de la utilidad del teléfono era la posibilidad para llevar las voces por largas distancias, usando las líneas del telégrafo.

Bell decidió ampliar su distancia por pequeños pasos.

Él y Watson intercambiaron conversaciones a una distancia de dos millas, cinco millas, dieciséis millas.

A pesar de que no era un comerciante consumado, Alexander Bell estaba consciente de las utilidades comerciales que se podían hacer si el teléfono se volviera un medio serio y práctico de comunicación y estaba muy ansioso de llegar a esa meta.

Existían dos razones para este Primero, quería hacer suficiente dinero para poder casarse con Mabel.

Segundo, como le escribió a ella, «quiero conseguir suficiente para quitarle las partes duras a la vida y que me deje libre para seguir trabajando en las ideas que mas me interesan».

Muchas de estas ideas tenían que ver con la enseñanza a los sordos a la que él estaba dedicando gran parte de su tiempo.

Noticias por teléfono

Verdaderamente, los norteamericanos se despertaron a las posibilidades del teléfono en febrero de 1877 cuando Bell, casi con treinta años de edad, lo demostró a una audiencia en Salem. Massachusetts.

Watson estaba en Boston, a catorce millas de distancia; cantaron, conversaron y se enviaron las primeras noticias por teléfono.

Esto apareció en el periódico Globe de Boston al día siguiente con este titular: «ENVIADA POR TELÉFONO la primera información para el periódico, por una voz humana, a través de alambres».

La historia fue copiada por todos los periódicos de América del Norte y se reportó en los diarios científicos de Europa.

No todo el mundo estaba entusiasmado.

El derrotado Elisha Gray rechazó el teléfono de Alexander. «Solamente crea interés en círculos científicos», escribió, «como juguete científico es muy bonito pero nosotros, en cierto tiempo, podemos hacer más que hablar con un alambre».

El teléfono, pensaba él, nunca desalojaría al telégrafo. Tampoco había quedado impresionado por la demostración en la exhibición de Filadelfia.

Todo lo que había oído y se había dicho era «un débil fantasmagórico sonido timbrado».

El teléfono también levantó sospechas de los supersticiosos.

Se debe recordar que el oír una voz sin cuerpo era una novedad completa; el sonido grabado aún no se había inventado.

Las voces sin cuerpo que la gente había escuchado, siempre estaban relacionadas con historias de fantasmas.

Para algunos, las voces que venían de un teléfono eran sobrenaturales, de demonios e infernales. Un periódico americano llegó a sugerir que el teléfono era un instrumento del diablo. No fue la primera ni última vez, que una invención llegó a tener la oposición de mentes obtusas.

Mejoras

Otro problema que debía resolverse era el diseño de un instrumento telefónico más «amigable».

Los modelos que Bell había exhibido incluían una caja grande donde se hablaba, que se colocaba sobre una mesa para luego inclinar la cabeza y poner el oído en la caja para poder oír la respuesta.

Bell diseñó modelos mejorados, pero fue el diseño de otro inventor, William Channind, que llegó a ser el primer instrumento de uso general.

Era de una sola pieza, que se usaba alternadamente para oír y para hablar.

Esto demoraba las conversaciones considerablemente y llevaba a muchas confusiones.

En abril 4 de 1877, un electricista para quien Watson trabajó, Charles Williams, llegó a ser la primera persona en estar «en el teléfono» permanentemente.

Se conectó una línea desde su almacén, en Boston, hasta su casa.

Pronto más gente quería tener el nuevo invento en sus casas y esto empezó a volverse un problema comercial: ¿deberían los usuarios alquilar los teléfonos o comprarlos de una vez?.

La decisión, finalmente, fue alquilarlos, a pesar de que quería decir que entraría menos dinero inmediatamente a Bell y a sus asociados.

Pero para lograr que el sistema de teléfono despegara, Bell y sus asociados necesitaban tener un sistema de líneas.

Las negociaciones con la Western Union no llegaron a ninguna parte.

El gigante de la industria telegráfica aún estaba ansioso por mantener su negocio de telegrafía y a no demorar sus telegramas al no compartir sus líneas con el teléfono.

De todas maneras, como se conoció más adelante, los alambres gruesos de telegrafía no eran adaptables al teléfono.

En julio de 1877, Alexander Bell con Gardiner Greene Hubbard y Thomas Sanders, que habían dado la financiación en principio a Bell y a Watson, fundaron la Compañía Bell Telephone.

Otro contrato que afectaría la vida de Alexander se firmaba el mismo mes.

En julio 11, Alexander Graham Bell contrajo nupcias con Mabel Gardiner Hubbard.

Ellos salieron para Europa en viaje de luna de miel tan extenso que incluiría demostración del teléfono a la reina Victoria por una petición especial del palacio.


La primera centra! telefónica dependía de un operador humano que conectaba la línea de quien llamaba con la línea de su interlocutor. E

sto se hacía con unos enchufes sencillos y unas tomas en un tablero de controles. Este tablero podía tener hasta cincuenta líneas.

Hecho en Cincinnati, se usó en Drammen, Noruega, de 1880 a 1889.

Funcionamiento del teléfono

En un sistema telefónico, la transmisión se basa en el paso, a través de un circuito, de un flujo de corriente cuyas variaciones de intensidad vienen marcadas por las propias variaciones de resistencia de dicho circuito.

El aparato encargado de modificar la resistencia de éste, y, por tanto, la intensidad de la corriente, es el micrófono.

El micrófono lleva incorporado un dispositivo de forma cilíndrica, con pequeños granos de carbón —el carbón altera su grado de conductividad de la electricidad en función del factor presión—.

En uno de sus extremos, el micrófono presenta una pequeña membrana móvil que, como si de un tímpano se tratara, varía su presión sobre los granos de carbón, por efecto de las ondas sonoras.

La variación de las ondas sonoras genera variaciones de presión en la membrana, de las que se derivan, a su vez, variaciones de intensidad en la corriente que atraviesa el circuito.

La intensidad cambia, por tanto, al tiempo que lo hacen las ondas sonoras.

En el funcionamiento del teléfono entra en juego, asimismo, el principio del electroimán —recordemos que se trata de un núcleo de hierro dulce al que el paso de una corriente eléctrica confiere propiedades magnéticas—.

La disposición de una lámina metálica vibrante junto al electroimán del circuito emisor —donde, según se ha indicado, la intensidad de la corriente eléctrica viene determinada por las variaciones de las ondas sonoras en el micrófono—, permite que aquélla se mueva libremente, en función de la corriente y, por tanto, de las ondas sonoras responsables de dicha alteración.

La laminilla metálica actúa como cuerpo vibrante emisor de sonido, el mismo que registra el micrófono.

En la central telefónica existe un generador encargado de suministrar la corriente eléctrica de baja tensión que llega al micrófono, conectado en serie dentro de la línea.

Por su parte, el receptor está conectado en circuito local; la corriente procede del transformador que alimenta la propia línea telefónica.

Al unir dos aparatos a través de la central queda constituido un circuito de línea, donde aparecen los dos micrófonos intercalados, no así los receptores, que se activan a partir de las variaciones creadas por aquéllos.

Conexiones telefónicas

La primera conexión telefónica pública se verificó en Estados Unidos en 1878, gracias a la instalación de una centralita de funcionamiento manual, que hacía posible la distribución de las llamadas entre los usuarios de la red.

Desde la centralita manual —sistema que, en determinadas áreas de España permaneció en uso hasta hace apenas veinte años—, se establecía la conexión a través de una red de clavijas que se introducían en sus correspondientes tomas.

La conmutación automática empezó a popularizarse en los años noventa del siglo XIX, con la introducción del disco marcador, sustituido en épocas recientes por los denominados «generadores de impulsos».

En un principio, la interconexión de teléfonos se realizaba exclusivamente recurriendo al tendido de cables; hoy, este sistema se mantiene a nivel local.

Sin embargo, para las comunicaciones a larga distancia se emplean actualmente la radio o satélites artificiales.

En el caso de los cables, la experimentación con nuevas tecnologías está destinada a sustituir los tradicionales hilos eléctricos por otros de fibra óptica; en ellos, la señal no es consecuencia de la corriente eléctrica, sino que se genera a partir de una onda luminosa, lo que se traduce en el incremento de la rapidez y la calidad de la transmisión de impulsos.

Estas ventajas en cuanto a velocidad y calidad se complementan gracias al desarrollo de dispositivos digitales, que funcionan a partir de señales que se generan y se representan mediante secuencias de ceros y unos.

La transformación de cualquier señal en una serie de ceros y unos amplía notablemente las posibilidades de la transmisión a través de redes telefónicas; únicamente es preciso que existan aparatos específicos destinados a codificar y descodificar la información inicial y final.

Comunicaciones a larga distancia

En las comunicaciones a larga distancia, la señal eléctrica se transforma en la central de conmutación en ondas de radio ultracortas, que pueden ser enviadas y recogidas por antenas parabólicas para su nueva codificación en señales eléctricas, éstas ya destinadas al aparato receptor.

Las señales viajan, como la luz, en línea recta.

Telefonía electromagnética

La principal evolución que en los últimos tiempos ha experimentado el campo de la telefonía se relaciona estrechamente con la creación de aparatos autónomos, provistos de baterías que pueden emitir señales electromagnéticas, no eléctricas. Popularmente, se conocen como teléfonos móviles, portátiles o celulares.

Para hacer frente a la espectacular proliferación de teléfonos móviles producida en los últimos tiempos se ha puesto en marcha una compleja red de antenas retransmisoras, lógicamente ubicadas en lugares altos.

La mejora del proceso de captación y reenvío de las señales electromagnéticas marca, sin duda, el  camino de futuros avances. En este sentido, la colocación de las antenas en satélites artificiales en órbita alrededor de la Tierra ofrece múltiples posibilidades.

La transmisión del sonido a través del teléfono

El proceso de transmisión del sonido a través del teléfono se produce del siguiente modo:

1. Al hablar emitimos ondas sonoras que inciden sobre el micrófono instalado en el teléfono.

2. Estas ondas sonoras hacen vibrar una membrana o diafragma.

3. Al producirse esta vibración, el diafragma empuja unos gránulos de carbón por los que pasa la corriente eléctrica.

4. La compresión que ejerce el diafragma sobre los gránulos de carbón modifica la resistencia eléctrica de estos, variando la intensidad de la corriente eléctrica que los atraviesa. El resultado es una señal eléctrica variable, que contiene el mensaje. En los teléfonos modernos, los gránulos de carbón se han sustituido por transductores piezoeléctricos que realizan la misma función.

5. La señal eléctrica se transmite a través del cable de la línea telefónica hasta el aparato receptor, en el que vuelve a convertirse en sonido. Este proceso tiene lugar en el auricular, donde la corriente eléctrica recibida activa un electroimán, que a su vez atrae a una membrana.

Como la señal recibida es variable, el electroimán se activará y desactivará siguiendo las variaciones de la misma, haciendo vibrar la membrana.

6. Estas vibraciones reproducen el sonido original y el mensaje es recibido por la persona que se encuentra a la escucha.

Para que tenga lugar la conversación telefónica es necesario que los aparatos emisor y receptor se encuentren conectados entre sí. Dicha conexión se realiza a través de centrales telefónicas, que conectan a los distintos ruanos a través de un conjunto de líneas.

En un principio, la conexión se realizaba manualmente en as centrales telefónicas, a las que llegaban los cables que provenían de todos los aparatos de una determinada zona.

La persona encargada de ese trabajo se llamaba operadora , al descolgar el teléfono, esta atendía la llamada y conectaba con el teléfono que se solicitaba.

Hoy en día, las conexiones se encuentran automatizadas, las centrales se hallan conectadas a su vez con otras centrales telefónicas similares, constituyendo el conjunto una red telefónica global.

Esta red conecta prácticamente todos los puntos del planeta, de forma que es posible mantener una conversación telefónica con cualquier lugar de manera casi Instantánea.

¿Cómo tiene lugar una conversación telefónica?

Al establecer una comunicación telefónica, lo primero que recibimos es una señal desde la central telefónica a! descolgar el teléfono, que nos indica que nuestra línea está libre y dispuesta para realizar la llamada, A continuación marcamos el número del aparato receptor con el que queremos establecer comunicación.

Este número es un código que permite a la central telefónica identificar al aparato receptor. Una vez identificado el receptor, la central telefónica envía una señal de aviso al mismo. Esta señal alerta a la persona de que se está produciendo una llamada, de forma que el receptor descuelga el teléfono y se establece así la comunicación entre ambos interlocutores.

Si, por el contrario, la línea está ocupada y no es posible establecer la comunicación en ese momento, la central envía al emisor una señal que le informa de tal situación.

El proceso de establecimiento de la llamada telefónica tiene lugar de forma casi instantánea, puesto que las centrales telefónicas se encuentran totalmente automatizadas.

En los comienzos de la telefonía hemos visto que la conexión era realizada por operadores de forma manual. Más tarde se sustituyó esta labor manual por conmutadores automáticos de tipo electromagnético (relés).

En la actualidad se utilizan elementos de conmutación electrónicos capaces de realizar gran cantidad de conexiones de forma automática y simultánea.

PARA SABER MAS…

El 25 de enero de 1915 funcionarios, ejecutivos y directores de la American Telephone and Telegraph Company (AT&T) rodeaban a Alexander Graham Bell, sentado junto a su invento, el teléfono, en el decimoquinto piso del Telephone Building de Nueva York. Al otro lado del país, en San Francisco, Thomas A. Watson también se hallaba a la espera, flanqueado de modo similar por políticos y ejecutivos.

A las 16.30, hora del este, el Dr. Bell levantó el teléfono que tenía delante y dijo: «Mr. Watson, ¿está usted ahí?». Watson presionó el receptor contra su oreja y aseguró a su antiguo jefe que sí, que había oído su pregunta con claridad.

Luego Bell repitió las palabras que había dicho en 1876, cuando Watson y él habían tenido la primera conversación telefónica, entre dos pisos de una pensión de Boston.

Repitió: «Mr. Watson, venga aquí. Quiero verle». La respuesta de Watson llegó desde 4.115 km de distancia: «Tardaría una semana en poder verle». De este modo se estableció la primera comunicación telefónica transcontinental.

La línea telefónica que permitió a Watson y Bell hablar a través del continente pesaba cerca de tres mil toneladas y se aguantaba por unos 130.000 postes de teléfono. La línea principal tenía ramales en Jekyll Island, Georgia y Washington, y operaba como una amplia «party Une», ya que permitía que centenares de personas escucharan una conversación que mantuvieran otras dos en alguna de las cuatro ciudades. Mientras Bell y Watson conversaban, Theodore Vail, presidente de la AT&T, los interrumpió desde Jekyll Island para felicitarlos. Más tarde, el presidente Woodrow Wilson habló desde Washington y declaró: «Parece cosa de fantasía hablar a través del continente».

En marzo, la operación comercial de la línea transcontinental había empezado. Una llamada desde Nueva York a San Francisco costaba 20,70 dólares, por tres minutos, y casi siete dólares por cada minuto adicional.

ALEXANDER BELL Y SU APORTE A LA SORDERA:

La familia Hubbard: En 1870 cuando Bell se traslada a Boston conoció un ahogado bastante adinerado y hombre de negocios que lo iba a respaldar en los próximos años.

Gardiner Greene Hubbard había hecho una fortuna con la instalación y crecimiento de las redes de ferrocarril y con el suministro de agua y gas. Era un abogado prestigioso, un senador de Massachusetts, y un líder típico de negocios de los años de auge en Norteamérica. Había solamente una cosa que empañaba su vida. Uno de sus tres hijos, solamente uno, Mabel, sobrevivió la infancia y cuando tenía cinco años se quedó totalmente sorda por la escarlatina. Las escasas palabras que ella podía pronunciar, eran las pocas que había aprendido cuando gateaba y ya estaban grotescamente distorsionadas.

Hubbard utilizó sus considerables medios e influencia para conseguir la mejor educación posible para Mabel. Estaba decidido a que ella aprendiera a hablar normalmente. Contrató a una institutriz, la envió a una escuela especial en Alemania e inclusive abrió una escuela cerca a su casa para ella. Mabel era muy inteligente. Sobresalía en sus trabajos escolares y se volvió rápidamente una experta leedora de labios. Sin embargo, su lenguaje continuaba muy deficiente.

En 1873, Alexander Graham Bell fue nombrado profesor de lenguaje y elocución de la Escuela de Oratoria de la Universidad de Boston. Esto era un cumplido muy grande a la labor exitosa que hizo en la escuela de Sarah Fuller y a los resultados que había tenido en sus conferencias sobre la ciencia del lenguaje. Entre las personas que fueron a escucharlo a la universidad, estaba Mabel Hubbard ahora de quince años. Alexander la aceptó como una alumna para tratar de mejorar su lenguaje.

Las enseñanzas de Alexander lograron conseguir un éxito que ni ella ni sus padres esperaban.

Señas versus lenguaje

Tanto el nombramiento de Bell para la Escuela de Oratoria y la elección de Hubbard como profesor de Mabel, eran un tributo al método especial de enseñanza que había desarrollado para los sordos. Había y todavía hay, los métodos básicos. Uno es el lenguaje por manos deletreando palabras e ideas con los dedos en una clase de código. Hay muchas versiones del lenguaje de manos, pero la versión más utilizada fue desarrollada en Francia, en el siglo XVIII, del lenguaje que los sordos de París habían desarrollado para ellos mismos. Los signos les permiten a los sordos comunicarse entre ellos y con otros que lo hayan aprendido. Sin embargo, los críticos aducen que esto solamente limita al mundo de los sordos.

Mabel Gardiner Hubbard a la edad de seis años. Un año antes, había sufrido escarlatina. Hoy es una enfermedad que se trata fácilmente pero que en el siglo XIX era muy peligrosa y podía tener complicaciones permanentes: una de éstas era la inflamación que podía esparcirse de la piel hasta el tímpano, produciendo una sordera incurable como lo que le pasó a Mabel.

Éste era el punto de vista de Bell. El lenguaje visible de su padre trataba de mejorar los signos enseñándoles a los sordos vocales y consonantes y así pudieran comunicarse más libremente con gente que tuviera oído y lenguaje normales. Ésta era sólo una entre las muchas técnicas que se estaban usando para enseñar a los niños sordos a hablar y que se conocía como el método ‘oral’. Las discusiones entre quienes preferían el signo y los que preferían el método oral, dividían a los profesores de los sordos.

Los profesores del método oral alegaban que a los niños sordos debía enseñárseles a vivir tan cerca de la normalidad como fuera posible, en un mundo de gente que hablara y oyera y que si ellos tenían inteligencia normal, aprenderían a hablar; además decían que los signos condenaban a los niños sordos a vivir como unos ciudadanos de segunda en una prisión de silencio. No era así, alegaban los profesores que preferían los signos. Éstos permitían a quienes los habían aprendido comunicarse mucho mejor y más honestamente, debido a que el deseo de aprender de los métodos orales limitaban al alumno en los vocabularios y en la habilidad para expresar las ideas.

Había otro ángulo para el argumento. Muchos niños sordos aprendieron a hablar pero su lenguaje sonaba tan diferente que parecían mentalmente impedidos. En el siglo XIX mucha gente pensaba que era mejor para un niño ser mudo a que pensaran que era defectuoso mentalmente.

Los métodos de Alexander Graham Bell trajeron un cambio, al mostrarles a los niños cómo se hacían los amigos y mejorando la calidad del lenguaje de sus alumnos. Pero el alegato de ‘señas o sonidos continuaba y muchos terapistas que creían en las señales, todavía culpan a Alexander Graham Bell por haber popularizado el método oral’.

Bell envía en 1876 el primer mensaje telefónico

CRONOLOGÍA DE LA EVOLUCIÓN

1667 — Robert Hook descubre que los sonidos pueden transmitirse a través de un hilo muy tenso, siempre que se puedan transportar a su través las vibraciones.

1821 — El danés Hans Christian Oersted descubre en 1819 que una aguja imantada se desvía al colocarla cerca de una corriente eléctrica, es decir, que todo campo eléctrico está asociado a un campo magnético.
1844 — Se emite el primer telegrama público con un aparato Morse.

1860 — El alemán Johann Philip Reis hace la primera demostración pública de que se pueden transmitir sonidos a través de un cable mediante un diafragma (una lamina fina de tela o metal) que al vibrar activa una corriente eléctrica.

1876 — Alexander Graham Bell patenta el primer teléfono capaz de transmitir la voz humana usando una corriente continua y un diafragma de metal que tiembla con el sonido y es capaz de interferir en un campo magnético y crear una pequeñísima y suficiente corriente eléctrica que se reproducirá al otro extremo del hilo. El 10 de marzo hace su primera llamada: «Mr Watson, venga, le necesito».

1878 — Se pone en marcha la primera centralita telefónica del mundo, en New Haven, Connecticut.

1973 — En abril, Martin Cooper, empleado de Motorola, hace la primera llamada con un prototipo de móvil Motorola DynaTac, que se puede llevar en la mano, mientras camina por una calle de Nueva York.

Fuente Consultada:
Genios de la Humanidad Graham Bell
Enciclopedia del Estudiante
Tomo 4 Tecnología de la Informática

El Gran Libro del Siglo XX de Clarín
PIONEROS, Inventos y descubrimientos claves de la Historia – Teodoro Gómez.

Grandes Inventos en la Historia Lista de Inventos Argentinos

LISTA DE LOS INVENTOS MAS DESTACADOS

lista de inventos

1532 Sistema circulatorio pulmonar Miguel Servet Español

1590 Microscopio compuesto Zacharias Janssen Holandés

1593 Termómetro de agua Galileo Italiano

1608 Telescopio Hans Lippershey Holandés

1625 Transfusión de sangre Jean-Baptiste Denis Francés

1629 Turbina de vapor Giovanni Branca Italiano

1642 Máquina de sumar Blaise Pascal Francés

1643 Barómetro Evangelista Torricelli Italiano

1650 Bomba de aire Otto von Guericke Alemán

1656 Reloj de péndulo Christiaan Huygens Holandés

1668 Telescopio reflector Isaac Newton Británico

1672 Máquina de calcular Gottfried Wilhelm Leibniz Alemán

1698 Bomba de vapor Thomas Savery Inglés

1701 Barrena sembradora Jethro Tull Inglés

1705 Motor de vapor Thomas Newcomen Inglés

1710 Piano Bartolomeo Cristofori Italiano

1714 Termómetro de mercurio Daniel Gabriel Fahrenheit Alemán

1717 Campana de buceo Edmund Halley Británico

1725 Estereotipia William Ged Escocés

1745 Botella de Leyden (condensador) Ewald Georg von Kleist Alemán

1752 Pararrayos Benjamin Franklin Estadounidense

1758 Lente acromática John Dollond Británico

1759 Cronómetro marino John Harrison Inglés

1764 Máquina de hilar James Hargreaves Británico

1768 Máquina de tejer Richard Arkwright Británico

1769 Motor de vapor (con condensador separado) James Watt Escocés

1770 Automóvil Nicholas Joseph Cugnot Francés

1775 Submarino David Bushnell Estadounidense

1780 Pluma de acero Samuel Harrison Inglés

1780 Lente bifocal Benjamin Franklin Estadounidense

1783 Globo aerostático Joseph Michel Montgolfier y Jacques Étienne Montgolfier Franceses

1784 Trilladora mecánica Andrew Meikle Británico

1785 Telar mecánico Edmund Cartwright Británico

1787 Barco de vapor John Fitch Estadounidense

1788 Regulador centrífugo o de bolas James Watt Escocés

1791 Turbina de gas John Barber Británico

1792 Gas de alumbrado William Murdock Escocés

1793 Desmotadora de algodón Eli Whitney Estadounidense

1796 Prensa hidráulica Joseph Bramah Inglés

1796 Vacuna contra la viruela Edward Jenner Británico

1798 Litografía Aloys Senefelder Alemán

1798 Cinta sin fin de tela metálica (fabricación de papel) Louis Robert Francés

1800 Telar Jacquard Joseph Marie Jacquard Francés

1800 Batería eléctrica Conde Alessandro Volta Italiano

1801 Telar de patrones Joseph Marie Jacquard Francés

1804 Propulsor de hélice John Stevens Estadounidense

1804 Cohete de carburante sólido William Congreve Británico

1804 Locomotora de vapor Richard Trevithick Británico

1810 Conservación de alimentos (mediante esterilización y vacío) Nicolas Appert Francés

1810 Prensa de imprimir Frederick Koenig Alemán

1814 Locomotora ferroviaria George Stephenson Británico

1815 Lámpara de seguridad Sir Humphry Davy Británico

1816 Bicicleta Karl D. Sauerbronn Alemán

1819 Estetoscopio René Théophile Hyacinthe Laennec Francés

1820 Higrómetro J.F. Daniell Inglés

1820 Galvanómetro Johann Salomon Cristoph Schweigger Alemán

1821 Motor eléctrico Michael Faraday Británico

1823 Electroimán William Sturgeon Británico

1824 Cemento portland Joseph Aspdin Británico

1827 Cerillas o cerillos de fricción John Walker Británico

1829 Máquina de escribir W.A. Burt Estadounidense

1829 Sistema Braille Louis Braille Francés

1829 Máquina de coser Barthélemy Thimonnier Francés

1830 Báscula de romana Thaddeus Fairbanks Estadounidense

1831 Fósforos Charles Sauria Francés

1831 Segadora Cyrus Hall McCormick Estadounidense

1831 Dinamo Michael Faraday Británico

1834 Tranvía eléctrico Thomas Davenport Estadounidense

1836 Revólver Samuel Colt Estadounidense

1837 Telégrafo Samuel Finley Breese Morse Sir Charles Wheatstone Estadounidense Inglés

1838 Código Morse Samuel Finley Breese Morse Estadounidense

1839 Fotografía Louis Jacques Mandé Daguerre y Joseph Nicéphore Niepce William Henry Fox Talbot Franceses Inglés

1839 Caucho vulcanizado Charles Goodyear Estadounidense

1839 Martillo pilón de vapor James Nasmyth Escocés

1839 Bicicleta Kirkpatrick MacMillan Británico

1845 Llanta neumática Robert William Thompson Estadounidense

1846 Imprenta rotativa Richard March Hoe Estadounidense

1846 Algodón pólvora Christian Friedrich Schönbein Alemán

1846 Éter (anestésico) Crawford Williamson Long Estadounidense

1849 Hormigón armado F.J. Monier Francés

1849 Pasador de seguridad Walter Hunt Estadounidense

1849 Turbina de agua James Bicheno Francis Estadounidense

1850 Algodón mercerizado John Mercer Británico

1851 Rifle de retrocarga Edward Maynard Estadounidense

1851 Oftalmoscopio Hermann Ludwig Ferdinand y Helmholtz Alemanes

1852 Dirigible no rígido Henri Giffard Francés

1852 Giróscopo Jean Bernard Léon Foucault Francés

1853 Ascensor (con freno) Elisha Graves Otis Estadounidense

1855 Jeringa hipodérmica Alexander Wood Escocés

1855 Fósforos de seguridad J.E. Lundstrom Sueco

1855 Mechero de gas Bunsen Robert Wilhelm Bunsen Alemán

1856 Convertidor Bessemer (acero) Sir Henry Bessemer Británico

1858 Cosechadora Charles y William Marsh Estadounidenses

1859 Espectroscopio Gustav Robert Kirchhoff y Robert Wilhelm Bunsen Alemanes

1860 Motor de gas Étienne Lenoir Francés

1861 Horno eléctrico William Siemens Británico

1861 Ametralladora Richard Jordan Gatling Estadounidense

1861 Kinematoscopio Coleman Sellers Estadounidense

1865 Prensa rotativa de bobinas William A. Bullock Estadounidense

1865 Cirugía antiséptica Joseph Lister Británico

1866 Papel (de pasta de madera, proceso de sulfatación) Benjamin Chew Tilghman Estadounidense

1867 Dinamita Alfred Bernhard Nobel Sueco

1868 Pila seca Georges Leclanché Francés

1868 Máquina de escribir Carlos Glidden y Christopher Latham Sholes Estadounidenses

1868 Freno neumático George Westinghouse Estadounidense

1870 Celuloide John Wesley Hyatt e Isaiah Hyatt Estadounidenses

1874 Telégrafo cuadroplexo Thomas Alva Edison Estadounidense

1876 Teléfono Alexander Graham Bell Estadounidense

1877 Motor de combustión interna (cuatro tiempos) Nikolaus August Otto Alemán

1877 Gramófono (fonógrafo) Thomas Alva Edison Estadounidense

1877 Micrófono Emile Berliner Estadounidense

1877 Soldadura eléctrica Elihu Thomson Estadounidense

1877 Vagón frigorífico G.F. Swift Estadounidense

1878 Tubo de rayos catódicos Sir William Crookes Británico

1879 Máquina registradora James J. Ritty Estadounidense

1879 Lámpara de hilo incandescente Thomas Alva Edison Sir Joseph Wilson Swan Estadounidense Británico

1879 Motor de automóvil (dos tiempos) Karl Benz Alemán

1879 Lámpara de arco Charles Francis Bush Estadounidense

1884 Turbina de vapor Charles Algernon Parsons Inglés

1884 Rayón (nitrocelulosa) Conde Hilaire Bernigaud de Chardonnet Francés

1884 Turbina de vapor multieje Charles Algernon Parsons Británico

1884 Disco de Nipkow (dispositivo mecánico de exploración de televisión) Paul Gottlieb Nipkow Alemán

1884 Estilográfica Lewis Edson Waterman Estadounidense

1885 Grafófono (máquina de dictar) Chichester A. Bell y Charles Sumner Tainter Estadounidenses

1885 Transformador de CA William Stanley Estadounidense

1885 Submarino con propulsión eléctrica Isaac Peral Español

1886 Linotipia Ottmar Mergenthaler Estadounidense

1887 Llanta neumática inflable J.B. Dunlop Escocés

1887 Gramófono (grabaciones en disco) Emile Berliner Estadounidense

1887 Manguito incandescente para gas Barón Carl Auer von Welsbach Austriaco

1887 Mimeógrafo Albert Blake Dick Estadounidense

1887 Monotipia Tolbert Lanston Estadounidense

1887-1900 Morfología de las neuronas Santiago Ramón y Cajal Español

1888 Máquina de sumar impresora por teclas William Steward Burroughs Estadounidense

1888 Cámara Kodak George Eastman Estadounidense

1888 Kinetoscopio William Kennedy Dickson Thomas Alba Edison Escocés Estadounidense

1889 Turbina de vapor Carl Gustaf de Laval Sueco

1890 Rayón (cuproamonio) Louis Henri Despeissis Francés

1891 Planeador Otto Lilienthal Alemán

1891 Goma sintética Sir William Augustus Tilden Británico

1892 Motor de CA Nikola Tesla Estadounidense

1892 Cámara de tres colores Frederick Eugene Ives Estadounidense

1892 Rayón (viscosa) Charles Frederick Cross Británico

1892 Botella de vacío (vaso de Dewar) Sir James Dewar Británico

1892 Motor diesel Rudolf Diesel Alemán

1893 Célula fotoeléctrica Julius Elster y Hans F. Geitel Alemanes

1893 Automóvil a gasolina Charles Edgar Duryea y J. Frank Duryea Estadounidenses

1895 Cinematógrafo Louis Jean Lumière y Auguste Marie Lumière Charles Francis Jenkins Franceses Estadounidense

1895 Rayos X Wilhelm Conrad Roentgen Alemán

1895 Rayón (acetato) Charles Frederick Cross Británico

1895 Telegrafía sin hilos Guglielmo Marconi Italiano

1896 Avión experimental Samuel Pierpont Langley Estadounidense

1898 Papel fotográfico sensible Leo Hendrik Baekeland Estadounidense

1900 Dirigible rígido Graf Ferdinand von Zeppelin Alemán

1902 Radioteléfono Valdemar Poulsen y Reginald Aubrey Fessenden Danés Estadounidense

1903 Aeroplano Wilbur Wright y Orville Wright Estadounidenses

1903 Electrocardiógrafo Willem Einthoven Holandés

1904 Tubo rectificador de diodo (radio) John Ambrose Fleming Británico

1906 Girocompás Hermann Anschütz-Kämpfe Alemán

1906 Baquelita Leo Hendrik Baekeland Estadounidense

1906 Tubo amplificador de triodo (radio) Lee De Forest Estadounidense

1908 Cámara cinematográfica de dos colores G. Albert Smith Británico

1909 Salvarsán Paul Ehrlich Alemán

1910 Hidrogenación del carbón Friedrich Bergius Alemán

1910 Brújula y estabilizador giroscópicos Elmer Ambrose Sperry Estadounidense

1910 Celofán Jacques Edwin Brandenberger Suizo

1911 Aire acondicionado W.H. Carrier Estadounidense

1911 Vitaminas Casimir Funk Polaco

1911 Lámpara de neón Georges Claude Francés

1912 Lámpara de vapor mercúrico Peter Cooper Hewitt Estadounidense

1913 Estatorreactor René Lorin Francés

1913 Tubo de electrones multirrejilla Irving Langmuir Estadounidense

1913 Gasolina craqueada William Meriam Burton Estadounidense

1913 Radiorreceptor heterodino Reginald Aubrey Fessenden Canadiense

1913 Tubo de rayos X William David Coolidge Estadounidense

1915 Arranque automático de automoción Charles Franklin Kettering Estadounidense

1916 Rifle Browning (automático) John Moses Browning Estadounidense

1916 Lámpara incandescente rellena de gas Irving Langmuir Estadounidense

1919 Espectrómetro de masa Sir Francis William Aston Arthur Jeffrey Dempster Británico Estadounidense

1921 Insulina Frederick Grant Banting Charles Herbert Best John James Rickard Canadiense Canadiense Británico

1922-26 Películas cinematográficas con sonido T.W. Case Estadounidense

1923 Iconoscopio de televisión Vladímir Kosma Zworykin Estadounidense

1923 Autogiro Juan de la Cierva Español

1925 Congelación rápida de alimentos Clarence Birdseye Estadounidense

1925 Tubo disector de imágenes de televisión Philo Taylor Farnsworth Estadounidense

1926 Cohete de carburante líquido Robert Hutchings Goddard Estadounidense

1928 Penicilina Sir Alexander Fleming Británico

1930 Nailon (poliamidas sintéticas generadoras de fibras) Wallace Hume Carothers Estadounidense

1930 Batisfera Charles William Beebe Estadounidense

1930 Freón (compuestos de flúor de baja temperatura de ebullición) Thomas Midgley y colegas Estadounidense

1930 Motor de turbina de gas moderno Frank Whittle Británico

1930 Neopreno (goma sintética) Padre Julius Arthur Nieuwland y Wallace Hume Carothers Estadounidenses

1931 Ciclotrón Ernest Orlando Lawrence Estadounidense

1931 Analizador diferencial (computadora analógica) Vannevar Bush Estadounidense

1931 Generador de Van de Graaff Robert Jemison Van de Graaff Estadounidense

1932 Microscopio de contraste de fase Frits Zernike Holandés

1932 Sulfonamida Gerhard Domagk Alemán

1933 Modulación de frecuencia (FM) Edwin Howard Armstrong Estadounidense

1935 Buna (caucho sintético) Científicos alemanes Alemanes

1935 Radiolocalizador (radar) Sir Robert Watson-Watt Británico

1935 Cortisona Edward Calvin Kendall Tadeus Reichstein Estadounidense Suizo

1935 Microscopio electrónico Científicos alemanes Alemanes

1936 Helicóptero de dos rotores Heinrich Focke Alemán

1937 Xerografía Chester Carlson Estadounidense

1937 Nailon Wallace Hume Carothers Estadounidense

1939 DDT Paul Müller Suizo

1939 Helicóptero Igor Sikorski Estadounidense

1940 Televisión en colores Guillermo González Camarena Mexicano

1940 Betatrón Donald William Kerst Estadounidense

1941 Motor aeronáutico de turborreacción Frank Whittle Británico

1942 Misil guiado Wernher von Braun Alemán

1942 Reactor nuclear Enrico Fermi Estadounidense

1944 Estreptomicina Selman A. Waksman Estadounidense

1944 V-2 (bomba impulsada por cohete) Científicos alemanes Alemanes

1945 Bomba atómica Científicos del gobierno de EEUU Estadounidenses

1946 Computadora digital electrónica John Presper Eckert, Jr. y John W. Mauchly Estadounidenses

1947 Holografía Dennis Gabor Británico

1947 Cloromicetina Mildred Rebstock Estadounidense

1947 Cámara Polaroid Land Edwin Herbert Land Estadounidense

1947 Batiscafo Auguste Piccard Suizo

1947 Horno de microondas Percy L. Spencer Estadounidense

1948 Contador de centelleo Hartmut Kallmann Alemán

1948 Aureomicina Benjamin Minge Duggar y Chandra Bose Subba Row Estadounidenses

1948 Transistor John Bardeen, Walter Houser Brattain y William Shockley Estadounidenses

1949 Avión a chorro (estatorreactor) René Leduc Francés

1950 Televisión en color Peter Carl Goldmark Estadounidense

1952 Bomba de hidrógeno Científicos del gobierno de EEUU Estadounidenses

1952 Cámara de burbujas (detector de partículas nucleares) Donald Arthur Glaser Estadounidense

1953 Máser Charles Townes Estadounidense

1954 Batería solar Científicos de Bell Telephone Laboratory Estadounidenses

1954 Vacuna contra la poliomielitis Jonas Salk Estadounidense

1955 Diamantes sintéticos Científicos de General Electric Estadounidenses

1955 Datación mediante carbono W.F. Libby Estadounidense

1956 Aerodeslizador (hovercraft) Christopher Cockerell Inglés

1956 Primer prototipo de motor rotatorio Felix Wankel Alemán

1956 Videocinta Charles Ginsberg y Ray Dolby Estadounidenses

1956 Fregona Manuel Jalón Corominas Español

1957 Reactor atómico enfriado por sodio Científicos del gobierno de EEUU Estadounidenses

1957 Satélite terrestre artificial Científicos del gobierno de la URSS Soviéticos

1958 Satélite de comunicaciones Científicos del gobierno de EEUU Estadounidenses

1959 Circuitos integrados Jack Kilby y Robert Noyce Estadounidenses

1960 Láser Charles Hard Townes, Arthur L. Schawlow y Gordon Gould Estadounidenses

1960 Síntesis de la clorofila Robert Burns Woodward Estadounidense

1960 Píldora anticonceptiva Gregory Pincus, John Rock y Min-chueh Chang Estadounidenses

1962 Diodo emisor de luz (LED) Nick Holonyak, Jr. Estadounidense

1964 Pantalla de cristal líquido George Heilmeier Estadounidense

1966 Corazón artificial (ventrículo izquierdo) Michael Ellis DeBakey Estadounidense

1967 Transplante de corazón humano Christiaan Neethling Barnard Surafricano

1970 Primera síntesis completa de un gen Har Gobind Khorana Estadounidense

1971 Microprocesador Ted Hoff Estadounidense

1971 Generación de imágenes por resonancia magnética nuclear Raymond Damadian Estadounidense

1972 Calculadora electrónica de bolsillo J.S. Kilby y J.D. Merryman Estadounidenses

1972 Primer generador de energía magnetohidrodinámico Científicos del gobierno de la URSS Soviéticos

1973 Laboratorio espacial orbital Skylab Científicos del gobierno de EEUU Estadounidenses

1974 ADN recombinante (ingeniería genética) Científicos estadounidenses Estadounidenses

1975 TAC (tomografía axial computerizada) Godfrey N. Hounsfield Británico

1975 Fibra óptica Bell Laboratories Estadounidense

1976 Supercomputadora J.H. Van Tassel y Seymour Cray Estadounidenses

1978 Síntesis de los genes de la insulina humana Roberto Crea, Tadaaki Hirose, Adam Kraszewski y Keiichi Itakura Estadounidenses

1978 Transplante de genes entre mamíferos Paul Berg, Richard Mulligan y Bruce Howard Estadounidenses

1978 Corazón artificial Jarvik-7 Robert K. Jarvik Estadounidense

1978 Vacuna sintética contra la malaria Manuel Patarroyo Colombiano

1979 Disco compacto Joop Sinjou Toshi Tada Doi Holandés Japonés

1979 Reparación de defectos genéticos en células de ratón mediante técnicas de ADN recombinante y micromanipulación W. Francés Anderson y colegas Estadounidenses

1981 Sistema de transporte espacial (lanzadera espacial) Ingenieros de la NASA Estadounidenses

1981 Microscopio de túnel de barrido Gerd Binnig Heinrich Rohrer Alemán Suizo

1986 Superconductores hipertérmicos J. Georg Bednorz Karl A. Müller Alemán Suizo

1989 El Satélite Explorador de Fondo Cósmico (COBE) mostró que las irregularidades en la radiación de fondo de microondas son restos de regiones no uniformes presentes en el universo poco después del Big Bang Equipo dirigido por George Smoot Estadounidenses

1993 Telescopio Keck, el mayor telescopio reflector del mundo Universidad de California, California Instituto de Tecnología Estadounidense

 

1994 Pruebas de la existencia del quark top Fermi National Accelerator Laboratory, Illinois (Fermilab) Estadounidense

Biografia de Volta Inventor de la Pila Electrica

Biografia de Volta Alessander – Inventor de la Pila Electrica

Hasta finales del siglo XVIII sólo se conocían dos manera de obtener electricidad: generándola por frotamiento, con una máquina electrostática, o recurriendo a la almacenada en una botella de Leyden, precursora en esencia de los actuales condensadores.

En ambos casos se trataba de corriente continua, sin que llegara a sospecharse siquiera la posible existencia de corriente alterna.

Alessandro Volta, profesor de la universidad de Pavía (Italia).

Volta había realizado muchas investigaciones sobre la electricidad, e inventado varios aparatos destinados a almacenar la carga eléctrica o medir exactamente sus efectos.

Llegó a la conclusión de que cualquier sustancia húmeda era capaz de producirla.

En consecuencia, cualquier contacto entre sustancias de ambas clases podía «agitar o perturbar el fluido eléctrico», y si una de una clase era colocada en medio de dos de la otra se generaba una corriente continua, que quedaba interrumpida al separarlas…asi consiguió construir la primer pila o acumulador de energía eléctrica.

Veamos ahora la historia de su vida y el desarrollo de sus experiencias científicas.

https://historiaybiografias.com/archivos_varios5/bullet-rojo0.jpg

BREVE FICHA BIOGRAFICA

• Nació el 18 de febrero de 1745, en Como (Italia).

• A los dieciocho años empezó a hacer experimentos eléctricos.

• En 1774 fue nombrado profesor de Física en la Escuela Real de Como.

• Al año siguiente realizó su primer invento: el electróforo, un dispositivo
que producía cargas eléctricas.

• En 1779 recibió el nombramiento de profesor de Física en la Universidad de Pavía (Italia).

• En 1799 creó la primera pila, conocida hoy como pila de Volta.

• Un año después fue nombrado miembro de la Real Sociedad de Londres (Inglaterra) y de la Academia de París (Francia).

• En 1801 viajó a París, invitado por Napoleón Bonaparte para exponer las características de su invento en el Instituto Nacional de Ciencias de Francia.

Fama y honores

• Afines de 1801, recibió la Medalla de Oro al Mérito Científico y Napoleón lo nombró Senador.

• En 1806 recibió el título de Conde del Imperio Francés.

• Tres años más tarde fue designado senador de la Corte y elegido como Caballero de la Corona de Hierro del Reino de Lombardía (Italia).

• En 1816 se publicaron sus trabajos en cinco volúmenes.

• Murió el 5 de marzo de 1827, en Cammago, cerca de Como.

En 1780 el italiano Luigi Galvani afirmó que había generado una corriente eléctrica poniendo dos metales diferentes en contacto con el músculo de una rana.

Pero Volta comprobó que este último sólo conducía la corriente, producida por el contacto de los metales. Con estas conclusiones, creó su batería eléctrica opila voltaica, gue despertó gran entusiasmo en la época y fue frase para estudios posteriores sobre la electricidad.

Fuente:Ficha sobre la biografia de VOLTA ALESSANDRI – Revista GENIOS

https://historiaybiografias.com/archivos_varios5/bullet-rojo0.jpg

BIOGRAFIA: Entre los grandes nombres que Italia ha dado a la ciencia europea, ocupa un lugar destacado el de Alejandro Volta, uno de los padres de los estudios sobre la electricidad.

Nacido en Como, el 18 de febrero de 1745, en el seno de una familia de buena consideración social, Alejandro demostró desde su adolescencia una gran vocación por las ciencias naturales.

Muerto su padre arruinado, fue recogido por su tío paterno, el cual pretendió dedicarle a la carrera de Derecho.

alejandro volta biografia

Pero el muchacho no siguió esta voluntad ni la de otros que le aconsejaban abrazar el estado eclesiástico.

Desde los dieciocho años empezó a trabajar en el campo de la física y la química, ciencias que entonces se hallaban en un estado incipiente. En particular se dedicó a las experiencias sobre la electricidad.

Fue profesor de Física y rector del Liceo de su ciudad natal y profesor de la Universidad de Pavía (1779 a 1819).

Fue el inventor del electróforo, del electrómetro, del eudiómetro, de la lámpara de gas y de la famosa pila eléctrica que lleva su nombre.

Sostuvo polémicas con Galvani cuando el famoso experimento de aquél, sosteniendo la inexistencia de la electricidad animal y que su producción se debía al contacto de dos cuerpos metálicos distintos.

Se le considera el fundador de la ciencia eléctrica.

Su actividad científica fue recompensada con el nombramiento de profesor del instituto de Como (1774), y, más tarde, con el de catedrático de física experimental de la universidad de Pavía (1779).

Después de un viaje muy provechoso por el extranjero (1782), en 1785 fue elegido rector de la universidad.

Por aquel entonces, Galvani había descubierto el fenómeno de los movimientos de las extremidades inferiores de una rana mediante una excitación eléctrica (1780).

Volta, que en un principio había sido partidario de la interpretación dada a este efecto por su descubridor, combatió luego a Galvani, y sostuvo que la causa del fenómeno se debía al desequilibrio eléctrico producido por el contacto de dos metales distintos.

Esta convicción le llevó al descubrimiento del «órgano eléctrico artificial», denominado luego con el nombre genérico de pila, a causa de su forma (1799).

A partir de 1800 el mundo científico tuvo conocimiento del gran invento de Volta, pues éste lo comunicó a la Real Sociedad de Londres el 20 de marzo.

En febrero de 1801, Bonaparte, entonces primer cónsul, le recibió en París y le otorgó la medalla de oro del Instituto de Francia.

Poco después era nombrado senador del reino de Italia. Desde esta época su actividad científica fué en decadencia, aunque siempre intervino en las polémicas y discusiones de su época.

En 1815, el emperador de Austria le nombró director de la facultad de Filosofía de Padua.

Pero Volta, que en su intimidad era un gran patriota, no se enorgulleció por esta designación.

Ya septuagenario, poco a poco se fueron debilitando sus resortes vitales, hasta que en 1819 se retiró a su ciudad natal.

Aquí murió el 5 de marzo de 1827.

PRIMERA EXPERIENCIAS: Hacia fines del siglo XVIII no se conocía prácticamente nada acerca de la electricidad.

Sin embargo, sólo veinticinco años más tarde Faraday descubrió dos de los efectos eléctricos más importantes: el electromagnetismo y la electrólisis.

En el ínterin apareció Alejandro Volta (1745-1827), inventor de la pila eléctrica.

Volta era un sabio italiano, profesor, primero en su nativa ciudad de Como, y posteriormente en Pavía.

La mayoría de sus primeros experimentos fue llevada a cabo con las minúsculas cantidades de electricidad que podía proveer la fricción (electricidad estática).

Consiguió mejorar los métodos de obtener electricidad por fricción ion un dispositivo denominadoelectróforo.

Pero el electróforo no podía hacer mucho más que producir chispas —movimientos repentinos de cargas eléctricas—.

Era un juguete entretenido sin aplicaciones prácticas, porque las «corrientes» que producía sólo duraban una fracción de segundo y eran millones de veces más débiles que las que hoy usamos nosotros para iluminación y calefacción.

Muy poco podía hacerse con estos elementos.

Uno de los escasos campos posibles de estudio era el de la electricidad anima!, que atraía con mucho interés.

Consistía en hacer pasar corrientes eléctricas a través de tejidos animales, por lo general patas de rana.

Otro científico italiano, Galvani, había conectado una varilla de cobre al nervio de una pata de rana y una varilla de otro metal (hierro) al músculo.

Cuando se ponían en contacto los extremos de ambos trozos de metal, el músculo se contraía del mismo modo que cuando se le hacía pasar una descarga eléctrica.

En 1769 publicó varios trabajos sobre los fenómenos eléctricos que le valieron una merecida reputación.

En contacto personal con los sabios franceses más renombrados de la época, un Laplace y un Lavoisier, Volta fué enriqueciendo el campo de la ciencia con el descubrimiento del metano, del electróforo y del condensador eléctrico.

Galvani pensaba que, de alguna manera misteriosa, la contracción del músculo generaba electricidad.

Volta, en cambio, se dio cuenta de que nervio y músculo no estaban sino respondiendo a un shock eléctrico.

Lo realmente importante era que dos metales distintos habían entrado en contacto por un extremo, mientras que por el otro estaban separados por una solución conductora (el fluido débilmente electrolítico de la pata de la rana).

El tejido animal no era necesario en absoluto.

volta demostracion pila electrica

ALEJANDRO VOLTA (1745-1827), profesor en Pavia, reprodujo luego los experimentos de GALVANI y encontró que los nervios de las ranas no son necesarios para provocar fenómenos eléctricos: dos metales y el músculo bastan para producir el efecto.

ANTECEDENTES HISTÓRICOS: En marzo de 1800, Volta envió una carta a sir Joseph Banks, presidente de la Royal Society, con un boceto de su nuevo invento.

Las noticias de esa carta llegaron a oídos de un ingeniero, reconvertido en escritor científico popular, llamado William Nicholson, que rápidamente se puso a construir una pila voltaica propia.

En uno de los primeros experimentos con su nuevo aparato, sumergió los cables en agua y descubrió que, mientras fluyera la corriente, del líquido se desprendían burbujas de gas.

Se trataba de burbujas de dos gases, hidrógeno y oxígeno, y Nicholson comprendió que había invertido el proceso demostrado por Cavendish diecisiete años antes, en el que produjo agua quemando hidrógeno en presencia de oxígeno.

En lenguaje moderno hizo «agua electrolizada»: se trató de la primera demostración de que una corriente eléctrica podía provocar una reacción química.

Nicholson era editor de una revista sobre química y no perdió tiempo en publicar un resumen de su descubrimiento, que fue conocido por el mundo antes de que Volta anunciase siquiera su propio invento.

La demostración de Nicholson de la posibilidad de la posibilidad de generar electricidad mediante reacciones químicas.

LA PILA DE VOLTALa sospecha que VOLTA albergaba acerca de la realidad de la electricidad animal, lo condujo por último a reemplazar con trapos mojados el contacto de músculos de ranas en la experiencia de GALVANI.

En ese momento su gran invención estaba virtualmente hecha. Con dos metales y el trapo húmedo, la pila eléctrica está creada. Así —acontecimiento de inmensas consecuencias— la electricidad dinámica hace su aparición.

VOLTA extiende sus investigaciones a los líquidos y establece cuáles combinaciones entre metales y líquidos resultan eléctricamente activas, y mejora, en ulteriores modelos, el rendimiento de aparato.

Una carta de VOLTA, documento memorable para la historia dirigida en marzo de 1800 a la Sociedad Real de Londres, pronto difundida en todos los países de Europa, pone con descripción de la pila voltaica pone un poderoso medio en manos de los investigadores.

Se inician entonces con esmero las las búsquedas que revelarán una tras otra las propiedades electrónicas, térmicas y magnéticas de la corriente. Los ingleses WILLIAM NICHOLSON y ANTHONY CARLISLE descomponen el agua con la corriente de la pila y observan formación del oxígeno y del hidrógeno liberados por eh THOMAS SEEBECK (1770-1831) tropieza con el fenómeno de b corrientes térmicas: pone de manifiesto que en un circuito compuesto por dos metales diferentes se produce corriente cuando las dos soldaduras no están a la misma temperatura.

El relojero parisiense JEAN ATHANASE PELTIER (1785-1845) descubre un fenómeno recíproco, el cambio de temperatura que el pasaje de la corriente provoca en un circuito bimetálico.

AMPLIACIÓN DEL TEMA: Alejandro Volta nació en Como , ciudad de Italia, el 18 de febrero de 1745. Después de ser maestro de física en la Escuela Superior de su ciudad natal, Volta ocupó la cátedra de física de la Universidad de Pavia durante un tiempo verdaderamente asombroso, casi cuarenta años.

pila de volta

Al comienzo de su carrera Volta inventó un electróforo, aparato que en las clases de física sirve para producir pequeñas descargas electroestáticas mediante inducción y para explicar la carga de los objetos con electricidad estática.

Su electróforo se ha mantenido prácticamente sin haber necesitado mejoras en más de dos siglos.

Un ingenioso electroscopio de condensación, que aumentó en más de cien veces la sensibilidad del aparato que entonces se usaba, le permitió demostrar la existencia de electricidad en el vapor de agua y en el humo producido por la combustión del carbón.

Su mayor aportación a la ciencia eléctrica, la que le ha merecido la inmortalidad a su nombre, es la llamada pila voltaica.

Volta ideó una pila de discos de cobre y de cinc separados por papel secante empapado en agua con sal, con la siguiente secuencia: disco de cobre, papel mojado, disco de cinc; disco de cobre, papel mojado, disco de cinc, etc. Según se aumenta el número de discos de cobre y cinc separados por el papel mojado en agua con sal, se aumentaba la fuerza de su pila o batería.

Fue en 1800 que Volta escribió una carta a la Sociedad Real de Londres comunicando su invención de la pila química y de otra batería a la que denominó «corona de copas», pues consistía en un par de electrodos de cobre y de cinc sumergidos en copas a medio llenar de agua salada.

Con la descomposición del agua en hidrógeno y oxígeno, poco después de la creación de la pila voltaica, se inicia la gran ciencia de la electroquímica.

Los efectos luminosos de la pila voltaica condujeron a la creación de la lámpara de arco de carbón.

Empleando la pila de Volta, Humphrey Davy descubrió el sodio y el potasio.

En 1881 el congreso Internacional de los Ingenieros Eléctricos denominó «voltio» la unidad de la fuerza electromotriz.

Revolucion cientifica Trabajo de Galvani

Grabado mostrando diferentes experimentos de Luigi Galvani (Viribus Electricitatis in Motu Musculari Commentarius [Comentarios relativos a los efectos de la electricidad sobre el movimiento muscular] 1791) acerca de los efectos de la electricidad en ranas y pollos.

ALGO MAS…

En 1799, el sabio fabricó la primera célula electrolítica simple, sumergiendo varillas de cobre y cinc en salmuera y uniéndolas.

Por el circuito que las unía circulaba una corriente eléctrica, más grande y de duración mucho mayor que ninguna conocida hasta entonces. Podían obtenerse mayores presiones eléctricas (voltajes) conectando en serie las células electrolíticas.

Esta idea condujo a la pila voltaica (Pila de Volta) que se componía de discos de cobre y cinc, formando un par, separados de otro parpor discos de franela embebidos en salmuera o ácido.

A pesar de que la carga era débil, el aparato demostró ser un manantial de continua acción eléctrica, aparentemente de capacidad inextinguible.

Lo que más sorprendió a Volta y a sus contemporáneos fue que la pila estaba compuesta en su totalidad por conductores.

No se utilizaba vidrio ni cualquier otro aislante, como en las botellas de Leyden, para separar las cargas opuestas, no obstante lo cual ambos extremos de la columna de conductores adquirían cargas opuestas por su propio poder, y las mantenían.

Tocando la base de la pila con una mano, y, con la otra, distintas alturas de la misma, Volta encontró que el toque, y por lo tanto la descarga, aumentaba en intensidad conforme se acercaba a la cúspide.

Era necesario que entre las dos manos hubiera varios pares de discos, a efecto de que el toque fuera perceptible. Éste era el único medio de que él disponía para medir lo que ahora llamamos tensión.

Se da a Volta el mérito de haber hecho la primera célula electrolítica simple, pero él nunca encontró la explicación correcta de su funcionamiento.

Erróneamente atribuía las corrientes al contacto entre los dos metales, mientras que en realidad proviene de la acción química del electrólito sobre el electrodo del cinc.

El descubrimiento fue aclamado de inmediato y en 1801 Volta fue a París a mostrar su electricidad por contacto al emperador Napoleón. Posteriormente, la unidad de presión eléctrica, el voltio, fue denominado así en su honor.

Aunque el propio Volta estaba más interesado en desarrollar sus pilas que en encentrarles aplicación, la pila voltaica rápidamente fue empleada por otros científicos como una poderosa herramienta de investigación. Las corrientes producidas con ayuda de la pila voltaica condujeron al descubrimiento de los efectos magnéticos, térmicos y químicos de ¡a electricidad.

PILA DE VOLTA
Los pilas de Volta eran simples células electrolíticas acopiadas una encima de la otra. Al cerrar el circuito la corriente que circulaba de nervio e músculo estimulaba las patas de rana, que se contraían.

Fuente Consultada:
Revista TECNIRAMA N°23

Descubrimiento de Oro en Transvaal Sudafrica Guerra boers inglese

Descubrimiento de Oro en Transvaal Sudáfrica

El descubrimiento de oro y de diamantes en el extremo austral del África, que en 1899 despertó la codicia británica, que reclamó todo el territorio de lo que hoy es República de Sudáfrica como suyo. Quienes habían hecho el hallazgo, en su mayoría campesinos (eso significa boers), descendientes de holandeses, se consideraban dueños de los territorios de Transvaal y Orange. Inclusive, Inglaterra había reconocido su independencia, y ademásfueron ellos y no los ingleses quienes habían luchado contra zulúes y matabeles para civilizar la región.

El control del África meridional era de sumo gran interés para Gran Bretaña, en primer momento para proteger la ruta marítima hacia la India y China. Los colonos holandeses, los llamados bóers, habían llegado ahí por primera vez en 1652, donde fundaron una colonia para reabastecer sus barcos con rumbo a Extremo Oriente.

En 1806, a raíz de la batalla de Blaauwberg, los británicos arrebataron el control de la Colonia del Cabo (actualmente, Sudáfrica) a los holandeses, para asegurarse de que no caía en manos de los franceses durante las Guerras Napoleónicas. Los bóers no estaban demasiado contentos con sus nuevos amos, en especial cuando en 1833 se abolió la esclavitud en todo el Imperio británico, ya que para los bóers la esclavización de los indígenas era tanto un modo de vida como una tradición.

En el espacio de dos años, doce mil bóers iniciaron el llamado Gran Trek, una emigración masiva hacia el interior para crear sus propios estados (Natal, Estado Libre de Orange y Transvaal) independientes del control británico y donde la esclavitud era legal, aunque tuvieron que derramar mucha sangre en varias guerras contra los indígenas africanos. En la batalla del Río Sangriento de 1838, las armas de los bóers mataron a tres mil zulúes. Según los testigos, la sangre de los muertos tino de rojo el agua del río.

Los colonos británicos empezaron a llegar a millares durante la década de 1820, muchos con la esperanza de enriquecerse fundando sus propias plantaciones de azúcar. Ellos también se enfrentaron a las poblaciones autóctonas. Tan eficaces eran los zulúes como fuerza de lucha que en 1879 infligieron sin recurrir a las armas de fuego una humillante derrota a los británicos en la batalla de Isandlwana: los zulúes rodearon y masacraron a más de 1.400 soldados del ejército británico. Pero en menos de seis meses se restauró la supremacía británica (en la batalla de Ulundi) gracias al empleo de las ametralladoras Gatling, unas de las primeras armas de repetición, inventadas en Estados Unidos, que podían disparar una ráfaga casi infinita de balas.

El poder colectivo de cincuenta mil guerreros zulúes con sus lanzas cortas y sus escudos de cuero no pudo rivalizar con esa potencia de fuego.

Cuando en 1886 se descubrió oro en el Transvaal, las tensiones entre los bóers y los británicos se volvieron explosivas. Casi de la noche a la mañana, apareció en el árido monte surafricano una nueva ciudad: Johannesburgo. El país se inundó con una avalancha de buscadores de oro, como Cecil Rhodes, cuya empresa, la Compañía Británica de Sudáfrica, fundó el imperio minero más rico de todos los tiempos.

Con el apoyo del gobierno británico, en 1895 Rhodes se construyó su propio país, Rodesia, que abarcaba lo que en la actualidad es Zimbabue y Zambia. Su ambición seguía el impulso inquebrantable e inmisericorde de sacar provecho de África:

Los enfrentamientos —que tuvieron un corresponsal de guerra de lujo, enviado por el Times de Londres: Winston Churchill— fue inevitable; el resultado de la contienda, también: mientras los boers, aunque eran excelentes tiradores y conocían bien la zona, carecían de instrucción militar, los ingleses, con mejor armamento y mayor cantidad de tropas, dirigidos por Horatio Kitchener, quien ordenó la matanza de niños y mujeres (asesinaron a 25 mil) y la quema de las granjas, derrotaron a los campesinos, de los cuales 18 mil murieron en los campos de batalla en 1902.

Johannesburgo es la capital de la provincia de Gauteng, que antaño fue conocida como territorio del Transvaal. Desde mitad del siglo XIX se había asentado un numeroso grupo de familias holandesas en lo que se llamó ‘la gran migración’. Eran granjeros que vivieron una aventura similar a los colonizadores del medio oeste norteamericano, carromatos incluidos.

En una de esas familias nació Paul Kruger, héroe de la resistencia de los bóers frente al imperialismo británico. Vencedor de los ingleses en Majuba fue elegido presidente del Transvaal.

Paul Kruger, como  presidente bóer del Transvaal, que en sus minas de oro y diamantes impuso un tributo a la dinamita —esencial para los buscadores de oro- y que negaba a los extranjeros el derecho a voto en los asuntos locales. Cuando los oficiales británicos protestaron en 1899, los bóers declararon la guerra a Gran Bretaña.

La guerra de los Bóers duró hasta abril de 1902 y los británicos se vieron obligados a desplegar 250.000 soldados. Más de 22.000 murieron en actos de servicio, junto a 7.000 bóers y unos 20.000 africanos.

Además, se calcula que 28.000 civiles bóers murieron por las terribles condiciones de los campos de concentración en los que los británicos los recluyeron; en la mayoría de los casos por culpa del hambre, la malnutrición y las enfermedades.

Guerra del Pacífico Chile Bolivia Causas y Consecuencias

RESUMEN GUERRA DEL PACÍFICO CHILE-BOLIVIA POR EL SALITRE

La Guerra del Pacífico, que algunos historiadores la llaman Guerra del Guano y del Salitre fue el evento el mas amargo de la historia de Bolivia.

Esta guerra comenzó en 1879, y enfrentó a Chile contra una alianza entre Bolivia y Perú, y se inicia cuando en 1878 el general boliviano Hilarión Daza, que conducía una dictadura, decide aumentar los impuestos a las exportaciones de dos empresas chilenas (FFCC y Compañia de Salitre) que explotaban los recursos en la zona boliviana de Antofagasta.

Para Chile ese aumento contradecía con lo pactado en un Tratado de Paz y Amistad en el año 1874, por lo que lo considera una violación a sus derechos, negándose a cumplir con la nueva disposición.

Como respuesta Daza confisca los yacimientos explotados, rompiendo las relaciones diplomáticas, por lo que Chile decide ocupar los territorios militarmente, declarándole la guerra a Bolivia el 5 de abril de 1879.

La guerra se desarrolló en el océano Pacífico, en el desierto de Atacama y en los valles y serranías del Perú.

Bolivia pierde el conflicto frente a un poderoso Chile, que se anexa un territorio territorio, que era su único punto de acceso al océano Pacifico y enormes riquezas minerales.

Privada para siempre de esta región capital, Bolivia no ha logrado jamás a arrancar económicamente y hasta estos días trata de conseguir acuerdos con otros países limítrofes como Perú para poder intergrarse al comercio internacional mediante un puerto que le abra las puertas al mundo.

Luego de cinco años de guerra, los países de Bolivia y Chile firman, el 4 de abril de 1884, un pacto de tregua donde convienen en un cese de fuego y la reapertura de las relaciones comerciales.

Chile como gesto de cordialidad ofrece a Bolivia unas ventajas fiscales en la ciudad de Antofagasta y se compromete a construir una línea de ferrocarril uniendo la costa del océano Pacífico a La Paz.

Guerra del Pacífico: Bolivia-Perú y Chile

Guerra del Pacífico: Bolivia-Perú y Chile

Los ejércitos de la alianza Bolivia-Perú llegaron a 12.000 soldados, mientras que Chile tenía
menos de 400o, pero bien preparados y con equipamientos modernos.

Las batallas mas importantes fueron la de Angamos, en octubre 1879 donde Chile logra controlar la zona del océano. Ese mismo año bolivia tuvo dos derrotas la de Pisagua y Tarapacá y la última de Tacna en 1880.

La siguiente estapa fue contra las tropas de Perú, donde caen derrotada en Arica el 7 de Junio de 1880, para luego tomar la capital Lima en 1881. La guerra finaliza con firma del Tratado de Ancón en 1883.

CRÓNICA DE LA ÉPOCA I

El 14 de febrero la nave de guerra chilena Blanco Encalada apareció frente a Antofagasta. Su presencia en ese lugar significa el comienzo de la guerra. La presencia chilena es la respuesta al intento de Bolivia de cobrar 10 centavos por quintal de salitre explotado por una compañía británico-chilena.

El aumento del impuesto a los exportadores de salitre, adoptado unilateralmente por el gobierno boliviano, desconociendo convenios anteriores, empujó a Chile a declarar la guerra. Perú, por el pacto secreto de 1873 , interviene como aliada de Bolivia. En noviembre los chilenos han desembarcado en Pisagua lo que les ha permitido capturar la provincia de Tarapacá y sus yacimientos salitreros.

CRÓNICA DE LA ÉPOCA II

La Guerra del Pacífico llegó a su fin con la firma de un tratado. La resistencia militar peruana, bajo el mando del coronel Andrés A. Cáceres Dorregaray en la región sur y centro andina venía obteniendo varias victorias contra lasfuerzasinvasoras chilenas. Pero en la batalla de Buamachuco, el 10 de julio, sufrió una decisiva derrota militar. Luego, un grupo de dirigentes peruanos del que se sospecha que actuaron de acuerdo a directivas del mando militar enemigo, determinó con una serie de medidas el final del conflicto, impusieron al general de brigada Miguel Iglesias como nuevo presidente y firmaron un tratado de paz con Chile.

La guerra finalizó oficialmente el 20 de octubre con la firma del lutado de Ancón. Éste dispone que el departamento de Tararira pasa a manos chilenas, y las provincias de Arica y Tacna quedan bajo administración chilena por un lapso de 10 años. Después de ese período un plebiscito decidiría si quedan bajo soberanía de Chile o vuelven a ser peruanas. Chile además obtuvo la Puna de Atacama, por la que tenía una permanente disputa con Bolivia. El Chile boliviano no pierde solamente 120 mil metros cuadrados de territorio, sino que se queda sin los 400 kilómetros de costa y sin salida al mar, una pérdida que sin dudas redundará en muchas otras.

PARA ENTENDER MEJOR:
Antecedentes de la Época:
Hacia 1825 las guerra por la independencia de las colonias españolas americanas habían finalizado y los antiguos virreinatos desaparecieron y surgieron nuevos países que debían organizarse políticamente y económicamente para comenzar el nuevo camino hacia el progreso.

Como consecuencia de tantos años de batallas, los militares fueron ocupando un lugar más importante en las sociedades latinoamericanas y, una vez finalizada la guerra con España, intervinieron activamente en la política.

En comparación con la etapa colonial, las décadas posteriores a la independencia estuvieron teñidas por la violencia, pues abundaron las luchas civiles y los conflictos entre los nuevos países, cuyas fronteras todavía no estaban bien definidas.

En las luchas civiles latinoamericanas se enfrentaron a menudo sectores conservadores y liberales.

Los conservadores pretendían mantener una rígida jerarquía social, eran poco favorables a los cambios, no veían con buenos ojos la llegada de ideas innovadoras de Europa y, por lo general, defendían los intereses de las zonas rurales, donde estaban sus propiedades.

Por el contrario, los liberales eran partidarios de abrir un poco más la participación ía grupos no tan adinerados pero instruidos, admiraban los avances de las sociedades europeas que esperaban imitar en sus países, y representaban mejor los intereses de los habitantes de las ciudades.

La guerra había empobrecido a América latina y destruído su riqueza.

Hacia 1850, algunos países como Venezuela, Chile o la región del Río de la Plata habían logrado recuperarse y mejorar su economía con respecto a los tiempos de la colonia, gracias a la exportación de productos agropecuarios.

Las discusión de las fronteras de los nuevos países de América del sur, que inicialmente se respetaron los antiguos límites de la Capitanía General de Chile, comenzó a ser un tema espinoso cuando la demanda mundial de los recursos naturales de esas zonas, como fueron los minerales comenzó a incrementarse, y esas exportaciones se convirtieron en importantes fuentes de ingresos para esos estados, necesitados de recursos económicos.

Perú y Bolivia también tenían discusiones con algunos límites en la región del guano de Tarapacá.

Como se ve, en estos países como Bolivia, Perú y México la minería, que era la actividad económica más importante, se encontraba en declinación, porque faltaba dinero para invertir en las minas y aumentar su producción, por lo que muchas veces se permitía la explotación de esos recursos a empresas extranjeras, que eran quienes poseían el capital necesario para dichas inversiones.

Bolivia era el caso, en donde se permitía extraer el nitrato de Antofagasta por empresas chilenas, que lamentablemente terminaron en una guerra, que la ha perjudicado a hasta hoy.

A los fines de no obstaculizar el desarrollo de los países en vía de crecimiento, se pactaron tratados para la explotación de los minerales en distintas regiones, como por ejemplo el de 1874, donde Chile cedía sus derechos entre los paralelos 23 y 25, a cambio de que Bolivia no aumentara los impuestos a las empresas chiles por 25 años, acuerdo que generó la Guerra del Pacífico

LA REALIDAD DEL COMERCIO: Mientras la independencia política trajo independencia económica a América Latina, los viejos patrones fueron restablecidos rápidamente. En lugar de España y Portugal, Gran Bretaña dominaba la economía del continente.

Los comerciantes británicos se trasladaban en gran número, mientras los inversionistas ingleses vertían su capital generosamente, especialmente en la minería. Muy pronto los viejos esquemas comerciales volvieron a ponerse en práctica.

Dado que América Latina había servido como una fuente de materia prima y suministro alimenticio a las naciones industrializadas de Europa y Estados Unidos, muy pronto las exportaciones hacia el Atlántico Norte se incrementaron notablemente, en particular las de rigo, tabaco, lana, azúcar, café y pieles.

Al mismo tiempo, los bienes de consumo terminados, especialmente los textiles, fueron importados en notables cantidades, lo que provocó el declive de la producción industrial en América Latina.

La sobreexportación de materias primas e importación de productos manufacturados aseguraba la prolongada dominación de la economía latinoamericana por parte de extranjeros.

Eduardo Galeano, en su famoso libro: «La venas abiertas de América Latina» explica:

«Poco después del lanzamiento internacional del guano (que se usaba como fertlizante en Europa) , la química agrícola descubrió que eran aún mayores las propiedades nutritivas del salitre, y en 1850 ya se había hecho muy intenso su empleo como abono en los campos europeos.

Las tierras del viejo continente dedicadas al cultivo del trigo, empobrecidas por la erosión, recibían ávidamente los cargamentos de nitrato de soda provenientes de las salitreras peruanas de Tarapacá y, luego, de la provincia boliviana de Antofagasta. Gracias al salitre y al guano, que yacían en las costas del Pacífico «casi al alcance de los barcos que venían a buscarlos», el fantasma del hambre se alejó de Europa.

La explotación del salitre rápidamente se extendió hasta la provincia boliviana de Antofagasta, aunque el negocio no era boliviano sino chileno. Cuando el gobierno de Bolivia pretendió aplicar un impuesto a las salitreras que operaban en su suelo, los batallones del ejército de Chile invadieron la provincia para no abandonarla jamás.

Hasta aquella época, el desierto había oficiado de zona de amortiguación para los conflictos latentes entre Chile, Perú y Bolivia. El salitre desencadenó la pelea. La guerra del Pacífico estalló en 1879 y duró hasta 1883. Las fuerzas armadas chilenas, que ya en 1879 habían ocupado también los puertos peruanos de la región del salitre, Patillos, Iquique, Pisagua, Junín, entraron por fin victoriosas en Lima, y al día siguiente la fortaleza del Callao se rindió.

La derrota provocó la mutilación y la sangría de Perú. La economía nacional perdió sus dos principales recursos, se paralizaron las fuerzas productivas, cayó la moneda, se cerró el crédito exterior. Bolivia, por su parte, no se dio cuenta de lo que había perdido con la guerra: la mina de cobre más importante del mundo actual, Chuquicamata, se encuentra precisamente en la provincia, ahora chilena, de Antofagasta.»

Los problemas fronterizos heredados de la época colonial provocaron en 1879 el estallido de la guerra del Pacífico contra Perú y Solivia por el control de la zona salitrera de Atacama. La victoria final chilena en 1883 extendió la soberanía del país sobre el territorio de Tarapacá, Tacna y Arica (el tratado de Lima, de 3 de junio de 1929, estableció la soberanía de Perú sobre Tacna y la de Chile sobre Arica).

CRÓNICA DE LA EPOCA III:

La economía boliviana desde hace tiempo se encuentra administrada en sus sectores más sensibles por intereses extranjeros. Al crearse en 1871 el Banco Nacional de Bolivia, su dirección recayó en manos de familias prominentes de la política chilena, como los Edwards y los Concha y Toro, más tarde aliados con la oligarquía de la plata boliviana representada por los sucesores de Aniceto Arce y Pacheco.

En este sentido, cuando en 1873 se formó la Compañía de Huanchanca para la explotación de plata, se hizo con el aporte de capitalistas chilenos que suscribieron las dos terceras partes de las acciones y controlaron cuatro de los cinco puestos del directorio de la empresa. Un año después, el canciller de Bolivia, Mariano Baptista, firmó el tratado con Chile que exoneraba a éste del pago de impuestos por 25 años en Atacama. Es precisamente la violación de esta cláusula por el actual presidente boliviano, Hilarión Daza, lo que acaba de encender la mecha bélica.

En contrapartida, la estrategia de alianzas de la élite minera de la plata con Chile resulta perjudicial para los intereses peruanos y argentinos ya que, al aplicar una política de comercialización exclusiva por el puerto de Antofagasta, Bolivia atenta contra el comercio de los otros países de la región.

Por ello, en el caso del Perú el problema se centra en las relaciones comerciales, en particular por la rivalidad entre los puertos del Pacífico: Callao y Valparaíso. El Tratado de Alianza defensiva por el cual Perú está aliado a Bolivia es de 1873 y el interés peruano de comprometerse en una defensa mutua ante un ataque externo no es tanto el temor a Chile -país con el que no tiene frontera- sino la preocupación frente a la actitud de Bolivia.

En más de seis oportunidades, según afirman políticos peruanos, se discutió en la agenda boliviana la alternativa de promover una alianza entre Bolivia y Chile en contra de Perú. Para este último la alianza con Bolivia tiene sentido dentro de una estrategia más amplia que contemple la participación de la Argentina ya que la unión de la armada peruana y la argentina pueden llegar a neutralizar efectivamente los propósitos agresivos chilenos.

Por su parte en la Argentina la situación de la frontera indígena, las pretensiones chilenas sobre la Patagonia y la demarcación de límites territoriales en la Cordillera de los Andes concentran la preocupación del gobierno.

Asimismo, la disputa en el norte por el territorio de Tarija no es menor. Frente a este panorama, y en una evaluación de los resultados de un posible conflicto bélico con Chile, el Senado argentino ha visto con buenos ojos la posibilidad de firmar una alianza con Perú y con ello frenar las aspiraciones de Chile. Sin embargo, el clima hostil que se vive no colabora en dirección a una salida negociada ya que la diplomacia boliviana parece boicotear tal desenlace.

Los argumentos esgrimidos actualmente por Bolivia resultan incoherentes: por un lado reconoce el «utis posidetis», es decir, las fronteras establecidas a fines de la época colonial, reclamando a Chile Atacama; pero por el otro desconoce el mismo principio al momento de reconocer Tarija para la Argentina. No es tanto la localidad norteña lo que preocupa a la cancillería argentina, sino el desconocimiento del «utis posidetis» ya que es la base sobre la cual se sustentan los derechos argentinos en la querella con Chile por la Patagonia.

En definitiva, ningún pronóstico es optimista respecto de la coyuntura y estamos frente al estallido de una guerra en el Pacífico. Bolivia y Chile así lo han manifestado. Perú se encuentra atado a un compromiso al que no puede renunciar, y la Argentina ante un posible conflicto se mantendrá neutral mientras se garantice la integridad territorial conservando la Patagonia y los límites cordilleranos preestablecidos.

Fuente Consultada:
Diario Bicentenario Fasc. N°4 Período 1870-1879

Inventos de Edison Bombilla Eletrica Fonografo Historia y Evolución

Inventos de Edison

Thomas Alva Edison es uno de los más famosos inventores de América: perfeccionó el telégrafo, el teléfono, inventó el mimeógrafo, aportó al cine y la fotografía, para, finalmente, gravar su nombre en el primer fonógrafo. Fue responsable de importantes cambios en la ciencia.

Sus inventos creados han contribuido a las modernas luces nocturnas, películas, teléfonos, grabaciones y CD’s. Edison fue realmente un genio. Edison es famoso por su desarrollo de la primera ampolleta eléctrica.

El fonógrafo de tinfoil fue la invención favorita de Edison. Hacia 1877, inventó la «máquina que habla» por accidente, mientras trabajaba en telegrafía y telefonía; pero el fonógrafo no salió a la venta sino hasta 10 años después. También trabajó en una máquina para grabar mensajes telegráficos automáticamente.

La primera demostración práctica, coronada con un éxito completo, tuvo lugar en Menlo Park, el 21 de octubre de 1879, y dio paso a la inauguración del primer suministro de luz eléctrica de la historia, instalado en la ciudad de Nueva York en 1882, y que inicialmente contaba con 85 abonados.

Para poder atender este servicio, Edison perfeccionó la lámpara de vacío con filamento de incandescencia, conocida popularmente con el nombre de bombilla, construyó la primera central eléctrica de la historia (la de Pearl Street, Nueva York) y desarrolló la conexión en paralelo de las bombillas, gracias a la cual, aunque una de las lámparas deje de funcionar, el resto de la instalación continúa dando luz.

Primera Llamada Telefonica de la Historia

Primera Llamada Telefónica de la Historia
Inventor Alexander Bell

La Revolución Industrial popularizó tanto los avances científicos como sus aplicaciones técnicas; el ferrocarril, la electricidad, el teléfono o las vacunas consiguieron que en la mentalidad de las sociedades europea y americana se estableciese el ideal de progreso continuado y una fe ciega en las posibilidades de la ciencia y la técnica: las exposiciones universales fueron un ejemplo de esta actitud.

Los propios científicos se convirtieron en propagandistas del progreso con la creación de instituciones y sociedades dedicadas a esta tarea, como la Royal Institution, fundada por Rumford en Londres (1799) y animada por científicos como Davy y Faraday.

Pronto se iniciará también una colaboración internacional plasmada en la celebración de congresos como los de estadística (1853), química (1860), botánica (1864) y medicina (1867).

Primera Llamada Telefónica de la Historia

Otro hecho interesante que hay que destacar es el de la conversión de la actividad científica en un acontecimiento de amplias repercusiones sociales, es decir, en un fenómeno sociológico.

Las aplicaciones de la física en la industria, o de la biología en la medicina, provocaron el cambio de actitud de la sociedad frente a los avances científicos.

Los gobiernos que desde el siglo XVI impulsaron la fundación de universidades y academias, iniciarán, a partir del despotismo ilustrado y por influencia de los enciclopedistas, una actuación que se podría calificar de «política científica».

Estas acciones supondrán la extensión de la enseñanza superior, cambios en los planes de estudio y realización de tareas científico-técnicas fomentadas y financiadas por las monarquías del Antiguo Régimen. Academias, observatorios y expediciones científicas se prodigarán en Europa durante el siglo de las Luces.

Una derivación del telégrafo que finalmente tuvo un efecto igual de grande fue el teléfono.

Patentado en Estados Unidos en 1876 por Alexander Graham Bell, y perfeccionado por el inventor Tomás Alva Edison, el teléfono pronto se asentó.

En 1884, la compañía de Bell puso en funcionamiento la primera línea de larga distancia entre Boston y Nueva York.

Las redes de cables, parte vital para las comunicaciones, fueron desarrolladas en varias naciones. Marcar los números sin recurrir a la operadora aceleró el proceso telefónico y, poco después, la mayoría de las grandes ciudades contaron con sus propias redes.

El teléfono en una exposición: Es casi seguro que Bell no se diese cuenta de la inmensa trascendencia de su invento, pero lo cierto es que en el mes de julio de 1876, se celebró en Filadelfia una gran exposición con motivo de la conmemoración de la independencia de Estados Unidos.

Es muy posible que Bell no pensara llevar su invento a dicha exposición, puesto que tal vez consideraba que el aparato, compuesto por un receptor harto rudimentario, un transmisor y un hilo que hacía vibrar la membrana metálica, que Bell ya había patentado con el nombre de teléfono, no era digno de figurar en una exposición de tanto prestigio.

Pero intervino el amor. Efectivamente, Bell fue a la estación de Boston a despedir a su amada que, junio con su padre, se marchaba a Filadelfia.

El joven subió a un vagón, incapaz de contener los impulsos de su enamorado corazón, y así llegó a la capital de Pennsylvania. Luego, pidió por carta a Watson que le enviase el aparato, y logró exponerlo en un rincón

Durante varios días nadie se acercó a conocer su invento. Pero de pronto se produjo el milagro. El mismo  día en que la Comisión se disponía a conceder los diversos premios establecidos, un personaje con gran séquito, nada menos que el emperador Pedro, del Brasil, se acercó a la mesa de Bell.

Lo cierto era que el emperador había conocido al joven Bell cuando éste enseñaba a los sordomudos en su país. Tan pronto como el Emperador reconoció a Bell, lo abrazó, con gran asombro de todos los presentes y, como es natural, todos se interesaron por el inventor y su invento.

El propio Emperador, después de oír unas palabras a través del receptor, exclamo:
—Este aparato habla!

Estas palabras cambiaron por completo la vida y la fortuna de Alexander Graham Bell.

La aludida Comisión estudió el aparato, y de aquella exposición surgieron dos cosas importantísimas en la vida de Bell: su boda con su amada y la intervención de su suegro en las patentes del joven, todo lo cual tuvo como epílogo la producción del teléfono en serie, su perfeccionamiento y su propagación por todo el mundo.

Sólo hubo una amargura en medio de su triunfo:
Bell, que había dedicado gran parte de su juventud a enseñar a vocalizar y hablar a los sordomudos, jamás consiguió que su linda esposa, sordomuda también, llegase a hablar y a oír a su marido, ni por teléfono ni de viva voz.

ANTECEDENTES DE LA ÉPOCA: Las ventajas materiales constantemente crecientes y a menudo espectaculares, generadas por la ciencia y la tecnología, dieron lugar a un aumento de la fe en los beneficios de esta rama del saber y el hacer humanos. Aun la gente ordinaria que no entendía los conceptos teóricos de la ciencia estaba impresionada por sus logros.

La popularidad de los logros científicos y tecnológicos condujo a la extendida aceptación del método científico, basado en la observación, el experimento y el análisis lógico, como único camino a la verdad y a la realidad objetivas. Esto, a su vez, minó la fe de mucha gente en la revelación y la verdad religiosas.

No es por accidente que el siglo XIX llegó a ser una época de creciente secularización, que de manera particular se manifiesta en el crecimiento del materialismo o la creencia de que todo lo mental, espiritual o sentimental era, sencillamente, una excrecencia de las fuerzas físicas.

La verdad había de encontrarse en la existencia material concreta de los seres humanos, no como la imaginaban los románticos, en las revelaciones obtenidas por destellos del sentimiento o de la intuición.

La importancia del materialismo fue asombrosamente evidente en el acontecimiento científico más importante del siglo XIX, el desarrollo de la teoría de la evolución orgánica mediante la selección natural. Sobre las teorías de Charles Darwin podría construirse un cuadro de los seres humanos como seres materiales, que eran parte sencillamente del mundo natural.

Historia del Globo Aerostático Viaje al Polo en Globo y Dirigible

Historia del Globo Aerostático
Viaje al Polo en Globo

HISTORIA DE LA ÉPOCA: En 1782, a los hermanos Joseph-Michel (1740-1810) y Jackes-Etienne Montgolfier (1745-1799) se les ocurrió pensar que si se calentaba el aire, se expandía y se hacía más liviano que el aire frío. Para demostrarlo, introdujeron aire caliente en una bolsa de papel y comprobaron que se elevaba.

Aprovecharon, entonces, este mismo principio para construir el primer globo aerostático. Después de numerosos ensayos elevaron en Annonay, su ciudad natal en Francia, un globo fabricado con papel y tela de embalaje.

El 19 de septiembre de ese mismo año, en Versalles, ante los reyes de Francia, repitieron la experiencia, pero en esta ocasión del globo pendía una barquilla en la que ubicaron un cordero, un gallo y un pato. El aeróstato recorrió 3 kilómetros y aterrizó sin novedad. Dos meses después, el 21 de noviembre, tuvo lugar el primer vuelo tripulado por el hombre, el físico francés Jean Francois Pilatre de Rozier (1756-1783) y un compañero; los tripulantes recorrieron alrededor de 9 kilómetros en 25 minutos.

Primer Globo Aerostatico

Primer Globo Aerostático

Rápidamente se fueron perfeccionando los aeróstatos, y en los primeros años del siglo XIX se efectuaron ascensiones hasta cerca de 10.000 metros. En algunas de ellas, los navegantes murieron por asfixia. Los dirigibles aparecieron a fines del siglo pasado (Santos Dumont), y en esos mismos años se alcanza la altura de 18.500 metros con un globo portador de aparatos registradores, que anotaron una temperatura de 60 grados bajo cero. Todos esos aparatos se basan en el principio de Arquímedes, y, por lo tanto, se los infla con gases menos densos que el aire (si se los inflase con aire, ninguno subiría un solo metro).

Otro francés, el físico Jacques Alexander César Charles (1746-1823) alargó la duración de los vuelos al colocar una hoguera en la barquilla que mantenía el airecaliente por más tiempo. También construyó, el 27 de agosto de 1783, el primer globo de hidrógeno. El reemplazo del aire por este gas, mucho más liviano, mejoró la capacidad de ascensión de los globos.

Restaba, ahora, encontrar la manera de dirigir el rumbo de los globos. El ingeniero francés Henry Giffard construyó en 1852 el primer aeróstato fusiforme. Impulsado por una máquina de vapor y alimentado con hidrógeno como gas sustentador, el aeróstato se elevó sobre el hipódromo de París y alcanzó una velocidad de 10 km/h.

En este sentido trabajó el inventor alemán Ferdinand Adolf August Heinrich von Zeppelin (1838-1917), quien confirió a los globos una forma aerodinámica. Para lograrlo, utilizó aluminio, que es un material resistente y liviano. Su primer dirigible parecía un gran cigarro del cual pendía la barquilla con el motor y una hélice, hoy recordado como Zeppelin. Los dirigibles dejaron de usarse sobre todo por los grandes desastres que ocasionaron.

El más impactante fue la célebre explosión del Hindenburg en Nueva Jersey, el 6 de mayo de 1937. Actualmente se utilizar, para publicidad, transporte de carga pesada y para investigación. En este sentido, los globos meteorológicos funcionan de un modo curioso: un globo de hidrógeno se eleva transportando una radiosonda.

En la ascensión, la sonda emite señales a la estación terrestre donde éstas son decodificadas y convertidas en valores de presión temperatura y humedad. Al cabo de 90 minutos, el globo ha alcanzado una altitud de 27 a 30 km. Allí, la presión atmosférica es muy baja, e globo estalla, y la sonda desciende a tierra suspendida de un paracaídas.

Los observatorios meteorológicos sueltan diariamente varios globos, para sondear la atmósfera y determinar la dirección y velocidad de los vientos a distintas alturas. Una de las finalidades de esta operación es informar a los aviones sobre las condiciones del tiempo que deben afrontar.

También se envían los llamados radiosondas, que son globos-portadores de instrumental para explorar las altas capas de la atmósfera. Como a medida que el globo asciende, la presión exterior es cada vez menor, el volumen del globo se hace cada vez mayor, al dilatarse el gas interior. Llega un momento en que la dilatación es mayor que la que puede soportar el material, y el globo estalla. Los aparatos caen con paracaídas, y así es posible recuperar el instrumental (aunque a veces cae en lugares despoblados).

Últimamente se ha desarrollado una nueva técnica en la exploración de las más altas capas de la atmósfera, a las que hasta hace unos pocos años ni se soñaba en llegar. Se hace mediante cohetes y satélites artificiales. El instrumental, que se acondiciona cuidadosamente en su interior, recoge datos valiosísimos sobre las condiciones del aire en tan altas regiones.

BREVE HISTORIA DE LA AEROSTACIÓN.
Después de los experimentos de Montgolfier, los ensayos se sucedieron con rapidez. El día 21 de noviembre de 1783 tuvo lugar la primera ascensión de un globo tripulado por el hombre. Pilatre de Rozier y el marqués de Arlandes mostraron gran valor al subir a «La Montgolfiera», construido por su inventor. La envoltura era de algodón y tenía unos 15 m de diámetro.

En su parte inferior el globo estaba dotado de una pequeña galería circular desde donde los aeronautas alimentaban y cuidaban un pequeño hornillo destinado a mantener caliente el aire que proporciona la fuerza ascensional. En nuestros días causa asombro considerar el hecho de que dos hombres se atreviesen a tripular un globo que si se mantenía en el aire era gracias al auxilio de un simple brasero.

Pocos días después, de diciembre de 1783, Charles y Robert efectuaron una magnífica ascensión en un globo muy perfeccionado pues constaba de una envoltura impermeabilizada hinchada con hidrógeno, red y barquilla. Además, y en previsión de cualquier posible contingencia, instalaron válvula de seguridad y se proveyeron de lastre, cuerda-freno y áncora. A partir de entonces fueron numerosísimas las ascensiones que*se llevaron a cabo con fines deportivos o científicos. El célebre físico Gay-Lussac llegó hasta 6.500 m de altura y llevó a cabo mediciones y observaciones relativas a la composición del aire, humedad, variaciones de la aguja magnética, «etcétera.

El día 13 de junio de 1784, Pilatre de Rozier y Romain perecieron al intentar cruzar el Canal de la Mancha. El globo que tripulaban estaba lleno de hidrógeno y en su interior se hallaba un lóbulo con aire caliente. El hornillo destinado a mantener constante la temperatura provocó la explosión del globo y ocasionó la primera catástrofe aérea de la Historia.

Mejor suerte cupo a Blanchard y a su compañero Jefries, quienes lograron efectuar la travesía del Canal de la Mancha desde Dover a Calais. El propio Blanchard llevó a cabo la primera ascensión sobre suelo americano, cubriendo en forma admirable el trayecto de Filadelfia a Nueva Jersey, donde entregó un mensaje para Jorge Washington. Otro récord memorable fue el conseguido por Carlos Green, quien en 1836 logró recorrer a través del aire los 700 km. que separan Londres de Nieder-hausen (Alemania). El día 2 de septiembre de 1894, un globo tripulado por Francisco Arban sobrevoló por vez primera el macizo de los Alpes.

El inglés Tomás Harris fue el protagonista de una historia de amor desarrollada en las alturas. Durante una ascensión efectuada en compañía de su novia, se produjo un pequeño desgarrón en la envoltura del globo, el cual comenzó a descender. Cuendo Tomás Harris tras arrojar todo el lastre vio que la caída era inevitable, se lanzó al vacío en un desesperado intento de aligerar así el peso del globo y salvar la vida de su amada.

La ascensión que con carácter científico efectuó Tissandier en 1875 terminó también trágicamente puesto que si bien logró alcanzar la altura de 9.000 m, la falta de oxígeno ocasionó la muerte por asfixia a dos amigos que le acompañaban.

Ante los frecuentes accidentes que se producían surgió la necesidad de contar con un medio eficaz que amparase al aeronauta y le permitiera saltar del globo.

La invención del paracaídas se debe a J. Garnerín, quien lo ensayó por primera vez el día 22 de octubre de 1797. El acontecimiento tuvo lugar ante el público de París que contempló lleno de asombro el lento descenso del audaz inventor sujeto a una gigantesca sombrilla.

Viaje en Globo aerostatico

Henri Giffard (1825-1882) exhibe su diseño de globo, cuya canasta tiene capacidad para albergar a 50 personas, en el Jardín des Tuileries, durante la Exposición Universal de París 1878. El ingeniero francés realizó, además, el primer vuelo controlado de un dirigible, el 24 de septiembre de 1852: un recorrido de 24 kilómetros desde Paris de donde partió su nave, llena con hidrógeno, a 8 kilómetros por hora, e impulsada por un pequeño motor a vapor.

LA EXPEDICIÓN ANDRÉE AL POLO NORTE. De entre los numerosos vuelos realizados mediante globos, destaca el llevado a cabo por el ingeniero sueco Andrée, quien en compañía de sus amigos Frankel y Strindberg planeó una arriesga-dísima expedición al Polo Norte en la que los tres iban a perecer de frío e inanición.

En el año 1896 iniciaron los preparativos trasladándose a la Isla de los Daneses, en Spitzberg, donde colocaron el globo Oernen, de 4.500 metros cúbicos, los instrumentos y los víveres. Sin embargo, no pudieron emprender la ascensión hasta junio del año siguiente, con bastante mala suerte pues al ascender se rompieron la mitad de las cuerdas-freno dispuestas para ahorrar lastre y facilitar la dirección del globo. En las primeras horas, los exploradores enviaron noticias mediante palomas mensajeras; unos días más tarde, fueron halladas un par de boyas. Después, el silencio más absoluto corroboró la suposición de que habían sufrido un grave accidente.

El mundo ignoró los detalles de la tragedia por espacio de 34 años, hasta que en 1930 los tripulantes de un buque cazafocas hallaron en la Isla Blanca restos de la expedición. En aquellas inmensas soledades y bajo la lona de-una tienda abatida se hallaban los cadáveres de los héroes junto a los cuales estaban el libro de notas de Andrée, la carta de navegar de Strindberg y unas películas. Un poco más allá y cubiertos por la nieve, aparecían los trineos y la canoa. Las fotografías y los escritos han permitido conocer con detalle el desarrollo de la tragedia.

Consiguieron llegar a los 82° 55′ y 7″ de latitud (800 Km. del Polo), después de un accidentadísimo vuelo de 65 horas que acabó al abatirse el aeróstato debido al peso de la capa de hielo que se formó sobre la envoltura. Desembarcaron el día 14 de julio, y el 21 emprendieron la retirada hacia el Sur. La marcha, como muy bien puede suponerse fue difícil y penosa. A pesar del intenso frío y de la carencia de alimentos consiguieron llegar a la Isla Blanca el día 5 de octubre. Su capacidad de resistencia fue verdaderamente extraordinaria ya que la última nota escrita lleva fecha del 17 de octubre.

DESCRIPCIÓN DE LA TRAGEDIA EN EL POLO NORTE: A fines del siglo XIX la exploración polar creaba fascinación y curiosidad a toda la comunidad científica de la época. Los buques expedicionarios habían partido uno tras otro hacia el helado silencio del Ártico, y no se había vuelto a saber mas de ellos durante meses o años. Cuando al final regresaban derrotados y maltrechos, los exploradores contaban sus aventuras en la impenetrable inmensidad de hielo, hablaban de los témpanos, traidores y movedizos, que imposibilitaban la navegación.

«De vez en cuando se aireaba la idea de que tal vez una expedición aérea tuviera éxito donde previamente habían fracasado las marinas, pero la cosa no pasaba del comentario porque, después de todo, no había globo que hubiera permanecido en el aire el tiempo que un viaje polar requeriría, y mucho menos en latitudes en que la capa de hielo que se formaría en la superficie del aeróstato, podía provocar un aterrizaje forzoso y, con mucha probabilidad, catastrófico. Pero existía también el problema de los vientos dominantes.

Salomón August Andrée.Las expediciones aerostáticas que se dirigieran al Polo tendrían que confiar con optimismo en que una de las corrientes del sur llevaría el globo hasta aquella región, para luego proseguir la marcha hasta los poblados más septentrionales. Los obstáculos parecían insuperables para cualquiera que no tuviera el entusiasmo del sueco Salomón August Andrée.

Andrée había visitado a Estados Unidos durante su mocedad y se había hecho amigo del aeronauta norteamericano John Wise. Posteriormente había formado parte de la expedición que estudió los fenómenos polares en Spitsbergen, junto a la costa norte de Noruega. Más tarde había trabajado como ingeniero jefe en la oficina sueca de patentes. Era enérgico, valiente y con voluntad de hierro. Tanto por sus estudios como por su temperamento, Andrée estaba formidablemente dotado para la aventura que se había propuesto.

En 1895 Andrée dio a conocer el plan de su expedición polar, en globo, en una serie de conferencias, bien recibidas, en las que mezclaba la ciencia con el patriotismo. Los suecos, decía en ellas, se han «caracterizado durante siglos por el más intrépido valor», estaban acostumbrados a los caprichos del clima polar «y la propia naturaleza les había enseñado a soportarlos». Esta llamada al orgullo nacional y la excelente reputación de Andrée, contribuyeron a que se recaudaran las ayudas necesarias para financiar la expedición entre ellas la del Rey Osear de Suecia y del filántropo Alfred Nobel.

El globo que iba a transportar a Andrée y a dos compañeros cuidadosamente seleccionados, estaba hecho ex profeso para el viaje. La meticulosa especificación que Andrée había preparado para el aeróstato -al que puso el nombre de Ornen (Águila)- preveía una envoltura de 4.814 m3, hecha de seda china doble, para proporcionarle resistencia y durabilidad. El globo no tenía válvula en la parte superior, al objeto de que la nieve no la atascara, pero llevaba dos en la zona inferior de la envoltura. Por encima de la red había otra capa de seda para proteger más al aeróstato contra la nieve y el hielo.

Andrée pensaba regular la altitud con tres cuerdas de arrastre, unidas por secciones, cada una de las cuales tendría 335 m de longitud. Llevaría también otras sogas más cortas. De la barquilla sobresalían tres palos horizontales, a los que iban sujetas tres velas cuadradas, con las cuales se esperaba poder modificar hasta 30° la derrota.

La góndola de mimbre era cerrada, cilíndrica, de 1,60 m de profundidad. En ella irían tres trineos, un barco de lona, tres literas, herramientas, armas, otros artículos y comida suficiente para cuatro meses. La partida sería en el verano de 1896, desde un lugar situado en el extremo noroeste de Spitsbergen, a unos 1.297 km del Polo. Andrée calculaba con optimismo que el viento constante del sur los llevaría al Polo en tres días.

El aterrizaje, como dependía de la dirección del viento, podría realizarse en cualquier lugar de Siberia, Canadá o Alaska. El Ornen fue inflado con hidrógeno y quedó alojado en «un hangar para globos», de 30 m de alto, esperando a que soplara la brisa deseada. Pero no sopló ni en todo el mes de julio ni en todo el mes de agosto, con lo que terminó el efímero verano ártico y se hizo tarde para comenzar la expedición.

En 1897, Andrée, que entonces tenía 43 años, y sus tripulantes Nils Strindberg y Knut Fraenkel volvieron a Spitsbergen para volver a probar fortuna. El entusiasta Strindberg, de 24 años, era profesor de educación física en la universidad de Estocolmo y un consumado fotógrafo. Fraenkel, de 27 años, era musculoso, de profesión ingeniero y aficionado al alpinismo. Para prepararse para la expedición ambos hombres habían ido a París, a aprender aerostación. El 11 de julio, después de seis semanas de espera, empezó a soplar el tan largamente esperado viento del sur. El momento había llegado y, en consecuencia, se procedió a sacar el globo de su cobertizo. Los tres exploradores subieron a bordo, mientras la tripulación de tierra esperaba órdenes sosteniendo las maromas de amarre.

A la 1:46 de la tarde, Andrée dio la señal para soltar al Ornen y éste comenzó a subir perezosamente por encima del puerto y fue flotando hacia el nordeste. De repente, la nave bajó de modo imprevisto y tocó el agua para luego rebotar y volver a subir ayudada por la tripulación que arrojó más de 200 kilos de lastre. Los ayudantes de tierra estuvieron mirando con emoción al globo hasta que éste no fue más que un punto en el horizonte del Norte.

Todo parecía ir bien, pero Andrée ya sabía que no era así. Las secciones de la parte inferior de las tres largas maromas de arrastre -que en el plan de Andrée eran vitales para regular la altitud y la dirección -se habían desprendido, no se sabía por qué, y yacían en la costa como grandes serpientes enroscadas. El Ornen continuó su vuelo libre hacia lo desconocido.

Los millones de personas que, en todas las partes del mundo, habían seguido ávidamente a través de los periódicos los preparativos de la expedición, quedaban ahora a la espera de noticias de los exploradores. Estas no podrían llegar más que, o con palomas mensajeras o metidas en las boyas que arrojara el globo. La expedición no disponía de otros medios de comunicación.

Cuatro días después de la salida del Ornen, el capitán de un buque noruego mató a una paloma que se había posado en las jarcias de su velero. En un pequeño cilindro atado a la pata del animal había un mensaje de Andrée. Había sido escrito el 13 de julio, al mediodía, en un punto situado a unos 370 Km. al norte del lugar de despegue. «Buena velocidad hacia el E. 10° S.

A bordo todos bien. Este es el tercer mensaje por paloma mensajera», decía la nota.

Las otras dos no llegaron, y el verano transcurrió sin que se supiera más de los expedicionarios. Después llegó el otoño y, tras él, la larga noche del invierno ártico. Siguió sin saberse nada de Andrée y su tripulación.

Si continuaban vivos tendrían que estar matando osos para alimentarse, y metidos en algún improvisado refugio para poder soportar el frío.

Por supuesto, era posible sobrevivir en aquellas condiciones, porque otros ya habían sobrevivido. El padre de Strindberg se mostraba optimista: «Habrá que esperar un año, por lo menos», escribió, «para empezar a preocuparse, e incluso entonces no habglobo aerostaticorá que ponerse demasiado pesimista».

Pasó más de un año. Salieron barcos en busca de los exploradores y volvieron sin encontrar ni rastro de ellos. En febrero de 1899 llegaron noticias trágicas: los miembros de una tribu nórdica habían encontrado los cadáveres de tres suecos al norte de Siberia.

La noticia era falsa. Tres meses después salió a la costa de Islandia una boya con un mensaje de Andrée, pero había sido escrito 12 horas después de la partida de los desaparecidos. Al año siguiente  apareció un mensaje parecido en una playa noruega. Para entonces ya habían transcurrido tres años y la creencia de que los exploradores habían perecido era cada vez más firme.

Durante 33 años no se supo nada del Ornen, pero en el verano de 1930, un par de cazadores de morsas, de un buque noruego tropezaron con los esqueletos de los tres exploradores en el sombrío corazón ártico de la isla de White, a unos 450 Km. de donde había despegado el globo.

Los diarios, los cuadernos de notas y las cartas que los tres hombres habían escrito eran aun legibles y según constaba, el Ornen, que al perder accidentalmente las cuerdas de arrastre se había visto aligerado en 540 kg, había subido la primera tarde del vuelo a 700 m, mucho más de lo que Andrée tenía previsto.

El viento había impulsado al globo hacia el noroeste el primer día, luego hacia el oeste y después hacia el este de nuevo. Había permanecido 13 horas inmovilizado, al quedar trabada una de las cuerdas que colgaban de él de un gran trozo de hielo.

La densa niebla impedía la visibilidad y el agua nieve había recubierto la superficie del globo de una carga tal de hielo, que había hecho descender varias veces a la nave y a la atestada góndola chocar contra los salientes helados del terreno. Y esto había ocurrido 8 veces en 30 minutos.

En la ropa interior llevaba cosida una A, y en el bolsillo, un diario. En él aparecían las últimas palabras escritas por Salomón August Andrée, el aeronauta sueco, que junto con Knut Frankel y Nils Strindberg, había desaparecido en 1897, cuando trataban de llegar al Polo Norte. Se aclaraba así el misterioso final de la expedición salida 33 años antes de Spitsbergen.

Junto a los restos de Andrée se encontraban los de sus acompañantes y varios cilindros metálicos que contenían negativos fotográficos impresionados. Un experto fotógrafo de Estocolmo consiguió revelar 20 negativos. Algunas de las fantasmales fotografías, deterioradas por los años de permanencia en la humedad y el frío árticos.»

OTRA HISTORIA, PERO CON DIRIGIBLES
AL POLO EN DIRIGIBLE. Durante el año 1926 el explorador noruego Amundsen efectuó una expedición polar que tuvo gran resonancia. Gracias a la munificencia del norteamericano Ellswort que financió la empresa, pudo adquirirse el dirigible N-i construido por Nobile. Tenía 19.000 m3 y 106 m de longitud e iba provisto de tres motores de 240 HP, dispuestos en barquillas independientes y desarrollaba la velocidad de 100 km/h.

El N-i, adquirido por Noruega y bautizado con el nombre de Norge, partió de Roma, llegó felizmente a Oslo y siguió luego hasta Spitzberg. El día n de mayo la aeronave emprendió el vuelo desde Kingsbay hacia el Polo Norte, que fue alcanzado al cabo de 15 horas de navegación, sobre deslumbrantes blancuras. Aunque el viaje de regreso se vio dificultado grandemente por la sobrecarga debida a la costra helada que se formó en la parte superior de la envoltura, el Norge consiguió aterrizar en Teller (Alaska) después de 71 horas de lento vuelo.

El general italiano Nobile, que había participado en la expedición dirigida por Amundsen, quiso organiza* por su cuenta un vuelo al Polo. El día 15 de abril de 1928, el dirigible Italia salía de Milán, ciudad que patrocinaba la empresa, para dirigirse a Spitzberg. Una vez allí y tras unos vuelos de exploración sobre las tierras de Francisco José, Nicolás II y Nueva Zembla, el 23 de mayo el Italia se dispuso a cubrir la última etapa hasta el Polo, del que no iba a regresar jamás.

En efecto, después de 16 horas de vuelo, la aeronave alcanzó el Norte geográfico de la Tierra, en cuyo lugar lanzó la cruz ofrecida por el Papa y la bandera de Italia. Durante el regreso se desataron fuertes borrascas de viento y nieve. Sobre el Italia se formó una espesa capa de nieve helada que le hizo perder altura, hasta que una ráfaga de viento huracanado le estrelló contra un banco de hielo. A consecuencia del golpe el dirigible se partió en dos, y mientras el sector donde se hallaban Nobile y ocho tripulantes más quedaba sobre los hielos, la otra sección con el resto de la dotación, se remontó de nuevo y desapareció para siempre.

El sobrecogedor silencio que siguió a los desesperados «SOS» lanzados por el radiotelegrafista de la aeronave tuvo la virtud de movilizar a numerosos equipos de salvamento que partieron en busca de los accidentados. Amundsen voló inmediatamente en auxilio de Nobile y pereció.

El día 20 de junio, ante la expectación del mundo entero, el comandante italiano Maddalena, que participaba en la búsqueda, consiguió localizar con su hidroavión a los supervivientes del dirigible que fueron auxiliados con víveres y medicamentos, lanzados en paracaldas. Tres días después, el aviador escandinavo Lundborg logró aterrizar con su avioneta provista de skis, sobre el banco de hielo donde se hallaba el grupo. Nobile, en forma todavía incomprensible y ante el estupor unánime del mundo civilizado, abandonó a sus compañeros y se salvó con el avión de Lundborg.

Para colmo de desgracias, y con ocasión de efectuar un segundo viaje sobre el improvisado campo, el avión de Lundborg capotó al aterrizar, quedando a su vez prisionero de los hielos hasta el 6 de julio en que fue salvado por otro aviador que también tuvo la audacia de aterrizar sobre el banco de hielo.

A consecuencia de diferencias surgidas entre los náufragos, éstos se dividieron en dos grupos. El encabezado por Malmgren, inició una marcha dantesca entre aquellas frías soledades, hasta alcanzar el rompehielos ruso Krasin (13 de julio). El drama no había terminado, ya que Malmgren rendido por el frío y la fatiga, había pedido a sus compañeros que le abandonasen y prosiguieran el camino hacia la salvación. Nobile, caído en desgracia y abrumado por el peso de tanta responsabilidad, se trasladó a vivir a Rusia.

Fuente Consultada:
Grandes Épocas de la Aviación Tomo 40 Los Aeronautas II
Química I Polimodal  de Alegría-Bosack-Dal Fávero-Franco-Jaul-Rossi

Programas de Exploracion Espacial Cronología Las Misiones al espacio

Programas de Exploración Espacial
Cronología Las Misiones al Espacio

Estados Unidos había previsto tener una docena de satélites en órbita cuando comenzara el Año Geofísico  Internacional , pero en la práctica el primer éxito fue para la URSS, con el lanzamiento del Sputnik I, el 4 de octubre de 1957.Sorprendidos y humillados, los técnicos norteamericanos adelantaron sus planes y prometieron un lanzamiento en 90 días. El primer intento fracasó, pero el primer satélite de Estados Unidos, el Explorer I, entró en órbita el 1 de enero de 1958.

Su capacidad era limitada, pero llevaba un contador Geiger-Müller para registar los rayos cósmicos que le permitió localizar los dos cinturones de radiación de Van Alien que rodean la Tierra.

A partir de entonces, los progresos fueron rápidos, sobre todo porque Estados Unidos y la URSS competían entre sí para demostrar ante el mundo su superioridad tecnológica. Varias categorías diferentes de satélites aparecieron desde 1960.

A los primeros, utilizados para fines puramente científicos, se sumaron otros de diseño más complejo destinados a la observación militar, el seguimiento de las condiciones meteorológicas mundiales, las telecomunicaciones, etc.

Por último, aparecieron las sondas espaciales, que prepararon el camino para la llegada del hombre a la Luna. La sonda soviética Luna II (1959) fue el primer objeto procedente de la Tierra en alcanzar la superficie de un cuerpo celeste. En 1966, el Luna IX realizó un alunizaje perfecto (que disipó el temor de los norteamericanos de que la superficie del satélite estuviera formada por una profunda capa de polvo) y transmitió a la Tierra miles de fotografías.

El Luna XVI (1970) recogió muestras del suelo lunar. Hacia fines de los años 70, las sondas soviéticas y norteamericanas se habían acercado o se habían posado en varios planetas, entre ellos, Marte, Venus y Júpiter.

La Tabla siguiente es un resumen de los principales programas de exploración del espacio:

NombrePaísFechasLogrosMiembros
SputnikURSS1957-1958Primer
Satélite
Valery Byskovsky.Yuri Gagarin, Adrián
Nikolayaev, Pavel Popovitch, Valentina
Tereshkova, GhermanTitov
Malcolm Scott Carpenter, L. Gordon
Cooper
.John Glenn,Virgil Grissom,
Walter Schirra, Alan Shepard
ExplorerEE.UU.1958-1984Experimentos
Científicos
PionnerEE.UU.1958Investigación
de la Luna
LunikURSS1959Aterrizaje
en la Luna
VostokURSS1961-1963Primer Vuelo
Tripulado
MercuryEE.UU.1961-1963Americanos en el Espacio
VeneraURSS1961-1983Investigaciones
de Venus
RangerEE.UU.1961-1965Alunizajes
MarinerEE.UU.1962-1974Mercurio, Venus
y Marte
OSOEE.UU.1962Estudio Solar
MarsURSS1962-1971Investigación
de Marte
Pavel Belyayev, Konstantin Feoktistov,Vladimir
Komarov, Alexei Leonov, BorisYegorov
Edwin Aldrin, Neil Armstrong, Frank
Borman, Eugene Cernan, Michael Collins,
Charles Conrad, L Gordon Cooper.Virgil
Grissom, James Lovell, James McDivitt,
Walter Schirra, David Scott, Thomas
Stafford, Edward White, John Young
VokshodURSS1964-1965Vuelos espacial con tres tripulantes
GéminisEE.UU.1964-1966Prueba de Vuelos Lunares
LunaURSS1966Fotografía
Lunar
Luna OrbiterEE.UU.1966-1967Cámara en
órbita lunar
Adwin Aldrin, William Anders, Neil Armstrong,
Alan Bean, Frank Borman, Eugene Cernan,
Michael Collins, Charles Conrad, Walter
Cunningham, Charles Duke, Don Eisle,
Richard Gordon, Fred Haise, James Irwin,
James Lovell, Edgar Mitchell, Stuart Roosa,
Walter Schirra, Harrison Schmitt, Rusell
Schweickart, David Scott, Thomas Stafford,
Jack Swigert,Alfred Worden, John Young
SurveyorEE.UU.1966-1968Robot Lunar
ApoloEE.UU.1966-1975El hombre llega
a la Luna
SoyuzURSS1967-1986Estación
Espacial
Vladimir Dzanibekov, Georgi Grechko, Alexei Gubarev, Pyotr Klimuk, Vladimir Remek,Yuri Romanenko, Víctor Savinykh, Svetlana Savitskaya.Vladimir Shatalov, Vitaly Stevastyanov, Vladimir Vasyutin, Vladimir Volkhov Alan Bean, Gerald Carr, Charles Conrad, Owen Garriott, Edward Gibsonjoseph Kerwinjack Lousma, William Pogue, Paul Weitz
SalyutURSS1971-1986Estación espacial tripulada
SkylabEE.UU.1973-1974Primera estación espacial americana
ATMEE.UU.1973-1974Estudio Solar
Apolo-SoyuzEE.UU./URSS1975Emprendimiento InternacionalVanee Brand, Valery Kubasov, Alexei Leonov, Donald Slayton,Thomas Stafford
VoyagerEE.UU.1977-1986Estudio de Gigantes
de Gas
Valery Byskovsky.Yuri Gagarin, Adrián Nikolayaev, Pavel Popovitch,Valentina Tereshkova, GhermanTitov Malcolm Scott Carpenter, L. Gordon Cooper.John Glenn,Virgil Grissom, Walter Schirra,Alan Shepard
SMMEE.UU.1980-1989Estudio
Solar
TransbordadorEE.UU.1981-?Naves tripuladas de uso reiterado
SpacelabEE.UU./AEE1983Laboratorio espacial de uso reiterado
VegaURSS1985Estudio atmosférico de Venus y fotos del cometa Halley
MirURSS1986-?Estación
Espacial
Pavel Belyayev, Konstantin Feoktistov,Vladimir Komarov, Alexei Leonov, BorisYegorov Edwin Aldrin, Neil Armstrong, Frank Borman, Eugene Cernan, Michael Collins, Charles Conrad, L. Gordon Cooper.Virgil Grissom, James Lovell, James McDivitt, Walter Schirra, David Scott,Thomas Stafford, Edward White, John Young
GiottoAEE1986
SuseiJapón1986
BuranURSS1988
FobosURSS1988
GalileoEE.UU.1992-?
CassiniEE.UU./AEE1996

 

Historia de la Televisión en Argentina Primeras Transmisiones de TV

Historia de la Televisión en Argentina
Primeras Transmisiones de TV

La televisión argentina llegó a los hogares durante los primeros años de la década del ’50. Algunos padres de los adolescentes actuales nacieron con ella, la mayoría nació después. La televisión fue un instrumento altamente codiciado por sus potencialidades: era un medio privilegiado para extender la cultura, la educación y la información; permitía unir a cada ser humano con el resto de los habitantes del mundo.

Se alcanzaba la universalización de la cultura pregonada siglos atrás, cuando se creó la imprenta. La aparición de la televisión auguraba la posibilidad de que ningún grupo humano quedara relegado y aislado: todos podrían acceder a la educación y al conocimiento de los avances científicos. Pero, tan halagüeñas posibilidades sólo se cumplieron muy parcialmente.

Las programaciones que instrumentaron los distintos países tuvieron muy poco en cuenta esa misión cultural y educativa. Los principales programas fueron series en las cuales la violencia y la delincuencia eran protagonistas. (Ver también: Historia de los Medios de Comunicacion en el Mundo)

LA EVOLUCIÓN DE LOS MEDIOS DE COMUNICACIÓN: A partir del incesante avance de la ciencia y de la tecnología, la comunicación dejó de ser exclusivamente oral para desarrollarse a través de otros medios, como la prensa, la radio, el cine y la televisión.

En la actualidad, las sociedades industrializadas dependen, en gran medida, de los medios de comunicación masivos. Su sistema económico —basado en la compraventa generalizada—, la compleja división del trabajo y las necesidades del Estado para cumplir con sus funciones requieren de estos medios para difundir la información del modo más rápido y a la mayor cantidad de personas posible. De allí que cada vez sea más estrecha la relación entre los grandes grupos económicos y las grandes cadenas de comunicación.

LA TELEVISIÓN

A manera de predicción, en un diario norteamericano, hacia 1892, apareció un articulo que informaba que con el tiempo, se transmitirían por el aire todo tipo de imágenes a través de un “telectroscopio” así lo denomino este medio. En el siglo XX, gracias a varios años de investigaciones y descubrimientos técnicos, esta profecía se cumplió. En 1928 ,se le otorgó a la General Electric la primera licencia para operar una estación experimental de TV.

En 1936, Gran Bretaña inauguro el primer ciclo de emisiones regulares de televisión a través de la BBC no obstante, desde comienzos de siglo, se venía probando con la transmisión de imágenes a distancia. Pero el estallido de la Segunda Guerra Mundial llevó a concentrar todo el esfuerzo tecnológico en el conflicto. Durante éste, la RCA impulsó investigaciones que lograron perfeccionar las imágenes televisivas en los Estados Unidos. Al finalizar el conflicto, los aparatos llegaban a los tres millones y las estaciones emisoras, a doscientas. El nuevo medio contaba con ventajas propias para su rápido éxito.

El televisor tuvo su época de mayor expansión en la década del 50, el mismo se extendió en gran parte de Occidente. En 1962, se realizó la primera transmisión directa vía satélite a través del Atlántico. Sin embargo, la primera transmisión vía satélite vista, simultáneamente, en casi todo el mundo fue la llegada del primer hombre a la Luna, el norteamericano Neil Armstrong, el 21 de julio de 1969.

En el contexto de la guerra fría, en 1988, con la puesta en órbita del satélite franco-alemán TDF-1, se inició en Europa la era de la teledifusión directa, cuyos programas podían ser captados por una antena satelital parabólica individual.

Historia del Invento

Así comenzó la Televisión Argentina…

En 1926, en Londres, John Baird consiguió emitir y recibir imágenes a distancia; solo un cuarto de siglo más tarde, concretamente el 17 de octubre de 1951, a las dos de la tarde, Eva y Juan Perón aparecieron en las pantallas de los primeros y escasos aparatos Rayhteon, Capheart y Dumont que había en la Argentina.

Culminó así el esfuerzo de años de Jaime Yankelevich, un pionero de la radio que también lo fue de la televisión. La emisión inicial, por supuesto que en blanco y negro, y con Imágenes que se deformaban o eran invadidas por caprichosas líneas geométricas, mostró a la pareja mandataria que presidía el Día de la Lealtad desde la Plaza de Mayo.

Frente a los escaparates de los comercios de aparatos electrónicos, o en muy pocos hogares, los porteños se maravillaron con el nuevo medio de comunicación, y vieron cómo los locutores Isabel Marconi y Adolfo Salinas leían, en cadena con Radio del Estado, los partes oficiales. Con todo, y en principio, solamente la Capital Federal y el Gran Buenos Aires recibieron las emisiones. A medida que los receptores se alejaban del lugar de transmisión (la antena estaba en el edificio del ministerio de Obras Públicas, en la 9 de Julio y Moreno), se requería de antenas cada vez más elevadas para capturar alguna imagen.

El primer programa emitido desde el Canal 7, el único durante años, fue transmitido desde los salones del hotel Alvear, actuaron el ballet y el coro del Teatro Colón, y a continuación se realizó un programa de entrevistas. Los presentadores eran locutores radiales, como los ya mencionados Marconi y Salinas, además de Hebe Gerbolés, Juan Piñeiro y Jaime Más. En directo (los tapes y las grabaciones vinieron mucho después), sin maquillaje, lo cual los hacía ver afantasmados, hablaban como si estuvieran frente al micrófono radial. Pero la tevé criolla había nacido.

LA TELEVISIÓN EN LA ARGENTINA EN LOS 60 Y EN LOS 70

Historia Primeras Transmisiones de TVEn la Argentina, la televisión se inauguró en 1951, pero se tomó accesible y popular a principios de los 60. Hasta mediados de la década, predominaron las series de origen norteamericano: las historias del Lejano Oeste, con sus clásicos muchachitos: los vaqueros.

Sin embargo, paulatinamente, retornaron a EE.UU. aquellos libretistas y autores perseguidos por el macartismo (termino que se refiere a la persecución comunista presidida por el Senador Mac Carthy) quienes les dieron un toque inteligente y crítico a las series de humor.

Surgieron así Los Locos Adams y El Superagente 86, sátiras de géneros clásicos como el terror y el espionaje. Estas series deben ubicarse en el contexto de la guerra fría donde el espionaje y las fuerzas de seguridad como la CIA no eran construcciones televisivas.

Este auge del humor televisivo tuvo un correlato en nuestro país, sobre todo a partir de las producciones de Canal 13. Así, surgieron comedias como “La Nena” y “Dr. Cándido Pérez Señoras”, recreaban con un nítido toque local, modelos importados.

Uno de los éxitos más notables fue el de Pepe Biondi en Viendo a Biondi, quien introdujo lo que se transformó en un clásico de nuestra TV: la creación de eslóganes, frases y palabras que se incorporaron al habla cotidiana.

Ésta fue la época de Sábados Circulares de Mancera, el primer programa con una gran producción periodística y técnica que hizo conocer al público argentino a figuras como Joan Manuel Serrat e introdujo la “cámara sorpresa”.

También se destacaban, La Feria de la Alegría, un programa de entretenimientos, regalaba departamentos y autos, y Carlitos Balá entraba a la pantalla chica con la pregunta: ¿Qué gusto tiene La sal?.

Frente a estos programas de mero entretenimiento, Tato Bores ponía en aprietos a los gobiernos de turno con sus incisivos monólogos.

A comienzos de los 70, proliferaban los programas cómicos, como Operación Ja Ja, La Tuerca y Telecómicos.  A la hora de la merienda, llegaba el Capitán Pituso con Alberto Olmedo. Los domingos a la noche la cita obligada era Titanes en el Ring con Martín Karadagián, creador de decenas de personajes como La Momia.

Los adolescentes aprendían el paso de baile de moda mirando Alta Tensión y Música en Libertad, y los adultos se informaban viendo El reporter ESSO.

La mayor parte de la televisión argentina en estas décadas se caracterizó por un predominio de programas destinados al ocio y al entretenimiento, salvo Tato Bores la mayoría no producía ninguna critica a la sociedad y al gobierno de turno. Fue una época caracterizada por largas dictaduras.

AMPLIACIÓN DEL TEMA:

En Argentina se hicieron envíos experimentales, pero recién en 1951 se concretó la la transmisión pública inaugural, por Canal 7, estatal , (EE.UU. llevada 15 años de adelanto). No habiendo video-tape, se salía en directo con medios precarios y esfuerzos casi heroicos de técnicos y protagonistas en cámara.

Los primeros famosos fueron locutores, derivados de la radio, como Adolfo Salinas, Guillermo Brizuela Méndez, Nelly Trenti y Nelly Prince, a quienes: tiempo después se sumaron Pinky, Jorge «Cacho» Fontana, Colomba y Antonio Carrizo, entre los pioneros.

En 1956, con los primeros televisores nacionales, se inició la serie de telenovelas, con el «Teleteatro a la Hora del Té» que interpretaban Fernando Heredia y María Aurelia Bisutti. Más de 50.000 hogares veían nuestra TV, pero los entendidos decían que debía doblarse esa cifra. Por eso vinieron mejores programaciones, desfilando figuras como Chas de Cruz (Diario del Cine), Analía Gadé, Iris Marga, Julia Sandoval, Juan Carlos Thorry, Gloria Guzmán, Augusto Bonardo, el diseñador de modas Jean Cartier, Alberto Olmedo —alternando su tarea de técnico con la de incipiente cómico—, Mendy y el fútbol!, acaparador de audiencias y alto «cachet».

También proliferaron los programas de preguntas y respuestas, los animadores como Héctor Coire y Antonio Carrizo, las comedias ligeras con Jorge Salcedo, Mirtha Legrand, Ángel Magaña, Osvaldo Miranda, María Concepción César y Mariano Mores; los cantantes con Antonio Prieto, Luis Aguilé, Edmundo Rivero; los envíos periodisticos; Blackie, Silvia Legrand, Andy Russell, los cómicos Bala, Locatti y Marquesini, el ballet de Eber Lobato con su esposa, la bailarina Mary Lobato, conocida como Nélida; Tito Martínez del Box inaugurando «Canal 7 informa», los Martín Fierro de APTRA, entidad de los periodistas especializados.

Mientras tanto, ya en 1959 había 823.000 televisores, asignándose las bandas para los canales 9, 11 y 13, así como para otros del interior. Se agregan figuras como Norma Aleandro, Alberto Olmedo consagrado ya, un joven llamado Ramón Ortega, que no era otro que el famoso Palito; María Antinea, Nat King Colé, Doménieo Modugno, Paul Anka y José Iturbe, mientras Pinky es proclamada «la mujer del año», por su éxito televisivo.

En 1960 se inauguran los canales 9 y 13, con figuras como Narciso Ibañez Menta, Alberto de Mendoza, Tita Merello, Luisa Vehil, Pedro López Lagar, Luis Sandrini, Ángel Magaña, Osear Casco, José Marrone, Ariel Ramírez, Jorge Salcedo, Ramona Galarza, Teddy Reno, María Antinea, Bobby Capó y Tony Bennet. A fin de esa año se inicia la medición de audiencia o fiebre del «rating».

En el 13 se ven «Los Trabajos de Marrone», «Casino», «Buenas tardes, mucho gusto», y en 1961 inaugura el Canal 11, realizando además la primera transmisión internacional, desde Punta del Este. Lo demás es historia conocida: la puja por la audiencia, las series norteamericanas, los largóme-trajes antiguos, Porcel, Pepe Biondi, «Tato siempre en domingo», el cable coaxil, Fidel Pintos, Troilo y Grela, D’Arienzo, Canaro, Andrés Segovia, Hugo del Carril, Alfredo Alcen, el primer «programa ómnibus» de Pipo Mancera y los que se le opusieron («Sábados continuados» y otros), el Club del Clan, Titanes en el Ring, Telecataplum, la Revista Dislocada, Yo quiero a Lucy; «Yerma», de García Lorca, Trini López, Ana María Campoy y José Cibrián, Sarita Montiel, Charles Aznavour, las hermanas Legrand, juntas; La Tuerca, Teatro como en el Teatro, Josefina Baker, la despedida de Azucena Maizani, Tita Merello, Edmundo Sanders, Julio Marbiz, Obras de Terror (Narciso Ibáñez Menta), Tatín, Julio Jorge Nelson, Rita Pavone, Juan Verdaguer, Nelly Beltrán, Fernanda Mistral, Lautaro Murúa, Ruta 66, Doménico Modugno, Niní Marshall, Pepe Iglesias «El Zorro», Sergio Renán, Lucho Gatica, Almorzando con Mirtha Legrand (se lanza en 1968), el Topo Gigio, Nati Mistral, Xavier Cugat y las mismas series televisivas norteamericanas. Otros nombres importantes se suman a nuestra TV, incluso el 20 de julio de 1969 se cubre el primer viaje lunar y en setiembre se inaugura la primera antena parabólica o estación terrestre «vía satélite» de Balcarce con un mensaje de salutación del Papa Paulo VI, desde Roma.

Se modernizaron los programas, cundieron los periodísticos, la telenovelas de la tarde, grandes coberturas deportivas, se transmite el Mundial ’74 de fútbol desde Alemania, se pasan al Estado todos los canales y decae su eficacia y, finalmente, se crea el Ente Argentina ’78 TV, construyéndose las monumentales instalaciones de Figueroa Alcorta y Tagle que tras el éxito sensacional del Mundial ’78, pasaron a ser sede de ATC (Canal 7). (Fuente Aniversario 75° Años de LA RAZÓN 1905-1980- Historia Viva)

PARA SABER ALGO MAS…
Comunicación visual instantánea: la televisión

Durante los años 20, la gente aceptaba con naturalidad complejos medios de comunicación que pocas décadas atrás se habían considerado milagros de la ciencia aplicada. Los sistemas de telégrafo y teléfono disponían de redes mundiales, basadas en decenas de miles de kilómetros de cable conductor. Por otra parte, la posibilidad de la transmisión inalámbrica del sonido se había convertido en una realidad; las empresas de radiodifusión acababan de nacer, pero estaban creciendo rápidamente.

El cine cautivaba a millones de espectadores registrando imágenes sobre una película para reproducirlas posteriormente sobre una pantalla. En el complejo mundo de las comunicaciones quedaba sin embargo un vacío: faltaba un sistema que permitiera ver los acontecimientos en el mismo momento de estarse produciendo del mismo modo que la radio permitía oír la voz en el momento mismo en que se emitía.

En un sector pletórico de adelantos técnicos, resulta difícil atribuir la invención de la televisión a un solo individuo; pero sin duda alguna, la persona que ocupaba el centro de la escena en los años 20 era John Logie Baird, inventor de un sistema fotomecánico en el que la imagen era barrida por un disco en rápida rotación, dotado de una serie de orificios dispuestos en espiral. De esta forma, toda la imagen era barrida en el curso de una revolución. La señal luminosa de cada orificio se transformaba en señal eléctrica mediante una célula fotoeléctrica y se generaba la correspondiente señal de radio. El receptor consistía en un disco similar.

A medida que las diferentes señales luminosas pasaban sucesivamente a través de los orificios, se formaba sobre una pantalla una imagen correspondiente a la original. El sistema no destacaba por su originalidad porque Paul Nipkow, en Alemania, había patentado un disco rotatorio similar en 1884, aunque con la idea de que funcionase conectando el emisor y el receptor por medio de un cable.

Nipkow no desarrolló su idea, pero lo hizo el ruso Boris Rosing en 1906, combinando el disco con el oscilógrafo de rayos catódicos inventado por el físico alemán F. Braun diez años antes.

El nuevo dispositivo permitía sustituir el segundo disco y modular la mancha de luz que se movía a gran velocidad sobre líneas paralelas en el tubo, provocando así (por el fenómeno de persistencia visual) la ilusión de una imagen continua.

Sin embargo, los amplificadores de la señal que existían en aquella época no eran suficientes para producir imágenes claras. Mientras tanto, en Gran Bretaña, A.C. Swinton propuso, pero no llegó a desarrollar, otro sistema en el que tanto el emisor como el receptor se basaban en el oscilógrafo de rayos catódicos.

Baird perserveró en el intento y el 27 de enero de 1926 ofreció la primera demostración pública de televisión, en la Royal Institutionde Londres. En septiembre de 1929, la BBC comenzó a emitir señales de televisión con el sistema de Baird y, durante el mismo año, la institución alemana de correos hizo lo propio. Baird sabía hacer publicidad; entre sus más espectaculares logros figuran una transmisión transatlántica en 1928 y la proyección en un cine de Londres de la llegada de la carrera de Derby de 1931. Sin embargo, su éxito no fue duradero, pues su sistema fotomecánico no se encontraba en la línea principal de desarrollo del nuevo medio.

Otros investigadores estaban estudiando el sistema electrónico de Rosing. Entre ellos figuraba Vladimir Zworykin, un antiguo alumno de Rosing en San Petersburgo. Tras la revolución de 1917, Zworykin huyó a Estados Unidos y consiguió un empleo en la RCA, donde en 1929 llegó a ser director del departamento de investigación. Desde este puesto contribuyó grandemente al desarrollo de un sistema electrónico de transmisión y recepción, semejante al propuesto por Swinton.

En noviembre de 1936, la BBC de Londres inició las emisiones regulares de televisión con el nuevo sistema.

LA TELEVISIÓN Y LA POLÍTICA: La influencia de la televisión modificó profundamente las estrategias electorales. El célebre debate entre John F. Kennedy y su rival Richard Nixon hizo evidente la importancia de la imagen televisiva en los resultados electorales. Según los análisis posteriores, en esa ocasión, tuvieron gran peso sobre la opinión del público diversos aspectos de la imagen televisiva: la palidez de Nixon frente al aspecto fuerte y saludable de Kennedy, los colores de sus ropas, la escenografía.

Con el desarrollo de la televisión, los equipos de campaña, han comenzado a incluir especialistas en imagen -para asesorar a los candidatos en sus presentaciones televisivas- y especialistas en marketing que, por medio de encuestas, investigan las opiniones de la población. Así, se fue abandonando el estilo retórico y efectista de los mitines electorales, para dar cada vez más espacio a rápidas series de pequeños avisos de fuerte impacto emocional. Las prolongadas conferencias radiales que Ricardo Balbín o Arturo Frondizi pronunciaban en la campaña de 1958 han sido sustituidas por el video-clip, la participación de los candidatos en mesas redondas televisadas, e incluso en programas de entretenimiento.

En 1988, en Chile, por ejemplo, se realizó una consulta popular que debía decidir, por sí o por no, la continuidad de la dictadura de Pinochet. La campaña por el NO utilizó un video-clip con imágenes típicamente publicitarias, combinadas con un fondo musical alegre, «La alegría ya viene». Esta campaña logró presentar eficazmente la propuesta de encarar con optimismo un camino democrático.

Aunque en toda campaña se mantienen los actos partidarios y la tarea callejera de los militantes, estas actividades tratan de organizarse de modo que la televisión pueda multiplicar su alcance. Si al comienzo (a televisión mostraba lo que sucedía fuera de ella, en la actualidad cada vez es mayor la tendencia a producir hechos para que sean mostrados por TV.

Ver: Breve Historia de la Comunicación Humana

Ver:Avances Cientificos Despues de la Guerra Television Color TV Color

Historia de la Radio y Evolucion Resumen Primeras Transmisiones

Resumen de la Historia de la Radio y Su Evolución

LA EVOLUCIÓN DE LOS MEDIOS DE COMUNICACIÓN: En un principio, la comunicación se mantenía exclusivamente mediante canales orales, con el avance científico tecnológico se desarrollaron otros medios como la prensa, la radio, el cine y la televisión.

En la actualidad, los medios de comunicación se vuelven indispensables para las sociedades industrializadas: su sistema económico basado en la compraventa generalizada, la división del trabajo que se torna cada vez más compleja y el Estado para cumplir con sus funciones necesitan de estos medios para transmitir la información con celeridad y al mayor número de personas. A partir de esto, se explica la estrecha relación que existe entre los grupos macroeconómicos y las empresas de comunicación.

ORÍGENES CIENTÍFICOS:

Las ondas electromagnéticas, fueron investigadas por primera vez, por un científico británico, llamado James Clerk Maxwell a fines del siglo XIX, los cuales fueron confirmados por por Rudolf Hertz, quien notó que estas viajan a una gran velocidad, y pueden transportar o transmitir sonido, por medio de ellas.

Ya que con aquella velocidad, se podría transmitir sonidos a distancias lejanas, sin tener problemas de tiempo en cuanto a la recepción de los mismos. Los pasos dados por Hertz y Maxwell, cimentaron lo que después sería la radio.

Sin sus investigaciones, no hubiera sido posible, en su época, el haber logrado transmitir frecuencias radiales.

Más complejo se vuelve el escenario, con el devenir de los años. Ya que luego de las investigaciones de Hertz y Maxwell, a los pocos años, tres personas diferentes, en distintos países, lograron transmitir ondas radiales.

Por un lado Alexander Popov en Rusia. Nicolás Tesla en los Estados Unidos y Guillermo Marconi, en el Reino Unido.Quien fue el primero en patentar la radio como tal. Aparte, que no demoró mucho, en comenzar a comercializarla.

Claro que en ciertos países europeos, fue rechaza la patente adquirida por Marconi, ya que era conocido que el ruso Popov, había desarrollado anteriormente, un emisor y receptor de ondas radiales.

Alexander Popov por su parte, logró en 1896, transmitir el primer mensaje en Rusia, entre dos edificios de la Universidad de San Petersburgo. Por su parte, Marconi comenzaba con la comercialización de los receptores radiales. Abrió una fábrica para ello, en el Reino Unido.

LA RADIO:

A partir de una serie de inventos efectuados en el campo de la electricidad, la telegrafía y la telefonía se desarrolló lo que conocemos como “la radio”.

A fines del siglo XIX, un físico de origen italiano, unificó los avances en estos campos y realizó, en 1901, la primera transmisión transatlántica sin cables de voces humanas. Había nacido la radio.

Historia de los Medios de Comunicación La Radio, El Cine y La TelevisiónEstos avances, insertos en un contexto de competencia imperialista entre las naciones europeo- occidentales, fueron inmediatamente aplicados al campo militar: en la marina de guerra, en la guerra entre Rusia y Japón (1905).

Además, se incorporó en la marina mercante a partir del hundimiento del Titanic (1912). En 1913, había en Europa 330 estaciones emisoras de radiogramas abiertas al público.

Las empresas privadas fueron pioneras en el desarrollo de actividades técnicas e industriales. Hacia 1903 en Alemania, dos compañías privadas –AEG y Siemens–, avaladas por el gobierno, fundaron la empresa Telefunken para la explotación de la radio. A su vez, en EEUU se creó con la misma finalidad la RCA (Radio Corporation of America).

En 1902 se enviaban en forma regular mensajes transatlánticos, y en 1905 ya muchos barcos tenían equipos de radio para comunicarse con emisores de la costa. Las diferentes bandas de radio (onda corta, onda larga y onda media) están asignadas a diferentes propósitos. La radio de onda corta cubre grandes distancias y sirve para comunicaciones internacionales.

Durante la Segunda Guerra Mundial se prohibió en los países del Eje conectarse con emisoras de países enemigos, para que no fueran contradecidos los informes transmitidos oficialmente.

Los radioaficionados se conectan entre sí por medio de la onda corta. Han prestado a veces una ayuda valiosa en caso de emergencias, cuando se han interrumpido las comunicaciones telefónicas.

Según la longitud de onda las emisoras transmiten en AM (amplitud modulada) o FM (frecuencia modulada) en dos bandas distintas del transmisor. En esas bandas hay estaciones que se dedican a pasar todo tipo de música o noticias.

Es frecuente que haya comentaristas que busquen amenizar la transmisión con la conversación, que soliciten la comunicación con los oyentes y que transmitan sus mensajes, para que de este modo su público esté más involucrado con esa emisora, y ésta a su vez tenga mayor audiencia y mayor cantidad de publicidad, que constituyen su sostén económico.

El sistema de radio celular es una versión en miniatura de las grandes redes radiofónicas. Con la exploración del espacio, la radiofonía ha servido para medir distancias calculando el tiempo que transcurre entre la emisión de la voz y la llegada del eco.

Los mensajes de los astronautas llegaron a todo el mundo mediante la red de comunicaciones. La radiofonía se divide en radiotelefonía y radiodifusión, según sea que la emisión esté destinada a otra estación o pueda ser captada por varios receptores a la vez.

El origen de la radiodifusión pública muchos libros extranjeros la ubican el 2 de noviembre de 1920, cuando un ingeniero de Westinghouse, emitió en Pittsburg un reportaje sobre la elección del presidente Harding. Sin embargo, la primera emisión se realizó en Buenos Aires tres meses antes, el 27 de agosto de 1920.

Ese día, a través de la instalación de una antena y un transmisor en el techo del Teatro Coliseo Argentino, se transmitió la ópera Parsifal de Richard Wagner. Los acordes fueron escuchados a la distancia por unos pocos porteños que contaban con equipos receptores.

La transmisión resultó exitosa, más allá de algunos ruidos producidos por la estática.

Historia de los Medios de Comunicación La Radio, El Cine y La TelevisiónAl poco tiempo, se instaló una estación de radio “Vía Radiar”, a través de la cual se transmitían desde funciones del Colón, del Odeón y del Coliseo, hasta partidos de fútbol.

En 1923, Buenos Aires contaba con varias emisoras, entre las que se destacaban como pioneras Radio Sudamérica y Radio Cultura.

Tal es así que en 1924, Radio Cultura transmitió, desde Nueva York, la pelea entre el campeón argentino Luis Angel Firpo y el campeón mundial, Jack Dempsey.

El control de la radiodifusión en las naciones europeas lo tenía el Estado, por el contrario, en EEUU, las empresas privadas –a través de un control monopólico– se encargaron de la explotación económica de la radio. De esta manera, hacia 1928 más del 50% de las estaciones transmisoras (600 en total) pertenecían a tan sólo a tres compañías.

Este instrumento de comunicación fue utilizado también por los distintos gobiernos para difundir sus ideas, desHistoria de los Medios de Comunicación La Radio, El Cine y La Televisiónplazando a la prensa escrita.

Durante la primera mitad del siglo XX, tanto Hitler en Alemania como Roosevelt en EEUU, utilizaron a la radiodifusión para transmitir a nivel nacional: estos mensajes eran recepcionados por todos los habitantes independientemente del lugar geográfico donde estaban ubicados.

El crecimiento y el desarrollo de la radio fue paralelo al de los conflictos mundiales: con el desarrollo de la segunda guerra mundial se mejoro la calidad de la transmisión y de los aparatos receptores.

La radio hacia 1945 vivió su etapa de esplendor.

En 1960 el mundo contaba con mas de 12.000 emisoras y la radio continuaba siendo el medio de comunicación de masas más importante. Sin embargo, en poco tiempo seria superada en audiencia por su principal competidora: la televisión.

Antes de la invención de la televisión, la radio se convirtió en la manera más popular de oír noticias nacionales e internacionales, o de tener entretenimiento en el hogar.

La película de Woody Allen, Días de radio ilustra la importancia que tuvo este medio de comunicación en las décadas anteriores a la llegada de la televisión. Lo que ésta ha suplantado en gran medida son las series de ficción (radioteatro) que se transmitían diariamente y que en muchos hogares se escuchaban como ahora se ven las series televisivas. Pero la función de la radio no ha perdido vigencia.

En muchos lugares de trabajo se escucha música para aliviar la monotonía de la tarea, o en salas de espera están conectados con redes de música «funcional», suave y relajante.

La radio en los transportes es también una buena compañía, al brindar noticias y música a quienes viajan.

CRONOLOGÍA DE SU EVOLUCIÓN:

1865 — James Clerk Maxwell describe por primera vez las ondas de radio que se propagan por el espacio.

1866 — El estadounidense Mahlon Loomis experimenta por primera vez con ondas de radio en las montañas Azules de Virginia.

1872 — Loomis patenta la propuesta de un telégrafo sin hilos mediante electricidad atmosférica.

1887 — Heinrich Hertz demuestra la teoría de Maxwell sobre la existencia de ondas electromagnéticas.

1890 — El francés Edouard Branly construye el primer radioconductor, llamado coherer, capaz de detectar señales de radio.

1895 — Alexander Stepánovitch Popovy Guillermo Marconi inventan la radio por separado.

1896 — Popov realiza la primera transmisión de radio enviando las palabras Heinrich Hertz en morse. Ese año, Marconi marcha a Inglaterra y patenta la telegrafía sin hilos.

1898 — El físico inglés Oliver Joseph Lodge patenta el primer sintonizador que ajusta la misma longitud de onda en el emisor y el receptor. Hay quien dice que fue la primera persona en transmitir una señal de radio en 1894.

1900 — El canadiense Reginal Aubrey Fessenden realiza la primera transmisión de radio con voz humana.

1906 — Fessendel realiza la primera transmisión trasatlántica de voz humana en enero y la primera emisión de voz y música el 6 de diciembre.

1913 — Edwin Howard Armstrong inventa el circuito regenerativo que aumenta la calidad de las emisiones.

1920 — La emisora 8MK Detroit realiza la primera emisión de noticias del mundo. • El primer diario hablado de la historia se emite el 20 de agosto.

1921 — Se realiza la primera predicción del tiempo en la emisora de radio de la Universidad de Wisconsin con voz humana. Hasta ese momento, las predicciones se transmitían mediante alfabeto morse.

1935 — Edwing Armstrong describe por vez primera la Modulación de Frecuencia (FM). Al no utilizarse inicialmente su invención, se suicidó.

1940 — En esta década empieza a funcionar la primera emisora de Frecuencia Modulada en emitir regularmente, WSM-FM, de Nashville, Tennessee.

1947 — Los estadounidenses William Shockley, John Bardeen y Walter Brattain inventan el primer transistor de onda media que se lleva en la mano.

1955 — La empresa Regency Electronics comercializa el TR-1, primer radiotransistor que se puede llevar en la mano.

1991 — La empresa inglesa Trevor Baylis patenta el primer radio reloj de la historia.

PIONEROS, Inventos y descubrimientos claves de la Historia – Teodoro Gómez

PARA SABER MAS…
Armstrong inventa la FM
Desde el inicio de las radiotransmisiones a principios de siglo, los gigantes de las telecomunicaciones como la RCA y la AT&T habían contratado equipos de ingenieros para encontrar un remedio para las interferencias eléctricas. Lo que distingue al inventor norteamericano Edwin Armstrong, que en 1933 registró cuatro patentes en la frecuencia radiofónica de la FM, fue el deseo de enfrentarse a la tradición. Mientras los expertos trataban el sistema ya existente de transmisión por modulación de amplitud de ondas (AM), Armstrong creó un sistema que modulaba la frecuencia de las ondas radiofónicas, en vez de la magnitud. El sistema de Armstrong, prácticamente inmune a las interferencias eléctricas y dócil a una amplia gama de sonidos, consiguió una claridad de transmisión más allá de lo imaginable.

Muchos ingenieros habían experimentado anteriormente con la FM, pero la habían desechado a causa de las distorsiones de sonido que provocaba. Armstrong descubrió que cuando la banda de frecuencia modulada se ensanchaba, las distorsiones desaparecían, y las interferencias eléctricas también. La mayoría de los locutores pensaba que una banda más estrecha significaba menos interferencias eléctricas. Armstrong demostró que estas interferencias estaban en función de la amplitud y que los principios para reducirlas en la AM no podían aplicarse a la FM.

Frente al cambio, los empresarios de la radio se mostraron prudentes. La radio constituía un gran negocio, y las emisoras comerciales habían realizado fuertes inversiones en la AM. El sistema de Armstrong amenazaba con hacer obsoletos los transmisores y receptores corrientes. Finalmente, en 1939, Armstrong estableció su propia emisora de FM (inventos anteriores lo habían hecho rico) y la utilizó para alimentar el crecimiento del sistema. Empezó a alcanzar la popularidad lentamente, pero en 1954 Armstrong se enfermó y, con su fortuna dilapidada en litigios por el control de la FM, se suicidó.

Breve Historia de la Comunicación Humana