Deforestación

Los Desastres Naturales Causas Consecuencias y Caracteristicas

Los Desastres Naturales: Causas Consecuencias y Caracteristicas

https://historiaybiografias.com/linea_divisoria3.jpg

bullet desastres naturales

1-Los Desastres Naturales: Clasificación Causas y Consecuencias

bullet desastres naturales

2-Las Fuerzas del Interior de la Tierra –

bullet desastres naturales

3-Desastres por Causas Metereológicas –

bullet desastres naturales

4-Los Fenómenos del Niño y la Niña –

bullet desastres naturales

5-Las Nuevas Tecnologías Para Detectar Desastres Naturales

bullet desastres naturales

6-La Lucha Ecológica –

bullet desastres naturales

7-La Cultura de la Prevención –

bullet desastres naturales

8-Los Informes Metereológicos –

https://historiaybiografias.com/linea_divisoria3.jpg

desastres naturales

1-LOS DESASTRES NATURALES: Cuando la Tierra se estremece de abajo hacia arriba y se produce un terremoto, murallas, techos, torres de edificios y balcones caen en pocos segundos.

La gente se refugia en huertas y descampados, pero muchos quedan atrapados debajo de pesados escombros.

Conocer mas en profundidad las causas que originan estos fenómenos naturales, totalmente impredecibles, que comprometen al hombre en toda su vida personal y social, es tarea de grandes corporaciones estatales y privadas de científicos que estudian todos es fenómenos para intentar predecirlos y evitar riesgos humanos.

Desastres Naturales

A diferencia de las tormentas y las erupciones volcánicas, los terremotos son difíciles de vaticinar y se desatan en segundos, sin dar oportunidad de huir, sembrando destrucción y muerte, obligando a millones de personas a abandonar sus hogares.

A lo largo de la historia, la Tierra se ha visto agitada por terremotos de mayor o menor violencia que han causado importantes daños. Uno de los más famosos es el que sacudió en 1906 la ciudad de San Francisco, que alcanzó 7,8 grados en la escala de Richter.

La sacudida de la tierra dejó cerca de 3.000 muertos. El terremoto fue tan fuerte que se sintió en el estado de Oregón, al norte, y en Los Ángeles, al sur de California.

En los casos en que el fuego no puede controlarse rápidamente, el resultado es aún más devastador. Son esos momentos en los que se comprueba cuan frágil es nuestra vida y cuan expuestos estamos ante la naturaleza.

Otro efecto que acompaña a los terremotos suelen ser los tsunamis, u olas sísmicas. En el océano abierto estas olas pueden pasar inadvertidas.

Pero cuando los tsunamis llegan a tierra se vuelven fuerzas increíblemente destructivas y generan olas de decenas de metros de altura que arrasan con todo, desde casas y automóviles hasta edificios.

Estas olas, que se expanden por el océano a la velocidad de un avión, cuando llegan a la costa pueden ser más destructivas que los mismos terremotos.

La naturaleza ha dado sobradas muestras de su gran poder, y cuando se produce un desastre natural nos recuerda su presencia.

La vida del hombre, desde los tiempos más remotos, ha experimentado inundaciones, la fuerza de los huracanes, la violencia de las erupciones volcánicas y de los terremotos, etc.; año tras año, los desastres naturales traen como consecuencia un mayor número de pérdidas humanas y materiales.

Las causas de este aumento en las pérdidas están relacionadas con el mayor número de población, la creciente urbanización, el tipo de actividades económicas, el asentamiento de la población en lugares de riesgo, etc.

El daño producido por una catástrofe natural a menudo resulta de una peligrosa combinación entre las fuerzas de la naturaleza y la actividad del hombre; por ejemplo, la deforestación aumenta la frecuencia y la magnitud de las inundaciones.

Es evidente que el impacto ele las catástrofes no sería tan devastador si los hombres fueran más prudentes y previsores.

Existen muchas medidas que podrían adoptarse y que. sin embargo, son ignoradas. Sólo se puede estar prevenido y preparado para enfrentar una catástrofe cuando se tiene un buen conocimiento del fenómeno que la origina y los riesgos que se corren.

Es por ello que cada vez con más frecuencia se escucha la práctica de la llamada «cultura de prevención».

Es preciso conocer la difusión geográfica, la frecuencia, la intensidad de los fenómenos que pueden dar lugar a un desastre natural. De esta forma, las pérdidas humanas y materiales disminuirían considerablemente.

En 1991 la comunidad de treinta mil personas que vivía al pie del monte Pinatubo, en Filipinas, pudo ser advertida a tiempo para evacuar el poblado antes de la erupción del volcán, de tal manera que no se registraron víctimas.

El trabajo de prevención es arduo, pero mucho más barato y grato que las operaciones de socorro y reconstrucción.

De todas formas, el presupuesto mundial destinado a las catástrofes es absorbido en un 96% por las tareas de salvataje y reconstrucción, y sólo un 4% se destina a la prevención.

desastres naturales

Los Desastres Naturales

Feroces vientos, nubes de gran tamaño e intensas tormentas se unen para avanzar por el océano y alcanzar tierra firme, arrasando con todo a su paso: árboles, viviendas, rutas, autos, puentes y, en el peor de los casos, víctimas fatales. Éstas son sólo algunas de las consecuencias que tornados y huracanes generan. En el mundo hay registros de huracanes que, en poco tiempo, producen una devastación similar a la de un terremoto o a la de una bomba atómica. Esta página aborda información acerca de estos fenómenos naturales y, también, sobre cuál es el tipo de protección que debe tener una comunidad expuesta a estos desastres.

desastres naturales

Riesgos Para La Alimentación Mundial por el deterioro del suelo. El conjunto de cambios en la atmósfera ha producido un fenómeno que llamamos cambio climático, generador de grandes inclemencias y tragedias, que llamamos desastres naturales, que es impulsado fundamentalmente por el aumento de determinados gases (dióxido de carbono y metano, entre otros) en la atmósfera.

CLASIFICACIÓN DE LOS DESASTRES NATURALES

Atmosféricos: Huracanes (ciclones o tifones), tornados,tormentas eléctricas, olas de frío polar, olas de calor, sequías, tempestad de granizo, exceso de precipitaciones

Hidrológicos: inundaciones fluviales, inundaciones costeras, lagos venenosos, salinización, ,erosión y sedimentación, tempestades y marejadas, aluviones.

Sísmicos:  Ruptura de fallas, sacudimiento del terreno, tsunamis, terremotos, maremotos.

Volcánicos:  Gases, ceniza, tapilli, flujos de lava, flujos de lodo, proyectiles

Otros fenómenos geológico-hidrológicos: Avalanchas por derrumbes, suelos expansivos, deslizamiento de tierras, caída de rocas, deslizamientos submarinos, hundimientos

Biológicos: (animal y vegetal) Plagas, pestes, pandemias, etc.

Hidrológico-atmosféricos: Fenómenos ENOS – El Niño

Hidrológico-biológicos: Marea roja

Fenómenos del espacio cósmico o ultraterrestre: Meteoritos y meteoroides faltamente improbables pero no imposibles)

CAUSAS: La inquieta actividad humana:

La Tierra es un sistema complejo en el cual están conectados e interrelacionados distintos fenómenos que, de una u otra manera, se encuentran en cierto equilibrio.

El clima de la Tierra es el resultado de una compleja serie de interrelaciones que incluyen la incidencia de la radiación del sol, la composición de la atmósfera, las grandes masas de agua que se encuentran en los océanos, casquetes polares y glaciares, y la vegetación, entre otros.

Los cambios producidos en cualquiera de estos componentes suelen tener efectos sobre los demás y, dependiendo de la envergadura de estos cambios, pueden afectar el equilibrio de todo el sistema global.

Desde la Revolución Industrial, la actividad humana sobre la tierra ha ido introduciendo fuertes modificaciones en varios de estos componentes clave del sistema: la liberación a la atmósfera de grandes cantidades de gases que alteran su composición original, los cambios en el uso del suelo como la deforestación, que producen también la emisión a la atmósfera del carbono retenido en los tejidos vegetales, o cambios en el ciclo del agua a nivel local.

El conjunto de estos cambios ha producido el fenómeno que conocemos hoy como cambio climático,generador de grandes inclemencias y tragedias, que llamamos desastres naturales, que es impulsado fundamentalmente por el aumento de determinados gases (dióxido de carbono y metano, entre otros) en la atmósfera.

Veamos cómo se produce el calentamiento: la vida en la Tierra depende de la energía del sol.

Aproximadamente el 30% de los rayos solares que llegan a la Tierra son reflejados por la atmósfera; el resto llega a la superficie del planeta, proporcionando la energía necesaria para que se produzca la vida.

Posteriormente son reenviados hacia el espacio en forma de radiación infrarroja.

Esta radiación es en parte frenada por gases de efecto invernadero que atenúan su salida al espacio.

Aun cuando éstos componen sólo aproximadamente el 1% de la atmósfera, retienen suficiente calor como para regular el clima manteniendo una capa de aire caliente en ella.

Sin estos gases, el planeta sería unos 30 grados centígrados más frío y no habría vida en la Tierra tal como la conocemos.

Se calcula que la temperatura media global ha aumentado aproximadamente un poco menos de un grado centígrado (0,74°C) desde los orígenes de la Revolución Industrial.

30.000, fue el número de muertos en Venezuela por las lluvias de 1999, las peores en 100 años. Ocasionadas por deforestación y desertificación , superaron records anteriores en un 400%.

Ver: El Calentamiento Global

Ver: Efecto Invernadero

ALGUNOS EJEMPLOS DE LAS CONSECUENCIAS DEL CALENTAMIENTO GLOBAL:

EL IMPACTO EN CADA REGIÓN: El estudio del clima y de sus efectos sobre el planeta es uno de los más complejos, ya que entran en juego innumerables variables dinámicas.

Por eso, más allá de los efectos que el calentamiento climático pue vel general, los investigadores intentan determinar cómo impactará en cada región especific evenir desastres o para aprovechar potenciales efectos beneficiosos.

PRIMEROS SIGNOS
Algunas de las más prestigiosas organizaciones ambientalistas y organismos internacionales crearon el mapa «Calentamiento global: primeros signos de alerta», que constituye una importante advertencia sobre lo que podría ocurrir durante los próximos años.

√ Las mediciones indican una suba de 0,17° G en la temperatura de las aguas que rodean la Antártida. Además, las barreras de hielos Larsen están terminando de desintegrarse luego de cientos de años de estabilidad.

En el Parque Nacional de los Glaciares, Montana (EE.UU.), los glaciares se están derritiendo. Si continúa el actual ritmo de retroceso, debido al calentamiento climático, para 2070 no quedará ni uno.

33 %, se retrajo la población del pingüino adelia (Pygoscelis adeíiae) en la Antártida por la pérdida de hielo en los últimos 25 años.

Las temperaturas en Europa crecieron 0,8° C en el último siglo. En muchos sitios se batieron récords de calor o de días de mínimas muy altas.

En Tajikistán se registraron los niveles más bajos de lluvias en 75 años y, por la sequía, se perdió la mitad de la producción agrícola en 2001.

En Siberia, el invierno congela el agua y el suelo 11 días más tarde, en comparación con el siglo XX. Los deshielos de primavera se adelantan 5 días.

En las islas Seychelles los corales pueden extinguirse debido al ascenso de la temperatura del mar.

Debido a las inundaciones y la subida del nivel del mar, Bangladesh perdió algunas áreas bajo las aguas. Kiribati, Vanuatu, Samoa y Maldivas podrían ser los primeros países-islas en desaparecer bajo las aguas.

https://historiaybiografias.com/linea_divisoria3.jpg

3-Desastres por Causas Metereológicas –

LA METEOROLOGÍA: (del griego meteoros, «que está en lo alto del aire» y logos, «discursos»), es aquella parte de la geofísica que estudia los fenómenos físicos de la troposfera, o sea de aquella parte de la atmósfera que está en contacto directo con la corteza terrestre.

Uno de los elementos de importancia fundamental para las variaciones atmosféricas consiste en el desplazamiento, tanto vertical como horizontal, de grandes masas de aire, en un permanente dinamismo originado por los cambios de temperatura y de humedad (vapor acuoso).

Como no todos los puntos de la superficie de la Tierra tienen la misma temperatura, continuamente se forman diferencias de presión, con desplazamientos de masas de aire, más o menos imponentes y veloces, entre las zonas de presión mayor y las de presión menor.

Estos desplazamientos toman el nombre de vientos y obedecen en general a determinadas leyes de formación, que pueden ser estudiadas y conocidas y, por tanto, utilizadas para formular previsiones meteorológicas

DESASTRES POR CAUSAS METEOROLÓGICAS

El comportamiento de la troposfera, bajo ciertas circunstancias, alcanza condiciones extremas. Esto puede materializarse en distintos desastres naturales: inundaciones debido al exceso de precipitaciones, sequías debido a la falta de lluvias de manera irregular (coincidiendo en algunas ocasiones con olas de calor).

En otros casos, las olas de frío llegan a causar nevadas extraordinarias, heladas tardías y pérdidas económicas, especialmente en el sector agrícola. Las granizadas, por su parte, forman parte de los desastres por causas meteorológicas.

Todos estos fenómenos impactan de manera considerable sobre la economía de los países, las nevadas bloquean los caminos, principalmente en las zonas montañosas ubicadas a una altura considerable, como los Alpes y los Andes argentino-chilenos, causan la mortandad de animales que mueren de frío y de hambre, al quedar cubiertas las pasturas por la nieve.

Esto último afecta sobre todo a los países en desarrollo, ya que no se practica la cría de galpón.

Las inundaciones: Las catástrofes naturales más frecuentes son las inundaciones. Éstas se originan por lluvias torrenciales o por deshielos. Producen una serie deconsecuencias como la perturbación de la economía de la región (sobre todo si es agrícola porque, cuando el agua se retira, arrastra la capa fértil del suelo. Otra consecuencia es la contaminación de los suelos y las napas freáticas, poniendo a la población en riesgo de epidemias.

En 1996, se produjo una de las inundaciones más recordadas por los daños que causó en Florencia (Italia). Debido a lluvias torrenciales el río Arno, que la atraviesa, aumentó su caudal y su velocidad (alrededor de 130 km/h), salió de su cauce e inundó gran parte de Florencia.

En esta inundación no sólo hubo que lamentar las personas que quedaron sin techo y otros daños económicos, sino también las pérdidas que sufrió la cultura, pues las aguas y el barro entraron a los museos y dañaron más de un millón de cuadros y otros objetos de arte

Otro desastre meteorológico es el aluvión de barro. Se produce cuando las lluvias se tornan torrenciales y caen en áreas con pendientes pronunciadas, destruyendo todo a su paso.

Ello es lo que ocurre en el litoral brasileño, donde los aluviones que descienden de los morros suelen arrasar las villas de emergencia (favelas)

En nuestro país, la inundación de mayo de 1998 fue considerada la mayor catástrofe de este tipo del siglo XX.

Afectó a un tercio de las provincias argentinas situadas a orillas de los ríos Paraná y Paraguay.

Las ciudades de Resistencia (Chaco) y Goya (Corrientes) fueron las más afectadas. La inundación de 1999 afectó una de las zonas agrícolas más productivas del país, comprendida por el noroeste de Buenos Aires, nordeste de La Pampa y el sur de Córdoba.

Así también, en abril del año 2003 la provincia de Santa Fe se vio sumergida en lo que se denominó crisis hídrica. Esta inundación fue provocada por el desborde del río Salado que afectó de manera rotunda las actividades y provocó perdidas considerables.

El riesgo mayor lo padeció la ciudad de Santa Fe que llegó a tener casi el 70% de su área de ocupación inundada. Incluso, en el año 2007, a causa de precipitaciones torrenciales, la ciudad de Santa Fe también se vio expuesta a inundaciones considerables que afectaron nuevamente las actividades y causo perdidas materiales.

Estos fenómenos climáticos deben observarse en el contexto del recalentamiento global, producto de la contaminación del planeta por más de un siglo.

Las sequías: Como primera cuestión, es necesario distinguir aridez de sequía. La aridez es una condición permanente y las sociedades que viven en los desiertos se han adaptado a ella, realizando las obras necesarias para suplir la falta de agua. Por el contrario, la sequía es un fenómeno circunstancial o esporádico que provoca un desastre.

A diferencia de los demás fenómenos naturales, las sequías suelen ser prolongadas y de mayor alcance, por lo que el daño ocasionado a largo plazo es mayor. Las consecuencias alcanzan a todos los aspectos de la vida.

Se pueden destacar:

• falta de agua potable, por la disminución del caudal de ríos y arroyos y el agotamiento de las napas freáticas;

• hacinamiento en las ciudades: éxodo rural a causa de la muerte del ganado por sed y hambre por falta de pasturas. Además, el viento provoca la voladura de los suelos arrastrando su capa fértil;

• crisis económica, el ganado adelgaza por falta de pasturas y baja su precio en el mercado. Además, su debilidad lo hace más vulnerable a las epidemias. También se elevan los precios de los alimentos al perderse las cosechas;

• aumenta la frecuencia de incendios, al elevarse la temperatura y la aridez.

Una de las sequías más importante se registró en El Sahel (África) entre 1969 y 1973. Afectó al sur del desierto del Sahara y produjo un aumento de su superficie (en Mauritania, Senegal, Malí, Burquina Faso y Chad).

Además, murieron más de 200.000 personas de hambre y la mayor parte de los campesinos tuvieron que emigrar por las pérdidas de las cosechas y la muerte del ganado.

Los Tornados y los Huracanes

Se pueden distinguir dos tipos de vientos fuertes: el tomado y el huracán.

Por un lado, los tornados son tormentas que pueden alcanzan una velocidad de hasta 500 km/hora. Se desplazan sobre los continentes entre los 200 y 500 de latitud en ambos hemisferios, formando una veloz corriente ascendente de aproximadamente 250 m de diámetro. Si los mismos se producen sobre las aguas marinas, se llaman trombas y representan un serio peligro para la navegación.

En este sentido, entre los tornados más recientes se destaca el que se produjo en EEUU en mayo de 1999. Consistió en una serie de 59 tornados, que, uno detrás de otro, devastaron inmensas áreas de la planicie central, ocasionando la perdida de viviendas a miles de familias.

El tornado más fuerte alcanzó un diámetro de un kilómetro, y una velocidad superior a los 200 km/hora.

Por otro lado, el huracán tiene distintos nombres según la región: se lo llama ciclón tropical en el Caribe, tifón en el Índico y mar de Japón, baguío en Filipinas y willy-willy en Australia.

Los huracanes son violentas perturbaciones que se producen en la troposfera. Se originan por una baja presión atmosférica (de hasta 900 hPa) y giran en forma de espiral alrededor de su centro (ojo del huracán). Por lo general, son acompañados de vientos de hasta 300 km/h, por trombas de agua (hasta 2.000 litros por m² en un día), embravecimiento del mar y tormentas eléctricas.

Los huracanes se desplazan hacia el oeste, girando luego hacia el norte o hacia el sur cuando penetra en los continentes.

Se originan sobre los océanos, entre los 50° y 20° de latitud, cuando la temperatura de las aguas oceánicas es de 270°C o aún mayor. Los vientos que alcanzan velocidades de 200 km/hora rotan en círculos de 500 a 1.800 km. de diámetro, durante varios días o incluso semanas.

Hay que considerar que al llegar al continente produce inmensos oleajes que se abaten sobre las costas, provocando efectos destructivos. Si bien la velocidad del viento aminora a medida que llega a tierra firme, las lluvias que se originan pueden causar inundaciones.

Un huracán muy devastador fue el Mitch, en 1998. A su paso por Centroamérica dejó alrededor de 30.000 muertos y desaparecidos, y cuantiosas pérdidas económicas, ya que destruyó viviendas, puentes, caminos y gran parte de las plantaciones de café y plátanos.

Hay que considerar también el grado en que estas sociedades se ven afectadas por esta clase de fenómenos. Por lo general en Centroamérica los países son monoproductores (es decir centran su actividad productiva en un sólo producto que es primario).

Cuando estos fenómenos climáticos provocan daños severos se produce lo que a nivel internacional se denomina “catástrofe humanitaria”. Ante ello, los organismos internacionales como la ONU (Organización Mundial de las Naciones Unidas) se movilizan de inmediato, como así también los países vecinos y los desarrollados, para proporcionar ayuda.

Los desastres se presentan con más asiduidad en los países periféricos. De todos modos, los países desarrollados se encuentran siempre involucrados, porque son los responsables de otorgar créditos a los gobiernos damnificados, para que puedan reconstruir la infraestructura mínima para la población y reactivar su aparato productivo.

Ciclones y anticiclones

Ya se ha visto anteriormente que la temperatura disminuye regularmente a medida que se asciende en el espacio.

Pero debido a los múltiples y muy variados factores que influyen en la temperatura del aire, suele ocurrir que a una misma altura se registran temperaturas y presiones distintas.

Las isóbaras, como ya se ha dicho, son las líneas que unen todos aquellos puntos que en un intervalo de tiempo dado tienen igual presión (media), y son por ello mismo muy distintas no sólo de las isotermas (líneas de igual temperatura), sino también de las curvas de nivel que unen todos los puntos de igual altitud.

De ordinario, suele suceder que las isóbaras tienden a asumir una forma cerrada, determinando así un área o zona, dentro de la cual el valor de las presiones se manifiesta de dos modos muy característicos: presión atmosférica que disminuye hacia el centro de la zona, o presión atmosférica que aumenta.

En el primer caso, el área considerada toma el nombre de zona ciclónica; en el segundo recibe, por el contrario, el nombre de zona anticiclónica.

La zona ciclónica es un área sobre la cual la presión atmosférica es máxima en los bordes y mínima en el centro; dicha zona el índice de variaciones meteorológicas más o menos intensas y, en general, es muy inestable, con tendencia a desplazarse incluso con mucha rapidez a zonas distintas de las de formación.

En cambie la zona anticiclónica es un área sobre la cual la presión atmosférica es mínima en los bordes y máxima en el centro; es mucho más estable que la zona ciclónica, desarrolla una influencia más duradera y es indicio de condiciones meteorológicas más fijas.

Cuidadosas mediciones han permitido determinar que las zonas ciclónicas y anticiclónicas están sujetas a un movimiento general en sentido contrario a los dos hemisferios.

En el hemisferio boreal, las masas de aire de los ciclones se desplazan desde la periferia hacia el centro en sentido contrario al de las agujas del reloj, llamado también antihorario, mientras que las masas de aire de los anticiclones se desplazar. desde el centro hacia la periferia en sentido horario.

Estos movimientos, con sus respectivos .sentidos de rotación resultan evidentemente influidos por el movimiento rotatorio de la Tierra que gira alrededor de su eje de Oeste a Este; lo mismo ocurre con las corrientes marinas, en las cuales las masas de agua en movimiento se desplazar, también en sentido contrario en los dos hemisferios.

https://historiaybiografias.com/linea_divisoria3.jpg

6-LA LUCHA ECOLOGICA

La lucha ecológica es la lucha por nuestra supervivencia como especie. La Unión Internacional para la Conservación de la Naturaleza y los Recursos Naturales fue uno de los primeros movimientos internacionales que se formó con este fin. Surgió en Francia, en 1948, con el auspicio de la UNESCO.

En el último cuarto de siglo, la cooperación internacional sobre medio ambiente se ha convertido en un tema primordial tanto para las Naciones Unidas, como para los organismos gubernamentales y no gubernamentales.

Se han firmado declaraciones, convenios y tratados sobre problemáticas ambientales con resultados dispares, y se han creado organismos internacionales.

Las ONO han desarrollado una importante labor. Entre ellas, se destaca la organización ambientalista más grande del mundo, Greenpeace (Paz y Verdor) fundada en 1971, en Canadá.

Se extendió a los cinco continentes y hoy cuenta con más de cuatro millones de socios en el planeta. Tienen presencia en todos los lugares donde se agrede a la naturaleza.

Por ejemplo, con sus lanchas neumáticas, muchas veces en arriesgadas acciones, sus miembros se interponen entre las ballenas y los lanza-arpones de los barcos balleneros.

También encabezan protestas contra el arrojo de desechos tóxicos a las aguas o a la atmósfera. Además, apoyan la formación de organizaciones locales para este fin.

Algunos movimientos ecologistas se transformaron con los años en partidos políticos. Es el caso del Partido Verde, en la República Federal Alemana, que desde 1980 participa en las elecciones y tiene representantes en el parlamento federal.

Desde entonces, ellos son la cabeza visible del ecologismo práctico y de la acción concreta.

El 5 de junio de 1990 se estableció el Día de la Tierra. Durante aquella jornada, cientos de organizaciones ecopacifistas de todo el globo se pusieron de acuerdo para lanzar un grito desesperado: detener la destrucción del planeta.

En junio de 1992, se celebró la Conferencia de las Naciones Unidas para el Medio Ambiente y el Desarrollo, conocida como Eco ‘92 o la Cumbre de Río (se celebró en Río de Janeiro, Brasil).

Fue la reunión más importante de todos los tiempos pues concurrieron representantes de 178 países, de los cuales la mayor parte eran jefes de Estado, y asistieron integrantes de 2.500 ONU.

En la reunión los delegados aprobaron tres documentos:

• la Declaración de Río sobre el Medio Ambiente y el Desarrollo, que es un resumen de principios ecológicos;

• el Programa o Agenda 21, que es un plan integral para dirigir Las acciones nacionales e internacionales ha

• la Declaración de Bosques, que consta de quince principios para la gestión sostenible de los bosques y regula el comercio de la madera, aunque no establece límites para frenar la deforestación.

Además, se firmaron dos tratados internacionales: el Convenio sobre la Diversidad Biológica  y el Convenio sobre el Cambio Climático

Con posterioridad a la Cumbre de Río hubo otras reuniones para seguir avanzando en estos temas, como la Cumbre sobre el Cambio Climático, en 1997, en Kioto (Japón).

A pesar de todo lo que se hizo hasta hoy, este proceso de cambio de actitud frente a la naturaleza recién comienza.

Falta recorrer un largo camino, no sólo para que las sociedades tomen conciencia y modifiquen su forma de relacionarse con la naturaleza, sino también porque llevará mucho tiempo recuperarla.

El destacado biólogo francés Jacques Cousteau afirmaba que “somos pasajeros sin nacionalidad de una nave llamada Tierra, cuyo futuro está en peligro”.

Vivir en un medio ambiente sano es un derecho humano. La Declaración de la Conferencia de las Naciones Unidas sobre el Medio Humano, reunida en Estocolmo en junio de 1972 expresa la convicción común de que “el hombre tiene el derecho fundamental a la libertad, la igualdad y el disfrute de condiciones de vida adecuadas en un medio de calidad tal que le permita llevar una vida digna y gozar de bienestar, y tiene la solemne obligación de proteger y mejorar el medio para las generaciones presentes y futuras”.

https://historiaybiografias.com/linea_divisoria3.jpg

7-LA CULTURA DE LA PREVENCIÓN

En realidad, impedir que estos fenómenos extremos de la naturaleza ocurran es imposible, por eso las sociedades deben crear recursos e instrumentos para limitar sus efectos.

Es necesario crear una cultura de la prevención, donde la tarea de los medios de comunicación y los docentes son piezas fundamentales, ya que actúan como multiplicadores de la información; esto es, son comunicadores sociales.

Teniendo en cuenta lo anterior, el 90% de las defunciones provocadas por los movimientos sísmicos podrían evitarse. Sin embargo, alrededor de la mitad de los países más vulnerables a los desastres no cuenta con una planificación adecuada para enfrentarlos.

Ahora bien, ni la planificación, ni su aplicación o su resultado es igual en todos los espacios geográficos del mundo, porque dependen de factores políticos, culturales y, sobre todo, del nivel de desarrollo socio-económico del país.

De esta manera, no produce el mismo tipo de daño un sismo, huracán o tornado en Estados Unidos que en Bangladesh o la India.

Con respecto a las pérdidas económicas, son de mayor volumen en Estados Unidos pues las autopistas, viviendas, etcétera, tienen mayor valor.

Pero el número de víctimas fatales es mayor en los países en desarrollo por su escasa infraestructura para proteger a la población y sus bienes.

En este sentido, prevenir los riesgos es crucial y, aunque requiera un costo más elevado en el presupuesto de planificación, este resulta ínfimo frente a los daños y gastos ocasionados si no se llevan a cabo.

Por eso, aunque la prevención debería insumir los mayores esfuerzos físicos y monetarios, no es así en casi todos los países del mundo, ya que el presupuesto más elevado está destinado a la reconstrucción.

En la década de 1950, en 11 tifones e inundaciones importantes fallecieron alrededor de 13.000 personas y más de un millón de hogares resultaron destruidos o anegados.

En cambio, cuando en junio de 1964, Nigata, en Japón, sufrió el mayor terremoto ocurrido en 40 años, aunque fueron afectadas más de 150.000 personas y la mitad de la ciudad quedó inundada, sólo 11 personas resultaron muertas y unas 120 heridas.

Esto se debió a que la respuesta de la comunidad ante el desastre fue eficaz, porque Japón había implementado planes de información pública sobre las acciones a seguir ante la presencia de un desastre natural.

El ejemplo anterior deja claro que la planificación debe tener en cuenta todas las actividades de prevención y mitigación de un desastre, e incluir a todos los actores sociales: economistas, sociólogos, políticos, geólogos, meteorólogos, asociaciones gubernamentales y no gubernamentales, etcétera.

Los principales aspectos a tener en cuenta son:

• investigación del fenómeno para evaluar su intensidad y frecuencia con el fin de confeccionar y difundir el mapa con las zonas de riesgos. De esta manera, todos los que habitan dicho espacio tuviesen conocimiento de los peligros a los que están expuestos y cómo deben actuar en caso de catástrofes;

• aplicación del conocimiento científico y la tecnología para la prevención de los desastres y su mitigación. Incluyendo la transferencia de experiencias y un mayor acceso a los datos relevantes (por ejemplo, el seguimiento satelital que se hace de la falla de San Andrés, en California);

• toma de medidas preventivas (normas de seguridad para el asentamiento de la población, edificaciones de baja altura que resistan ciclones y huracanes o movimientos sísmicos de magnitud). Las nuevas construcciones en las zonas sísmicas se realizan con técnicas sismorresistentes, sus cimientos están apoyados en materiales aislantes de las vibraciones del suelo;

• previsión de los riesgos secundarios; por ejemplo, inundaciones causadas por la fractura de un embalse como consecuencia de un sismo;

• los medios de comunicación son muy importantes tanto para el alerta (sirenas, luces, etcétera.) como para la difusión (radio, televisión, Internet) de la información para organizar a la comunidad en el momento o reorganizarla después del desastre. Los sistemas de alarma instalados en los países caribeños han reducido el número de víctimas durante la estación de los huracanes.

¿Es posible manejar las amenazas?

Aunque el hombre no puede evitar —al menos por ahora— la ocurrencia de sismos, erupciones volcánicas o huracanes, los avances en la ciencia y la técnica han permitido conocer su funcionamiento y determinar en mayor o menor medida la probabilidad de su ocurrencia.

Así gracias a redes de vigilancia y monitoreo (que incluyen aparatos sofisticados como sismógrafos e incluso satélites para el seguimiento de tormentas y huracanes) es posible pronosticar o detectar algunos fenómenos y así determinar estados de alerta tempranos para la protección o evacuación de la población.

En el caso de las inundaciones, es posible evitar su ocurrencia mediante obras de ingeniería, como la construcción de presas y canales.

Gracias a la ingeniería geotécnica, se pueden realizar obras de estabilización de pendientes, a fin de evitar deslizamientos y desprendimientos rocosos. Salvo en estos casos, en los que sería posible «eliminar» la incidencia de eventos físicos, en general, la única manera de disminuir estos riesgos es reducir la vulnerabilidad de la sociedad.

Situación problemática
Se ha demostrado que un número considerable de tragedias ocurren por descuido o ignorancia. En consecuencia, toda persona está obligada a conocer e identificar las fuentes de peligro y los riesgos ambientales del lugar donde vive. ¿Cuáles son las fuentes de peligro de tu región?

Hipótesis
Las fuentes de peligro de mi región pueden ser por causas geológicas, pueden estar relacionadas con hechos hidrológicos o pueden deberse a la acción humana.

IDEAS FUNDAMENTALES

Si bien la Tierra ha sido lo suficientemente generosa y benigna con el ser humano, también es fuente de diversos peligros que amenazan, quizás, su existencia.

Definimos riesgo como la probabilidad de perjuicio a vidas y bienes en un lugar determinado, en cierto período de tiempo. A su vez, definimos amenaza como la posibilidad de ocurrencia del fenómeno considerado, en un lugar determinado y en cierto período de tiempo.

Se ha precisado que las amenazas tienen tres orígenes:

1- Origen geológico: como sucede con los fenómenos volcánicos, tectónicos o sísmicos y los movimientos de la Tierra.

2- Origen hidrometeorológico: evidente en hechos hidrológicos como crecientes, inundaciones y sequías; fluviales como la erosión o los cambios de cauce de los ríos; meteorológicos como huracanes, vendavales y las heladas; o de origen marino.

Veamos un ejemplo:

Las inundaciones son crecidas de agua en cuencas de alta pendiente producida por la presencia de grandes volúmenes de agua en un relativo corto tiempo. Son frecuentes en ríos de zonas montañosas con una amplia pendiente, que desencadenan los siguientes procesos:

Derrumbes: ocasionados por las fuertes precipitaciones sobre terrenos débiles o deforestados que ablandados y removidos se deslizan sobre la orilla de ríos y quebradas.

Represamiento de agua: sucede cuando las rocas, los desechos de vegetación y todo lo que es arrastrado tapona la corriente a manera de dique.

Avalancha: el agua represada rompe el obstáculo y se desborda por el flanco de la montaña arrastrando todo a gran velocidad y con un fuerte poder destructivo.

3-Origen antropogenético: debidos a la acción del ser humano: explosiones, incendios, explotación inadecuada de recursos naturales como minas, canteras, y deforestación; contaminación del agua, aire, suelo; consumo de sustancias psicoactivas. Veamos un ejemplo:

Incendios: el incendio como catástrofe se presenta cuando de manera incontrolada son consumidos por el fuego varios materiales inflamables, generando cuantiosas pérdidas en vidas, recursos y bienes.

Para que se produzca un incendio se requiere de tres elementos: un material combustible, una fuente de calor y el oxígeno; todos éstos conocidos como el triángulo de fuego.

https://historiaybiografias.com/linea_divisoria3.jpg

8-Informes Metereológicos

El 15 de octubre de 1987, los boletines meteorológicos de la televisión británica pronosticaron vientos fuertes, pero nada más.

El lector de noticias de la cadena BBC, al comentar el informe de un televidente sobre un huracán que se avecinaba, dijo;“No se preocupen, es una falsa alarma.”

Esa noche, bautizada más tarde como Viernes Negro, el sur de Inglaterra fue azotado por la tormenta del siglo. Vientos de hasta 185 Km/h derribaron 15 millones de árboles y provocaron 19 muertes, así como pérdidas materiales por valor de 1.000 millones de libras esterlinas. La protesta pública no se hizo esperar: ¿por qué no se advirtió a tiempo de lo que iba a ocurrir?

La respuesta llana fue que los encargados del boletín se equivocaron. A pesar de los avances tecnológicos, el pronóstico del tiempo es una ciencia incierta, y siempre lo será.

Evolución de una ciencia difícil: El arte de predecir el tiempo comenzó en 1643, cuando el físico italiano Evangelista Torricelli inventó el barómetro.

Con este instrumento pronto pudo saberse que el aumento o la disminución en la presión del aire correspondía a cambios climáticos, y que con frecuencia una baja anunciaba tormenta.

Pero sólo con la invención del telégrafo en la década de 1840 fue posible reunir informes de estaciones meteorológicas dispersas y hacer predicciones con relativa precisión.

A principios de este siglo la radio dio pauta a otro avance. y en la década de 1960, los adelantos de la informática hicieron pensar que la meteorología podría al fin predecir el tiempo con semanas de anticipación.

El volumen de información de que disponen hoy los pronosticadores es asombroso.

La Organización Meteorológica Mundial recibe informes de 9 000 estaciones terrenas y de 7500 barcos. En las estaciones se realizan varias mediciones al día bajo condiciones normales (por ejemplo, la velocidad del viento se mide a 10 m del suelo).

Además, globos meteorológicos lanzados desde 950 estaciones alrededor del mundo inspeccionan la atmósfera a una altura de hasta 30 Km.

Unas 600 aeronaves informan diariamente sobre las condiciones climáticas en los océanos, y siete satélites exploran el planeta desde una altura de 80 Km.

Desde todos esos puntos se reúne una enorme cantidad de datos, como la velocidad y dirección del viento, la temperatura, nubosidad, precipitación, humedad y presión atmosférica.

Cada día las observaciones producen 80 millones de dígitos binarios de información de computadora —que equivale al texto de varios miles de libros—, la cual se introduce en una red de 1 7 estaciones alrededor del planeta que conforman el Sistema Mundial de Telecomunicaciones.

Dos de esas estaciones —el Centro Meteorológico Nacional de Estados Unidos y la Oficina Meteorológica británica— boletinan para la aviación civil. Ambas realizan las mismas operaciones como medida precautoria en caso de que alguna falle. Unas computadoras capaces de efectuar hasta 3500 millones de cálculos por segundo procesan los datos para hacer las predicciones.

Prever las condiciones meteorológicas es fundamental para la vida en el Occidente industrializado.

En el control del tránsito aéreo, por ejemplo, los pronósticos que permiten a los aviones eludir los vientos de cola o reprogramar los aterrizajes para evitar el mal tiempo, ahorran unos 80 millones de dólares en combustible al año.

Industrias como la de la construcción, el transporte marítimo y la agricultura dependen en gran medida de los pronósticos del tiempo por hora y por día.

Los fenómenos meteorológicos que ponen en jaque a los pronosticadores son los ciclones —enormes tormentas que se originan en los mares tropicales—.

Los que se desplazan hacía el oeste a través del Atlántico se llaman huracanes, y los que recorren el Pacífico, tifones.

Los ciclones se forman en el ecuador y pierden fuerza a medida que tocan tierra. Los huracanes suelen durar una semana, y son impulsados por el aire húmedo y caliente del mar tropical.

Conforme va aumentando en el ojo de la tormenta, la humedad del aire se condensa en forma de nubes, liberando calor y absorbiendo más aire húmedo.

Durante la temporada de ciclones más de 100 tormentas se forman frente a las costas de África, de las cuales seis se transforman en huracanes.

Cuando se detectan los nubarrones en espiral característicos de una tormenta tropical, por lo regular por satélite, una estación meteorológica situada en Miami, Estados Unidos, entra en acción: el personal analiza los datos procedentes de satélites, sistemas de radar, boyas automatizadas y aeronaves para predecir el curso del huracán —en particular dónde se desatará—.

A principios de septiembre de 1988, una zona de baja presión comenzó a cobrar fuerza frente a las costas de África hasta que el sábado 10 de ese mes se convirtió en un huracán más tarde llamado Gilberto.

Dos días después, Gilberto azotó Jamaica con fuerza devastadora, dejando sin hogar a la quinta parte de los 2.5 millones de habitantes de la isla y destruyendo muchas cosechas.

Después, al alejarse de la devastada isla, Gilberto casi duplicó su fuerza creando rachas de viento de hasta 280 km/h —la peor tormenta que ha azotado nuestro hemisferio en este siglo—.

El huracán, cuyo curso se predijo con mucha precisión, llegó a la península de Yucatán el miércoles al amanecer, dejando un saldo de 30 000 damnificados.

Pudo haber sido peor: en 1979, el huracán David causó 1100 muertes, y el Flora mató a 7200 personas en 1963. El número relativamente bajo de muertes provocadas por Gilberto, unas 300 personas, se debió a la oportunidad con que se emitieron los boletines.

Pero los pronosticadores no sabían con certeza qué ocurriría después. Cuando Gilberto viró al norte, se puso sobre aviso a las costas de Texas, LuisiAna y Mississippi.

Alarmada, la gente vació los supermercados, y 100.000 personas atiborraron las carreteras tratando de huir tierra adentro, dejando tras de sí sus hogares. Pero las precauciones resultaron innecesarias: Gilberto se disipó al alcanzar el litoral estadounidense.

El inesperado final de Gilberto pone de relieve el principal problema de los pronósticos meteorológicos: su falta de absoluta certidumbre. Los fenómenos meteorológicos son en buena medida imprevisibles.

Las imágenes usadas para representar factores variables como la velocidad del viento o la temperatura ambiental son válidas tan sólo por un momento; al segundo siguiente se vuelven aproximativas.

Por pequeñas que lleguen a ser las desviaciones respecto a los valores verdaderos, predicción y realidad pronto se separan.

Los científicos aceptan que hasta los cambios climáticos leves pueden tener graves consecuencias,

Ellos se refieren en broma a ese hecho como el “efecto mariposa”: la idea de que una mariposa que agite sus alas en Pekín, por ejemplo, puede causar una tormenta en Nueva York. Así que el limite actual de vigencia de un pronóstico es de pocos días.

La experiencia diaria de un pronosticador suele ser mejor guía que cualquier modelo de computadora. Por ejemplo, si una masa de aire se desplaza desde el frío Mar del Norte hacia los países europeos adyacentes, puede formar nubes que provoquen lluvias tierra adentro al día siguiente o bien que se disipen al calor del sol; el resultado dependerá de una diferencia de temperatura de sólo unas décimas de grado, pero los efectos pueden ser muy contrastantes: un día frío y nublado o uno caluroso y soleado.

Aun con las mejores computadoras y una información más depurada, parece poco probable que se realicen pronósticos meteorológicos precisos con más de dos semanas de anticipación.

Los pronósticos de mediano alcance han mejorado con las innovaciones téc­nicas.

Por ejemplo, las predicciones para tres días que se efectúan en muchos países son hoy tan precisas como las que se realizaban para un día hace un decenio. Pero, por otro lado, los pronós­ticos de largo alcance (para más de 10 días) aún no son confiables.

No obstante, hay esperanzas. Los científicos creen que hay una relación entre los cambios de temperatura del mar y ciertas condiciones atmosféricas.

Por ejemplo, cada tres a siete años una corriente llamada El Niño recorre la costa occidental de Sudamérica. Además de ejercer una importante influencia en el clima, la fauna, la flora y la industria locales,

El Niño provoca inviernos más benignos o más rigurosos en Estados Unidos. Nadie sabe aún por qué, pero quizá algún día puedan predecirse los efectos de ese fenómeno.

VULNERABILIDAD,…SOMOS TODOS IGUALES FRENTE A UN DESASTRE?

Es sabido que una catástrofe natural o tecnológica afecta con mayor fuerza a los sectores sociales que se encuentran en situaciones de fuerte vulnerabilidad, la que no les permite recuperarse, sobrevivir o resistir a los efectos de tales fenómenos.

Entre estos grupos se pueden citar aquellos de escasos recursos económicos, que viven en zonas de riesgo natural o tecnológico, oque carecen de infraestructura y servicios básicos (agua potable, desagües pluviales, desagües cloacales).

Una mujer sola al frente de un hogar constituye un factor que potencia la vulnerabilidad.

Por un lado, por una causa de orden económico, las mujeres, en especial las de sectores de bajos ingresos, generalmente perciben menores salarios que los hombres por igual trabajo, lo cual las coloca en una posición relativamente desventajosa para enfrentar las consecuencias de un desastre.

Por otro lado, por una causa cultural, las mujeres de comunidades vulnerables tienen escasas probabilidades de actuar en la organización de la emergencia, ya que su participación en las decisiones es restringida.

Asimismo, muchos estudios señalan que, una vez ocurrido el desastre, las mujeres son mucho más susceptibles de caer en situaciones de estrés ante las pérdidas.

También es frecuente la violencia ejercida sobre las mujeres, como «válvula de escape» de la impotencia o frustración de los hombres que pierden sus empleos o su estatus económico y social después de un desastre.

Una alternativa válida para mejorar las condiciones de vulnerabilidad en una sociedad ante determinadas amenazas, es incorporar a las mujeres a la gestión del riesgo.

Esto implica la aplicación de un enfoque que plantee esquemas de manejo de los desastres en todos los momentos del desastre, con papeles claramente establecidos para hombres y mujeres.

Así, las mujeres quedan plenamente integradas, aprovechando al máximo sus capacidades para convertirse en efectivas agentes en la mitigación de las consecuencias de los desastres.

Esta participación, no significa recargar con nuevas tareas y nuevas responsabilidades a las mujeres, sino lograr que ocupen un espacio real en los procesos de gestión del riesgo.

https://historiaybiografias.com/linea_divisoria3.jpg

PARA SABER MAS….

El 26 de diciembre de 2004 el mundo fue testigo de un desastre natural impresionante.

Un sismo submarino con una magnitud de 9 grados en la escala de Richter hizo temblar el este del océano índico, provocando varios tsunamis que afectaron las áreas costeras de ocho países asiáticos y causaron la muerte de más de doscientas mil personas. Imágenes satelitales muestran la zona antes y después de la catástrofe.

El 11 de marzo de 2011 sucedió otro terremoto y posterior tsunami en Japón que ocasionó miles de víctimas y obligó a que el país decretara el estado de emergencia nuclear porque la central de Fukushima se vio dañada por el seísmo.

En la capital, Tokio, varios edificios temblaron violentamente.

Inundaciones, sequías, erupciones volcánicas, terremotos, explosiones forman parte del comportamiento normal y esperable de la naturaleza y de los sistemas tecnológicos. Todos ellos representan momentos de procesos físicos, geológicos, hidrológicos y técnicos en constante desarrollo.

Así, la crecida de un río es parte de su funcionamiento: en cierta época del año, los ríos crecen e inundan áreas anegadizas.

Cuando estos eventos afectan a una sociedad determinada, se dice que ha ocurrido una catástrofe o un desastre. No constituyen desastres mientras no se vincule a ellos una sociedad que, por diversos motivos, no está preparada para hacerles frente.

Así, si un terremoto ocurre en un área despoblada, no es posible hablar de desastre, ya que no hay grupos sociales que sufran su impacto. Por eso es importante no confundir «desastre natural» con «fenómeno natural», puesto que los efectos de ciertos fenómenos naturales no son necesariamente desastrosos.

Podemos definir un desastre o catástrofe como una situación detonada por un fenómeno natural (erupción, ciclón, inundación, etc.) o tecnológico (accidentes químicos, explosiones) que afecta a una sociedad dada.

En general, los desastres ocurren de manera repentina y sus consecuencias se traducen en importantes alteraciones en la vida cotidiana del grupo social afectado: pérdida de vidas, destrucción de bienes (carreteras, edificios, etc.), paralización de actividades productivas, interrupción de servicios públicos.

Estas alteraciones generan graves trastornos en la estructura económica y social de la sociedad, lo cual determina la necesidad de ayuda y asistencia.

La «alteración en la vida cotidiana» implica una idea de excepción, es decir, que el fenómeno detonante es de una fuerza tal que interrumpe abruptamente la rutina de la sociedad, en forma extraordinaria.

Esta concepción solo incluye los grandes eventos y deja afuera los pequeños y medianos, que son más regulares. En este’ sentido, se plantean discusiones acerca de cuándo un evento natural o tecnológico genera el daño suficiente como para ser considerado una catástrofe.

Algunas instituciones toman variables cuantitativas para «medir» la magnitud de un desastre: se habla entonces de la cantidad de muertos o de las pérdidas económicas.

En este caso, aparecen claramente las diferencias entre el Norte rico y el Sur pobre: desde la década de 1960. la pérdida de vidas humanas representa el 70 % del total de los impactos en los países del Sur, mientras que las pérdidas económicas representan el 75 % de los impactos en los países del Norte.

Por ejemplo, el terremoto de Kobe (Japón) representó una pérdida de 100.000 millones de dólares, mientras que el paso del huracán Andrew por los países caribeños significó una pérdida de unos 25.000 millones de la misma moneda.

Por otra parte, el terremoto de Kobe dejó alrededor de 5.500 muertos, mientras que el deslizamiento de lodo que sepultó la ciudad de Armero (Colombia) produjo la muerte de cerca de 25.000 personas.

Estas diferencias indican que cuando hablamos de un desastre debemos tener en cuenta el lugar donde se produce. Las consecuencias de un evento serán más o menos catastróficas, según las condiciones sociales y económicas en las que se encuentre la población a la que afecta.

En general, si el evento catastrófico se produce en una sociedad pobre, el proceso de crecimiento económico puede verse seriamente afectado: pero esto no ocurre en una sociedad rica: en el caso del mencionado terremoto de Kobe, las cuantiosas pérdidas económicas solamente representaron el 1 % del producto interno bruto (PBI del Japón.

Estas discusiones se centran en considerar la catástrofe como un «producto», es decir, como un suceso —excepcional— que ya ocurrió.

El desastre aparece como algo acabado, ante lo cual solo es posible actuar brindando socorro. Esta visión tiende a identificar la catástrofe con el evento detonante, dejando fuera de la consideración a la sociedad afectada. Como consecuencia, el desastre es visto como una «fatalidad», frente a la cual nada se puede hacer.

Cuando el enfoque se centra en las causas que hacen posible una catástrofe, se advierte que el problema no son los desastres en sí mismos (como «productos»), sino la existencia de condiciones de riesgo que posibilitan su ocurrencia.

La pobreza, el desarrollo tecnológico incontrolado, la marginación, la inseguridad conforman situaciones de riesgo.

En estas condiciones, la ocurrencia de una catástrofe no hace más que poner en evidencia la situación de riesgo preexistente.

Las condiciones de riesgo permanente en la que viven muchos grupos sociales en la actualidad hacen disminuir su capacidad de resistencia y de recuperación. Por lo tanto, aun un evento de pequeña magnitud puede causar un desastre de consideración.

Situación problema: por lo general, no estamos preparados para prevenir desastres. Es por ello que la mayoría de personas que se ven afectadas cuando hay desastres, como un terremoto, padecen más por la falta de prevención que por el terremoto en sí mismo. Por ello conviene establecer algunos criterios fundamentales para saber actuar en una emergencia de esta naturaleza.

MAREMOTOS: Las olas marinas de origen sísmico, conocidas como tsunamis (y popularmente como maremotos), son producidas por un movimiento vertical repentino de gran magnitud del fondo del mar, provocado por una explosión volcánica submarina o un importante terremoto.

La alteración producida en la superficie del agua se desplaza como un movimiento ondulatorio, a velocidades que dependen de la profundidad del agua a lo largo de su movimiento…

Las olas son imperceptibles en el centro del océano pero aumentan en altura al verse frenadas al acercarse a la costa, y en algunas zonas muy poco profundas pueden llegar a la costa en forma de muros gigantescos de agua de muchos metros de altura.

Estas olas han sido algunas veces responsables de más muertes que el resto de los fenómenos asociados con los terremotos o las erupciones volcánicas.

Casi todos los tsunamis ocurren en el Océano Pacífico, y después de que ocurriera un desastroso tsunami en 1946 se estableció un sistema de alarma para todo el Océano Pacífico centrado en el observatorio de Honolulú.

Basándose en una serie de observatorios sísmicos y estaciones de control de mareas establecidos alrededor del Pacífico, el sistema que incorpora detectores de tsunamis y aparatos registradores de terremotos, desencadena una alarma inmediata al constatarse la probabilidad de uno de estos acontecimientos.

Estas observaciones son enviadas al observatorio de Honolulú, que es el responsable de emitir advertencias a las zonas que puedan ser afectadas. Ocho minutos después del comienzo del gran terremoto de Alaska de 1964, la llegada de las primeras olas sísmicas a Honolulú desencadenó la alarma.

En ese momento no se había recibido aún ninguna información de los observatorios sísmicos de Alaska, al haber resultado destruida por el terremoto la torre de control del aeropuerto internacional de Anchorage, que era la que transmitía normalmente las comunicaciones de estos observatorios.

El epicentro y la magnitud del terremoto no pudieron ser determinados hasta haber recibido informaciones de observatorios sísmicos más distantes. Una hora y media después de que el temblor de tierra comenzase, se pudo emitir un boletín, advirtiendo de la situación y características del terremoto.

La primera observación de un tsunami fue hecha en Kodiak, e inmediatamente después que el informe de este observatorio fuera recibido en Honolulú, se emitió un boletín, advirtiendo de la presencia del tsunami; en este tiempo la primera onda sísmica estaba aproximándose a la costa canadiense, límite aproximado de la zona de percepción del terremoto.

Un fallo de este sistema es que los retrasos atribuibles a las comunicaciones hacen que los avisos lleguen demasiado tarde a las regiones cercanas al epicentro de un terremoto. Pero todas aquellas personas que viven cerca de la costa del Pacífico, saben por experiencia que cuando ellas sienten un temblor de tierra es señal de que un tsunami puede venir a continuación.

Debido a que los tsunamis se desplazan a una velocidad que sólo depende de la profundidad del agua, es posible predecir la hora de llegada del mismo a cualquier zona del Pacífico, una vez que el epicentro haya sido localizado.

5 de Junio: Día del Medio Ambiente

Fuente Consultada:
Geografía La Organización del Espacio Mundial Serie Libros Con Libros Estrada Polimodal
Maravillas del Mundo de Luis Azlún
Días negros Para La Humanidad Paz Valdés Lira
La Historia de las Cosas Annie Leonard
Espacio y Sociedades del Mundo Política, Economía, y Ambiente – Daguerre y Sassone – Edit. Kapeluz Biblioteca Polimodal

 

Tipos de Habitat de los Seres Vivos Relacion Temperatura y Vida

LOS AMBIENTES DE VIDA DEL PLANETA
RELACIÓN VIDA – TEMPERATURA

Es posible que si escuchamos a una persona afirmar en una reunión que los animales más pequeños, e incluso las plantas, tienen un «domicilio» y hasta una «dirección», lo tomemos por un poeta o por alguien que no se encuentra en sus cabales. Sin embargo, esta afirmación no tiene nada de falsa. Al contrario: muchos científicos y naturalistas dedican su vida para conocer más acerca de este tema. Es claro .. . ellos no hablan de «domicilio» y «dirección», sino, de habitat, término que proviene del latín (habitationis) y que significa habitación.

En ecología, habitat es el conjunto de las condiciones físico-geográficas en que desarrolla su vida una especie. En realidad, lo podemos identificar con el ambiente que le es propio a cada planta, a cada animal e, incluso, a cada ser humano.

Cada especie posee un habitat particular. Este ambiente lo componen diversos factores, que en parte son elementos vivos y en parte elementos muertos. Los ecólogos han clasificado a estos componentes ambientales en edáficos, climáticos y bióticos.

Los edáficos son los que se refieren al suelo, el  que de acuerdo con su localización geográfica puede poseer distintos componentes minerales, mayor o menor proporción de arena o de limo o de cantos rodados (que hacen variar sus posibilidades de retener el agua recibida de las precipitaciones y deshielos, y su consistencia) e incluso, diferencias en la cantidad de material orgánico (humus) incorporado.

En relación con los suelos, los habitat más «codiciados» son los que cuentan con una gruesa capa de humus, buena capacidad para retener el agua de lluvias, muchos minerales y pocas rocas de mediano o gran tramaño.

El aspecto climático se refiere a las variaciones meteorológicas que afectan a un sitio determinado. Los elementos que lo componen son la temperatura, la presión, las precipitaciones y las radiaciones cósmicas. Tamibén influyen, indirectamente, la distancia entre el punto estudiado y el océano, la altura sobre el nivel del mar y la proximidad de factores extraños como fuentes termales o volcanes.

Por supuesto, tendrá más «inquilinos» aquel habitat que posea un clima cálido y húmedo, porque allí las condiciones de vida son más fáciles. Por último, resulta de especial importancia el factor biótico (de bios — vida).

No es posible lograr un cuadro real que refleje la existencia de cualquier especie si no colocamos en él a todos los otros vegetales o animales que están asociados con ella. Por otra parte, existe una relación dominante de unas familias sobre otras. Donde no hay vegetales no pueden existir animales herbívoros. Donde faltan éstos, no pueden prosperar los carnívoros.

El habitat habla del lugar donde se vive, es decir, un área física, una parte específica de la superficie terrestre.

De acuerdo con este concepto, puede ser acuático, aéreo o terrestre. Para cada caso, la evolución biológica ha dotado a cada criatura viviente de las «armas» necesarias para desenvolverse exitosamente en su medio. Los topos tienen uñas poderosas, los peces aletas en forma de remo y los pájaros alas que les permiten volar. Para alcanzar estas herramientas perfeccionadas la naturaleza empleó siglos en probar y seleccionar, generación tras generación, cada uno de los adelantos aplicados.

Recordemos, asimismo, que el habitat puede tener dimensiones muy dispares. Puede ser tan grande como un mar o una pradera, intermedio como un bosque o una laguna, o pequeño como un tronco de árbol podrido o el intestino de un mamífero.

Después de la Primera Guerra Mundial, un grave problema que, es su momento, se intensificó día a día afectó a la humanidad entera: la vivienda. Sobre este tema, evidentemente, la ecología tiene mucho que decir. Cuando una población aumenta (trátese de heléchos, de ratas o de personas) se van haciendo cada vez más difíciles de satisfacer las necesidades de mantener un habitat determinado. No olvidemos que al comienzo habíamos dicho que habitat era equivalente a domicilio.

El hombre extendió, con hélices, motores y ruedas, su ambiente; pero, al mismo tiempo, debió someterse a los efectos de sus propios avances. Su «habitat privado», la vivienda, paulatinamente se reduce a departamentos cada vez más pequeños, única solución para dar cabida a las nuevas generaciones, más numerosas que las anteriores.

SOL Y SOMBRA

En el fondo de nuestro jardín podremos realizar una interesante experiencia. Si observamos detenidamente las partes del suelo en las que una pared o arbusto dan sombra permanente, descubriremos que las hierbas crecen allí con menos densidad que en otros sitios. En cambio, notaremos que en esa zona la humedad es mucho mayor y que la tierra es menos granulosa y más compacta. Si tenemos paciencia, podremos comprobar asimismo que, mientras en las zonas donde da el sol predominan los insectos, aquí son más abundantes los gusanos.

En fin… dos mundos distintos se desarrollan a pocos centímetros de distancia. Todos los factores que componen el habitat interactúan de tal manera que llegan a constituir unidades casi independientes, con fisonomía propia. El suelo compacto, la humedad, la vegetación y la microfauna se «entremezclan» al pie de la pared umbría para dar origen a un habitat con rasgos particulares que lo identifican. Al lado, la influencia solar crea las condiciones para que se desenvuelvan con comodidad otras especies diferentes.

EL POTENCIAL BIÓTICO: ¿Qué posibilidades habrá de que en el tiempo en que uno se va de vacaciones, las hormigas, libres de toda persecución, acaben con los rosales del jardín? En las condiciones ambientales óptimas que implica un jardín sin depredadores ni insecticidas, es muy probable que las hormigas salgan triunfantes.

El potencial biótico es justamente eso, la capacidad de una población para prosperar en un medio óptimo. Lo que medimos, en este caso, es su velocidad de crecimiento cuando no hay obstáculos ni límites que la detengan. Mientras una pareja humana podría originar una descendencia de. 200.000 individuos en cien años, una mosca, qon su compañera, podría llegar en un año a la «considerable» cifra de un tres seguido de . . .¡cincuenta y cinco ceros!

Como vemos, el potencial biótico varía para cada especie. Y gracias a Dios existen controles naturales para algunos animales, porque de lo contrario viviríamos inundados de insectos, a tal punto que el sol se nos haría invisible.

Lo que impide que cierto grupo de animales o vegetales crezca en forma desmedida es la suma de los factores físicos, químicos y biológicos que hay en el am biente. Y que influyen, en diversa forma, para alterar las condiciones óptimas de desarrollo.

Una familia humana tipo, en la actualidad, no tiene por lo general más de tres vástagos, porque un número mayor de hijos haría difícil el mantenimiento del núcleo. Es un factor económico el que constituye el límite. Algunos peces, en cambio, son «regulados» por animales de mayor tamaño que se los comen, «recortando el excedente» como la tijera lo haría con un trozo de género que la modista quiere adecuar a un molde.

Todas estas maravillas sólo pueden producirse en un marco multifacético como es nuestra Tierra, donde siempre hay lugar para algo asombroso o inesperado.

LA TEMPERATURA Y LA CIVILIZACIÓN: Es un hecho interesante de destacar el que casi todas las grandes civilizaciones hayan florecido allí donde el clima no es ni muy cálido ni muy frío. Parece ser que el género humano necesita, para su progreso, el estímulo de una temperatura templada, pues tanto el frío riguroso como el calor excesivo han frustrado, de alguna manera, su desarrollo.

Así la raza negra, sofocada por el calor bochornoso de su tierra nativa, avanzó poco en agricultura, artes y ciencias, hasta la época en que los descubrimientos y colonizaciones la pusieron en contacto con los pueblos europeos. El clima en que vivía no era propicio para la actividad y la empresa, pero sí para proveerle de alimentos y ropas sin mayor esfuerzo.

En el extremo opuesto, la gente de las tierras árticas, esquimales y lapones, ha quedado atrás en la marcha general del progreso, porque la inclemencia de su clima no retribuía el enorme esfuerzo que demanda la subsistencia.

El hombre de los trópicos es, entonces, semejante al hombre rico, que no se aficiona al trabajo porque no tiene la coacción de la necesidad para hacerlo; mientras que el hombre de las tierras frías se asemeja al muy pobre, que tampoco hace mucho porque sus esfuerzos no parecen ser retribuidos.

Muchos aspectos del clima —lluvias, visibilidad, cambios de las estaciones, temperatura media del año— y las variaciones de duración del día y de la noche afectan las condiciones de vida, pero sobre todo este factor parece tener la mayor influencia en el aliento o desaliento del empeño humano. Aquellos que han estudiado el problema han llegado a la conclusión que cualquier temperatura, entre 0° y 22°, es favorable al progreso, y que una temperatura media de 10° es la ideal.

Vemos abajo un mapa con las temperaturas del planeta.

mapa de mundo con temperaturas por regionesn

Es bien destacable que la zona amarilla incluye a muchas de las más importantes ciudades del mundo, como ser Londres, Nueva York, París, Chicago, Tokio y Berlín. Aunque los climas de estas ciudades no son iguales, todos ellos comparten una temperatura media anual, entre los 5o y los 15°. También están, dentro del área amarilla, dos grandes civilizaciones de la antigüedad: la cretense y la romana. Dentro del área anaranjada, floreció la antigua civilización griega y más tarde las de Rusia y España, mientras que en el área de color castaño se desarrollaron las de los incas, China e India.

Dentro de la zona anaranjada florecieron, en la antigüedad, las civilizaciones egipcia y maya, pero ambas cesaron hace mucho de extender una considerable influencia sobre el resto del mundo. Dentro del área roja hubo dos tempranas civilizaciones: la de la India y la de la Mesopotamia. De esto se desprende que no es absoluta la conclusión según la cual los climas muy cálidos o muy fríos sean incompatibles con el progreso humano; pero sí podemos afirmar que no lo favorecen.

El hombre es ahora dueño de su ámbito como nunca lo fue en el pasado. Hoy se elevan ciudades en las zonas árticas y cerca del ecuador, en Latinoamérica y en Indonesia.

Es fácil ver por qué la civilización fue más lenta en desarrollarse en el hemisferio sur. Son comparativamente pocas las zonas al sur del ecuador que gocen de una temperatura cercana a la ideal. Además, la gran extensión de los océanos Pacífico e Indico aisla una región de otra y dificulta extremadamente todo contacto.

HABITAT Y LA VIDA DEL MUNDO ANIMAL EN EL MUNDO:
Sabemos que el factor geográfico tiene un importante papel en la conformación de las civilizaciones, en la distribución de las razas humanas, en las lenguas que la gente habla y aun en las religiones que profesan. Si el ambiente geográfico significa tanto en su conducta, no es de maravillarse que’ sea por lo menos igualmente importante en el mundo animal.

La zoogeografía estudia la distribución de los animales sobre la superficie de la tierra, distribución no sólo en sentido horizontal, sino también vertical, porque algunos viven en la alta montaña, otros en las zonas llanas y otros en las profundidades abisales.

Basados en las últimas enseñanzas de la ciencia, vamos a dar una noción clara de la delimitación de las diferentes regiones.

Muchas circunstancias determinan las áreas dentro de las que varios animales terrestres viven normalmente. No pueden cruzar con facilidad anchas barreras de agua que dividen una región de otra; es raro que logren atravesar una cadena de montañas altas; muy pocas veces cruzan las vastas tierras desérticas.

La mayoría de los animales se nutre de una clase limitada de alimentos. Si son herbívoros, no pueden sobrevivir mucho tiempo en regiones donde las plantas necesarias no crecen. Si son carnívoros, viven sólo donde sus presas puedan hacerlo también en cantidades suficientes.

De manera que, aunque no es posible dibujar una línea de demarcación en el mapa del mundo y declarar que sólo ciertos animales viven a un lado de ella, y otros muy diferentes al otro lado, es posible dividir el mapa en unas pocas regiones principales e indicar, con certeza, que cada una tiene su fauna característica, es decir, una vida animal que le es propia.

mapa de habitat del mundo

El mapa superior de la lámina está dividido en siete regiones:

A)   Oceanía (Australia e islas vecinas).
B)   América Central, del Sur e islas del Caribe, que los zoólogos llaman región neo-tropical.
C)   La región tropical, que incluye casi toda África, junto con Madagascar y parte de Arabia, se caracteriza por la. presencia de gran número de mamíferos con pezuñas: viven juntos en manadas y entre ellos encontramos jirafas, cebras, leones, el elefante africano (que es el animal terrestre más grande que hoy existe), el rinoceronte y el búfalo africano.
D)   India, S.E. de Asia, con sus guirnaldas insulares.
E)   Una gran extensión de tierra que cubre la mayor parte de Asia, casi toda Europa y parte N. de África, llamada la región paleártica: viven el caballo, el pequeño oso castaño, el camello, el alce y el ciervo
E)  La región neártica que incluye la mayor parte de América del Norte.
G) Las   tierras   árticas,   alrededor  del  polo norte.

Los animales nativos de la India o S.E. de Asia; son ellos el elefante de la India, más pequeño, de lomo más recto, orejas más pequeñas y más manso que el africano; el tigre, el orangután y el búfalo acuático de la India.

Los animales que viven en las tierras árticas; son el oso polar, el reno y el zorro ártico. El reno, ya muy domesticado, provee a los lapones de leche, carne y piel, y suele servir de bestia de carga.

Es también posible hacer una distribución vertical de los animales, aunque, naturalmente, por la facilidad de desplazamiento, los límites son menos precisos que aquellos que se demarcan para los vegetales. Por ejemplo, en los Alpes, el ciervo no traspasa el límite de los vegetales, mientras que la gamuza se aventura hasta la zona de las nieves eternas.

Los geólogos saben que Australia y algunas de las islas que la rodean han estado separadas de las grandes extensiones de tierra del mundo, por muchos millones de años. La vida animal, durante tanto tiempo, no ha evolucionado de la misma manera ni al mismo tiempo que en otros lugares. Cuando el hombre blanco se estableció por primera vez allí, se vio sorprendido por los animales raros que halló, seres por completo diferentes de los que existían en el Viejo Mundo.

El canguro, por ejemplo, a pesar de que mide casi 1,50 m. de largo, tiene hijuelos que al nacer no alcanzan a más de 5 cm. Estos pequeños pasan no corto período de su desarrollo dentro de una especie de bolsa ventral en el cuerpo materno, el marsupio, y permanecen allí hasta que están suficientemente desarrollados, como para comenzar una existencia independiente.

Aún más destacable es el ornitorrinco, aunque es mamífero y, por tanto, alimenta a sus pequeños con leche, es un animal ovíparo; en cierto sentido podemos considerarlo como un fósil viviente, o sea, un representante de ciertos animales que debieron abundar hace mucho tiempo, cuando los mamíferos hicieron por primera vez su aparición en la tierra.

Los otros animales que se hallan en la parte superior de la lámina son: el dingo (especie de perro salvaje, nativo de Australia); el kiwi neozelandés o ápterix (pájaro sin cola y con alas no desarrolladas); un pez con pulmones y el equidna (especie de oso hormiguero con el cuerpo cubierto de espinas).

América del Norte tiene muchos que son comunes en Europa y Asia. Sus representantes propios son ciertos tipos de zorros, el bisonte americano (a menudo llamado búfalo) y osos negros algo parduscos. Estos últimos, además del oso pardo de Alaska, son los más grandes y temidos de todos los osos, y hoy rara vez se los encuentra fuera de los grandes parques nacionales, donde se los preserva de la caza.

Los animales oriundos de América Central y América del Sur incluyen armadillos; osos hormigueros de lengua muy larga; perezosos; llamas; jaguares o yaguares y otros pocos mamíferos desdentados.

La llama fue el único animal que los pueblos aborígenes de América lograron domesticar antes de la llegada del hombre blanco. Los dos animales que en la lámina están asentados sobre una base de color verde claro, viven en el extremo norte de Canadá y Alaska; son el zorro negro y el anta, el más grande de la familia de los ciervos.

En las grandes extensiones heladas de la Antártida no hay animales terrestres, pues, a excepción de algunas zonas aisladas, los vegetales no crecen en cantidad suficiente como para alimentarlos. Pero en la franja costera de la Antártida habita un mamífero, el lobo marino, que es el miembro más grande de la familia de las focas. Hay también pingüinos, en grandes cantidades. Han perdido su posibilidad de volar, pero son buenos nadadores. Al vivir en una región donde no hay materiales para fabricar sus nidos, colocan los huevos arriba de sus pies, y tanto los machos como las hembras comparten la tarea de incubarlos.

No todos los animales están confinados para siempre a una sola región de la tierra. A menudo el hombre ha llevado ciertas especies de una región a otra. Las ratas viajan por todas las partes del mundo en las bodegas de los barcos. El cangrejo chino, trepado a los buques, ha sido llevado a varios estuarios de Europa.

El conejo, trasladado de Europa a Australia, se multiplicó de manera tan sorprendente que se ha convertido en una terrible plaga. Y los caballos salvajes, que por muchos años vagaron por las pampas de América del Sur, eran los descendientes de aquéllos que los conquistadores españoles trajeron a estas tierras.

Fuentes Consultadas:
Enciclopedia Ciencia Joven Fasc. N°8 Edit. Cuántica – Los Habitat del Mundo –
El Mundo en el Tiempo Tomo III Globerama Edit. CODEX

Consumo de Agua en el Mundo Huella Hídrica, Tablas y Mapa

CONCEPTO DE HUELLA HÍDRICA – HISTORIA DEL CONSUMO DEL AGUA POTABLE

HISTORIA: Cualquiera sea la actividad del hombre que consideremos, siempre el agua ocupará una parte esencial en ella. Si observamos su búsqueda de energía comprobamos que la primera fuente natural de energía que dominó fue la de las corrientes y caídas de agua. Cuando pensamos en el hombre como agricultor vemos que una de sus tareas más importantes es asegurar que sus tierras estén bien irrigadas y desaguadas. Aun en el transporte vemos que los barcos que navegan en mares y ríos tienen un papel dominante.

Todo esto no es extraño, pues más de siete décimos (70%) de toda la superficie del globo está cubierta de agua hasta una profundidad media de unos 4 kilómetros. Si multiplicamos el número de kilómetros cuadrados que forman las siete décimas partes del globo terrestre por 4, comprobamos que nuestro planeta contiene más de 1.000 millones de kilómetros cúbicos de agua.

Sin embargo, excepto como ruta para los barcos y ambiente vital para los peces, la gran abundancia de agua en mares y océanos es de poca utilidad directa para el hombre. No la puede usar para calmar su sed y la de sus animales domésticos o para irrigar sus campos. Para todos estos propósitos debe conformarse con la cantidad mucho menor que pasa de la superficie de los océanos al aire como vapor de agua, luego corre por los aires en forma de nubes y cae como lluvia o nieve. Y aún de esta cantidad, relativamente pequeña, la mayor parte, y con mucho, busca su camino en los ríos y vuelve al mar antes que el hombre la haya usado.

Así, aunque en un sentido el agua es extraordinariamente abundante, en otro aspecto es excepcionalmente escasa. En muchas regiones cálidas y secas, incluyendo partes de España, ex Yugoslavia y África del Norte, la poca lluvia que cae sobre la tierra se cuela rápidamente a través de una capa muy gruesa de suelo poroso antes de ser detenida por otra impermeable, de roca, profundamente situada por debajo de la superficie.

En tales regiones es necesario perforar profundos pozos hasta la roca, y los aguateros que transportan la valiosa agua de estos pozos a aldeas distantes la pueden vender tan fácilmente como se venden helados, en otras partes, en un caluroso día de verano. Aun en clima como el nuestro, no es extraño para la gente que vive en distritos con pobre provisión de agua el recoger el agua de lluvia de los techos en barriles y usarla para cualquier fin en el que la absoluta pureza no sea realmente indispensable.

Pero en regiones donde las lluvias no son demasiado escasas y especialmente en las que tienen un subsuelo calcáreo, generalmente es posible asegurarse una provisión de agua constante cavando un pozo no muy profundo.

El agua se puede elevar del pozo en baldes o, siempre que el nivel del agua (la napa) no esté a más de unos 10 metros bajo tierra, por medio de una simple bomba aspirante.  En regiones muy secas, donde el nivel del agua puede estar mucho más profundo, o en cualquier parte donde un pozo tenga que proveer grandes cantidades de agua, se pueden usar bombas más poderosas.

A veces ocurre que el agua queda apresada profundamente bajo tierra entre dos capas de roca impermeable de forma de casquete. Perforando a través de la capa superior, cerca de su punto más bajo, donde hay gran presión de agua, es posible producir un pozo artesiano.  La presión causa un constante fluir de agua, que sube a la superficie.

Para proveer las vastas cantidades de agua que consumen grandes pueblos y ciudades, los pozos y fuentes no son suficientes. Los romanos fueron los primeros en dar una excelente solución al problema, cuando derivaron el agua abundante de los ríos y arroyos de montaña y la transportaron a pueblos distantes por medio de acueductos.

CONCEPTO DE HUELLA HÍDRICA: La huella hídrica es un indicador que define el volumen total de agua dulce usado para producir los bienes y servicios producidos por una empresa, o consumidos por un individuo o comunidad. Mide en el volumen de agua consumida, evaporada o contaminada a lo largo de la cadena de suministro, ya sea por unidad de tiempo para individuos y comunidades, o por unidad producida para una empresa. Se puede calcular para cualquier grupo definido de consumidores (por ejemplo, individuos, familias, pueblos, ciudades, departamentos o naciones) o productores (por ejemplo, organismos públicos, empresas privadas o el sector económico).

concepto de huella hidrica

La tarea de suministrar agua potable a las poblaciones fue muy ardua ya en tiempos de los romanos, pero no lo era entonces casi nada si la comparamos con la de la actualidad. Primeramente, hay ahora muchos más pueblos y ciudades y, además de esto, no pocos de ellos son más grandes que las mayores ciudades de la antigüedad, porque los modernos métodos de transporte han capacitado a las zonas urbanas para crecer en una extensión antes imposible.

Lo que hace que el problema resulte aún más formidable es el hecho de que cada persona usa mucha más agua hoy, diariamente, que en tiempos pasados. Cuando la gente tenía que molestarse en obtener agua levantándola de los pozos, en baldes, cuidaba naturalmente mucho más de no derrocharla que nosotros que conseguimos toda la que deseamos con tan sólo abrir un grifo. Pero no son solamente el descuido y derroche los que han aumentado el consumo del agua. Otra causa importante es el continuo progreso del nivel medio de higiene.

Hace 400 años no se habían inventado los inodoros y hace ciento existían exclusivamente en las casas de los ricos; hoy cada casa usa probablemente más de 50 litros diarios de agua en el lavatorio. Hace poco más de 400 años ni siquiera los palacios poseían cuarto de baño; sin embargo, actualmente, la gran mayoría de las familias de la clase trabajadora, en los países más adelantados, tiene cuarto de baño en su hogar, y cada una de ellas seguramente consume centenares de litros de agua por semana. Además, la industria moderna gasta agua en abundancia.

De manera que no es de extrañar que los 5 ó 10 litros de agua por persona que bastaban para las necesidades diarias de nuestros antecesores ya no sean suficientes hoy para nosotros. En la moderna Bruselas, cada persona usa un promediode 160 litros de agua diariamente.

En Londres, la cantidad es de alrededor de 210 litros, en Estocolmo 245, en París 265 y en Nueva York llega a 440 litros. Aun la más pequeña de estas ciudades —Estocolmo— tiene una población de casi mas de un millón de almas, lo cual significa que necesita unos 250 millones de litros diarios. Nueva York, con su enorme población y su elevado consumo de agua por persona, necesita algo más de 4.400 millones de litros. ¿De dónde proceden tan vastas cantidades de agua?.

Pocas veces están al alcance mismo del sitio en que se las necesita y muy frecuentemente deben ser obtenidas de ríos, lagos o fuentes distantes y transportadas por gigantescas cañerías a plantas de potabilización cercanas a la ciudad que las consume.

Allí el agua ha de ser purificada y pasada a través de filtros. Éstos consisten en tanques enormes, que contienen, generalmente, primero una capa de pedregullo y arena gruesa, y luego, encima de ésta, una de arena fina. La arena filtra la mayor parte de las impurezas sólidas, pero no deja el agua libre de bacterias. De modo que ésta pasa a continuación a depósitos donde la acción de la luz del sol y el aire contribuyen a destruir los microorganismos. Generalmente se agrega también cierta cantidad de cloro, que actúa como germicida.

Cuando el agua está completamente purificada se la bombea a torres de agua, de modo que finalmente llegue a todas las casas de la ciudad con una presión uniforme. Sólo a partir del siglo XX el hombre ha tenido tan colosales exigencias de provisión de agua, y éstas nunca se hubieran satisfecho de no haberse tomado medidas para impedir que los ríos llevaran todo su caudal de agua al mar, como siempre.

Hoy, a lo largo de los cursos superiores y medios de muchos grandes ríos, los ingenieros han construido vertederos para controlar la corriente del agua. De modo que, excepto en épocas de muy prolongada sequía, las autoridades encargadas del suministro de agua pueden casi siempre conservar la cantidad suficiente como para satisfacer las necesidades de las poblaciones.

La Organización Mundial de la Salud (OMS) recomienda utilizar 50 litros de agua por día y por persona, pero en la Argentina se calcula un consumo de entre 500 a 613 litros diarios.   Así, el consumo de agua limpia es diez veces mayor a lo sugerido por la OMS y las causas más habituales de este derroche son «pérdidas en las canillas, dispendio en la higiene personal o limpieza de ropas y lavado de vehículos, vajillas, frutas y verduras, regado de plantas y jardines y el uso de desagües como vertederos».

MAPA DEL CONSUMO DE AGUA EN EL MUNDO – m³/año/persona –

mapa de consumo de agua en el mundo

TABLA DE CONSUMO FAMILIAR APROXIMADOS:

1Lavado de Auto500 l.
2Ducha de 10 minutos70-150l.
3Descarga Inodoro20-25 l.
4Lavado de Manos3 l.
5Lavarropa100 l.
6Consumo Familiar 4 Personas1200 l.

TABLA DE CONSUMO INDUSTRIAL APROXIMADOS:

1Cemento por Kg.30 l.
2Harina por Kg.0,5 l.
3Azúcar por Kg.2 l.
4Lana por Kg.0,7 l.
5Papel por Kg.0,5 l.
6Cerveza por litro10 l.
7Gaseosa por litro5 l.
8Pescado por Kg.6 l.
9Acero por Kg.500 l.
10Un automóvil35.000 l.

Nuevas estadísticas sobre la  disponibilidad y la utilización de los recursos hídricos informan que que sector agrícola consume el 92% del agua.  Analizar el consumo globalmente, aseguran, ayudará a los gobiernos a establecer medidas para elaborar sus planes hídricos nacionales y gestionar mejor los limitados recursos hídricos. EEUU, India y China son los países que más agua gastan. Entre los tres consumen el 38% de los recursos hídricos del planeta

8 CONSEJOS PARA EL AHORRO DE AGUA

tabla con consejos para el ahorro de agua potable

LA DEPURACIÓN DEL AGUA: Quizás uno de los elementos más importantes para el desarrollo de la civilización actual sea algo tan simple como el agua. Ella es la base de las operaciones industriales; es requerida, también, como bebida fundamental. Y resulta indispensable para lograr una adecuada higiene, tanto en lo que hace al aseo personal como a la limpieza de habitaciones, veredas y edificios.

Constituye la base de los servicios sanitarios. De acuerdo con las más actualizadas tablas de valores, cada ser humano utiliza, en promedio, unos 125 litros diarios de agua. Esta cifra aumenta considerablemente si nos referimos a las ciudades, especialmente las europeas. En Los Ángeles, por ejemplo, se consume individualmente un promedio de 350 litros por día.

Veamos cuál es el método empleado para purificar este líquido. Baste calcular que sólo París necesita por día más de 2.500 millones de litros de agua potable. Todo el sistema sanitario de una ciudad se basa en obras de ingeniería, consistentes en tuberías y canalizaciones de distintos diámetros.

Desde ríos, a veces muy distantes, se hace llegar el agua a plantas de potabilización que, generalmente, se instalan cerca del núcleo urbano.

Allí el agua pasa por varias piletas, en las que las impurezas mayores se depositan en el fondo por un proceso mecánico de sedimentación. Luego el agua pasa a otras piletas que actúan como filtros gracias a la acción depuradora de la arena fina y el pedregullo que hay en su fondo.

En otras piletas el agua se somete a un nuevo proceso, ahora de orden químico, que consiste en el agregado de agentes germicidas como el cloro, el ozono, etc., que eliminan todo vestigio de parásitos y otros microorganismos nocivos. Ya en este momento el agua, transparente como un cristal, está preparada para ser bombeada a presión en las tuberías que lallevarán porlaciudad. En algunos casos se envía a torres elevadas para que su distribución se produzca sin inconvenientes.

Luego de la acción germicida, de los filtros y de las piletas de decantación, el agua está lista para ser sometida a todos los usos imaginables. Ya servidas, las aguas tienen que ser eliminadas de algún modo. Una de las formas más comunes es restituirlas a los ríos de donde se extrajeron -aunque aguas abajo-, o en el océano, si es que éste se encuentra próximo. Para poder cumplir esta tarea sin contaminar las cuencas hidrográficas o marinas, debe volver a someterse al agua a un nuevo proceso de purificación.

tratamiento de agua potable

A: Planta Potabilizadora
B: Planta Potabilizadora Por Ósmosis Invertida

Ampliar Este Tema

RETENER EL AGUA PARA PRODUCIR ENERGÍA: Hay todavía una razón más en la actualidad para construir diques y represas en los ríos: contener el agua de manera que se la pueda usar en un fluir constante y uniforme para producir energía hidroeléctrica.

Antiguamente, los habitantes de la Mesopotamia usaban ruedas de agua primitivas, accionadas por los ríos o arroyos, para obtener agua para la irrigación. Durante la Edad Media, en muchas partes de Europa se empezaron a usar ruedas mucho mejor ideadas para impulsar diversas clases de máquinas simples en los molinos.

Cerca de las caídas de agua de poco caudal, en lugares montañosos, construyeron molinos equipados de ruedas con cangilones. Éstas eran ruedas con paletas bastante livianas, que la fuerza del agua, al caer, hacía girar a considerable velocidad. Por medio de una serie de engranajes, cada uno con ún número diferente de dientes, este veloz movimiento podía disminuirse a una velocidad apropiada para la lenta y pesada maquinaria colocada adentro del molino. Cerca de ríos anchos, en regiones llanas, construyeron molinos con ruedas y paletas de distinta disposición, movidas lentamente por la corriente. Por medio de una serie de engranajes, este lento movimiento podía acelerarse a la velocidad requerida.

Todo esto representaba un gran adelanto en la conquista de la energía hidráulica, pero conservaba aún dos enormes inconvenientes. Primero, se podía sólo hacer uso de la energía mecánica del agua eii movimiento construyendo molinos en el lugar en que se encontraba y no donde era más conveniente hacerlo. Segundo, el natural fluir del agua variaba con las épocas y la cantidad de energía disponible variaba con ella. Después de lluvias prolongadas, en las caídas de agua y los ríos el caudal de agua llegaba al máximo y movía las ruedas a una velocidad excesiva, que amenazaba con destruirlas. Después de una sequía prolongada, las ruedas apenas giraban.

No hubo indicación alguna de cómo se podría subsanar el primer inconveniente, hasta comenzado el siglo XIX. Fue cuando el científico inglés Faraday descubrió que un imán que se movía rápidamente podía provocar el fluir de una corriente eléctrica a través de un cable. Aquí, entonces, había un medio de transformar energía mecánica —la clase de energía necesaria para mover el imán con rapidez— en energía eléctrica.

En ese tiempo, cuando la era de la máquina de vapor llegaba a su punto más alto, la obvia manera de poner el imán en movimiento era usar un motor de vapor. De modo que los imanes de los generadores de las primitivas usinas que surgieron años más tarde se accionaban con vapor y así es como funcionan hoy la mayoría de los generadores.

Pero no hay nada que impida que los imanes de los generadores funcionen por las caídas de agua, y en efecto así es como se mueven en las modernas usinas hidroeléctricas. De este modo la energía mecánica del agua en movimiento se transforma en energía eléctrica, la cual puede ser transportada en cables hacia donde haga falta. En los hogares y fábricas de cualquier sitio esta energía eléctrica puede convertirse nuevamente en energía mecánica por medio de motores, en los cuales la corriente eléctrica pone en movimiento un imán.

El otro problema era cómo asegurarse que el agua diera una producción de energía constante. Aquí surgió, precisamente, la necesidad de construir diques y represas. Cuando se construye un dique a través de un río, las aguas del curso superior son contenidas para formar un lago artificial. Éste sirve como enorme depósito desde el cual se puede dejar correr el agua hacia los generadores, a través de cañerías o túneles, a una velocidad constante durante todo el año.

En terrenos montañosos, el agua que cae de grandes alturas hace girar veloces ruedas Pelton, no muy diferentes de las ruedas de antaño, para impulsar a los generadores. En terreno llano, un volumen mayor de agua que cae de una altura menor hace girar las ruedas de turbina, que se parecen también mucho a las de la Edad Media.

Fuente Consultada:
El Triunfo de la Ciencia El Agua en el Mundo Globerama Tomo III Edit. CODEX

La Erosión del Hielo Accion Erosiva de los Glaciares

La Erosión del Hielo
Acción Erosiva de los Glaciares

Durante la larga historia de la Tierra los climas del mundo han sufrido muchos cambios. Pero pocos pueden compararse con el que tuvo lugar hace menos de un millón de años, cuando las temperaturas descendieron, principalmente en el norte, y la Tierra entró en la Edad Glacial.

hielo en la montaña - erosion

Como caía cada vez más nieve en invierno y se fundía menos en verano, se formaron grandes masas de hielo que se trasladaban lentamente hacia el sur. Cuando alcanzaron su mayor extensión, vastas zonas de Asia, Europa y América del Norte (más de veinte millones de kilómetros cuadrados, en total) quedaron sepultadas por el hielo.

Las exuberantes regiones subtropicales se trasformaron en desiertos helados a medida que las temperaturas árticas dominaban la Tierra y los climas templados retrocedían hacia el Ecuador.

Como gigantescas excavadoras las masas de hielo arrancaban la tierra al avanzar y la arrastraban hacia el sur. Arrasaban bosques, aplanaban las cimas de las colinas, ahondaban los valles, trasportaban enormes piedras a lo largo de centenares de kilómetros, desde su lugar de origen hasta lejanos paraderos. La Edad Glacial acabó hace unos diez mil años, pero muchos parajes, en el hemisferio norte, atestiguan todavía que el hielo en movimiento puede esculpir la tierra.

Puede sorprender el hecho de qué el hielo erosione una roca mucho más dura que él. El fenómeno se explica  observando la gravilla y los cantos que se unen firmemente al hielo, y trasforman un glaciar en movimiento en una lima gigante y flexible, con un poder considerable para desgastar la roca. Pero el hielo también corroe por sí mismo. Un glaciar arranca bloques de roca al deslizarse por las orillas de un valle.

rotura de roca por el hielo

La velocidad de un glaciar depende, en gran parte, de la velocidad de su deslizamiento. Por esto, los glaciares de Groenlandia (algunos de los cuales avanzan a la velocidad de veinte metros al día) son varias veces más demoledores que los glaciares de los Alpes, que sólo recorren un metro al día.

Una masa de hielo continental que avanza lentamente suaviza el relieve. Uno de los resultados más característicos de la erosión glaciar es el valle en forma de U, con su fondo plano salpicado de cantos y limitado por márgenes escarpadas. Pero estos valles eran lechos de ríos antes de que la erosión de los glaciares los modificara.

Probablemente, los valles más espectacularmente moldeados por el hielo son los fiordos, con sus paredes escarpadas, de rocas desnudas que dominan el agua profunda. Los glaciares erosionaron los fiordos por debajo del nivel del mar porque el hielo, en el seno del agua, mantiene las 9/10 partes de su volumen bajo la línea de flotación. Pero muchos fiordos son inmediatamente profundos cerca de su desembocadura, donde una barrera de rocas o escollos, frecuentemente cubierta de materiales arrastrados, ha elevado el valle casi hasta el nivel del mar.

Este umbral es debido a una disminución en el espesor del hielo cerca de la desembocadura del glaciar. Muchos valles glaciales tienen cascadas, que caen por sus márgenes desde valles tributarios situados a un nivel superior. Estos valles colgados, que originan algunas de las cascadas más importantes del mundo, son debidos probablemente al hecho de que el tamaño es un factor significativo en la posibilidad de un glaciar de erosionar el suelo.

los glaciares

El glaciar que ocupó el valle principal fue mucho mayor que sus afluentes y tuvo, por tanto, mayor fuerza destructora. Por esto, al fundir el hielo, el fondo de los valles tributarios quedó a un nivel más elevado que el del valle principal. La diferencia de alturas entre ambos valles depende de la diferencia de tamaño de los glaciares que discurrieron a través de ellos. Pero la explicación completa de los valles colgados no puede ser tan sencilla.

Se ha sugerido que la diferencia de niveles podía ser debida, en parte, al hecho de que los valles tributarios contenían glaciares cuando el del valle principal había fundido ya. Como la corriente de agua es un agente de erosión más potente que el hielo, el valle principal por el que corriese un río habría sufrido una erosión más profunda que los valles tributarios en los que se encontraban glaciares. Esto, probablemente,  es  parcialmente   cierto, ya que los valles tributarios que están orientados de espaldas al Sol (es decir, aquellos que pueden conservar los glaciares durante más tiempo) se encuentran a veces a una altura mayor que los que se hallan en el lado opuesto del valle principal.

Acción Erosiva del Hielo

Otra señal que deja la erosión glaciar es el circo. Éste es una profunda cavidad en una región montañosa y se encuentra, frecuentemente, en las alturas heladas. Muchos sirven de lecho a pequeños lagos, excepto cuando se encuentran en el origen del valle de un glaciar.

Los circos tienen tendencia a seguir desgastando la ladera de la montaña, a medida que sus paredes «estallan» por la acción del hielo y son «desplumadas» por la nieve en movimiento. A veces ocurre que dos circos llegan a aproximarse tanto que sólo quedan separados por una estrecha pared rocosa, que se conoce con el nombre de cresta. Si hay circos alrededor de la montaña, ésta tiene una cima piramidal.

Mesa Glacial

La glaciación no es sólo un proceso destructivo, sino que el material arrastrado desde un lugar puede ser depositado en otro, cuando funde el hielo. Las llanuras inglesas y las del Norte de Europa están revestidas por una arcilla pedregosa arrancada de lugares como Escandinavia (que aún hoy día carece de tierra fértil). Ocurre  un hecho  similar en América del Norte, donde el material arrancado en el Canadá proporciona ahora una tierra fértil en la parte central de Estados Unidos.

La arcilla pedregosa, o tillita, es una mezcla de aluviones de todas clases, que van desde el fino polvillo de roca hasta grandes rocas que pueden pesar muchas toneladas. Pero los dos tipos principales son: tillita básica (que es rica en arcilla) y la tillita superglaciar (que es más pedregosa).

La mayoría de la arcilla fue arrastrada por el agua producida al fundirse el hielo. A veces, esta arcilla pedregosa está moldeada por las corrientes de agua en forma de montículos que semejan dorsos de ballena y que, generalmente, tienen menos de dos kilómetros de longitud y, raramente, más de 60 metros de altura. Cuando se encuentran agrupados, forman lo que se denomina, adecuadamente, topografía en «cesta de huevos».

La acumulación de restos de rocas trasportados y depositados por los glaciares recibe el nombre de morrenas o morenas. La arcilla pedregosa depositada en el fondo de un glaciar forma la morrena de fondo. Las morrenas laterales resultan de los fragmentos de roca que caen a los lados del glaciar y, cuando dos glaciares se encuentran, las morrenas laterales se unen para formar la morrena central.

Luego, en la desembocadura del glaciar los detritos se acumulan para formar una morrena terminal. si el frente helado permanece estacionario durante un tiempo suficiente. Muchos de los lagos que existen en el mundo se han formado por la acción de las morrenas, que han actuado como presas naturales.

El agua de deshielo de un glaciar, o de una masa de hielo, juega su propio papel en la erosión y en el depósito de materiales. Los eskers son largas y tortuosas lomas de arena y grava, que corren más o menos en la misma dirección del hielo. El material está depositado por el agua que se encuentra encerrada en un estrecho canal debajo del hielo.

A veces los eskers tienen la forma de burbujas; estas burbujas marcan la desembocadura de la corriente sub-glaciar durante los períodos de inmovilidad, cuando la velocidad a la que avanza el glaciar, o la masa de hielo, está compensada exactamente por la velocidad a la que funde el hielo. Los conos de todos muestran que la corriente subglaciar abandona su estrecho canal bajo el hielo.

Una brusca disminución de la velocidad, al surgir el agua sobre la tierra, motiva el abandono del material trasportado. La acción erosiva del agua de fusión puede ser considerable cuando el desagüe normal queda obturado por el hielo y debe formarse un nuevo canal de evacuación.

Fuente Consultada:
Revista TECNIRAMA N°54 Enciclopedia del Ciencia y La Tecnología – La Labor Erosiva del Hielo

Microorganismos en el Ciclo del Nitrogeno Insectos y Bacterias

Microorganismos en el Ciclo del Nitrógeno
Insectos y Bacterias

Todos los seres vivos, ya sean plantas o animales, dependen, en última instancia, de los nitratos y otros compuestos del suelo. Estas sustancias, indispensables para la formación de las proteínas, son la base de toda la materia viva. Las plantas pueden tomar el nitrógeno del suelo solamente en forma de nitratos o nitritos, pero no absorber las moléculas más complicadas del tipo de las prosternas o los aminoácidos que forman éstas.

Los animales adquieren los compuestos nitrogenados, necesarios para la formación de las proteínas, de las plantas que les sirven de alimento o de otros animales que forman, a su vez, parte de su dieta. Pero, en todo caso, este ciclo, termina en las plantas, que están en la base de toda cadena de alimentación. Si el nitrógeno existente en la Tierra se consumiera en la formación de proteínas anímales o vegetales, en los seres vivos o en sus restos, la vida cesaría, porque, bloqueado, sería inaccesible para las plantas.

Afortunadamente, en la naturaleza existen organismos cuya actividad es la descomposición de los restos orgánicos, que se trasfor-man en sustancias que contienen nitrógeno en forma mineral (nitratos y nitritos), y las plantas pueden absorberlo disuelto en agua. La serie de mecanismos mediante los cuales las sustancias nitrogenadas vuelven al suelo o a otros animales constituye lo que se llama ciclo del nitrógeno.

Algo parecido ocurre con el ciclo del anhídrido carbónico (CO2), necesario para la fotosíntesis de las plantas, que se libera constantemente en la respiración de los animales. De no mediar la actividad de un sinnúmero de organismos que se ocupa de la descomposición de restos orgánicos, una parte del carbono quedaría bloqueada en los restos animales y vegetales. En este proceso se desprende CO2, que va a la atmósfera, quedando otra vez a disposición de los vege,-tales, que lo incorporan en nuevas sustancias.

El proceso es análogo al de la respiración, y, con frecuencia, tiene lugar en el suelo, donde se descomponen numerosos restos vegetales y animales (en gran parte, microscópicos), por la acción de organismos de pequeño tamaño, en su mayoría imperceptibles a simple vista. Por tanto, puede hablarse de una respiración del suelo, que varía en intensidad según el contenido de restos (la llamada materia orgánica del suelo) y las condiciones de vida para los microorganismos.

Es particularmente sensible en los suelos de algunos bosques, donde se acumulan grandes cantidades de hojas caídas y las condiciones de humedad son favorables a la proliferación de los seres que actúan en la descomposición de los restos.

Actualmente, el ciclo del CO2 está en «equilibrio; es decir, las cantidades de carbono que fijan las plantas igualan las que se desprenden en la respiración y otros procesos; por tanto, las sustancias que contienen carbono -no se acumulan en grandes cantidades.

Pero no siempre ha ocurrido esto; los grandes yacimientos de carbón que se explotan en la actualidad son un testimonio de épocas geológicas pasadas (período carbonífero) en las que la fijación de carbono predominaba grandemente sobre la producción de CO2. El ciclo de nitrógeno tiene gran importancia en la economía de la naturaleza, ya que éste es, en sí, el elemento que con más frecuencia limita la producción vegetal y, con ello, el mecanismo que pone en marcha la vida.

El ciclo del nitrógeno corre a cargo de lo que podemos llamar Departamento de recogida de basuras de la naturaleza, que emplea un número enorme de obreros para eliminar los cadáveres y los excrementos. Prueba de la eficacia de ese Departamento es el hecho de que sea tan difícil encontrar animales muertos o, incluso, esqueletos en el campo.

MICROORGANISMOS
Las bacterias y otros microorganismos, entre los que se encuentran los protozoos y los hongos, desempeñan un papel importante en el ciclo del nitrógeno. Ellos son los que llevan finalmente a cabo la descomposición y mineralización de los restos más pequeños o más resistentes.

Las bacterias, por ejemplo, tienen a su cargo la demolición y mineralización progresiva de los restos vegetales de más difícil digestión para los organismos de gran tamaño, a causa de su abundancia de celulosa y otras sustancias todavía más inatacables, como las que componen el corcho o las cubiertas impermeables de las hojas.

Cuando se añade a la tierra un abono orgánico insuficientemente descompuesto, es decir, rico en celulosa (por ejemplo, cuando se entierra la paja del trigo directamente), se comprueba que las plantas sembradas en él tienen síntomas de falta de nitrógeno.

Este hecho paradójico se debe a que el alimento celulósico, proporcionado en gran cantidad a las bacterias, las hace proliferar enormemente, de forma que acaparan todo el nitrógeno, que entra a formar parte de las proteínas de sus organismos y queda fuera del alcance de las plantas. Al cabo de algún tiempo, cuado estas bacterias mueren, sus proteínas van siendo alteradas por la acción de otras bacterias y de procesos puramente químicos, que forman compuestos de nitrógeno asimilables por las plantas.

El fenómeno que primero aparece (causa del hambre de nitrógeno que sufren las plantas) es característico de la incorporación al suelo de restos vegetales insuficientemente descompuestos. Sin embargo, si esos restos se hubieran sometido previamente a la acción de microorganismos que los destruyeran (como los que se encuentran en los estercoleros y montones de abono orgánico, antes de su incorporación al suelo), no habría insuficiencia de nitrógeno.

El hombre se beneficia de la acción de las bacterias y otros microorganismos (capaces de convertir los restos vegetales y animales, y las basuras, en materiales inofensivos e, incluso, útiles) por medio de plantas industriales adecuadas que trasforman dichos residuos en abonos orgánicos. Por tanto, esto constituye una contribución del hombre a devolver al suelo sustancias útiles, de la misma forma que lo hacen los basureros de la naturaleza.

En algunas circunstancias, la actividad de las bacterias está dificultada por las condiciones del medio (por ejemplo, en los suelos demasiado ácidos); son los hongos microscópicos los que intervienen entonces en la descomposición final de los restos.  Las hijas o filamentos de estos hongos pueden verse fácilmente en las capas de humus o tierra vegetal, de color oscuro, del suelo de los bosques o de los brezales.

La humedad o la sequedad excesivas, así como la acidez demasiado grande del medio, son causas dp la lentitud del proceso de descomposición. En realidad, los microorganismos nunca actúan solos, sino que están asociados a una numerosa fauna microscópica, y también a otros animales de mayor tamaño, cuya acción es más espectacular.

Entre ellos se encuentran los animales devoradores de carroña, sin el concurso de los cuales, la Tierra estaría cubierta de cadáveres animales en distintos  estados  de descomposición.

INSECTOS
Los basureros de gran tamaño dejan fragmentos pequeños de la piel y de los huesos, que son atacados después por distintos coleópteros, quienes se alimentan de esas materias. Los más interesantes coleópteros basureros son los escarabajos enterradores y los que se alimentan del estiércol. Los cadáveres de animales pequeños, como los ratones y topos, atraen rápidamente la atención de los escarabajos enterradores.

Estos insectos, que tienen color negro y anaranjado, o negro solamente, son capaces de enterrar el cadáver de un ratón, en un suelo arenoso, en pocos minutos. Generalmente, trabajan en parejas y entierran los cadáveres extrayendo las partículas de tierra que hay debajo de ellos; tienen la cabeza ensanchada y la usan como pala en el trabajo de excavación.

Una vez enterrado, el cadáver sirve de alimento a los coleópteros y a sus larvas. Los adultos ponen sus huevos sobre el cadáver, lo que asegura el alimento para las crías. Al permanecer bajo el suelo, el cuerpo está húmedo y la acción de las bacterias es más rápida que si hubiese quedado en la superficie.

Durante el verano, es necesario proteger la carne y el pescado de los contactos de las moscas, cubriéndolos de alguna forma. En la naturaleza, sin embargo, esas moscas son útiles al poner sus huevos sobre los restos animales, ya que las larvas contribuyen a su descomposición y desmenuzamiento, acelerando su vuelta al suelo.

Los insectos que se posan en un cadáver en las distintas etapas de su descomposición, para poner en él sus huevos, suelen ser distintos. No se trata solamente de coleópteros y moscas, sino también de polillas, algunas de las cuales se alimentan de materias córneas, como la piel y los pelos, y otras, de sustancias grasas.

Por el estudio de las larvas que se alimentan de carroña, es posible determinar, con los datos de su desarrollo y sus clases, la época en que ocurrió la muerte del animal. Este procedimiento se ha aplicado en medicina legal, para conjeturar la fecha de las defunciones, en el caso de cadáveres humanos descubiertos accidentalmente o en el curso de una investigación. Se han distinguido hasta 10 tipos distintos de fauna, que se escalonan en el tiempo, conocidas con el nombre de brigadas de la muerte.

Antes que los excrementos del ganado vacuno se hayan enfriado, son visitados por moscas y coleópteros, que se alimentan allí y colocan sus huevos. Las larvas se desarrollan rápidamente, absorben los materiales en descomposición y dejan tan sólo restos vegetales, que. a su vez, son un alimento apreciado por otros coleópteros. Los insectos de la familia de los escarabeidos son enterradores de estiércol muy conocidos.

El escarabajo sagrado de Egipto, o gran escarabajo pelotero, forma grandes bolas de estiércol, que traslada rodando hasta llegar a un lugar adecuado para enterrarlas. Algunos escarabajos adultos se alimentan de estiércol (coprófagos); otros lo utilizan solamente para poner huevos.

Escarabajo Pelotero

El pequeño escarabajo enterrador de estiércol hace un túnel, cuyo fondo rellena con esta materia, antes de colocar allí sus huevos. Lo mismo hace el minotauro, escarabeido caracterizado por unos pequeños cuernos en la cabeza. Menos conocido es el trabajo de las legiones de insectos, ácaros y gusanos, que trabajan los restos entre la hojarasca y la materia orgánica del suelo.

Escarabajo Enterrador

Escarabajos   enterradores   se   ocupan   del   cadáver   ás   un   ratón.
En   un   suelo   arenoso,   el   cuerpo   es enterrado   rápidamente.

Numerosos colémbolos (diminutos insectos saltadores del mantillo) tienen a su cargo la demolición fina de los últimos restos vegetales, así como los ácaros, aunque entre éstos hay depredadores (que capturan presas vivas). Las lombrices se ceban en los restos orgánicos reducidos a su mínima expresión y mezclados íntimamente con el suelo.

El resultado final de este proceso, con la cooperación de bacterias y hongos, así como protozoos, que pueden contener en su interior bacterias simbiontes, es desmenuzar finalmente los restos orgánicos y asegurar su mineralización, es decir, la trasformación en sustancias útiles a los vegetales, que vuelven a incorporarlos, entonces, al ciclo vital de la naturaleza.

Fuente Consultada:
Enciclopedia de la Ciencia y la Tecnología TECNIRAMA Fasc. N°108 (CODEX) Los Basureros de la Naturaleza

Historia de la Evolución del Cambio Climatico

Historia de la Evolución del Cambio Climático

¿COMO ERA EL CLIMA ANTES?: A pesar del progreso tecnológico de las últimas décadas, el hombre se halla aún a merced de los elementos. Desde el pleistoceno, en que terminó la última glaciación, hace unos 10.000 años, hasta nuestros días, se han producido importantes fluctuaciones climáticas.

Las sequías a gran escala y anormalmente prolongadas se han traducido siempre en cosechas pobres y grandes privaciones para muchos seres humanos. En sus investigaciones sobre las condiciones climáticas del futuro, importantísimas para la agricultura y las reservas alimenticias mundiales, los científicos hacen especial hincapié en el conocimiento de las causas y la magnitud de los cambios climáticos del pasado.

Tras la retirada del principal manto de hielo del noroeste de Europa, el clima se caldeó rápidamente. Los granos de polen fósiles, preservados en turberas y sedimentos lacustres, señalan la presencia de bosques en este continente durante los períodos de clima seco denominados preboreal y boreal, de inviernos fríos y veranos calurosos.

Posteriormente, hace unos 7000 años, las temperaturas medias alcanzaron los valores más altos desde el final de las glaciaciones. En verano superaban a las actuales en 2 o 3 °C, mientras que las invernales lo hacían en 1 °C aproximadamente.

Este fue el comienzo del óptimo climático atlántico, expresión que alude a las favorables condiciones para el desarrollo de plantas y animales. En Europa, el límite de las nieves perpetuas se encontraba unos trescientos metros por encima del actual.

Las pinturas rupestres del Sahara, pertenecientes a esta época, revelan que en las actuales regiones desérticas hubo asentamientos humanos y migración. Es, por ello, lógico suponer que las lluvias monzónicas estivales se extendían más hacia el norte y regaban el Sahara.

Hacia finales de este óptimo climático, hace unos 5000 años, el incremento en las cantidades de polen de pino fósil indica que, en el noroeste de Europa, los bosques de coniferas sustituyeron a los de frondosas. En el período post-boreal volvió, al parecer, el frío y la sequedad. El declive fue gradual, aunque con algunas fluctuaciones importantes a corto plazo; hacia el año 900 a.C. (a principios de la fase climática subatlántica) aceleró su ritmo y las precipitaciones aumentaron considerablemente.

El nivel de numerosos lagos europeos subió bruscamente e inundó los terrenos próximos, incluidos algunos poblados. Los caminos tuvieron que ser desviados debido al crecimiento de las turberas, y el avance de los glaciares alpinos bloqueó los pasos de montaña durante varios siglos. El desplazamiento de las principales zonas climáticas hacia los polos, que tuvo lugar durante el óptimo climático atlántico, se invirtió y dejó paso a las tormentas subpolares sobre el norte de Europa.

La influencia del hombre sobre la vegetación natural, a través de la tala de bosques enteros, invalida el papel indicador del polen fósil para períodos posteriores. Por fortuna se dispone de otras indicaciones, como las fuentes arqueológicas y los documentos históricos. Mediante las modernas técnicas geofísicas y las sondas y taladros de gran profundidad se han obtenido asimismo datos fiables sobre el clima reinante a lo largo de todo el período postglacial.

Los siglos siguientes vieron un ascenso gradual de la temperatura y la sequedad, preludio del llamado óptimo climático secundario, que tuvo lugar entre los años 400 y 1200 d.C. Este período, especialmente cálido y sin tormentas en el Atlántico Norte, presenció los grandes viajes de los vikingos y su establecimiento en Islandia y Groenlandia, cuyas costas quedaban, en el siglo X, fuera de los mantos de hielo del Ártico. El cultivo de la vid en Inglaterra, mencionado por ciertas fuentes, prueba la suavidad del clima.

Durante los siglos VIII y XIV, estas condiciones ideales llegaron a su fin. Viejos cuadernos de bitácora y publicaciones meteorológicas mencionan la reaparición de los hielos polares que, junto a las condiciones cada vez más tormentosas del Atlántico Norte, interrumpieron las rutas entre Islandia y Groenlandia.

Las fluctuaciones climáticas extremas que tuvieron lugar en estos siglos han dejado sus huellas en numerosos puntos del hemisferio Norte. En el sudoeste de los Estados Unidos, los anillos de crecimiento de árboles milenarios indican que en el siglo xm, la sequedad fue muy acusada. En la India se conocieron también las consecuencias: la sequía y el hambre más desastrosas de su historia, debido a la ausencia de los monzones estivales.

En Europa, los años con inviernos rigurosos (el Danubio, el Támesis y el Rin se helaban) y veranos fríos y lluviosos (con pérdida de cosechas y el hambre subsiguientes) alternaban con otros de extrema sequía. Los datos disponibles sobre las fechas de la vendimia y los precios del trigo se han utilizado para determinar tales oscilaciones; no obstante, deben interpretarse con sumo cuidado, pues no dependen tan sólo de las condiciones climáticas.

Tamesis en 1677

El Támesis en 1677. En el siglo XVII se heló en más de veinte ocasiones y las ferias tenían lugar sobre el hielo. El viejo puente de Londres contribuía a ello al obstaculizar el descenso del hielo río abajo. El científico Robert Hooke registró cuidadosamente en su diario  el frío de la época.

cambio de clima

La Pequeña glaciación
En el noroeste de Europa se han realizado observaciones meteorológicas con instrumentos desde mediados del siglo XVII, por lo que se dispone de datos precisos sobre gran parte de la llamada Pequeña glaciación (1550-1880), en que las temperaturas descendieron a sus valores más bajos desde el final de las glaciaciones. Asimismo se dispone de abundante documentación acerca de los avances de los glaciares alpinos, como el del Ródano, que alcanzó su máxima extensión en el año 1602.

Los avances del hielo en otras partes del mundo, como América del Norte, se produjeron hacia la misma época. Ello permite, pues, trazar un mapa del fenómeno para todo el hemisferio Norte. En los cuadernos de bitácora se hace referencia a esta extensión de los hielos, jamás vista hasta entonces, que cubrían la mitad del océano entre Groenlandia y Noruega. Tanto en este país como en Islandia, los cultivos se perdieron y las granjas de montaña quedaron cubiertas por el hielo. Muchos grandes ríos se helaron por completo, entre ellos, el Támesis.

Cambios ocurridos en los últimos cien años
Si bien los instrumentos primitivos dejaban mucho que desear en lo que a su precisión se refiere, se estima que, en 1780, las temperaturas medias del mes de enero eran en el centro de Inglaterra unos dos grados más bajas que las actuales. A medida que se perfeccionaron los instrumentos, la cantidad de datos disponibles, sobre numerosas regiones del globo aumentó en oriental, un aumento del 130-140 por ciento ocasionó bruscas subidas en el nivel de los lagos.

El del lago Victoria, por ejemplo, ha subido 1,5-2 m desde 1961 y, hoy día, representa una seria amenaza para los poblados de las orillas. Por otro lado, las latitudes comprendidas entre los 10° y los 20° en ambos hemisferios han sufrido sucesivos años de sequía. Dado que se trata de zonas de agricultura marginal, donde las, escasas lluvias apenas permiten magros cultivos y una ganadería escuálida, la sequía trajo consigo un hambre catastrófica con pérdida de muchas vidas humanas.

Fuente Consultada:
El Arbol de la Sabiduría Fasc. N°53 Cambios Climáticos

Ver: El Cambio Climatico y su Efecto en los Paises Pobres

Ver:El futuro del clima y el medio ambiente

Cuadro sinoptico Placas Tectonicas Deriva Continental Litosfera

Cuadro sinoptico Placas Tectónicas

La litosfera no es una capa continua y uniforme, sino que está dividida en grandes fragmentos o placas litosféricas.

Dichos fragmentos tienen unos 100 Km. de espesor y tienen movilidad propia o independientes entre si, pues están flotando sobre  la astenosfera (que es una zona de unos 600 Km. de espesor, donde se encuentran materiales silicatados en estado semilíquido), en forma similar a como lo hacen los grandes bloques de hielo que flotan sobre el agua. Cada una de las placas está totalmente rodeada de otras, y sus formas y tamaños son variados e irregulares.

La importancia de esta teoría radica en que permite explicar de forma satisfactoria muchos fenómenos de nuestro mundo que con anterioridad constituían una incógnita. Así, por ejemplo, gracias a la tectónica de placas resulta aceptable que en otras eras geológicas todos los continentes estuvieran unidos formando una masa única, que después se dividió y originó la distribución de las tierras emergidas que existe en la actualidad.

Asimismo la tectónica de placas explica de manera satisfactoria la concentración de las principales cordilleras en determinadas zonas de nuestro planeta, además de ofrecer una hipótesis creíble sobre cómo se formaron. Del mismo modo, la distribución de los terremotos y los volcanes en determinadas áreas de la superficie terrestre encuentra explicación en el marco de la tectónica de placas.

CUADRO SINOPTICO SOBRE ESTE TEMA:

cuadro sinoptico placa tectonicas

Teoría Deriva Continental

Regiones Mas Afectadas Por el Cambio Climático del Mundo Mapa

Regiones Mas Afectadas Por el Cambio Climático del Mundo

MAPA DEL IMPACTO EN EL MUNDO DEL CALENTAMIENTO GLOBAL

Efectos sobre la biodiversidad, incluyendo el riesgo o la extinción del 35% de las especies terrestres para el año 2050, la pérdida de la mayoría de los arrecifes de coral tropicales y el 30% de las comunidades de coral de los arrecifes restantes. Estas consecuencias actúan de manera diferente en distintas partes del mundo. Y el efecto del cambio climático muchas veces se suma a otras presiones y amenazas que sufren los ecosistemas naturales como producto de la acción del hombre, aumentando aún más su fragilidad.

mapa impacto climatico

A continuación, se presentan ejemplos de los impactos que el cambio climático traerá en diferentes regiones del planeta, en un escenario de aumento de la temperatura media global de apenas 2° C.

1-Delta del río Mekong Tailandia, Vietnam, Camboya, Laos, Myanmar, Tíbet y la provincia de Yunnan (China): inundaciones masivas e incremento de la salinidad en los sistemas de agua dulce, incluyendo impactos en las más grandes pesquerías de aguas continentales del mundo, que proporcionan bienes a alrededor de 60 millones de personas.

2-Cáucaso Armenia, Azerbayán, Georgia, porción norte del Cáucaso de la Federación Rusa, noreste de Turquía y parte del noroeste de Irán: amenaza de sequías, Inundaciones, incendios forestales y resurgimiento de la malaria en poblaciones altamente dependientes de la agricultura y de los bosques.

3-Este de los Himalayas Nepal: el retroceso de los glaciares, combinado con la fragmentación del habitat, provoca deslizamientos de tierras, Inundaciones y restricciones en el acceso al agua dulce.

4-Costa este de África Kenya, Tanzania y Mozambique: escenarlo de 2° C: los manglares estarán en peligro por el aumento del nivel del mar, combinado con la expansión de la agricultura, la deforestación y la producción de leña y el crecimiento de áreas urbanas. Los arrecifes de coral y las pesquerías se verán amenazadas por el aumento de las temperaturas y del nivel del mar, la acidificación, la sobrepesca Industrial y las prácticas destructivas de las pesquerías costeras.

5-Andes del Norte Colombia, Ecuador, Perú: estrés hídrlco para comunidades Indígenas y pequeños granjeros, y para la fuente de agua del río Amazonas.

6-Cuenca central del río Yangtzé China: inundaciones masivas sobre viviendas. Afectarán a más de 400 millones de personas.

7-Cuenca del río Danubio 19 países Incluyendo Hungría, Rumania, Bulgaria, Ucrania y Moldavia: millones de personas que habitan en la cuenca de los ríos, y que dependen principalmente de la agricultura para su subsistencia, sufrirán severos impactos por las inundaciones.

8-Gran Chaco Sudamericano La Argentina, Bolivia, Paraguay y una pequeña parte de Brasil: Inundaciones y desertlflcaclón asociadas a la deforestación en el oeste de la región, debido al avance de la frontera agropecuaria, Las poblaciones rurales y las comunidades indígenas deberán desplazarse.

9-Arrecife mesoamericano México, Bellce, Guatemala y Honduras: aumento del nivel del mar, blanqueamiento de los arrecifes de coral por el aumento de la temperatura y de la acidificación, pérdida de las atracciones turísticas y de la productividad de la pesca, de las cuales dependen los habitantes.

10-Triángulo de Coral Indonesia, Filipinas, Malasia, Papua Nueva Guinea, islas Salomón y Timor-Leste: 100 millones de personas, beneficiadas directamente por los recursos costeros (las pesquerías, fundamentalmente) están seriamente amenazadas por el blanqueamiento de coral, el desarrollo costero y las Inundaciones en las zonas bajas.

11-Océano Austral Rodea todo el continente antartico: disminución del hielo marino del 10 al 15% y, en algunas áreas, del 30%. Se reducen algunas especies que dependen del hielo, como por ejemplo el krill. Este crustáceo se alimenta del plancton que se cría bajo las capas de hielo y constituye la base de la cadena alimentaria de muchas especies del océano Austral.

12-Donaña España: Incremento de la desertificación mayor que el promedio global. Impactos Intensos, como disminución de lluvias y aumento masivo de los ritmos de evaporación.

13-Sundarbans Oeste del golfo de Bengala: habitat muy amenazado por la Inundación de los ríos y el aumento del nivel de mar, que afectará elhogar de cuatro millones de personas y del 10% de la población de tigres de Bengala que aún existen.

14-Altai-Sayan Rusia, Mongolia, Kazajastán y noroeste de China: el calentamient registrado de 1,5° C en los últimos 60 años, el derretimiento masivo de glaciares, las inundaciones catastróficas y las sequías prolongadas impactan en la población, que es altamente dependiente de la agricultura.

15-Cuenca del río Ruaha Tanzania: escasez de agua, particularmente en la temporada seca, que también incrementará ¡a inseguridad alimentaria, el cólera y otras enfermedades infecciosas.
15-Fifi Defensas naturales, arrecifes y manglares se verían seriamente amenazados por el cambio climático y otras presiones.

isla malé

88.000 son los habitantes de Male (foto), la capital de Maldivas, cuyas vidas serán afectadas por el aumento del nivel del mar. El 80% de las islas se sitúa apenas un metro por encima del nivel del mar.

Fuente Consultada: Cuadernillo Calentamiento Global de la Fundación Vida Silvestre junto a Clarín

El Mundo: Información Geografica, el Medio Ambiente y su Poblacion

El Mundo y El Medio Ambiente

bullet-historia1Geografía del Mundo – Ríos, Montañas, Océanos, Continentes y Países
bullet-historia1 Eras Geológicas del Planeta Tierra
bullet-historia1 Estructura Interna del Planeta Tierra
bullet-historia1 La Importancia del Agua
bullet-historia1 La Capa de Ozono
bullet-historia1 La Explosión Demográfica
bullet-historia1 El Efecto Invernadero
bullet-historia1 Desastres Naturales
bullet-historia1 La Antártida
bullet-historia1 La Población Mundial (Sus Desafíos)
bullet-historia1 El Petróleo: El Oro Negro
bullet-historia1 Grandes Ciudades: Megalópolis
bullet-historia1 El Agua, el Aire y La Atmósfera
bullet-historia1 La LLuvia Ácida
bullet-historia1 El Magnetismo Terrestre
bullet-historia1 El Magma Terrestre
bullet-historia1 Origen de la Vida-Evolución del Hombre-Proyecto Genoma-Clonación
bullet-historia1 TRAGEDIAS
bullet-historia1 Malas Noticias En El Mundo
bullet-historia1 La Tragedia del Challenger
bullet-historia1 El Titanic
bullet-historia1 El Hinbenburg
bullet-historia1 Aeropuerto de Tenerife
bullet-historia1 Accidente en el Rio Potomac
bullet-historia1 Desastre Químico de Seveso
bullet-historia1 La Usina Atómica de Chernobyl
bullet-historia1 El Peligro de la Ondas Ionizantes
bullet-historia1DATOS GEOGRÁFICOS
bullet-historia1 Geografía de Argentina
bullet-historia1 Geografía del Mundo
bullet-historia1 Datos Estadísticos del Mundo
bullet-historia1 Accidentes Geográficos Notables
bullet-historia1 Datos de América del Sur
bullet-historia1 Atlas Mundial Con Datos Demográficos
bullet-historia1 Datos Curiosos del Planeta Tierra
bullet-historia1 Mapa Mundial del Hambre
bullet-historia1 El Planeta Se Rebela
bullet-historia1 Latinoamérica y el Mundo en el Siglo XX
bullet-historia1 Regiones, Países y Ciudades del Mundo
bullet-historia1 El Calentamiento Global Provocará Una Gran Crisis
bullet-historia1 La Biodiversidad
bullet-historia1 Los Recursos Energéticos Naturales del Planeta
bullet-historia1 El Agua Dulce y El Acuífero Guaraní
bullet-historia1 Conceptos Básicos de Ecología
bullet-historia1 Países Verdes,Que Cuidan el Planeta
bullet-historia1 Históricas Contaminaciones Fatales del Aire
bullet-historia1 Los Lugares Más Bellos del Mundo
bullet-historia1 ¿Como Se Calcula la Riqueza de un País?
Haz Una Búsqueda Porque Hay Muchos Temas Más Tratados Sobre Geografía….

 

Volcanes Mas Grandes del Mundo Tabla Cuevas Mas Profundas del Planeta

Volcanes Mas Grandes del Mundo
Tabla Cuevas Mas Profundas del Planeta

LOS VOLCANES:  Los volcanes son una de las manifestaciones más impactantes de que el interior del planeta está vivo. La salida del magma la superficie a través de ellos puede provocar fenómenos que arrasan toda la vida alrededor: explosiones, incandescentes, lluvias de fuego y ceniza, aluviones. Por eso, desde tiempos remotos, el hombre ha temido a los volcanes, e humeantes cráteres como la entrada al infierno. Cada volcán tiene un ciclo durante el cual modifica la topología y el clima y luego el mismo se extingue.

En el interior de la Tierra se encuentra en su mayor parte en estado liquido e incandescente a elevadísimas temperaturas. A esa inmensa masa de roca fundida, que además contiene cristales disueltos y vapor de agua, entre otros gases se la conoce como magma terrestre. Cuando parte de ese magma surge hacia el exterior a través de los fenómenos volcánicos, se la llama lava; 1000 °C es la temperatura media de la lava líquida

Al alcanzar la superficie de la corteza o el fondo oceánico , la lava comienza a enfriarse y se convierte así en diversos tipos de roca sólida, según su composición original. Ésta es la base de los procesos por los que se ha formado la superficie de nuestro planeta y por los cuales sigue en permanente cambio. Los científicos estudian la lava para conocer en profundidad nuestro planeta.

La lava es la sangre de toda erupción. Está cargada de vapor y de gases como el dióxido de carbono, el hidrógeno, el monóxido de carbono y el dióxido de azufre. Al salir, estos gases ascienden violentamente a la atmósfera, formando una nube turbia que descarga, a veces, copiosas lluvias. Los fragmentos de lava que son arrojados fuera del volcán se clasifican en bombas, brasas y cenizas.

Algunas partículas, grandes, vuelven a caer dentro del cráter. La velocidad eje la lava depende en gran parte de la pendiente de la ladera del volcán. Hay corrientes de lava que pueden llegar a los 150 Km. de distancia.

 volcan activo

Según la opinión de los geólogos, las materias que existen debajo de la corteza terrestre se encuentran en un estado particular, llamado de fluidez latente, por efecto del cual suelen comportarse como sólidos, pero con clara disposición a fundirse en cuanto la presión y la temperatura a que están sometidas, o ambas a la vez, se alteren de modo conveniente.

Cuando las masas superiores del Sial, que constituyen la corteza terrestre, cambian de posición como consecuencia de movimientos orogénicos, las masas inferiores adquieren una mayor plasticidad, se vuelven fluidas y adquieren las características propias de lo que se ha dado en llamar magma.

Cuando esto sucede, el magma líquido penetra en las hendiduras y cavidades de la litosfera, llegando muchas veces a atravesarla por completo hasta salir a la superficie. Entonces se produce el fenómeno volcánico. El vulcanismo no es más que la salida del magma a la superficie. Se llaman volcanes los conductos de filtración, visibles desde fuera, a través de los cuales se produce la salida del magma al exterior, o sea, la erupción.

Esta puede ocurrir a través de una fisura (erupción lineal), a través de una zona más o menos extensa (erupción areal) o también por un conducto de sección de forma aproximadamente circular (erupción central). La forma externa de los volcanes puede adoptar diversos aspectos, de acuerdo con la naturaleza de las rocas existentes en aquel sector, el tipo de magma que irrumpe y otros muchos factores concurrentes.

Actividad volcánica
Los volcanes en actividad arrojan lavas o cenizas permanentemente y durante los cortos periodos de descanso las fumarolas continúan saliendo del cráter. Hay volcanes que despiertan después de largos períodos de tiempo (Vesubio). A los que no han vuelto a entrar en actividad desde hace mucho tiempo se los considera apagados. No obstante, hay fenómenos que revelan cierta actividad subterránea, como ser las fuentes termales o de agua caliente. Son claros ejemplos las Termas de Reyes (50° de temperatura en Jujuy, 60° en Villavil, Catamarca, 70° en Las Maguinas, Neuquén. todos de la República Argentina). Y también los ge /seres, fuentes termales que surgen del suelo intermitentemente y cuyas aguas ascienden a una temperatura de 100°C. Es claro ejemplo el Gran Geiser de Islandia.

Los volcanes suelen anunciarse con temblores de tierra, sacudidas, aumento de temperatura, ruidos subterráneos y movimientos bruscos del mar. El ascenso del magma o lava a la superficie ocasiona perturbaciones geofísicas, anomalías magnéticas y variaciones en la intensidad gravitacional. Aun el incremento de las fumarolas no garantiza la certeza de que habrá erupción. A menudo el magma interno a punto de ser proyectado por la chimenea se acerca al borde del cráter y se solidifica.

Signos más próximos son las explosiones de los gases y valores sometidos a presiones y temperaturas elevadísimas en el interior del volcán. Estos gases, al salir, expulsan las materias que taponan la chimenea volcánica y elevan sobre el cráter gigantescas columnas de humo, piedras y polvo, que caen luego sobre muchos kilómetros cuadrados de extensión y en bloques que llegan a pesar más de 30 toneladas. Esta especie de proyectiles recibe el nombre de bombas volcánicas.

Otra materia arrojada por los volcanes es ceniza (pulverización, en finas gotitas de la lava solidificada). Las escorias son residuos de materia fundida. Su apariencia es vacuolar, ya que provienen del magma que ha retenido y expulsado grandes cantidades de gases. Otras materias son la piedra pómez (escorias porosas) y las puzolanas, fragmentos más pequeños y lisos. Estas substancias, después de caer en las proximidades del cráter, sirven para elevar el cono volcánico. Las cenizas se mezclan con las lluvias y forman los conocidos fufos, capas de barro volcánico depositadas como los terrenos sedimentarios.

A la fase de emanación de gases le sigue la efusión de líquido, el cual está formado por rocas fundidas entre 1.000°C y 2.000°C, que rebasa los bordes del volcán y corre por las zonas aledañas como un verdadero río de fuego.

Composición mineralógica
La lava tiene un alto contenido de silicatos, que son minerales livianos formados de rocas y constituyen el 95% de la corteza terrestre. En proporción, el otro elemento importante es el vapor de agua. Los silicatos determinan la viscosidad de la lava, es decir, su capacidad de fluir, cuyas variaciones han originado una de las clasificaciones más difundidas: la lava basáltica, andesítica y riolítica, ordenadas de menor a mayor contenido de silicatos.

VOLCANES GRANDES E IMPORTANTES DEL PLANETA
Volcán, ubiaciónAltura en m
Acatenango (Q-1972), Guatemala3.976
Agua (Q), Guatemala3.766
Agung Gunung, (A-1964), Bali, Indonesia3.142
Akutas, (A -1974), Is. Aleutianas, EU1.293
Alaid, (A -1982), Is. Kuriles2.339
Alcedo, (A -1954), Is. Galápagos, Ecu1.127
Ambrym o Marun (A – 1953) Vanuatu (Oc. Pacífico)1.270
Antisana (Q), Ecuador5.704
Antofalla (A), Argentina6.100
Apo (Q), Filipinas2.954
Ardjuno- Welirang, Java – Indonesia3.038
Arenal (A- 1982), Costa Rica1.640
Asamayama (A- 1983) Japón2.542
Askja (A- 1961), Islandia.1.510
Aso, (A- 1981), Japón.1.592
Atitlán, (Q – 1853), Guatemala3.537
Augustina, (A- 1976), Alaska, EU.1.227
Awu (A- 1968), Indonesia.1.320
Azufral, (Q) Colombia4.070
Azufre o Lastarria, Chile- Argentina.5.697
Baker (H), Washington, (EU)3.285
Barú (Q), Panamá3.475
Beerenberg (A – 1970) Jan Mayen (Mar de Noruega)2.277
Bezymianny (A- 1983) Rusia2.800
Bromo (H- 1950) Java – Indonesia2.392
Calbuco (A- 1961), Chile2.003
Callaqui, (Q), Chile2.085
Camerún (A – 1982), Camerún4.100
Canlaon (A- 1969), Filipinas2.460
Casablanca (A- 1960), Chile1.990
Cayambe (F), Ecuador5.790
Cerro de Llullaillaco (Q), Argentina – Chile6.739
Cerro Negro (A – 1982), Nicaragua976
Citialtepec o Pico de Orizaba (Q), Mexico5.610
Cofre de Perote, Mexico4.250
Concepción u Ometepe (A- 1977), Nicaragua1.610
Conchagua (A – 1974), El Salvador1.250
Cosigüina (A – 1983), Nicaragua859
Cotecechi (A-1955), Ecuador4.939
Cotopaxi (A – 1975), Ecuador5.897
Cumbai (A- 1926), Colombia4.764
Chiles (Q), Colombia4.750
Chimborazo (Q), Ecuador6.310
Chokal (Q), Japón2.230
Choshuenco, Chile2.415
Dempo (A- 1940), Sumatra, Indonesia3.159
Domuyo, Argentina4.709
El Mocho, Chile2.422
Erebus (A- 1982) Antártida3.794
Estrómboli (A – 1975), Italia924
Etna (A- 1975), Sicilia, Italia3.323
Faial (A- 1958), Isla Azores1.043
Fernandina (A- 1977), Is. Galápagos, Ecuador1.494
Fogo (A- 1977), Is. Cabo Verde2.829
Fuego (A- 1977), Guatemala3.763
Fujiyama (Q), Japón3.776
Galeras (A- 1953), Colombia4.276
Galung-gung (A- 1982), Java – Indonesia2.168
Gede (A- 1949), Java – Indonesia2.958
Góngora (Q) Costa Rica1.728
Guallatiri (A-  1960), Chile6.063
Hekla (A-1981), Islandia1.491
Huila (Q) Colombia5.750
Ichinskaya (F), Rusia3.621
Illamna (A- 1981), Alaska, EEUU3.053
Irazú (A- 1967), Costa Rica3.492
Izaico (A. 1966), El Salvador1.910
Iztaccíhualt (Q), Mexico5.230
Karthala (A- 1977), Islas Comoras2.361
Katla (A- 1918), Islandia900

mapa de volcanes

Distribución mundial de los volcanes activos. Casi el 80% de los volcanes se encuentran alineados en las márgenes del océano Pacifico, formando el Cinturón de Fuego del Pacífico. En menor medida, se hallan también en el interior de las placas litosféricas, en donde se observan fenómenos volcánicos vinculados con la acción de los puntos calientes.

De los aproximadamente 500 volcanes activos que hay actualmente en el mundo, solamente una pequeña proporción están en erupción en un momento determinado, anualmente del orden de 20 ó 30. Una erupción, momento en que el volcán arroja lava y gases volcánicos por su cráter, es de una duración bastante corta en relación con la vida del volcán.

El período en que el volcán «duerme» es normalmente mucho más largo que el que está en erupción, y puede durar decenas e incluso millares de años. Un volcán que no ha entrado en erupción en «tiempos históricos» se dice que está extinguido, pero esta definición es en realidad extremadamente vaga, pues lo que se considera «tiempo histórico» puede ser mucho más corto que el período en que un volcán puede permanecer dormido.

CUEVAS DEL PLANETA
Las más profundas
Nombre y situación Profundidad en m
Réseau Jean-Bernard, Alta Saboya, Francia1.534,97
Réseau des Folliis, Francia1.402,08
Snezhnaya, Cáucaso, Abjasia1.280,16
Sistema Huautla, Mexico1.219,81
Sima de Ukerdi, España1.184,76
Avenc B 15, España1.150,00
Las más largas
Nombre y situación Longitud en Km.
Sistema Flint- Mammoth, Kentucky, EEUU354
Optimisticeskaja, Drestrovsko-Prisernomorskaja, Ucrania143
Holloch, Muotathal, Suiza136
Corte esquematico de un volcán

Corte esquematico de un volcán

Terremoto en Japón Tokio 1923 Desastre de Kantó

Terremoto en Japón Tokio 1923 Desastre de Kantó

El archipiélago japonés se encuentra sobre  una zona en donde confluyen varias placas continentales y oceánicas. Esta es la causa de los frecuentes movimientos telúricos como terremotos, tsunamis y la presencia de muchos volcanes y aguas termales en Japón. Si los terremotos se producen por debajo o cerca del océano, que pueden desencadenar maremotos (tsunami). El 1 de septiembre de 1923, uno de los peores terremotos en la historia mundial golpeó la llanura de Kanto, con una intensidad de cercana a 8 y destruyó Tokio, Yokohama y alrededores. Alrededor de 140.000 personas fueron víctimas de este terremoto y los incendios causados por ella.

El terremoto se produjo a las 11:58 hora local en Tokio en el momento en que muchas personas estaban preparando el almuerzo con carbón de leña o estufas de leña. Durante el terremoto, muchas de estas estufas se volcó y provocó incendios que no pudieron ser controlados. Es por eso que este evento también se conoce como el Gran Incendio de Tokio de 1923. Pensemos que fue a principio de siglo, donde las comunicaciones no eran tan fluidas y precisas como lo son hoy, pero estas fueron algunas de las que llegaron al otro día de la tragedia a un medio de prensa:

El 3 de septiembre: “Se informa que 100,000 personas están muertas y 200,000 construcciones destruidas, incluyendo el sector comercial de Tokio y la mayoría de las oficinas de gobierno. Una estación de energía eléctrica se desplomó matando a 600 personas. El arsenal de Tokio explotó. El sistema hidráulico se halla totalmente destruido. Almacenes de alimentos se quemaron hasta los cimientos. Los incendios todavía no están controlados”.

El 4 de septiembre: “Las víctimas aumentan, posiblemente 150,000 muertos. Las estaciones del ferrocarril en ruinas. El túnel más largo de Japón, en Sasako, se derrumbó y sofocó a todos los pasajeros de un tren. El río Sumida se desbordó y cientos de personas se ahogaron. Todos los puentes están caídos. Casi todas las escuelas, hospitales y fábricas, destruidos. Los centros de veraneo en la bahía de Sagami (30 kilómetros al oeste de Tokio), arrasados”.

El 5 de septiembre: “Muchos trenes de pasajeros y de carga se descarrilaron causando una gran pérdida de vidas. Marejadas de casi 12 metros de altura inundaron la bahía de Sagami. causando destrucción masiva; luego se retiraron, descubriendo el fondo del océano. Los tanques de almacenamiento de petróleo en Yokohama explotaron. Unas 40,000 personas perecieron quemadas por un ciclón de fuego en el parque de Tokio. Otras 1,600 personas fueron aplastadas y luego quemadas en el incendio subsecuente cuando la fábrica de hilados y tejidos de algodón Fuji se derrumbó. El Hospital Americano fue arrojado entero y con los pacientes desde los riscos sobre Yokohama. El conde Yamamoto, recientemente nombrado primer ministro, estaba tratando de formar un gabinete en el Club Naval de Tokio cuando el piso se hundió matando a 120 de sus colegas. Desgracias estimadas: 500,000 personas sin hogar, de las cuales muchas están heridas. El total de muertes, en una población de tres millones, es desconocido. Unos 1,500 prisioneros fueron liberados de la prisión de Ichigaya, Tokio, cuando el edificio amenazaba derrumbarse, y otros más han escapado de otras prisiones. Ahora se ha extendido por todas partes el robo con violencia, el pillaje en locales abandonados, las violaciones y asesinatos sin motivo. De esto se ha culpado, al parecer injustamente, a varios miles de inmigrantes coreanos que viven en la ciudad y algunos cientos han sido linchados. Se ha declarado la ley marcial”.

Para el 6 de septiembre, el corresponsal del Times de Londres informó que Yokohama había sido “borrada del mapa”. En Tokio había un millón y medio de personas sin hogar. “La dificultad para contar una historia tan dramática es saber por dónde empezar”.

El sismo también rompió la red de agua complicando el suministro normal para apagar los incendios, muchos de los cuales fueron generados por el escape de gas de las tuberías rotas. Las ciudades fueron reducidas a escombros y cenizas y el puerto de Yokohama  sufrió los daños más graves, donde se destruyó el 90% de las viviendas o dañado.

En Tokio, la primera sacudida, seguida por otras igualmente masivas, destruyó incluso los edificios nuevos y dejó el terreno como un techo corrugado con algunas partes levantadas dos o tres metros por encima del nivel normal. Enormes grietas se abrieron en las calles tragándose a la gente, y aun a los tranvías, y luego cerrándose sobre ellos como una boca gigantesca. Los alambres del teléfono y los cables eléctricos elevados se rompieron como cuerdas, y ante la caótica situación y el pánico, la gente los pisaba y se electrocutaba; todos los pasajeros de un tranvía murieron de esta manera, según un testigo ocular, quedándose rígidos como habían estado en el último momento de vida: “Los vimos sentados en sus asientos, todos en actitudes naturales. La mano de una mujer se hallaba extendida con una moneda, como si estuviera a punto de pagar su pasaje”.

Muchas casas construidas en las colinas y  montañas fueron arrastrados por deslizamientos de tierra. Una ladera de la montaña se derrumbó en un pueblo y empujó un tren de pasajeros estacionados más de la estación y estructuras de la comunidad en el mar. Había aproximadamente 900 personas murieron como resultado de estos deslizamientos de tierra.

Se generó un tsunami con olas de hasta 20 m que azotó las costas de la isla de Oshima, Península de Izu y la Península de Boso. Las casas fueron destruidas y se produjeron grandes inundaciones. Más de 150 personas murieron como consecuencia de este tsunami.

Muchas personas se embarcaron en el puerto de Yokohama con el fin de buscar refugio lejos de la costa, pero no eran conscientes de las filtraciones de aceite en el agua. A medida que el fuego se extendió a la bahía, el incendio de hidrocarburos se desplazó al agua y quedaron atrapados entre dos frentes de fuego, lo que muchos barcos no lograron llegar al mar abierto.

En Yokohama  tormentas de fuego quemaron alrededor de 381.000 de los más de 694.000 casas, fueron parcial o completamente destruidas por el terremoto. Más de 1,9 millones de personas quedaron sin hogar en Japón. En Tokio, el 60% de la población de la ciudad se quedaron sin hogar. El daño estimado  por el terremoto de 1923 Gran Tokio convierten en valores de hoy habría sido por lo menos 1.000 millones de dólares EE.UU..

Según el USGS, hubo 142.800 muertes por el terremoto de 1923 Gran Tokio, como las tormentas de fuego, deslizamientos de tierra y el tsunami. Como resultado de este terremoto, los estándares japoneses de la construcción de edificios públicos se han cambiado con base a estudios de las estructuras que quedaron en pie. Tokio fue reconstruido con los servicios de transporte mejores y más parques fueron creados como áreas de refugio.

Ver: Terremotos Históricos

Terremotos Mas Importantes de Argentina

Terremoto de San Juan Tragedia en 1944 Perón conoce a Evita

Terremoto de San Juan Tragedia en 1944 – Perón conoce a Evita

TERREMOTO EN SAN JUAN (1944):  Una sensación de terrible angustia —aumentada por la incertidumbre— invadió la capital y todo el territorio del país cuando llegaron las primeras noticias sobre el terremoto de San Juan.

Alrededor de las 20 fue registrado el fenómeno por los sismógrafos, y antes de una hora, ya Buenos Aires estaba enterada, en parte, de sus horrorosas consecuencias. Las primeras informaciones daban la sensación del desastre. En pocos minutos había quedado destruido el 90% de los edificios de la ciudad cuyana. Se supo después que Mendoza se había convertido en el cuartel general de los auxilios.

Mientras tanto, una lluvia de informaciones caía sobre Buenos Aires y a medianoche se conocía ya la magnitud de la catástrofe. Se organizan inmediatamente los auxilios necesarios para atender a las víctimas que, según los cálculos, sumarían millares. Parten médicos y enfermeras.

En tren, en automóvil, en avión. Todos los medios de transporte se utilizan, y el auxilio afluye de todos los puntos del país. Se sabe que, con ayuda de fogatas y antorchas, se remueven escombros en busca de victimas que, desgraciadamente aparecen en gran número.

Al día siguiente, se hace un llamado a la solidaridad. El pueblo responde con su generoso aporte. Millares de dadores de sangre se presentan de inmediato y ese día, en señal de duelo, se suspenden los espectáculos.

El 17 sale para San Juan el presidente de la República, mientras el gobierno vota diez millones de pesos para ayudar a las víctimas de la catástrofe, trascendiendo ese mismo día que las pérdidas llegan a 400 millones de pesos.

El público sigue contribuyendo con su óbolo, que deposita en los lugares destinados al efecto o en las alcancías con que recorren las calles céntricas numerosas artistas de nuestra escena. Se recaudan de ese modo varias decenas de millones de pesos que expresan el amplio espíritu de solidaridad del pueblo argentino.

Desde países vecinos llega también ayuda. Médicos y enfermeras de todas partes van a San Juan. Algunos pagan tributo a su espíritu solidario. Un avión sanitario chileno, con elementos de auxilio, cae y mueren nueve personas entre médicos y enfermeras.

El 18, fue declarado día de duelo nacional y al siguiente comienza el éxodo de la ciudad devastada. Llegan a Buenos Aires y a otras poblaciones millares de refugiados, que encuentran en todas partes el afecto y el apoyo de sus compatriotas, que, hacen más llevadera su desgracia.

Después, el saldo terrible. Nunca se supo exactamente el número de víctimas, pero los cálculos indicaron 7.000 muertos y 12.000 heridos en cifras globales, que indicaron la real magnitud de la tragedia, una de las más severas sufridas por el país.

Riegos de Vivir Cerca de Volcanes

Terremotos Mas Importantes de Argentina

Terremoto de San Francisco en 1906 Consecuencias

Terremoto de San Francisco en 1906

El terrible estruendo de un terremoto destrozó el silencio de la mañana del 18 de abril a las 5:15 AM. El terremoto duró sólo un minuto, pero causó el peor desastre natural en la historia de la nación. Un análisis de las estimaciones modernas  registró 8.25 en la escala de Richter, en comparación, con otro terremoto que también azotó a San Francisco el 17 de octubre 1989 y registró 6.7.

La mayor destrucción se produjo a partir de los incendios que el sismo provocó. Esto asoló la ciudad durante tres días  y alcanzó las a destruir 490 cuadras de la ciudad, con un total de 25.000 edificios, hizo que más de 250.000 personas queden sin hogar y mató entre 50o y 700. Los daños superaron las estimaciones 350 millones de dólares.

Algunos testigos oculares describieron sus experiencias:»…era como si la tierra se deslizaba suavemente por debajo de nuestros pies, luego vino el vaivén repugnante de la tierra que nos tiró de cara obre el suelo.  No podíamos ponernos de pie,  parecía que mi cabeza se dividiera, con un gran estruendo que se estrelló en mis oídos. Los edificios grandes se derrumbaban como uno podría aplastar una galleta en la mano. Delante de mí un gran cornisa aplastó a un hombre como si fuera un gusano.» (P. Barrett).

«Cuando se incendió el Hotel Windsor en la Quinta y en la  calle Mercado había tres hombres en el techo, era imposible bajar. En vez de ver a los hombres enloquecidos con la caída de la azotea y ser asados vivos, unl militar dirigió su hombres para disparar, lo que hicieron en la presencia de 5.000 personas. » (Fast Max).

«Lo más terrible que vi fue la lucha inútil de un policía y otros para rescatar a un hombre que quedó atrapado en los restos en llamas. El hombre indefenso que observaba en silencio hasta que el fuego comenzó a quemar sus pies. Entonces él gritó y suplicó que lo mate. El policía tomó su nombre y dirección y le dispararon en la cabeza. » (Adolphus Busch).

Un sobreviviente del terremoto de San Francisco lo comparó con un dogo y a la ciudad como «una rata con los dientes rechinando». El temblor empezó a las 5.16 del 18 de abril de 1906 y terminó 47 segundos después. La mayor parte de los edificios todavía se mantenía en pie en aquel momento.

La destrucción de la ciudad: Empresario Jerome B. Clark vivía en Berkeley  cerca de la bahía de San Francisco. Él experimentó una menor sacudida en su casa en la mañana temprano, pero esto no le impidió hacer su viaje regular a la ciudad. Él describe lo que vio cuando desembarcó del ferry:

«En todas las direcciones había fuego, el Ferry Building hervía, y mientras estaba allí, un edificio de cinco pisos, a media cuadra de distancia cayó con estrépito, y el fuego arrasó toda la calle y alcanzó un edificio de reciente construcción nueva a prueba de fuego. En las calles  había lugares hundidos, de tres o cuatro pies, en otros lugares grandes montículos de cuatro o cinco metros de altura, habían aparecido de golpe.

Las pistas de tranvía fueron dobladas y retorcidas. Los cables eléctricos estaban cortados y desparramados en todas las direcciones. Las calles de todas las partes estaban llenas de ladrillos y mortero, edificios totalmente destruidos, los frentes se desmoronaban por completo. Los vagones con caballos enganchados , y sus conductores  tendidos en las calles, todos muertos, golpeados por la caída de ladrillos.

En su mayoría los vagones era de los distribuidores de productos , que hacen la mayor parte de su trabajo a esa hora de la mañana. Naves industriales y grandes casas de venta al por mayor de todo tipo ya sea hacia abajo, algunos edificios desplazados dos o tres pies fuera de la línea , pero todavía en pie, con las paredes todas agrietadas.»

En una zona donde ocurrían unos 5 temblores menores al año, la madera era el material de construcción más utilizado por su flexibilidad. Sin embargo, el nuevo ayuntamiento, construido de piedra y tejas, se derrumbó como un castillo de naipes gigante. Los hoteles que estaban en promontorios resbalaron por lasladeras. La cúpula del hotel California destrozó por completo el tejado del cuartel de bomberos. Allí dormía el jefe de bomberos de San Francisco, que fue aplastado por los escombros.

«El fuego envolvía a todos los edificios sin distinción,  los viejos y los mejores y lo mejor de los edificios de oficinas y negocios estaban ardiendo. Se bombea el agua de la bahía, pero era demasiado lejos por lo que los esfuerzos eran inútiles. La red de agua se había roto por el terremoto. La única salida era la dinamita, y vi a algunos de los edificios más finos y bellos de la ciudad, los nuevos palacios modernos, volar en pedazos. Primero volaron edificios de uno o dos a la vez. Al comprobar que no sirve para nada, se llevaron a media cuadra, que era inútil, y luego tomaron un bloque;. Pero a pesar de todos ellos el fuego seguía extendiendo »

Luego vino el fuego: Por toda la ciudad empezaron los incendios provocados, por calentadores que se habían dejado encendidos, chimeneas, cocinas , chispas eléctricas o la ignición del gas que escapaba de tuberías rotas. Un ama de casa encendió un fósforo en lo que había sido su cocina y ocasionó una explosión que incendió cientos de casas que quedaron destruidas hasta los cimientos.

Meses antes, el jefe de bomberos, Danny Sullivan, había advertido a los funcionarios de la ciudad que su servicio podría resultar insuficiente para enfrentar una conflagración seria, y sus palabras sonaban aterradoramente serias. Para combatir 52 incendios sólo había 38 carros de bomberos tirados por caballos.

Enormes grietas en las calles habían fracturado todas las tuberías del agua. Excepto en los pozos artesianos aquí y allá, o proveniente del mar en incendios cerca de la costa, no había una sola gota de agua para apagar el fuego.

Atizados y llevados por una fuerte brisa, los incendios empezaron a aglutinarse en un único infierno, y un damnificado describió la vista que contempló desde una de las muchas colinas de la ciudad: “Mirando hacia abajo vi la enorme ola de fuego que rugía en la hondonada, quemando tan rápido que tenía el efecto de un inmenso horno; corría con estruendo hacia kilómetros de viviendas deshabitadas tan carentes de vida, que parecían esperar conscientemente su inmolación”. Vio también techos y cumbres de colinas destacándose desoladamente contra el resplandor de las llamas y “chispas saliendo con fuerza como el rocío de mares que estallaban”.

Para el mediodía de aquel primer día, el fuego estaba totalmente fuera de control. Tropas federales llamadas por la única línea telegráfica que permanecía intacta se hallaban en el camino, así como unidades de la Guardia Nacional y 600 socorristas de la Universidad de California en Berkeley, al lado este de la bahía.

En el lugar, en medio del infierno, sólo dos cosas podían intentarse: salvar el mayor número de vidas posible y abrir una brecha en el camino de las llamas. Durante aquella tarde y resplandeciente noche roja, Chinatown entera fue reducida a cenizas al igual que el Palace Hotel, las casas (excepto una) en Nob Hill, y las viviendas, chozas, cobertizos y cabañas en el resto de de la ciudad, en tanto que la Marina conducía a miles de damnificados en transbordadores a través de la bahía hacia Oakland en la costa oriental, y los voluntarios luchaban desesperadamente para mantener los puntos de embarque libres del fuego. Para muchos no hubo posibilidad de rescate; murieron quemados, atrapados bajo los escombros de sus casas. Ochenta personas perecieron de esta forma en un hotel. Al acercarse las llamas, un hombre atrapado persuadió a un policía para que lo matara de un disparo.

Fallaron los intentos por crear barreras contra incendios dinamitando los edificios. Las cargas explosivas fueron colocadas por hombres inexpertos, y en su mayoría resultaron excesivas, pues hicieron que los edificios estallaran en lugar de derrumbarse lo que originó nuevos incendios.

Cuando se iniciaron los incendios, pasando desde los conductos de gas rotos a través de los cables eléctricos, la madera se convirtió en el principal enemigo. Los bomberos corrían de incendio en incendio, encontrando todas las cañerías de agua rotas. Las llamas se extendieron sin impedimento alguno, en unas 1.360 hectáreas, y ardieron durante tres días. Al final, más de 28.000 edificios quedaron destruidos. La mitad de los 450.000 habitantes de San Francisco perdió sus hogares; unos 670 fueron dados por muertos y otros 350 por desaparecidos.

Después del terremoto y de los fuegos, más de 500 manzanas de la ciudad de San Francisco estaban en ruinas. Más de la mitad de la población de la ciudad quedó sin hogar. La gente vivía en tiendas de campaña y otros albergues, y cocinaban al aire libre. Con todo, a pesar de la devastación, no tardó mucho para que la gente comenzara a recoger los escombros.

El terremoto ocurrió cuando hubo un movimiento precipitado a lo largo de la falla de San Andreas. Esta gran falla de transformación (choque-deslice) está en California. Es el límite entre dos de las placas tectónicas de la Tierra.

Después del terremoto, un ingeniero llamado Herman Schussler, exploró la falla de San Andreas que corta a través de la montaña de la cordillera de la costa. En 1908, testificó ante una corte de Distrito Norteamericana de San Francisco acerca de lo que vió.

«La característica más notable fue que las montañas del este se acercaron cuatro pies y medio a las montañas del oeste» explicó Schussler ante la corte.  Piensen en eso. En sólo uno minuto, las montañas enteras se habían movido unos pies.

«Si San Francisco hubiera estado en o cerca de la falla no habría quedado nada de ella», continuó Schussler.

Ver: Terremotos Históricos

Terremotos Mas Importantes de Argentina

Terremoto en Haití 2010 Consecuencias Desastre Natural en el Caribe

Terremoto en Haití 2010 Desastre Natural en el Caribe

Por más de 250 años, Haití ha estado libre de terremotos, aunque no así la vecina República Dominicana que había sufrido un terremoto en 1946. Pero lamentablemente, el 12 de enero de 2010, Haití sufrió un terremoto de 7.3 grados en la escala de Richter ,que causó un daño sin precedentes, la muerte y destrucción.

Según las últimas estimaciones, más de 200.000 personas han muerto con un adicional de 1,5 millones de personas viven bajo carpas, en tiendas de campaña, y en refugios temporales. El sismo inicial fue seguido más tarde por doce réplicas de magnitud superior a 5.0. Estructuras de todo tipo fueron dañadas o colapsaron, barriadas de viviendas de edificios de valor patrimonial.

El temblor comenzó el martes, 12 de enero, a las 4:53 pm. en la región de Haití, a 10 kilómetros al suroeste de Puerto Príncipe. Fue el  terremoto más fuerte de los últimos 200 años que sacudió a Haití,  colapsó la totalidad de un hospital donde la gente gritaba desesperada pidiendo ayuda y dañó seriamente  la sede del Palacio Nacional, la sede para el mantenimiento de la paz, de las Naciones Unidas y otros edificios.

La fuerza del movimiento telúrico fue tal que la ciudad de millón y medio de habitantes quedó envuelta en una nube de polvo tras la caída de edificaciones. Con la ciudad sumida en las sombras de la noche era imposible evaluar la magnitud real del desastre. Los funcionarios de EE.UU. informaron de la gran cantidad de cuerpos muertos en las calles y otro funcionario de ayuda describió la situación como «desastre total y el caos

Las comunicaciones se interrumpieron prácticamente en todo el país , no así la electricidad, que solo se cortó en fue en algunos lugares. Haití y su vecina la República Dominicana se encuentran en la unión entre dos placas tectónicas enormes, la Placa del Caribe y la Placa de Norteamérica. A medida que el magma circula bajo la superficie de la tierra, las corrientes trata de mover  las masas enorme de roca que forman las placas haciendo que se rocen entre sí. A veces, las placas se mueven unas sobre otras, y en otros lugares, intentan deslizan entre sí.

Estos movimientos laterales suelen ser relativamente pequeños y en este caso parece haber sido sólo en torno a dos metros, pero el movimiento es a lo largo de una línea de falla y hay enormes presiones involucradas. En el caso de Haití, el movimiento a lo largo de la falla se produjo en un tramo de más de 60km. Eso es más que suficiente para destruir edificios, romper las carreteras y reducir todo a escombros.

La profundidad también es importante, ya que la fuente del terremoto de Haití fue de 6,2 millas por debajo de la superficie de la Tierra. La profundidad de este sismo en Haití fue muy superficial, lo que significa que la energía que se libera es muy cerca de la superficie, que también puede ser otra característica que hace que algo de terreno sacudidas violentas.

Todos estos efectos se magnifican cuando la infraestructura es de mala calidad y no construidos para resistir temblores. Desafortunadamente, Haití tiene una economía bastante pobre y gran parte de sus construcciones  no tiene resistencia a los terremotos, produciendo daños materiales aun mayores, y consecuentemente mas mortandad o heridos.

En camiones cargados con cadáveres era llevadas las victimas a  fosas comunes fuera de la ciudad, pero miles de cuerpos debieron esperar mucho tiempo para ser removido de abajo de los escombros. Alrededor de 40.000 cuerpos han sido enterrados en fosas comunes.

¿Podría haberse previsto?: El problema con la predicción de terremotos es que una vez que se ha acumulado tensiones suficientes, se liberan instantáneamente y los acontecimientos suceden muy rápidamente como para dar señales de advertencia, pues  sólo hay minutos para responder. Sin embargo, cinco geofísicos presentaron un documento a la Conferencia Geológica del Caribe 3-2008 destacando el riesgo de terremotos en una falla de la vecina República Dominicana. Toda la zona es bien conocida por estar en una línea de falla sísmica por lo que fue siempre una candidata para terremotos. Pero por más de 250 años, la línea de falla se ha mantenido estable.

Cuando dos placas rozan entre sí en lugar de moverse una sobre la otra, se acumula fuertes tensiones internar, pero la zona afectada parece dormida, pero luego cuando las tensiones legan a un nivel incontenible, se liberan desplazando las placas, y se generan  terremotos repentinos y devastadores. Exactamente el mismo tipo de falla que existe a lo largo de la falla de San Andrés frente a California. Así que aunque la vigilancia sísmica podría haber proporcionado más información en Haití, tampoco habría permitido a los científicos a predecir el terremoto.

Un año después del terremoto: hay signos tangibles de que recuperación están comenzando a emerger. Con el apoyo de organismos como la Sociedad de la Cruz Roja de Haití, muchas comunidades tienen ahora acceso a agua potable, saneamiento básico, salud y vivienda. Dirigido por la Cruz Roja de Haití, la FICR ,  Nacional de la Cruz Roja y la Media Luna Roja han proporcionado el 40 por ciento de toda la asistencia humanitaria básica suministrada desde el terremoto. Sin embargo, las necesidades son inmensas y seguirá siendo durante muchos meses más. La recuperación de esta crisis va a durar entre siete y diez años. La Federación Internacional, en apoyo de la Cruz Roja de Haití, será en Haití a largo plazo.

Ver: Terremotos Históricos

Terremotos Mas Importantes de Argentina

Terremoto Más Grande en China Tangshan 1976 Consecuencias

Terremoto Más Grande en China Tangshan 1976

TERREMOTO EN CHINA: A las 3:42 am. del 28 de julio de 1976, un terremoto de magnitud 7.8 golpeó la ciudad dormida de Tangshan, en el noreste de China. El terremoto de gran tamaño, golpeó en un área totalmente inesperada, borrando del mapa a  la ciudad de Tangshan y mató a más de 250.000 personas, lo que se considera como uno de los terremotos más mortíferos del siglo XX. (no fue el mas potente, pero si unos de los que ocasionó mas muerte) Aunque la predicción de terremotos científica se encuentra en sus etapas iniciales de prueba, la naturaleza a menudo da una advertencia (que no siempre es segura) antes de producirse un terremoto.

En las afueras de Tangshan, el agua de un pozo  se levantó y cayó tres veces en el mismo día antes del terremoto. En otro pueblo, cierto gas raro comenzó a salir por un surtidor de agua. También otros pozos en toda la zona mostraron señales de estar agrietándose.

Los animales también dieron una advertencia de que algo iba a suceder. Un millar de pollos en Baiguantuan no comieron y corrieron en todas direcciones. Los ratones y las comadrejas amarillas también salieron corriendo en busca de un lugar para esconderse. En una casa en la ciudad de Tangshan, un pez de colores comenzaron a saltar salvajemente en su pecera. A las 2 am. el 28 de julio, poco antes del terremoto, un pez dorado saltó de su recipiente. Una vez que su dueño lo había vuelto a su lugar, los Degas peces colores también saltaron hacia fuera del recipiente.

Extraño, ¿no? En efecto. Estos fueron incidentes aislados,  en una ciudad de un millón de personas y un paisaje salpicado de aldeas. Pero la naturaleza le dio advertencias adicionales.

La noche anterior al terremoto, julio 27-28, muchas personas dijeron haber visto luces extrañas, así como los sonidos fuertes. Las luces fueron vistos en una multitud de matices. Algunas personas vieron destellos de luz, mientras que otros testigos hablaron de bolas de fuego que flotaban por el cielo. También otro hablan de fuertes ruidos, como rugidos seguido de luces y bolas de fuego.

Trabajadores del aeropuerto de Tangshan describieron los ruidos como más fuerte que la de un aeroplano. Cuando el terremoto de magnitud 7,8 golpeó Tangshan a las 3:42 el 28 de julio, más de un millón de personas dormían, sin darse cuenta del desastre acaecido sobre ellos. A medida que la tierra comenzó a temblar, algunas personas que estaban despiertas tuvieron la previsión de sumergirse debajo de una mesa u otra pieza de mobiliario pesado, pero la mayoría estaban dormidos y no tuvieron la oportunidad de protegerse.  El terremoto duró  aproximadamente de 14 a 16 segundos.

Una vez que el terremoto cesó y luego de un período inicial de impacto emocional, los sobrevivientes comenzaron a cavar a la luz del alumbrado  público, entre los escombros para responder a las llamadas ahogadas de los sobrevivientes en busca de ayuda, como así también la de encontrar sus seres queridos confinados entre los desechos. Por otro lado los centros médicos fueron destruidos, así como los caminos para llegar allí.

Los supervivientes se enfrentaron a tal desastre, sin agua, sin comida, ni electricidad.  La gente necesita ayuda de inmediato, los sobrevivientes no podían esperar a que llegue ayuda.

Se formaron y organizaron grupos para excavar en busca de otros. Crearon áreas médicas donde los procedimientos de emergencia se llevaron a cabo con el mínimo de los suministros. Ellos  buscaron alimentos y establecieron albergues temporales.

Aunque el 80 por ciento de las personas atrapadas bajo los escombros se salvaron, una réplica de magnitud 7,1 que sacudió en la tarde del 28 de julio selló el destino de muchos de los que había estado esperando bajo los escombros en busca de ayuda.

Después del terremoto, 242.419 personas yacían muertos o moribundos, junto con otras 164.581 personas que fueron gravemente heridos. En 7218 hogares, todos los miembros de la familia murieron por el terremoto. Los cadáveres fueron enterrados rápidamente, por lo general cerca de las residencias en las que perecieron. Esto causó problemas de salud más adelante, sobre todo después de la lluvia y los cuerpos fueron expuestos de nuevo.

Los trabajadores tenían que encontrar estas tumbas improvisadas, desenterrar los cuerpos, y luego trasladar los cadáveres a fuera de la ciudad.

Antes del terremoto de 1976, los científicos no creían que Tangshan fuera susceptible de un terremoto de semejante magnitud. El terremoto de 7,8 que sacudió Tangshan se le dio un nivel de intensidad de la XI (de XII).

Los edificios en Tangshan no habían sido construidos para soportar un terremoto tan grande, por lo que el 93% de los edificios residenciales y un 78% de los edificios industriales fueron destruidos por completo. El ochenta por ciento de las estaciones de bombeo quedaron seriamente dañadas y las tuberías de agua fueron estropeadas por toda la ciudad. El 14% de las tuberías de aguas residuales fueron severamente dañadas.

Los cimientos de los puentes cedieron, causando el colapso de los puentes, las líneas de ferrocarril se doblaron o deformaron como si fueran de goma. Las carreteras estaban cubiertas de escombros, y llena de fisuras, por asentamientos diferenciales del terreno.

Con tanto daño, la recuperación no fue fácil. La comida era una alta prioridad. Algunos alimentos se lanzaron con paracaídas, pero la distribución  fue desorganizada. El agua, aunque sólo sea para beber, era muy escasa. Mucha gente bebía de piscinas u otros lugares sin saber que se habían contaminados durante el terremoto. Los trabajadores de socorro con el tiempo se camiones cisterna y otros para el transporte de agua potable en las zonas afectadas.

Después de la atención de emergencia,  comenzó la reconstrucción de Tangshan casi de inmediato. A pesar de que se tomó el tiempo, toda la ciudad fue reconstruida y más de un millón de personas volvieron a sus casas, ganando Tangshan el nombre de «la valiente ciudad de China.»

Ver: Terremotos Históricos

Terremotos Mas Importantes de Argentina

Terremoto Más Grande de Chile 1960 Valdivia Terremotos en América

Terremoto Más Grande de Chile 1960 Valdivia

TERREMOTO EN CHILE (1960):  Chile es bien conocida por ser afectada a terremotos, y el más fuerte del mundo se produjo el 22 de mayo 1960, cuando un sismo de magnitud 9,5 golpeó Valdivia. El terremoto provocó un tsunami que lanzó olas de 20 m. en la costa de Chile y llegó a las costas de  Hilo, (Hawaii) 15 horas más tarde donde las olas alcanzaron la altura de de 10 m. y acabó con la línea de la costa.

Según el informe de los EE.UU. Geological Survey fue el Top Ten de los terremotos más potentes del mundo, en cambio el terremoto de Chile de 2010 está en el quinto lugar entre los más fuerte desde 1900. Un terremoto de 8,8 golpeó a Ecuador en 1906. Otro muy fuerte hirió a Alaska en 1964 con una magnitud de 9,1. El tercero más potente fue en Sumatra en 2004 con una magnitud de 9,1 generando un tsunami mortal en el Océano Índico. Le sigue el ocurrido en Kamchatka en Rusia en 1952 con una magnitud de 9, está en cuarto lugar.

El tsunami también fue muy destructivo en el Océano Pacífico, pero sobre todo en las islas de Hawai y en Japón, donde hubo pérdida de vidas y daños a la propiedad. Le tomó cerca de 15 horas para que el tsunami llegase a las islas de Hawai (una distancia total de más de 10.000 kilómetros de la zona de generación en el sur de Chile).

En otros lugares a lo largo de la costa oeste de los Estados Unidos, las ondas de tsunami se iniciaron unas 15.5 horas después de producirse el terremoto en Chile. En Crescent City, California, las olas de hasta 1,7 metros y se observaron daños menores.

En Chile aproximadamente 1.700 personas muertas, 3.000 heridos, 2.000.000 de victimas sin hogar, y 550 millones de dólares fueron los daños ocasionados en el sur de Chile, el tsunami causó 61 muertes, 75 millones de gastos por los daños en Hawai; 138 muertes y 50 millones los daños en Japón;  32 muertos y desaparecidos en Filipinas, y por 500 millones los daños la costa oeste de los Estados Unidos.

El daño mas severo de la sacudida se produjo en la zona de Valdivia-Puerto Montt. La mayoría de las víctimas y gran parte del daño fue a causa de grandes tsunamis que causaron daños a lo largo de la costa de Chile desde Lebu a Puerto Aisén y en muchas zonas del Océano Pacífico.

En la ciudad portuaria de Valparaíso, una ciudad de 200.000 habitantes, muchos edificios se derrumbaron. Un total de 130.000 viviendas fueron destruidas, una de cada tres en la zona del terremoto y alrededor de 2 millones quedaron sin hogar. Las pérdidas totales de los daños, incluyendo a la agricultura ya la industria, se estima en más de mil quinientos millones de dólares.

El número total de muertes asociadas con el tsunami y el terremoto nunca se estableció con precisión para la región. Las estimaciones de muertes oscila entre 490 a 5700 sin distinción de cuántas muertes fueron causadas por el terremoto y cuántos fueron causados por el tsunami Sin embargo, se cree que la mayoría de las muertes en Chile fueron causados por el tsunami.

Puerto Saavedra fue completamente destruida por  olas que alcanzaron alturas de 11,5 m (38 pies) y llevó los restos de las casas desde el interior hasta 3 Km. (2 millas) de distancia. Alturas de olas de 8 metros (26 pies) causaron gran daño en el Corral, que sufrió las graves consecuencias del maremoto, donde lamentablemente sus habitantes no alcanzaron a ponerse a salvo y fueron llevados por el mar junto a sus casas y animales.

Poblaciones completas, como la de pescadores de la Caleta San Carlos, fueron arrasadas por las olas registrándose centenares de muertos y desaparecidos. En esta zona, que es una bahía en la cual desemboca el río Valdivia en el océano Pacífico, varias naves se encontraban fondeadas en sus puertos.

Los tsunamis causaron 61 muertes y graves daños en Hawai, sobre todo en Hilo, donde la altura período previo alcanzado 10,6 m (35 pies). Olas de hasta 5.5 m (18 pies) sacudió el norte de Honshu, cerca de 1 día después del terremoto, donde se destruyeron más de 1.600 casas y dejó 185 personas muertas o desaparecidas. Otras 32 personas fueron muertas o desaparecidas en Filipinas tras el tsunami golpeó las islas.

El daño  también se produjo en la Isla de Pascua, en las islas Samoa y en California. Uno a 1.5 m (3.5 pies) de hundimiento se produjo a lo largo de la costa chilena del extremo sur de la Península de Arauco a Quellón en la Isla de Chiloé. En la medida de 3 metros (10 pies) de elevación se produjo en la Isla Guafo. Muchos deslizamientos de tierra ocurridos en la región de Los Lagos desde el Lago Villarrica hasta el Lago Todos los Santos.

El 24 de mayo, entró en erupción Volcán Puyehue, el enviando cenizas y vapor de hasta 6.000 m. La erupción continuó durante varias semanas.

Este sismo fue precedido por cuatro temblores más grande que la magnitud 7.0, incluyendo una de magnitud 7,9 el 21 de mayo que causó graves daños en la zona de Concepción. Muchas réplicas ocurrieron, de 5 de magnitud a mayor de 7.0 hasta el 01 de noviembre. Fue el terremoto más grande del siglo XX. La zona de ruptura se estima en cerca de 1000 Km. de largo, desde Lebu a Puerto Aisén.

En Chile hubo 9 terremotos entre el 21 de Mayo y el 6 de Junio de 1960
(informe del subdirector del Instituto de Sismología de la Universidad de Chile Edgar Kausel):

 EpicentroFecha y HoraMagnitud Richter* 
1 Concepción y LebuMayo 21          06,02 horas7.25 
2ConcepciónMayo 21          06,33 horas7.25
3ConcepciónMayo 22          14,58 horas7.5 
4ValdiviaMayo 22          15,10 horas 7.5 
5ValdiviaMayo 22          15,40 horas8.75
6Península de TaitaoMayo 25          04,37 horas7.0
7Isla Wellington (Puerto Edén)Mayo 26          09,56 horas7.0
8Península de TaitaoJunio 2             01,58 horas6.75
9Península de TaitaoJunio 6             01,55 horas7.0

  * Se refiere a la Escala Richter Standard (Ms), reportada entonces por la Universidad de Georgetown y el Boston
College de EE.UU. , y los observatorios Villa Ortúzar de Buenos Aires e Instituto Geofísico Los Andes de Bogotá.

Tenga en cuenta que las muertes por el tsunami  fuera de Chile se incluyen en el total de 1700. Esto sigue siendo considerablemente inferior al de algunas estimaciones que fueron tan altas como 5700. Sin embargo, Rothe y otros afirman que los informes iniciales se sobrestimaron en gran medida. La cifra de muertos por este gran terremoto fue menor de lo que podría haber sido porque se produjo en medio de la tarde, muchas de las estructuras se habían construido para ser resistente a los terremotos y una serie de temblores antes había hecho que la gente tome los cuidados pertinentes.

Riegos de Vivir Cerca de Volcanes

Terremotos Mas Importantes de Argentina

Tifon en Filipinas-Consecuencias

Tifón en Filipinas

Filipinas es una nación insular formada por 7.107 islas e islotes, de los cuales unos 730 están habitados y 462 tienen una extensión superior a los 2,5 km. Está situada entre el mar de China meridional y el océano Pacífico.

Forma parte del cinturón de fuego del Pacífico. Luzón y Mindanao, las dos islas principales, concentran dos terceras partes de la población.

Numerosas cadenas montañosas de tipo volcánico corren de norte a sur hasta Borneo y las Célebes. En Mindanao se encuentra el monte Apo (2.954 m), que constituye la máxima altura del país. Los terremotos y las inundaciones son frecuentes en la región.

Los ríos principales son el Cagayan, el Grande de Mindanao y el Pasig, que corre por Manila. Hay lagos y lagunas repartidas, como la laguna de Bay, al sur de Manila. Clima: tropical en la mayor parte de la región; se presentan vientos monzones en el noreste, desde noviembre hasta abril; y en el suroeste, de mayo a octubre.

INFORMACIÓN SOBRE EL PAÍS

NOMBRE OFICIAL: República de las Filipinas
CAPITAL: Manila
ÁREA (Km2): 300.000
POBLACIÓN (HAB.): 101.833.938 (jul. de 2011)
PUERTOS: Batangas, Cagayan de Oro, Cebú, Davao, Dagupan, lligan, Manila
DIVISIÓN POLÍTICA: 80 provincias y 120 ciudades menores
UNIDAD MONETARIA: peso filipino
FIESTA NACIONAL:12 de junio, Día de la Independencia
 
ECONOMÍA:
Tasa de inflación (%):3,8 (2010)
Crecimiento del PIB (%): 7,3(2010)
Desempleo (%): 7,3(2010)
Industria: ensamblaje de productos electrónicos, productos farmacéuticos, químicos y de madera y pesca
Agricultura: azúcar, coco, arroz, maíz, plátano y pina.
Ganadería: porcinos y caprinos.
 
SOCIEDAD:
Ciudades principales (hab.): Manila, 11’248.470; Davao, 1’626.977; Cebú, 830.962; Bacolod, 486.541 (2010)
Religión (%): católicos romanos, 81; musulmanes, 5; evangélicos
Crecimiento demográfico (tasa media) (%): 1,90 (2011)»
Densidad (hab./km2) 339,44(2011)
Fecundidad (número de hijos por mujer): 3,19 (2011)
Esperanza de vida (años): hombres, 68,72; mujeres, 74,74 (2011)
Tasa de natalidad: 25,34 nacimientos por 1.000 hab. (2011)
Mortalidad infantil: 19,34 muertes por 1.000 nacimientos (2011)
Índice de Desarrollo Humano (entre O y 1): 0,638 (2010)
Acceso a fuentes de agua potable (%): 93 (2010)

HISTORIA POLÍTICA DE FILIPINAS: HISTORIA
El archipiélago de Filipinas fue conquistado por España un 1564, país que introdujo el catolicismo y lo convirtió en la religión predominante. España vende en 1898 Filipinas a EE.UU por 20 millones de dólares. A partir de 1935 comienza su etapa de autonomía, siendo el primer presidente Manuel Quezón.

Filipinas estuvo ocupada por Japón durante la Segunda Guerra Mundial. La nación obtuvo su independencia en 1946, pero EE. UU. mantuvo sus bases militares en este territorio. Por su parte, los comunistas, que ya habían combatido a los japoneses, mantuvieron la lucha contra el Gobierno hasta 1953, cuando finalmente se rindieron.

En 1965, Ferdinand Marcos ganó la Presidencia. Durante su gestión mejoró la economía, pero en 1972 declaró la ley marcial, que es un estado de excepción en el que prevalece el mandato de los militares. Varios senadores, movidos por Benigno Aquino, miembro destacado del Partido Liberal de Filipinas, organizaron la oposición, en tanto que los comunistas promovieron una revolución desde las islas del sur.

En 1983, Aquino, quien había sido condenado a muerte por el dictador Marcos, regresó del exilio, pero fue asesinado al llegar al aeropuerto de Manila. El Ejército Popular Nuevo (EPN) se tomó el país en 1985.

El movimiento popular se unió tras la figura de la viuda de Aquino, Corazón Aquino, quien prometió concretar el sueño de su esposo de llegar al poder. Luego del asesinato de Aquino, EE. UU. retiró el apoyo a Marcos y se lo brindó a la viuda de aquel. En 1986, el dictador Marcos y su esposa huyeron a Hawai. Corazón Aquino asumió la Presidencia y proclamó una Constitución provisional, que rige hasta estos días, con algunas modificaciones.

FENÓMENO METEOROLÓGICO CATASTRÓFICO:

Los ciclones más peligrosos y destructivos son los huracanes, llamados tifones en Asia. Se trata de grandes tormentas, que afectan a toda la troposfera, con bandas de nubes que provocan lluvias, organizadas en espiral. Los vientos en su parte baja se mueven en el sentido contrario de las agujas del reloj, mientras que en la parte alta se desplazan al revés, en sentido horario.

Los huracanes y tifones se forman a partir de perturbaciones preexistentes, en los trópicos, y siempre sobre los océanos. Evolucionan a partir de perturbaciones mucho más leves que aparecen cada tres o cuatro días sobre las aguas cercanas al ecuador, y necesitan que la temperatura a nivel de! mar sea elevada y que en los niveles altos de la atmósfera soplen vientos suaves, que no cambien bruscamente de velocidad ni dirección.

Cuando se dan estas condiciones, los meteorólogos saben que es posible que se produzca un ciclón tropical que podría evolucionar hasta un huracán.


Otros fenómenos que pueden ser muy destructivos son los tornados, ciclones pequeños y de vida muy corta (unas horas). En ellos se producen torbellinos de aire con vientos que pueden superar los 500 Km./h.

El tifón ‘Haiyan’, uno de los más fuertes de la historia de Filipinas, ha cambiado radicalmente el paisaje de la costa de algunas islas del archipiélago, donde se calcula que ha causado más de 10.000 muertes y ha dejado un paisaje de destrucción total y en completa desesperación a los afectados.

La ciudad de Tacloban, hasta la fecha la más afectada del país, en la provincia oriental de Leyte, fue de las primeras que golpeó ‘Haiyan’, denominado Yolanda en Filipinas, con ráfagas de viento de hasta 315 kilómetros por hora en la mañana del pasado viernes.

Antes de la llegada del tifón, varias ONG se desplazaron a la zona, puesto que los expertos preveían que Leyte sería muy afectada por el tifón, pero poco pudieron hacer para ayudar a los 218.000 habitantes de Tacloban durante las más de seis horas que la tormenta azotó la ciudad.

Además de enfrentarse a vientos sostenidos de más de 250 kilómetros por hora y una incesante tromba de agua, Tacloban tuvo que soportar una subida del nivel de la marea de más de dos metros.

Ver: Terremotos Históricos

Terremotos Mas Importantes de Argentina

Nombre de las Placas Tectonicas Ubicacion y Teoria Resumen

Nombre de las Placas Tectónicas ,Ubicación y Teoría

La deriva continental: Desde la prehistoria, la búsqueda de minerales metálicos proporcionó a los mineros un amplio conocimiento empírico de la estructura de la corteza terrestre: la forma en que diferentes rocas se disponen en estratos una encima de otra, la posibilidad de que las vetas minerales se abran paso a través de los estratos, y así sucesivamente.

Pero el fundador de la geología como ciencia fue James Hutton, (imagen) que trabajó en Escocia durante la segunda mitad del siglo XVIII. Sus ideas fueron desarrolladas en el siglo XIX por otros precursores, como los geólogos británicos Charles Lyell y Archibald Geikie.

Sus investigaciones entraron en conflicto con las creencias más establecidas sobre la edad de la Tierra y las fuerzas que la habían modelado. Según la opinión predominante, la historia geológica sólo podía interpretarse como una sucesión de catástrofes, entre ellas, el diluvio universal en tiempos de Noé.

Durante los años 60, las ideas científicas sobre la corteza terrestre cambiaron espectacularmente al confirmarse ciertos vagos conceptos que se habían desarrollado durante los tres últimos siglos.

Desde que en 1620 el filósofo inglés Francis Bacon advirtiera que África y América del Sur parecen dos piezas de un enorme rompecabezas, muchos trabajaron sobre esta idea. El más influyente fue el meteorólogo alemán Alfred Wegener, quien en 1915 propuso la teoría de la «deriva continental», según la cual todos los continentes estuvieron unidos en algún momento del pasado. La idea encontró dos partidarios, durante los años 20 y 30, en el geólogo británico Arthur Holmes y el geólogo sudafricano Alexander du Toit.

La aceptación comenzó en 1960, cuando el geofísico norteamericano Harry Hess comprobó que ciertos descubrimientos hechos por oceanógrafos durante la década anterior se ajustaban perfectamente a la idea de la deriva continental.

Entre estos hallazgos figuraba el hecho de que la cordillera que discurre por el centro del océano Atlántico forma parte de un sistema montañoso que puede observarse en todos los océanos, así como el hallazgo de que la corteza terrestre debajo de los océanos es notablemente delgada.

Hess sugirió que las cordilleras oceánicas estaban situadas sobre corrientes de convección ascendentes en el manto y que el material que afloraba, empujado por estas corrientes, se solidificaba en la superficie para formar nueva corteza; esta nueva corteza, a su vez, se desplazaba lateralmente con respecto a la línea de actividad. Estas ideas indicaban que la corteza en las proximidades de las cordilleras era muy reciente y que sería más antigua cuanto más lejos se encontrara del sistema montañoso. Hess denominó a este concepto «expansión del lecho oceánico».

En 1963, los geólogos británicos Fred J. Vine y Drummond H. Matthews descubrieron que la corteza oceánica a ambos lados de la cordillera atlántica estaba magnetizada en bandas paralelas, presentando cada banda una polaridad opuesta a la de sus vecinas. En 1966, se sabía ya que la polaridad del campo magnético de la Tierra se ha invertido varias veces en el pasado reciente, por lo que se dedujo que cada parte nueva de la corteza, en el momento de su formación, asumía la polaridad magnética reinante en su época.

En 1967, el geofísico norteamericano Hugo Benioff observó que los hipocentros de los terremotos en una región sísmica están localizados sobre un plano inclinado que desciende por el borde del continente. El sismólogo japonés Kiyoo Wadati realizó la misma observación, pero el fenómeno recibe solamente el nombre de Benioff.

La «zona de Benioff» representa una zona antigua de la corteza en proceso de sumergirse en el manto terrestre y ser destruida. En esos puntos, el material fundido de la corteza se abre paso hacia la superficie y forma volcanes.

Todos estos fenómenos se combinaron en un único concepto a fines de los años 60. La superficie de la Tierra consiste en varias placas, cada una de las cuales se crea continuamente a lo largo de una cordillera oceánica y se destruye continuamente en una zona de Benioff. El término «placa» fue acuñado por el geólogo norteamericano W. Jason Morgan y, en la actualidad, el concepto en su totalidad recibe el nombre de «tectónica de placas».

mapa tectonicas de placas

Sucesora de la teoría de la deriva continental, la teoría de la tectónica de placas, enunciada a principios de la década del ’70 por varios científicos, postula la existencia de placas litosféricas que se desplazan en forma más o menos independiente unas de otras sobre la blanda astenosfera. También explica la distribución global de los volcanes y de los terremotos.

La litosfera no es una capa continua y uniforme, sino que está dividida en grandes fragmentos o placas litosféricas. Estos fragmentos tienen cierta independencia unos de otros y se desplazan flotando sobre la astenosfera, en forma similar a como lo hacen los grandes bloques de hielo que flotan sobre el agua. Cada una de las placas está totalmente rodeada de otras, y sus formas y tamaños son variados e irregulares.

Existen ocho grandes placas litosféricas: la Pacífica, la Europa-africana, la Antártica, la Asiática, la Norteamericana, la Sudamericana, la Indoaustraliana y la de Nazca, y algunas placas menores, como la del Caribe, la Filipina, la de Cocos y la Arábiga.

1 Placa norteamericana2 Placa pacífica3 Placa de Nazca4 Placa sudamericana
5 Placa africana6 Placa arábiga7 Placa eurasiática8 Placa antártica
9 Placa indoaustraliana____ Convergente______ Divergente 
bordes tectonicos divergente

Bordes convergentes o destructivos. Dos placas con bordes comunes se acercan y colisionan. Una de las placas desciende y se Introduce debajo de la otra (subducción). Se produce este fenómeno cuando el borde de una placa oceánica, que es densa y delgada, choca contra una placa continental, menos densa y más gruesa: la primera se introduce por debajo de la segunda, se ablanda y se funde en el manto. Durante este proceso, se destruye litosfera oceánica. Esto ocurre, por ejemplo, con la placa de Nazca que choca y se introduce debajo de la placa Sudamericana.

bordes tectonicos divergente

Bordes divergentes o constructivos. Dos placas con bordes comunes se alejan o divergen y se forma entre ambas una brecha, a través de la cual asciende el material del magma. Éste se solidifica y se adhiere a los bordes de las placas oceánicas, proceso denominadoacreción, con lo cual se forma nueva litosfera oceánica. Esto ocurre, por ejemplo, con los bordes divergentes de la placa Sudamericana y la Africana.

bordes tectonicos frontera transformacion

Bordes transformantes. Los bordes comunes de dos placas se desplazan uno al lado del otro, lateralmente. En este caso, las placas no chocan ni se alejan: no se crea ni se destruye litosfera; sin embargo, este desplazamiento genera enormes fricciones que liberan energía en forma de terremotos. Uno de los ejemplos más conocidos de bordes transformantes es la falla de San Andrés, en California, producida por el desplazamiento lateral de la placa Pacífica y la Norteamericana.

 LOS BORDES DE PLACAS: BORDES DE LAS PLACAS
En las zonas en que están en contacto dos placas, es decir en sus bordes,,tienen lugar los principales fenómenos geológicos que modelan la superficie del globo. Según sean los movimientos relativos de dos placas en contacto, tenemos tres tipos de bordes.

Los bordes divergentes o constructivos corresponden a las dorsales oceánicas medias. En ellas se da un abundante vulcanísmo, que genera kilómetros cúbicos de basaltos, de composición muy uniforme. Y esta acumulación de basaltos, que presentan el aspecto de lavas almohadilladas por haberse vertido en el mar, forma la nueva corteza oceánica y hace que las dos placas adyacentes se muevan en sentidos opuestos. Al vulcanismo se le suma una actividad sísmica poco profunda.

Los bordes convergentes o destructivos corresponden a las zonas de subducción. Cuando dos placas que se desplazan en sentidos opuestos entran en contacto, una de las dos se hunde bajo la otra y va a destruirse en el manto.

La convergencia va acompañada de violentos fenómenos. Al hundirse, la placa inferior provoca rozamientos que se traducen en movimientos sísmicos. Provoca, también, la producción de magma, que alimenta volcanes de carácter frecuentemente explosivo.

Comprime y deforma fuertemente la placa superior, originando en ella un levantamiento que se convierte en cordillera. Si ambas placas son oceánicas, como en el Pacífico occidental, el levantamiento es un arco insular, erizado de múltiples volcanes, que emerge progresivamente.

Si una placa oceánica entra en contacto con otra continental, la placa oceánica se hunde por debajo de ésta y origina la formación de una imponente cordillera en el borde de la placa continental: es, por ejemplo, el caso de los Andes. Pero la prosecución del movimiento puede hacer que entren en contacto dos continentes y que, al colisionar ambas masas, el movimiento quede bloqueado: así ocurrió en el Himalaya.

Añadamos, por último, que en algunas zonas las placas en contacto se deslizan lateralmente una con respecto a otra. Son los bordes conservadores, así llamados porque en ellos no se da destrucción ni construcción. Dichos bordes quedan materializados por grandes fallas verticales, o fallas transformantes, a lo largo de las cuales se producen intensas fricciones que provocan violentos seísmos. La falla de San Andrés es un buen ejemplo.

La Explotacion del Petroleo Busqueda Cientifica y Técnologica

La Explotación del Petróleo
Búsqueda Científica y Técnológica

menu

TEMAS TRATADOS:

1-Petróleo y Carbón
2-Origen del Petróleo
3-El Biocombustible
4-Reserva Mundial de Petróleo
5-Economía y Poder
6-Los Recursos Naturales
7-La Energía Nuclear

UN POCO DE HISTORIA SOBRE EL PETRÓLEO: A pesar de que el hombre ya conocía el petróleo desde los albores de la historia, la industria petrolífera apenas si cuenta con cien años de vida, y aun cuando los hombres han utilizado el petróleo durante miles de años, sólo desde hace poco se ha pensado en aprovecharlo como fuente de energía.

En muchas partes de la Tierra, el petróleo manifiesta su presencia con afloramientos que surgen de las profundidades terrestres, o con manchas oleosas que aparecen sobre la superficie de los ríos.

En las antiguas civilizaciones de la cuenca del Mediterráneo, se excavaban pequeños pozos para recoger el petróleo que surgía de los afloramientos superficiales, y la pez y el asfalto que se extraían del negro líquido eran utilizados para proteger las quillas de madera de las naves y hacerlas más resistentes para la navegación. La pez también se utiliza como aglomerante para pavimentos y otras construcciones. El asfalto sirvió para pavimentar las calles y las terrazas de Babilonia. Los egipcios, los chinos y los indios de América, utilizaban el petróleo crudo con fines medicinales y como desinfectante.

La existencia de petróleo y gas era conocida desde tiempos de los romanos. En su Historia Natural, Plinio habla del «aceite siciliano», que se extraía de pequeños depósitos naturales y era utilizado por los griegos para la iluminación. Plinio habla también de los gases que servían para los fuegos sagrados en las fiestas en honor del dios Vulcano en la región de Emilia y describe una violenta erupción natural, acaecida en la provincia de Modena el año 91 a. de C. En un antiguo texto sobre los manantiales de aguas ricas en sales sódicas de Salsomaggiore, se hace mención de la existencia de gas y petróleo en aquella región, con manifestaciones y fenómenos registrados desde el año 589 d. de C.

El petróleo era utilizado como combustible en las lámparas de los egipcios y de otros pueblos antiguos, y ésta fue la aplicación que se le dio durante muchos siglos.

A mediados del siglo pasado, la fuente principal de luz eran las velas de sebo y las lámparas alimentadas con aceite de ballena. En aquel tiempo se producía con el petróleo crudo que emergía del suelo y era destilado en pequeñas refinerías, una pequeña cantidad de petróleo para la iluminación. La creciente demanda por parte del público, obligó a la busca del precioso líquido, pero hasta el año 1850 no se empezó a pensar en la utilidad de perforar pozos para extraerlo.

No puede señalarse con precisión quién tuvo por vez primera la idea de perforar un pozo para extraer petróleo. Muchos la atribuyen a un tal Georges H. Bissell, de Nueva York, quien adquirió un terreno en el que parecían existir, yacimientos petrolíferos, a la «Oil Creek» de Pennsylvania, y se dedicó a realizar investigaciones. Bissell fue uno de los fundadores de la «Petroleum Society» de Pennsylvania, que más tarde fue bautizada con el nombre de «Séneca Oil Company».

Esta sociedad encargó a un tal Edwin L. Drake la excavación del primer pozo de petróleo. El 27 de agosto de 1859, después de dos meses de arduo trabajo, Drake encontró petróleo a unos 21 metros de profundidad, y del pozo surgieron tres metros cúbicos de petróleo por día.

El petróleo se reveló desde un principio como una notable fuente de riqueza, y a este primer experimento siguieron otros. Donde quiera que se descubriese petróleo, se manifestaba enseguida una gran actividad y confusión. Surgían nuevas ciudades como por encanto y la gente se disputaba a mano armada los terrenos petrolíferos.

De las experiencias prácticas cotidianas surgieron poco a poco las bases de los estudios científicos para la busca del petróleo. La composición y características físicas de la Tierra habían sido objeto de la curiosidad humana desde los tiempos más lejanos y la geología había ido evolucionando poco a poco. Sólo a principios del siglo actual, la experiencia de los investigadores del petróleo y la ciencia de los geólogos se unieron para dar vida a la «geología del petróleo».

Entre 1965 y 1970 el petróleo había reemplazado al carbón como principal producto energético. Europa occidental y el Japón dependían cada vez más de los suministros petrolíferos del Cercano Oriente. Incluso los EE. UU., antaño el principal país exportador de petróleo, se veían obligados a importar desde finales de los años cincuenta debido a su elevada demanda energética. La creciente dependencia de Occidente de las importaciones petrolíferas incrementaba el poder de los países exportadores. Pronto iban a utilizarlo.

LA INDUSTRIA PETROQUÍMICA
El petróleo no es hoy solamente el principal producto energético, sino la materia prima más importante para la industria química, pues del petróleo se obtiene el 90 por ciento de las materias con que dicha industria elabora plásticos, abonos artificiales, caucho sintético, fibras químicas, detergentes, insecticidas y medicinas.

Desde que en 1868 el americano John W. Wyatt inventara el celuloide, indignado por el elevado precio de las bolas de billar de marfil, las cifras de producción de las materias sintéticas han aumentado ininterrumpidamente. Esta revolución técnica apenas tiene paralelo en la historia de la humanidad.

El desarrollo de las técnicas petroquímicas parte del hecho de que las moléculas de hidrocarburos se unen entre sí formando largas cadenas elásticas. Mediante el aprovechamiento de esta reacción química (polimerización) se han creado cada vez más sustancias orgánicas a partir de los hidrocarburos obtenidos del carbón, del gas natural y hoy principalmente del petróleo, sustancias que no solamente resultan más baratas que las inorgánicas (sobre todo los metales), sino que también reúnen todas las propiedades requeridas. Especial importancia tienen los termo-plásticos, materiales moldeables mediante el calor.

Los termoplásticos (dos tercios de la producción mundial de plásticos) han experimentado un desarrollo espectacular, y apenas hay campo en el que no encuentren aplicación. Entre otros muchos productos, el cloruro de polivinilo se utiliza para fabricar revestimientos de suelos, cuero artificial, esponjas sintéticas, discos y juguetes infantiles; el poliestireno, para vajillas, muebles, material de embalaje y de aislamiento; y las poliolefinas (polietileno y polipropileno), para artículos de uso doméstico, piezas de aparatos y máquinas, tubos y hojas. En pocas palabras, no es posible ya concebir un mundo sin plásticos. También desempeñan un importante papel en la fabricación de prótesis, dientes artificiales o válvulas cardíacas. Los aspectos negativos residen principalmente en la difícil eliminación de los residuos.

La industria de los plásticos consume anualmente unos 15 millones de toneladas de petróleo, es decir, sólo un 4 por ciento de la producción de crudos.

La energía alternativa: Después de la segunda crisis del petróleo de 1979, se emprendieron esfuerzos para encontrar fuentes alternativas de energía en los países avanzados. Pese a los considerables ahorros en el consumo de petróleo en los años entre 1979 y 1982, y el descenso relativo de los precios, el ímpetu siguió hasta finales de la década de los 80. Para complementar las tradicionales fuentes hidráulicas, de combustibles minerales, turba, madera y de energía nuclear, las nuevas alternativas incluían la conversión directa de la energía solar, la biomasa, la energía geotermal y la extracción de calor de los océanos, y el uso de energía de las mareas, así como el regreso a la tradicional energía eólica.

Muchas de éstas implicaban enormes programas de capital. Por tanto, la investigación y el desarrollo de las energías renovables habían sido emprendidos por gobiernos o con el apoyo gubernamental, por la friolera de 7.000 millones de dólares estadounidenses entre los 21 países miembros del Organismo Internacional de la Energía entre 1977 y 1985 inclusive. Los gobiernos también facilitaron subsidios, concesiones tributarias, préstamos baratos y otros incentivos.

La energía solar directa, por ejemplo la procedente del calentamiento del agua y del espacio, es ahora competitiva en cuanto al precio en muchos países y su uso se está ampliando. La energía eólica ha demostrado ser viable, aunque sólo para unidades pequeñas. La biomasa, en dos formas (los desperdicios o las cosechas especialmente cultivadas) se utiliza de modo creciente ya sea a través de la combustión o la conversión en combustibles líquidos o gaseosos.

En esta conversión se han utilizado el azúcar y el maíz. El excedente de azúcar de la CEE podría proporcionar cerca del 2 por ciento de las necesidades de petróleo de los países y existe un amplio potencial en otros excedentes agrícolas, así como en las cosechas especialmente plantadas.

Entre los programas a gran escala se encuentran los proyectos de las mareas en Gran Bretaña y Francia. Para sacar la energía de los océanos o de los estratos más profundos de la Tierra se necesitará mucha investigación costosa, pero finalmente ello puede resultar competitivo.

LA BÚSQUEDA CIENTÍFICA DEL PETRÓLEO. Algunas veces los estratos que contienen petróleo están cerca de la superficie terrestre, pero generalmente los depósitos se encuentran a profundidades de un kilómetro o más. Los primeros pozos fueron poco profundos y eran perforados casi al azar, guiándose los buscadores por las manifestaciones espontáneas de petróleo que aparecían en la superficie.

Hoy la búsqueda del petróleo depende de muy cuidadosos estudios científicos, realizados por geólogos, geofísicos y paleontólogos. No es posible asegurar con toda exactitud si existe petróleo en una región, pero los geólogos, estudiando los tipos de rocas y la forma en que se encuentran dispuestos los estratos pueden señalar si hay o no posibilidad de que existan depósitos; igualmente los paleontólogos, estudiando los fósiles extraídos en las perforaciones, pueden señalar si las rocas subyacentes pertenecen a formaciones propensas a contener petróleo.

Los geólogos buscadores de petróleo emplean distintos medios para conocer la disposición de los estratos de las rocas a grandes profundidades. Uno de estos métodos es el empleo del sismógrafo, o sea, el mismo instrumento que se emplea para registrar los terremotos. El sismógrafo es tan sensible que puede registrar los pasos de una hormiga. Los geólogos perforan un pequeño pozo y depositan una carga explosiva.

Cuando se produce la explosión, las ondas viajan hacia el interior de la litosfera, en la forma en que sugiere el diagrama. Las ondas son reflejadas con mayor violencia por las rocas más duras, y regresan a la superficie en un tiempo más breve desde los estratos menos profundos que desde los situados a mayor profundidad. Igualmente las ondas varían de acuerdo con la naturaleza e inclinación de los estratos. Todas estas variaciones las registra el sismógrafo por medio de los teléfonos que aparecen colocados sobre la superficie.

El sismógrafo revela el tiempo transcurrido entre la explosión y el retorno del eco en los distintos lugares donde se instalaron los teléfonos. Estos datos, que son tomados en distintas áreas de la región estudiada, sirven a los geólogos para determinar si a grandes profundidades existen domos, anticlinales y trampas en las cuales pueda haber petróleo depositado. Si el informe es favorable, indica la posibilidad de que haya petróleo, pero no la seguridad; a veces son perforados numerosos pozos en una región, a enorme costo, sin resultada positivo alguno. (Cortesía de la Esso Standard Oil Company.)

Lo primero que hay que hacer cuando se ha descubierto la existencia de un yacimiento de petróleo es practicar un taladro a través del cual pueda aquél salir.

El taladro se hace primeramente con unos instrumentos semejantes a escoplos y se continua y ahonda con perforadores muy potentes. Conforme el taladro va ahondando se ajustan a él, tubos de hierro que se van introduciendo desde la parte superior conforme avanza el trabajo se introducen tubos de diámetro menor que se ajustan en el interior de los primeros y se van emplean lo perforadores de menor tamaño.

El espacio que quede entre tubo y tubo debe rellenarse bien y hay que tener gran cuidado de mantener las paredes del taladro o pozo bien sólidas y libres de agua. Cuando el petróleo se extrae mezclado con cantidad considerable de agua, su valor disminuye mucho, porque el aceite y el agua han de separarse y el coste de producción aumenta bastante.

Por medio de un cable de cinco a siete centímetros de diámetro se hace descender una serie de herramientas dentro del pozo. Estas herramientas están atornilladas unas a otras muy fuertemente para que ningún golpe en el interior del pozo pueda separarlas. Cuando estas herramientas, por cualquier circunstancia, se pierden en el fondo del taladro no hay más remedio que procurar extraerlas Se han inventado ganchos y arpones especiales con este objeto; pero frecuentemente se tarda mucho tiempo en encontrar los instrumentos perdidos. Algunas veces hay que practicar un detenido reconocimiento del fondo y de los lados del pozo para descubrirlas.

DISTRIBUCIÓN DEL PETRÓLEO EN EL MUNDO
El petróleo se encuentra en el subsuelo, a grandes profundidades, y proviene de restos animales y vegetales que hace millones de años fueron aprisionados entre las rocas por movimientos telúricos y que, con el correr de los milenios, se transformaron en el tan codiciado «oro negro».

Las mayores cantidades de petróleo se encuentran en los sedimentos rocosos de la era terciaria (que data de unos 200 millones de años). Las formaciones geológicas más antiguas, destrozadas y aplastadas por ios aluviones, se vieron despojadas de todo vestigio de restos orgánicos, y el petróleo que contenían terminó por perderse. Ello explica su ausencia en vastas zonas del Canadá, Brasil, Groenlandia, Escandinavia y en gran parte de África y Australia, constituidas por sedimentos muy antiguos.

La primacía en la producción mundial de petróleo le corresponde a los Estados Unidos, donde se extrae casi la mitad de toda la producción mundial; el segundo lugar lo ocupa Venezuela, en cuyo subsuelo existen reservas inmensas; el tercero Rusia y el cuarto Kuwait, un pequeño estado asiático.

Entre las naciones sudamericanas, la Argentina explota con un ritmo creciente sus riquezas petrolíferas existentes en Comodoro Rivadavia, Santa Cruz, Tierra del Fuego, Neuquén (Plaza Huincul), Salta y Mendoza. La industria de refinación cuenta con grandes y poderosas instalaciones en La Plata, Campana y San Lorenzo.

LA PERFORACIÓN DE LOS POZOS:
El petróleo solamente puede ser hallado por medio de un procedimiento bastante costoso: la perforación de pozos. En algunos yacimientos, el petróleo se encuentra relativamente cerca de la superficie; en otros, puede hallarse a bastante profundidad. A medida que la perforación alcanza mayor profundidad, el coste aumenta. La perforación se controla a medida que avanza; pero en tanto el taladro no penetre en una capa petrolífera, nada se sabe. Fuera de los campos petrolíferos muy extensos, solamente un pozo entre siete produce petróleo en cantidad comercial.

La técnica de la perforación de los pozos ha ido evolucionando durante el transcurso de los tiempos. Los primeros pozos petrolíferos eran perforados como si se tratara de pozos corrientes de agua, levantando y dejando caer alternativamente un pesado martillo, que fracturaba el terreno. Antes de comenzar su pozo, Drake levantó una torre de madera, en cuya cúspide colocó una polea que funcionaba por medio de una cuerda.

Esta torre, que en inglés se denomina derrick, se utilizaba para introducir y extraer los martillos de perforación del pozo. La verdadera perforación se realizaba mediante una especie de martillo bastante pesado que era alzado y bajado alternativamente por medio de una palanca formada por una gran viga de madera fijada a un perno.

Actualmente la perforación se realiza por medio de un taladro rotativo, colocado en el extremo de una larga transmisión de acero, compuesta por varias secciones o ejes de perforación que tienen una longitud de 27 a 36 metros, empalmándose uno tras otro a medida que la perforación se hace más profunda.

La extremidad superior de los ejes de perforación está adaptada a un eje cuadrado de acero, que a su vez se hace girar por medio de la rotary, para transmitir el movimiento a los citados ejes de perforación inferiores y a la broca, que gira en el fondo del pozo. A través de los ejes, se bombea un fluido especial para remover los restos producidos por la broca.

Estos residuos, una vez elevados a la superficie por el mismo barro que sale al exterior, son recogidos para obtener informaciones geológicas. El barro sirve también como refrigerante de la broca, reviste las paredes del pozo y con su peso impide posibles escapes de gas.

Cuando el pozo alcanza la capa productiva, se retiran los ejes y la cabeza de perforación del agujero, mientras el peso del barro impide que el petróleo irrumpa en la superficie.

En el mismo terreno se cimenta la columna de tubos de revestimiento y se introduce en el agujero un tubo de pequeño diámetro a través del cual surgirá el petróleo.

En la cabeza del tubo se fija, por último, un aparato llamado árbol de Navidad, compuesto por una serie de válvulas que sirven para distribuir el petróleo a las diferentes tuberías que lo conducen a los depósitos. Una vez han sido colocados el tubo y el «árbol de Navidad» en su sitio, se procede, por lo general, a desmontar el derrick.

EL REFINADO Y SUS PROCEDIMIENTOS

Tal como se encuentra en el subsuelo, el petróleo es sencillamente una materia bruta que, antes de utilizarse, ha de ser sometida a varios procedimientos. Estos procedimientos se designan con el nombre genérico de refinado y sirven para transformar el petróleo crudo en un centenar de productos diferentes.

Este apreciado líquido está constituido por una mezcla de diferentes compuestos cuyas moléculas están formadas por carbono e hidrógeno. Por esta razón a estos componentes del petróleo se les denomina hidrocarburos.
Existen diversas clases de petróleo crudo con características físicas variadísimas: algunas veces es pesado y denso; otras, ligero y claro como la gasolina. Hay tipos de petróleo negro, marrón, verde y amarillo.
La primera operación a realizar para el refinado del petróleo crudo, es la destilación, que sirve para separar las moléculas que lo componen en varias categorías, según su forma y peso.

El petróleo crudo, una vez calentado en el horno tubular, pasa a la torre de fraccionamiento, donde se transforma en vapores.

Dado que la temperatura decrece del fondo a la parte alta de la torre, los diversos vapores se condensan a diferentes alturas, haciendo así posible la separación del petróleo crudo en sus diversos componentes. Mientras los aceites combustibles se condensan en los receptáculos inferiores, el petróleo de calefacción e iluminación se condensa en lo alto. Los vapores de gasolina se sitúan en la cabeza de la torre y se licuan en un condensador.

cuadro de tipos de energias

Cada componente sale de la torre a un nivel diferente y es conducido a otros aparatos para ser sometido a nuevos procesos de refinamiento que lo preparan para su ulterior uso.

La necesidad de obtener de un solo producto crudo una gran cantidad de productos subsidiarios más apreciados (especialmente la gasolina), ha obligado a los industriales a desarrollar diversos procedimientos: el cracking, que permite obtener gasolina partiendo de fracciones más pesadas; la hidrogenación, con la que se obtiene por otros medios un resultado final análogo al cracking, y la polimerización, que permite obtener gasolina partiendo de los gases o de hidrocarburos ligeros.

Recursos Forestales La Silvicultura El Usos de Los Bosques

Recursos Forestales La Silvicultura El Usos de Los Bosques

Ecología y EcosistemasModos de Vida Biomas del Mundo Biodiversidad
Mentiras Ecológicas –  Extinción de Animales Recursos Energéticos
Desastres Naturales –  Ecología Matemática – Ecología Social

Los árboles representan la forma más grande y más desarrollada de la flora de nuestro planeta. Los árboles crecen juntos en tractos de arbolado continuos y densos llamados bosques. De todos los ecosistemas del planeta, los bosques son el más extenso, complejo y biológicamente productivo. El hombre los ha utilizado desde los tiempos prehistóricos, pero en los últimos años su sobreexplotación ha llevado a un serio problema de deforestación.

Hace 2.000 años, los bosques se extendían probablemente por una superficie de más de 60 millones de kilómetros cuadrados, pero la tala continua de árboles ha reducido esta cifra a una cantidad estimada en 28 millones de km2, dos quintas partes de la superficie continental de la Tierra, con otra quinta parte —13 millones de km²— de bosque abierto.

Un bosque es una gran comunidad formadas por plantas, animales y otros seres vivos que tienen un importante valor ecológico. Y además cumple un papel trascendental en la liberación de oxigeno al medio

La importancia de los bosques

Los bosques intervienen en procesos fundamentales de la biósfera:

Conservan y enriquecen el suelo. En los lugares donde hay muchas plantas, las raíces de estas sujetan los materiales que forman el suelo. Este queda así protegido de las lluvias y del viento.

Además, las hojas que caen de los árboles forman el humus, una capa  de materia en descomposición que sirve de fertilizante natural para las plantas.

Liberan oxígeno a la atmósfera. En la fotosíntesis las plantas toman dióxido de carbono del aire y liberando oxígeno.

En cambio, cuando respiran toman oxígeno del aire y liberan dióxido de carbono. Pero las plantas liberan más oxígeno del que toman. Por eso se dice que las plantas contribuyen a enriquecer el aire.

Albergan la mayor proporción de la biodiversidad del planeta. En los bosques tropicales viven más del 70% de las especies de plantas y animales del mundo.

Los dos tipos principales de bosques

Los árboles se pueden dividir en dos tipos principales: árboles de hoja perenne, o perennifolios, todos los cuales son coniferas gimnospermas  y árboles de hoja caduca, o caducifolios, todos los cuales son angiospermas de hoja ancha.

Los árboles perennifolios se encuentran principalmente en las latitudes altas más frías, mientras que los árboles caducifolios ocupan las latitudes medias y bajas. Sin embargo, esta distribución natural cambia debido a que el hombre tala los bosques naturales y los replanta con especies de alto valor comercial.

La utilidad de los árboles:

Sólo utilizamos como alimento un 4% de la materia contenida en los bosques (principalmente semillas y frutas), el tejido leñoso restante es incomestible. Pero precisamente el tejido duro presenta una utilidad particular para la humanidad. Junto con la talla del sílex, la madera fue la primera materia utilizada para fabricar herramientas por el hombre prehistórico.

Hasta el siglo XVIII —cuando la fabricación del ladrillo se difundió ampliamente—, la madera fue el principal material de construcción de viviendas. La madera también se usó en gran medida como combustible; y se emplea aún ampliamente como tal, sobre todo en países del Tercer Mundo.

La Revolución Industrial aumentó la demanda de madera para nuevos usos como puntales de minas y durmientes de ferrocarriles. La deforestación se difundió a través de Europa, de tal manera que lo que antes era un 80% de superficie boscosa se redujo a poco más del 30%.

Actualmente, la madera de los árboles de hoja perenne se utiliza para hacer tablas de parquet, soportes de tejados, cajas de embalaje, muebles baratos y, cada vez más, para convertirla en pasta de celulosa y papel. Las maderas de los árboles de hoja caduca, al ser más caras y más susceptibles de ser trabajadas, se emplean principalmente en ebanistería.

La Silvicultura

La silvicultura se ocupa de aumentar la producción de masa forestal, utilizando métodos para favorecer que la vegetación se regenere, se estabilicen los suelos y se disminuya el riesgo de incendios y plagas.

Las actuaciones que se pueden realizar son las siguientes:

La repoblación forestal se refiere a la plantación en terreno que en los últimos años no tenían árboles.

Estas plantaciones presentan grandes ventajas productivas con respecto a los bosques naturales, como:

— Rapidez de crecimiento.

— Mayor posibilidad de planificar tareas.

— Homogeneidad de la materia prima.

—Alta concentración de volumen por unidad de superficie

— Pocos problemas medioambientales.

  • La reforestación es la plantación en un terreno con especies distintas a las que habitan la zona de forma naturales
  • La regeneración artificial es la plantación en un terreno forestal con la misma especie que lo habita.
  • La restauración forestal es un proceso planificado que ayuda a recobrar la integridad ecológica y mejora la calidad de vida de los humanos en los lugares deforestados o degradados.

En un vivero de especies autóctonas, la producción se destina a la recuperación de los bosques.

Desde la época de los romanos, en la península Ibérica se explotaban los bosques para la madera de las embarcaciones. Después, en los siglos XII y XIII se desarrolló esta industria en los astilleros cantábricos, y en el siglo XVI se alcanzó un afta grado de deforestación por las construcciones navales en España y Portugal.

La silvicultura descontrolada

A finales de la primera guerra mundial, el advenimiento de la navegación comercial barata permitió transportar fácilmente la madera desde los trópicos y también desde los grandes bosques perennifolios de Siberia, Canadá y Escandinavia. Los bosques se veían como reservas inagotables de madera y, si la velocidad de la tala de los árboles no superara la velocidad de crecimiento, los bosques serían efectivamente fuentes renovables.

Al llegar la década de los 50, la mayoría de los países europeos tenían ya déficits en algunas o en todas las maderas originarias del lugar, y entonces las selvas vírgenes del mundo fueron incorporadas a la producción en gran escala. Esto fue particularmente cierto en el caso de los bosques tropicales.

En la búsqueda de especies como la caoba, la teca, el pino, el abeto, el palo de rosa y el sándalo, se han destrozado áreas inmensas para conseguir una pequeña cantidad de árboles valiosos. La proporción entre una especie de árbol comercialmente útil y una especie de árbol comercialmente inútil es a menudo de uno a cien. Los intentos de repoblar estas áreas taladas han sido variables.

En los peores casos se permite la regeneración lo mejor posible, pero con el agravante de que los árboles comercialmente significativos han sido eliminados y, por lo tanto, no hay fuentes de semillas que permitan que una secuencia completa de especies empiece la sucesión forestal de nuevo. Los suelos, particularmente los suelos tropicales, han sido severamente erosionados por la deforestación.

En los trópicos es donde la ausencia de una política coordinada de silvicultura ha tenido peores consecuencias, con una tala anual de 120.000 km2. La explotación forestal comercial a menudo ha ido seguida de la quema de los desperdicios del bosque, para estimular el crecimiento de hierbas —en lugar de árboles— con el objeto de introducir ganado. Allí donde los bosques tropicales se han talado, el suelo es normalmente demasiado fino como para soportar la agricultura durante mucho tiempo, e incluso la hierba para pasturas sólo puede subsistir durante unos tres años.

La silvicultura controlada

Sólo en una pequeña proporción de los bosques del mundo existen planes de control forestal. La Organización para la Agricultura y la Alimentación de las Naciones Unidas (FAO) ha estimado que sólo existen planes en el 23% de los bosques. Los planes de control son necesarios para coordinar la repoblación, el desbroce, la protección contra las enfermedades, la fertilización y, finalmente, la recogida y la venta de la madera.

Como los árboles tardan hasta cien años en alcanzar el tamaño adecuado para las serrerías, la inversión privada en la silvicultura debe ser estimulada, normalmente a través de ayudas gubernamentales, para cubrir los gastos de establecimiento del bosque. A veces se conceden también bonificaciones fiscales sobre las ganancias obtenidas por la venta de madera.

Como alternativa, el gobierno de un país puede establecer su propio departamento de silvicultura, para que se responsabilice eficazmente del control de los recursos forestales. En algunos países, el control forestal se interpreta en un sentido mucho más amplio y abarca el control de la naturaleza, el control de la divisoria de aguas, la prevención de la erosión del suelo y la provisión de áreas recreativas y de descanso.

Los bosques controlados se diferencian en casi todas sus facetas de los bosques naturales. Se plantan masivamente una o dos especies en bloques que forman bosques de la misma edad, más fáciles de controlar que el bosque natural, altamente variable. En las latitudes templadas, predominan en la actualidad las piceas, los pinos, los abetos y los eucaliptos, con especies seleccionadas por la velocidad y la cantidad de producción de madera. Los árboles se plantan muy cerca el uno del otro para asegurar un crecimiento recto, lo cual es necesario para el manejo y procesamiento mecanizado de la madera.

Las especies plantadas en un área determinada, a menudo son coniferas exóticas, es decir que no son especies originarias. Se recurre a las especies exóticas porque presentan con frecuencia una mayor velocidad de crecimiento que las especies originarias. Producen madera de árboles perennifolios, muy solicitada para su conversión en pasta de papel. Sin embargo, al no ser originarias, las plantaciones de este tipo no pueden sustentar a las aves, insectos y mamíferos nativos, que estaban adaptados a la vegetación del área antes de la repoblación forestal. De esta forma, incluso la silvicultura controlada puede destruir ecosistemas delicados.

La deforestación en Europa

La deforestación consiste en la conversión del bosque para otras actividades humanas, como la agricultura y la ganadería, la industria y el uso intensivo para pasta de papel y madera. En Europa este proceso comenzó de forma significativa a partir de mediados del siglo XVI. Los bosques se transformaron poco a poco en cultivos y pastizales.

Hoy día, estos bosques primarios se encuentran reducidos a solo el 2% del territorio y los cosques actuales tienen muy poca similitud con aquellos porque se ha reducido considerablemente la biodiversidad. Sin embargo, en algunos países, como Finlandia y Suecia, la industria forestal es la base de su economía y más del 60% de su territorio es bosque.

La deforestación de los bosques tropicales

La deforestación de los bosques tropicales produce un fuerte impacto ambiental, ya que no suelen ser terneros adecuados para la agricultura y la ganadería a largo plazo y se degradan rápidamente.

Antiguamente los clareos de los bosques tropicales e realizaban para construir casas y campos de cultivo equellos. Este hecho no perturbaba el equilibrio ecológico por tanto, no era preocupante. Pero con la llegada le los europeos, hace unos 500 años, al Nuevo Mundo, os bosques fueron esquilmándose, y se convirtieron n muchos casos en zonas para usos agrícolas y ganaderos. Hoy día, la deforestación afecta a áreas mucho más amplias se realiza con una fuerte intensidad.

La longevidad de las plantas

Hay plantas, como las hierbas, que suelen vivir solo un año, pero los árboles son mucho más longevos: la mayoría viven varios siglos y algunos incluso superan los mil años. Se estima que la mayor secuoya de California, la llamada «General Sherman», tiene más de 3.500 años.

Hay pocos métodos para conocer la edad de los animales o plantas, sobre todo si son muy longevos.

Pero un método para saber la edad de un árbol consiste en contar los anillos de su tronco. En un tronco cortado se pueden ver los anillos de crecimiento. Cada anillo corresponde a un año.

La tala abusiva en bosques tropicales. En Brasil, Colombia, México, Zaire, Nigeria, India, Malasia, Indonesia y Tailandia se produce el 76% le la deforestación mundial.

Los bosques contribuyen al mantenimiento de la biodiversidad, al mantenimiento del clima local y global y al desarrollo económico y social de los se humanos.

Los bosques de Nueva Zelanda, reliquias del pasado

La cobertura vegetal de Nueva Zelanda, a pesar de la presión humana que ha destruido grandes superficies mediante incendios, roturaciones y talas, conserva aún zonas de bosque autóctono, que son verdaderas reliquias del pasado.

En el noroeste, la región más cálida, hay selva subtropical, donde la vegetación es exuberante y existen eóormes masas de árboles de distintas especies. Entre ellos destacan gigantescos ejemplares de kaurfes (género Agathis). En el sudoeste del país, donde las lluvias son más fuertes, hay un bosque de hayas antárticas (Nothofagus), y en el centro de las islas, un bosque de la conífera Podocarpus con abundante matorral.

Nueva Zelanda posee un antiguo interés por la protección de su medio natural (su primer parque nacional se creó en el año 1892) y la UNESCO ha declarado Patrimonio de la Humanidad más del 5% de su territorio.

La dehesa

La dehesa es una forma de explotación de los recursos por el ser humano a partir del bosque mediterráneo. Se utiliza un sistema basado en el monte, el cultivo y el pasto. Las dehesas cubren actualmente casi dos millones de hectáreas en el suroeste de España.

El monte alberga especies como la encina, el enebro y la coscoja, y en lugares templados se puede encontrar el algarrobo, el alcornoque y el fresno. Todos estos árboles proporcionan estabilidad a este sistema, y además es una gran fuente de recursos alimentarios para el ganado (cerdos, cabras, vacas y caballos) y para animales silvestres como liebres, conejos o ciervos. Se suelen alimentar de bellotas, pastos y brotes tiernos o ramón. Otro recurso importante es la producción de leña, que se destina principalmente a la transformación en catán vegetal.

Los cultivos son de secano, principalmente cereales (trigo y cebada) y girasol. Las parcelas no se cultivan anualmente, sino como mínimo cada dos años.

Los pastizales son los recursos más importantes en las dehesas. Su productividad varía mucho y depende de las condiciones metereológicas. Se establecen en los lugares donde se abandona el cultivo. Así se recupera el suelo y se abona gracias a los animales que allí pastan.

Un bosque de coníferas controlado:

Ciclo de vida típico en un país desarrollado

Semana 0: Se toman las células de un árbol padre ideal para el clonaje. Las «células hijas» se cultivan en un laboratorio y a continuación se transfieren a una «cámara de crecimiento» para lograr un crecimiento rápido.

Semana 24: Los brotes se transfieren al invernadero para su «endurecimiento».

18 meses: Comienza en el bosque la plantación a mano. El lugar ha sido arado y los árboles jóvenes se plantan en los surcos. Es normal una densidad de plantación de 2S0.000 árboles/km².

2-5 años: Desbroce periódico de la vegetación competitiva hasta que los árboles son lo suficientemente altos (2 m) para eliminar a sus competidores con su propia sombra.

10-20 años: Tala gradual de los árboles más débiles para conseguir una densidad media de 150.000 árboles/km2. Rociado aéreo periódico de pesticidas para el control de las enfermedades. En suelos inférttles también se puede llevar a cabo el rociado aéreo con fertilizantes.

30 años en adelante: Obtención de la primera madera vendible destinada a las fábricas de pasta. El tamaño mínimo para el aserrado es aproximadamente de 80 mm de diámetro y I m de longitud. Los pesticidas se aplican cuando hacen falta. Continúa la tala mientras el bosque madura hasta que aproximadamente a los 60 años sólo quedan 30.000 árboles/km2. Sólo se vende la madera de los troncos rectos; a la restante se le permite descomponerse en el suelo del bosque.

60 años en adelante: El bosque se puede «talar», es decir, se eliminan todos los árboles que siguen allí y se ara de nuevo la tierra a fin de prepararla para la siguiente plantación de árboles. Como alternativa, los árboles maduros se pueden mezclar con árboles que toleran la sombra para crear un bosque de apariencia más natural.

Fuente Consultada:
Enciclopedia del Estudiante Tomo14 Ecología – Wikipedia – Encarta –
Enciclopedia Temática Guinnes – La Nación – La Sivicultura