Vida de Michael Faraday

Brillantes Científicos, Políticos y Músicos del Siglo XX

Brillantes Científicos, Políticos y Músicos del Siglo XX

Sigmund Freud

Sigmund Freud
1856-1939
Médico neurólogo austríaco, fundador del psicoanálisis. Tres años después de su nacimiento su familia se instala en Viena. Estudio fisiología en el Hospital General de Viena, donde alcanzó el título de médico. Se traslada a París y por un año estudia al lado de Charcot. Junto a este investigador francés especializado en las enfermedades del sistema nervioso, aprende la técnica de la hipnosis en el tratamiento de pacientes histéricos.

A partir de esa experiencia y del tratamiento de un caso de histeria mediante la hipnosis, Freud busca la forma de curar la histeria y los trastornos de la personalidad.

Sin embargo, sustituye la hipnosis por la asociación libre de ideas por parte del paciente. Es éste el cimiento terapéutico del psicoanálisis.

Dicha terapia se sustenta en la idea de que los desórdenes de la personalidad, las neurosis y las psicosis tienen su origen en represiones localizables mediante la reconstrucción de la biografía psíquica del paciente.

Para Freud, las represiones que marcan las perturbaciones mentales se ubican en la infancia y tienen carácter sexual.

Para su curación es necesario que el paciente las descubra por sí mismo, mediante la asociación libre conducida por el psicoanalista. La ruta del análisis la establecen dos formas distintas de estructurar la teoría de la personalidad.

La primera distingue entre inconsciente, preconsciente y consciente.

La segunda estructura un modelo de la personalidad integrado por el ello, el yo y el superyo. Quizás, entre las numerosas obras de Freud, la fundamental es La interpretación de los sueños, donde establece de manera práctica el funcionamiento del método.

También se destaca Tótem y tabú, donde el psicoanalista incursiona en la interpretación etnológica de origen de la cultura. Algunos observadores ubican la insuficiencia del psicoanálisis original de Freud en el hecho de que su teoría fue hecha en el marco sociohistóri-co de la Viena puritana del siglo XIX.

//historiaybiografias.com/linea_divisoria3.jpg

Max Planck Creador Teoría de los Cuantos

Max Karl Planck
1858-1947
Físico alemán, criado en Munich. Su familia se destaca por un acendrado interés por la cultura. En principio se sintió atraído por la música y estuvo a punto de seguir ese camino.

Sin embargo, la intervención de sus profesores, quienes habían advertido sus capacidades matemáticas, fue suficiente para persuadirlo hacia los estudios en física teórica. Pronto alcanza la fama por sus importantes trabajos de investigación.

Pero su contribución fundamental parte de la incapacidad del modelo teórico tradicional de la física para explicar la irregular distribución de la energía entre las longitudes de onda de la radiación. Planck sustituye el presupuesto de la explicación tradicional, que requiere de complejas fórmulas y propone que la radiación se compone de pequeñas partículas que denomina cuantos.

Planck afirma que la energía emitida es proporcional a la longitud de onda de la radiación, relación en la cual actúa una cifra conocida como constante de Planck.

El descubrimiento que hace Planck, mediante desarrollos como su constante, permite hallar relaciones científicas entre el comportamiento de los átomos y otros fenómenos de la naturaleza,.aparentemente lejanos. Planck es conocido como un hombre muy sensible.

Se opone firmemente al régimen de Hitler, protege a sus colegas de origen judío y debe soportar la ejecución de uno de sus hijos por participar en un atentado para asesinar al dictador. Trabaja como profesor de física en la Universidad de Munich, Kiel y Berlín. Recibe el Premio Nobel de física en el año 1918.

//historiaybiografias.com/linea_divisoria3.jpg

Gandhi lider espiritual de la india

Gandhi
1869-1948
Político y pensador hindú. Su nombre completo es Mohandas Karamchand Gandhi, conocido como Mahatma. Graduado en derecho en la Universidad de Oxford en 1891, ejerce en Bombay durante dos años. En Sudáfrica se relaciona con grupos de defensa de los hindúes emigrados que luchan contra los boers.

Es influido por la doctrina jainista de la «no-violencia» y por el pacifismo de León Tolstoi.

Funda el semanario Indian Opinión (1904), que resume su ideología de la fidelidad absoluta a los ideales de la propia conciencia hasta llegar al punto de la desobediencia civil dentro de los límites de la no-violencia. Recibe la influencia del movimiento nacionalista hindú, Iniciado a comienzos del siglo.

Detenido varias veces en Sudáfrica, regresa a la India en 1915. Tras la Primera Guerra Mundial y cuando el gobierno inglés decide continuar su dominio sobre la India, comienza su primera campaña de desobediencia civil en 1919, bajo la ideología del Satyagraha (resistencia pasiva) como un medio de conseguir la aspiración nacionalista del autogobierno. Su boicoteo a los productos importados de Inglaterra fomenta la industria hindú.

Después de la matanza de Amritsar en abril de 1919, incrementa su campaña de resistencia pasiva. Encarcelado en 1921 y liberado tres años más tarde.

En 1924 dirige el Partido del Congreso, que lucha contra los Ingleses; es encarcelado de nuevo en 1930 en una protesta antibritánica, y en 1934 fracasa su segunda campaña.

El Parlamento Inglés reconoce la representatividad institucional de la India, pero niega su independencia.

Es detenido otra vez e inicia sus ayunos de seis días, encaminados a mejorar el trato que le dan las autoridades a la casta de los parias. Apresado en 1935, continúa con su movimiento y se radica en Yardhá en 1936. Durante la Segunda Guerra Mundial rechaza el ofrecimiento del imperio británico de crear un gobierno hindú «semi autónomo».

Cuando lidera el movimiento India Libre en 1942, lo confinan con su esposa, que muere en la prisión. Negocia con los dos últimos virreyes Percival Wavell y Louis Mountabatten un acuerdo que sella la independencia de la India en agosto de 1947.

Su programa fracasa en el Congreso porque no logra el apoyo de los musulmanes.

Gandhi es asesinado por un fanático mientras pasea por los jardines de Birla House en Nueva Delhi. Esto produce la división del territorio en el subcontinente hindú y la zona noroccidental, de mayoría musulmana, que recibe el nombre de Pakistán.

//historiaybiografias.com/linea_divisoria3.jpg

Lenin Lider politico ruso

Lenin
1870-1924
Vladimir llich Uliánov, conocido como Lenin. Revolucionario, teórico marxista y jefe de Estado comunista. Hijo de un inspector de escuelas del distrito, se educa en un ambiente de ideas liberales. Su hermano Alejandro fue ejecutado por conspirar contra el zar Alejandro III.

Lenin estudia derecho en la Universidad de Kazan, de donde es expulsado por sus ideas revolucionarias; viaja a San Petersburgo (hoy Leningrado), reanuda sus estudios y se gradúa.

No ejerce su profesión y se dedica al movimiento revolucionario. Varias veces fue encarcelado, finalmente es recluido en Siberia entre 1897 y 1900, de donde escapa al extranjero.

Forma parte del movimiento socialdemocrático, inspirado en el marxismo, que reconoce el capitalismo como el antecedente obligatorio de la revolución proletaria. Lenin disiente de los socialdemócratas y de su alianza con los intelectuales liberales para derrocar al zarismo, su doctrina se aleja del programa liberal y propone la radicalización de la lucha de clases.

Lenin propone la violencia y el terrorismo como método de acción política y arma de los ideales revolucionarios y llama al pueblo a derribar y a ajusticiar a la monarquía en su obra Dos tácticas (1905).

En 1917 el zarismo cae con la revolución y Rusia tiene un gobierno socialista. Lenin insiste en su doctrina política y busca apoyo en Alemania, regresa a Rusia y funda el diario Pravda.

Intenta derrocarlo y el 7 de noviembre se toman los organismos del Estado, consigue ser nombrado presidente del consejo de los comisarios del pueblo. A principios de 1918 los bolcheviques se han afirmado áh el poder, tras la disolución de la Asamblea constituyente.

El Soviet aprueba el golpe de Estado y en marzo firma el Tratado de paz de Brest-Litovsk. Lenin nacionalizó las tierras, las industrias y restableció la antigua policía de los zares.

Retoma ideas básicas del marxismo para su modelo de gobierno, tales como la prevalencia del Estado, la dictadura del proletariado. Más que establecer el comunismo, entrega la dirección de la economía al Estado y plantea el marxismo-leninismo.

Una parálisis progresiva causada por una vieja herida de bala y el excesivo trabajo, lo obliga a dejar el poder, que delega en Stalin, secretario general del Partido.

Entre sus obras están Desarrollo del capitalismo en Rusia (1899), ¿Qué hacer? (1902), El imperialismo, estado supremo del capitalismo (1916), El Estado y la revolución (1917) y La enfermedad infantil del comunismo, el izquierdismo (1920).

//historiaybiografias.com/linea_divisoria3.jpg

Churchill Politico Británico

Winston Churchill
1874-1965
Político, estadista, escritor y militar inglés. Corresponsal de guerra en Cuba en 1896, India en 1897, Sudán en 1898.

Elegido diputado por Oldham por el Partido Conservador en 1900. En 1904 ingresa al Partido Liberal, que ocupaba el poder, por diferencias con los conservadores.

Planea la campaña de Gallípoli en 1915, que pretende apartar a Turquía del conflicto, pero por la oposición de los militares y políticos ingleses es destituido de su cargo en el almirantazgo y enviado a Francia como comandante de un regimiento.

En 1924 se reintegra al Partido Conservador y es nombrado lord canciller del Tesoro entre 1924 y 1929, desde donde adopta el patrón oro para Inglaterra. Reprime por la fuerza la huelga de los sindicatos en 1926.

Al estallar la Segunda Guerra Mundial, Arthur Neville Chamberlain lo nombra primer lord del almirantazgo. Es nombrado primer ministro, en reemplazo de Chamberlaln, el 10 de mayo de 1940, día de la invasión alemana a los Países Bajos. Forma un gobierno de concentración nacional con la participación del Partido Laborista y Conservador, y expone su programa de «sangre, trabajo, sudor y lágrimas».

Después del ataque japonés a Pearl Harbour y la invasión alemana a la Unión Soviética, se entrevista con Stalin en junio de 1941 y se compromete a ayudarlo; firma con Theodor Roosevelt la Carta del Atlántico, que consolida el triunvirato que derrota al Eje conformado por Alemania, Japón e Italia. Representa a su país en las conferencias de Teherán en 1943, Yalta y Postdam en 1945.

Al finalizar la guerra y pese a su inmensa popularidad, pierde las elecciones de 1946 frente al candidato Clement Richard Attlee, del Partido Laborista, pero continúa al frente del partido de oposición. Reelegido en 1951 para la primera magistratura, se retira el 5 de abril de 1955 alegando razones de salud. Miembro de la Cámara de los Comunes entre 1959 y 1964. Recibe el Premio Nobel de Literatura en 1953.

//historiaybiografias.com/linea_divisoria3.jpg

Albert Einstein Fisico Aleman

Albert Einstein
1879-1955
Durante su juventud nadie sospechaba que ese escolar común y corriente, con algún buen rendimiento en matemáticas, fuera capaz de transmutar los conceptos de espacio y tiempo que rigen la física desde Isaac Newton.

Lleva a cabo sus estudios en Munich, y marcha con su familia a Italia y Suiza. En Berna, es empleado de la Oficina de Patentes, donde realiza un trabajo rutinario y ligero. Su tiempo libre lo dedica a resolver problemas de física sobre el papel. Sin embargo este trabajo teórico va tan lejos que hace tambalear los postulados básicos de la ciencia.

En 1905 Einstein publica su Teoría Especial de la Relatividad, donde plantea que el valor del tiempo, la masa y el espacio dependen del movimiento relativo entre observador y el objeto de estudio. Diez años después publica la Teoría General de la Relatividad. Sus descubrimientos permiten conocer la gran cantidad de energía que puede liberar una cantidad pequeña de masa, fundamento de la bomba atómica.

Dicho saber, en poder de los Estados Unidos, permite los genocidios de Hiroshima y Nagasaki, durante la Segunda Guerra Mundial, a pesar del esfuerzo de última hora hecho por el sabio alemán. Con el acceso de Hitler al poder, Einstein se ve forzado a abandonar su patria, y se va hacia Bélgica y, finalmente, a los Estados Unidos. Fue el ganador del Premio Nobel de física en 1921. Enseñó en Zurich, Praga y Leiden. Fue catedrático en la Universidad de Berlín, durante 20 años.

Finalmente, trabajó como investigador del Instituto para Estudios Avanzados de Princeton, hasta el momento de su fallecimiento.

//historiaybiografias.com/linea_divisoria3.jpg

Juan XIII Papa Vaticano II

Juan XXIII
1881-1963
Pontífice romano, nace en el seno de una familia de labriegos pobres. Angelo Guiseppe Roncalli, su verdadero nombre, se dedica desde temprana edad a las labores del campo, y estudia en la escuela de Cervico. Luego va al seminario de Bérgamo pero no puede ordenarse sacerdote al concluir sus estudios debido a su juventud. Entre tanto, estudia en el Ateneo Sant’Apollinare y presta el servicio militar.

En 1904 se ordena sacerdote y al año siguiente el obispo de Bérgamo, Va al frente durante la Primera Guerra Mundial como teniente-capellán.

Al término del enfrenta-miento retoma a Bérgamo y se encarga de la dirección espiritual del seminario. En 1920 se traslada a Roma y allí trabaja para la Congregación de Propaganda Fide. En 1944 lo trasladan a la nunciatura de París y en 1953 lo nombran cardenal y patriarca de Venecia. En 1958 lo eligen Papa e inicia la organización del Concilio Vaticano II que lleva a cabo en 1962. Publica dos encíclicas Mater et Magistra y Pacem en Terris.

//historiaybiografias.com/linea_divisoria3.jpg

Fleming Penicilina

Alexander Fleming
1881-1955
Bacteriólogo británico. Estudia medicina en Londres. Durante la Primera Guerra Mundial sirvió en Francia como capitán de sanidad. Bacteriólogo de la Saint Mary’s Medical School, se interesa en el estudio de las bacterias y en 1922 descubre la lisozima, substancia con efectos antibacterianos, presente en las lágrimas, la saliva y la albúmina de huevo. Sigue investigando la lisozima y descubre la penicilina por accidente en 1928.

En 1939 descubre que el moho penicillium notatum actúa sobre los gérmenes. Sin embargo, no alcaza a entregar el proceso de purificación de la pe-nicillan pues carece de las técnicas, que tienen en Oxford Howard Walter Florey y Ernest Boris Chain. La utilización de la penicilina en un ser humano se realiza por primera vez en 1941.

Fleming expone el proceso en su libro La penicilina y sus aplicaciones prácticas (1946). Es galardonado con el Premio Nobel de Medicina en 1945, compartido con Florey y Chain.

//historiaybiografias.com/linea_divisoria3.jpg

Delano Roosevelt Politico de EE.UU. Presidente

Franklin Delano Roosevett
1882-1945
Político y estadista estadounidense. Estudia derecho en las universidades de Harvard y Columbia. Elegido senador por Nueva York entre 1910 y 1911, trabaja como subsecretario adjunto de marina de 1913 a 1920. Propone su nombre para la vicepresidencia en 1920, pero es derrotado. Regresa a la política y es elegido gobernador de Nueva York en 1928. En 1932 es elegido presidente de su país por el Partido Demócrata.

Realiza reformas en obras públicas para recuperar la industria y apoyar a los agricultores, conocidas como New Deal (Nuevo Pacto), con las que el país supera la gran depresión de 1929. Reelegido en 1936, centra su política en la ayuda a Francia y Gran Bretaña, países a los que vende armas en prevención de la Segunda Guerra Mundial y aprueba empréstitos a naciones estratégicas. Elegido de nuevo en 1940, firma con Wlnston Churchill la Carta del Atlántico en 1941.

Tras el ataque a Pearl Harbour el 7 de diciembre de 1941, declara la guerra a Japón y Alemania, coordina el esfuerzo bélico y la unidad de los aliados en las conferencias de Casablanca, Quebec, El Cairo, Teherán y Yalta e interviene en la conferencia de Dumbarton Oaks en 1944, que acuerda la creación de la ONU, Organización de las Naciones Unidas. Gana las elecciones otra vez en 1944 y se convierte en el único presidente en la historia de los Estados Unidos que ocupa el cargo en cuatro ocasiones consecutivas.

//historiaybiografias.com/linea_divisoria3.jpg

Hitler Adolf Lider aleman de la segunda guerra mundial

Adolf Hitler
1889-1945
Hitler, fue jefe del movimiento nacional-socialista alemán y canciller del Reich. Hijo ilegítimo. En su juventud cree que tiene aptitudes para la pintura, pero sólo logra dibujar postales baratas. Se hace ciudadano alemán en 1932. Participa en la Primera Guerra Mundial como estafeta y gana la Cruz de Hierro en dos ocasiones y es ascendido a cabo.

Ingresa en el partido de los Trabajadores Alemanes en 1919, del cual en 1921 es presidente. Le cambia el nombre por el Partido Nacional Socialista de Trabajadores Alemanes con una Ideología ultranacionalista, antiparlamentaria y de regeneración social, fuera de los lineamientos comunistas. Tras el fracasado, intento de golpe de Estado, en Bürgerbráu de Munich en 1923, es encarcelado en Landsberg.

Durante su permanencia en prisión, escribe la autobiografía Mi lucha. La crisis económica de 1929 hace cambiar de forma radical la dirección ideológica alemana y favorece la tesis del partido nazi en contra de los judíos, a quienes acusaban del descalabro económico, del desempleo y de haberse apoderado del Alemania.

Con la muerte de Híndenburg en 1934 se nombra Führer. Asume el mando de los ejércitos alemanes, anexa Austria en 1938, invade Checoslovaquia en 1939 y desencadena la Segunda Guerra Mundial. En 1940 se apodera de Dinamarca, Bélgica y Holanda, que capitulan poco tiempo después. Ese año, tras la declaración de guerra de Italia contra Francia e Inglaterra, se firma en junio el armisticio franco-alemán y franco-italiano.

Después del ataque japonés a Pearl Harbour el 7 de diciembre de 1941, con Japón e Italia, países con los cuales conforma el Eje, declara la guerra a Estados Unidos, que se había mantenido al margen del conflicto bélico. Aunque en un comienzo invade Polonia, los Países Bajos y Francia, su avance es detenido tras el fracaso de Stalingrado en 1943 y la resistencia de Inglaterra.

Se niega a aceptar la derrota de sus ejércitos y se recluye en un refugio subterráneo de la cancillería. Se suicida con su esposa Eva Braun el 30 de abril y sus cadáveres son quemados por agentes de su guardia de SS, Schutzstaffeln, la policía secreta.

//historiaybiografias.com/linea_divisoria3.jpg

charles de gaulle presidente de francia

Charles de Gaulle
1890-1970
Estadista y militar francés, primer presidente de la V República francesa. Participa en la Primera Guerra Mundial, en la que es herido varias veces y hecho prisionero por lo alemanes en la batalla de Verdún en 1916. En 1940, como general, recibe el mando de la IV división acorazada. Ante la invasión alemana se niega a firmar el armisticio, sale de Francia el 18 de junio de 1940 y se refugia en Inglaterra. En una dramática alocución desde la BBC de Londres, insta al pueblo francés a combatir a los invasores alemanes por medio de la resistencia civil y se convierte en el jefe del movimiento, que resulta decisivo en la guerra.

Con la liberación de Francia, De Gaulle se consolida como presidente del gobierno provisional. Se retira en 1946 contrariado por no poder realizar algunos planes suyos respecto de la política de su país. Con el apoyo de su partido es elegido presidente el 21 de diciembre de 1958.

En 1960 prueba la bomba atómica sobre el desierto del Sahara. Promulga una nueva Constitución e inaugura la V República, concede la independencia argelina en 1962, promueve el desarrollo económico como puerta única de solución a los problemas de Francia. Reelegido en 1965, enfrenta la crisis de Mayo de 1968, cuando los estudiantes y obreros protagonizan una huelga que paraliza el país. Para el siguiente período es derrotado por un escaso margen y poco antes de morir se retira de la vida política.

//historiaybiografias.com/linea_divisoria3.jpg

Ho Chi Minh lider vietnamita

Ho Chi Minh
1890-1969
Estadista y revolucionario vietnamita. Su verdadero nombre es Nguyen Tat-Thanh y su apodo Ho Chi Minh significa «El que ilumina». Recorre el mundo como ayudante de cocina en un buque francés. Fotógrafo en Londres dessde 1914 y en París desde 1917, cuando se afilia al Partido Socialista. Se incorpora el Partido Comunista francés en 1921, colabora con los periódicos L’Humanité y Le Populare, bajo el seudónimo de Nguyen Al Quoc.

Hecho prisionero en China en 1942, se establece en Tonkín para organizar las guerrillas en 1943. Después de la capitulación japonesa, se apodera de’Hanoi, derroca al emperador Bao Dal y proclama la República Independiente y Democrática de Vietnam el 2 de septiembre de 1945.

Firma el acuerdo Ho Chi Ming-Sainteny, por el cual Francia reconoce viaja a París para ratificar el acuerdo en la Conferencia de Fontainebleau, los franceses intentan restablecer su dominio colonial y declaran la guerra. Mao Tse-tung le envía desde China armamento y le da apoyo táctico y estratégico.

La Conferencia de Ginebra divide al país en 1954. Establece la República Socialista de Vietnam al norte del paralelo 17. Es secretario general del Partido, jefe del gobierno y presidente hasta 1955. Reelegido secretario general del Partido entre 1957 y 1960, mientras apoya las guerrilla comunistas que luchan contra el dictador Ngo Dinh Diem en Vietnam del Sur.

En 1962 crea el FNL, Frente Nacional para la Liberación del Sur que acrecienta la violencia en el territorio vietnamita. Estados Unidos interviene en la guerra el 5 de 1965, aunque desde finales de febrero de 1962, aunque desde finales de 1962 había 8.000 soldados estadounidenses en el Sur y el Gobierno de John F. Kennedy suministraba armas y dinero a la dictadura Diem.

//historiaybiografias.com/linea_divisoria3.jpg

Mao tse Tung Lider chino Larga Marcha

Mao Tse-tung
1893-1976
Político, revolucionario, escritor y poeta chino. Hijo de terratenientes, participa en la revolución de 1911 junto al ejército republicano. Estudia derecho y filosofía. Entra en la Academia de Policía y en la Escuela de Peritaje Industrial. En 1927 organiza la lucha campesina. A pesar de que los nacionalistas intentan reprimir el movimiento, con la primera división del ejército rojo proclama la República Soviética de Kiangsi, siendo elegido presidente en 1931.

Rodeado por las tropas nacionalistas, inicia la «Larga Marcha» con cerca de cíen mil hombres. En 1935 el Politburó lo nombra secretario del Comité Central del Partido y establece la República Soviética de Yenan, tras haber recorrido más de 10.000 kilómetros para expulsar a los japoneses de China. Estalla la guerra civil en 1946, que dura tres años, al final de la cual y tras las campañas de Manchuria y Pekín-Tientsin, proclama el 1 de octubre de 1949 la República Popular de China.

En 1950 firma con Stalin un tratado de ayuda, amistad, alianza y asistencia mutua. Elegido presidente en 1954. Cuando el XX Congreso del Partido Comunista de la Unión Soviética, condena la memoria de Stalin, Mao declara rota la alianza con Moscú en 1956. Lleva a cabo la «Campaña de las Cien Flores» en 1957 e inicia el período de «El gran salto adelante» en 1958. Cede la presidencia a Luí Chaochi.

En 1965 se traslada a Shangai, donde inicia la revolución cultural, contra lo que señala como tendencias y elementos burgueses del sistema político de su país. En 1973 es reelegido en su cargo. Escribe el Libro Rojo, Acerca de la práctica, Nueva democracia, otros ensayos y poemas.

//historiaybiografias.com/linea_divisoria3.jpg

Von Braun Cientifico aleman creador del saturno 5

Wernher von Broun
1912-1974
Ingeniero alemán. Miembro de una familia aristocrática, su padre poseía un título nobiliario. Es enviado a Zurich para iniciar sus estudios. Regresa a Alemania con el fin de seguir su carrera. Estudia ingeniería y ciencias físicas en la Universidad de Berlín. Siendo un estudiante conforma la Sociedad Alemana para los Vuelos Espaciales, al lado de un grupo de entusiastas. Con ellos, lleva acabo una serie de lanzamientos de cohetes experimentales, alcanzando altitudes de 1.500 m.

Durante los años treinta participa en los experimentos sobre aplicaciones militares de los cohetes. Con ocasión de la Segunda Guerra Mundial diseña en el laboratorio de Peenemünde los cohetes V-2, con los que se efectúan mortíferos bombardeos. Al finalizar la guerra se radica en los Estados Unidos, donde su atención por los cohetes vuelve a encaminarse al viejo anhelo de viajes espaciales.

Es vinculado, pues, al programa espacial. A partir del V-2 llega al cohete de cuatro fases. Todos los adelantos de los años cincuenta y sesenta se deben al ingeniero alemán, quien culmina sus aportes con el programa Apolo, del que forma parte el cohete Saturno V, que lleva al hombre a la Luna.

También a él se debe el diseño de las condiciones del alunizaje, mediante el módulo Águila que se desprende de la última fase del cohete y desciende a la superficie. El Saturno V mide 110 m. y sus motores alcanzan un empuje de tres y media toneladas en el momento del lanzamiento. Su siguiente paso es un proyecto para efectuar un viaje tripulado a Marte, suspendido por recortes al presupuesto de la NASA. Sus últimos años los dedica a trabajar para la empresa privada.

//historiaybiografias.com/linea_divisoria3.jpg

Cientificos descubridores de la estructura del adn

Francis Crick
1916-
Jomes Wotson
1928-
Francis Crick se especializa en biofísica, mientras que James Watson, natural de los Estados Unidos, trabaja como biólogo. Emprenden el estudio del ácido desoxirribonu-cleico (ADN). De éste ya se sabía que su molécula era de gran tamaño y que intervenía en los procesos hereditarios. Sin embargo, desconocía su estructura y el proceso exacto mediante el cual incidía en la herencia.

Watson se establece en Inglaterra, para trabajar en el laboratorio Cavendish de Cambridge. Inicia investigaciones sobre la estructura de las proteínas y en compañía de Crick, del ADN. Desde el instituto de California de Tecnología, Linus Pauling afirma que el ADN tiene una estructura helicoidal simple. Crick y Watson intuyen que la estructura es doble e intentan demostrarlo sin éxito, mediante pruebas cristalográficas aportadas por Maurice Wilkins.

Finalmente, descubren que la molécula está formada efectivamente por un doble helicoide de citosina emparejada con guanina y de adenina con timina.

Cada componente se encuentra en proporciones iguales. El descubrimiento implica que los dos cordones son complementarios y cada uno es modelo para la síntesis del otro. El descubrimiento explica cómo se divide una célula en dos copias idénticas de la misma y cómo se almacena la información genética, mediante los genes. Crick y Watson reciben en 1962 el Premio Nobel de Medicina.

//historiaybiografias.com/linea_divisoria3.jpg

Kennedy John Presidente de los EE.UU.

John F. Kennedy
1917-1963
Político estadounidense. Estudia ciencias políticas en Londres y en la Universidad de Harvard. Sirve en la marina y obtiene el grado de teniente. Es herido durante la Segunda Guerra Mundial al sur del Pacífico. En 1945 es corresponsal de la revista News Service en la Conferencia de Postdam. Inicia su carrera política en 1946. En 1952 es elegido senador por Massachusetts. En 1960 gana las elecciones presidenciales sobre el republicano Nixon. Apoya iniciativas como la Alianza para el Progreso y la conquista del espacio exterior.

En 1961 intenta invadir la isla de Cuba y derrocar el gobierno de Fidel Castro, pero es rechazado en Bahía de los Cochinos. Ese mismo año apoya la acción militar de las Naciones Unidas en el Congo y se reúne en Viena con Nikita Kruschov, con quien firma un tratado para el control de la producción y uso de armas nucleares. En los asuntos internos lucha contra el racismo y por la igualdad de los derechos civiles. Muere asesinado por Lee Harvey Oswald.

//historiaybiografias.com/linea_divisoria3.jpg

Fidel Castro lider de la revolucion cubana

Fidel Castro
1926-2016
Político cubano. Estudia derecho en La Habana y se doctora en 1950. En 1947 intenta dar un golpe de Estado al dictador dominicano Rafael Leónidas Trujillo. Después de ser candidato en las elecciones anuladas por el golpe de Estado de Fulgencio Batista en 1952 y convencido de que los medios democráticos no funcionan en un régimen dictatorial, el 26 de julio de 1953 organiza el fracasado asalto al cuartel Moneada. Es hecho prisionero con su hermano Raúl y es absuelto en el juicio, pues asume su propia defensa. Indultado por el dictador, se refugia en México en 1955.

El 2 de diciembre de 1956 desembarca en Cuba con un grupo de guerrilleros. El 8 de enero de 1959 entra en La Habana, en medio de la deserción del Ejército de Batista. En un principio recibe ayuda de Estados Unidos, pero rompen relaciones cuando Castro promulga una ley de reforma agraria que lesiona intereses económicos estadounidenses.

En 1961 se produce la frustrada invaclón de Playa Girón, dirigida por la CIA. Tras declarar a Cuba República Democrática Socialista, sufre el bloqueo económico y diplomático de Estados Unidos y la OEA (Organización de Estados Americanos). Se apoya en la Unión Soviética para su comercio e implanta en la isla un régimen comunista. En octubre de 1965 conforma el Partido Comunista Cubano, que asume el poder, al estilo de os países de Europa del Este.

A partir de 1973 realiza en Cuba la Conferencia de Países No Alineados y en 1975 envía tropas cubanas a Angola, África. Desaprueba la política de Mijail Gorbachov, por lo cual sus relaciones con la Unión Soviética se deterioran. A partir de diciembre de 1976 es presidente del Consejo de Estado y jefe de las fuerzas armadas.

//historiaybiografias.com/linea_divisoria3.jpg

Luhter King Pastor defensor de los derechos de los negros en EE.UU.

Martin LutherKing
1929-1968
Líder de la raza negra contra la discriminación racial en Estados Unidos. Estudia teología en la Universidad de Boston. Se ordena pastor de la Iglesia Bautista. Funda la Conferencia de Dirigentes Cristianos del Sur, y la Asociación Nacional para el Progreso de la Gente de Color. Desde 1954 es diputado de la ciudad de Montgomery.

Contra las afirmaciones de algunos grupos partidarios de la violencia, opta por asumir la protesta pacífica y encabeza varias marchas multitudianarias, que le granjean la animadversión de los grupos de blancos del sur de Estados Unidos.

En 1963 se produce la «Marcha sobre Washington», que congrega protestantes negros y blancos en la capital de la Unión. Ese año recibe el Premio Nobel de la Paz. Muere asesinado por el blanco James E. Ray, cerca de Memphis, donde preparaba una concentración masiva.

//historiaybiografias.com/linea_divisoria3.jpg

Mijael Gorbachov Ruso

Mijail Gorbachov
1931-
Político y estadista soviético. Estudia derecho y agronomía. Ingresa en el Partido Comunista en 1955. En 1967 contrae matrimonio con Raisa Gorbachov. Miembro del Comité Central del Partido Comunista en 1971 y en 1980 forma parte del Polltburó, máximo órgano colegiado del partido. A la muerte de Leonid Brezhnev en 1983, el Kremlin es dirigido por Yuri Andropov, quien muere en 1984 y es sucedido por Konstantin Chemenko.

Chemenko fallece y Gorbachov llega al poder en 1985. Nombrado secretario general del PCUS. Su política de glasnost y perestroika, «reestructuración» y «transparencia», amplía los horizontes políticos de su país. Promulga la necesidad de abrir la economía centralista a la iniciativa privada.

Se reúne en varias ocasiones con el presidente estadounidense Ronald Reagan y los dirigentes de Occidente, y firma importantes acuerdos sobre reducción de armas convencionales y nucleares. Desaparecen la Cortina de Hierro y el muro de Berlín y se reunifican las dos Alemanlas. Afronta la crisis separatista de las repúblicas bálticas de Estonia, Lituania y Letonia, que declaran la soberanía y desafían la retaliación de las fuerzas armadas soviéticas. Reforma la estructura de poder en la Unión Soviética, crea la presidencia del país y un Parlamento elegido con la participación de fuerzas diferentes del Partido Comunista.

Termina la guerra fría y el orden internacional basado en la confrontación Este-Oeste. Tras un fracasado golpe de Estado el 18 de agosto de 1991, se desintegra la Unión de Repúblicas Socialistas Soviéticas.
Ante la disolución de lo que fuera la URSS, Gorbachov renuncia a su cargo pocos días después.

//historiaybiografias.com/linea_divisoria3.jpg

los beatles grupo musical años 60

The Beatles
1962- 1970
Agrupación inglesa de música rock, una de las más famosas de todos los tiempos. Como conjunto nace en Liverpool con John Lennon (1940-1980), Paul McCartney (1942), George Harrison (1943) y Ringo Starr (Richard Star Key, 1940). Se inician con el nombre The Quarrymen (1956) con Pete Best y Stu Stucliffe y luego como The Silver Beatles (1960). Con el ingreso de Ringo Starr reemplazando a Best, comienzan tocando en pequeños clubes al estilo de moda.

Gracias a la presencia de Brian Epstein {manager comercial) y a George Martín (asesor musical), en agosto de 1962 hacen su primera grabación, Love me do. Con el segundo disco, en el mismo año, Please, please me, se colocan en el primer lugar en las listas de éxito. De ahí en adelante alcanzan los máximos records en ventas de discos, viajan a lo largo de Europa y América y se convierten en ídolos de multitudes.

Las melodías que crean intuitivamente constituyen una música sin sobresaltos ni armonizaciones confusas. El grupo se disuelve en 1970 por la diversidad de intereses de sus integrantes. Muchas de sus canciones han sido reproducidas en más de cuatro mil versiones y ellos, como personas y músicos, han sido copiados, imitados y estudiados. Tema como Let it be, Now-hereman, Norwegian Wood, A Day in the Ufe, Yesterday, She’s living home, Micele, etc., son verdaderas creaciones en el género de la música pop.

Fuente Consultada: Magazine Enciclopedia Popular Año 3 N°36 Resumen del Libro: «Los Hombres Que Cambiaron El Mundo»

Teorías Políticas y Sociales del Renacimiento Ideas

Ideas y Teorías Políticas y Sociales del Renacimiento

Las ciencias sociales comienzan a aparecer, estimuladas por las explicaciones mecanicisticas y el desarrollo de las matemáticas: concurren los comienzos de la demografía, el establecimiento de los índices de mortalidad, de nacimientos, de probabilidades de sobrevivir.

Los ingleses predicen una duplicación de la población del globo cada veinticinco años, preparando los trabajos de Malthus.

Aparecen las primeras estadísticas económicas y los Estados comienzan a organizar seriamente el empadronamiento de la población; Vauban exigía en su «Diezmo Real» que fuera anual y detallado.

En Inglaterra, los pensadores comienzan a reflexionar sobre las nociones de soberanía, según su origen social, no contentándose ya con la vieja teoría del rey de derecho divino, lugarteniente de Dios, tal como la concebía la Francia de Luis XIV.

En su «Leviathan», Tomás Hobbes (1588-1679), uno de los fundadores de la escuela empirista inglesa, dedujo de su análisis mecanicista de las pasiones, que los hombres tratan de sobrevivir y de engrandecerse a expensas unos de otros, pero que para evitar los conflictos perpetuos que asolaban a la Humanidad, aceptan someterse a una autoridad superior, por medio de una especie de contrato que fundamenta el Estado, en el que ellos delegan una parte de sus poderes naturales.

El Estado es comparado con Leviatán, gigante compuesto de numerosos hombres.

En este terreno, John Locke (1632-1704), conseguiría una influencia capital ya que sus ideas influyeron enormemente en el liberalismo inglés, en la filosofía francesa del siglo XVIII y en los dirigentes de la Revolución americana.

Fue el primer teórico de la burguesía.

De una familia de comerciantes y de juristas, fue amigo de Lord Ashley, conde de Shaftesbury, ministro de Carlos II Estuardo, a quien siguió a Holanda en su desgracia, después del advenimiento de Jacobo II.

Regresó a Inglaterra pasada la revolución de 1688 y publicó sus célebres obras: «Ensayo sobre el entendimiento humano», «Carta sobre la tolerancia», «Dos tratados sobre el gobierno».

Racionalista y empirista, amplió considerablemente la idea del contrato social de Hobbes. Libres, iguales, guiados por la razón, los hombres gozarían de los derechos naturales otorgados por Dios.

Pero deben, para vivir en sociedad, ligarse a un gobierno que proteja sus derechos y propiedades.

El soberano también se encuentra ligado por el contrato. No puede disponer arbitrariamente de las personas y de los bienes.

Las leyes, iguales para todos, deben ser elaboradas por una asamblea. Si el soberano no respeta el contrato, sus subditos deben considerarse desligados de su juramento.

Locke justificaba la rebelión contra Jacobo II y el advenimiento de Guillermo de Orange en 1688, rey legítimo porque lo había refrendado el consentimiento de la nación. Fue el primero en afirmar la necesidad de la separación de poderes, idea en la que profundizará Montesquieu.

Escritor de finales del siglo XVII, Fontenelle es ya un  «hombre del siglo XVIII», por la libertad de su inteligencia, por su curiosidad universal, por su ausencia de espíritu religioso. En sus obras se inclina a someter los espíritus a un método científico,  inculcándoles la fe en el progreso. En su «Historia de la Academia» o en sus «Conversaciones  sobre  la  pluralidad de  los mundos», se esfuerza en convertirse en el profesor de filosofía de la gente mundana.

Del mismo modo, el poder legislativo debe estar por encima del ejecutivo. Así, las fuerzas políticas se equilibran recíprocamente, evitando la injusticia, la arbitrariedad, la tiranía.

Locke preconizaba, igualmente, la separación de la Iglesia y el Estado, la libertad de conciencia y la libertad de cultos; excluía, sin embargo, a los católicos y a los ateos.

Los primeros, porque hacen que la soberanía dependa de una gracia divina, obedecen a Roma y sus sacerdotes quieren dominarlo todo; los segundos, porque sus juramentos no tienen ninguna sanción.

A pesar de estas excepciones, puede juzgarse la «osadía» y la novedad que representaban los escritos de Locke para aquella época, sobre todo con relación a Francia, país en el que triunfaban la arbitrariedad y «el capricho real».

De ahí la extraordinaria «anglomanía» de los filósofos franceses del siglo siguiente, tales como Voltaire, para quien la doctrina de Locke fue un verdadero evangelio.

A finales de siglo, absolutismo de Luis XIV suscitó vivas críticas que, sin embargo, no favorecerían el progreso, porque emanaban de nobles humillados por el papel demasiado importante que el rey había concedido a los burgueses en sus Consejos y su administración.

Como Saint-Simon o Fenelón, los nobles querían limitar el absolutismo, pero en un sentido favorable a la nobleza exclusivamente: casta dominante en los Estados Generales y los Consejos Reales, rigurosamente cerrada, teniendo en todas partes la preferencia sobre los plebeyos, presidida por el rey, que no se olvida nunca de su fuerza.

Esta «reacción nobiliaria», que se desarrollará en el siglo XVIII, va a impedir la evolución de la sociedad francesa y favorecer la arrogancia de los privilegiados hostiles a todas las reformas liberales, lo cual conducirá a las tubulencias sangrientas de la revolución jacobina.

Fuente Consultada:
Enciclopedia de Historia Universal HISTORAMA Tomo VII La Gran Aventura del Hombre

El Cobalto Propiedades, Características y Aplicaciones

El Cobalto Propiedades, Características y Aplicaciones

Algunos compuestos de cobalto constituyen pigmentos azules fijos, de gran calidad, que han sido empleados durante 4.000 años por diversas civilizaciones. Los asirio-babilonios usaron pinturas de cobalto en sus pequeñas estatuas talladas en madera, y, en tiempos más recientes, los compuestos de cobalto se han utilizado para decorar en azul la porcelana china de Delft, y para teñir de azul oscuro algunos vidrios.

Mineral de Cobalto

A pesar de que el cobalto es todavía valioso como pigmento, su valor en este sentido se ha visto eclipsado, durante los últimos años, por las propiedades del metal en sí, ya que el cobalto es ferromagnéticó, no tan intensamente magnético como el hierro, pero mucho más que la mayoría del resto de los metales.

Este hecho no es sorprendente, puesto que la estructura de los átomos de hierro y cobalto es muy similar. Los imanes fabricados de hierro dulce pierden rápidamente el magnetismo, pero si el hierro se alea con cobalto, la aleación resultante conserva esta propiedad durante un prolongado período de tiempo.

Ciertos imanes permanentes contienen hasta un 50 % de cobalto, empleándose en muchas piezas de aparatos eléctricos. Las aleaciones de cobalto tienen otra importante aplicación comercial basada en que conservan su dureza y filo (poder de corte), incluso a temperaturas elevadas.

De hecho, la mayoría de las herramientas de corte para trabajos a altas temperaturas contienen cobalto. Todavía más resistentes al efecto de ablandamiento de las temperaturas elevadas son las aleaciones de cobalto-cromo-volfranio-carbono, que se emplean también para fabricar herramientas de corte. La mayoría de la producción mundial de cobalto se destina a imanes o a aleaciones de «alta velocidad» (aceros rápidos).

A pesar de que menos de la quinta parte del cobalto producido se emplea bajo la forma de sus compuestos, éstos tienen demasiada importancia para no considerarlos. Los únicos compuestos de cobalto estables son los cobaltosos, en los que el metal presenta valencia 2. Las sales cobálticas (valencia 3) tienden a ser inestables.

La vitamina B12, de gran importancia, es una gran molécula, muy compleja, formada por 183 átomos, de los cuales sólo uno es de cobalto; pero, si falta este átomo resulta imposible que se produzca la vitamina Bu. La deficiencia de vitamina BJ2 en el ganado puede deberse a la ausencia de cobalto, y se corrige tratando el terreno, o los alimentos, con compuestos de aquél.

El óxido de cobalto se emplea en la industria cerámica no sólo como pigmento, sino también como agente de blanqueo. Los productos de alfarería fabricados con arcilla tienen con frecuencia impurezas de hiem , que les comunican un aspecto amarillento por lo que se les da un ligero tinte azul con óxido de cobalto, que oculta el color amarillo, de la misma forma que el añil agregado al lavado de ropa confiere a ésta un aspecto más blanco.

Las sales orgánicas de cobalto se emplean con profusión en pinturas, barnices y tintas para imprimir, a fin de que sequen con rapidez. Dichas sales absorben el oxígeno atmosférico para formar peróxidos, que polimerizan en una estructura de tipo celular, la cual actúa como el papel secante, absorbiendo el aceite remanente y transformando la masa total en un gel.

Los compuestos de cobalto son excelentes catalizadores de numerosas reacciones, hecho que se descubrió, por primera vez, al emplear este tipo de catalizador para obtener metano (CH4) a partir de monóxido de carbono e hidrógeno. En la actualidad, se emplean ampliamente en la industria del petróleo, para transformar moléculas inservibles en otras adecuadas para combustibles.

Debido a que el cobalto se presenta en una gran variedad de minerales y está, en general, mezclado con cobre, plata o níquel, existen diversos procesos para extraerlos, que dependen del tipo de mineral de partida. Los mayores productores de cobalto son Ka-tanga y Rhodesia, donde éste se encuentra asociado al cobre.

Fuente Consultada:
Enciclopedia de la Ciencia y la Tecnología Fasc. N°41 El Cobalto y sus propiedades

Primera Máquina de Calcular de Pascal o Pascalina

FUNCIONAMIENTO DE LA MAQUINA DE SUMAR MECÁNICA DE PASCAL

Durante mucho tiempo se lian usado los abacos (tableros contadores) como auxiliares del cálculo. Ahora la mecánica ayuda al cálculo con sus máquinas.

La primera máquina de calcular (es decir, una en la que el resultado se lee directamente) fue construida por Pascal en 1642, que la diseñó para ayudar a su padre en sus cálculos monetarios.

Siguiendo el mismo principio, se construyeron otras máquinas del mismo tipo. La que vamos a describir data de 1652.

Blas Pascal

El original se conserva en el Conservatoire des Arts et Metiers de París, y una copia en el Science Museum de Londres. La máquina de Pascal usa principios que aún se utilizan hoy en las modernas calculadoras.

Pascalina

Consiste en una caja que contiene seis equipos de cilindros y ruedas dentadas (ver ilustración). Cada cilindro lleva los números del 0 al 9 alrededor de su eje, dispuestos de tal forma que solamente uno de ellos es visible a través de un agujero de la caja.

Las ruedas dentadas están conectadas a seis mandos horizontales (algo así como un disco de un teléfono) y cuando se gira el mando, el cilindro gira con él.

Para explicar el manejo de la calculadora, vamos a suponer que queremos sumar los números 2, 5 y 3. Giramos el disco de la derecha en sentido contrario al de las agujas de un reloj, desde donde está marcado el 2 hasta el cero.

El disco se mueve de modo inverso al del teléfono y no vuelve a la posición de partida, aunque se suelte.

Gira la rueda dentada en el interior y, simultáneamente, el cilindro gira 2/10 de vuelta. Ahora repetimos la operación con el número 5. La rueda hace que el cilindro avance 5/10 de revolución, de forma que el total registrado es 7.

A continuación repetimos el proceso con el número 3, y el cilindro gira en el interior 3/10. Como quiera que el cilindro está marcado en décimas, y hemos añadido 10 unidades (2, 3, 5), el dial vuelve de nuevo a cero.

Un mecanismo dispuesto en el interior de la calculadora lleva el número 1 al cilindro inmediato de la izquierda, es decir, hace girar el cilindro contiguo 1/10 de revolución, de cero a uno.

En total, hay en la caja seis cilindros, que representan (de derecha a izquierda) unidades, decenas, centenas, millares, decenas de millar y centenas de millar, respectivamente.

La suma de 2, 5 y 3 produce un cero en el cilindro de las unidades y un uno en las decenas, dando el total de 10.

Con los seis cilindros se puede realizar una suma cuyo total sea de 999.999. En realidad, el modelo descrito tiene dos equipos de números en los diales, de forma que el segundo equipo gira en la dirección opuesta (es decir, de 9 a 0, en vez de hacerlo de 0 a 9). Este último puede usarse para la sustracción, y está cubierto por una tira Hp metal cuando no se usa.

Algunas de las máquinas de Pascal fueron diseñadas para sumar libras, céntimos y de-narios (monedas francesas), y pueden ser consideradas como las antecesoras de las máquinas registradoras.

Aunque el invento de las calculadoras es muy importante, Pascal no sólo es conocido como su inventor, sino que su obra comprende, además, física, matemáticas y filosofía.

Pascal nació en Clermont-Ferrand en 1623 y desde temprana edad se interesó por las matemáticas.

Se dice que a la edad de doce años descubrió él mismo algunas ideas geométricas de Euclides.

Construyó la primera máquina de calcular antes de tener 20 años. Unos años más tarde fue capaz de demostrar que la presión atmosférica decrece con la altura.

Hoy día, 300 años después de su muerte, se recuerda a Pascal por su ley de la presión en los fluidos y por su triángulo.

La ley sobre la presión en los fluidos resultó de sus trabajos en hidrostática, y es en la que se basa la acción de prensas hidráulicas, gatos hidráulicos y máquinas semejantes. El triángulo de Pascal es una figura de números que se usa en los estudios de probabilidades.

La extensión de la obra de Pascal es aún más sorprendente si se tiene en cuenta que no gozó de buena salud durante su vida y que murió a la edad de 39 años, en 1662.

Fuente Consultada:
TECNIRAMA Enciclopedia de la Ciencia y la Tecnología Fasc. N°49 – Pascal y su máquina de calcular

La Electrolisis del Agua Descomposición en Oxigeno Hidrogeno

Electrólisis:Descomposición Del Agua en Oxígeno e Hidrógeno

LA  ELECTRÓLISIS  DEL AGUA: El agua (H2O) tiene una molécula que se compone de dos átomos de hidrógeno y un átomo de oxígeno.

Por tanto, no es de extrañar que se haya pensado en utilizarla como materia prima para la obtención de alguno de los dos elementos, especialmente teniendo en cuenta su abundancia, ya que constituye casi el 7 % de la masa de la Tierra.

Normalmente, el agua se utiliza para obtener hidrógeno, ya que el oxígeno se puede producir más económicamente por otros medios (por ejemplo, licuando el aire y destilándolo a continuación).

Entre los diversos métodos con que hoy cuenta la química para descomponer el agua se halla la electrólisis, procedimiento que implica la utilización de energía eléctrica y que, por tanto, no es de los más económicos.

No obstante, al obtenerse simultáneamente oxígeno como subproducto, el método no resulta, en realidad, tan costoso, y mucho menos para aquellos países, como los escandinavos, que disponen de energía eléctrica a bajo precio.

A primera vista, se diría que el agua no se puede descomponer por electrólisis, pues para que se verifique el transporte de electrones en el seno de un líquido es necesario que éste contenga iones, (átomos o grupos atómicos con carga), y el agua no los contiene.

Esto último no es rigurosamente cierto, puesto que el agua, aunque poco, está ionizada, según  la siguiente reacción:

H2O <===>  H+ + OH—

Es decir, parcialmente se encuentra en forma de iones hidrógeno (H+) e iones oxidrilo (OH—).

Pero, además, este fenómeno (la ionización del agua) se acentúa agregándole ciertos reactivos que, en teoría, pueden ser: una sal, un ácido o un álcali (base).

En la práctica, la utilización de sales presenta el inconveniente de que se producen reacciones que atacan los electrodos, por lo cual habría que utilizar electrodos inertes, de grafito o de platino.

Si se utilizan ácidos (sulfúrico o clorhídrico) sucede algo análogo, ya que la descarga de los aniones correspondientes (S04=,Cl-) es de gran actividad.

Por último, la utilización dé bases, como la soda (Na OH) o el carbonato sódico (CO3 Na2), casi no presenta inconvenientes y, por ello, es la que se practica.

Puesto que hay que partir del punto de que la energía eléctrica es costosa, se precisa estudiar minuciosamente el método, o lo que es lo mismo, el diseño de la cuba electrolítica o célula, para obtener rendimiento máximo con mínima energía.

electrolisis

La potencia de cualquier aparato eléctrico y, por tanto, la de la cuba, se obtiene mediante la siguiente expresión (Ley de Joule):

W= I x V

en donde I es la intensidad de corriente y V, el voltaje.

La intensidad de la corriente en amperios necesaria para producir una determinada cantidad de hidrógeno se sabe con facilidad, teniendo en cuenta las leyes de la electrólisis, de Faraday (96.500 culombios depositan un equivalente  gramo  de   cualquier   sustancio),   y  que   1   amperio= 1 culombio/segundo

Por   un   razonamiento   sencillo  se  desegundo, mostraría que,durante una horc,  1.000 amperios pueden liberar cerca de medio metro cúbico de hidrógeno.

En cuanto al voltaje de la corriente, interviene una serie de factores, que son los que, en realidad, determinan ios características a las que se ha de ajustar la célula electrolítica.

Se ha comprobado experimentalmente que el voltaje necesario se compone de tres factores, o sea:

V=V1+V2 + V3

V1 es el  voltaje necesario para descomponer el  agua;
V2  es  la sobretensión  de  los electrodos,  y
V3  es la caída óhmica a  lo largo de la cuba electrolítica.

Para obtener el mínimo consumo de electricidad (o sea, la potencia, en vatios, mínima) en la liberación del hidrogene es evidente que, siendo fija la intensidad de la corriente, hay que disminuir lo más posible el voltaje (V).

Pero V1 es una  cantidad constante y,  por tanto,  no se  puede actuar sobre ella. Quedan así por examinar V2 y V3.

En la sobretensión (V2) influyen los siguientes factores: la  naturaleza  de  los  electrodos  (los  que  producen  mencr sobretensión   son   los  de   níquel   y  hierro),   la   temperatura del  baño,   la  viscosidad del  electrolito,  la  densidad  de   le corriente que atraviesa el baño, etc.

En la caída óhmica (V3), y teniendo en cuenta que hay que introducir en la cuba unos diafragmas para evitar que se mezclen el hidrógeno y el oxígeno producidos , influyen la longitud de la cuba (l1), el coeficiente de resistividad del electrodo, el espesor del diafragma (l2), el coeficiente de resistividad de éste, la resistividad del electrolito, etc.

Del estudio de las variables anteriores se deduciría que le célula electrolítica ideal debería tener unos electrodos en forma de láminas muy grandes —para que admitan muchos amperios—, colocados bastante próximos, para que li fuera mínima; entre ellos se colocaría el diafragma c película metálica de pequeño espesor —para que l¡¡ sea mínimo— y con unos orificios de diámetro suficiente, para no ofrecer resistencia al paso de los iones.

En la práctica, existe una serie de células que presente diversas ventajas e inconvenientes, como resultado de haberse tenido en cuenta, en mayor o menor grado, las variables que intervienen en el proceso, algunas de las cuales no se pueden armonizar.

Una de las más utilizadas es la «Schmidt-Oerlikon» que trabaja a 2,3 voltios y consume 6 kwh por cada metro cúbico de hidrógeno liberado (simultáneamente se libere 0,5 m3 de oxígeno).

Conceptos básicos de lubricantes Disminuir el Rozamiento

Conceptos Básicos de Lubricantes
Disminuir el Rozamiento

FUNCIÓN DE LOS LUBRICANTES: Los lubricantes son productos que presentan la propiedad de disminuir el coeficiente de rozamiento entre dos superficies, que se deslizan una sobre otra con movimiento relativo.

lubricar concepto basico

Es fácil comprender que» tengan una importante aplicación en todos los aparatos mecánicos donde hay movimiento de piezas, puesto que ejercen una doble función: a) mecánica, de disminuir la carga, al reducir el coeficiente de rozamiento, y b) térmica, de evitar que se eleve lo temperatura de la máquina, puesto que absorbe y elimina el  calor producido en  el  roce.

Así como el consumo de ácido sulfúrico indica el grado de industrialización de un país, el de lubricantes da el índice de mecanización; este último también se puede saber partiendo del consumo de carburantes. Lubricantes y carburantes presentan un consumo proporcional: el de los primeros es el 3,5 % de los segundos.

Según lo anterior, el país más mecanizado del mundo es Estados Unidos, que en el año 1964 consumió lubricantes a razón de 25 kilogramos por habitante.

Veamos ahora cuál es el concepto de coeficiente de rozamiento. Si se supone una pieza de peso V, que está deslizándose sobre una superficie S (véase figura), para que el movimiento no cese sólo será necesario aplicar una fuerza F que compense el rozamiento.

fuerza de rozamiento y lubricantes

Es evidente que, cuanto mayor sea el peso P, más grande tiene que ser F. Entonces, se define como coeficiente de rozamiento Ω a la relación  entre  la   fuerza aplicada   (F)  y  la   presión   (P)   que ejerce el cuerpo sobre la superficie que ocupa, o sea:

formula rozamiento

Cuanto más grande sea el coeficiente de rozamiento de una pieza de un material determinado, mayor será la fuerza que se necesita para desplazarlo.

Para dar una idea de cómo pueden disminuir los lubricantes las resistencias de rozamiento, baste decir que, en el vacío, los metales pulimentados tienen un coeficiente de rozamiento mil veces superior al que presentan agregándoles   un   lubricante.

Las condiciones generales que debe reunir un lubricante son las siguientes:

1) buena circulación, para que la refrigeración de las partes en rozamiento sea eficaz;

2) viscrosidad suficientemente alta, para que trabaje en régimen hidrodinámico (régimen estable);

3) Untuosidad, para que se reparta bien por la superficie a lubricar.

Todas estas condiciones se dan en determinados tipos de aceites, como los que se obtienen en la destilación y el fraccionamiento del petróleo.

Ello no quiere decir que los aceites vegetales sean malos lubricantes; pueden ser, incluso, mejores que los minerales, pero durante corto plazo, porque su estabilidad es muy inferior. No obstante, estas buenas cualidades de los aceites vegetales se aprovechan para mejorar los lubricantes dé petróleo.

Así, es muy frecuente añadir ácido palmítico al aceite mineral, para que el lubricante adquiera la untuosidad y adherencia a las superficies metálicas que aquel producto le confiere; por ejemplo, la adición de un 0,5 % de ácido palmítico al aceite mineral determina, una disminución del coeficiente de rozamiento en los metales, que oscila  entre  el   30′ %   y  el   40 %.

Un  lubricante que trabaje en condiciones de gran presión necesita  aditivos de los siguientes tipos:

a)    ácidos grasos (palmítico, esteárico, etc.), para que. soporte presiones de arranque elevadas; por ejemplo, en la caja de cambios de los motores se producen presiones de hasta 28  toneladas por centímetro cuadrado;
b)    polímeros, para, que la variación de la viscosidad con la   temperatura   sea   mínima;
c)    productos antigripantes (palmitato de plomo, oleato de plomo,  grafito,  azufre,  etc.).

Hoy se fabrican lubricantes más amigables con el medio ambiente, que duran más tiempo en el motor. Se habla de los lubricantes sintéticos, semisintéticos, los hechos con bases más refinadas, lo cual permite que el motor, como el medio ambiente, tengan mejor cuidado. Ya no son lubricantes para  5.000 kilómetros, ese mito se rompió hace tiempo, los productos de hoy permiten 10.000 kilómetros en condiciones normales de trabajo

Las principales funciones de los aceites lubricantes son:

  • Disminuir el rozamiento.
  • Reducir el desgaste
  • Evacuar el calor (refrigerar)
  • Facilitar el lavado (detergencia) y la dispersancia de las impurezas.
  • Minimizar la herrumbre y la corrosión que puede ocasionar el agua y los ácidos residuales.
  • Transmitir potencia.
  • Reducir la formación de depósitos duros (carbono, barnices, lacas, etc.)
  • Sellar

Fuente Consultada:
TECNIRAMA Enciclopedia de la Ciencia y la Tecnología N°96

La Edad Media Costumbres,tradiciones,pecados y castigos

LA VIDA, COSTUMBRES Y TRADICIONES EN LA EDAD MEDIA
la vida en la edad media

bullet edad mediaLos Viajes y Viajeros
bullet edad media Medir El Tiempo
bullet edad media Leyes y Castigos – Los Penitenciales
bullet edad media Casas, Comidas y Alimentación
bullet edad media Vestidos y Aseos
bullet edad media Demografía
bullet edad media Diversiones
bullet edad media La Homosexualidad, ida Conyugal y Extraconyugal
bullet edad media Violencia y Muerte
bullet edad media Paganismo
bullet edad media Pecados y Penitencias
bullet edad media La Familia
bullet edad media Medicina Medieval y Salud
bullet edad media La Muerte
bullet edad media Acontecimientos en  la Edad Media

Los ejércitos bárbaros, al mando de Alarico el Godo, entraron a Roma durante la calurosa noche del 24 de agosto del año 410 d.C. Los guerreros
germánicos saquearon la capital imperial durante tres días, y así pusieron un final simbólico al esplendor romano. «El mundo entero pereció en una sola ciudad», escribió San Jerónimo.

En los turbulentos siglos que siguieron, las tribus germánicas paganas, como las de sajones y francos, devastaron lo que quedó del orgulloso
imperio y se asentaron, sólo para ser devastados, a su vez, por los vikingos escandinavos.

El cataclismo orilló a los celtas a emigrar al oeste, y su cultura sólo perduró en la costa atlántica de Europa: Cornualles, Gales, Bretaña e Irlanda. Algunos historiadores llaman Edad Oscura a este caótico periodo. Pero las tribus guerreras enriquecieron la cultura europea con su arte y su energía: un espíritu pionero, técnicas agrícolas vigorosas y mitos heroicos que celebraban los triunfos propios.

La caída del Imperio Romano fue acompañada en toda Europa por un enorme flujo de emigrantes; algunos ya convertidos al cristianismo. Hablaban idiomas distintos, sus indumentarias eran diferentes y no comían los mismos alimentos, pero todos dependían de la tierra, los ríos y el mar para su subsistencia. Se trabajaba duramente para arar la tierra, y la cantidad de cultivos aumentó con la tala de bosques. Hacia el año 1000 d.C., los escandinavos se asentaron, construyendo castillos y fundando reinos.

El orden se restauró lentamente en Europa occidental: la vida se volvió más estable, próspera y refinada. La población aumentó hasta que la escasez de tierras y las epidemias la menguaron en el siglo XIV.

A partir del siglo XII, en Asia y en Europa había aumentado la proporción de habitantes de ciudades y pueblos. Hombres y mujeres escaparon de la dependencia de los señores feudales hacia la libertad de las ciudades. El comercio de vino y lana cruzó las fronteras de Europa; y la seda y las especias viajaron de Asia a Europa. Donde se cruzaban las rutas comerciales, surgían bulliciosos mercados y ferias.

En el campo, la vida cotidiana se adecuaba a las estaciones; en las ciudades, se enriquecía con las fiestas religiosas. Arquitectura, pintura, música y literatura captaron el espíritu de estos tiempos vibrantes y a veces violentos. Todavía perdura la magnificencia de las catedrales, que
tardaron generaciones en construirse; y las universidades de Boloña, París y Oxford demuestran el interés medieval por el conocimiento. Este fue valorado aún más en los países del Islam, en el siglo x, y ciudades como El Cairo, Córdoba y Bagdad eran famosas por sus bibliotecas y palacios. Los sabios islámicos sobresalieron en filosofía, ciencia y medicina.

Sin embargo, la mayoría de hombres y mujeres nunca vieron una ciudad, y no sabían leer ni escribir. Las autoridades religiosas normaban todo comportamiento. La Iglesia construyó monasterios y conventos donde la manera de vivir era sumamente disciplinada. Cristianismo e Islam se enfrentaron, especialmente durante las Cruzadas, pero el cristianismo también sufrió conflictos internos, y Asia y África compartieron la violencia.

El siglo XV en Europa fue de extravagancia, herejía y superstición, pero también se caracterizó por las mejoras materiales que beneficiaron a las mayorías y por el alto nivel de imaginación que las artes alcanzaron. Tres innovaciones impulsaron una nueva etapa. La imprenta, ya conocida en China, llegó a Europa cuando Gutenberg introdujo el uso de los tipos móviles. La pólvora, otra invención china, hizo que el castillo de la Edad Media pasara de moda. La brújula posibilitó los viajes de los primeros exploradores europeos. Uno de ellos, Cristóbal Colón, «descubrió» América en 1492.(ver: Grandes Descubrimientos)

VIDA DETRÁS DETRÁS DE LAS MURALLAS: «El aire de las ciudades hace libres a los hombres»; así rezaba un proverbio medieval. En la época en que casi todos dependían de la tierra, propiedad del señor feudal, las ciudades surgieron como cunas de la libertad. Dentro de estas bulliciosas —y a veces corruptas—colmenas, se vivía bajo normas muy distintas a las del campo. Sus residentes obedecían al alcalde y demás funcionarios electos. En vez de trabajar para mantener a un noble y su castillo, pagaban impuestos al rey y reunían entre ellos la suma necesaria para defender la ciudad.

La vida urbana resurgió en el siglo XI. Cuando las llamas de los disturbios se apagaron, algo similar a un gobierno organizado se asentó en los reinos europeos. Los príncipes jugaron un importante papel en este resurgimiento. Siempre escasos de fondos, permitieron que algunos poblados se independizaran y se desligaran del castillo local, a cambio de pagos en efectivo.

El otorgamiento del estatuto del poblado era el gran acontecimiento de este proceso. Una vez otorgado, el concejo municipal se encargaba de la administración. Los poblados eran a veces ciudades romanas que renacían tras la destrucción bárbara, o nuevas comunidades que crecían a las puertas de un castillo medieval. Muchas emergieron de modo caótico alrededor de los senderos y límites de los conjuntos de parcelas, lo que explica las estrechas y sinuosas callejuelas. Los constructores también favorecían este estilo: la intrincada retícula de edificios era una protección contra el viento, en una época en que las ventanas de vidrio eran poco conocidas. De entre las ciudades europeas, París era la única que no tenía alcalde, sino un preboste o superintendente del rey. Era típico de las incipientes ciudades constituirse a partir de una asamblea de aldeas dispersas e interconectadas. Esto explica la abundancia de iglesias y abadías. Pastizales y pantanos en ambas márgenes del Sena, que eran linderos entre las aldeas, fueron cubiertos gradualmente con construcciones.

Como en otras ciudades medievales, los puentes parisinos tuvieron gran importancia, pues fueron los primeros centros comerciales: en ellos se instalaban tiendas y establos. Los cambistas ocuparon un puente que, a partir de 1142, fue conocido como Pont-au-Change (Puente del Cambio). Bajo Felipe Augusto II (1180-1223), rodeada por una muralla, la ciudad se convirtió en una unidad.

La gruesa muralla protegía el poblado y sus portones se cerraban al ocaso. Las calles no tenían alumbrado. Guardias de ciudadanos patrullaban las calles con antorchas  y si alguien deambulaba por la noche sin motivo era encerrado. Los pregoneros daban la voz de alarma.

FERIA, FIESTA Y COMERCIO
Uno de los grandes acontecimientos en las ciudades de la Europa medieval era la feria anual, que tenía lugar en las afueras de la muralla y duraba varios días. Los monarcas estimulaban estas ferias para promover el comercio y sacar ganancias de los impuestos con que gravaban las mercancías. Los negocios de la feria transcurrían en una atmósfera de carnaval. Un bufón en zancos se eleva sobre la concurrencia, los malabaristas siguen sus pasos, y trovadores con laúd divierten a los transeúntes. Un mercader muestra sedas que quizá sean chinas, y otro tiene suficientes ollas para abastecer por todo un año a los vinateros. En otras tiendas, los clientes regatean pieles rusas, vinos franceses y cristal italiano. La feria está vigilada y bajo control. Los guardias montados supervisan todo, y la tienda pintada de colores brillantes aloja una corte especial llamada píedpoudre (pies enlodados), donde se dirimen las disputas de los quejosos que aún no se han aseado.

LAS FIESTAS
Bajo el signo de la religión, se organizaban, sin embargo, numerosas fiestas en las ciudades. Todo era pretexto para hacer procesiones, tanto la necesidad de conjurar un peligro invocando la protección de los santos, como el deseo de realizar una acción de gracias. En París no pasaba semana sin que se organizara una de estas procesiones. Además, el pueblo podía divertirse con el castigo de los condenados (¡qué extraña esta complacencia de los miserables en la desgracia de alguien aún más mísero que ellos!).

Las ejecuciones siempre tenían lugar en las plazas más frecuentadas, y la masa no cesaba de dirigir pullas y de gozar ante las diversas torturas con las que se afligía a los reos. Las calles estaban animadas, además, por diversos saltimbanquis, titiriteros y domadores de animales. Para las grandes ocasiones, se organizaban fiestas públicas: se distribuían víveres, y toda la población podía embriagarse en las fuentes de vino. Se podía admirar, también, la llegada de los príncipes, y participar en diferentes representaciones teatrales:   farsas y, sobre todo, misterios.

Todos los habitantes aportaban su concurso a la realización de estos espectáculos, como actores o como confeccionadores de trajes. Estas representaciones eran ofrecidas, generalmente, por señores de la ciudad, por el municipio o por algunos gremios. Así, los zapateros montaban a su costa el «Misterio de San Crispín», que era su patrono.
Los ciudadanos de la Edad Media tenían, como se ve, muchas ocasiones de abandonar su trabajo, pero sus días festivos no estaban codificados y regularizados como en las sociedades modernas. El trabajo no se caracterizaba todavía por ese ritmo y esa preocupación por la productividad que nos imponen las máquinas.

Los textos de la Edad Media son, por otra parte, muy discretos en lo que respecta al mundo del trabajo. Según el orden del mundo, los hombres debían estar agrupados en tres categorías: los que combaten, los que rezan y los que trabajan; estos últimos eran considerados despreciables y poco interesantes, pues se pensaba que eran incapaces de hacer otra cosa.

Características Sociedad Feudal

Desde el menú de opciones superior puedes recorrer las distintas facetas de la vida diaria en la edad media,…solo haz clic!, sobre cada item.

PARA SABER MAS…

EN LA EUROPA MEDIEVAL, el trabajo de una persona, su alimentación, sus vestidos y su vivienda se correspondía estrictamente con el lugar que ocupaba en la sociedad.

LA VIDA DEL CAMPESINO Los campesinos ocupaban el grado más bajo de la escala social. Vivían en aldeas y cultivaban la tierra, propiedad del señor, a quien debían entregar una parte de la cosecha. Vestían ropas de tejidos toscos y zapatos de madera. Su dieta consistía en legumbres, pan y poca cantidad de productos animales (huevos y tocino).

SEÑORES Y DAMAS
Los señores y sus esposas pasaban mientras tanto su vida privilegiada en el castillo. Usaban ropa lujosa procedente de fábricas a veces muy lejanas y hecha de telas preciadas, como la seda y el terciopelo. Comían carne y pan blanco, y bebían vino en lugar de cerveza.

DIETA MEDIEVAL
Sin embargo, la dieta medieval no contenía todos los nutrientes esenciales, ni siquiera en las clases privilegiadas. La leche era muy escasa, y en invierno no había ni frutas ni verduras frescas.

LA FORMACIÓN DEL SEÑOR A los siete años, un niño de noble nacimiento comenzaba a educarse como caballero. Su primer paso consistía en trasladarse al castillo de otro señor feudal en calidad de paje. Allí servía a la mesa y aprendía a manejar la espada y a montar un caballo de batalla, dos tareas indispensables para un caballero. A los 14 años se convertía en escudero. A la edad de 21 años, el señor del castillo lo armaba caballero golpeándole suavemente los hombros con su espada.

LA VIDA DE UNA MUCHACHA Las hijas de familias nobles debían aprender a comportarse como castellanas, es decir, como señoras del castillo. Un cruzado, por ejemplo, podía estar lejos del castillo durante años, dejando éste a cargo de su esposa. Usualmente, las mujeres se casaban entre los 14 y los 16 años. Los matrimonios eran concertados por las familias. La prometida debía entregar a su marido una dote de oro y tierras.

TORNEOS
La guerra era la principal ocupación de un señor feudal. Pero en tiempos de paz, los caballeros la simulaban mediante la celebración de combates deportivos llamados torneos. En 1180, en Lagny-sur-Manie (Francia), 3-000 caballeros armados lucharon contra otros tantos en un torneo multitudinario. Los torneos se regían por reglas estrictas: los participantes debían usar armas sin afilar, y un caballero no podía ser atacado si había perdido su casco. Asimismo, los golpes bajos eran una grave ofensa.

HERÁLDICA
Debido a que los contendientes llevaban el rostro cubierto por el yelmo, cada caballero que competía en un tomeo llevaba un estandarte y un escudo con una insignia particular. Estas divisas se hicieron importantes para identificar a los caballeros durante la batalla. Con el tiempo, estos emblemas sirvieron para identificar a las familias nobles. El sistema de codificación de las enseñas se conoce como «heráldica».

CAZA Y CETRERÍA Los nobles también se entretenían con la caza y la cetrería, actividades que los proveían de carne fresca. Las damas medievales participaban también en las partidas de caza.

MERCADERES MEDIEVALES
El comercio era una actividad próspera. Los principales comerciantes recibieron el nombre de «burgueses», palabra proveniente del alemán Burg (ciudad amurallada). Los comerciantes comenzaron a adquirir casas lujosas y a establecer vínculos con otras naciones.

LA LIGA HANSEÁTICA
En 1241, los comerciantes de Lübeck y Hamburgo, en el norte de Alemania, formaron la Liga H anseática, que estableció vínculos con países tan alejados como Rusia. Los mercaderes de la Liga H anseática se hicieron ricos y poderosos y comenzaron a considerarse iguales a los príncipes.

LA PESTE NEGRA
Durante cuatro años —de 1347 a 1351 — una epidemia de peste acabó con la vida de 25 millones de personas, casi una cuarta parte de la población de Europa. Después de esta plaga hubo una enorme escasez de mano de obra. Las gentes comenzaron a exigir mejores pagas y mejor tratamiento por parte de los señores.

Fuente Consultada:
Civilizaciones de Occidente Tomo A y B Jackson Spielvogel
La Aventura del Hombre en la Historia Tomo 1
Historia del Mundo Grupo Z Multimedia DK
Atlas de la Historia del Mundo Kate Santon y Liz McKay
Gran Enciclopedia de la Historia Todolibro

Explicación de la Tabla Periodica de los Elementos Quimicos

Explicación de la Tabla Periódica de los Elementos Químicos
Tabla de Mendeleiev

El estudio del átomo llevó a establecer algunas propiedades de los elementos químicos, que al ser comparadas con las de otros elementos, observaban similitudes, ofreciendo posibilidad de clasificación. Durante el siglo XIX Se acrecentó el interés por encontrar la manera de clasificar los elementos.

En 1869 el profesor de química de la universidad de San Petersburgo Dmitri Ivánovich Mendeléiev —un hombre liberal, feminista y excéntrico (sólo se cortaba el cabello una vez al año)— tuvo bastantes altercados con el gobierno zarista. Y el «memorándum» que distribuyó entre sus colegas en 1869 no impidió que el gobierno lo enviara varias veces al extranjero.

Se trataba sólo de un pequeño cuadro en el que los 63 elementos químicos conocidos aparecían ordenados por sus pesos atómicos, en orden creciente, y colocados de manera que los que tenían propiedades químicas parecidas estuvieran en una misma columna. La extraña periodicidad que esta disposición revelaba parecía totalmente arbitraria, máxime cuando Mendeléiev había hecho algunos apaños, corrigiendo ciertos pesos atómicos para que cuadraran o dejando huecos poco verosímiles.

En 1869 el químico ruso Dimitri Mendeleyev ideó un ingenioso catálogo de los elementos, la tabla periódica. Observó que los elementos parecen distribuirse en familias, que se repiten periódicamente, con propiedades químicas semejantes.

Siguiendo este criterio, anotó el símbolo químico y el peso atómico de todos los elementos conocidos y los ordenó, según su peso, en orden de menor a mayor; también colocó los elementos con propiedades semejantes en columnas verticales. De este modo formó un esquema, una especie de mapa donde los elementos aparecen ordenados en familias verticales y en períodos horizontales.

El hidrógeno, el más ligero de los elementos, ocupa un lugar algo apartado del conjunto, debido a sus propiedades especiales. En tiempo de Mendeleiev se creía que el átomo era indivisible, pero el descubrimiento de los rayos X y de la radiactividad provocaron la primera duda. Actualmente sabemos que el átomo está constituido por tres clases principales de partículas: protones, neutrones y electrones.

Protones y neutrones constituyen el núcleo del átomo. Los electrones, que giran en órbita alrededor del núcleo, determinan las propiedades químicas y, en consecuencia, la situación de los elementos en la tabla periódica.

A la izquierda de la tabla aparecen representaciones simplificadas de los átomos de los elementos pertenecientes a la familia de los metales alcalinos; sobre la misma se hallan los elementos del segundo período. Adviértase que todos los metales alcalinos poseen un solo electrón en la órbita externa; precisamente esta estructura similar es causa de su semejanza en las propiedades químicas.

En el segundo período la situación es completamente diferente. Aunque cada átomo tiene dos órbitas, varía el número de electrones de la exterior. La diferencia de estructura provoca la diferencia de propiedades. Según crece el número de electrones de la órbita exterior, las propiedades varían de izquierda a derecha, es decir, de los metales a los metaloides.

Cuando se completan los ocho electrones posibles de la órbita exterior (neón), concluye el segundo período. El sodio, que inicia el tercer período, posee una órbita más con un electrón. Los períodos aumentan y se hacen más complejos a medida que crece el número de órbitas.

También aumenta el número de electrones en las órbitas sucesivas. Los átomos pesados son los menos estables: todos los elementos posteriores al bismuto, cuyo número atómico es 83, son radiactivos.

Los elementos reciben un nombre que responde en algún:; casos a raíces latinas, y en otro en honor a la persona que los descubre. Éstos se abrevian en símbolos, si tiene una sola letras deberá, ser mayúscula y si lo componen dos, la primera mayúscula y la segunda minúscula por ejemplo nitrógeno (N) y  sodio (Na), respectivamente.

PRIMERAS CLASIFICACIONES DE LOS ELEMENTOS QUÍMICOS:

Las tríadas de Dobereiner: En 1829, Dobereiner, químico alemán, clasificó los elementos conocidos. Agrupaba tres elementos con características observables similares. La clave de esta forma de organización era el hecho de que para uno de los elementos que formaban el grupo, la masa era el valor promedio de las masas de los tres elementos, por ejemplo (Li, Na, K) cuyas masas son 7, 23, y 39 gramos respectivamente. Si sumas los tres datos y los divides entre el número de elementos (3) te da exactamente el valor de la masa del Na, el cual se ubica en la mitad. Clasificación dispendiosa y no muy exacta para nuevos elementos.

Octavas de Newlands: En 1864, Newlands, químico inglés, clasificó los elementos en grupos de ocho, por lo que se conocen como octavas de Newlands. Esta clasificación hacía alusión al término de periodicidad, ya que según la teoría, las propiedades de algunos elementos conocidos se repetían cada ocho elementos y básicamente las organizó en orden ascendente de sus pesos atómicos.

Mendeleiev y Meyer: la tabla periódica: En 1869 Dimitri Mendeleiev, químico ruso, retoma los estudios realizados anteriormente y basándose también en propiedades periódicas de los elementos, los organiza por orden de pesos atómicos ascendentes y, con algunas propiedades más, agrupó los elementos por familias en las que incluyó a los elementos con mayor cantidad de similitudes. Paralelamente Meyer, físico alemán, realizaba estudios basado en los mismos principios, pero añadió estudios de algunas propiedades físicas, que también resultaron ser periódicas, tales como el radio atómico. El gran aporte de Mendeleiev es la base de la tabla periódica actual, ya que dejó los espacios para elementos aún no descubiertos, que respondían a sitios vacíos en la tabla periódica.

REGIONES DE LA TABLA PERIÓDICA
La tabla periódica esta dividida a nivel general en metales y no metales. Sin embargo, hay otra diferenciación, que la divide en regiones, división basada en los subniveles energéticos que ocupan los electrones del ultimo nivel. Así la tabla periódica está dividida en la región s, la región p, la región d y la región f. Por ejemplo, en la región s se ubican los elementos cuyos e- finalicen su distribución en el subnivel s. En esta sección nos ocuparemos de las regiones d y f de la tabla periódica, correspondientes a los elementos de transición.

Elementos de transición
Los átomos de los elementos siempre tienden a ser estables energéticamente, por lo cual ceden, comparten o pierden electrones. Esta estructura estable coincide cuando en su último nivel hay ocho electrones, pero en el caso de este grupo particular de elementos, se suspende el llenado del último nivel para completar primero el penúltimo nivel. Por esta razón aunque los demás elementos de la tabla periódica tiendan a realizar sus enlaces utilizando los electrones del último nivel de energía, éstos lo hacen tanto con los electrones del último nivel, como con los del penúltimo. Se caracterizan además, por poseer gran cantidad de estados de oxidación, es decir, que involucran diferentes cantidades de electrones para intervenir en un enlace, lo que hace que formen varios compuestos. Los elementos que pertenecen a este grupo especial, son los pertenecientes a los lantánidos, actínidos y tierras raras.

Electronegatividad
Si se analizan las propiedades de los elementos químicos, también se puede establecer que hay periodicidad teniendo en cuenta la electronegatividad de los elementos químicos, que básicamente es la tendencia que tienen los átomos de atraer o captar electrones; son ejemplo de ello el oxígeno y el cloro, ya que la electronegatividad aumenta en un periodo de izquierda a derecha y en un grupo de abajo hacia arriba. Y si localizas estos dos elementos se ubican en los lugares más electronegativos de la tabla periódica. Este concepto fue establecido por L. Pauling, quien determinó valores de electronegatividad para cada uno de los elementos; algunos ejemplos se muestran en la tabla que sigue:

NaMgAlPClFBrIAtFr
0.91.21.52.13.04.02.82.52.20.7

Por otra parte y como compensación, existe otro grupo de átomos que tiende a perder los elec-trones, siendo estos los electropositivos. Por ejemplo el sodio y el calcio al poseer solamente 1 y 2 electrones, respectivamente, en su último nivel tienden a cederlos. De esta manera empieza también a evidenciarse la afinidad entre ellos, dado que el átomo que tiende a capturar se complementaría en un enlace químico con uno que tienda a ceder o perder electrones.

Valencia
Para establecer de qué manera los átomos se relacionan, es necesario saber la cantidad de electrones que un átomo puede atraer (ganar), ceder (perder) o compartir con otro átomo, concepto que se conoce con el nombre de valencia. La ilustración 3.16, muestra la forma como se relacionan dos átomos de dos elementos, para formar un compuesto: el átomo de sodio pierde un electrón, es decir su valencia es 1 y el átomo de cloro gana 1 electrón, entonces su valencia también es 1. En síntesis, la valencia es el poder de combinación de un elemento con otro, dado por los electrones del último nivel.

Enlace
La unión entre los átomos se denomina enlace, que es una fuerza de atracción lo suficientemente intensa como para permitir que los átomos involucrados funcionen como una unidad. Se realiza básicamente entre los electrones del ultimo nivel de energía y se produce cuando .las fuerzas de atracción superan las de repulsión, clasificándose, según la manera de establecer la unión. Así pues:

Enlace iónico: se origina cuando un átomo cede y otro captura los electrones.
Enlace covalente: se origina cuando los átomos involucrados comparten sus electrones, dado que tienen la misma fuerza de atracción.

tabla periodica de mendeleiv

Ver Una Tabla Periódica Con Mas Datos

TABLA ACTUAL CON PESOS ATÓMICOS APROXIMADOS

N° AtómicoNombre ElementoSímboloN° ProtonesN° ElectronesPeso Atómico
1hidrógenoH101,0
2helioHe224,0
3litioU346,9
4berilioBe459,0
5boro65610,8
6carbonoC6612,0
7nitrógenoN7714,0
8oxígeno08816,0
9flúorF91019,0
10neónNe101020,2
11sodioNa111223,0
12magnesioMg121224,3
13aluminioAl131427,0
14silicioSi141428,1
15fósforoP151631,0
16azufreS161632,1
17cloroCl171835,5
18argónA182239,9
19potasioK192039,1
20calcioCa202040,1
21escandioSe212445,0
22titanioTi222647,9
23vanadioV232850,9
24cromoCr242852,0
25manganesoMu253054,9
26hierroFe263055,8
27cobaltoCo273258,9
28níquelNi283058,7
29cobreCu293463,5
30cincXn303465,4
31galioGa313869,7
32germanioSe324272,6
33arsénicoAs334274,9
34seienioSe344679,0
35bromoBr354479,9
36criptónKr364883,8
37rubidioRb374885,5
38estroncioSr385087,6
39itrioY395088,9
40zirconioZr405091,2
41niobioNb415292,9
42tnolibdenoMo425695,9
43tecnecioTe4356(99)
44rurenic-Ru4458101,1
45rodioRh4558102,9
46paíadioPd4660106,4
47plataAg4760107,9
; 48cadmioCd4866112,4
49indioIn4966114,8
50estañoSn5070118,7
51antimonioSb5170121,8
52teluroTe5278127,6
53yodo15374126,9
54xenónXe5478131,3
55cesioCs5578132,9
56barioBaS682137,3
57laura noLa5782138,9
58ceñoCem82140,1
59 praseodimioPr5982140,9
60neodimioNd6082144,2
61prometióPm6186(147)
62samarloSm6290150,4
63europioEu6390152,0
64gadolinioGd6494157,3
65terbioTb6594158,9
66disprosíoDy6698162,5
67holmioHo6798164,9
68erbioEr6898167,3
69tuiioTm69100168,9
70iterbioYb104173,0
71lutecioLu71104175,0
72hafnioHf72108178,5
73tantalioTa73108180,9
74volframioW74110183,9
75renioRe75112186,2
76osmioOs76116190,2
77iridioIr77116192,2
78platinoPt78117195,1
79oroÁu79118197,0
80mercurioH980122200,6
81íalioTI81124204,4
82plomoPb82126207,2
83bismutoBi83126209,0
84pofonioPo84125(299)
85astatinoAt85125(210)
86radónRn86136(222)
87francioFr87136(223!
88radíoRa88138(226,0)
89actinioAc89138(227)
90torioTh90142(232,0)
91protactinioPa91140(231)
92uranioU92146(238,0)
93neptunioNp93144(237)
94plutonioPu94150(244)
95americioAm95148(243)
96curioCm96151(247)
97berkelioBle97152(249)
98californioCf?8151(249)
99einstenioEs99155(254)
100fermioFm100153(253)
101mendelevioMd101155(256)
102nobelioNo102152(254)
103laurencioLw103154(257)

ALGO MAS…
EL GENIO  INTRÉPIDO
A fines del siglo pasado flotaba ya en la atmósfera científica la idea de que al ordenar los elementos por peso atómico creciente aquellos de propiedades químicas comparables reaparecían en forma periódica. Por ejemplo, la serie alcalina litio-sodio-potasio-rubidio-cesio, o los halógenos flúor-cloro-bromo-yodo (algunos fueron descubiertos después).

Pero, a pesar de que en los más livianos dicha repetición tenía lugar de ocho en ocho y en los más pesados cada dieciocho elementos, había muchas lagunas y contradicciones.

Dimitri Mendeleiev elaboró una tabla en cuyas casillas se ordenaban en forma horizontal los pesos atómicos y vertical las «familias» de elementos químicamente similares.

Mendeleiev

Pero en su época se conocían menos de 45 cuerpos simples de los 103 que hoy forman la tabla periódica. El mérito capital del sabio ruso consistió en considerar que las fallas y vacíos del cuadro no eran imputables a éste, sino a los químicos que aún no habían descubierto el elemento destinado a intercalarse en el lugar que se le reservaba.

Así Mendeleiev vaticinó sin errores el peso atómico probable de varios elementos desconocidos, sus propiedades químicas esenciales y hasta las probables combinaciones naturales en cuyo interior se ocultaban.

Hubo dificultades. Fue necesario invertir, sin razón plausible, el potasio y el argón (hoy sabemos que una variedad de este último posee un neutrón más en su núcleo). Tampoco se sabía que la primera órbita periférica del átomo se satura con dos electrones (hidrógeno-helio), la siguiente con ocho,  etc.

Pero a pesar de su carácter empírico y sus enormes carencias, lo tabla de Mendeleiev resultó un armo prodigiosa para lo investigación científica y fue inmenso su buen éxito.

Fuente Consultada: Enciclopedia NUEVO Investiguemos Ciencia Integrada  Tomo 3

Ver: Naturaleza de la Materia

Inventos de Edison Bombilla Eletrica Fonografo Historia y Evolución

Inventos de Edison

Thomas Alva Edison es uno de los más famosos inventores de América: perfeccionó el telégrafo, el teléfono, inventó el mimeógrafo, aportó al cine y la fotografía, para, finalmente, gravar su nombre en el primer fonógrafo. Fue responsable de importantes cambios en la ciencia.

Sus inventos creados han contribuido a las modernas luces nocturnas, películas, teléfonos, grabaciones y CD’s. Edison fue realmente un genio. Edison es famoso por su desarrollo de la primera ampolleta eléctrica.

El fonógrafo de tinfoil fue la invención favorita de Edison. Hacia 1877, inventó la «máquina que habla» por accidente, mientras trabajaba en telegrafía y telefonía; pero el fonógrafo no salió a la venta sino hasta 10 años después. También trabajó en una máquina para grabar mensajes telegráficos automáticamente.

La primera demostración práctica, coronada con un éxito completo, tuvo lugar en Menlo Park, el 21 de octubre de 1879, y dio paso a la inauguración del primer suministro de luz eléctrica de la historia, instalado en la ciudad de Nueva York en 1882, y que inicialmente contaba con 85 abonados.

Para poder atender este servicio, Edison perfeccionó la lámpara de vacío con filamento de incandescencia, conocida popularmente con el nombre de bombilla, construyó la primera central eléctrica de la historia (la de Pearl Street, Nueva York) y desarrolló la conexión en paralelo de las bombillas, gracias a la cual, aunque una de las lámparas deje de funcionar, el resto de la instalación continúa dando luz.

Primera Llamada Telefonica de la Historia

Primera Llamada Telefónica de la Historia
Inventor Alexander Bell

La Revolución Industrial popularizó tanto los avances científicos como sus aplicaciones técnicas; el ferrocarril, la electricidad, el teléfono o las vacunas consiguieron que en la mentalidad de las sociedades europea y americana se estableciese el ideal de progreso continuado y una fe ciega en las posibilidades de la ciencia y la técnica: las exposiciones universales fueron un ejemplo de esta actitud.

Los propios científicos se convirtieron en propagandistas del progreso con la creación de instituciones y sociedades dedicadas a esta tarea, como la Royal Institution, fundada por Rumford en Londres (1799) y animada por científicos como Davy y Faraday.

Pronto se iniciará también una colaboración internacional plasmada en la celebración de congresos como los de estadística (1853), química (1860), botánica (1864) y medicina (1867).

Primera Llamada Telefónica de la Historia

Otro hecho interesante que hay que destacar es el de la conversión de la actividad científica en un acontecimiento de amplias repercusiones sociales, es decir, en un fenómeno sociológico.

Las aplicaciones de la física en la industria, o de la biología en la medicina, provocaron el cambio de actitud de la sociedad frente a los avances científicos.

Los gobiernos que desde el siglo XVI impulsaron la fundación de universidades y academias, iniciarán, a partir del despotismo ilustrado y por influencia de los enciclopedistas, una actuación que se podría calificar de «política científica».

Estas acciones supondrán la extensión de la enseñanza superior, cambios en los planes de estudio y realización de tareas científico-técnicas fomentadas y financiadas por las monarquías del Antiguo Régimen. Academias, observatorios y expediciones científicas se prodigarán en Europa durante el siglo de las Luces.

Una derivación del telégrafo que finalmente tuvo un efecto igual de grande fue el teléfono.

Patentado en Estados Unidos en 1876 por Alexander Graham Bell, y perfeccionado por el inventor Tomás Alva Edison, el teléfono pronto se asentó.

En 1884, la compañía de Bell puso en funcionamiento la primera línea de larga distancia entre Boston y Nueva York.

Las redes de cables, parte vital para las comunicaciones, fueron desarrolladas en varias naciones. Marcar los números sin recurrir a la operadora aceleró el proceso telefónico y, poco después, la mayoría de las grandes ciudades contaron con sus propias redes.

El teléfono en una exposición: Es casi seguro que Bell no se diese cuenta de la inmensa trascendencia de su invento, pero lo cierto es que en el mes de julio de 1876, se celebró en Filadelfia una gran exposición con motivo de la conmemoración de la independencia de Estados Unidos.

Es muy posible que Bell no pensara llevar su invento a dicha exposición, puesto que tal vez consideraba que el aparato, compuesto por un receptor harto rudimentario, un transmisor y un hilo que hacía vibrar la membrana metálica, que Bell ya había patentado con el nombre de teléfono, no era digno de figurar en una exposición de tanto prestigio.

Pero intervino el amor. Efectivamente, Bell fue a la estación de Boston a despedir a su amada que, junio con su padre, se marchaba a Filadelfia.

El joven subió a un vagón, incapaz de contener los impulsos de su enamorado corazón, y así llegó a la capital de Pennsylvania. Luego, pidió por carta a Watson que le enviase el aparato, y logró exponerlo en un rincón

Durante varios días nadie se acercó a conocer su invento. Pero de pronto se produjo el milagro. El mismo  día en que la Comisión se disponía a conceder los diversos premios establecidos, un personaje con gran séquito, nada menos que el emperador Pedro, del Brasil, se acercó a la mesa de Bell.

Lo cierto era que el emperador había conocido al joven Bell cuando éste enseñaba a los sordomudos en su país. Tan pronto como el Emperador reconoció a Bell, lo abrazó, con gran asombro de todos los presentes y, como es natural, todos se interesaron por el inventor y su invento.

El propio Emperador, después de oír unas palabras a través del receptor, exclamo:
—Este aparato habla!

Estas palabras cambiaron por completo la vida y la fortuna de Alexander Graham Bell.

La aludida Comisión estudió el aparato, y de aquella exposición surgieron dos cosas importantísimas en la vida de Bell: su boda con su amada y la intervención de su suegro en las patentes del joven, todo lo cual tuvo como epílogo la producción del teléfono en serie, su perfeccionamiento y su propagación por todo el mundo.

Sólo hubo una amargura en medio de su triunfo:
Bell, que había dedicado gran parte de su juventud a enseñar a vocalizar y hablar a los sordomudos, jamás consiguió que su linda esposa, sordomuda también, llegase a hablar y a oír a su marido, ni por teléfono ni de viva voz.

ANTECEDENTES DE LA ÉPOCA: Las ventajas materiales constantemente crecientes y a menudo espectaculares, generadas por la ciencia y la tecnología, dieron lugar a un aumento de la fe en los beneficios de esta rama del saber y el hacer humanos. Aun la gente ordinaria que no entendía los conceptos teóricos de la ciencia estaba impresionada por sus logros.

La popularidad de los logros científicos y tecnológicos condujo a la extendida aceptación del método científico, basado en la observación, el experimento y el análisis lógico, como único camino a la verdad y a la realidad objetivas. Esto, a su vez, minó la fe de mucha gente en la revelación y la verdad religiosas.

No es por accidente que el siglo XIX llegó a ser una época de creciente secularización, que de manera particular se manifiesta en el crecimiento del materialismo o la creencia de que todo lo mental, espiritual o sentimental era, sencillamente, una excrecencia de las fuerzas físicas.

La verdad había de encontrarse en la existencia material concreta de los seres humanos, no como la imaginaban los románticos, en las revelaciones obtenidas por destellos del sentimiento o de la intuición.

La importancia del materialismo fue asombrosamente evidente en el acontecimiento científico más importante del siglo XIX, el desarrollo de la teoría de la evolución orgánica mediante la selección natural. Sobre las teorías de Charles Darwin podría construirse un cuadro de los seres humanos como seres materiales, que eran parte sencillamente del mundo natural.

Primera Asociacion Internacional de Trabajadores del Mundo

Primera Asociación Internacional de Trabajadores del Mundo

La Primera Internacional y la Comuna

La expansión del sistema capitalista a través de la industrialización progresiva del continente generalizó las condiciones de vida de los obreros, pero también sus reivindicaciones. Al mismo tiempo, la actuación coordinada de los diferentes gobiernos contra los opositores políticos redundaba en la necesidad de la cooperación más allá de la diversidad nacional.

La toma de conciencia por parte de la clase trabajadora fue más rápida que la manifestación práctica de esa doble realidad. Los primeros intentos organizativos sucumbieron a causa de las numerosas tendencias socialistas y la represión gubernamental. La recuperación del asociacionismo obrero tras las revoluciones de 1848 creó nuevas expectativas gracias a la aportación marxista. Ambos factores condujeron a la fundación de la Asociación Internacional del Trabajadores (AIT) en 1864, conocida históricamente como la Primera Internacional.

Como decíamos antes, en 1864 se fundó en Londres la Asociación Internacional de Trabajadores, formada por sindicatos ingleses y franceses de obreros especializados, buscando en ella más una asistencia mutua de tipo sindical que un programa de acción política de tipo colectivista, a pesar de que Marx fue su principal impulsor y quien redactó el mensaje inaugural: “La Internacional es prohibida en la mayor parte de los países y aunque divisiones internas entre anarquistas y marxistas le restan mucha fuerza, aun así consiguió cierta extensión, no solamente en Europa, sino también en Estados Unidos”.

Los antecedentes más cercanos acerca de una organización internacional de trabajadores se encuentran en la Liga de los justos (1826), convertida a instancias de Marx en Liga de los Comunistas. Otros precursores fueron la británica Fraternal Democrats y la belga Association Démocratique. El último paso está representado por la International As

ESTATUTO DE LA PRIMERA INTERNACIONAL

Art. 1°: Se establece una asociación para procurar un punto central de comunicación y de corporación entre los obreros, de diferentes países, que aspiran al mismo objetivo, a saber: el concurso mutual, el progreso y la total liberación de la clase obrera.

Art. 2°: El nombre de esta asociación será: Asociación Internacional de Trabajadores.

Art. 3°: En 1865 tendrá lugar, en Bélgica, la reunión de un Congreso General. Este Congreso deberá dar a conocer a Europa las comunes aspiraciones de los obreros, concluir el reglamento definitivo de la Asociación Internacional, examinar los mejores medios para asegurar el éxito de su trabajo y elegir el Consejo General de la Asociación. El Congreso se reunirá una vez al año.

Art. 4°: El Consejo General radicará en Londres y constará de obreros que representan a las diferentes naciones que formen parte de la Asociación Internacional. (…)

En París, en 1871, se produjo una insurrección obrera que consiguió controlar la ciudad durante más de un mes.

La Comuna fue una sublevación espontánea contra los elementos conservadores que habían triunfado en las elecciones, a pesar de haber sido los responsables de la derrota, los sufrimientos del asedio de la ciudad y la capitulación frente a los prusianos.

El manifiesto de la Comuna fue un auténtico proyecto para crear un Estado socialista formado por municipios comunes— libres y autónomos, federados entre sí a nivel nacional e incluso internacional. Se adoptó la bandera roja como enseña, se decreté la separación de la Iglesia y el Estado, y se realizó una avanzada legislación social que reglamentaba el trabajo.

La Comuna de París tendría una enorme resonancia en el mundo, tanto entre el dividido movimiento obrero, que por primera vez veía la realización práctica de sus programas, como entre las burguesías y los gobiernos europeos, que se disponían a tomar medidas represivas en previsión de hechos similares.

La Comuna, totalmente aislada y sin ningún apoyo exterior, fue aplastada después de una terrible represión del ejército francés; se calcula que el número de ejecuciones ascendió a unas 20 mil. Con ello también la Internacional en el Congreso de La Haya, de 1872, entró definitivamente en crisis, tanto por los enfrentamientos internos como por su fracaso en acudir en ayuda de la Comuna de París o en no haber logrado evitar la guerra franco-prusiana, que fue un preludio del fracaso similar del movimiento obrero europeo de 1914.

La fundación. La Primera Internacional surgió de la colaboración entre las clases obreras británica y francesa, en consonancia con la mayor industrialización de sus respectivos países. El sindicalismo británico practicaba una acción reformista sin ninguna referencia al socialismo. Las corporaciones de oficios (trade-unions) sólo agrupaban a los obreros cualificados, interesados en ampliar los derechos políticos y sindicales.

Logros Cientificos Siglo XIX La Teoria Electromagmetica

Logros Científicos Siglo XIX
Teoria Electromagnética de Maxwell

La caída del principio de «libre competencia», bajo la aplastante tendencia a la concentración de la producción y los capitales en la segunda fase de la Revolución Industrial, supuso también una transformación importante en el desarrollo del quehacer científico y en la elaboración de las nuevas técnicas.

Durante el proceso de la industrialización, el desarrollo científico y técnico no conocía más ritmos que el de un progreso lineal constante. Sin embargo, la producción científica caminaba dentro de los márgenes de una cierta autonomía, pero siempre bajo la tutela del empresario capitalista emprendedor.

El estímulo económico de la libre competencia repercutía, sin duda, en el campo de la investigación.

Por otra parte, las fuertes crisis cíclicas del capitalismo industrial, fundamentalmente de superproducción, forzaban a condicionar la técnica a una continua depuración.

Había un hilo común que iba de estas crisis de superproducción, a través de la caída de los precios y el desempleo que produce el maquinismo, hasta la caída del nivel de consumo de las clases trabajadoras.

Ver Una Completa Biografia de Maxwell

JAMES C. MAXWELL En la historia de la ciencias  hay algunos científicos virtualmente desconocidos para el gran público, aunque sus logros sean casi tan importantes como los de los de Einstein, Darwin y Newton. Éste es el caso del físico escocés James Clerk Maxwell.

Los científicos profesionales, y los físicos en particular, lo reconocen como uno de los más inteligentes e influyentes que hayan vivido nunca, pero fuera de los círculos científicos su nombre apenas es conocido.

Maxwell nació en Edimburgo, en 1831, el mismo año en que Faraday logró su máximo descubrimiento, la inducción electromagnética, en 1831. Descendiente de una antigua familia de nobles blasones, Maxwell era un niño prodigio.

En 1841 inició sus estudios en la Academia de Edimburgo, donde demostró su excepcional interés por la geometría, disciplina sobre la que trató su primer trabajo científico, que le fue publicado cuando sólo tenía catorce años de edad.

A pesar de que su madre murió cuando tenía ocho años, tuvo una infancia feliz. A una edad temprana ya demostró ser una promesa excepcional, sobre todo en matemáticas.

Cuando tenía quince años, sometió un escrito sobre matemáticas a la Royal Society de Edimburgo, que asombró a todos los que lo leyeron. Al año siguiente tuvo la suerte de conocer al físico de setenta años William Nicol, que también vivía en Edimburgo.

Nicol había hecho un trabajo importante utilizando cristales para investigar la naturaleza y la conducta de la luz, y las conversaciones adolescentes de Maxwell con él hicieron que sintiera un interés por la luz y otras formas de radiación que le duró toda la vida.

Estudió matemáticas con sobresaliente en Cambridge y se graduó en matemáticas en 1854; siendo estudiante, tuvo la experiencia intelectual que definió su vida: la lectura de las Investigaciones experimentales en electricidad de Faraday. Todavía estudiaba cuando realizó una gran contribución al desarrollo del tema con un brillante escrito titulado Sobre las líneas de fuerza de Faraday.

Más tarde fue asignado a la cátedra de filosofía natural en Aberdeen, cargo que desempeñó hasta que el duque de Devonshire le ofreció la organización y la cátedra de física en el laboratorio Cavendish de Cambridge.

Tal labor lo absorbió por completo y lo condujeron a la formulación de la teoría electromagnética de la luz y de las ecuaciones generales del campo electromagnético.

En 1856, a los veinticinco años, fue nombrado profesor en el Marischal College de Aberdeen; y en 1860 se trasladó al Kings College de Londres como profesor de filosofía natural y astronomía. Fue en esa época de la mudanza a Londres cuando realizó su primera gran contribución al avance de la física.

En tal contexto, Maxwell estableció que la luz está constituida por ondulaciones transversales del mismo medio, lo cual provoca los fenómenos eléctricos y magnéticos. Sus más fecundos años los pasó en el silencioso retiro de su casa de campo. Allí maduró la monumental obra «Trealise on Electricity and Magnetism» (1873).

James Clerk Maxwell falleció en Cambridge, el 5 de noviembre de 1879.

ALGO MAS…

1-Formuló la hipótesis de la identidad de la electricidad y la luz.

2-Inventó un trompo para mezclar el color y un oftalmoscopio, instrumento que permite ver el interior del ojo de una persona viva, o de un animal. Experimentalmente demostró que la mezcla de dos determinados pigmentos de pintura constituía un proceso diferente a la mezcla de los mismo colores de luz.

Sus principios fundamentales sobre la mezcla de colores se emplea en la actualidad es la fotografía, la cinematografía y la televisión.

3-Maxwell corrigió a Joule, Bernouilli y Clausius que habían sostenido que propiedades de los gases como la densidad, la presión, le temperatura eran debidas a que un gas está compuesto de partículas de movimiento rápido y velocidad constante.

Maxwell demostró que la velocidad no es constante y que varía de acuerdo con la curva de frecuencia en forma de campana que se conoce como ley de Maxwell. Sus descubrimientos han servido de fundamento a las teorías de las física del plasma. Maxwell inventó la mecánica estadística para analizar las velocidades moleculares de los gases.

LA REVOLUCIÓN CIENTÍFICA Primeras Sociedades Cientificas Edad Moderna

 REVOLUCIÓN CIENTÍFICA DEL MUNDO MODERNO:

La Revolución Científica representa un punto crucial en la moderna civilización occidental; con ella, Occidente echó por tierra visión medieval y ptolomeico-aristotélica del mundo y llegó a  una nueva visión del universo: el Sol en el centro, los planetas  como cuerpos materiales girando alrededor del astro en orbitas elípticas y un mundo infinito, más que finito.

Con los cambios en la visión del «cielo» vinieron los cambios en la visión de la Tierra». La obra de Bacon y Descartes dejó a los europeos con la separación de mente y materia y la creencia de que, valiéndose de la razón, podrían comprender y dominar el mundo de la naturaleza.

El desarrollo de un método basado en la ciencia favoreció la obra de los científicos, al tiempo que la creación de edades y publicaciones especializadas difundía sus resultados.

Si bien las iglesias tradicionales se oponían de manera obstinada a las nuevas ideas y algunos intelectuales indicaban ciertos errores, nada pudo detener la sustitución de los modos tradicionales de pensar con nuevas formas de pensamiento que generaron un rompimiento más decisivo con el pasado que el representado por el colapso de la unidad cristiana con la Reforma.

La Revolución Científica obligó a los europeos a cambiar su visión de ellos mismos; al principio, algunos se consternaron e incluso se aterrorizaron por las implicaciones.

Antiguamente, los humanos en la Tierra habían estado en el centro del universo, ahora el mundo era un minúsculo planeta que giraba alrededor de  un Sol que, en sí mismo, no era sino una mancha en el  infinito universo. La mayoría de la gente se mantuvo optimista a pesar del aparente golpe a la dignidad humana.

Después de todo,  Newton no había demostrado que el universo era una enorme maquinaria controlada por leyes naturales? Newton había descubierto una de éstas: la Ley de la gravitación universal.

¿No podrían descubrirse más leyes? ¿No habría leyes naturales que explicaran cada aspecto del esfuerzo humano, que pudieran encontrarse por medio del nuevo método científico? Así, la Revolución Científica nos conduce lógicamente a la edad de la Ilustración del siglo XVIII.

La auténtica revolución del mundo moderno culminó en los siglo  XVII y XVIII con una renovación completa del universo del conocimiento. Hasta el s. XVI, la ciencia había permanecido íntimamente ligada a la a la filosofía.

Las investigaciones que se habían hecho durante el Renacimiento sobre todo en el terreno de la medicina y en el de la astronomía, habían sido violentamente combatidas por la Iglesia, la obra de un Leonardo da Vinci, que intentaba reunir en un conjunto coherente todo el saber de su tiempo, quedó como una experiencia aislada; las escisiones religiosas del s.XVI no favorecieron prácticamente en nada la expansión de la ciencia.

En los albores del s. XVII empiezan a manifestarse los primeros signos del extraordinario florecimiento de investigaciones y descubrimientos que habrán de fundar la ciencia y la técnica de las que ha nacido el mundo contemporáneo.

Este auge del conocimiento es el fruto del enorme trabajo que se lleva a cabo primero en Italia. y luego en el resto de Europa, para trazar lo que podría llamarse el inventario cultural de la humanidad; la resurrección de las antigüedades griegas, latinas y hebreas, tarea emprendida por los humanistas, es la fuente del impulso intelectual de la era clásica que tendrán a su disposición los herederos de la historia mediterránea.  

El gran movimiento intelectual que comienza hacia el año 1620 tiene por artífices a Galileo, Kepler, Descartes, Leibniz y Newton. Profesores de universidades, provocan conflictos teológicos, ya que la iglesia, que había condenado a Galileo, no integra el progreso científico en su visión del mundo. Discípula de Aristóteles, no puede aceptar un mundo en movimiento, regido por leyes matemáticas. Y, sin embargo, los sabios del s. XVIII, con instrumentos de óptica y de cálculo perfeccionados, demuestran que es el sol el que está en el centro del universo y que la sangre no es un liquido estancado. Sin embargo, para la mayoría de los creyentes ponen la religión ,en entredicho.

¿Qué papel desempeñan Los libros? El desarrollo de la imprenta a lo largo de todo el s. XVI desempeñará un papel determinante en la evolución de las ideas.

La difusión de lo escrito estuvo en un principio vinculada a los conflictos religiosos: protestantes y católicos multiplican los libelos.

Indirectamente, las ciencias se aprovecharán de este considerable interés concedido a la imprenta. El mercado del libro empieza a organizarse.

¿Se adelanta la técnica a la ciencia? Al aventurarse a conquistar el mundo, Europa se ve obligada a adquirir los instrumentos necesario para esa conquista.

Los progresos empíricos de la navegación habían ayudado a los navegantes portugueses o españoles a explorar los océanos; pero cuando los viajes a Asia y America se multiplican, es necesario hacerse con técnicas adaptadas a las nuevas necesidades de la humanidad.

Son los comerciantes, y en consecuencia los artesanos y los industriales, quienes reclaman el perfeccionamiento de nuevos procedimientos.

¿Cuál es el punto de referencia de la ciencia? La ciencia, al alejarse de su empirismo tradicional, se lanza a la búsqueda de sus fundamentos conceptuales y de las leyes abstractas que rigen la existencia del cosmos.

Es el cielo mismo el que suministra el modelo básico. La armonía oculta que regula las relaciones de los astros con la tierra indica que existe una organización cuyas reglas hay .que desentrañar.

¿Cómo nacen las ciencias de la vida? El prodigioso desarrollo de las matemáticas durante el s. XVII vuelve a hacer que los hombres se pregunten sobre el mundo concreto que les ha tocado vivir. Abre, por tanto, una nueva visión de las ciencias naturales y de las humanas.

La Zoología, la Botánica y la Geología serán el centro de las preocupaciones en los albores del s. XVIII: el problema está en descubrir la organización general de las especies vivientes y en estudiar las mutaciones de nuestro hábitat terrestre.

Esta intensa curiosidad tendrá como consecuencia la expansión de las investigaciones sobre el mundo animal y vegetal, reemprendidas poco después por los enciclopedistas.

¿Existe una ciencia de la sociedad? A imagen y semejanza de lo que revelan la armonía del cielo y la organización de la materia, la existencia colectiva de la especie humana ha de tener también sus reglas; la anarquía que tan a menudo reina entre los hombres, y que engendra guerras y revoluciones, tiene su origen en nuestra ignorancia acerca del funcionamiento del juego social.

Esto es lo que piensan a comienzos del s. XVIII un gran número de filósofos. Así nacen, siguiendo los pasos de las matemáticas y las ciencias naturales, la sociología y la antropología.

Y es esta esperanza de arrojar alguna luz sobre los escondidos resortes de la historia humana lo que da al s. XVIII su impulso y su energía creadora.

¿Cuál fue la aportación del microscopio? En esta revolución del pensamiento, la astronomía ocupa un lugar predominante, y el telescopio se perfecciona sin cesar. Pero el desarrollo de la lente astronómica acaba desembocando en la utilización del microscopio, que permite confirmar numerosas hipótesis.

Para empezar, están los trabajos de William Harvey sobre la circulación de la sangre: sus sucesores descubrieron la existencia de los capilares. Al final de su trayecto, la sangre arterial pasa a las venas para ser purificada en los pulmones, que filtran el gas carbónico.

Gracias al microscopio, Malpighi puede observar los lóbulos hepáticos y, sobre todo, una parte del funcionamiento del riñón.

El holandés Lewenhoeck descubre en 1677 los espermatozoides y en 1688 los glóbulos rojos, y muestra asimismo la estriación de las fibras musculares. Después de haber trabajado sobre lo infinitamente grande, los hombres se centran en lo infinitamente pequeño.

¿Cuándo nacen las sociedades científicas? En el s. XVII existe un verdadero medio científico. Las obras circulan de un país a otro, escritas casi siempre en latín, que hace de lengua internacional.

Este movimiento se ve favorecido por el desarrollo de las imprentas y las librerías, y también por hombres como el padre Mersenne, que manda hacer traducciones francesas de libros científicos.

Crea en Paris una especie de academia que será el anteceder e de la Academia de ciencias organizada por Colbert en 1666.

Los miembros de esta última reciben becas, pero deben estudiar con prioridad las cuestiones impuestas por el Estado.

A su fundación sucederá la de un observatorio astronómico. Pero es en Italia donde nacen las primeras academias: en Roma primero Y sobre todo en Florencia.

La Academia del Cimente fue creada en 1657 bajo el patrocinio de los Médicis, y su primer designio fue el de coordinar las experiencias sobre el vacío. Las academias españolas nacieron en el s. XVIII bajo la influencia francesa.

Descubrimientos del Mundo Moderno:

Los descubrimientos clave en los campos de la ciencia, las matemáticas y la filosofía contribuyeron al rápido desarrollo de la sociedad europea de la época.

Entre los inventos científicos más destacados figuraba la construcción del microscopio durante el siglo XVI. Si bien se desconoce quién fue su inventor, su perfeccionamiento suele atribuirse al holandés Antón van Leeuwenhoek.

En 1643, Torricelli inventó el barómetro, usado para medir la presión atmosférica. La bomba de vacío, construida por vez primera por Otto von Guericke en 1645, fue un invento que posteriormente demostró ser vital para la innovación industrial y la invención del motor.

El primer motor a vapor lo patentó en 1698 Thomas Savery, a quien habían encargado idear un dispositivo que extrajera el agua de los tiros de las minas mediante bombeo.

En 1714, Daniel Gabriel Fahrenheit creó el primer termómetro de mercurio de precisión y, en 1731, John Hadley inventó el sextante, que mejoró sobremanera la navegación náutica. Rene Descartes vivió entre 1596 y 1650 y realizó contribuciones esenciales a los métodos matemáticos.

Descartes, cuyos métodos estaban estrechamente ligados al pensamiento filosófico, suele considerarse el padre de la matemática moderna.

Isaac Newton (1642-1727), filósofo y matemático inglés, fue autor de tres descubrimientos cruciales: el método de cálculo, la composición de la luz y, el más famoso de todos ellos, la ley de la gravedad.

Estos y otros descubrimientos alentaron una sensación general de entendimiento del mundo y fueron el preludio de la era conocida como la Edad de la Razón o el Siglo de las Luces.

La revolución en medicina

El principal error de la medicina del siglo xvn radicaba en la aceptación de la teoría tomada por Galeno de Aristóteles y otros, según la cual las enfermedades tenían su origen en el desequilibrio entre los cuatro humores corporales: sangre, flema, bilis amarilla y bilis negra. Para Galeno, la sangre fluía hacia arriba y hacia abajo, y las venas y arterias eran independientes.

El médico suizo-alemán von Hohenheim (1493-1541) se enfrentó abiertamente a esta hipótesis despreciando cualquier otra teoría ajena. Hohenheim, que se llamaba a sí mismo «Paracelso», rechazó la idea de los «humores corporales» y su supuesto papel en las enfermedades.

En su opinión, éstas tenían lugar a escala local, en órganos específicos, y para eliminarlas había que tratar el órgano afectado con productos químicos.

Los trabajos de este «Paracelso» sobre el diagnóstico precoz y la cura de las enfermedades encontró un paralelo, en el campo de la anatomía, en los del médico y profesor belga Andreas Vesalio (1514-64).

Las exhaustivas investigaciones del cuerpo humano que Vesalio llevó a cabo reafirmaron su convicción de que la anatomía de Galeno, basada en disecciones de animales, distaba mucho de la realidad. Vesalio publicó sus observaciones en De humani corporis fabrica (Sobre la estructura del cuerpo humano) en 1543.

Vesalio no se apartó, sin embargo, totalmente de la medicina de Galeno, sino que suscribió las ideas de éste sobre la circulación de la sangre. Estas ideas tuvieron vigencia hasta que, en 1628, el erudito inglés sir William Harvey (1578-1657) publicó De motu coráis et sanguinis (Sobre el movimiento del corazón y de la sangre). Harvey presentaba aquí el corazón como la dinamo central del sistema circulatorio —para Galeno era el hígado— y demostraba la conexión de venas y arterias.

El primero en describir la circulación pulmonar y su papel en la purificación de la sangre había sido, en realidad, Miguel Servet (h. 1511-1553), científico y reformista español exiliado en Francia al que Calvino acusó de herejía y condenó a morir en la hoguera.

Los esfuerzos conjuntos de éstos y otros estudiosos e investigadores dieron un poderoso impulso al progreso de la medicina.

La química fue la Cenicienta de la época a pesar de que en este período se formuló la famosa ley de Robert Boyle, según la cual el volumen de un gas varía en proporción inversa a la presión ejercida sobre él. Boyle, de origen irlandés, fue también el autor de El químico escéptico, donde tira por tierra la teoría de los cuatro elementos terrestres de Aristóteles.

Al negar la existencia de los elementos químicos fue, sin embargo, demasiado lejos. Fue éste un error fundamental ya que, sin el reconocimiento y la investigación de tales elementos, la revolución en el campo de la química se había hecho de todo punto imposible.

Los avances de la época de la revolución científica, aunque desiguales, no afectaron sólo al mundo de las ciencias.

Los nuevos caminos en la esfera del pensamiento científico produjeron en la literatura una prosa más sencilla y clara.

Ayudaron a introducir la estadística en el gobierno como medio de conocer la población y los recursos de la nación. Las nuevas teorías fomentaron el escepticismo religioso y, en 1682, llevaron al escritor francés Pierre Bayle a afirmar que la religión y la moralidad no tenían nada que ver.

Entre las distintas repercusiones y efectos, el más significativo fue, sin duda, la forma en que la nueva ciencia dividió a la sociedad en personas cultas, que se entregaron a ella con entusiasmo, e incultas, cuyas ideas sobre el mundo material y espiritual permanecieron enraizadas en el pasado medieval, lo que no dejaba de ser una ironía.

En la Edad Media, sabios y campesinos estaban unidos por la creencia en la total separación de la Tierra imperfecta y el Cielo perfecto.

A finales del siglo XVII, se escindieron en dos grupos antagónicos, y la causa fue, simplemente, la nueva concepción científica de que el Cielo y la Tierra eran una misma cosa con todas sus imperfecciones, contempladas, éstas, desde su particular punto de vista.

cuadro sintesis revolucion cientifica

Fuente Consultada:
La Historia de la Humanidad de Hendrik Willem van Loon.
Revista Enciclopedia El Árbol de la Sabiduría Fasc. N°55 La Revolución Científica.

El Pararrayos de Benjamin Franklin Experiencia Barrilete Invento de

El Pararrayos de Benjamín Franklin
Historia de la Experiencia del Barrilete

Benjamín Franklin, científico: (Boston, 17 de enero de 1706 – Filadelfia, 17 de abril de 1790) Filósofo, político, físico, economista, escritor y educador, figura clave en la Independencia de los Estados Unidos de Norteamérica, creó las bases de lo que hoy se entiende como «el ciudadano americano ejemplar».Era el decimoquinto de los hijos y comenzó a aprender el oficio de su padre, que era un pequeño fabricante de velas y jabón.

Cansado de este trabajo, se colocó a los 12 años en la imprenta de un familiar, desarrollándose así su amor a la cultura. El escaso tiempo libre lo empleaba en devorar todo tipo de libros que caían en sus manos.

Sus primeros versos y artículos los publicó en un periódico que su cuñado había fundado. A los 17 años, debido a discusiones con él, se traslada a Nueva York para hacer fortuna. Respaldado por el gobernador de Filadelfia, instala una imprenta y decide ir a Londres a comprar el material. Allí, olvidándose un poco de sus propósitos principales, trabaja en la imprenta Pelmer, conociendo a distinguidas personalidades.

PARARRAYOSEn cambio, el exceso atraía a la deficiencia, y el fluído eléctrico se vertía del exceso a la deficiencia, neutralizándose ambos y quedando descargados.

Franklin propuso que el exceso se llamara electricidad positiva, y la deficiencia, electricidad negativa. No se especificaba qué variedad de electricidad, la vítrea o la resinosa, era positiva y cuál negativa.

Franklin conjeturó arbitrariamente y se equivocó, pero eso es irrelevante. Pueden utilizarse los nombres y olvidarse los significados literales.

Franklin observó cómo se descargaba la botella de Leyden. Cuando la carga eléctrica se agotaba, emitía una chispa (luz) y un chasquido (sonido).

A Franklin le sorprendió la semejanza entre la chispa —un rayo en pequeño— y el chasquido —un pequeño trueno—. Entonces invirtió el razonamiento: durante una tormenta, ¿acaso tierra y cielo formaban una gigantesca botella de Leyden, y el rayo y el trueno significaban una descarga igualmente gigantesca?

Decidió experimentar. En 1751, hizo volar una cometa durante una tormenta. La cometa iba provista de una punta metálica a la que estaba unido un largo hilo de seda. Al final del hilo, cerca de donde se encontraba Franklin (que sujetaba el hilo de seda con un segundo hilo que permanecía seco), había una llave de metal.

Cuando se concentraron las nubes de tormenta y el hilo empezó a dar muestras de carga eléctrica (las fibras separadas se repelían unas a otras), Franklin puso el nudillo cerca de la llave, y ésta chisporroteó y crujió igual que una botella de Leyden. Además, Franklin cargó una de esas botellas sirviéndose de la llave, con la misma facilidad que si fuera una máquina de fricción.

La botella de Leyden cargada con electricidad del cielo se comportaba exactamente igual que si se hubiera empleado electricidad terrestre. O sea que ambas eran idénticas.

Franklin fue capaz de dar una inmediata aplicación práctica a su descubrimiento. Decidió que el rayo se abatía sobre un determinado edificio cuando éste almacenaba una carga durante una tormenta. Su experiencia con la botellas de Leyden le demostraba que éstas se descargaban con mucha mayor facilidad si se las proveía de una aguja.

Es decir, que la carga se disipaba con tanta rapidez a través de la aguja, que las botellas no podían ser cargadas a la primera. ¿Por qué no, entonces, fijar una varilla metálica puntiaguda en lo alto de un edificio y conectarla adecuadamente con el suelo, a fin de que cualquier carga que almacenara pudiera descargarse rápida y silenciosamente, y que ninguna carga se acumulara hasta el punto de desencadenar una descarga de consecuencias desastrosas?

Franklin publicó sus ideas sobre la materia en 1752 en Poor Richard’s Almanac, y en seguida empezaron a instalarse los pararrayos (líghtning rods, «varillas para el rayo»), primero en América y luego en Europa. Demostraron su eficacia, y por vez primera en la historia una catástrofe natural no se prevenía mediante la plegaria o los encantamientos mágicos de una u otra clase, que realmente nunca daban resultado, sino por la confianza en la comprensión de las leyes naturales, que sí era eficaz.

En cuanto los pararrayos aparecieron en los campanarios de las iglesias (que al ser el punto más elevado de la ciudad eran particularmente vulnerables), la cuestión quedó clara para todos.

PARA SABER MAS…

Aunque se lo recuerda sobre todo como hombre de estado, Benjamín Franklin realizó también valiosas contribuciones al conocimiento científico. Nació en 1706 y era el número quince de los hijos de una modesta familia de Boston. Fue, principalmente, autodidacto, pero asistió durante algún tiempo a la escuela local.

A la edad de 12 años era aprendiz de impresor. Cinco después dejó su ciudad natal para dirigirse a Filadelfia, donde continuó dedicado a ese trabajo.

En 1729 se estableció y abrió con buen éxito su propia impresora, y compró la Pennsylvania Gazette. Poco después, inició su carrera política como secretario de la asamblea general de Pensilvania. En 1751 fue elegido miembro de ésta Corporación y de 1753 a 1774 lo nombraron administrador general de correos de las  colonias norteamericanas.

Visitó Inglaterra en diversas ocasiones, a fin de negociar con el gobierno británico asuntos de interés para los colonos. Fue durante estos viajes cuando realizó una serie de experiencias que demostraron las características y el curso de la corriente del golfo de México, una corriente de agua templada que se dirige desde el golfo, por la costa este de Norteamérica, hacia el Norte, y en las costas de Newfoundland cambia de rumbo, hacia el Este y atraviesa el Atlántico.

Para levantar la carta de esta corriente, determinó la temperatura del agua del océano a diversas profundidades. Las naturalezas del trueno y del rayo habían interesado durante siglos a los científicos y a los filósofos, pero a Franklin lo llevó este interés a investigarlas experimentalmente.

Para ello, preparó un barrilete, que fijó con un clavo al extremo de un cordel. Cerca del otro extremo lo prendió con una llave. Lanzó el barrilete cuando pasó sobre su cabeza un nubarrón-tormentoso y, en seguida, saltó de la llave una gran chispa eléctrica. Pudo ser algo muy peligroso, puesto que no había preparado ningún aislador en esta parte del cordel del barrilete.

Como la lluvia empapaba el cordel, ello incrementaba su conductividad eléctrica; la electricidad fluía libremente por dicha cuerda y pudo comprobar que poseía las mismas propiedades que la electricidad generada por fricción. El feliz resultado de esta experiencia condujo a la utilización de los pararrayos para proteger los edificios, especialmente los de más altura.

Realizó, además, otra contribución al estudio de la electricidad: demostró la existencia de cargas positivas y negativas. Aunque no está claro quién fue el inventor de las lentes bifocales, fue él ciertamente el primero que las describió. Antes, si una persona necesitaba dos clases de lentes para leer y para ver objetos lejanos, era forzoso que dispusiese de dos anteojos distintos. Sin embargo, esta dificultad fue superada al unir en un mismo cristal dos medias lentes diferentes.

La inferior proporcionaba los aumentos adecuados para la lectura y la superior, de menor aumento, se podía utilizar para enfocar objetos distantes. Franklin estaba demasiado entregado a las actividades políticas para poder prestar a las científicas las atenciones deseables. Ayudó a redactar la Declaración de la Independencia de los Estados Unidos y, poco después, en 1790, murió cuando abogaba por la abolición de la esclavitud de los negros.

Los Gases Nobles Propiedades y Aplicaciones Concepto de Gas

CONCEPTO DE GAS – APLICACIONES DE LOS GASES NOBLES

CONCEPTO: El gas es un estado de la materia en el que ésta llena por completo el recinto que la contiene, sea grande o pequeño, pues los cuerpos en este estado carecen de forma y volumen propios.

Esta definición, puramente fenomenológica, era la corriente hasta el establecimiento definitivo de la teoría cinética de la materia, que explica el estado gaseoso por liberación de la acción atractiva que ejercen entre sí las masas de las moléculas y por la energía cinética comunicada a éstas por el calor. En el estado gaseoso, las moléculas se mueven libremente en el recinto que las contiene, rebotando contra sus paredes o chocando entre sí continuamente.

concepto de gas

Los gases son fácilmente solubles en algunos líquidos, y la cantidad disuelta es proporcional a la presión; actúan como malos conductores del calor y la electricidad, y generalmente son transparentes y de color débil.

El que un cuerpo se encuentre o no en estado gaseoso depende de la temperatura y la presión a que está sometido, pues todos los gases, al aumentar la presión o disminuir la temperatura, se pueden licuar.

Los gases perfectos se dilatan, a presión constante, y aumentan su volumen 1/273 veces por cada grado centígrado que asciende la temperatura. Los dos gases más comunes en la naturaleza son el oxígeno y el nitrógeno, principales componentes del aire.

Por definición: GASES NOBLES Conjunto de los elementos gaseosos que constituyen el grupo VIII A u O de la tabla periódica de los elementos (helio, argón, neón, criptón, xenón y radón). No presentan tendencia a combinarse con otros elementos.

LOS GASES NOBLES: Existe una familia de elementos inertes, indiferentes a los reactivos y hasta incapaces de formar moléculas que aglomeran sus propios átomos: son el argón, el criptón, el helio, el neón, el radón y el xenón.

El motivo de su inactividad o indolencia química reside en que el cortejo de electrones de su capa periférica está completo (2, 8 ó 18 según el caso). En otras palabras, no existe razón alguna para que tiendan a capturar electrones ajenos o a ceder los suyos propios.

 LAS CAUSAS DE LA REACTIVIDAD

Los seis elementos que acabamos de ver son gases, a pesar de que el peso atómico de algunos es extremadamente elevado, porque casi ninguna fuerza vincula sus moléculas.

En cambio, los demás elementos son más o menos activos porque la estructura de su átomo carece de una distribución ideal de los electrones periféricos; éstos pueden hallarse en exceso —como en el flúor y en el cloro—, o ser insuficientes con respecto al número-tipo capaz de asegurar su equilibrio.

De aquí su tendencia a unirse entre sí, o con otros elementos complementarios, para compensar su inestabilidad. Con reactivos sumamente ávidos y enérgicos se logra, venciendo grandes dificultades, sintetizar algunos compuestos de xenón «y otros gases nobles. Pero la inercia química sigue siendo la característica distintiva de estos elementos.

Recordemos que los átomos de todos los elementos sin excepción, son eléctricamente neutros, porque el número de protones del núcleo iguala al de electrones que giran en sus distintas órbitas. La reactividad química se debe exclusivamente a la necesidad de completar el número ideal de electrones de la capa periférica, por razones de equilibrio atómico, no de carga eléctrica.

ARGÓN

Peso atómico 39,944; 18 electrones en órbita. Única fuente comercial: la atmósfera; vestigios en minerales y meteoritos. Su utilización principal son las lamparillas eléctricas: no reacciona con el tungsteno incandescente, y sus moléculas detienen las partículas que éste proyecta, evitando que ennegrezcan el vidrio. En la actualidad, la soldadura con arco eléctrico y las operaciones metalúrgicas con titanio y otros metales ávidos de oxígeno, consumen más argón que la industria de fabricación de lámparas.

También se lo emplea en las válvulas electrónicas de gas (tiratrones), en los contadores Geiger, en las cámaras que miden rayos cósmicos, y como sustituto del helio en ciertos espectrógrafos de masa.

En el laboratorio se emplea en la cromatografía, cuando se trabaja con productos muy reactivos, porque es inerte. Se deduce fácilmente que la soldadura de arco de metales que arden en el aire requiere una atmósfera neutra. De ahí el éxito del argón envíos trabajos con aluminio, magnesio, titanio, aleaciones de cobre o níquel, y acero inoxidable.

También se lo emplea indistintamente con el helio, en la preparación de cristales de silicio y germanio para transistores, y se lo prefiere por su mayor abundancia. El argón constituye el 0,9 % del volumen de la atmósfera; su isótopo de peso atómico 40, que probablemente proviene de la desintegración radiactiva del potasio, forma su mayor parte. Se lo obtiene por medio de la licuefacción del aire.

CRIPTÓN

Peso atómico 83,80; 36 electrones en órbita. Única fuente comercial: la atmósfera; vestigios en minerales y meteoritos. Su uso principal son las lámparas flash para fotografía (ya en deshuso) y otros dispositivos electrónicos. Se lo mezcla con argón para llenar los tubos fluorescentes. Debido a su mayor peso molecular es superior al argón para impedir la evaporación del tunsgteno en las lamparillas eléctricas; pero es escaso y se lo reserva para los proyectores de gran brillo y eficiencia.

Existe un criptón radiactivo de peso 85 que se emplea para la medición del espesor de las láminas de metales y plásticos, y en lámparas que dan luz durante varios años, sin otra fuente de energía que su radiactividad, que excita una capa fosforescente.

En medicina sirve para revelar defectos cardíacos, porque permanece en el cuerpo solamente durante el escaso tiempo necesario para observar la anomalía. El criptón constituye sólo 1,14 partes por millón del volumen de la atmósfera. El criptón radiactivo se forma en las explosiones atómicas.

HELIO

Peso atómico 4,003; 2 electrones en su única órbita. Su mayor fuente comercial son las reservas de gas natural de los Estados Unidos, que contienen 5 % de helio. Antiguamente se empleaba en globos y dirigibles, porque no es explosivo como el hidrógeno, y su poder ascensional es el 92 % con relación a éste.

Se lo utiliza todavía en los pequeños globos meteorológicos y en los gigantescos aeróstatos que exploran los rayos cósmicos en la atmósfera superior. Como él argón, el helio se emplea mucho en la soldadura de metales reactivos.

Es además esencial para obtener fríos extremos, para reemplazar el nitrógeno en la atmósfera que respiran los buzos a grandes profundidades (véase tomo I, pdg. 79), en la terapéutica del asma, porque es mucho más fluido que el nitrógeno que habitualmente acompaña el oxígeno, y, a veces, como diluyeme inerte en la anestesia.

El helio es un refrigerante de los reactores nucleares, porque no se vuelve radiactivo; en los túneles de viento permite obtener datos sobre velocidades extremas; en las cámaras de burbujas revela partículas de elevada energía, y en los cojinetes lubricados a gas se aprovecha su viscosidad minúscula. El helio constituye 5,24 partes por millón del volumen de la atmósfera. Como la demanda excede enormemente a la producción se lo sustituye por argón, cuando es posible.

NEÓN

Peso atómico 20,183; 10 electrones en órbita. Única fuente comercial: la atmósfera; existen también algunos vestigios en minerales y meteoritos.

Cuando se produce una descarga eléctrica en el neón rarefacto, emite una brillante luz rojo-anaranjada. De ahí su uso en los llamados tubos de neón. Para obtener otros colores se añaden vapor de mercurio y alguno de los demás gases nobles.

El neón es a la vez un conductor para los altos voltajes y un interruptor cuando la tensión es baja; esto explica el uso de válvulas de neón como salvaguardia de ciertos motores eléctricos contra súbitas elevaciones de voltaje.

Se necesita muy poca potencia (vatios) para producir luz en las lámparas de neón; de aquí su uso en la iluminación nocturna contra accidentes. El neón constituye 18,18 partes por millón del volumen de la atmósfera. No se le conocen isótopos radiactivos.

RADÓN

Peso atómico 222; 86 electrones en órbita. Es un gas sumamente pesado emitido por el radio, y que, en menos de cuatro días, se reduce a la mitad por desintegración, cuyo producto último es el plomo.

Se lo utiliza en los hospitales para el tratamiento de ciertos tumores. Como el gel de sílice y otros adsorbentes lo retienen fácilmente, es cómodo purificarlo.

XENÓN

Peso atómico 131,30; 54 electrones en órbita. Única fuente comercial: la licuefacción del aire, del que sólo constituye 0,086 partes por millón. Se lo emplea en las lámparas flash de alta velocidad, porque produce un color bien equilibrado y puede usarse más de diez mil veces.

En el arco eléctrico (proyectores de cinematógrafo) la intensidad de la luz producida por el xenón es la misma que la del carbono de arco.

Absorbe fácilmente las radiaciones, y después de ello se lo mezcla con el acetileno, al que polimeriza y convierte en otras sustancias.

Es un buen anestésico de efecto fugaz: el paciente sé recupera en menos de dos minutos cuando deja de respirarlo; además puede asociarse sin peligro a otros hipnóticos explosivos como el éter, porque es inerte. Se lo emplea mucho en física nuclear pues absorbe fácilmente los neutrones; pero aún no se han resuelto sus graves inconvenientes, como el envenenamiento del combustible nuclear, cuyo ritmo de fisión disminuye gradualmente.

ESTABILIDAD IDEAL DE LAS CAPAS DE ELECTRONES EXTERIORES

Primera órbita (helio), 2 electrones. Segunda órbita (neón), 8 electrones. Tercera órbita (argón), 8 electrones. Cuarta órbita (criptón), 18 electrones. Quinta órbita (xenón), 18 electrones. Sexta órbita (radón), 32 electrones.

 Fuente Consultada:

Revista TECNIRAMA N°17

CONSULTORA Enciclopedia Temática Ilustrada Tomo 10 El Mundo Físico.

Leyes de los Gases Ideales Ley de Boyle, Lussac y Ecuacion General

Leyes de los Gases Ideales Ley de Boyle, Lussac

1-LOS GASES: DEFINICIÓN, CONCEPTO BÁSICOS Y SUS LEYES QUE EXPLICAN SUS PROPIEDADES

2-LOS GASES Y EL PRINCIPIO DE PASCAL

3-LEY DE BOYLE Y MARIOTTE:

4-LEY DE CHARLES GAY – LUSSAC A PRESIÓN CONSTANTE

5-LEY DE CHARLES GAY – LUSSAC A VOLUMEN CONSTANTE

6-ECUACIÓN GENERAL DE LOS GASES IDEALES

EXPLICACIÓN FÍSICA: Se denomina fluidos a aquellos cuerpos que pueden fluir y adoptan la forma del recipiente que los contiene. Los fluidos se dividen en líquidos y gases, dependiendo de sus fuerzas de cohesión interna. La hidrostática es la parte de la Física que estudia el comportamiento y propiedades de los fluidos en equilibrio mientras que la hidrodinámica estudia los fluidos en movimiento.

Mientras que los líquidos fluyen manteniendo constante su volumen, los gases tienen tendencia a ocupar todo el volumen disponible. Este distinto comportamiento es debido a que en el estado líquido las fuerzas de cohesión intermoleculares son mayores que en los sólidos y, por tanto, las partículas componentes abandonan las posiciones fijas que ocupaban en estado sólido aunque mantienen una cierta cohesión que les hace mantener un volumen constante.

En el caso de los gases, las fuerzas de cohesión intermoleculares son mucho menores y las partículas pueden moverse libremente en todo el volumen del recipiente que las contiene.

En los líquidos se producen fuerzas que interfieren el movimiento molecular a causa del rozamiento que se produce al deslizar las moléculas. Estas fuerzas originan la viscosidad y existen en todos los líquidos reales en mayor o menor medida. Los líquidos en que no existe viscosidad se denominan líquidos ideales o perfectos. En el caso de los gases, la viscosidad es muchísimo menor.

Ahora bien, el choque de las moléculas gaseosas contra las paredes del recipiente que las contiene o contra otras moléculas gaseosas también origina fricciones. Los gases en que se suponen despreciables dichas fricciones reciben el nombre de gases ideales o perfectos.

Si a las moléculas de un sólido o de un líquido se les entrega suficiente energía en forma de calor, éstas también adquirirán la suficiente energía como para romper las fuerzas que las mantienen unidas y pasar al estado de vapor, produciéndose, entonces, el cambio de estado. Pocas son las sustancias que están en estado gaseoso a temperatura ambiente, entre ellas el nitrógeno (N ), el oxígeno (O2 ), el hidrógeno (H2) el dióxido de carbono (CO2 ), el flúor (F2) el cloro (Cl2 ) y el helio (He).

Si bien comúnmente las palabras gas y vapor se utilizan como sinónimos, hay que diferenciarlas, porque aluden a conceptos distintos: el gas es una sustancia que, a presión normal y a temperatura ambiente, se encuentra en estado gaseoso; el vapor, por parte, es la forma gaseosa de una sustancia, que a temperatura ambiente es un ido o un líquido.

En general, el vapor está en contacto con uno de sus estados condensados (líquido o sólido).

Un gas ideal es un gas teórico compuesto de un conjunto de partículas puntuales con desplazamiento aleatorio que no interactúan entre sí. El concepto de gas ideal es útil porque el mismo se comporta según la ley de los gases ideales, una ecuación de estado simplificada, y que puede ser analizada mediante la mecánica estadística. Un gas real, en oposición a un gas ideal o perfecto, es un gas que exhibe propiedades que no pueden ser explicadas enteramente utilizando la ley de los gases ideales, y hay que recurrir a otros parámetros o propiedades para poder estudiarlos.

Un gas no tiene volumen propio y tiende siempre a ocupar el mayor volumen posible, tomando la forma del envase que lo contiene. En caso de tener encerrado un gas con aroma adentro de una botella, ocurrirá, como ya se sabe, que al destaparla llenará el ambiente de ese aroma y también llegará a los ambientes contiguos. Una aplicación triste de este efecto es el uso de gases tóxicos en los conflictos bélicos, que tantas muerte y efectos nocivos ha causado.

Lo mismo cuando dejamos abierta la llave del gas de una cocina, enseguida nos damos cuenta de ese error, que en realidad ese aroma está agregado al gas a los efectos de la seguridad.

Llamamos expansión de un gas, a la tendencia a ocupar el mayor volumen posible, y cuando está contenido dentro de un recipiente esta expansión creará una presión interior debido al empuje que hace contra las paredes del envase.

A ese empuje por unidad de superficie de lo llama: presión gaseosa. Para medir la presión se utilizan equipos especiales , llamados manómetros y los hay de distintos tipos de funcionamiento.

Al peso del aire de la atmósfera que rodea nuestra planeta, y presiona sobre la Tierra y sobre toda la materia que hay sobre ella, se la denomina presión atmosférica, y se define como 1 atmósfera (1 atm.) a la presión por unidad de superficie. Puede ampliar este concepto desde aquí:

LOS GASES Y EL PRINCIPIO DE PASCAL

Si sobre una masa de gas se aplica una fuerza, ¿transmite el gas la fuerza o la presión? ¿O tiene una manera propia de comportarse?

Si se infla un globo de goma, su volumen aumenta en todas direcciones, de modo que el gas, sea lo que fuere lo que transmite, lo hace en todas las direcciones.

El aparato de la figura nos da la respuesta.

Cuando se aplica una fuerza en el émbolo, el agua sube en todos los tubitos, y en todos sube lo mismo. Como el desnivel mide la presión, y en todos es el mismo, los gases transmiten la presión. Si se mide la ejercida con el émbolo, se comprueba, además, que es igual al aumento de presión señalado por cada tubito.

En consecuencia: los gases obedecen al principio de Pascal.
Esta es una de las razones de que a los líquidos y a los gases se los considera miembros de una misma familia: la de los fluidos. Podemos, pues, enunciar el principio de Pascal en forma más general:
Toda presión ejercida sobre un fluido se transmite íntegramente y en todas las direcciones.

imagen-gases

Si medimos con un manómetro la presión interior del recipiente, observaremos que
es la misma en cualquier punto en que se haga la medición.

Aunque parezca mentira, ya que la mayoría de los gases no son percibidos por nuestros sentidos, el estado gaseoso ha sido, históricamente, el estado de la materia de más fácil de estudio. Gran parte de lo que sabemos hoy acerca del comportamiento de los gases proviene de las investigaciones realizadas durante los siglos XVII, XVIII y XIX. La principal dificultad era el manejo y la medición del volumen de un gas.

En el siglo XVIII, Joseph Priestley inventó una artesa neumática, un dispositivo capaz de recolectar los gases bajo agua o mercurio, y que aún se utiliza en los laboratorios. Los estudios con gases permitieron formular el modelo de partículas que se emplea la actualidad para explicar la naturaleza de la materia, y fueron formalizados mediante las llamadas leyes de los gases.

imagen-gases

Esquemáticamente es:

imagen-gases

Los vapores formados, como resultado de la reacción química que ocurre en el balón, son conducidos, a través de un tubo, al interior de una probeta llena de agua colocada boca abajo en un recipiente con agua. El gas burbujea dentro de la probeta, desplaza el agua que sale por el fondo abierto y llena la probeta.

LEY DE BOYLE Y MARIOTTE:

Ahora veremos como se relaciona la presión de un gas, en función de su volumen. Un ejemplo sencillo que puede ayudarte es cuando tienes un globo inflado a temperatura ambiente y le hace fuerza con nuestra mano desde el exterior. Notaremos que la deformación del globo hace que el volumen se achique y que a su vez se observe cierta tensión sobre la pared interior del mismo. Ese cambio es consecuencia de un aumento de presión interna, lo que nos permite inferir que en un recipiente cuando disminuimos su volumen la presión aumenta. Hablando con mas propiedad, definiremos que a temperatura constante, la presión que ejerce de un gas ideal es directamente proporcional al volumen que ocupa.

imagen-gases

La expresión de este comportamiento de los gases en Física se conoce con el nombre de ley de Boyle-Mariotte y matemáticamente se expresa por esta fórmula: donde los subíndices i y f indican, respectivamente, las condiciones iniciales y finales del proceso.

Ejemplo: En el recipiente de abajo, el volumen es de 45 litros y la presión inicial es la atmosférica, ósea, 1 atm. ¿Que presión experimentará si bajamos el émbolo de tal modo que el volumen ahora es de 3 litros?

imagen-gases

Volumen Inicial: Vi=45
Volumen Final: Vf=3

Presión Inicial: Pi=1
Presión Final: ? (incógnita)

Aplicando la formula de la Ley de Boyle – Mariotte es: 1 x 45 = 3 x Pf ==> Pf=(1 x 45)/3=15 atm.

También se puede expresa la Ley d Boyle-Mariotte: A temperatura constante p. v = cte.

Para el caso de aquí abajo

imagen-gases

p1.v1=p2.v2=p3.v3
Ley de Boyle-Mariotte: los volúmenes que ocupa una misma masa de gas, a temperatura constante,
son inversamente proporcionales a sus presiones.

GRÁFICAMENTE SE PUEDE EXPRESA ASI:

imagen-gases

LEY DE BOYLE-MARIOTTE: Una masa de gas ocupa un volumen que está determinado por la presión y la temperatura de ese gas. Las leyes de los gases estudian el comportamiento de una determinada masa de gas, si una de esas magnitudes permanece constante. Boyle observó que cuando la presión aumentaba, el volumen se reducía, y, a la inversa, que cuando la presión disminuía, el volumen aumentaba. De esta manera la ley de Boyle establece que: El volumen de una determinada masa de gas, a temperatura constante, es inversamente proporcional a la presión de ese gas.

LEY DE CHARLES GAY – LUSSAC A PRESIÓN CONSTANTE

En 1787, el físico francés Jacques Charles reflota un viejo postulado enunciado en 1699 por el francés Guillaume Amontons (1663-1705). Éste había observado que el volumen de un gas, a presión constante, disminuía a medida que bajaba la temperatura. La misma comprobación fue realizada cinco años después por Joseph Gay-Lussac (1778-1850). Amontons queda en el olvido, y la ley se conoce hoy como ley de Charles y Gay-Lussac. Su enunciado es el siguiente:

El volumen de una determinada masa gaseosa, a presión constante,
es directamente proporcional a su temperatura absoluta.

imagen-gases

V=volumen y T=temperatura

imagen-gases

LEY DE CHARLES GAY – LUSSAC A VOLUMEN CONSTANTE

Luego de varios experimentos, Charles y Gay-Lussac llegaron a la conclusión de que a volumen constante, la presión aumenta con el aumento de temperatura. La ley de Charles y Gay-Lussac establece que:

La presión de una determinada masa gaseosa a volumen constante
es directamente proporcional a su temperatura absoluta.

imagen-gases

P=presión y T=temperatura

imagen-gases

Ejemplo: Cuando se calienta agua en una olla de presión, el volumen no varia, por lo que aumenta
la presión del vapor de agua hasta que el exceso sale por la válvula de seguridad (de lo contrario, explotaría).

imagen-gases

ECUACIÓN GENERAL DE LOS GASES IDEALES:

La ley de Boyle y las leyes de Charles y Gay-Lussac pueden relacionarse matemáticamente mediante la ecuación de estado del gas ideal, que resulta útil cuando se quiere modificar las tres magnitudes, siempre que la masa del gas permanezca constante y la temperatura se exprese en escala Kelvin.

Hasta ahora hemos visto las siguiente situaciones particulares, llamando a cada una según el científico que las estudió. Ahora las tres se pueden unificar en una sola fórmula.

imagen-gases

Si se aumenta la temperatura de un gas, manteniendo su presión constante, el volumen que ocupa crece proporcionalmente a la temperatura absoluta.

imagen-gasesSi se aumenta la temperatura de un gas, manteniendo su volumen constante, la presión que el gas ejerce sobre las paredes del recipiente crece proporcionalmente a la temperatura absoluta.

imagen-gasesSi se reduce el volumen de un gas, manteniendo su temperatura constante, la presión
crece de manera inversamente proporcional al volumen.

Ecuación de estado del gas ideal:

imagen-gases
O también:
imagen-gases
Donde el valor de la constante depende de la cantidad de gas en cuestión, y T es la temperatura absoluta (en grados Kelvin). Esta ecuación general de estado del gas ideal es útil pues relaciona entre sí todas las variables de estado del sistema. Esto significa que, si conocemos los valores de dos cualesquiera de ellas, la tercera queda completamente determinada.

Debe tenerse en cuenta que las temperaturas han de calcularse en grados absolutos o Kelvin. Éstas se obtienen sumando 273 a las temperaturas obtenidas con la graduación centígrada. Así, la temperatura ambiente de 22o se transforma en 295o absolutos o K.

Ejemplo Numérico: Supongamos un globo que contiene 10 litros de aire a la presión normal, es decir, a una atmósfera y a la temperatura de 18° centígrados. ¿Cuál será su volumen si la temperatura aumenta 10°?

Determinemos, primero, las temperaturas inicial y final de este cambio:
Ti = 18°C + 273° = 291 °K
Tf = (18 + 10) °C + 273° = 301 °K

y, luego, teniendo en cuenta la proporcionalidad directa entre volumen y temperatura,

imagen-gases

y operando, se tiene: Vf= 10 l. x 301° / 291° = 10,34 litros

¿Cómo podemos resolver un problema en el que varíen simultáneamente el volumen, la presión y la temperatura?

Como se explicó antes, combinando las leyes anteriores se llega a la expresión, de Ley de los Gases Perfectos. que nos permite calcular una de las magnitudes en función de las otras. Así, si queremos calcular el volumen final, despejando, tenemos:

imagen-gases

Ecuación General del gas Ideal es:

imagen-gases

Donde n es el número de moles presentes y R es una constante –cuyo valor depende e las magnitudes y unidades empleadas– igual a 0,082 dm3. atm / mol . k. Esta ecuación es sumamente interesante si queremos hallar alguna de las magnitudes y corlemos el resto de las mismas.

imagen-gases
Lámina donde se muestran los instrumentos del laboratorio de Boyle.

imagen-gases

Lámina de «Observations on differents kinds of air» (Philosophical Transactions ofthe Royal Society, 1772; también aparece en el libro titulado Experiments and Observations on Differents Kinds of Air publicado en 1774). de Joseph Priestley, mostrando uno de sus experimentos para demostrar los efectos de la combustión, putrefacción y respiración en una planta de menta y en ratones.

Fuente Consultada:
QUÍMICA I Polimodal
FÍSICA II Polimodal
CONSULTORA Enciclopedia Temática Ilustrada Tomo 10 El Mundo Físico.
Historia de las Ciencias Desiderio Papp.

Descubrimiento de Nuevos Metales: Fosforo Cobalto y Niquel

HISTORIA DEL DESCUBRIMIENTO DE NUEVOS METALES EN EL SIGLO XVII

A pesar de todas estas trampas, la «era del flogisto» produjo algunos muy importantes descubrimientos. Un alquimista de aquel tiempo descubrió un nuevo elemento: el primer (y último) alquimista que, de una forma definida, identificó un elemento y explicó exactamente cuándo y cómo lo había encontrado. El hombre fue un alemán llamado Hennig Brand.

Algunas veces se le ha llamado el «último de los alquimistas», pero en realidad hubo muchos alquimistas después de él. Brand, al buscar la piedra filosofal para fabricar oro, de alguna forma se le ocurrió la extraña idea de que debía buscarla en la orina humana.

Recogió cierta cantidad de orina y la dejó reposar durante dos semanas. Luego la calentó hasta el punto de ebullición y quitó el agua, reduciéndolo todo a un residuo sólido. Mezcló tampoco de este sólido con arena, calentó la combinación fuertemente y recogió el vapor que salió de allí.

Cuando el vapor se enfrió, formó un sólido blanco y cerúleo. Y, asómbrense, aquella sustancia brillaba en la oscuridad. Lo que Brand había aislado era el fósforo, llamado así según una voz griega que significa «portador de luz».

Relumbra a causa de que se combina, espontáneamente, con el aire en una combustión muy lenta. Brand no comprendió sus propiedades, naturalmente, pero el aislamiento de un elemento (en 1669) resultó un descubrimiento espectacular y causó sensación. Otros se apresuraron a preparar aquella sustancia reluciente. El propio Boyle preparó un poco de fósforo sin conocer el precedente trabajo de Brand.

El siguiente elemento no fue descubierto hasta casi setenta años después. Los mineros del cobre en Alemania, de vez en cuando encontraban cierto mineral azul que no contenía cobre, como les ocurría, por lo general, a la mena azul del cobre.

Los mineros descubrieron que este mineral en particular les hacía enfermar a veces (pues contenía arsénico, según los químicos descubrieron más tarde). Los mineros, por tanto, le llamaron «cobalto», según el nombre de un malévolo espíritu de la tierra de las leyendas alemanas.

Los fabricantes de cristal encontraron un empleo para aquel mineral: confería al cristal un hermoso color azul y una industria bastante importante creció con aquel cristal azul. En la década de 1730, un médico sueco llamado Jorge Brandt empezó a interesarse por la química del mineral.

Lo calentó con carbón vegetal, de la forma comente que se usaba para extraer un metal de un mineral, y, finalmente, lo condujo a un metal que se comportaba como el hierro.

Era atraído por un imán: la primera sustancia diferente al hierro que se había encontrado que poseyera esta propiedad. Quedaba claro que no se trataba de hierro, puesto que no formaba  oxidación de tono pardo rojizo, como lo hacía el hierro.

Brandt decidió que debía de tratarse de un nuevo metal, que no se parecía a ninguno de los ya conocidos. Lo llamó cobalto y ha sido denominado así a partir de entonces. Por tanto, Brand había descubierto el fósforo y Brandt encontrado el cobalto (el parecido de los apellidos de los dos primeros descubridores de elementos es una pura coincidencia).

A diferencia de Brand, Brandt no era alquimista. En realidad, ayudó a destruir la Alquimia al disolver el oro con ácidos fuertes y luego recuperando el oro de la solución. Esto explicaba algunos de los, trucos que los falsos alquimistas habían empleado. Fue un discípulo de Brandt el que realizó el siguiente descubrimiento.

Axel Fredrik Cronstedt se hizo químico y también fue el primer mineralógolo moderno, puesto que fue el primero en clasificar minerales de acuerdo con los elementos que contenían. En 1751, Cronstedt examinó un mineral verde al que los mineros llamaban kupfernickel («el diablo del cobre»).

Calentó los residuos de este mineral junto con carbón vegetal, y también él consiguió un metal que era atraído por un imán, al igual que el hierro y el cobalto. Pero mientras el hierro formaba compuestos, pardos y el cobalto azules, este metal producía compuestos que eran verdes. Cronstedt decidió que se trataba de un nuevo metal y lo llamó níquel, para abreviar lo de kupfernickel.

Se produjeron algunas discusiones respecto de si el níquel y el cobalto eran elementos, o únicamente compuestos de hierro y arsénico. Pero este asunto quedó zanjado, en 1780, también por otro químico sueco, Torbern Olof Bergman.

Preparó níquel en una forma más pura que lo que había hecho Cronstedt, y adujo mi buen argumento para mostrar que el níquel y el cobalto no contenían arsénico y que eran, por lo contrario, unos nuevos elementos. Bergman constituyó una palanca poderosa en la nueva química y varios de sus alumnos continuaron el descubrimiento de nuevos elementos.

Uno de éstos fue Johan Gottlieb Gahn, que trabajó como minero en su juventud y que siguió interesado por los minerales durante toda su vida. Los químicos habían estado trabajando con un mineral llamado «manganeso», que convertía en violeta al cristal. («Manganeso» era una mala pronunciación de «magnesio», otro mineral con el que lo habían confundido algunos alquimistas.) Los químicos estaban seguros que el mineral violeta debía contener un nuevo metal, pero no fueron capaces de separarlo calentando el mineral con carbón vegetal.

Finalmente, Gahn encontró el truco, pulverizando el mineral con carbón de leña y calentándolo con aceite. Como es natural, este metal fue llamado manganeso. Otros discípulo de Bergman, Pedro Jacobo Hjelm, realizó mucho mejor este mismo truco con una mena a la que llamaron «molibdena».

Este nombre deriva de una voz griega que significa «plomo», porque los primeros químicos confundieron este material con mena de plomo. Hjelm extrajo del mismo un metal blanco argentado, el cual, ciertamente, no era plomo.

Este nuevo metal recibió el nombre de «molibdeno». El tercero de los discípulos de Bergman descubridores de elementos no fue sueco. Se trataba del español don Fausto de Elhúyar. Junto con su hermano mayor, José, estudió una mena pesada llamada «tungsteno» (palabra sueca que significa «piedra pesada»), o «volframio».

Calentando la mena con carbón vegetal, los hermanos, en 1783, aislaron un nuevo elemento al que, en la actualidad, según los países, se denomina tungsteno o volframio. Bergman tuvo todavía una conexión indirecta con otro nuevo metal.

En 1782, un mineralógolo austríaco, Franz Josef Müller, separó de una mena de oro un nuevo metal que tenía algún parecido con el antimonio. Envió una muestra a Bergman, como hacían los más importantes mineralógolos de su época. Bergman le aseguró que no era antimonio. En su momento, el nuevo metal recibió el nombre de telurio, de una voz latina que significaba «tierra». Mientras todos estos elementos hablan sido descubiertos en Europa, también iba a ser descubierto uno en el Nuevo Mundo.

En 1748, un oficial de Marina español llamado Antonio de Ulloa, cuando viajaba de Colombia a Perú en una expedición científica, encontró unas minas que producían unas pepitas de un metal blanquecino. Se parecía algo a la plata, pero era mucho más pesado.

El parecido con la plata (y tomando como base esta palabra española) hizo que se diese a este nuevo metal el nombre de platino. Al regresar a España, Ulloa se convirtió en un destacado científico y fundó el primer laboratorio en España dedicado a la Mineralogía.

También se hallaba interesado por la Historia Natural y por la Medicina. Además, acudió a Nueva Orleáns como representante del rey español, Carlos III, cuando España adquirió la Luisiana, que antes pertenecía a Francia, tras la Guerra India, en Estados Unidos.

Incluso los antiguos metales conocidos por los alquimistas tuvieron una nueva trayectoria en aquellos primeros tiempos de la Química moderna. En 1746, un químico alemán, Andreas Sigismund Marggraff, preparó cinc puro y describió cuidadosamente sus propiedades por primera vez; por tanto, se le ha atribuido el descubrimiento de este metal.

Probablemente, Marggraff es más conocido, sin embargo, por encontrar azúcar en la remolacha. Con un microscopio detectó pequeños cristales de azúcar en aquel vegetal, y, al mismo tiempo, proporcionó al mundo una nueva fuente de azúcar.

Marggraff fue el primero en emplear el microscopio en la investigación química. Lo que Marggraff había hecho con el cinc, lo realizó un químico francés, Claude-François Geoffrey, con el antiguo metal del bismuto. En 1753, aisló el metal y describió cuidadosamente su comportamiento, por lo que, algunas veces, se le ha atribuido el descubrimiento de este elemento.

LISTA DE ELEMENTOS QUÍMICOS DESCUBIERTOS EN EL SIGLO XVII: (Era del Flogisto)

Fósforo                             1669 Brand
Cobalto                             1735 Brandt
Platino                              1748 Ulloa
Níquel                               1751 Cronstedt
Hidrogeno                          1766 Cavendish
Nitrógeno                           1772 Rutherford
Oxígeno                             1774 Priestley
Cloro                                 1774 Scheele
Manganeso                         1774 Gahn
Molibdeno                           1781 Hjelm
Telurio                               1782 MüIIer Juan José de
Tungsteno                          1783 Elhúyar Fausto de Elhúyar

Fuente Consultada: En Busca de los Elementos de Isaac Asimov

USO DE LOS METALES EN LA INDUSTRIA

Aluminio Se usa desde hace pocas décadas y ocupa el tercer tugar detrás del hierro y el cobre. Utensilios, aleaciones livianas para aviación, cables eléctricos de alta tensión.
Antimonio: Endurece el plomo de los tipos de imprenta, productos medicinales. Ignífugos. Se dilata al enfriar.
Arsénico Insecticidas, productos medicinales, industria química.
Berilio Pigmentos, cristales, fuegos artificiales. Berilio Único metal liviano con alto punto de fusión, ventana para rayos X, industrias atómicas, aleaciones con cobre, resistentes a vibraciones externas.
Bismuto Aleaciones de muy bajo punto de fusión (37°C); productos farmacéuticos.
Boro Ácido bórico. Endurecimiento del acero.
Cadmio Endurecimiento de los conductores de cobre. Aleaciones de bajo punto de fusión. Galvanoplastia.
Calcio Materiales de1 construcción, sales diversas.
Cesio Materiales refractarios livianos, semiconductores, aleaciones duras y refractarias. Cesio Células fotoeléctricas.
Cinc Galvanoplastia,- pilas.
Circonio Usos atómicos, aceros, lámparas-flash.
Cobalto Piezas de cohetes y satélites, herramientas para altas temperaturas, radioisótopos.
Cobre Conductores eléctricos, bronces diversos.
Columbio Sólo en laboratorio. Duro y pesado.
Cromo Acero inoxidable, galvanoplastia. Estaño Envoltorios, soldaduras, bronces.
Estroncio Fuegos artificiales, refinerías de azúcar.
Galio Termómetros para alta temperatura (funde antes de los 35° y hierve a más de 1.900°C.
Germanio Transistores, válvulas termoiónicas.
Hafnio Filamentos de tungsteno.
Hierro Acero, construcción. El metal por excelencia.
Indio Galvanoplastia, aleaciones resistentes a los esfuerzos y la corrosión. –
Litio Aleaciones ligeras, pilas atómicas, síntesis orgánica.
Magnesio Aleaciones ligeras, productos medicinales, síntesis orgánicas.
Manganeso Aceros especiales (extrae el oxígeno y el azufre de la mezcla, dando un metal limpio y sólido). Usos químicos y eléctricos.
Mercurio Termómetros, barómetros, aleaciones dentarias (amalgamas).
Molibdeno Aceros especiales.
Níquel Bronces blancos, monedas, revestimientos de metales.
Oro Alhajas, monedas, espejos telescópicos.
Osmio Metal pesado para aleaciones de la familia del platino.
Paladio Aleaciones con el platino, aceros, catálisis química.
Plata Espejos, alhajas, bronces.
Platino Catálisis, contactos eléctricos, alhajas.
Plomo Aleaciones para soldaduras, cañerías, pinturas.
Plutonio Radiactivo, bomba atómica.
Polonia Radiactivo, compuestos luminosos.
Potasio Metal alcalino, fertilizantes.
Radio Radiactivo, medicina, pinturas luminosas.
Renio Pares termoeléctricos, sustituto del cromo en los aceros.
Rodio Aleaciones, cátodos, pares termoeléctricos.
Rubidio Productos medicinales.
Selenio Células fotoeléctricas, baterías solares.
Silicio Vidrio, aleaciones duras y refractarias.
Sodio Jabones, sal de mesa, bicarbonato de sodio.
Talio Compuestos químicos venenosos, insecticidas, raticidas
Tántalo Filamentos para lámparas, aleaciones refractarias.
Tecnecio Primer elemento producido por él hombre.
Teluro Semiconductores, fotopilas, aleaciones diversas.
Titanio Pigmentos, compuestos muy refractarios, aceros especiales.
Torio Radiactivo, aleaciones.
Tungsteno Filamentos para lámparas, herramientas duras.
Uranio Radiactivo, pilas atómicas.
Vanadio: Aceros Especiales

AMPLIACIÓN DEL TEMA
ALGUNAS GENERALIDADES SOBRE EL FÓSFORO:

Fue descubierto por Brandt en 1669 mientras buscaba la piedra filosofal cuyo objeto era transformar cualquier sustancia en oro. Obtuvo fosfato a partir de la orina, luego de un proceso laborioso. Pero el primer trabajo publicado con cierto fundamento científico pertenece a D. Krafft. El fósforo, como elemento, fue reconocido por Lavoisier en 1777.

El fósforo no se encuentra libre en la naturaleza, pero sí combinado en forma de compuestos inorgánicos como la fosforita (fosfato de calcio) y la fluorapatíta (fluofosfato de calcio).

El fósforo es el principal constituyente de los huesos y dientes; además se encuentra formando parte de los tejidos animales y vegetales y constituye parte de las fosfoproteínas y otros compuestos orgánicos.

La sangre, la yema de huevo, la leche, los nervios y el cerebro contienen fósforo en forma de lecitinas. Por esta razón, los animales y las plantas necesitan fósforo para desarrollarse.
Una parte del fósforo contenido en el organismo se elimina diariamente por la orina y los excrementos, en la proporción de 2 gramos cada 24 horas.

El uso más común del fósforo consiste en la fabricación de cerillas, las cuales son de dos tipos: comunes y de seguridad. Las primeras encienden por frotamiento sobre cualquier superficie áspera y se componen de un pabilo de algodón, madera o cartón, cuya extremidad está recubierta por una sustancia combustible compuesta con fósforo o sulfuro de fósforo, como sustancia inflamable, bióxido de plomo o clorato de potasio, como materia oxidante, dextrina y una sustancia colorante.

Los fósforos de seguridad, llamados también cerillas suecas, sólo contienen una mezcla oxidante, sin fósforo. Este último elemento se coloca sobre la superficie del raspador de la caja, de modo que para producir la llama es imprescindible que ambas partes se pongan en contacto. La mezcla con que se recubre el palillo contiene clorato de potasio como sustancia oxidante, trisulfuro de antimonio, cofa y algo de creta para aumentar la masa. La superficie del raspador contiene fósforo rojo, trisulfuro de diantimonio y vidrio para aumentar la aspereza.

Los abonos fosfatados son muy útiles en la agricultura. Se trata de una serie de sustancias naturales o artificiales que se agregan a las tierras agotadas para reponer en ellas las sustancias desaparecidas. Generalmente esas tierras han perdido (por excesivo cultivo o por acarreos), algunos de los elementos químicos indispensables, como el nitrógeno, fósforo, potasio o calcio, lo que las imposibilita para la plantación o la siembra.

Uno de los abonos más importantes por su riqueza en fósforo y calcio, es el fosfato neutro de calcio. Lamentablemente el fosfato tricoideo (como los huesos) no puede utilizarse porque es prácticamente insolubfe y entonces las plantas no pueden asimilarlo. Debe por lo tanto tratarse con ácido sulfúrico para convertirlo en difosfato monocálcico soluble.

Los huesos molidos (fosfato tricálcico), tratados con ácido sulfúrico, se tornan en sustancias solubles, es decir en fosfatos y sulfatos. Mezclados constituyen el abono denominado superfosfato de calcio.

En los laboratorios de las cátedras de química, durante las lecciones acerca del fósforo, se realizan importantes experimentos. El profesor muestra un trozo de fósforo rojo y otro blanco y hace notar sus diferencias de color, consistencia, solubilidad en sulfuro de carbono, fusibilidad, etc. Para esta última propiedad, se corta debajo del agua con un cortaplumas, un pedazo de fósforo blanco y otro de fósforo rojo. Sometidos ambos a la temperatura de 55°C, el fósforo blanco funde, en tanto que el rojo permanece inalterable.

Para demostrar la oxidación del fósforo en presencia del aire, se disuelve un trozo de fósforo blanco en sulfuro de carbono, se impregnan papeles con esta solución y se dejan secar sobre un trípode; evaporado el solvente, el fósforo se inflamará y con él, los papeles.

La oxidación en presencia del oxígeno: se echa un trozo dé fósforo en agua y se funde al baño de María; se hace circular una corriente de aire y se comprobará la inflamación.

La fosforescencia del fósforo se comprueba de la siguiente manera: se toma un matraz de un litro, se llena con agua hasta la mitad, y se coloca en su interior un trozo de fósforo blanco. Se lleva el agua a ebullición, se oscurece el cuarto y se observará, especialmente en el cuello del matraz, el fenómeno de la fosforescencia.

La diferencia de inflamabilidad entre el fósforo blanco y el rojo se comprueba como sigue: sobre una chapa de cobre de 30 centímetros de largo, dispuesta sobre un trípode, se coloca en cada extremo un trocito de fósforo blanco y rojo, respectivamente; se calienta el centro de la chapa con llama baja de un mechero Bunsen y se podrá observar la inflamación casi espontánea del primero y tardía en el segundo. Para comprobar la acción del cloro sobre el fósforo, se introduce en un frasco lleno de cloro una capsulita que contenga un trozo de fósforo blanco; se observa la inflamación espontánea del fósforo.

Los envenenamientos por el fósforo blanco, constituyen un riesgo para los obreros que trabajan en las fábricas que preparan el producto y de los que lo manejan y transforman.

Las fábricas de cerillas deben estar .muy bien ventiladas, pues las emanaciones fosforadas que, sin esa precaución, podrían aspirarse, intoxicarían más o menos a los operarios. Éstos deben cuidar mucho de la higiene, no comer sin lavarse bien las manos y cambiarse las ropas de trabajo. Será preciso que no dejen su comida dentro del local de la fábrica y a la hora del almuerzo buscarán en el exterior un lugar aireado.
Una dolencia muy común en los que trabajan con el fósforo, es la denominada necrosis fosfórica, que ataca al hueso dé la mandíbula y que suele necesitar operación quirúrgica.

Cuando sobrevienen envenenamientos por ingestión de fósforo, mientras llega el médico, puede administrarse una solución de 2 gramos de sulfato de cobre en un litro de agua, con frecuencia y abundancia, pues el cobre se depositará sobre las partículas de fósforo haciéndolo inofensivo o debilitando considerablemente su acción. Suprímase en absoluto la leche, los aceites y las grasas.

La fosfamina, que es un fósforo gaseoso, se prepara como sigue: en un baloncito de unos 300 ce. se ponen 20 ce. de potasa cáustica en solución acuosa concentrada y seis u ocho blobuliílos de fósforo; se cierra el baloncito con un tapón bihoradado que trae dos tubos acodados, uno estrecho que se sumerge en la potasa y otro ancho y largo (de desprendimiento), cuyo extremo anterior está doblado en U y el interior termina junto al tapón. Se hace pasar una corriente de hidrógeno y el tubo ancho se sumerge en un recipiente con agua caliente. Se calienta el baloncito hasta una ebullición moderada. Se desprende fosfamina.

Grande es la importancia que tiene en todo el universo la fabricación del fósforo, no tan sólo aplicable a la preparación de cerillas, abonos, etc., sino también como agente reductor.

Las Naftas Sin Plomo Ventajas y Objetivos Nafta Ecologica Beneficios

Las Naftas Sin Plomo – Ventajas y Objetivos – Nafta Ecológica Beneficios

Uno de los factores que contribuyen en gran medida a la contaminación atmosférica es la emisión de gases tóxicos que efectúan los automóviles. Para eliminar los óxidos de nitrógeno y carbono que se producen durante la combustión de la nafta, los gobiernos de casi todos los países han comenzado a exigir a las industrias automotrices la instalación de convertidores catalíticos (filtros que se colocan antes del caño de escape a fin de oxidar a dióxido de carbono, C02, los compuestos de carbono y reducir a nitrógeno, N2, los óxidos de nitrógeno).

En América latina, el artículo 13 del Tratado de Asunción y varias resoluciones adoptadas en el marco de los acuerdos por el Mercosur (a partir del año 1991) recomiendan determinados carburantes para minimizar la emisión de gases contaminantes. Uno de ellos es la nafta sin plomo, también conocida como nafta ecológica.

Como ya sabemos la nafta es un derivado del petróleo, cuyo comportamiento antidetonante se determina con el índice de octano u octanaje. Para aumentar el octanaje de las naftas se agrega un aditivo, el tetraetil-plomo (Pb(C2H5)4), sustancia que disminuye la detonación pero que contamina el ambiente por liberar plomo a la atmósfera.

nafta sin plomo

¿Qué ocurre con el plomo cuando alcanza la atmósfera?

El plomo elemental es poco reactivo, pero sus compuestos pueden cambiar en presencia de la luz solar, el aire o el agua. Cuando se elimina plomo a la atmósfera, sus partículas permanecen en suspensión durante diez días, y el hombre puede inhalarlo. Además, los compuestos orgánicos penetran por vía cutánea, es decir que se absorben a través de la piel. Finalmente, el plomo contamina las tierras y las aguas, pasa a la vegetación y de allí a los animales, Incluido el hombre, por vía digestiva.

Una vez incorporado, el plomo afecta numerosos órganos y sistemas. El más sensible es el sistema nervioso, en especial en los niños. También afecta el sistema inmune y los glóbulos rojos, ya que altera la síntesis del grupo hemo de la hemoglobina (proteína presente en los glóbulos rojos, encargada del transporte de oxígeno y dióxido de carbono). Produce, además, nacimientos prematuros, con bebés de bajo peso, retardo mental, dificultades de aprendizaje. Retarda el crecimiento de los niños.

En los adultos el plomo disminuye la capacidad de respuesta, causa debilidad en las articulaciones, anemia y abortos espontáneos, daño en el aparato reproductor masculino. Algunos estudios de laboratorio sugieren que elacetato de plomo (Pb(C2H302)2 es una sustancia cancerigena. La intoxicación crónica con plomo se denomina saturnismo y es padecida, por lo general, por individúes que trabajan en industrias donde se emplea este meta

• en la industria automovilística, ya que el plomo se emplea para fabricar baterías y carburantes (antidetonantes);
• en la fabricación de pinturas;
• en la industria de los plásticos, donde el estearato de plomo se emplea como estabilizante;
• en la producción de ácido sulfúrico;
• en la recuperación de metales;
• en la plomería.

El personal involucrado en estas actividades debe ser sometido, de manera obligatoria, a controles periódicos de plombemia, es decir, del nivel de plomo en la sangre. También es preciso efectuar controles ambientales en las áreas de trabajo y las zonas circundantes.

La Organización Mundial de la Salud (OMS) define como intoxicación los valores de Plombemia de más de 15 μg/dl., mientras que el Centro de Prevención y Control de Enfermedades de Estados Unidos recomienda intervención médica cuando los niveles son mayores de 10 mgr/dL en niños y 25 mgr/dL en adultos, en varios trabajadores del supergas se encontraron valores superiores a 30 mgr.

El diagnóstico de saturnismo se realiza mediante el llamado perfil plúmbico que involucra tres tipos de controles: hematológicos, metabólicos y toxicológicos.

Los controles hematológicos se efectúan por observación microscópica de los eritrocitos (serie roja) que se alteran; los controles metabólicos incluyen metabolitos y enzimas presentes en la síntesis del hemo, como la 5-ALA-dehidratasa; las pruebas toxicológicas incluyen el dosaje de plomo en la sangre, en la orina y en el pelo.

Por todo esto, el mejoramiento de las naftas se realiza en la actualidad sin el agregado de plomo.

Entre los métodos-químicos utilizados para aumentar el índice de octano de la nafta sin recurrir al tetra-etil-plomo, se destacan los de isomerización (reformado) y alquilación. Ambos procesos permiten obtener mayores proporciones de isooctano, y se representan mediante las siguientes ecuaciones:

1) Isomerización. A partir del n-octano (lineal) se obtiene su isómero isooctano (ramificado),

2) Alquilación. Adición del 2-metilpropano a la doble ligadura del 2-metilpropeno.

 

 

Fuente Consultada:
QUÍMICA I Polimodal
FÍSICA II Polimodal
CONSULTORA Enciclopedia Temática Ilustrada Tomo 10 El Mundo Físico

Principio de Funcionamiento de Maquina Termicas Calderas y Turbinas

Funcionamiento de Máquina Térmicas

maquina termica

MÁQUINAS TÉRMICAS. Durante muchos siglos el hombre utilizó la energía térmica para calentarse, sin darse cuenta que ésta podría trabajar para él. Pero este hecho ocurrió en época muy reciente, hace poco menos de 200 años.

La invención de las máquinas térmicas abrió nuevos horizontes, cambiando en pocos años la marcha de la civilización, y contribuyó eficazmente a la revolución industrial, que caracteriza a los siglos XVIII y XIX. Los dispositivos destinados a transformar energía calorífica en energía mecánica se denominan máquinas térmicas, las cuales se pueden clasificar en dos tipos fundamentales: máquinas de vapor, que utilizan el vapor de agua producido por calentamiento, y motores de explosión, que funcionan gracias a la expansión de los gases producidos por la combustión de una mezcla explosiva.

LAS PRIMERAS MAQUINAS DE VAPOR.
En 1712, el inglés Newcomen construyó un dispositivo que transformaba el calor en trabajo, y que guarda un cierto parecido con las máquinas de vapor utilizadas en la actualidad. Estaba constituido por una caldera que mediante un tubo comunicaba con un cilindro vertical, cuyo pistón se unía al brazo de una palanca.

El vapor de la caldera empujaba el pistón hacia arriba, hasta alcanzar la posición superior; en este momento se proyectaba dentro del cilindro un chorro de agua fría, mediante una válvula accionada por la palanca. De este modo, el vapor se enfriaba y condensaba creando un vacío en el interior del cilindro y en la caldera. Entonces la presión de la atmósfera empujaba el pistón hacia abajo.

La máquina de Newcomen presentaba el inconveniente de que en cada carrera del pistón, el agua perdía la temperatura de ebullición, precisando recuperar ésta para que se repitiera el proceso.
Durante más de dos décadas este dispositivo se utilizó para bombear agua de las minas y de los pozos.

La utilización industrial de la máquina de vapor fue llevada a cabo por James Watt, ingeniero escocés, que modificó el dispositivo de Newcomen en el sentido de evitar las pérdidas de calor. Para ello construyó un aparato que llevaba una cámara separada que aspiraba el vapor y donde se condensaba por medio de un sistema de refrigeración. De este modo consiguió disminuir el tiempo de subida y bajada del émbolo y ahorró gran cantidad de combustible, lo que representa una considerable economía.

Hay que notar que estas máquinas no utilizan la presión del vapor, sino que su funcionamiento está basado en el vacío que se origina al condensar el gas que permite actuar a la presión atmosférica y hace descender el émbolo y, por consiguiente, da el impulso necesario para la ascensión.

La necesidad de refrigerar el vapor lleva consigo la utilización de grandes cantidades de agua que hace a la máquina de vapor inaplicable a la tracción. Unos años más tarde, el propio Watt ideó un dispositivo de doble efecto, y a partir de este momento la máquina de vapor fue utilizada para el transporte, construyéndose diversos tipos de vehículos y empleándose, también, para mover los barcos.

Para disminuir el riesgo que supone la elevada presión a que está sometido el vapor de la caldera, Watt ideó un dispositivo, llamado «regulador centrífugo», de cuyo fundamento nos hemos ocupado en páginas anteriores, para evitar posibles explosiones.

LA MÁQUINA DE VAPOR ACTUAL. Modernamente se utilizan dos tipos principales de generadores de vapor.

a) Caldera con tubos de humo, constituida por un haz de tubos de acero colocados en el interior de la caldera, a través de los cuales circulan los productos de la combustión procedentes del hogar.
b) Caldera con tubos de agua, que está provista de numerosos tubos por los que circula el agua de la caldera propiamente dicha, y que son lamidos superficialmente por las llamas y los gases calientes.

En el hogar se quema el combustible, que puede ser carbón, leña, aceites pesados, gas, etc. Cuando se utiliza carbón o leña, el hogar está dividido en dos partes por una parrilla. En la superior están las llamas y en la inferior, o cenicero, se recogen las cenizas procedentes de la combustión.

El vapor producido en la caldera entra en una caja de distribución, provista de una corredera a la que una excéntrica da movimiento de vaivén. Esta corredera distribuye alternativamente el vapor a ambos lados del émbolo, de modo que cuando el vapor penetra por la cara derecha empuja el émbolo hacia la izquierda, mientras el vapor contenido en el otro lado del émbolo escapa por un canal de la izquierda a través de la corredera. De este modo se origina el movimiento de vaivén del émbolo que por medio de un sistema de biela y manivela se transmite a la rueda.

Para obtener un mayor aprovechamiento de la energía calorífica se han ideado asociaciones de cilindros, como en las máquinas tándem o en serie, constituidas por dos cilindros que actúan sobre el mismo eje, o las máquinas compound o en paralelo, en las que los cilindros forman ángulo recto, y mediante unas manivelas actúan sobre un mismo eje.

La asociación también puede ser de más de dos cilindros. Muchas veces el vapor pasa de un cilindro a otro, cuyos diámetros son cada vez mayores, con lo que se producen varias expansiones, por lo que se habla de doble, triple y múltiple expansión.

TURBINAS. Mientras la máquina de vapor es un dispositivo de presión, la turbina es una máquina basada en el flujo del vapor. Obtiene la energía a partir de pequeñas fuerzas que trabajan a gran velocidad.

turbina

La constitución de la turbina de vapor es semejante a la hidráulica, de la que nos hemos ocupado anteriormente, El rodete recibe sobre sus paletas un chorro de vapor a presión dirigido por unos tubos llamados «toberas». El vapor penetra en la turbina y hace girar los discos, luego pasa a baja presión a una segunda cámara donde imprime movimiento a otros discos. A continuación entra en un condensador, donde por medio de un serpentín refrigerado se licúa, para volver de nuevo a la caldera y repetir el proceso.

El rendimiento es mucho mayor que en las máquinas de vapor antes descritas, llamadas de , pistón, por lo que cada día son más utilizadas las turbinas, sobre todo cuando se trata de obtener grandes potencias, como en las locomotoras, barcos, centrales termoeléctricas, etc.

La potencia de las turbinas empleadas en los barcos es muy grande. Para el buque «Queen Mary» se construyó una de 200.000 CV. Los barcos de guerra también van provistos de turbinas que les permiten desarrollar grandes velocidades y tienen la ventaja de ocupar un espacio reducido. La desventaja de este sistema de propulsión es que la turbina no puede girar en sentido contrario, por lo que la nave debe llevar una turbina auxiliar para la marcha atrás.

Principio Fisico del Funcionamiento de un Motor Explosion

Principio Físico del Funcionamiento
De Un Motor Explosión o Combustión Interna

El motor de combustión interna (o motor de explosión) es un mecanismo destinado a transformar la energía calorífica en trabajo. La combustión tiene lugar en el cilindro mismo de la máquina, lo que permite un mayor rendimiento en la transformación.(Tutoriales sobre Mecánica)

El motor de combustión interna fue diseñado a finales del siglo XIX. Su funcionamiento es, en algunos aspectos, similar al de la máquina de vapor: un pistón situado en un cilindro se expande y contrae ejerciendo una fuerza. El líquido introducido dentro del cilindro es un derivado del petróleo al que, a continuación, se prende fuego. Al estar sometido a presión, el combustible no arde normalmente, sino que estalla. Esta explosión empuja el pistón hacia afuera, ejerciendo un trabajo. Posteriormente, entra nuevo combustible en el cilindro y se vuelve a comprimir para empezar de nuevo el ciclo.

Los motores comerciales se fabrican con varios cilindros, ya que este sistema permite obtener más potencia y ofrece menos problemas que los que plantea un motor provisto de un único cilindro de mayor tamaño. En este dispositivo, la posición de los cilindros se calcula para que, en un momento dado, cada uno se halle en un ciclo distinto, uno en admisión, otro en compresión, otro en explosión y otro en escape. De este modo, se obtiene un funcionamiento más estable, sin vibraciones, y en el que cada cilindro, al hacer explosión, ayuda a los demás a moverse.

Los cilindros de un motor pueden estar dispuestos de varias formas, siempre en relación con su número y con las dimensiones del vehículo que deban impulsar. En el motor de los automóviles, se colocan generalmente en línea, si van todos paralelos; en y, si la mitad se halla inclinada en un pequeño ángulo con respecto a la otra mitad; y en Boxer o contrapuestos, si unos se encuentran enfrentados a los otros.

El motor de combustión interna ha sustituido a la gran mayoría de máquinas de vapor debido a sus considerables ventajas. En primer lugar, el aprovechamiento de la energía es mayor. El origen de la energía se sitúa en el interior del cilindro, y no en el exterior como en la máquina de vapor. Por otra parte, no es necesario cargar con grandes cantidades de agua.

Los vapores empleados son los propios del combustible al explosionar. El tamaño del motor se reduce considerablemente y facilita su instalación en vehículos pequeños. Por último, este motor es capaz de realizar en poco tiempo una gran variación de energía, comparado con la máquina de vapor.

Un motor de combustión interna ligero puede pasar en pocos segundos de una posición de reposo a otra en la que proporcione la máxima energía, tardando sólo unos minutos en sistemas de grandes dimensiones, como los barcos. Esta característica lo convierte en el mecanismo ideal para aplicaciones con cambios frecuentes de energía, como puede ser el motor de un automóvil, un tren o un barco.

Clasificación de motores de combustión interna

Existen distintos criterios para clasificar los motores de combustión interna: según el combustible utilizado, el número y la disposición de los cilindros, el tipo y la colocación de las válvulas o el sistema de enfriamiento empleado. La clasificación más frecuente se basa en el tipo de ciclo, es decir, en el número de tiempos por ciclo (entendiendo por tiempo una carrera hacia arriba o hacia abajo del émbolo a lo largo del cilindro).

En el denominado motor de explosión de cuatro tiempos, en cada ciclo de motor (llamado ciclo de Otto) se suceden cuatro tiempos (admisión, compresión, explosión y escape).

Principio Fisico del Funcionamiento de Un Motor Explosion Combustion Interna

En el denominado motor de dos tiempos, cada ciclo de motor consta de sólo dos tiempos, combinándose en uno la admisión y la compresión y en el otro la expulsión y el escape. Estos motores se emplean con gasoil.

Funcionamiento del motor de explosión de cuatro tiempos

El motor de explosión de cuatro tiempos es utilizado en la mayor parte de los automóviles. En su funcionamiento se suceden cuatro tiempos o fases distintas, que se repiten continuamente mientras opera el motor. A cada uno de estos tiempos le corresponde una carrera del pistón y, por tanto, media vuelta del cigüeñal.

En el primer tiempo, llamado de admisión, el pistón se encuentra en el punto muerto superior y empieza a bajar. En ese instante se abre la válvula de admisión, permaneciendo cerrada la de escape. Al ir girando el cigüeñal, el codo va ocupando distintos puntos de su recorrido giratorio, y, por medio de la biela, hace que el pistón vaya bajando y provocando una succión en el carburador a través del conducto que ha abierto la válvula de admisión, arrastrando una cantidad de aire y gasolina, que se mezclan y pulverizan en el carburador.

Estos gases van llenando el espacio vacío que deja el pistón al bajar. Cuando ha llegado al punto muerto inferior, se cierra la válvula de admisión y los gases quedan encerrados en el interior del cilindro. Durante este recorrido del pistón, el cigüeñal ha girado media vuelta.

Al comenzar el segundo tiempo, llamado de compresión, el pistón se encuentra en el punto muerto inferior y las dos válvulas están cerradas. El cigüeñal sigue girando y, por tanto, la biela empuja al pistón, que sube. Los gases que hay en el interior del cilindro van ocupando un espacio cada vez más reducido a medida que el pistón se acerca al punto muerto superior. Cuando alcanza este nivel, los gases ocupan el espacio de la cámara de compresión y, por tanto, están comprimidos y calientes por efecto de la compresión. Al elevarse la temperatura, se consigue la vaporización de la gasolina y la mezcla se hace más homogénea, por lo que existe un contacto más próximo entre la gasolina y el aire. Durante esta nueva carrera del pistón, el cigüeñal ha girado otra media vuelta.

El tercer tiempo es el llamado de explosión. Cuando el pistón se encuentra en el punto muerto superior después de acabada la carrera de compresión, salta una chispa en la bujía, que inflama la mezcla de aire y gasolina ya comprimida y caliente, la cual se quema rápidamente. Esta combustión rápida recibe el nombre de explosión y provoca una expansión de los gases ya quemados, que ejercen una fuerte presión sobre el pistón, empujándolo desde el punto muerto superior hasta el inferior. A medida que el pistón se acerca al punto muerto inferior, la presión va siendo menor, al ocupar los gases un mayor espacio.

En este nuevo tiempo, el pistón ha recibido un fuerte impulso, que transmite al cigüeñal, que por inercia seguirá girando hasta recibir un nuevo impulso. Cuando el pistón llega al punto muerto inferior, se abre la válvula de escape, y permanece cerrada la de admisión. Durante esta nueva carrera del pistón, denominada motriz por ser la única en que se desarrolla trabajo, el cigüeñal ha girado otra media vuelta.

Al comenzar el cuarto tiempo, llamado de escape, el pistón se encuentra en el punto muerto inferior, y la válvula de escape se ha abierto, por lo que los gases quemados en el interior del cilindro escaparán rápidamente al exterior a través de ella, por estar sometidos a mayor presión que la atmosférica. El cigüeñal sigue girando y hace subir al pistón, que expulsa los gases quemados al exterior. Cuando llega al punto muerto superior, se cierra la válvula de escape y se abre la de admisión. Durante el tiempo de escape, el pistón ha realizado una nueva carrera y el cigüeñal ha girado otra media vuelta. Acabado el tiempo de escape, el ciclo se repite.

Como ha quedado expuesto, las válvulas se abren y cierran coincidiendo con el paso del pistón por el punto muerto superior e inferior. Para conseguir un mayor rendimiento en los motores, se hace que las válvulas se abran y cierren con un cierto adelanto o retraso respecto a los momentos indicados. Son las llamadas cotas de la distribución, cuyos valores son determinados por el fabricante y calculados para que el motor desarrolle la máxima potencia.

ciclo del motor a explosion

Motor Wankel

El motor Wankel posee una forma especial de la cámara de combustión del pistón que permite un mejor aprovechamiento de la potencia obtenida

Principio Fisico del Funcionamiento de Un Motor Explosion Combustion InternaEn un motor tradicional, el pistón sube y baja verticalmente y un eje unido a ése encarga de transformar dicho movimiento en otro vertical que se transmite al cigüeñal. Este movimiento vertical del pistón tiene inconvenientes.

El primero consiste en que los bruscos cambios de dirección, de abajo hacia arriba y viceversa fatigan el metal y provocan una rotura anticipada Otro problema es que la transferencia de energía es ineficiente y parte se pierde en mover el pistón verticalmente sin invertirse en girar el cigüeñal.

El motor Wankel fue diseñado para que la fuerza de la explosión se empleara íntegramente en mover el cigüeñal y para que utilizara menos partes móviles. Consta de una cavidad curva que es la cámara de combustión  Dentro de ella se halla el pistón, que tiene forma de triángulo con los bordes cóncavos. La parte interior de dicho pistón tiene una circunferencia dentada que va unida a un engranaje del cigüeñal.

Al ir girando el pistón en la cavidad, toma el combustible en un punto y lo comprime hasta llegar a un segundo Punto en el que se produce la explosión Siguiendo con el giro, llega al área de expulsión de gases al exterior, ya Continuación vuelve a admitir combustible Se puede Considerar por tanto como un motor de explosión de cuatro tiempos.

Dado que el pistón tiene forma triangular, puede entenderse como si fueran tres Pistones Separados, cada uno en una fase cada vez. La energía se emplea en mover circularmente el Pistón y los cambios bruscos de movimiento se reducen en gran medida.

Con este motor se ha llegado, incluso, a doblar la Potencia de un motor normal, pero problemas de diseño y de desgaste, en especial de las esquinas del pistón que rozaban con la pared de la cámara han impedido su difusión a gran escala.

Haciendo ahora un poco de historia, podemos decir que la historia del motor de explosión de gasolina es la siguiente:

Primer motor de explosión de cuatro tiempos: Otto y Rochas (1861-1862).
Primer motor de explosión comercial: Otto (1876).
Primer automóvil con motor de explosión: Marcus (1875).
Primer motor comercial útil, aplicable a vehículos: Daimler y Maybach (1885, aproximadamente).
Primer automóvil moderno: «Mercedes» de Maybach  (1900)

Ampliar la historia desde aquí

Ver: Funcionamiento Motor Eléctrico

Ver:  Resumen Historia La Patente de Selden