Motor Wankel Principio de Funcionamiento Ciclos o Fases



 Principio de Funcionamiento del Motor Wankel

En todos los motores de combustión interna se produce la energía por la expansión de los gases de combustión, obtenidos en la quema rápida del combustible en aire comprimido. En una turbina de gas, el proceso es continuo. Un flujo constante de aire, comprimido previamente, entra en la cámara de combustión y, simultáneamente, un chorro de combustible penetra en dicha cámara, quemándose en el aire y produciendo un chorro continuo de gases calientes y altamente comprimidos.

Felix Wankel
El hombre que da nombre a este motor, Félix Wankel, nació en Alemania, en 1902. En su juventud, dedicó mucho tiempo a la experimentación, y trabajó en la resolución de muchos problemas matemáticos. Después de la guerra, restableció su taller, y diseñó una pequeña válvula rotatoria para la fábrica N.S.U. La calidad de los cierres de esta válvula, a pesar de estar sometida a todo el calor de los gases de combustión, le hizo pensar en la posibilidad de construir un motor rotatorio, y lo desarrolló en cooperación con la N.S.U.

Éstos se dirigen a las aletas del rotor de una turbina fijada en el eje motriz, que de esta forma gira sin cesar, y los gases ya usados son expulsados a la atmósfera de una forma continua.

En un motor de cilindros, la producción de energía es discontinua, y se deriva de una serie de procesos: aspiración, compresión, encendido y expansión de los gases que son expulsados. Todo ello se verifica en dos vueltas del eje. Por tanto, el eje motriz de un motor de cuatro tiempos, de un solo cilindro, recibe energía solamente durante media vuelta cada dos vueltas, concretamente, durante la fase de expansión.

Durante vuelta y media se toma energía de él, para llevar a cabo los restantes procesos descritos anteriormente. Esto se manifiesta en vibraciones en la rotación del eje motriz, que pueden subsanarse, parcialmente, con un volante pesado, o mayor número de cilindros.

Todos los procesos anteriormente descritos de aspiración, compresión, expansión y expulsión se originan por el movimiento de vaivén, en una línea recta, de un pistón en el interior del cilindro. El movimiento de rotación del eje motriz se consigue acoplándolo al pistón por medio de una biela.

Cuando el pistón se halla en el extremo superior de su recorrido, es decir, pegado a la cabeza del cilindro, queda estacionario. También está así cuando se encuentra en el extremo inferior de su recorrido; o sea, en la parte más alejada de la cabeza del pistón.

Cuando empieza a moverse, se acelera hasta que alcanza su máxima velocidad, en un punto a la mitad de su recorrido. Entonces comienza a disminuir su velocidad hasta que se para en el extremo de su recorrido, repitiendo luego este proceso a la inversa. Todo esto ocurre durante dos movimientos del pistón, uno en cada dirección, por cada revolución del eje motriz.

En un motor con un recorrido de 10 cm., cuando el eje gira a una velocidad de 4.500 r.p.m., el pistón recorre una distancia total de 4.500 x 10 cm. x 2 = 900 m.; una velocidad media de 900 m/min. La velocidad máxima del pistón no es, sin embargo, 1.800 m/min. (900 x 2), como podía esperarse, sino 1.413,6 m/min. Es la velocidad a la que gira el eje.

Esta discrepancia se debe al hecho de que la aceleración es máxima cuando el pistón comienza a moverse a partir del reposo. Esta aceleración decrece a medida que la velocidad real del pistón se incrementa hasta alcanzar el valor máximo (cuando el pistón está a medio camino, a lo largo del cilindro y la biela, está formando un ángulo de 90° con la línea del cilindro); entonces cesa la aceleración y comienza la desaceleración.



La energía que se utiliza para mover el pistón (y partes de unión) miles de veces por minuto, y la necesaria para vencer el rozamiento de los segmentos o aros con las paredes del cilindro, causan una gran pérdida de energía.

ciclos del motor wankel
En un motor clásico de cuatro tiempos hay una serie de piezas móviles, la mayor parte de ellas con movimiento de vaivén. El motor Wankel trabaja según el principio del motor de cuatro tiempos, pero en él no hay piezas con movimiento de vaivén.

De lo dicho anteriormente, se desprende que un motor como el descrito no es el medio más eficaz para convertir en fuerza motriz el calor latente del combustible. De hecho, el rendimiento calorífico de un motor de petróleo, aun funcionando en las mejores condiciones, no es mayor del 25 %. Además, existe el inconveniente de molestias y pérdidas de energía que produce la vibración inherente a todo movimiento de vaivén.

Se han realizado intentos, a lo largo de estos años, para diseñar un motor que produzca energía motriz por un movimiento puro de rotación. La turbina de gas es un buen ejemplo; pero, a pesar de que a plena carga su rendimiento puede llegar a ser del 38 %, cuando no trabaja a plena carga su consumo de combustible sigue siendo elevado; esto es inconveniente cuando se destina a motores que, la mayoría de las veces, funcionan a velocidades muy inferiores a la máxima.

ciclos del motor wankel

En cada vértice del rotor se produce continuamente un cierre, que permite que los gases contenidos en los espacios entre el rotor y la cámara se nueven  con el rotor, desde la entrada hasta la expulsión. Cuando cada vértice del rotor deja abierta la válvula de entrada, penetra la mezcla de combustión y aire (amarillo) ; luego se comprime (naranja); se quema y se expande impulsando el rotor  y los gases son expulsados por el tubo de escape (marrón).

El motor diseñado por el ingeniero alemán Félix Wankel combina los cuatro procesos del motor clásico de cuatro tiempos en un movimiento rotativo, dentro de una cámara diseñada en forma epitrocoide. Tiene la utilidad de eliminar las partes del vaivén de un motor de émbolo, manteniendo la ventaja de permitir una velocidad de rotación baja.

El peso y el tamaño se reducen considerablemente y la vibración es virtualmente eliminada. Se asegura que la producción de energía de un Wankel es de dos a dos veces y media superior a la de uno de pistón de la misma cilindrada.

La parte fundamental de un motor Wankel es una cámara de formato especial, en la que hay un rotor de forma triangular, con los lados curvos. Los tres vértices están en contacto continuo con las paredes de la cámara, formando tres compartimientos estancos,limitados, por una parte, por el rotor y, por otra, por las paredes de la cámara. Cuando el rotor gira dentro de la cámara, giran con él, por tanto, los tres compartimientos, y la distancia entre cada cara del rotor y la pared de la cámara aumenta o disminuye, variando el volumen de cada compartimiento.

Para asegurar el funcionamiento suave y seguro del rotor, éste va provisto de un piñón con 30 dientes, que engranan excéntricamente con los 20 dientes de otro piñón que es concéntrico (es decir, tiene el mismo centro) con el eje motriz. En otras palabras, el rotor gira con el engranaje como lo hace un «huía hoop» alrededor de la cintura.
A. causa del engranaje excéntrico, y puesto que los dos piñones tienen distinto número de dientes, mientras el eje motriz da una vuelta completa, el rotor sólo ha realizado un tercio de su recorrido en el interior de la cámara, es decir, el eje gira a una velocidad tres veces mayor que la del rotor.



Se puede comprender mejor este movimiento si se imagina una manivela, o palanca, en el lugar de la excéntrica, siendo la longitud de la palanca la distancia entre los centros del rotor y del eje. Cuando el rotor se mueve, el espacio comprendido entre cada cara de éste y la pared de la cámara se agranda, o se hace más pequeño, dos veces por cada revolución completa del rotor.

Corte de un Motor Wankel

La primera expansión es la fase de «inducción», cuando la mezcla de aire y combustible entra del carburador. La primera contracción de volumen de la cámara comprime la mezcla. La segunda expansión es la base de producción de energía, cuando la mezcla se quema y, por expansión, mueve el rotor. La segunda contracción expulsa los gases. Estas cuatro fases completan un ciclo, y de nuevo hay un espacio, frente a cada cara del rotor; por lo tanto, hay tres de estos ciclos por cada vuelta completa del rotor, es decir, una por cada vuelta del eje.

Comoquiera que la combustión se realiza, sucesivamente, en una cara distinta del rotor, el incremento del calor es razonablemente bajo, con pequeña o nula dilatación del rotor. El interior del rotor está refrigerado con aceite, y el calor se disipa también a través de los contactos que los vértices del rotor realizan sobre las paredes de la cámara, que están refrigeradas por agua.

El eje lleva una rueda dentada para uniformar la rotación entre las fases productoras de energía, y unos pesos en los extremos, para equilibrar el ligero balanceo del rotor. El encendido y el carburador son similares a los del motor clásico de cuatro tiempos.

Fuente Consultada:
Enciclopedia de la Ciencia y la Tecnología TECNIRAMA Fasc. N°84 (CODEX)

https://historiaybiografias.com/archivos_varios5/estrella1_bullet.png

ocio total

juegos siete diferencias

noparece

fotos

creencias

anticonceptivos

mujeres

actitudes

actitudes


puzzles


------------- 000 -----------

imagen-index

------------- 000 -----------