Young Thomas Vida y Obra Cientifica Experimento Con Luz


Young Thomas Vida y Obra Científica
Experimento Con La Luz

A la edad de 20 años, Thomas Young (1773-1839) dominaba ya diez idiomas. Más adelante, fue él quien descifró las primeras palabras de los jeroglíficos egipcios de la famosa piedra de Rosetta. Pero aunque su interés se orientó hacia campos muy amplios y diversos durante toda su vida, se le recuerda principalmente por sus contribuciones a la física.

Thomas Young

La óptica le interesó de un modo especial. Por aquella época, estaba candente la controversia sobre la naturaleza de la luz. De una parte, estaban los partidarios del físico holandés Christian Huygens, que argüían que la luz era una perturbación de tipo ondulatorio.

De otra, los partidarios de Isaac Newton, que sostenían que los rayos luminosos estaban formados por partículas minúsculas o corpúsculos. Young hizo dar un gran paso hacia adelante a los partidarios de la teoría ondulatoria, al demostrar que, en ciertas circunstancias, dos rayos de luz pueden anularse mutuamente, o sea, producir oscuridad.

Si dos corpúsculos se juntaran, el resultado sería siempre un corpúsculo de tamaño doble. En ningún caso se anularían uno al otro. Pero si la luz era una especie de movimiento ondulatorio con crestas y valles, entonces sería posible que las crestas de un rayo anulasen los valles del otro.

Sin embargo no era muy fácil conseguir ese efecto. Los experimentos deben ser realizados con mucha precisión. Young produjo dos rayos de luz al dividir uno en dos partes, por medio de dos aberturas estrechas. Luego colocó una pantalla en el camino de los dos rayos combinados, y mostró que ésta aparecía cruzada por líneas luminosas y oscuras.

Cuando se produce una línea oscura, es porque los dos rayos han llegado a la pantalla de tal forma que las crestas y valles respectivos se han anulado. En cambio, para producir líneas luminosas, las ondulaciones de ambos rayos han alcanzado la pantalla de forma coincidente, por lo cual se refuerzan entre sí, y esto explica que esa zona se encuentre iluminada.

Experimento de Young Con La Luz

Esquema del experimento más famoso de Tomás Young. Por medio de ia ¡ampara y de ia primera ranura consiguió una sola fuente de luz. A continuación, dividió esta fuente de luz en dos partes, por medio de las dos ranuras siguientes. Volvió a juntar las dos partes sobre la pantalla, y vio cómo ésta aparecía cruzada por líneas luminosas y oscuras. Los rayos luminosos pueden sumarse o anularse mutuamente; por lo tanto, deben estar formados por ondas.

Young resolvió otros problemas que eran materia de polémica entre los científicos de su época. Mostró la razón polla cual, cuando se introduce un tubo estrecho en un recipiente de agua, ésta asciende por el interior del tubo (capilaridad), aunque sus explicaciones no fueron muy claras y no consiguieron ser interpretadas por mucha gente.

También explicó la causa de que la mayoría de los sólidos se distienden cuando se los estira, y encontró la forma matemática de calcular el alargamiento de un sólido dado. A una de las propiedades fundamentales de una sustancia, que determina su elasticidad, se le llama el módulo de Young.

La tercera aportación principal de las investigaciones de Tomás Young fue en el campo de la medicina. De hecho, estudió medicina en la Universidad, primero en Londres, después en Edimburgo, en Góttingen (Alemania), y en Cambridge.



Ejerció como médico en Londres, durante 15 años (1799-1813), y fue quizá el médico más culto de su época. Uniendo sus estudios médicos y ópticos, Young enunció una teoría que explicaba cómo la parte sensible del ojo (la retina) responde a los distintos colores de la luz, siendo, por lo tanto, capaz de ver en color. Sus ideas se aceptan .como la base de las teorías modernas de la visión en color.

Además, utilizó sus propios conceptos sobre el comportamiento de los líquidos en los tubos, para explicar las leyes que gobiernan el flujo de la sangre en las arterias y en el corazón humanos.

Tomás Young fue profesor de filosofía natural en la Royal Institution desde 1801 a 1803. Después fue nombrado médico del Hospital de San Jorge, en Londres. Al mismo tiempo, desde la edad de 21 años hasta su muerte, en 1839, fue miembro activo de la Royal Society.

DEFORMACIONES Y CALCULO DEL MODULO DE YOUNG:

Cuando suspendemos un peso de una balanza de resorte éste se alarga, y al quitar aquél, recobra su longitud primitiva. Para describir este fenómeno, decimos que el resorte es elástico, es decir, que al aplicarle una fuerza de tracción se alarga, y al cesar dicha fureza vuelve a su longitud normal.

La fuerza con que el peso tira del resorte hacia abajo es un ejemplo de esfuerzo. El resorte responde “deformándose”, y su deformación se mide por la cantidad de alargamiento que ha experimentado. Las balanzas de resorte son de uso común para pesar objetos, ya que el aumento de longitud de aquél (deformación) es proporcional al peso del objeto (esfuerzo).

Si la longitud de un resorte aumenta 1 cm. al colgar de él un peso de 1 kilo, al suspender un peso de 2 kilos, el aumento observado es de 2 cm., y si al suspender un libro del extremo del resorte, éste se estira 3,5 cm., el peso del libro es de 3,5 kilos. Pero esta relación no se cumple siempre, ya que existe un límite para el esfuerzo que el resorte puede soportar; así, si colgamos un peso de 10 kilos, puede suceder que el resorte se estire más de 10 cm., es decir, el esfuerzo deja de ser proporcional a la deformación.

El resorte se ha debilitado y, en lo sucesivo, se estira con más facilidad. Al retirar los pesos, en general, el resorte vuelve a su longitud primitiva, lo que quiere decir que no ha perdido nada de su elasticidad, pero, al ir aumentando el peso aplicado, llega un momento en que ya no retorna exactamente a su longitud primitiva, sufriendo una pequeña deformación permanente.

Cuando esto sucede, se dice que se sobrepasó el límite elástico, y que el resorte ha perdido parte de su elasticidad, es decir, de su capacidad para volver a su posición inicial cuando cesa el esfuerzo aplicado. Finalmente, el resorte puede romperse si colgamos de él un peso mucho mayor que el correspondiente al límite elástico. En el tipo de balanzas a que nos hemos referido anteriormente, se emplean resortes en espiral, fabricados con alambre de acero templado, pero no es preciso arrollar en espiral el alambre para conseguir un efecto elástico. Al estirar un alambre de acero, su longitud aumenta, volviendo a su longitud primitiva al cesar la acción de la fuerza aplicada.

El aumento de longitud, en estas condiciones, es muy pequeño, pero tiene gran importancia en la construcción de puentes y estructuras de acero para edificios, donde piezas metálicas de gran longitud están sometidas a esfuerzos de diversas clases, siendo muy importante la magnitud de la deformación, y el modo en que se produce.



Los tipos más sencillos de esfuerzos y deformaciones son los que se presentan cuando estiramos un hilo, siendo el problema mucho más complicado cuando se trata de un resorte en espiral.

CÁLCULO DEL MÓDULO DE YOUNG
El método ordinario de estudiar cómo se comporta un alambre sometido a esfuerzos longitudinales, es tomar un trozo suficientemente largo y estirarlo. Para ello, se fija su extremo superior a una viga del techo, y se cuelgan pesos en el extremo inferior, midiéndose el alargamiento del hilo sometido a diversos esfuerzos.

Es conveniente que el alambre empleado sea lo más largo posible, ya que la magnitud del alargamiento depende de la longitud del alambre, siendo fácil comprender que un alambre de 1,5 metros se alargará tres veces más que otro de 0,5 metros sometido al mismo esfuerzo.

Para medir con exactitud el alargamiento del alambre se emplean aparatos especiales, tales como el nonio, o vernier. Supongamos que del alambre se cuelgan pesos cada vez mayores y se miden los alargamientos correspondientes. Los resultados obtenidos se pueden representar mediante un sistema de ejes rectangulares, con los alargamientos sobre el eje horizontal, y los esfuerzos .sobre el vertical.

Cada par de valores —alargamiento y su correspondiente esfuerzo— nos define un punto, y, al unir los puntos obtenidos, el gráfico resultante es una línea recta (siempre y cuando los pesos aplicados no sean excesivos).

Un gráfico de este tipo indica que la magnitud representada sobre un eje (esfuerzo) es directamente proporcional a la representada sobre el otro (deformación). Otra consecuencia es que, cuando se divide el esfuerzo por la deformación que ha producido, el resultado obtenido es siempre el mismo. La forma de expresar estas conclusiones en términos matemáticos es:

ESFUERZO/DEFORMACIÓN=CONSTANTE

para una longitud determinada del alambre. A la relación constante esfuerzo/deformación, se le da el nombre de módulo de Young.

elogios importantes para la mujer

Un valor elevado de esta constante, para un alambre en particular, indica que éste no se estira con facilidad, pero si la constante tiene un valor pequeño, a grandes esfuerzos corresponderán grandes deformaciones, lo que indica que el material es más “elástico”. Así, esta constante es una medida de la elasticidad del material, que será tanto más elástico cuanto menor sea su valor.

Pero tanto la deformación como el esfuerzo, tal y como los hemos definido hasta ahora, dependen, no sólo de la naturaleza del material que forma el alambre, sino también de sus dimensiones.

Si suspendemos dos pesos idénticos de los extremos de dos alambres de la misma longitud y material, uno fino y otro grueso, el esfuerzo sobre el más grueso es menor que sobre el otro, ya que aunque la fuerza es la misma, en el caso del alambre más grueso, está distribuida sobre un área mayor; si el área del alambre más grueso es doble que la del otro, el primero equivale a dos alambres finos soportando el mismo peso, o a un alambre fino soportando un peso equivalente a la mitad.

Tabla de modulo de young

Por ello resulta más adecuado definir el esfuerzo como la fuerza aplicada por unidad de superficie. Si colgamos un peso de 15 kilos del extremo de un alambre, con una superficie de su sección transversal de 0,6 milímetros cuadrados, el esfuerzo es igual a la fuerza (en kilogramos/fuerza) dividida por la superficie de la sección transversal (en mm²), o sea: Esfuerzo=15/0,6 cuyas unidades son: Kilogramofuerza/milímetro cuadrado

De modo análogo, es más útil considerar la deformación unitaria (o simplemente deformación), que se define como el alargamiento por unidad de longitud. Si el alambre que estamos considerando tiene 250 centímetros de longitud y se estira 0,25 centímetros, la deformación es igual al alargamiento, dividido por su longitud primitiva, o sea:

Deformación=0,25/250

El módulo de Young es igual al esfuerzo dividido por la deformación así definidos. Luego, en el ejemplo propuesto, será igual a:

15/0,6 :0,25/250 ó también es: 15 x 250/0,6 x0,25 = 25.000 Kgf/mm²

El módulo de Young depende sólo de la naturaleza del material, pero no de sus dimensiones, y, mediante una fórmula sencilla, se puede calcular el alargamiento de un alambre sometido a una fuerza de tracción determinada, cuando se conoce su longitud, el área de la sección transversal y el módulo de Young del material que forma el alambre.

En este post hemos expresado el módulo de Young en kilogramo/fuerza por milímetro cuadrado, unidad empleada corrientemente en los cálculos técnicos de deformaciones. En los países de habla anglosajona, el módulo de Young se expresa en libras peso por pulgada cuadrada, y en el sistema cegesimal (un sistema métrico), en dinas (unidad de fuerza) por centímetro cuadrado.

Fuente Consultada:
Revista TECNIRAMA N°82 Enciclopedia de la Ciencia y la Tecnología – Vida de Tomás Young –

ocio total

imagen truco limonimagen cazar serpienteimagen depositos acertijo

noparece

anticonceptivos

fotos

creencias

mujeres



OTROS TEMAS EN ESTE SITIO

final